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I Abstract
A motion picture can be manipulated in a variety of useful ways if object move-

= ment within the scene can be determined. Determining object movement is known
\: et as motion estimation. This thesis is concerned primarily with the problem of motion
: estimation from digitally sampled motion pictures.
WF

ﬁ Several models are developed that describe object motion with velocity fields.
’ Given an image sequence, the velocity field is underconstrained and therefore can-
) & not be determined uniquely. However, by imposing structural constraints on the
4 - velocity field in the form of a parametric model, it is possible to determine the
v model parameters uniquely.
. ! The parametric models form the basis for two motion estimation algorithms
. which are described in this thesis. Experimental results are presented which demon-
:;" § strate that these algorithms determine velocity fields more accurately than con-

« ventional region matching methods. One of the algorithms also has the desirable
property of being computationally efficient. This algorithm is based on the least
% squares error criterion.

To demonstrate the performance of the least squares motion estimation algo-
N , rithm, a motion-compensated noise reduction system was implemented. A number
- of experiments demonstrate that the motion-compensated noise reduction system
can yield better results than conventional restoration methods.

Oy ‘:’?
" o A motion-compensated frame interpolation system was also implemented. This
:‘o system permits frame rate conversion by arbitrary rates. Several experiments
¢ ﬁ demonstrate that in a variety of situations, motion rendition obtained with the
motion-compensated frame interpolation system is more natural than that which
ﬁ can be obtained with frame repetition strategies.

Thesis Supervisor: Jae S. Lim
ﬁ Title: Associate Professor of Electrical Engineering
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Chapter 1

Introduction

1.1 Motion estimation

A motion picture is composed of a sequence of still frames which are displayed
in rapid succession. The frame rate necessary to achieve proper motion rendition
in typical visual scenes is sufficiently high that there is a great deal of temporal
redundancy among adjacent frames. Most of the variation from one frame to the
next i3 due to object motion. This motion may occur within the scene or relative
to the camera which generates the sequence of still frames.

There are a wide variety of applications where one desires to manipulate a
motion picture by exploiting the temporal redundancy !. In order to do this it
is necessary to account for the presence of motion. The class of systems we are
concerned with explicitly determine the movement of objects within the sequence
of still frames. The process of determining the movement of objects within image
sequences is known as motion estimation.

This thesis is concerned primarily with the problem of motion estimation. The
motion estimation problem is phrased in a variety of contexts that depend on a
particular representation for motion. The specific motion representation which we

use is based on velocity fields.

'Some applications which have been proposed include (1) noise reduction, (2) spatio-temporal

interpolation. and (3) motion picture coding.

\ ‘ 3 \f p‘lt‘:al'f :(?bfn}’l!;




X 1.1.1 Previous approaches to motion estimation

A number of methods for performing motion estimation have been proposed in
» the past. In general there have been three primary problems with previously used

v methods:

e motion estimation accuracy with noisy images

A
: e estimating large velocities
B

e computational complexity
R
p ::' Many algorithms are explicitly formulated under the assumptions of high signal-
:§: to-noise level. As a consequence, if the algorithms are applied to noisy pictures, the
motion estimation errors are typically large. Most motion-compensated systems re-

; quire very accurate motion estimates in order to maintain adequate picture quality.
3:_:: Consequently the algorithms which are sensitive to noise are not generally useful.
B In real-life motion pictures the velocity field is a complicated function of spatio-
e temporal position. Therefore most algorithms are based on local operations. One
‘;:. of the problems with this approach is that typically only small velocity fields can
‘3: be estimated reliably.
e Many applications of motion compensation require real-time operation. For real-
‘; time operation to be feasible it is necessary for the algorithms to be computationally
~, efficient. Even in those applications where real-time operation is not required,
,;:v computational complexity is an important characteristic which affects the cost of
.Si:' implementing a specific motion estimation algorithm.
~. 1.1.2 A new approach to motion estimation
E:: The purpose of this thesis is to present a new approach to motion estimation.
E;:" This approach is based on parametric signal and-velocity models. These models
- are general enough so they apply to a wide variety of signals derived from motion
_:: pictures. We present two new motion estimation algorithms which are based on
.
b
- : g

-~
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these models. The algorithms are capable of estimating the velocity field very accu-

rately from noisy piciures. Furthermore, one of the algorithms has the important

property that the model parameters can be determined by soiving linear equations

(least squares algorithm). Consequently the algorithm is computationally efficient.

=

These algorithms are based exclusively on local operations and consequently

cannot estimate large velocities directly. However, because they typically generate

ez ]

velocity estimates with subpixel accuracy, they can be used on spatially down-

Y~

sampled images to generate accurate initial coarse velocity estimates. The coarse

1S

velocity estimates can be used at the original picture resolution to generate accurate
estimates of large velocities. The resulting algorithm is referred to as a multigrid

method.

B ©x

1.2 Applications of motion estimation

T .
[ e

i The muitigrid/least squares algorithm was used in several applications of motion-
compensation. We developed a motion-compensated noise reduction system and a

& motion-compensated frame interpolation system.
Y

g 1.2.1 Motion-compensated noise reduction

B'\ The basic structure of a motion-compensated noise reduction system is shown in
S

b Figure 1.1. At each point in the image sequence the velocity field is estimated and

g used to compute a motion trajectory. The signal intensity remains constant along
*

motion trajectories. Therefore the sampies along the trajectory are processed with
a one-dimensional filter. We apply this technique to signals degraded with either
additive noise or impulsive noise. For additive noise reduction the filter averages
the samples and for impulsive noise the filter computes the median of the samples.

In these systems, motion estimation error introduces blur or other visible arti-

- > - -

e facts into the picture. Therefore they provide a subjective evaluation of the perfor-

mance of the motion estimation algorithms.
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Figure 1.1: Motion-compensated noise reduction system
1.2.2 Motion-compensated frame interpolation

A motion-compensated frame interpolation system has the basic form shown

in Figure 1.2. This system permits computing intermediate frames of the motion

s(Z,t) 3(z,t')
/1
( Directional
3-D
[ Interpolator
V
Motion
Estimation

Figure 1.2: Motion-compensated frame interpolation system

picture. At each point where a sample is desired, the velocity field is estimated and

projected onto the closest frame. The signal value at this position is used as the

interpolated value.
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1.3 Thesis overview

1.3.1 Survey of motion estimation algorithms

Motion estimation is a fundamental component of motion-compensated image
processing systems. Consequently, a wide variety of motion estimation algorithms
have been proposed in the literature. In Chapter 2 we review some of the more

widely used methods.

1.3.2 Model-based motion estimation

In Appendix A we derive some very general motion models. The models form
the mathematical basis for analyzing the motion estimation problem. A specific
form of the model is used as the basis for two motion estimation algorithms which
are described in Chapter 3. One algorithm is based entirely on linear models and
uses the least squares error criterion. The second algorithm is based on a maxi-
mum likelihood parameter estimation method. For comparison purposes we also
implemented a region matching algorithm which is described in Appendix B.

We summarize the computational requirements of these algorithms. The com-
putational requirements for the region matching and maximum likelihood are very
similar. However, the least squares algorithm requires substantially less compu-
tation than the region matching and maximum likelihood algorithms (almost two
orders of magnitude).

For these algorithms we analyze the effect of additive random noise on motion
estimation accuracy. The Cramer Rao bounds are derived for the case of additive
white Gaussian noise and discrete observations of the signal.

In Chapter 3 we also present an algorithm for extending the effective search range
of motion estimators. The algorithm is based on a multi-grid method and permits
very large velocity fields to be estimated with high accuracy, in a computationally

efficient manner.
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1.3.3 Motion estimation experiments

In Chapter 4 a number of experiments are described which compare the motion
estimation algorithms described in Chapter 3 and the region matching algorithm

described in Appendix B. Two basic comparisons were made:
e motion estimation error as a function of signal-to-noise level
e picture quality obt~ined with motion-compensated temporal averaging

The first set of experiments measured the motion estimation error as a function
of signal-to-noise level with synthetic test images. It is shown that the error per-
formance of the least squares algorithm is very similar to the maximum likelihood
algorithm, both of which are superior to the region matching algorithm for realistic
signal-to-noise levels.

Next we processed some pictures by frame averag.ng along trajectories deter-
mined by the algorithms. For this operation, motion estimation error introduces
artifacts and causes the resulting picture to be blurred. These experiments confirm
the empirical results obtained with the synthetic test images. The pictures pro-
cessed with the maximum likelihood and least squares algorithms were comparable,
and better than the pictures processed with the region matching algorithm.

In addition we present some experiments in motion estimation of large veloc-
ities. These experiments demonstrate the effectiveness of the multigrid algorithm

for estimating large velocities.

1.3.4 Motion picture restoration

In Chapter 5 we describe some motion picture restoration systems. The degrada-
tions that the restoration systems we developed can suppress include: (1) additive
random noise, and (2) impulsive noise. We compared the pictures processed with
the motion-compensated systems to those processed with adaptive single frame
restoration and adaptive multiple frame restoration systems. On the basis of infor-

mal subjective viewing, the pictures processed with the motion-compensated sys-




Y

.b.
E;_'i tems were usually judged to be better than those processed with the two adaptive

methods.

1.3.5 Motion picture frame interpolation

R

In Chapter 6 we describe two motion picture frame interpolation systems. We

developed a system which performs frame rate conversion by motion-compensated

g A

frame interpolation. This system permits rate conversion by arbitrary frame rates
(for example 10 %). We compared this system to an alternate method based on

frame repetition. This system does frame rate conversion by repeating (or drop-

o

) ping) frames. Each “interpolated” frame is obtained by selecting the frame in the

original sequence which is closest in time to the desired frame. A number of infor-

&%

mal subjective tests revealed the motion-compensated system to yield comparable

results to the repetition system for scenes with slight motion. However, when large

¥

X moving areas are present, the motion-compensated interpolation method was pre-

ferred over the frame repetition method. When there are large moving areas the

' frame repetition method produces “jerky” motion, while the motion-compensated

interpolation method yields more continuous motion rendition.
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b 1.4 Notation and conventions
*
. In this section we define the notation and conventions used throughout this
; thesis.
f: A great deal of our analysis "1ivolves systems of linear equations. We make
. extensive use of matrix and vector notation. Matrices are represented with upper
?:. case symbols (A, B, etc.) and vectors are represented with either upper or lower
1. case symbols with a bar over the symbol (a, b, § etc.). For example, a set of linear
) equations is written as
g, Az =},
it
: The inverse of a matrix A is written as A~', and the transpose is written as A7.
‘ Entries of a matrix are referred to with subscripted notation. Therefore, A,; refers
:: to the i* row and ;'* column of matrix A.
:‘;’ All vectors are column vectors. When written in line, the convention is b =
2 (by,b2,...,bx)7T. Entries of a vector are referred to with subscripted notation.
K-, Therefore, b, refers to the i element of vector b.
")

We adopt a common notation used to distinguish continuous versus discrete l

‘,;" P

signals. A signal whose independent variables are enclosed in parenthesis “(-)”

is a continuous signal, and a signal whose independent variables are enclosed in

brackets “[-|” is a discrete signal. Therefore the signal s(-) refers to a continuous

o signal, whereas the signal s[-| is a discrete signal.

-
. The signals which we deal with are either single images or sequences of images
}_Z which comprise a motion picture. The luminance of an image is a function of two
"
e variables, z and y. For the sake of notationai convenience, the pair (z,y) will
)

< be written as 2 in many occasions. Therefore the image s(z,y) is equivalent to
N the image s(Z). Continuous sequences of images are written as s(z,y,t) = s(z,t).
N ) Therefore s(Z,t,) refers to the frame at time instant ¢,.
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On several occasions we will use Fourier transforms. The Fourier transform of

an image is
Swnwy) = [ s(z,y)e™TWsT +uy¥) gz gy (1.1)

)
-

and the Fourier transform of a movie sequence is

oL
(?EJL. '

20 .
y S(wzawyaw!) = / s(zsyvt)c_](wzz +uyy +w‘t)dz dy dt. (12)
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Chapter 2

Survey of motion estimation

algorithms

Motion-compensated image processing systems involve motion estimation in one
form or another. The purpose of this chapter is to describe a variety of motion

estimation algorithms which have been proposed in the past.

2.1 Motion estimation methodologies

Most image sequences are derived from natural scenes. A two-dimensional
frame is obtained by projecting a three-dimensional illumination function onto the
two-dimensional image plane of a camera and sampling in both space and time.
Hence there is a strong relationship between the spatial and temporal properties
of these signals. As motion occurs in the three-dimensional scene there are cor-
responding changes in the sequence of two-dimensional projections. A variety of
methods have been proposed for extracting three-dimensional motion parameters
from the sequence of two-dimensional projections [18,29,34,35,3]. These methods
have focused primarily on the motion of rigid three-dimensional bodies. A common
formulation of the problem involves determining the motion parameters, which in-

clude a translation component, rotation compounent, and center of rotation. It is

clear that the motion characteristics which are found in typical real-life image se-
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quences are vastly more complicated than this simple model can accommodate and
a more general representation is required.

A more widely used representation of objects within image sequences involves
segmenting the two-dimensional frames into different regions based on luminance
properties and associating each region with a three-dimensiona! object. A dynamic
scene is viewed as a set of two-dimensional regions that change dynamically in
shape, texture, luminance, etc. as a function of time. With this representation
motion estimation involves determining the movement of object boundaries and
other features within the image sequence.

Within this framework there are basically three methodologies which have been

used for motion estimation {15,11,25,28,33|:

e transform domain methods
e region matching methods

e spatio-temporal constraint methods

In the following sections we describe some algorithms based on these methodologies.

In addition to describing the algorithms, we discuss their limitations. To un-
derstand the limitations it is necessary to know the requirements of the algorithms.
There are many factors which affect the requirements imposed on a particular al-
gorithm. The most obvious factor is the intended application. Other factors are
related to the specific properties of the signals which are being manipulated (frame
rate, picture resolution, etc.). For reference purposes, we use the NTSC standard as
a baseline system. This choice is motivated by the widespread use of this standard.
Two application areas which we have investigated include noise reduction and frame
interpolation. We use these systems to select the requirements of the algorithms.
Therefore the requirements are stated for the problem of noise reduction or frame
interpolation of NTSC signals.

The most important requirements can be itemized as follows:

e Accuracy/large velocities: In order to avoid introducing blur or other artifacts

into the picture, veiocities must be estimated typically with subpixel accuracy

17
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(error < 1 pel/frame). This is an important requirement which most algo-
rithms fail to meet. Furthermore, for NTSC pictures, velocity fields on the

order of 10 pels/frame are present often.

Resolution: As a moving object occludes the background, the velocity field is
discontinuous. To avoid noticeable artifacts in these regions of the picture,
the estimator must resolve velocity discontinuities over a spatial distance on

the order of 2 to 3 pels.

Signal-to-noise levels: For noise reduction applications, signal-to-noise levels

as low as 20 dB are commonly present. For frame interpolation applications,

signal-to-noise levels on the order of 30 - 40 dB are typical.

Computational complexity: If real-time operation on NTSC signals is to be

obtained, it is extremely important that the algorithm is computationally

efficient.

2.1.1 Transform domain methods

One formulation of motion estimation in the transform domain is based on
the relationship between Fourier transforms of shifted two-dimensional sequences
[11]. If the Fourier transform of s(z,y) is S(w,,w,), then the transform of a shifted

version of s(z,y) is given by
s(z —d;,y — dy) &= S(w,,w,) exp[—j2n(w,d; + w,d,)|. (2.1)

Suppose we have two frames s(z, y, ty) and s(z, y,t,) corresponding to time instants
to and ¢;, with two-dimensional Fourier transforms So(w,,wy) and S;(w,,w,). If the
frame at time instant f, is a shifted version of the frame at time instant ¢, with
displacements d, and d,, then the unwrapped phase difference between the two

Fourier transforms is

So(wz,wy) — Si(ws,wy) = §(wy,wy) = —21(w,d, + wyd,). (2.2)




L
.
o " Extending this basic principle to motion estimation is straightforward. The un-
_“u'
" . wrapped phase difference betwcen two frames is computed at a number of frequen-
. cies and a set of overdetermined linear equations is generated. Solving the set of
o £ equations leads to an estimate of the displacement field characterized by d, and d,
1N ( ; - ;

Wa wyl 6¢(w11 H wyl)
s
o Wz Wy2 d, 6¢(w;2, Wyz)
i Vs -2 = . (2.3)
M J . - .
g M : : d,
3
b L':' WeN Wyn 6¢(“3N1 wyN)
’,' In practice this approach is very limited because it only applies to the case where

all objects move in the same direction and by the same amount against a uniform

background. Another difficulty with this method is that it requires computation of

s
RN

sy the unwrapped phase of the Fourier transform.

-2
5
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An alternate formulation was proposed by Stuller and Netravali {33]. It is based

on a coefficient-recursive estimation procedure and can be summarized as follows. A

given frame (say at time t,) is partitioned into blocks. Consider one block centered

o 5
""’ hr stin
0N

about the point %,, where the samples are organized into a one-dimensional vector

|

S(zo,ty). Let §,, be the n'? basis vector of a unitary transform and let c,(Zo,¢o) be

K

> . the corresponding transform coefficient which is computed as follows

e
i Cn(fo,to) = S(i, tg)Tan. (24)
" -

~ oA An error term for this coefficient is defined as the difference between the coefficient
B - at time ¢y and the coefficient for a displaced frame at time ¢, + 6t
b %

. en(d, Zo, to) = S(Zo,t0)T dn — S(Zo — d, to + 6t)Tds, (2.5)
N which can be simplified to

3

L} - — — - T -

RN E en(dy 'i.f)v tO) = (S(EO)tO) - S(EO - da t0 + 5t)) ¢n‘ \,26)
e . A coordinate descent algorithm is used to determine the displacement vector d

e . e e .

, LV which minimizes the ensemble {e2} over the set of basis vectors that comprise the
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unitary transform. This iteration results in an estimate of the displacement field
at the point (Zy,%;). Based on some experiments with noisy images, this algorithm
is reported to achieve slightly smaller estimation error than a pel recursive region

matching algorithm described by Netravali and Robbins [25].

2.1.2 Region matching methods

A more general approach to the motion estimation problem is based on region
matching methods. This approach involves segmenting a frame into small regions
and searching for the displacement which produces a “best match” among possible
regions in an adjacent frame. Most region matching methods can be described with
the following formulation

min {C(d, Zo, to) = F(s(Z,to), s(Zo — d,to + 6t)]} (2.7)
d

where C(-) is a cost function associated with a two-dimensional displacement vec-
tor d and F[| is a function which measures the similarity between two frames
which have been displaced relative to each other. The objective is to search over
a two-dimensional sp;;.ce to determine the displacement d which minimizes the cost
function at the spatio-temporal position (Zg, t)-

A commonly used region matching method involves minimizing the sum of
squares of two regions that have been displaced relative to each other. Specifi-
cally, an estimate of the displacement field is obtained by determining the vector d
which minimizes the following expression

N
m(_}n {g[s(ig, to) — s(Zi — d, to + 6t)]2} (2.8)
where the set of points {Z;} are taken from a particular analysis window. The
widely used pel recursive method of Netravali and Robbins {25] has this basic form.
They use a steepest descent algorithm to minimize this function. This results in

the iteration
des = & - ZVa[DF D(&)P (2.9)
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where

DFD(&) = S(io, to) - 8(50 - c—i, to + 6t) (2.10)

is the displaced frame difference. In a later improvement of the algorithm {24], the
squared displaced frame difference (DFD) is minimized over a region. The resulting
algorithm resembles Equation (2.8). It should be noted that evaluation of Equation
(2.9) requires that values of s(Z,t) at arbitrary spatio-temporal positions are avail-
able. Therefore an interpolation procedure is required to compute values which are
not on the sampling grid. The bilinear interpolator is often used. Numerous varia-
tions of this basic algorithm have been used in applications ranging from interframe
coding [25] to noise reduction [8].

One of the primary problems with this approach is the computational require-
ment. Algorithms which address this problem have been proposed by several re-
searchers. One straightforward modification involves using a nonlinear optimization
procedure which converges at a faster rate than steepest descent with fixed line
search parameter € [32]. An alternative approach is to limit the search over d to
a quantized space. This reduces the nonlinear optimization problem to a discrete
search problem. Cafforio and Rocca [4] used a maximum likelihood search strategy
in conjunction with dynamic programming techniques based on the Viterbi algo-
rithm. Ninomiya and Ohtsuka {27] used an iterative binary tree search algorithm
which refines an initial estimate through successive iterations over smaller search
menus. A second problem with this approach is that it is sensitive to noise. In

Chapter 4 we present some results that demonstrate this fact.

2.1.3 Spatio-temporal constraint methods

Uniform translation is one of the most common motion types encountered in

image sequences. The following relationship models this situation

s(Z,8) = s(2 -5 - (t - to), L) (2.11)
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where ¥ is the velocity field in the region of interest. A direct consequence of this '

relationship is the spatio-temporal constraint equation

ds ds OJs
v,a—£+v,£+5?_0. (212)

In Appendix A we demonstrate that this is a special case of a much more general
representation.

This constraint equation forms the basis for a variety of motion estimation al-
gorithms which have been developed [15,19,25,28|. One method for estimating the
velocity field from this equation is to evaluate the spatial and temporal gradients

of the picture and generate a set of overdetermined linear equations

95| os| ] [ os|
Bz’Pl Ay . at ,
Yy
= - : . (2.13)
os| os| LY 2s
i oz . dy Py J i at . J

Commonly used methods involve estimating the gradients with finite differences.
One problem with this approach is that obtaining accurate estimates of the spatio-
temporal gradients from noisy images is difficult. This problem is further com-
pounded when there is aliasing due to undersampling. In real-life motion pictures
the frame rates are low enough that temporal undersampling is an important prob-
lem. Frame differences do not yield acceptable estimates of temporal gradients.

A more subtle problem is that this set of overdetermined equations does not

always have a unique solution. Furthermore this problem is ill-conditioned whenever

the samples used to form the estimate lie within an edge of the picture. One form of

v the least squares algorithm which we implemented minimizes the same expression,
E but deals with both problems of ill-conditioning and gradient estimation.

’ An alternative approach based on the constraint equation is to introduce an
: additional constraint. Horn and Schunck [13] introduced a smoothness constraint.
E They seek the solution which satisfies the constraint equation and simultaneously
N
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minimizes the squared gradient of the velocity field. The first constraint generates

the error function ¢, defined by

ds ds ds
Em = %U, + 551), + E (214)

and the second constraint generates the error function &; defined by

dv, 2 ov, 2 v, \? dv, 2
E? = (8:2:) + (—a-i/—) + (Ezl) + (—5;) . (2.15)

The velocity field is determined by minimizing the function

€ —// (a*el + €2)dz dy. (2.16)

In this expression, a is a parameter which permits weighting the relative error due

B>

to each term in carrying out the minimization. The integral is taken over the entire

region of support of the image.

R

They propose an iterative algorithm for determining the velocity field from this

expression. The basic iteration can be written as

¥

. ds [6s~, 495 ds . ] + ds
» . .. 0z |dz By at
R ARIE ) 2.17
v, v, — ) N §2+ ﬁz ( )
! oz Jy
Y
ds [33 -; , Os _,} ds
3 g Oy (0z Oy] "3t
f@ yt =3 ST (2.18)

e
QO
]
Q
<

where v, and v, are local averages of the velocity field components. The gradients of

the picture are computed with finite differences. Horn and Schunck report that this

=22

method yields large motion estimation errors if noise is present in the sequences.

Furthermore this algorithm requires significant computation.
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* Chapter 3

)
S ° ° .

,4? Model-based motion estimation

.'"‘

]

$

(:: In this chapter we describe two algorithms for estimating velocity fields from
-' image sequences. The first algorithm is based on the spatio-temporal constraint
)

‘35 equation described in Chapter 2 and is referred to as the least squares algorithm.
W

;‘::' The second algorithm is based on a maximum likelihood formulation. Both algo-
N rithms are used to estimate the translational components of a velocity field.

.

s These two algorithms are based entirely on local operations. Consequently they
1" can only determine relatively small velocity fields (on the order of 2 peis/frame). In
b

e Section 3.9 we describe a multigrid algorithm which uses these local algorithms at
a different picture resolutions. The multigrid algorithm permits estimation of large
) g g
::‘: velocities accurately.
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3.1 Motion models

Our motion estimation strategy is based on a very general motion model which

is derived in Appendix A. In this section we summarize the important features of

———
[ N
Pl
~¥ea

the model which form the basis for our motion estimation algorithms.
The models relate a sequence of frames to a single image with a motion descrip-

tion function &(Z,t), which is defined by the expression

= =2

s(2,t) = so(&(Z, 1)). (3.1)

A direct consequence of this relationship is that there exists a velocity field #(z, t)

-"__‘
R
SR

which is related to the signal through the partial differential equation

s
o
| =3

0,(z, t)a v (2, t) t = 0. (3.2)

LRI

The velocity field components v,(Z, t) and v,(Z,t) can be determined uniquely from

the motion description function by solving a set of linear equations. Conversely, the

<
[

motion description function can be determined from the velocity field by solving a

linear partial differential equation (provided the velocity field is a true velocity field

e
Raae

:fq' which can be obtained from a motion description function).
1
In the context of this model, the problem of motion estimation is to determine

either the motion description function or the velocity field from a given signal. The

‘-"t L '- .
Val o |

estimation problem has several components.

Signal model: The important aspects of the model are the relationship between the

"

o t’,.':- signal and a motion description function or equivalently between the signal and the
W

Ko velocity field.

=y
| o

Observation space: The observation space for this problem consists of discrete sam-

d]

::-:i -h ples of the signal r(Z,t) defined as
i
b r(2,t) = s(Z,t) + n(z,¢) (3.3)

R
B
R’y

i

where n(2,¢) is a random noise field.

Estimation procedure: Our objective is to formulate a procedure for estimating the

e
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Signal Model Observation Model Estimation Procedure

30(5) | I
| | n(z,1 |

a(z,t s(z,t r(z,t r{Zn,ln .
(&) | Motion &) | q_L (2) Sample (2t | Velocity
Model ' i | Estimation
| |
t-’(:T:’ t) ﬁ[im t!l]

Figure 3.1: Motion estimation probl.m

parameters that define the velocity field from discrete observations of the signal.

These components are illustrated in Figure 3.1.
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3.2 Motion estimation based on local properties

The motion estimation problem is underconstrained in the sense that a unique
solution does not exist. This is intuitively clear if we consider the fact that mo-
tion description functions and velocity fields are vector-valued functions of spatio-
temporal position and the picture intensity is a scalar-valued function. Therefore
in a sense there are more “unknowns” than “knowns”.

To address this issue it is necessary to impose additional constraints into the
problem. For real-life motion pictures, typically the velocity field varies much more
slowly than the picture intensity. Therefore if the velocity at one point in the
picture (Zq,%) has a velocity #(Zo, %), then points in the neighborhood of (Z,, ;)
will usually have approximately the same velocity. This observation can be used to
introduce another constraint.

We assume that over a small region of the picture the velocity field is constant
and can be characterized by the two components of the velocity field. Therefore
the method we use for determining arbitrary velocity fields is to use a translational
model at each point in the picture. An estimate of the local velocity is obtained by
using samples taken from a small region of the image sequence in the neighborhood
of the point of interest. More specifically, suppose we want an estimate of the
velocity field at the point Py = (Z,,t,). The available samples in the vicinity of P,
are used to form this estimate. Therefore the algorithms we describe in the next two
sections deal specifically with the problem of estimating translational components
of a velocity field from the samples in the neighborhood of the point wh -re a velocity
estimate is desired.

The model for local translation has two forms. The direct form is based on the

motion description function a(z,t) =% — - (¢t — to)
$(Z,t) = so(Z — v (t — t)). (3.4)

The differential form is based on the velocity field

ds ds Js
v,£+v,5;+a =0. (3.5)
27
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It should be noted that these two relations imply each other. The least squares
algorithm is based on the differential form of the model and the maximum likelihood
algorithm is based on the direct form. These algorithms are described in the next

two sections.
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A 3.3 Least squares motion estimation

.t"

h,

. ' The least squares motion estimation algorithm is based on the relationship
,--7,1 .. specified by Equation (3.5) and assumes the constraint is satisfied approximately
3 \'. ™
3‘ - at all points in some region W. Since a given signal will not always satisfy the
‘..-

constraint exactly, the right hand side (called the error) will be nonzero at some

W\,

\ﬁ o points within W. The least squares estimator minimizes this squared error. There
N & are two formulations which we consider. The first formulation minimizes the squared
b ]

e error at a set of NV discrete points. For this case the velocity estimates are given by
% ‘: 1 | & ads Js ds ’

b min — vy—| +y—| +— . 3.6
(o Vi, Uy N E;( *oz , '3y at ) (3.6)
.; The second formulation minimizes the squared error over the entire region ¥, and
A results in the estimator

oY e
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These are quadratic functions of the parameter values, so the optimal velocity com-

@
:':E" t{ ponents are determined from a set of linear equations
W
vl ¥ -
[ Wo = 7. (3.8)
.:'5 -
T !
Sg ,”.; For the discrete point minimization, W and 7 are given by
W Cm,
' 2
- 1 X [as 1 Z Js Js ﬂ
..: -:* N =1 oz N =1 9z ay
o W= ’ n) A7,k (3.9)
Y 1 i ds ds 1 i ds
Py .ﬁ: | N =1 dz P, y P, N =1 ay P, J
v ". ‘ - -
i L (as] ) (s
5 N =\ az at
S0 - =1 P P
Fags g 7= v ! ! . (310)
; | ' ( p.) ( ) ]
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For the continuous region minimization, W and ¥ are given by

///(ﬁ)zd”ydt //,W( )( )d dy dt
SO () e [ (L) deaye

[T1(3)(5) s | sz
i1 ( )( )dzdydt

In Section 3.3.2 we describe a numerical procedure for computing W and % from

(3.11)

~N —
] =

samples of the signal. Computing these quantities involves signal estimation. Con-
sequently the overall least squares algorithm has the structure shown in Figure 3.2.
In the remainder of this section we derive the conditions under which Equation (3.8)

has a unique solution.

r(z,t 7o 3(Zo, (Zo, ¢
( )-——- Otgggaaﬁon Estimate (Zo, ta Estimate —.( o o)
pervatl Signal Velocity

Figure 3.2: Least squares motion estimation algorithm

When W is nonsingular, the velocity components are obtained by soiving the
set of linear equations specified by Equation (3.8). However, when W is singular,
a unique solution does not exist. It turns out in practice that over a large portion
of typical pictures, W is ill-conditioned or nearly singular. In these regions, small
errors in computing the entries of W or 7 can lead to large errors in computing

the velocity field. If all the samples used to compute W lie within a region of the

picture where there is a perfect edge, then W will be singular. For the discrete
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N
':;: Ea point minimization, this can be shown as follows *.
g g‘
» ! We can determine a functicnal form which all signals s(Z,t) must satisfy such
:’,:‘ that W is singular. By direct evaluation, W is singular if and only if
B
3":‘ t‘:‘ WuWsy = W, W, (3.13)
A9 ,E Therefore if and only if a signal satisfies the following equation, then W will be
Y
ﬁ singular
o [~ | 2] N I \? N 2]?
oo i [ 35| [ Os ds ds
U M by —_— = —_—— . 3.14
g(azl ) g(ay ) ;(azay ) (3.14)
\ =1 r, =1 P, =1 P,
' EE We can rewrite this equation in the form
;‘.I
Y o - -
R ﬁ (aTa)(5Td) = (aTh)? (3.15)
'
:' E: where T
o G = ds ds Js (3.16)
e “\dz| '9z| ' az ]
- i Py P, P~
;|'. and T
:‘n' o~ = ds ds ds
.:? h?’: b: (——, y Yy A ) . (3-17)
:’ R ay l \ ay Py ay Py
k l. . . . T
' ! From the Schwartz inequality it follows that @ = ab, for some constant a. Therefore
Wl
Pt ds ds
> — y —
. 32 a% fori=1---N. (3.18)
s ’J\, P, P,
L
Consider all signals such that
R 3 03 _ a2 (3.19
Y dz 9y 19)
:‘.: :,3 The class of signals which has this property can be expressed in the form
:g. & 3(%,t) = so(z — ay, t). (3.20)
'..' &
l.. ‘
3: This implies that s(Z, t) is constant along lines where z = ay. Therefore the samples

A

all lie along an edge which is parallel to the line z = ay.

' The derivation of this coudition for the continuous region minimization follows the same line of

F AT
=

reasoning and leads to the same conclusion.
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3.3.1 Motion estimation in the presence of edges

Edges are a very prominent feature in most images. Therefore it is necessary
for us to guarantee that our algorithm is robust even though W is ill-conditioned.
In this subsection we formulate a numerical solution to this problem and provide
a physical interpretation of the result. The crucial result which we derive can be

summarized as follows:

e When W is ill-conditioned, then there is one direction in which there is high
contrast and another direction in which there is low contrast (there is a well

defined edge).

e The eigenvectors of W point in the directions of minimum and maximum

contrast.

e By applying a singular value decomposition (SVD) to the matrix W, we can
generate an estimate of the velocity field in the direction orthogonal to the

edge.

We derive these results for the discrete point minimization procedure, but the results
also apply directly to the continuous region minimization.
Consider the problem of determining the stationary points of the following func-

tion (at a stationary point the function has either a local minimum or maximum)

. 1 N T _ 2
min {Fg (a7V.s(z,t)lp,) } (3.21)
subject to the constraint
aTa =1 (3.22)
The quantity
(a7 V,s(z, t)l,)" (3.23)

is the magnitude of the directional spatial derivative of the picture along direction &

at the point P;. The summation represents the average magnitude of the directional

derivative over the region of interest, so the extrema correspond to the directions




f Y of minimum and maximum contrast. This is a quadratic function in the unknown
! vector & and minimizing Equation (3.21) is equivalent to minimizing the function
ya |
b5 min {&7W &} (3.24)
S *
% o subject to the constraint given in Equation {3.22). In this expression, W is the same
y = matrix as in the velocity estimator. This constrained optimization problem can be
-j: o converted to an unconstrained problem by introducing the Lagrange multipier A
N L C . .
(S and minimizing the Lagrangian
CRE
- min {GaTWa + A(1 - aTa)} . (3.25)
yln &
NS
) The quantity to be minimized can be written in the form
o
A
e & aT(W — A)a + A. (3.26)
'."
I, o
] ‘_'. :~','. Differentiating this equation with respect to & and setting it equal to zero produces
O
P the result
i (W - A)a =0, (3.27)
&
R which is equivalent to
i"}:l :‘:.
" Wa = la. (3.28)
) S N
s = The resuits follow immediately from this equation.
s
.l
o
:: - e The Lagrange multipliers are the eigenvalues of W and the directions of min-
b imum and maximum contrast are the eigenvectors of W.
SN
:: v o The larger eigenvalue (A,,,,) is the average of the squarea magnitude of the
=
:-: e directional derivative along the direction of maximum contrast and the smaller
b ;‘! eigenvalue (A,.;,) is the average of the squared magnitude of the directional
;’; derivative along the direction of minimum contrast.
..A
':: ."
e When W is ill-conditioned, then Ans; >> Amwm and the average magnitude of
Y

0.

the gradient of the picture is much larger along the direction of maximum contrast

i

»
o o

‘-::.‘x.ﬁ-

than along the direction of minimum contrast (there is an edge). The converse of

‘iji e this statement is also true.
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i In order to generate a robust velocity estimate when W is ill-conditioned, we
K make use of the SVD representation of W. The first step is to demonstrate that W
& is always positive semi-definite {by construction it is symmetric). The result follows

directly by considering the quantity

F’lz
Mg sk 20 Sk 2 SSSmEk 00 SSSss  Smases

1 12

TTWz = =3 (27V.s(z,t)lp) 2 0. (3.29)
L) N =1
_-1
“:1 Because W is a symmetric positive semidefinite matrix, the SVD representation is
o
:7,\ equivalent to the eigenvalue/eigenvector decomposition
. W = /\minamin¢:un + ’\maz¢maz¢ma:; (330)
o -
Y where A, and A4, are the minimum and maximum eigenvalues of W, and ¢,

* and @,.., are the corresponding orthonormal eigenvectors. When W is singular

2 Amin = 0, and

‘ﬁﬁl W - ’\maz¢maz¢mnz (3'31)
n

¢ When A q; = 0, then all the entries of W are zero and the velocity field is completely
unconstrained. This occurs when all the samples lie in a region where the spatial
E ol
: gradient of s(Z%,t) is identically zero.
e Since the eigenvectors of W are orthonormal, the velocity vector can be written
o in the form

()
3‘:'!. U= ama:&ma: + C!mma’m.w (3’32)
e
-y By direct substitution, it follows that
».\" Amaz = ¢/\ma:’7 (333)
,\ mazx
0

and
By $T . 7
s Amin = __an__ (334)
I? Amm
f- Therefore v is computed as follows
# -
amaz¢mu¢ if Amc‘u >> ’\min
= (3.35)

b .
. W15 otherwise
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In actual computation, the condition Amaz >> Amin Was implemented as A,,, >
25Amin- The choice of 25 corresponds to an average gradient ratio of 5. This choice

is rather arbitrary and the algorithm is not sensitive to variations of this parameter.

3.3.2 Computing spatio-temporal gradients

In order to compute the velocity estimates, it is necessary to compute the matrix
W and the vector 5. These quantities depend on the spatio-temporal gradients of
the picture. In this subsection we describe a method of computing these gradients.
We should first note that the commonly used approach to esiimating the gradients
is to use pel differences for computing the spatial gradients and frame differences to
compute the temporal gradients. This approach does not yield acceptable estimates
because of two problems; aliasing and the presence of noise. Therefore we present
an alternative approach.

Recall that we do not observe the continuous signal s(Z,t¢) directiy, but only
noisy observations of discrete samples. Therefore there are two distinct problems
which we need to address; sampling and the presence of noise. We first discuss the
problem of sampling and then discuss the problem of additive noise.

Suppose we have samples s[n,, n,, ns] of the continuous signal s(z, y,t), defined
by

siny, ny, ng| = 8(n, Ty, n2 Ty, n3T0) (3.36)

where T,, T,, T, are the sampling intervals along the z, y, and ¢ axes respectively.
The problem is to use the available samples to compute the spatio-temporal gra-
dients of s(Z,t). There are two cases of interest (1) bandlimited and (2) wideband
signals.

It is well known that a bandlimited signal can be reconstructed from samples
if several conditions are satisfied. Specifically, suppose s(z,y,¢) 1s a bandlimited

signal with Fourier transform

s(z,y,t) <= S(w,,wy,wr). (3.37)

For simplicity, assume S(w,,w,,w;) has a region of support in the interior of a




1
:.'e parallelepiped. Therefore,
!
S(wyywy,we) =0 If jw,| >0 or |wy| >0, or |wl>Q. (3.38)
e
b If the sampling rates satisfy the inequalities
N
ﬂ':* T, < - T<-1— T<-1— (3.39)
. e, v 2q, £ 2q, ‘
r- ther s(z,y,t) can be recovered from the samples by the interpolation formuia
A%
n_: x x x
"N S(I,y,t) = Z Z Z s[nlyn2,n3]¢(zvnlaTJ)¢(yr n21Tv)¢(t? n3’Tl) (3'40)
N ny=—-ny=—-0cc N3=-00
where the interpolation kernel ¢(z,n,T;) is
= .
Q) gin | (£ )(z — nT,)]
2 ¢(z,n,T.) [ET) o (3.41)
3 (%) (z = nT)
. .
= It is also possible to compute the derivatives at arbitrary points using the inter-
- polation formula. The partial derivatives of s(z,y,t) are given by the following
9%
v expressions
57
[ 2 =) 0o
‘ ds
'a"‘ = Z Z Z nlan‘ n3]¢'(z,n,,T,)¢(y,n2,Ty)¢(t,ns,T,) (3'42)
‘l‘; z N==-20N3=-0 N3g=—00
o o
a = Z Z Z s[nl,nz,n3]¢(z n'lvT )¢'(ya n21Tv)¢(t) n3)Tl) (343)
y n|=—5 n3=-=00N3=-2%0
" Z Z Z s[nhn2)n3]¢(z nl) y’n2)Ty)¢'(t)n3aTl) (3'44)
\',. nNi=—X nN3=—20 nN3=—0o0
¢ In actual implementation the summations are restricted to some finite interval.
o
-' Therefore, in principle it is possible to compute W and %, and solve Equation (3.8)
_- to compute an estimate of the velocity field. These formulas do not yield satisfactory
:: results when dealing with signals obtained from typical motion pictures for the
"': following two reasons:
i‘.
e The actual signals are not bandlimited. In the following paragraphs we il-
o :
" lustrate that this is especially a problem along the temporal direction. Fur-
\
thermore, the formulas require that many frames be used for computing the
i temporal gradients. Since in practice only two or three frames are typically
:-‘,'t used to compute the velocity estimates, there is significant error in using these
;Z formulas for computing the temporal gradients.
¥ 35
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::1;': EQ e The signals are corrupted with additive noise. Computing derivatives from the

.::f’fi interpolation formula enhances the noise and results in very poor estimates of

iy ! the derivatives.

i

N .

:“g; E; The signals which we encounter in television communication systems are broad-

.i‘r‘ . . . . . .

i band and there is usually aliasing due to the sampling process. For typical motion

" e icture sequences there is substantial aliasing along the temporal direction. In

e °

e

::3 « some simple cases it is possible to illustrate the severity of this problem. Consider a

DX [

Mot t"e two-dimensional scene which is translating with some velocity 9. The signal model

e‘..'b'.‘ :4" is

: v! u-'}-_: _ -

¢ ': - S(I, t) = So( —-v- (t - to)). (3.45)

[

)

R E For this model there is a direct relationship between the 2-D Fourier transform of

! sp(Z) and the 3-D Fourier transform of s(z,t). Specifically, if

SN

[} q-".i ,h\ -

s so(Z) <= So(ws,wy) (3.46)

v U4 v

l;;:r u and

D)

e 03 5(Z,t) <= S(wy,wy,wr) (3.47)
I P

5 g

'*:f! then

o c

e e S(ws, wy, wr) = So(ws,wy) exp[—7(w,v; + wyvy)to] §(w,v, + wyvy + w;).  (3.48)

4

PoY Now suppose s4(%) is bandlimited to some interval |w,| < Q; and |w,| < Q,. From

-'v‘. » vy y

= Equation (3.48) it follows that s(Z,t) is bandlimited to the interval |w,| < f1,,

«h \ -.')

i lwy| < Qy, and |w,| < Qy, where

o

::t," i

Cot 0, = Q,|v,| + Qy|v,|. (3.49)

o

:‘:.. Ea This relationship has some important implications. First note that if v, =

oy fe

:::E:': v, = 0, then the temporal bandwidth of the signal is zero as one would expect.

N [ . . . .

- More generally, it follows that the temporal bandwidth increases linearly with the

‘ﬁ:; magnitude of the velocity. As a consequence, if the magnitude of the velocity exceeds

(e,

3::,9: @ unity, then the signal must be sampled faster along the temporal direction than the

o
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L :
-‘ ' spatial directions in order to avoid temporal aliasing. In present teievision systems
.:" the temporal sampling rate is relatively slow and temporal aliasing is inevitably
g present. Typically these signals are aliased along the spatial coordinates as well.
p An alternative approach to estimating the spatial and temporal gradients of the )
M) signal s(Z,t) from noisy, undersampled data, is to use a parametric signal model. In
anticipation of computational simplicity, we suggest a general class of signal models
which possess a linear relationship between the model parameters and the signai. '
3 The class of models which we propose are of the form :
‘: s(Z,t) =~ s(z,t ; Sidi(Z,t). (3.50)
A model is specified by selecting the set of functions {#.(Z, t)}. With this approach,
¥ the available samples are used to estimate the model parameters {S;} and the entries
" of W and 7 are computed from the signal
X N
E: 5(z,t) = Z_:l Sidi(Z,t). (3.51)
" It is important to emphasize that this signal model is used only for the purpose
:f of motion estimation. Any subsequent processing of the motion picture uses the
samples directly instead of the signal approximation based on the model.
It should be noted that the interpolation formula given by Equation (3.40) is a
N special case of this modeling approach. A wide variety of interpolation schemes can j
E be formulated this way. In general an interpolation scheme makes some assumptions ;
: about the underlying signal. The “ideal interpolator” is based on the assumption l
. that the signal is bandlimited and sampled in excess of the Nyquist rate. When I
é. it is known that the underlying signal is aliased due to the sampling process and
{ perhaps also degraded, other interpolation schemes can yield better results (for l
- example bilinear interpolation). We can think of this process more formally as a
; signal estimation problem. Our observations are the degraded samples and the
'$ desired output is a continuous signal representation During the signal estimation
" phase we can account for the presence of noise.
:-)': Since the signal 5(Z,t) depends linearly on the coefficients { S}, determination of
4‘. the coefficients which minimize the mean squared error between the signal r(Z,¢) and

"'v"‘"’j‘"f".-.f,-'r.‘._ -(‘..‘- Lol SRS =AW TUCNEIIIEIRP -¥ ya ey 5 VTP e
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3(%,t) involves solving a set of linear equations. Specifically, given the observation

vector 7 with r; = r(Z,, t;), this relationship is

min {|4.5 -7} = 5=(ATANTATF=Q.F  (3.52)
S
where X
P1(Z, ) - ¢p(Z1, 1)
Au = : ! : (3.53)
61(Zn,tn) - Sp(Zyyty)

To complete the algorithm specification we must select a set of basis functions,
{¢:i(Z,t)}. In the experiments with this algorithm we have used a set of three-

dimensional algebraic polynomials as the basis functions.

¢l(f’t) =1 ¢‘2(fy t) =z ¢3(ir t) =Yy
Ba(Zit) =t B5(2,t) =2 B(2,t) = ¥ (3.54)

¢7(fa t) =zy ¢8(ia t) =zt ¢9(1_:: t) =yt
The factors involved in this selection process include:

e A very small region of the three-dimensional signal space is being modeled.
The samples are taken from a window with a small spatial extent (typically

5 x 5), from two frames.

o The model is overdetermined and we are not seeking an exact representation.

This is important when there is noise in the images.

e The model is used to estimate the spatio-temporal gradients of the picture.
It is well known that given noisy samples, curve fitting methods yield better
gradient estimates than finite difference methods. If the samples are restricted

to small regions, then polynomials are the natural choice of functions to use

for curve fitting.




X Once the parameters {S,} have been estimated from Equation (3.52), then the
matrix W and the vector % for the discrete point minimization can be computed as

; W, = (G,3)7G.§ (3.55)

b

N Wy, = Wy, = (G,85)7G, S8 (3.56)

‘ W, = (G,5)TG,3 (3.57)

i) ~

q 7 = —-(G.8)TG,S§ (3.58)

[)

\ 1. = —(G,8)TG/S (3.59)

:’ where ]

: 2, 20

p iz oz

R P, P,

G, = (3.60)

?2 24, d¢r

\ oz oz

¢ Py Py |

i 2, 26

:“: ay Py ay 1Py

2

a4 G, = (3.61)

¢ a¢l a¢P

] — ‘. ————

L ay P~ ay Py

‘ r

! 08| s

I at at

it P, Py

o

2, 96

: | at ro at Py |

::: For the continuous region minimization, the integral is evaluated over a unit

U

:E: cube in the three-dimensional space. Therefore,

' 1 1 1 1

x /// dz dy dt e -/ / / dz dy dt. (3.63)

d W 8/-1/-1/-1

x‘
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)
\ o,
i; Py This range of integration was selected because it is compatible with the size of
‘;3‘ analysis windows used for obtaining the observation vector. This results in the
v ' following values for W and %
[
) -
‘1t I 1
" ;3 W, =8+ 3 (453 + 8% + S}) (3.64)
K
1

E Wi, =W,y = 85,5 + 5 (25557 + 25457 + SgSg) (365)

'5
‘ 1

. Wy = S + 2 (457 + 57 + 53) (3.66)
0! o, l
:: &* N = —SgS; - 5 (2S5S3 + S7Sg) (367)
. 1
.: :1 Yo = —5354 - 5 (25359 + 5153) (368)
L v
' - Some preliminary experiments were performed in order to compare the discrete
g &
' point and continuous region minimization procedures. It was found that there is
¥
N no significant difference between these two methods. The motion estimation error
y
i as a function of signal-to-noise levels was measured to be essentially identical. The
'l

continuous region minimization is used exclusively in the remaining experiments.
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;3' 3.4 Maximum likelihood motion estimation

p The direct form of the motion model is the basis for a maximum likelihood
i motion estimation algorithm. This form is expressed by the relationship

.

) s(Z,t) = s30(Z — ¥ (t — ty)). (3.69)
be,

! The maximum likelihood method is a procedure for estimating unknown parameters
23! from a set of observations. For the motion estimation problem, the parameters are
. the two components of the velocity field. The observations are samples of a given
:: signal r(Zz, t).

o This application is a special case of maximum likelihood because the available
_f'i data consists of noisy observations of an unknown signal s(Z,t), which is a function
" of the parameters v, and v, and the image so(Z). If the image so(Z) were known, r
;:, then there is a straightforward formulation for the maximum likelihood velocity
¥ estimates. Since this is not the case, we will represent s4(Z) in terms of a set of
5 parameters and find the maximum likelihood estimates of the velocity parameters
» as well as the signal parameters that are used to model s,(%).

, Note that the signal parameters are not desired and are referred to as “unwanted
\,; parameters” [36]. There are several methods for dealing with unwanted parameters.
r:' If the probability density of these parameters is known, then one can determine
oy the true maximum likelihood estimates of the velocity components by integrating
- the marginal density governing the observations over the probability density of the
signal parameters. In our application this is not possible, so we will obtain maximum
' likelihood estimates of both sets of parameters.

‘ Suppose a given frame can be expressed in the following form

s p

? so(Z) = 'X_:‘ Si¢(2) (3.70)
¥ over a region in the neighborhood of some point Z,. The set of functions ¢,(Z)
. form the basis for the signal space. A signal is represented by the vector § =
E (Si,S2,...,8p)T. This signal representation reduces the two-dimensional signal
o 42
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space into a finite dimensional vector space. The velocity constraint

' . s(2,8) = s0(2 - 0 - (t - to)) (3.71)

N together with the signal modei given by Equation (3.70), leads to the -arametric

signal
. M Zs¢ (2 —-0-(t—t)). (3.72)

o - Now that the signal has been represented parametrically, we want to obtain the
1,

."
=

maximum likelihood estimates for the vectors S and 7. The observation model for

this estimator is

2
7

r(z,t) = s(2,t) + n(z,?) (3.73)

where n(Z,t) is a zero-mean, white Gaussian noise process with variance 72.

V%
| 2

- Given N discrete observations
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K ri = r(z, Y, t)
)

!

3

&

ry = (22, Y2, t2)

W (3.74)
K1 [~
i EW-

!.‘

) ! err(thvatN)

|
:ﬁ define the observation vector

3, EZ;: . |
::! ' F=(r,r2---,ry)7. (3.75) |
?. NS In a similar fashion the signal and noise vectors are defined as

VU
&

-

i oy §=(s1,82...,35)7 (3.76)
il e

;’; ?‘, i = (n,, Na, ..., nN)T (377)
GRS
B so that

X & =3+ fi. (3.78)
;: The maximum likelihood estimator determines the parameter values which maxi-
X mize the likelihood of the observations.
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" Since the noise field is white and Gaussian, it follows that p(#i), the probability
e density of #i is .
1 N 1 N l
: Therefore the likelihood function for the observation vector 7 is g
i 1\ 1 X \
:: p(F) = (\/f;a,.) exp (—50—,2, ‘;(r; - s) ) . (3.80) i
.
;; Substituting the signal model given by Equation (3.72), into this expression yields i
:'- the likelihood function governing the observation vector 7
_“ 1 N 1 X P 2 I
i
Maximizing the likelihood function p(¥) is equivalent to minimizing the euclidean I
4 distance function A(S, ) defined as ]
_ ~ P 2 |
\ A(S,9) = Z (”-‘ - Z Si¢i(zi—v- (¢t - to))) : (3.82)
i=1 ;=1
' The distance function is nonlinear in the unknowns § and ¥, and a known closed- 1
: form solution does not exist for arbitrary basis functions. One method for min-
imizing the distance function is to apply a nonlinear optimization procedure and l
" solve for all the parameters at once. This method does not perform well because
often it converges to a local minimum of the objective function which is not a good I
" estimate of the parameters. Furthermore, this method is very costly in terms of
P computational requirement.
We propose an alternative approach that is similar in style to the EM algorithm
g [6]. The EM algorithm is an efficient optimization procedure used to determine
:E: maximum likelihood parameter estimates from noisy or incomplete data. Iterative
E:‘ algorithms of this type have been analyzed extensively by Musicus [23]. This al-
:.': gorithm is motivated by recognizing that there is a natural division between the
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g g
"
IE:E §Q signal and velocity parameters. Let
h“ L ]
N BB - (=) - pe(B -t~ 1))
Y
Le Ani(v) = : : (3.83)
LU
B~
" - $1(Zv — V- (ty — 1)) - Pp(Ev —U- (ty — 1))
; S so that
- ’ =12
~ M(8,9) = |F — Am(0)3] . (3.84)
¢ L
Suppose we hold the velocity vector v fixed and solve for the vector § which
- 7 -
: ;:j minimizes the distance function. Since the distance function is quadratic in §,
vli - this problem reduces to solving an overdetermined set of linear equations. Next,
3 .’i’; suppose we hold S fixed and minimize the distance function over variations in
»Z;i T v. The distance function can be minimized with the same optimization procedure
.-* r
SR as applied in the region matching estimator described in Appendix B. We can
* i summarize these two step: in the following manner:
v Signal estimation:
4 K
: :x' mén{/\(g,t—))} == S = [A,.,,[(T))TA,,,I(‘!-))]_IAm((l‘))T?. (385)
D
s
': Velocity estimation:
0 -
3 [ _ 12
SR min{A(5,9)} = min|F - Au(0)5] . (3.86)
‘I ] v
prce F;': Figure 3.3 illustrates the operations performed by the algorithn at each point where
:3‘; a velocity estimate is required. Appendix D discusses the convergence properties of
'~ “a*
N R this algorithm.
By oy
- It is important to distinguish the signal model used in the maximum likelihood
0.. L%
B "f-{ estimator from the one used in the least squares estimator. The model used in the
," %,
3. maximum likelihood estimator specified by Equation (3.70) is a two-dimensional
i ﬂ representation that applies to a small region of a single frame_In contrast, the model
o - specified by Equation (3.50) is a three-dimensional representation that applies to a
) -
& N small region of a get of frames.
.N.
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Figure 3.3: Maximum likelihood motion estimation algorithm

Both models are linear in the signal parameters, but there is an important
difference between the computation involved in these two models. In the maximum
likelihood estimator, the matrix A,i(?) in Equation (3.84) is a function of the
velocity vector. Therefore as the iteration progresses, it is necessary to compute
this matrix at arbitrary values of #. In contrast, the matrix A,; in Equation (3.52)
is constant for a given sampling lattice. Therefore Q,; can be computed off line
once and for all, so that computing the signal vector § reduces to a matrix-vector
multiply. This computation dominates the overall computational requirement of

the algorithm.

3.4.1 Selection of model basis functions

In order to complete the description of the maximum likelihood estimator, it is
necessary to specify the model basis functions ¢;(Z). There are several considera-

tions involved in selecting these functions.

o The first consideration is the spatial extent of the region which is being mod-
eled. In a wide variety of situations it was found that a 5§ x 5 window yields
the best tradeoffs between resolution and accuracy. Windows smaller than
this tend to yield large motion estimation errors, while windows larger than
this yield unsatisfactory spatial resolution. This is a very small region relative

to the size of the images being processed.
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e The computational requirement of the algorithm is affected directly by the

computational requirement of the basis functions needed in computing A.(9).

e Finally, it is necessary to guarantee that the rank of A,(%) is equal to P (the

number of basis functions) for all 3.

Based on these requirements we have selected a set of two-dimensional algebraic
polynomials as the basis functions. A second-order polynomial was used so that the

basis functions can be written as

$1(z,y) =1 ¢2(z,y) =z ¢s(z,9)=y
(3.87)

¢4(I, y) = 22 ¢5(Iay) = y2 ¢0(I) y) =21y

This set of basis functions models a small region of the image with a second-order
Taylor series expansion. The computational requirement for these functions is min-
imal. In addition, shifted algebraic polynomials are always linearly independent
over a rectangular lattice. Therefore A4,,/(v} will always have full rank for all finite
v.

It was experimentally determined that typically only 4 iterations are sufficient
to achieve convergence with this choice of basis functions. Each iteration requires

evaluating both the signal and velocity estimates. This quantity is used in obtaining

the operation count for this estimator.
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3.5 Motion modeling error

The motion models we have been using assume the velocity field is continuous and
the signal is constant along the field lines. There are two important cases that occur
in real pictures which violate these assumptions. As a moving object uncovers the a
background portion of a picture, the velocity field in these regions is not defined.
More generally, when there is a scene change such that two temporally adjacent
trames are entirely different, the velocity field in between the frames is not defined.
In these cases there is large modeling error and this condition must be detected by

the motion estimation algorithms.

Both of the algorithms which are described in the preceding sections have the
same generic structure, involving the minimization of an objective function. At the
end of the minimization phase, the value of the objective function at the optimal
velocity estimate is a measure of the modeling error. We refer to this value as the
residual. By comparing the residual to a threshold, it is possible to detect when the
motion model is not appropriate for the given region of the picture.

More formally, suppose we have an objective function f(¥) and the “optimal”

velocity vector 9* such that the residual f(¥*) is minimal in some sense. The

objective functions we have developed are always nonnegative. Furthermore, if the
residual is zero, there is no modeling error. Large residual values indicate large
modeling error, which can arise from two possibilities; either the model does not
apply to the region of the picture or the signal-to-noise level is very low. Therefore
it is necessary to match the threshold to the noise level in the form of a likelihood

ratio test (if f(9*) < 7(0?) then the model applies, otherwise the two regions are

W S WV = Auinutn mmatnds = dbeses

incompatible).
A test of this form was used in the frame interpolation system we developed.
When the regions were determined to be incompatible, a zero velocity field was

assumed. This allowed uncovered regions to be projected properly onto the inter-

polated frame.
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3.6 Computational complexity

For reai-time applicaticns, the computational complexity of the motion esti-
mation algorithms is extremely important. Thereifore the purpose of this section
is to compare the computational compiexity of the two algorithms described in
the previous sections and the region matching algorithm described in Appendix B.
The particular measure of computational compiexity which we use is the number
of primitive arithmetic operatious (addition, subtraction, multiplication, and divi-
sion). This analysis assumes that the spatial extent of the analysis window is 5
x 5 and the velocity estimate is computed at a time instant midway between two
frames so that {t, — to| = 1 for all samples r(Z,¢;). These assumptions correspond
to the parameters used in the experiments described in the next chapter. The iter-
ative algorithms require a random number of iterations. In the same experiments
we determined the average number of iterations required for convergence. These

averages are used in computing the operation count for the iterative algorithms.

3.6.1 Computational complexity of least squares

There are two computational tasks associated with the least squares algorithm;
signal estimation and velocity estimation.

The signal estimation phase involves solving a set of linear equations. Most of
the computation can be done off line and the net computation is a matrix by vector
multiply

§=qr (3.88)
where Q is a 9 x 50 matrix. Computing the vector § requires 891 operations.
The velocity estimation phase involves solving a 2 x 2 set of linear equations

Wo =% (3.89)

Refering to Equations (3.64), computing the entries of W requires 36 operations
and computing the entries of 5 requires 14 operations. Given W and 4, computing

v requires 10 operations. Therefore the operation count for computing the velocity




!y estimate given the signal estimate is 60. The total operation count for the least

squares algorithm is 95].

A 3.6.2 Computational complexity of maximum likelihood

There are two computational tasks associated with the maximum likelihood

. algorithm; signal estimation and velocity estimation.

E Given a velocity estimate, computing a signal estimate involves solving an
~ overdetermined set of linear equations
AmS = F. (3.90)
=

. The least squares solution is obtained from the normal equations
= (AT, An)~t = AT 7. (3.91)
2 The first step is to compute A,,. Refering to Equation (3.83), each row of A
. requires that we evaluate ¢,(Z — v6t) for + = 1,...,6. Since [¢; — {y| = 1, evaluating
E.; the argument for each row requires 2 operations and evaluating the ¢,(-) requires 3
"-" operations. Therefore, computing each row requires 5 operations. Since there are
' 50 rows, the total operation count for computing A, is 250.

5 Computing AT, A, requires 3861 operations and computing AT,? requires 594
_-:: operations. Finally, solving the set of linear equations by Gaussian elimination

' (without partial pivoting) requires 206 operations. Therefore the total operation

:.: count for the signal estimation phase is 4911.

-; The computational requirement for the velocity estimation phase is dominated
.': by the evaluation of the objective function, which is the residue associated with the
o least squares approximation

53 (Ami8 - 7). (3.92)
%.

:: As before, the total operation count required to evaluate A,,; is 250. Given A,,, the
- number of operations required to compute the residue is 699. Therefore the total
’ nperation count for evaluating the objective function is 949. On the average, the
b
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objective function was evaluated 52 times. Therefore the total operation count for
the velocity estimation phase is 49348.

The total operation count for each outer loop iteration of the estimator is 54259.
Since the loop is executed 4 times, the total operation count for each velocity

estimate with the maximum likelihood estimator is 217036.

3.6.3 Computational complexity of region matching

Virtually all the computation associated with the region matching algorithm
occurs in computing the objective function. Therefore we begin with an assessment
of the operation count for evaluating the objective function.

Values of the signal r(Z, ¢) which are not on the sampling grid are computed with
a bilinear interpolator. Refering to Equation (B.5) we can see that this requires 13
operations. Computing the interpolation position requires 2 operations. Therefore,
computing each signal value requires 17 operations. For a 5 x 5 window there are
50 signal values which are needed. Therefore a total of 50 x 15 = 750 operations
are required for computing all the signal values.

Given the signal values, computing the objective function requires 25 differences,
25 squares, and 24 additions. The total operation count for evaluating the objective
function is 750 + 25 + 25 + 24 = 824.

In general, the objective function must be evaluated some random number of
times before the iteration terminates. It was experimentally determined that on
the average, the objective function was evaluated 62 times. Therefore the average
operation count for each velocity estimate is 62 x 824 = 5]1088.

It should be noted that numerous simplifications of the aigorithm can lower the
operation count. For example, if we restrict the spatio-temporal positions at which
velocity estimates are computed to lie on the sampling grid, then only 25 signal
values need to be computed instead of 50. This almost reduces the total operation
count by a factor of two. Other simplifications have been proposed by Netravali and
Robbins [25,24], however these simplifications will in general increase the motion

estimation error.
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3.6.4 Summary of computational complexity

The computational requirement for the three motion estimation algorithms is

M summarized in the fdllowing table.

i Simple Arithmetic Operation Count (add,sub,mul,div)

A Total Count | Normalized Count

Least squares 951 1

W Maximum likelihood 217036 228

N Region matching 51088 54

This table shows that the least squares algorithm requires substantially less com-

putation than the maximum likelihood and region matching algorithms.
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3.7 Averaging velocity estimates

It is usually possible to decrease the motion estimation error generated with
these algorithms by averaging the estimates obtained in the neighborhood of each
pel. The algorithms obtain an estimate of the velocity field at each pel, independent
from the estimates obtained at neighboring pels. Very often the velocity field is
inconsistent, in the sense that it varies faster than the picture sampling rate would
normally permit. These inconsistencies are minimized by averaging the estimates
so that the overall velocity field varies smoothly.

The most simple averaging strategy is to form an unweighted average of the
velocity estimates in the neighborhood of a point of interest. We have restricted
the regions to rectangular windows, centered about the point of interest. Either a

3 x 3orabx5 window is used. Therefore, an averaged estimate is obtained as

1 N
Baes = 3 Y w (3.93)
=1

where the set {¥;} are taken from the window centered about the pel of interest.
A potentially better averaging strategy is to include a weight for each term of

the sum

N
Vapg = Z w; (394)
=1

where the weights w; sum to unity. The question then arises how to select the
weights. There is a natural choice which is obtained by seeking the weights that
minimize the estimation error. Suppose we have a set of zero-mean random vari-

ables, (z,,z,,...,zy) = ZT with covariance A, where
A, = E[zz7). (3.95)

We seek a weighting vector i, such that the quantity
E|(272)?] = oTA, @ (3.96)

is minimized, subject to the constraint

2Tl =1 (3.97)




P e e R

where 1 = (1,1,...,1)T. The constraint requires that the weights sum to unity.
The optimal weights can be found easily by introducing a Lagrange multiplier A,

and minimizing the Lagrangian with respect to @
min {@7A, @ + A1 - &71)} . (3.98)
)
The optimal weights are given by
0 = AT (3.99)

The Lagrange multiplier A is chosen so as to satisfy Equation (3.97). A special case

of interest is when the covariance matrix is diagonal

A, = : (3.100)

D= (zvjaz) : (3.101)

| 0% |

This method of covariance-weighted averaging can be used with the least squares
estimator. One of the by-products of the computation for the least squares esti-
mator is an estimate of the variance of the error. In Section 3.10 we show that
the Fisher information matrix from which the Cramer Rao bounds are obtained is
proportional to the matrix W. The eigenvectors of W point in the directions of min-
;mum and maximum contrast, and the eigenvalues are the mean squared gradient
over the region of interest. Therefore the eigenvalues are inversely proportional to
the estimation error along the directions of the eigenvectors. Based on these facts
and the result presented in Equation (3.101), we have used the sum of the eigen-

values as the weights. Each velocity estimate is weighted by A,.in + Apmez, Which is
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computed in the process of obtaining the estimates. This only applies to the least
squares estimator.

It is important to contrast this weighted averaging strategy with unweighted
averaging. Consider a region with high contrast which is adjacent to a region with
low contrast. In the region of low contrast the estimation error is likely to be large
and in the region of high contrast the estimation error is likely to be relatively small.
A simple averaging strategy will corrupt the estimates obtained in the high contrast
region. Conversely, with the weighted averaging strategy, the estimates obtained in
the regions of high contrast dominate the resulting averaged estimate, resulting in

improved performance.

o A ot D R S s e TN £ S Y
E A - L A - ) A A &

Nt o M M ¥ W 200 e iat X4 X ISR (A Ar n K N




3.8 Displaced analysis windows

The algorithms described in the previous sections operate on a small number
of samples in the neighborhood of a point where a velocity estimate is desired. If

the velocity of an object is sufficiently large, then the displacement field can exceed

Codadad  ARL e BERS

the size of the analysis window. The algorithms are unable to generate accurate

estimates when this occurs.

1 In order to permit estimation of large velocity fields, these algorithms all operate
on displaced frames. Suppose we have an a priori estimate of the velocity field

,, at the point of interest 2. Based on this estimate, the frames are displaced so

that the analysis window is centered approximately around the initial displacement

field estimate. If the initial velocity estimate is ¥, then the displacement field is

s decomposed into two portions
K B v, 0t D, Int(D,) + Frac(D,)
v, 6t D, Int(D,) + Frac(D,)

In this expression, Int(-) represents the integer closest to the real number (-) and
Frac(-) is the difference between the real number (-) and Int(-). Therefore the
4 window at time instant ¢y + 6t is displaced by [Int(D,), Int(D,)] samples and the

initial velocity estimate in the displaced window becomes

Fractg D,)

: Unew = . (3 103)

?In the experiments where we measure motiou estimation error, the initial estimates are randomly
; generated. The multigrid algorithm generates initial estimates based on an estimation procedure at

! a coarser grid.
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by 3.9 Multigrid motion estimation

In all the algorithms described in the previous sections, the largest displace-

-~
-
-~

§§§ . ment field which can be determined reliably is some fraction of the analysis window

-4‘ ! 5.:,: size. The window sizes which yield suitable accuracy and resolution tradeoffs are |

- smaller than typical displacement fields which are encountered in broadcast televi- :

EEEE: i sion systems. This has prompted the development of a multigrid motion estimation |
4

algorithm which we describe in this section.

- -y
S5
e Kl

The goal of this multigrid algorithm is to permit determination of large ve-

locities, with both high resolution and high accuracy. This algorithm operates as

Lt A
23

Sty follows. The velocity field is determined over the entire image on a coarse grid. !

The coarse grid is obtained from the original frames by down sampling the images.

N Down sampling the images has the property of contracting the velocity field. Large :
A velocities in the original frame become small velocities in the down-sampled frames. |
)

;E:i. If the original frames are so(Z, ¢) and the velocity field is y(Z,t), then the velocity

Yy

Zx
s 252 kS

field for a down-sampled signal s4(Z, ¢) is

) v i, t J
o e 94(z,t) = ”"(d ) (3.104) |
] - - '] i
|
) g where ‘
\/' |
;:'. ; sd(Z,t) = s(d,%,t) (3.105)
"i:l =
S;Eﬁ Ex; and d, is the down-sampling factor which is greater than one. The velocity field
L

in the down-sampled frames is estimated with one of the algorithms described in

-
..I
-
=

the previous section. In the next stage, the coarse velocity field is interpolated to

generate initial estimates of the velocity field at a finer grid. After the velocity field is

e

estimated at one grid level, the velocity samples are averaged prior to interpolation.

A bilinear interpolator is used to interpolate the velocity field to obtain the initial

&
)
S8

o estimates at a finer grid. This process is repeated several times at successively finer
i

.)-ﬁ,

grids. Figure 3.4 illustrates this procedure.
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i
R Figure 3.4: Multigrid motion estimation )
b, g
b It is necessary to apply a spatial filter prior to down sampling the images in order
, to avoid aliasing. For computational efficiency, we have used a separable filter, so
5 that
hd[nl, ngl = h[n‘]h[ngl (3.106) ,

where h[n] is a one-dimensional low-pass filter. The impulse response of the one-
3 dimensional filter is obtained by windowing an ideal low-pass filter with a hamming
Zl window. Each down-sampling filter requires specification of a cutoff frequency, w,.
. There are two quantities which specify the cutoff frequency; the down sampling
B factor (d,) and the fraction of the bandwidth of the image which is to be retained
f“ (87). The latter parameter allows the down-sampled image to be low-pass filtered
n for noise suppression. With these parameters the impulse response of the ideal
» low-pass filter is
x: . b
: Rideat[n] = (%) sin (wd{n) . (3.107)
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The size of the hamming window for a given down-sampling factor was set equal
to 12d, + 1. The choice of these parameters is not crucial. This particular choice
yields good tradeoffs between computational requirement and accurate frequency

response.
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) 3.10 Bounds on motion estimation accuracy
8

When the signals are degraded with additive white Gaussian noise, it is possi- l
3 ble to calculate a lower bound on the accuracy which any unbiased estimator can
: achieve. The bounds are related to the problem of determining a uniform velocity 1
field characterized by the vector o, from discrele observations of the signal r(z,¢). l
:' These bounds are derived in Appendix C. In this section we describe the relation-
: ship between the bounds and various parameters related to signals and estimation I
§ algorithms.
N There are no highly restrictive assumptions which are required in deriving the
s bounds. They apply directly to the least squares and maximum likelihood algo-
X rithms described in the previous sections and to the region matching algorithm
b described in Appendix B. The specific assumptions used in deriving the bounds
2’, and the consequences of these assumptions are itemized below:
B
od e The signal s(Z,t) is known at some time instant ¢,:
This assumption is never true, and the consequence is that the bounds are
b‘ optimistic. Therefore we expect that the bounds can never be achieved by
e any algorithm. The maximum likelihood algorithm estimates the signal as
v well as the velocity. The experimentally determined motion estimation error
b= for this algorithm is always larger than the bound. However, if we omit the
: signal estimation phase of the algorithm and substitute the exact signal, the
i. experimentally determined estimation error is equal to the bound.
'
: e The noise field is zero-mean, white Gaussian noise, and is uncorrelated with
'l_ the signal:
The consequences of violating any of these assumptions renders the bounds

inapplicable. There are a wide variety of scenarios where the stated assump-

s e
.

tions are satisfied approximately. The frequent occurrence of these scenarios

provides the motivation for deriving the bounds.

o The first-order partial derivatives of the signal s(z,t) exist:




>3

2 -3
&
2 o
& 3 This assumption is justified in all realistic imaging systems.
40
S - The Cramer Rao bounds are expressed in terms of the Fisher information matrix,
< which is shown to be
S [ v 2 v
» - a 1 ) C a N a N
ik oz (a—s) (-t % %) (a—s) (t: = to)?
: J=—=| =\ i=t \ Y (3.108)
P On e\ aS, 2 V\‘ 63, 2
% e 2. (¢~ to) 2\ (t; = to)
=1 =1

The qua.ntme {s } correspond to sampling instants of the signal, so that

w
S
N si = s(z,, ¥i, ;) i=1 M. (3.109)
,"" ol The bounds are expressed in terms of the Fisher information matrix and are given
-E: ) by
* - Varld, — v, > |22| (3.110)
b - and
A
24 Varjp, —v,] > = (3.111)
. lJ |
' ‘ There is a direct relationship between the Fisher information matrix and the
1{2 .. matrix W found in the least squares motion estimation algorithm (discrete point
N
::3 > minimization). Let the observation samples be taken at time |t; — o] = 6t. The
0N
v ! Fisher information matrix becomes
o N 2 N
g £ 5(@)(2)] b
. 5t . oz —\d a Nbt
‘ f.-: J = -—2 =1 2y = —Z—W. (3112)
Iy n | & (33.) (83.~> Al (83,-) On
. 2 25
L] =1 =1 ay
::: = Note that when W is singular, the Fisher information matrix is also singular. When
s
» . this occurs, the bound for the component of the velocity in the direction of the edge
y becomes infinite, as expected. However, the bound for the component of the velocity
A % field orthogonal to the direction of the edge remains finite.
< -
A Suppose there is an edge oriented along the y direction. The bound for the
NS velocity along the z direction is
¢ o
> Var(t, - v,| > < P - . (3.113)
» - 8' 2
22 (%) w-w
.:
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This is an important case and we will focus our attention on this result.

R T

The first observation which we make is that the bound is proportional to the

A noise variance. Therefore the standard deviation of the motion estimation error is

-

proportional to the standard deviation of the noise field.
If the signal gradient remains constant over the region of interest,

as.'

5, = G- (3.114)

; and the error standard deviation is proportional to GL'

The algorithms described in the next chapter assume the samples of the signal
are taken from two frames at times ¢t = ¢y + 6t and t = ¢, — §t. For this case,
(ti —to)? = 6t? and the error standard deviation is proportional to ;. This implies
that the bound for the velocity field approaches zero as §¢ — oo. However, the
displacement field is given by

: a = 6t (3.115)

Therefore the error in the displacement field is independent of 6¢.

Finally, when the signal gradient remains constant and the sampling instants

e > o e &

satisfy (t;—to)? = 6t2, then the error standard deviation is proportional to & Recall
that N is the number of samples used to form the estimate. By way of contrast,
suppose the samples lie on a rectangular grid of size VN x /N and there is an

edge whose extent is less than VN samples wide. For this case the error standard

W e e ae

deviation is proportional to 7‘-; This scenario occurs very frequently in actual
practice and this result illustrates that typically only modest improvement in motion
estimation accuracy can be obtained by increasing the window size. Alternatively.
the number of samples in the window must increase by a large amount in nrder to

yield a significant decrease in motion estimation error.
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2 Chapter 4

i
)

R - Motion estimation experiments

PR
>
« B .

:l&‘ . In this chapter we present some experimental results which compare the motion
N 3 estimation algorithms described in the previous chapter. These comparisons are
_ .. tased ~n both objective and subjective measures.

_ : ¥ The first set of experiments were designed to measure the RMS motion estima-
e

ticn errcr as a function of signal-to-noise level. We present some data which rejates

=

the errrr to noise levels for these algorithms. In addition we present histograms

o
...
v wiich instrate how these errors are distributed statistically These measurements
C
’, : -
. were made with severa] syntheiic test images. The second set of experiments jr
. vide 1 subjective comparison of the algorithms. This is accomplished hv fran e
R averaging with temporal fiiters oriented along estimated motion trajectories In 1
S these experiments the spatial analysis window size was fixed to be 5 x 5
!'O
)
- The last set of experiments deal with the problem of estimating large vei . v
w nesis  For these experiments we nsed reai images with svnthetic ver 1y 4o, s
\
3 14 ntrolied noise levels. These experiments Jemaonstrate the e tiveness f 11,
i muitigrid algorithm for estimating large veicocities
O
‘e .
3
Ts
’N

K

('
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4.1 Measuring motion estimation error

Several synthetic test sequences were used to measure motion estimation error
1s function of signal-to-noise level. The first sequence consists of two frames with a
set f uniform gradient edges. This sequence was selected because it fits the signal
m-dels exactly and the bound for the estimation error can be computed directly.

F gure 41 - ntains ~ne frame ~f this sequence. This frame contains a set of regions

Figure 41 Tniform gradient edges

a'ere e ntensity noreases anear!y along the z direction Therefore the gradient
oo ek regons Fogire 4 2 dlustrates the horizontal cross section of ne
Frhene wiges The oft adge { the picture - ontains the highest noase ievel and

Tle ) se eve, lecrejges g nie rogresses from left o might Both the nojse and

LT uternt were  ptr ged U g ernat experimental measurement of motien estimation
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I W Uniform Gradient Edges Abrupt Edges
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Figure 4.2: Edge cross sections

R
<

o error as a function of signal-to-noise level.
‘;‘?}' b The second test sequence consists of two frames with a set of abrupt edges.
EE: @ Figure 4.3 illustrates one frame of this sequence. This frame contains a set of edges
' where the intensity change is abrupt from one pel to another. Figure 4.2 illustrates
;:} the horizontal cross section of one of these edges. This sequence was selected for
‘I.: - two reasons. First, it represents a very common feature that is present in real-
! i life pictures. Second, these edges do not exactly fit the signal models used in the
X .. maximum likelihood and least squares motion estimators. Therefore this sequence
2 :;-: illustrates the effect of modeling error in addition to the effects of additive noise.
RS In these experiments we do not perform velocity averaging because we are inter-
* ' ested primarily in comparing the relative errors of the basic estimators. For these
? N sequences we are interested in the RMS estimation error only for the component of
,t,: n the velocity which is orthogonal to the edges. The estimators actually determined
E both components of the velocity field, but since the edges are uniform in the vertical
':’:: - direction, the component of the velocity in this direction is not constrained by the
'f. ; signal. Therefore the RMS estimation error was defined as
: = RMS Error = \/(v, — #,)? (4.1)
PR
"j where the z direction is orthogonal to the edges.
' ™ It is straightforward to compute the Cramer Rao bounds for the uniform gradient
3 s
i
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Figure 4.3: Abrupt edges

edge sequence. Referring to Equation (C.22) in Appendix C, we have the result

o2

ZVZ (%)z(t-‘ —to)’.

=1

Var[p, — v,| >

(4.2)

The following conditions hold for this test sequence:

e Since all the observation samples lie in a region where the gradient is constant,
3s:\

— | = G. 4.3

( = ) , (4:3)

e Two frames are used in forming the estimates. For all samples, |t; — ty| = 1.

Therefore the Cramer Rao bounds reduce to

on

NG

Var(t, - v,] > (4.4)
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For a 5 x 5 analysis window, N = 50 because there are 25 observation points in
each frame. Based on this bound, we define the signal-to-noise level (SNR) as

2
SNR = 10log,, (%) (4.5)

n

Computing the Cramer Rao bound for the abrupt edge sequence is slightly more
complicated. The problem is that there is not a unique definition for the gradient
of the picture at the observation samples which lie on both sides of the intensity
discontinuity. However, referring to Figure 4.2, we can define a signal which has
a piecewise continuous first derivative, by linear interpolation between the given
sample values. The gradient at each sample point is taken to be the average of the
gradient values on both sides of the sample point. Therefore, at the poin‘s which
straddle a discontinuity, the gradient is equal to 67/2, where the intensity change
step size is 6t. Therefore the Cramer Rao bound for samples taken from a M x M

window in two frames is
202

n

Var[i), - ‘U,] 2 W (46)

In these experiments a random initial velocity is used as the starting point (the
true velocity field is zero everywhere). The initial estimate is a uniformly distributed
random variable in the range (—1.5,1.5). This range was selected because it is com-
patible with the size of the analysis window that was used in forming the estimates.
For each signal-to-noise level, 400 estimates were obtained with each algorithm and
the resulting experimental error is the average over these estimates. Therefore the

experimental RMS error was computed as follows

wo 2 i
RMS Error = (4@ :_1:1 (v,(,,) ) : (4.7)
The range of SN R values which we made measurements of estimation error was
selected in the following manner. We are primarily interested in the range of SNR
values where the estimation error in the displacement field is less than the spatial

sampling interval (subpel accuracy). There are two reasons for this. Firstly, if the

pictures are to be filtered along the estimated motion trajectories, displacement teid

estimation errors ~n the order of a pel introduce spatial b ur that 1s omparable
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to spatial filters. If this occurs then temporal filters do not offer any advantage
over spatial filters. Secondly, the multigrid algorithm for estimating large velocities
requires subpel accuracy for proper operation. Therefore a range of SNR values
was selected so that the dynamic range of the displacement field estimation errors

approximately spanned one pel.

4.1.1 Uniform gradient edges

Figure 4.4 presents the results for the uniform gradient edge test sequence.

pels/frame
1
\ 1
Region Mgtchvng
Maximum Likelihood
0.8;- -
Least Squares
C. R. Bounds
0.6
0.4 1
3.2 -
R 7 - W
0 - - o -e - - -—— — -SNR
18 -0 5 0 ) 10 15

Fignre 4 4 Motion estimation error: Uniform gradient edges

Several - hservations shouid be noted 1n these plots:

e The maotinn estimation error s always greater than the (‘ramer Rao bound.
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e The least squares and maximum likelihood estimators yield almost identical
motion estimation errors, which are uniformly smaller than the region match-
ing method (for very high S N R values the region matching method yields a

slightly smaller estimation error than the maximum likelihood method).

We can gain more insight into the properties of these estimators by examining

the error histograms shown in Figure 4.5. These histograms correspond to a SNR

Least Squares Estimator Maximum Likelihood Estimator
AL 4
i
1
3 3t
| a ”J
zln 2 ........................................ 1. \
!
[ j
3
1 | . e 1
!
|
' I
o! <t L] Ll Error 0 Error
-1 -0.5 0 0.5 1 -1 1
Region Matching Estimator
4
|
I SNR = 0 dB
i
2 N PUEPPOTIL PRTTRDIRTIR 1 [ RS
i Error: pels/frame
f 2\
i 5 x 5 window
1’ R v b N e
| |
|
o | ", ﬁ l;l il l o Er.ror
-1 -0.5 0 0.5 1

4 . e
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of 0 dB, and are generated from the same estimates used to compute the RMS error
at this SNR. For each histogram we also plot a Gaussian distribution that has the
same variance as the experimental measurements. We can note several features in

these histograms:

e The estimation errors for the least squares and maximum likelihood methods

are essentially Gaussian distributed.

o The estimation errors for the region matching method tend to cluster at two

values on both sides of the origin.

The clustering phenomena of the region matching estimator is an artifact of the
bilinear interpolator used to compute signal values which are not on the sampling
grid. If a signal value is desired at a point on the sampling grid, the resulting value
is the true signal value plus a random noise quantity which has the same noise
variance the noise field. On the other hand, if we desire a signal value which is not
on the sampling grid, the bilinear interpolator computes an interpolation value with
an additive noise term which has a smaller variance than the noise field (because
of averaging). This resuits in an objective function that is smaller for velocity
values which induce a displacement field that is not on a sampling grid point.
We can illustrate this by plotting the objective function for the region matching
estimator for a direction which is orthogonal to the edge. Figure 4.6 contains the
objective functions at a particular location in the picture, for the region matching
and maximum likelihood algorithms. These objective functions are typical of those
generated by the estimators.

Note that the objective function for the maximum likelihood estimator is well
behaved, containing only a single stationary point, while the region matching es-
timator objective function contains several local minima. The descent algorithm

will converge to the global minimum in the maximum likelihcod estimator, but will

converge to a local minimum in the region matching estimator.
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Figure 4.6: Typical objective functions: Uniform gradient edges

4.1.2 Abrupt edges

. “‘AI .

Figure 4.7 presents the results for the abrupt edge test sequence. Several features

-
A7

,,“l;a should be noted from these plots:
4
] .' .
E:Q e The least squares and maximum likelihood estimators yield almost identical
o

estimation errors.

g

' o The region matching estimator yields considerably larger estimation errors for

low and moderate SN R values, and smaller estimation errors for very high

'»'.' .'fii

7 S N R values.
R &
& o The error associated with the least squares method approaches an asymptotic
hY

1 -"
DA
P Sl

value of 0.173 as the SN R tends to infinity. This is due to modeling error.

“;::‘ 0 e The error associated with the maximum likelihood method approaches an
Iy X

::E:. ol asymrgtotic value of 0.169 as the SN R tends to infinity, and is also due to
o

':::' :,‘ﬂ model:ng error.

{i, - It is straightforward to compute the asymptotic values associated with the least
Sl

:,':" t squares and maximum likelihood estimators. The initial velocity estimate for v, is
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pels/frame

1

' . Region Matching

Figure 4.7: Motion estimation error: Abrupt edges

v

p a uniform random variable in the range (—1.5,1.5). The analysis window selection
L)

! process partitions this range into three regions illustrated in Figure 4.8. The veloc-
i ity estimate which is generated by the estimators for each region is shown in the

following table.
L"
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Region 1 Region 2 Region 3
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@ Figure 4.8: Analysis region partitions
E ' Estimation asymptotic limits
t'.: Region 1 | Region 2 | Region 3
i Least squares -0.212 0 0.212
v Maximum likelihood | -0.208 0 0.208
W "
’a
. The probability that the initial estimate is in either of the regio~- is equally
a likely. Therefore the standard deviation for the least squares estimate is V? x 0.212
E:J: = 0.173, and the standard deviation for the maximum likelihood estimate 1s Vg X
L8

0.208 = 0.169. When there is noise, these asymptotes become the expected value
:"-f: of the estimate in each region and there are statistical deviations about the means.
ph

Figure 4.9 contains the error histograms and Figure 4.10 presents typical ob-

-
i‘ jective functions for this test sequence. In these plots we can seec that the region
. matching estimator exhibits the same problems with this test sequence as in the
'._':

uniform gradient edge test sequence.
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4.1.3 Prefiltered edges

It is possibie to reduce the estimation error by applying a spatiai filter to the

images prior to motion estimation. To demonstrate this we filtered the abrupt

>
Y
. edge test sequence and repeated the same experiment. The spatial filter was an
unweighted average of the samples on a 3 x 3 grid. The Cramer Rao bounds have
” been modified to account for the fact that the images were prefiltered. With this
: filter the effective analysis window size increases from 5 x 5 to 7 x 7. Figure 4.11
2 presents the results for the filtered edge test sequence and Figure 4.12 presents
" typical error histograms.
' pels/frame
: 1 —
- \ {
\ Region Matching
N \
N \ Maximum Likelihood i
0.8}~ \\.\ .................................................................... e T T T T ]
| Least Sauares ‘
4 \ |
< \ \ C. R. Bounds !
A \ — |
; N\
> 0.4} N
. |
; 1
A 6.2
? SNR
% 10 -5 0 5 10 15

F ire 4.11. Motion estimation error: Filtered edges
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Figure 4.12: Motion estimation error histograms: Filtered edges
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In these figures we can note several features:

o The estimation error for the ieast squares and maximum likelihood estimators

only decreases slightly.

e There 13 a large improvement in the estimation error for the region matching

estimator.

e The asymptotic values for the least squares and maximum likelihood estima-

tors are 0.098 and 0.07G pels/frame respectively.

The results of this experiment are not surprising. Both the least squares and max-
imum likelihuod algorithms implicitly smooth the data by the process of signal
estimation. Therefore we expect only slight improvement in performance by spatial-
rrefiltering. Conversely, we expect that prefiltering should make a significant im-
provenment in estimation accuracy for the region matching algorithm because the

effective signal-to-noise ratio is increased.
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4.1.4 Discussion of empirical measurements

On the basis of these experiments several observations should be made.

e The estimation error obtained with the least squares and maximum likelihood

Y oo
YR
,' - algorithms are almost identical. Strictly on the basis of error performance,
[ ] these two algorithms are basically equivalent. Because they implicitly smooth
N, N
ﬁ . the pictures by virtue of the signal models, very little improvement results by
;o prefiltering the images.
A <
N e The least squares and maximum likelihood algorithms are more accurate than
¢ >
E the region matching algorithm if no prefiltering is performed (perhaps except
X
: 5 at very high signal-to-noise levels).
g e The performance of the region matching algorithm is significantly improved by
e :fj prefiltering the frames prior to motion estimation. If prefiltering is performed,
2 the region matching algorithm is more accurate than the least squares and
L
" maximum likelihood algorithms at moderate to high signal-to-noise levels.
'
'- ~, This fact is perhaps of little significance because at these signai-to-noise levels
.
:.\n - the error is on the order of 0.2 pels/frame.
N

f’

Therefore on the basis of these experiments the least squares and maximum likeli-

hood algorithms are judged to be superior to the region matching algorithm.
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In this section we present some results obtained by motion-compensated frame

:
, 4.2 Subjective evaluation 1
I

o averaging. The purpose is to provide a subjective evaluation of the motion estima- !

L tion algorithms. Figure 4.13 illustrates the experimental system that was used in 1
these experiments. Two frames r(Z,¢,) and r(Z,t,) are obtained by taking a still l

; r(z,¢ - 6t) Interpolate
- -9(z,t)ét

o~ o

o ) s(z,t
Motion ®_(_’_).

- Estimation

X", ) 5 ' 1

_': r(z,t +0t) Interpolate 2

f +9(z,t)st

5 Figure 4.13: Motion-compensated temporal averaging

"o

g o«

frame and adding two different noise fields to it. Therefore the true velocity field

k- is zero everywhere. A random initial velocity estimate is used as the starting point
?‘ for the estimators at each point in the picture. Experiments were conducted at
" both moderate and very low signal-to-noise levels. The moderate signal-to-noise
o level pictures contained additive noise with a standard deviation of 10 and the low
3 signal-to-noise level pictures contained additive noise with a standard deviation of
‘, 20. Figures 4.14 and 4.15 contain the original and degraded frames. In addition

24 these figures illustrate the effect of averaging with the random initial velocity field

:':: and the exact velocity field.

"- The pictures were processed with velocity estimates obtained in the following
'> manners:

0

N e Direct velocity estimates: The velocity estimates computed by the algorithms
b
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X RS are used directly without any modifications.

) ' e Spatial prefiltering: The frames were filtered prior to motion estimation.

.‘

_:: o o Velocity averaging: The velocity estimates were averaged. Each estimate was
E:: v averaged with the nearest 8 estimates on a 3 x 3 grid (unweighted averaging).

In this experiment spatial prefiltering is not performed.

4

:sl.
;‘E Figures 4.16, 4.17, and 4.18 present the results for the pictures with noise standard
) ;:C deviation equal to 10 and Figures 4.19, 4.20, and 4.21 present the results for the
pictures with noise standard deviation equal to 20.

w X

o From these pictures we can make several observations:

*'

I o If the estimates are used directly, artifacts are introduced into the picture
j & with all three algorithms. The least squares algorithm introduces the fewest
f: artifacts and the region matching algorithm introduces the most artifacts.

¢

|

. e If the pictures are spatially filtered prior to motion estimation, there is slight

P
-

improvement in the least squares and maximum likelihood examples and there

18 significant improvement in the region matching example. The pictures

processed with the least squares algorithm contain only minimal artifacts and

< NN L

‘ the artifacts introduced with the maximum likelihood and region matching

methods are comparable.

LA

o [f the velocity estimates are averaged, there are essentially no visible artifacts

with the least squares and maximum likelihood algorithms, but some visible

N g

S artifacts remain with the region matching method.

These experiments agree well with the results of the empirically determined

Ea s

motion estimation error curves. In addition these experiments illustrate that for the

‘::t. least squares and maximum likelihood algorithms it is better to increase the effective
)
E;: window size by velocity averaging than by spatial prefiltering in order to improve the

=
B B

motion estimation error. In part this indicates that although the analysis windows
overlap considerably, the errors tend to remain highly uncorrelated. Consequently,

averaging yields a significant reduction in estimation error.
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In experiments with a variety of other test images it was determined that the
weighted averaging strategy described in Chapter 3 yields slightly better results
than unweighted averaging (this cnly applies to the least squares algorithm). Based
on the results described in this section and the computational requirements of these
algorithms, the least squares algorithm with weighted averaging is used exclusively

in the remaining experiments.
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Figure 4.19: Direct velocity estimates (o, = 20)
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4.3 Mhultigrid experimental results

In this subsection we present some results obtained with the multigrid algorithm.
The test sequences are the same as those used in the previous section, except that
the frames were displaced by different amounts to generate large velocity fields.
Specifically, we generated velocity fields of 1, 2, 4, and 6 pels/frame. In all these
experiments we used the least squares algorithm with weighted averaging.

Figures 4.22 and 4.23 present .the results for the sequence where the noise stan-
dard deviation was 10. Figures 4.24 and 4.25 present the results for the sequences
where the noise standard deviation was 20. In these pictures we show the frames
processed both with and without the multigrid algorithm. The multigrid algorithm
used a three level grid (4, 2, then 1).

These pictures illustrate the necessity of a strategy for dealing with large velocity
fields. They also illustrate that the multigrid algorithm is effective at dealing with

large velocities. More examples are included in the next chapter where actual

motion pictures were processed with this technique.




v = 2, no multigrid v = 2, multigrid

Figure 4.22: Multigrid results (v = 1,2 g, = 10)
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Figure 4.23: Multigrid results (v = 4,6 0, = 10)
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Figure 4.24: Multigrid results (v = 1,2 0, = 20)
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Motion picture restoration

g

o4

%

;:::, In the previous chapters we focused on the problem of motion estimation from
"i »f;

noisy samples of an image sequence. The basic problem was to extract a velocity

:;', . field which describes the motion of objects in an image sequence. This effort culmi-
J‘ »

f'; nated in the formulation of an algorithm which can estimate both large and small
i velocities very accurately. In this chapter we apply this algorithm to the problem of
::E.: motion picture restoration. The canonical system for representing the restoration
hy

:;Es"s process is shown in Figure 5.1. Several degradations that occur in practice which
's

" we consider in this work include additive noise and impulsive noise.

,..,-“ A wide variety of algorithms for image restoration have been proposed in the
l".

}:::‘,' past. There are numerous contexts in which this problem has been phrased and
A

',:‘.'::! studied. Our attention is restricted to the specific case of noise removal. A more
e general formulation includes deconvolution methods for removing blur in addition
& '.:: to noise. There are three distinct methodologies into which noise reduction systems
- . . .

i“; for motion pictures can be classified

X
—_ e single frame restoration

Wi
AN
‘i,'_" o multiple frame restoration (without motion compensation)

DN,

o

l“ . -

e e motion-compensated restoration

a".“‘ . . .

.:;:'.: In the following subsections we briefly summarize these methods and describe an
:A’ N

r::?g: implementation of each method which we will compare with the other methods.
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s(%,t) r(Z,t) 3(z,t)

| Restoration

Degradation System

Figure 5.1: Canonical restoration system

5.1 Single frame restoration systems

Many methods for restoring single frame images have been proposed in the
literature. This field of study is fairly well advanced and comprehensive surveys
of these methods are given in [2,9,10,30]. The most widely used restoration model
includes a point spread function (PSF) which is spatially invariant and observations
which have been corrupted with additive noise. Given a signal s(z,y), PSF A(z,y),

and noise field n(z, y), the observation r(z, y) is given by

z,y) / / v)s(z — u,y — v)du dv + n(z, y). (5.1)

The restoration problem is to estimate s(z, y) from the observations r(z, y). Several

methods which have been applied to this problem include

e inverse filtering
e Wiener filtering
¢ homomorphic restoration

e iterative restoration methods (with and without constraints).
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So far as subjective tests are concerned, these methods have only achieved limited
success. Much of the difficulty is that they minimize a global function of the error
which often does not reflect important perceptual characteristics of the human visual
system. For example, the method of Wiener filtering results in pictures which are
severely blurred, although in a mean-squared sense the method is “optimal”.

A number of alternate methods which address this issue have been proposed in

the literature {1,17,5]. The general approach involves the use of adaptive filters.

Many of these methods can be generalized in the following manner. If a signal
estimate at a point (zo,yo) is desired, an adaptive filter is applied to the signal
using observations in the neighborhood of (zy, y9). The parameters of the filter are
adapted according to the local image characteristics. This procedure is illustrated
in Figure 5.2. For example, the method of Anderson and Netravali [1] uses a sub-
jective criterion to adapt the parameters of an FIR filter and leads to good tradeoffs

between blur introduced by the filter and noise removal.

Adaptive
2-D
Filter

Estimate
Local
Contrast

Figure 5.2: Adaptive image restoration
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For comparison purposes we have implemented an algorithm proposed by Chan
and Lim [5]. It involves filtering each frame with a set of adaptive one-dimensional
filters oriented along the major correlation directions of the image (0, 45, 90, and 135
degrees). The adaptive filters have the same structure as the algorithm described

in the next section.
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5.2 Multiple frame restoration systems

For motion picture noise reduction one can use the same strategies as in the
single frame restoration systems. Adaptive filters can account for the presence of
motion. These methods are attractive because they do not require motion estima-
tion. Rather than explicitly trying to determine motion trajectories along which
temporal filters are applied, these algorithms combine both operations into a sin-
gle estimator/filter structure. Martinez and Lim [21] proposed an aigorithm which
is an extension of a method developed by Chan and Lim [5] for processing single
frames. Samy (31| proposed several algorithms which are similar to the algorithm
of Martinez and Lim.

The algorithm proposed by Martinez and Lim assumes that the signal has five
primary correlation directions corresponding to: (1) no motion, (2) translation
in the +x direction, (3) translation in the -x direction, (4) transiation in the +y
direction, and (5) translation in the -y direction.

An adaptive one-dimensional filter is applied to the three-dimensional sequence
along these 5 directions, producing 4 intermediate frame sequences and the final

output sequence. This is illustrated in Figure 5.3. The structure of the filters was

Figure 5.3: Multidirectional adaptive noise reduction system

chosen to satisfy the following heuristics:

e If the image is highly correlated along the direction, then the filter should
have a low cutoff frequency. Conversely if the image is not highly correlated,

then the filter should have no effect.

e In order to avoid introducing artifacts and other further deteriorations, the
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statistical mean of the output sequence was made equal to the statistical mean

of the input sequence.

A filter structure which possesses the desired characteristics is the linear least
squares point estimator which has the following form [36]

LHEN))

§(i’ t) = m[r(fv t) - ma(i) t)] + mn(i) t)' (52)

In this expression, m,(%,t) and 0%(Z,t) are the estimated mean and variance of the
desired sequence s(%, t), and o2 is the variance of the noise field. For a particular di-
rection and spatio-temporal position (Z, ty), 02(Zo, ¢y) and m,(Zo, t,) are evaluated

according to the following set of equations

1N
m,(Zo, to) = Zs (5.3)
!=l
0'2 Io,to = — Z[S m,(Io,to)] (54)
|--l
0 if 0"2' >0’3(1—:0,t0)
73 (Z0,to) = (5.5)
0%(Zg,ty) — 0 otherwise

The set of points {(Z;,¢;)} are taken from samples along one of the five correlation
directions and are centered about the point (Z,, ¢).

Several important properties of this filter structure should be noted. When the
signal variance estimate 0?(Z,t), is much larger than the noise variance o2 (high
SNR), then the output reduces to 3(%,t) = r(Z,t), and the filter does nothing to
the sequence. When the signal variance estimate is much smaller than the noise
variance, the output reduces to 5(%,t) = m,(z,t). This corresponds to the maxi-
mum amount of noise reduction possible with a 1-D FIR filter structure. The first
case corresponds to the situation where the contour is not oriented along a mo-
tion trajectory, while the latter case corresponds to the situation where the contour

coincides with a motion trajectory.




5.3 Motion-compensated restoration systems

One of the problems with the systems described in the preceding sections is that
they involve spatial filters in one form or another. These filters have the property
that typically noise can only be removed at the expense of picture sharpness. By
way of contrast, motion-compensated systems can many times operate without any
loss in picture sharpness.

A comparative study of two methods for motion-compensated noise reduction
was conducted by Huang and Hsu [14] in two experiments. In the first experi-
ment an FIR temporal filter was applied along a suitably chosen direction in the
three-dimensional signal space. The direction was chosen by searching over a small
number of directions for the one with the smallest variance. This motion estimator
is essentially an M-ary detector. In the second experiment an explicit motion tra-
jectory was estimated. The motion estimation algorithm was based on the method
of spatio-temporal constraints. The estimation procedure involved solving a set
of overdetermined linear equations for a motion estimate. An FIR filter was ap-
plied along the estimated motion trajectory. Significant improvements in subjective
image quality were reported in both experiments.

Several other methods for motion-compensated noise reduction have been pro-
posed by other researchers. McMann et al. {22] and Dennis [7] developed motion-
compensated noise reduction systems incorporating IIR filter structures. The filters
are only applied along the temporal direction, but are adapted according to a mo-
tion detector. The motion detector is essentially a first-order linear predictor. if
the prediction error is small, it is assumed that there is no motion, and first-order

recursive filtering is performed. If the prediction error is large, it is assumed that

there is motion in the vicinity, and no filtering is performed.

Dubois and Sabri [8] have improved this method by performing explicit motion
estimation. Their motion estimation algorithm is based on the method proposed
by Netravali and Robbins [25]. In this system a motion trajectory is estimated and

the signal is filtered along the trajectory with a first-order recursive filter. The
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v Q coefficient of the filter is ada.pted according to the first-order linear prediction error
' I along the motion trajectory. i'he filter has a very low cutoff frequency if the error

- is small. As the prediction error increases, the filter tends towards an all-pass

{i{ Eﬁ frequency response and the signal is not filtered.
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5.4 Experiments in motion-compensated noise

o s e s s

reduction

o
d

".’.’J—F*Fv

In this section we describe a noise reduction system which uses the multigrid /least
squares motion estimation algorithm. The system we developed applies a one-
A dimensional directional filter to the image sequence at each point in the picture.
; The samples which make up the filter are obtained from a three point motion
: trajectory which is determined from the estimated velocity field at each point.

A three point filter was used in all the experiments which were conducted. There-

fore the filter traversed three frames, centered on the frame for which output is de-
sired (hereafter referred to as the current frame). The three points which are used
to estimate the signal at each sample location in the current frame are obtained as
follows. Let us denote the time instant corresponding to the current frame as ¢,, so
that t, — 6t and ¢y + 6t are the time instants corresponding to the past and future
frame. Note that since we make use of the “future frame”, there is a one frame
delay in processing time.
. Let (Z¢) be the spatial position within the current frame where a signai estimate
. is desired. The velocity field that was computed between the current and past
N frame is evaluated at the spatio-temporal instant (%, t,), and projected backwards
in time to obtain a displacement field in the past frame. Similarly, the velocity field
that was computed between the current and future frame is evaluated at the spatio-
. temporal instant (Z, %), and projected forwards in time to obtain a displacement
E field in the future frame. This procedure is illustrated in Figure 5.4. Therefore the
)

K. three samples of the signal which we require are

® oot = (20 = Upaut(Zo, to),to — 6t)) =>  past frame
‘ I
'_é ® Teurrent = (%o, to) = current frame
.

® Truture = (Zo + Uputure(Zo, to), to + 6t)) = future frame

& The sample in the current frame is on the sampling grid. However, in general the
L4

u.' samples in the past and future frames are not. Therefore it is necessary to compute
]

]
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Figure 5.4: Three point sample along motion trajectory

these points with a spatial interpolator. Experiments were conducted with both
bilinear and truncated ideal interpolators. In many cases there was noticeable blur
in the pictures that were processed with the bilinear interpolator. The pictures pro-
cessed with the truncated ideal interpolator were noticeably sharper, therefore this
interpolator was used exclusively in the remaining experiments. This interpolator
can be written as
N N
r(z,y)=a Y. Y ringné(z,n, Te)é(y, ne, Ty) (5.6)
ni==Nna=—N

where

r[ny, no] = r(n Ty, noTy) (5.7)

sin [(%) (z—nT, )]

(%) (z — nT,)

and a was chosen so that the interpolation coefficients sum to unity. In the experi-

¢(z,n,T:) = (5.8)

ments which were conducted, N was equal to 3, so that the resulting interpolation

filter has a 7 x 7 region of support.
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5.4.1 Additive random noise

For pictures which have been degraded with additive random noise, motion-
compensated restoration is accomplished witb frame averaging. Therefore the signal

estimate 3(%,, ty) is given by
al= 1
3(30) tO) = g(rpau + Teurrent + rfuturc)- (59)

A number of experiments were performed in order to compare the results ob-
tained with motion-compensated frame averaging to the single frame and multiple
frame restoration methods described in the previous sections. In particular, we

compared the following systems:

e motion-compensated frame averaging
e adaptive single frame restoration

e adaptive multiple frame restoration

On a variety of test sequences the results were generally consistent. We can illus-
trate the results with an example. Figure 5.5 contains one frame from the original
sequence and the corresponding degraded frame. The original frames were degraded
with additive white Gaussian noise (standard deviation = 10). The resulting SNR
was 16.5 dB. The spatial resolution of these pictures is 128 x 120 pels/frame, and
the temporal sampling rate is 15 frames/second. Figure 5.6 contains the degraded
frame and the processed frames using the three methods described previously.

Informal subjective evaluation of the sequences when viewed as a motion picture

reveal the following observations:

e The sequences processed with only motion-compensated temporal averaging
are the sharpest, with little or no visible blur. The noise is still visible, but

remains spatially uncorrelated. The improvement in SNR is 4.7 dB.

e The sequences processed with the adaptive single frame restoration algorithm

are very blurred. Although most of the visible noise is removed, there are

visible artifacts in the pictures.
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% e The sequences processed with the adaptive multiple frame restoration system
b '-j:: are better than the sequences processed with the single frame system. Most
of the visible noise is removed in the background and slowly moving regions
__ . of the picture. The amount of blur is very minimal. However, in regions with
Zf-; . moderate or large velocities, little noise is removed. This produces a noise field
'-_'.: - which is correlated with moving objects. A few visible artifacts are present in
"
i the pictures.
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v 5.4.2 Impulsive noise

! In order to demonstrate that the proposed restoration approach is applicable to
other degradations as well, we also experimented with pictures that were degraded
with impulsive noise due to random bit errors. The images were sampled and quan-
tized with eight bits per sample. Consider the hypothetical problem of transmitting
s this sequence over a noisy channel.

We can model a wide variety of communication channels as a binary symmet-
g ric channel. A memoryless binary symmetric channel is characterized by P, the
probability that an arbitrary bit is received in error at the receiver. If a pulse code
modulated image is transmitted over a memoryless binary symmetric channel, then
the intensity of random pels is modified. If the low-order bits of the pel are mod-
ified, there will be little or no visible difference. Conversely, if the high-order bits
are altered, a dark pel may become a bright pel and vice versa. The net effect is to
produce impulsive noise.
i For pictures which have been degraded with random bit errors, restoration is
accomplished with temporal median filters. Therefore the signal estimate 3(Z,,t)
> is given by

é(fg, to) = MEDIAN(rpau + Teurrent + r[ulurc)' (510)

We have experimented with several median filter topologies

" ;;: e motion-compensated temporal median filter (3 point)
oI e spatial median filter (3 point vertical orientation)
b:: ::.:
;'\"{ ) e spatial median filter (5 point cross)
QOIS
il Figure 5.7 illustrates the effect of random bit errors. The bit error rate for this test
§ o sequence was P = 0.02. Figure 5.8 contains the frames processed with the methods
- . : e , ,
WY described previously. Informal subjective evaluation of the sequences when viewed
& as a motion picture reveal the following observations:
- e The amount of visible noise removed by the 3-point temporal and spatial me-
‘
‘- dian filters is essentially identical. Little or no blur is visible in the sequences.
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Figure 5.7: Random bit error test images

However, the spatial median filter introduces artifacts on the boundaries of

object edges.

e The 5-point spatial filter removes essentially all the visible noise. However,

it introduces significant blur into the picture. Occasionally there are some

od o WY

visible artifacts along the edges of moving objects.
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5.5 Summary of noise reduction results

We impiemented and compared several systems for noise reduction within motion
pictures. For the case of additive noise we implemented a single frame restoration
system based on a cascade of one-dimensional adaptive filters, an extension of this
system to multiple frames, and a motion-compensated frame averaging system. The
pictures processed with the motion-compensated system were generally preferred
over the other two approaches.

For the case of impulsive noise we compared a 3-point motion-compensated
median filter to a 3-point spatial median filter and a 5-point spatial median filter.
Although the residual noise remaining with the two 3-point filters was essentially
identical, the spatial filter introduces artifacts into the picture along the edges
of objects. These artifacts are not noticed in the individual frames, but become
apparent in the motion pictures. The pictures processed with the 5-point spatial
median filter look very blurred relative to the pictures processed with the other

filters, but the residual noise which remained was lower.
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Chapter 6

Motion picture frame

AL

interpolation
&
Ef. Most motion picture sequences are obtained by sampling at a uniform temporal
. rate. However, for a variety of reasons it may be desirable (or even necessary) to
ﬂ display the sequence at a different rate. A common exampie of this problem occurs
when motion picture films are shown on a conventional NTSC television system.
§I " The motion picture industry uses a standard frame rate of 24 frames per second.
However, the NTSC standard uses a 2-to-1 interlaced format, scanned at a rate of
5 60 fields per second, or 30 frames per second. In order to show a motion picture film
% on an NTSC television system, temporal interpolation is necessary. The technique
L used in this case is known as the 3:2 pull down, in which a frame from the film
T is shown for 3 successive fields, followed by the next frame shown for 2 successive
; & fields, and so on.
‘ & This technique can be generalized by using a temporal sample-and-hold interpo-

lation scheme which operates as follows. If we are given a sequence s(Z,t), at time

instants t, = nT and we desire the frame corresponding to an arbitrary time t = r,

RERMER
[ W

then the frame at time instant ¢ = ¢, is used, where t,, satisfies the inequality

m — 7| <|th—7] V¥V n,m. (6.1)
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! In other words, the interpolated frame is equal to the frame from the original
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1::. sequence which is closest in time to the desired frame. One of the primary problems
o
g with this approach is that the resulting sequence often exhibits jerky motion.
;';: An alternative approach which has been suggested is to use motion-compensated
. interpolation [16,26]. This involvesdetermining motion trajectories of objects in the
O scene and extrapolating their positions to the time instant where an interpolated
N frame is desired. Therefore two separate operations are performed; motion estima-
o>
:: tion and interpolation.
L)
- This method is based on the motion model
- s(z,t) = s(Z — 9(Z,t)(t - to), to). (6.2)
L
Ic Therefore the frame at an arbitrary time ¢ can be computed from the frame at time
!
. to by projecting the velocity field from the desired frame onto the given frame. In
;::; order to compute the interpolated pel value at spatio-temporal position (Z,,t), we
i first evaluate the velocity field at this position. The velocity field is projected onto
{
° the frame at time ¢y, which is the frame closest in time to the desired frame. This
f, procedure is illustrated in Figure 6.1.
3
A
5-:
{.
J,,‘.i
a4
' 4]
: ° /J °
s °/ [
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: p /)
(W)
y °/ P o
5 .
. .0‘ o ®
Eﬁ: o7
-# . O .
to t to + 6t
Al
f‘:
[ . .
W Figure 6.1: Velocity field projection
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6.1 Interpolation experimental results

It is not possible to illustrate the motion rendition characteristics of these methods
with only still pictures. However, we can illustrate the quality of the still frames
generated with the motion-compensated interpolator. Figure 6.2 contains a set of
three frames (two key original frames and an interpolated frame). These frames
have a spatial resolution of 384 horizontal and 256 vertical pels, with a temporal
sampling rate of 30 frames per second. They were obtained directiy f.rom an NTSC
signal. The interpolated frame corresponds to the time instant midway between the
two key original frames. This test sequence is actually in color. The velocity field
is computed from the luminance component and is used to interpolate the RGB
compenents individually. Most of the variation in the frames occurs around the
person’s lips.

These frame interpolation algorithms have been applied to the probiem of frame
rate modification. A number of experiments were conducted to compare these two

approaches. Specifically, we have conducted the following experiments:
e Speed up by 10 and 20 percent.
e Slow down by 10 and 20 percent.

e Frame rate conversion from 24 frames per second (motion picture standard

frame rate) to 60 fields per second (NTSC rates).

In general, the motion rendition in the sequences computed with the motion-
compensated interpolation method is superior to the same sequences computed
with the frame repetition method. The differences are most striking when the scene

contains large moving objects.
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o Figure 6.2: Motion-compensated interpolated frame
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Chapter 7

Conclusions

7.1 Contributions

This thesis was concerned primarily with the problem of motion estimation.
This work was motivated in part by limitations of previously used approaches to
motion estimation. The most significant contribution of this work was the devel-
opment of a least squares motion estimation algorithm which has three important

characteristics:
e motion estimation accuracy
e capability of estimating large velocities
e computational efficiency.

The primary limitation of previously used motion estimation algorithms is the fail-
ure to possess these three important characteristics.

There are two fundamental components to the least squares algorithm, a velocity
field model and a signal model. The velocity field model is based on the conceptual
principie of mapping single images into sequences of images with analytic mappings.
A direct consequence of this mapping is that the velocity field is related linearly
to the signal. The linear relationship motivates the use of the least squares error

criterion so that a velocity field estimate can be obtained by solving linear equations.
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To implement digital processors for performing motion estimation, it is necessary
to sample the motion picture in space and time. Therefore, a motion estimation
algorithm only has sampies of the signal available. Furthermore, these samples
are often corrupted with noise. To bridge the gap between the available sampled
images and the continuous model which relates the signal to the velocity field, we
introduced a general class of linear signal models. A least squares method is used
to estimate the signal model parameters from the available samples. This process
yields a continuous signal representation. This continuous signal representation is
used to compute the least squares velocity estimate.

To demonstrate the usefulness of the least squares motion estimation algorithm,
we explored two applications, noise reduction and frame interpolation. In a variety
of experiments we demonstrated that a motion-compensated noise reduction sys-
tem based on the least squares algorithm can yield better results than alternate
noise reduction methods. This judgement was based on considerations of picture
sharpness, residual noise, and visible artifacts introduced by the noise reduction
system.

We also developed a system for frame rate modification of motion pictures.
We demonstrated that a motion-compensated frame interpolation system based on
the least squares algorithm yields better motion rendition than conventional frame

repetition/dropping methods of frame rate modification.

7.2 Directions for future work

There are many areas where this thesis can be extended. We can partition these

extensions into two categories, modeling and application.

7.2.1 Alternate velocity field models

A very general model for describing motion was presented in Appendix A.
The model relates the velocity field to the signal with a linear partial differential

equation. A zero-order velocity field approximation to the model forms the basis for
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the least squares motion estimation algorithm. One of the potentially interesting

extensions of this thesis is to explore the use of higher order velocity field models.

‘: At each point where a velocity field estimate is desired, the least squares algo-
{4 rithm assumes the velocity field is constant over a small region in the neighborhood
' ? of the point of interest. Instead, one might explore the use of a first or second-
;' ! order model which includes higher order terms of a Taylor series approximation to
A the velocity field. This approach has the important property that determining the

_:_3 coefficients with the least squares algorithm involves solving only linear equations.

Therefore the resulting algorithm will still be computationally efficient.

7.2.2 Alternate signal models

R

The least squares algorithm uses a linear signal model to interpolate the available

. 5'.:_? samples of the motion picture. Our implementation of the least squares algorithm
s

' uses a three-dimensional polynomial signal model. There are many other three
: i dimensional functional forms which also can be used (for example trigonometric or
9 exponential forms). To maintain computational efficiency, the only requirement is
B

4 = that the model remains linear in the parameters which characterize the signal.

; ! 7.2.3 Additional applications

)

! '.. . . - . » . . . .

D This thesis explored on only two potential applications of motion estimation, noise
‘l 'yl

) reduction and frame interpolation. In addition to these applications, there are other
\ f: applications which can benefit from the use of the least squares motion estimation
b . algorithm. Two interesting applications include (1) conversion of interlaced fields
' ﬁ into progressively scanned frames and (2) motion-compensated picture coding.
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Appendix A

Models for describing motion

A.1 Introduction

In this appendix we develop some models for describing motion within image

sequences. The models serve two primary purposes:

e The models provide a mathematical definition for motion in terms of velocity
fields and several properties of the motion estimation problem can be deduced

from these models.

e Several parametric forms of the models are the basis for computationally
efficient motion estimation algorithms. The translational form of the model
is analyzed in great detail. In addition we analyze the case of zooming and

rotation.

These models are based on a continuous space-time representation of the signals.
Although the models are formulated specifically for monochromatic pictures, they
can be applied directly to color pictures. If an R-G-B representation is used, then
the model can be applied directly to each color component individually, or to the
luminance component which is obtained from the tricolor components.

A motion picture sequence is composed of a set of two-dimensional projections
of a three-dimensional visual field. Each projection corresponds to the visual field

at a particular instant of time. As objects within the field of view move, there
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é:: & are corresponding changes in the projections. Each point within a two-dimensional
g ' projection is generated by superimposing the contributions due to all reflective
:~’ ' surfaces within the scene, in response to all the light sources. This superposition
.’k :::: occurs optically in photographic recording. Three quantities are required in order
N - to construct this projection mathematically: (1) a complete specification of all the
i g light sources involved in forming the picture, (2) a description of the geometry of
all visible surfaces, and (3) specification of the reflectivity of all visible surfaces.
": E% Spatio-temporal intensity variations within a sequence of projections are caused
"« by many phenomena, which may occur individually or in combination. Some ex-
:. R amples include:
X
:: § e The objects in the field of view move relative to the light sources and obser-
‘i: - vation point.
" ﬁ‘\~ e The observer moves relative to the light sources and field of view.
.l' .
. e The light sources vary in time.
: ' ‘; Strictly speaking, a complete motion description of a visual scene requires knowledge
:} - of the motion trajectories of all visible surfaces with respect to the light sources
! and observation point. Based on a complete three-dimensional description of the
: | scene (including motion information), in principle one could determine the spatio-
o ‘EE temporal intensity variations within the sequence of projections.
) > In the applications which we are interested in, only the sequence of projections
SIS
{ - is available. We do not have direct information about object reflectivity, surface
"‘ o geometry, object motion, or light source temporal variation. Therefore we can
3 deduce motion information only from the picture sequence itself. The models which
:s E. we develop specifically attempt to relate one frame to the next in terms of a motion
;:: : description.
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: A.2 Parametric methods for modeling motion

It should be noted that there are many ways of characterizing motion. Therefore
we are faced with the problem of selecting a suitable representation in which we
X can pose the motion estimation problem. Every motion representation is based on a

model of some physical situation. For a motion model to be useful, it should apply
. to a wide variety of scenarios encountered in motion pictures.

We propose a parametric approach to modeling motion. There are several rea-

" sons for advocating a parametric motion representation. Our primary objective is
;: not to model motion picture sequences, but to manipulate them. It is necessary
' to develop models which are useful from a mathematical perspective and are also
‘:: computationally tractable. Parametric modeling procedures can often possess both
-: of these characteristics and we will emphasize only those models which do.

It is recognized that there are signals which are not represented well by a given

» model. The consequences of this depend largely on how the signals are manipulated

based on the model parameters and how the results are evaluated. In the context of

) picture processing, the ultimate criterion for evaluation is subjective examination
. of the processed sequences.

The outline of our development of parametric motion models is as follows:

e We begin with a very general representation for modeling motion. For this

purpose we introduce the concept of motion description functions which define

a mapping from a single image into a three-dimensional image sequence.

= e It is shown that the motion description functions are related to the under-

",, lying signal through a partial differential equation. In principle, solving the

; partial differential equation permits determination of the motion description

7 functions from the signal.

7

L e There is a direct correspondence between motion description functions and

! velocity fields. The velocity field can be determined from a metion description |
3|

?

function by solving a linear equation. Furthermore, a motion description l
]
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function can be determined from a velocity field by solving a linear partial

» . : .
- ' differential equation.
)
5{ e By restricting the functional form of the motion description function, in many
R : cases the partial differential equation can be solved in a straightforward man-

ner to determine both the motion description function and the velocity field

from a given signal.

e For the cases of traanslation, zooming, and rotation, it is shown that very
simple parametric representations exist. For these cases, determination of the

- motion parameters reduces to the problem of solving a set of linear equations.
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A.3 Motion models in a cartesian space

In a cartesian coordinate system, motion is modeled as a mapping from a single
two-dimensional luminance function s¢(z,y), into a three-dimensional luminance
function s(z,y,t). This mapping is generated by the motion description functions

a,(z,y,t) and ay(z,y,t)
s(z,y,t) = sola:(z, y,t), ay(2, 9, t)). (A.1)

By convention we impose the constraints

a:(z,y,t0) =z (A.2)
av(z’ Y, tO) =Yy (A3)

so that
s(z,y,t0) = so(z,y)- (A.4)

This formulation is capable of describing a very broad class of motion types. For ex-
ample, we can describe translation, zooming, rotation, and deformation. Figure A.1
illustrates the velocity fields associated with these motion types. One phenomenon
which cannot be described directly with this formulation is the occlusion and un-
covering of a background object by a moving object. In this case the velocity field is
undefined in the newly uncovered regions. The same problem is encountered when
there is a scene change where successive frames are completely different. These
phenomena require special attention and are briefly discussed in Chapter 3 in the
context of motion estimation algorithms.

Given this formulation, motion determination reduces to the problem of com-
puting a,(z,y,t) and a,(z,y,t) from s(z,y,t). The first step in our analysis of
this model is to relate the motion description functions a,(z,y,t) and a,(z,y,t)
to the signal s(z,y,t). This relationship is stated in terms of a partial differential
equation. In succeeding sections it is shown that by restricting the functional form

of a,(z,y,t) and a,(z,y,t), we can derive closed form solutions to this differential

equation given a signal s(z,y,t).
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Figure A.1: Velocity fields
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We begin with the set of partial derivatives of s(z,y,t) with respect to the

independent variables z, y, and ¢

ds dsq Oa, + ds da,

- o e
Al S

—= A5
‘ 0z Oda, 0z Jda, Oz (4.5)
' s  0sgda, 0s¢ day,
;’. ”‘_ dy  Oa, 9y = da, dy (A-6)
i' :Q 3_3 _ 3sg da,  Osq Ba,. (A7)
' ot Oda, dt Oa, Ot
i N The partial derivatives with respect to z and y can be written in matrix notation
; as follows
[} w"
g 3 da, By || 9% %s
- dz Oz da, | _ | Oz ) (A.8)
BN da, Oa, 22 Js
:E v dy Jdy day dy
L}
. From this system of equations we can solve for the partial derivatives of so(-) with
ﬂ g respect to a, (') and a,(-), provided the determinant of the matrix does not vanish.
._; g By substituting these quantities into Equation {A.7) we arrive at the desired partial

ﬁ 125

(2 )

=‘A‘. U 44 - e ' ‘-' '-r\l O " ] N » ", A
x""n".'.'t ﬂ'f‘, o TRLR S L‘l's‘!@:hl’)ﬂ’r'd‘a‘% BOSORLACEONC !“"“ h‘."-@'.':..‘ ....I.::I.;“’ "‘I..q'n Al &



differential equation g

9z dy Jdy Oz at dy 8t dy dt az
(aa, da, Ba,aa,) ds

dz 8t Az ot | dy

(aa, da, da, aa,,) ds _ (aa, da, da, 6a,) ds
(A.9)

The requirement that the determinant of the matrix is nonzero is equivalent to the

condition
da, 3a, , da, da,
dz dy dy 8z’

Recall that Equation (A.9) is valid for all z, y, and ¢ where the model applies. In

(A.10)

the following subsections we present the solution to this differential equation for
several specific motion types of interest.

It is instructive to rewrite Equation (A.9) in the following form

ds ds 63
v:(z,y, t)g; + vy (z, 9, t) at =0, (A.11)
where
(aa, da, da, day )
dy ot dy oat
v {(m ) = g e " da, da, (A.12)
dz OJy dy Oz
and
da; oy  da, da,
dz Ot dz Ot

(A.13)

% 4,1) da; o, Jda,da,)’
dz Jy dy Oz

This representation is motivated by recognizing that the quantities v,(z,y,t) and

ok Rk 2 mE O 0G0 NS o 0 o aalind [~~~ o= | Lo ER K

v,(z, y,t) have the units of spatial distance over time. In fact, these quantities are
the velocity field components, which form the basis for analyzing several motion
types that can be described easily with this model. We can express this relationship

with matrix notation as follows

da, Oda, 9 . da,
5= oy || “EYY | __| = (A.19)
da, Oda, da,
3z 3y || v=vY at
Jl‘_-"_(_'{\ - ._,.{_.'_.',,

'A'c&iﬁi. '&f\'—iﬂ.”x”\."’\f \"‘:4' \fbfl'e:‘(‘l' \‘fuﬂ\_ﬂ- 1’
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This demonstrates that the velocity field can be determined from the motion de-
scription functions by solving a set of linear equations. This set of linear solutions
has a unique solution because the matrix is nonsingular as required by Equation
(A.10). This set of linear equations also specifies two linear partial differential equa-
tions that can be solved to obtain a,(z,y,t) and a,(z,y,t) from the velocity field.

Both equations have the form

da Jda da
il hathai ¢ 2 _o. .
9z v.(z,y,t) + 3y vy(z,y,t) + Y, 0 (A.15)

If v,(z,y,t) and v,(z,y,t) are valid velocity fields then this partial differential
equation can be solved to determine functional forms for a,(z,y,t) and a,(z,y,t).
These forms are reduced to a specific function by introducing the boundary condi-
tions a,(z,y,t) = = and ay(z,y,ty) = y. The following subsections illustrate this
procedure for some simple cases.

One should contrast the result of Equation (A.11) with the spatio-temporal
constraint equation described in Chapter 2.

Simple translation:

S(Z,y,t) = So(l’ — Vg (t - t0)1y — Uy (t - tO))

¢ (A.16)

v a$+v gi+6s_0
*oz Y9y Ot

s(z, Y, t) = so(a,(z, Y, t)r ay(za Y, t))

¢ (A.17)

ds s OJs
v,(z, y’t)a_ + vv(z)ylt)aj + E =

z
Note that the case of simple translation is a special case of analytic mapping in
which the velocity field is not a function of spatio-temporal position.

We have shown that if the motion picture sequence is obtained by mapping a

single frame onto a sequence of frames with a motion description function, then there
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exists a unique velocity field associated with this sequence. It is important to note
that the converse is also true. If a motion picture satisfies Equation (A.11), then
there is an associated motion description function. Therefore the motion description
function representation and the velocity field representation imply each other. This
follows because Equation (A.11) is a linear first-order partial ditferential equation
and the most general solution to this equation is the motion description function
representation.

The importance of the velocity field is that the signal remains constant along
directions parallel to the velocity field at each point. To show this, consider the

total differential of the signal s(z,y,t)

3
ds(z,y,t) = i-dz + Z—;-dy + gdt. (A.18)

The total differential relates the change in luminance to differential changes in
spatio-temporal position along the direction (dz, dy, dt)7. If we define the direction

dz as follows

dz = (v,(%,t),v,(,1),1)T dz (A.19)

then Equation (A.11) states that along direction dz, the differentiai change in lu-
minance is zero and therefore the signal is constant aiong this direction. The field
lines determined by the vector field (v.(Z,t), v,(Z,t), 1)T are referred to as “optical
flow lines”.

The difficulty with this representation is that the velocity field cannot be deter-
mined uniquely from a signal s(z,y,t). To demonstrate this, consider any vector

(v,(z, 9, t),vy(Z,y,t),0)T, such that

ds ds
v,(z,y, t)a + vy(z,y, t)a—y =0. {A.20)

The two-dimensional vector (v,(z, y,t), v,(z, y,t))T is orthogonal to the spatial gra-
dient of the signal s(z,y,t) at every point. By direct substitution it follows that
the velocity field defined by

Unew(Z, ¥, t) = 0(z,y,t) + 0(z,y,t) (A.21)
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still satisfies Equation (A.11). Consequently, the optical flow lines are not defined
uniquely along contours where s(z, y,t) is constant.

Our primary interest is to extract a unique velocity field from a given signal. An
additional constraint is necessary in order to accomplish this goal. The additional
constraint which we impose is structural. This means we force the velocity field to
have 2 specific spatio-temporal structure. There are two cases which we consider.
The first case treats velocity fields which have a specific spatial structure, but an
arbitrary temporal structure. Next we specialize this result so that the velocity
field is constant along the temporal direction. We restrict the spatial structure to
relatively simple forms that can be defined in terms of a set of parameters. This is

how we formulate parametric velocity field models.

A.3.1 Translation

A model for translation is based on the assumption that there is a region within
the signal space which is translating along a fixed direction. We will use the symbol
¥ to denote this region. For the case of translation, the motion description functions

a,(z,y.t) and a,(z,y,t) can be written as
a,(z,y,t) =z — D,(t); with D,(t,)=0 (A.22)

ay(z,y,t) =y — Dy(t); with Dy(t,) =0 (A.23)

where D,(t) and D,(t) are the components of the displacement field. The velocity

field is
dD,(t) _dD,(t)
= v = =L (A.24)

The partial derivatives of a,(-) and a,(-) with respect to z, y, and t are

Vv, =

da, . 0a, _ da,  dD,
5z dy =0 5 T @ (A.25)
a,  Oa, . 0Oa, dD,
3z = O Ea i TR TR (A.26)




',E It follows by inspection that Equation (A.10) is satisfied. Substituting these deriva- j
T
tives into Equation (A.9) we obtain the result
W
o dD,ds dD,ds _ 0ds
dt dz + dt dy ot (A.27)
&, which is assumed to be valid at all points within ¥. In particular, for any two
M spatial positions q
(Zo, Yo, t) = Po (A.28)
K)
' (Zuynt) =P, (A.29)
" within ¥, we can generate the following set of linear equations
L)
a da, s da, s s
g it oz| Taoay| " (4.30)
Py Po Po
v da, ds day9s| _ Os
; itoz| Taay| T @ (4.31)
) Py P, Py
3 In order to simplify the notation, define the matrix
W ds ds T
k3 oz dy
::‘ Alranl(t) = Po Po (A.32)
o ds ds
:; L az Pl ay Pl J
)
:: and the column vectors
o .
&
':: da, ﬁ
: = ) 3t |
: o(t) = birane(t) = — Po 1, (A.33)
4 da, 9s
) dt at |
!‘ I Py
4 This allows Equations (A.30) and (A.31) to be written as
: Alranl(t)t_’(t) = Etrunv(t) (A'34)
’ which possesses a unique solution for all time if and only if DET [Ayen(t)] # 0.

The solution is given by

.l

Ry d -

* 5(t) = = D(t) = Aginy()birans (8). (A.35) ‘
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Integrating the velocity field between two time instants yields the displacement field

D(t,t0) = [ Azbu(E(1)dr. (A.36)

A special case of this result is to consider only constant velocity fields which
model the situation where there is no acceleration of the objects within the scene.

In this case the motion description functions become
a,(t) = v, - (t — to) (A.37)

ay(t) = v, - (t — to). (A.38)
Substituting these relations into Equation (A.27) yields the result

ds ds Os
v,a + 1),5 + T 0. (A.39)

Equation (A.39) is the spatio-temporal constraint equation described in Chapter 2.
Evaluating the partial derivatives of the signal at a particular point (z,, yo, to)
generates a linear constraint on the values of v, and v,. This constraint can be

illustrated graphically as shown in Figure A.2. The constraint equation requires the

/7

Uz

e
\
S

Figure A.2: Translational velocity constraint

values of v, and v, to lie on the dashed line. The set of linear equations specified

by Equation (A.34) corresponds to locating the intersection of two constraint lines.
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Since the velocity field is uniform in both space and time, we can drop the time

dependence of the quantities in Equation {A.34), resulting in
Atrans¥ = S!rtma' (A-40)
In order to compute ¥, there are three cases of interest:

o A, .., = 0: The velocity field is completely unconstrained. This occurs when

the spatial gradients are identically zero.

o Det(Atan,) # 0: The two constraint lines intersect at a singie point and there

is a unique solution for the velocity field.

e Det(Asan,) = 0: The two constraint lines are collinear and only a linear con-

straint on the components of the velocity field is specified. This occurs when
the region ¥ only contains edges oriented along some direction. Only the
component of the velocity field which is orthogonal to the edge is defined

uniquely.

A.3.2 Zooming

In this subsection we present a model for zooming and derive a closed-form
soiution that is similar to the case of translation. A model for zooming about the
origin of a cartesian coordinate system is based on the following motion description
functions !

a,(z,y,t) = za,(t); with a,(t) =1 (A.41)

ay(z,y,t) = ya,(t); with a.(t) =1. (A.42)
Evaluating the partial derivatives of a,(t) and a,(¢t) with respect to z, y, and ¢, then
substituting into Equation (A.9) yields the result

zda,ds yda,ds 0s
o, dt 9z Ta dtdy Bt (A.43)

!The more generai case of zooming about an arbitrary point can be treated in a similar manner

by redefining the origin.
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N which can be simplified to

dlcg(a,) s = dlog{a,)ds 3s
&t dz V&t oy ot (A.44)

§ & The velocity field for this case is

i _ dlog(a.(t))
v,(z.y,t) = I

vy(z,y,8) = —yﬂ%&n- (A.46)

(A.45)

Equation (A.10) is satisfied provided a.(t) # 0 and a,(t) # 0. Assuming Equation

S E (A.44) is valid for all points in some region ¥ and selecting two spatial positions
@ (%0, y0,t) = Po (A.47)

(z1,y1,t) = Py (A.48)
:§§ P within ¥, we can generate the following set of equations
)

_ o
T 3t

Py

dlog(a,) ds

oo 1o dlog(a,) OJs |
(A z
a T— o yay (A.49)

dt oz

Po Py

ds

~ ot
Py

i dlog(a,) ds

. dlog(a,) Js
W dt oz

1 Py ]

To simplify the notation, define the matrix

KON Asoom(t) = Po Po (A.51)

and the column vectors

o dlog(a,) ds
&4 —at _ at

= b.oom(t) = — Pot (A.52)

d log(ay) ds

e w dt | _ at

e We can rewrite Equations (A.49) and (A.50) in the following form

ol

L
.L
|
=

Py |

B Acoom(t)] () = bioom(?)- (A.53)
i
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A unique solution for f(t) exists if and only if DET [A..om(t)] # 0. The solution is

T

P

e X3

given by
F(8) = Coom()bs00m(t) (A.54)
and the velocity field is
, v2(t) = =2 fo0m()(t) vy(t) = —¥S:0om(y)(t)- (A.55)
)
; ~ A uniform velocity field is specified by the motion description functions
K, :
al(t) = exp [Z,(t - to)] = f:oom(z) =2, (ASG)
{‘ t
ay(t) = exXp [Zv(t - to)] == f:oom(y) =2y (A57)
where 2z, and z, are the zooming factors along the z and y directions respectively.
A The velocity field is
‘ v, = —2,T vy = —2Z,y (A.58)
; and the zooming parameters 2, and 2, are obtained from
s
‘: C:oomz = B:oom- (A.sg)
! Therefore the zooming parameters can be determined uniquely if and only if C.,om
_ is nonsingular. It is important to note the strong connection between this result
‘ and the result for the case of uniform translation shown in Equation (A.34)
L)
» '
o
A
)
K
)
a3
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A.4 Motion models in a rotational space

{-.
7 d

Following a procedure analogous to that in Section A.3, we can formulate similar

results within polar coordinates. This permiis us to treat the case of rotation with a

- o e e -
P
el
» il

straightforward mathematical development. In polar coordinates we are concerned

5'|§l

g with motion descriptions of the form
EAN]
R
‘,}: B s(r,8,t) = so(a,(r,0,t),as(r,8,t)) (A.60)
Ll
’t:\'fc 3

N together with the constraints
e o aun(r,0,t0) = 7 (A.61)
i ‘ vl 4
&
. ag(r,b,t) = 8 (A.62)
%“.i"‘ @
so that

* ;: s(r,8,t0) = so(r, 8). (A.63)
21CH LS
Bl . The partial differential equation which relates a,(r,8,t), and ay(r,8,t) to s(r,8,t)
B %

b can be found from Equation (A.9) by performing variable substitution. Associating
: o z with r, and y with 8 we arrive at
2
"

5t \F o " @ )art

da, day 3 Oa, 0ay\ s (BagBa, Jda,day) ds
dr 946 a8 or

. ; (A.64)
;.i: k (aa, Oday Oday 6a,) Jds
i - EY)
33:;5 E* dr at ar at ) 99
R atd provided
da, dag , Oa, day
ol 5r 36 7 30 or’ (4.65)
::':‘.'l The velocity field is
ot :
X % (Bao da, da, 30:,)
- 36 0t 98 ot |
3 » 0 t) = A.66 |
¥ ] ;j‘ 7', ) aa, 80:, 30' 6a¢ ( )
g dr 96 39 Or
%o: -
o ﬁ Jda, day aa. aa,
A (r.0,1) ar ot ar (A.67)
& * da, day _ da, aa, '
KoY+ ar 3¢ 30 ar
':5\"1 ;
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X A.4.1 Rotation
.f':
’ For the case of rotation about the origin, a,(-) and as(-) can be written as i
o
::e a.(r,0,t) =r—p(t); with p(tg) =0 (A.68)
o
!
]
w ap(r,0,t) =6 — ¢(t); with @(t) =0 (A.69)
:‘; and the corresponding velocity field is
\.| .
0 dp(t do(t
f; v (t) = % ve(t) = _d(t—) (A.70)
:: Evaluating the partial derivatives with respect to r, 8, and ¢, then substituting into
:“ Equation (A.64) yields the result
g
X dp(t)ds de(t)ds s
- at or " dt 6 at (A7)
s‘;
In a manner identical to the cases of uniform translation and zooming, we select
t A two spatial positions
o (ro,60,8) = Po (A.72)
' (ri,8:,t) = P, (A.73)
Rt and generate the linear equations
::i AFO‘(t)T’(t) = Erol(t)! (A74)
:;o
::0 where
K& i ; i
e ds ds ds
A Ao(t) = Po Fo brot(t) = — Pt (A.75)
. Js ds ds
i ar a6 at
L Py Py L P,
W
E’ ’ A unique solution for the velocity field exists if and only if Det [A,,(t)] # O for all ¢.
A. For uniform rotational fields, we drop the time dependence of the parameters and
28
e assume v, and v, are constant, resulting in the equations
? Av'n)li7 = Brol' (A76)
N
P
::‘
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A.5 Discussion of models

In summary, we have developed several parametric modeis for describing motion
that occurs within image sequences. The models are based on the use of motion
description functions. There is a direct relationship between the motion description
functions and the velocity field. A motion description function defines a unique
velocity field and a motion description function can be obtained from a velocity
field.

The velocity field is related to the signal through a partial differential equation.
However, the differential equation does not completely constrain the velocity field.
Conceptually, this is because an image is a scalar-valued function, while the velocity
field is a vector function. Each point in the image corresponds to one “equation”,
but there are two components to the velocity field.

In order to extract a unique velocity field from a given signal, it is necessary to
impose an additional constraint on the velocity field. We have demonstrated that
parametric structural constraints for modeling translation, zooming, and rotation
greatly reduce the ambiguity in the velocity field. These models also have the im-
portant property that they are computationally efficient. In particular, determining
translational, zooming, and rotational parameters involves solving linear equations
with two unknowns. The linear properties of these procedures can be extended
directly to the problem of parameter estimation. If a least squares error criterion is
used, the parameter estimates are also obtained by solving a set of linear equations.

These algorithms can be implemented in a computationally efficient manner.
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Appendix B

Motion estimation by region

matching

The most widely used methods for motion estimation are based on region
matching or correlation algorithms. Because of the widespread use of this approach,
we have implemented a region matching algorithm which serves as a baseline system
for comparing the performance of several other algorithms. In this appendix we
describe the implementation details of this algorithm. A similar algorithm was
extensively studied by Hinman [12].

Suppose we want an estimate of the velocity field at an arbitrary spatio-temporal
position (Zg,t), where ¢ may not coincide with a temporal sampling instant. Let
to and ¢, be two temporal sampling instants, such that ¢, < ¢t < ¢;. The velocity
estimate is obtained from the frames r(z, t,) and r(z,t,) by minimizing the following
expression

i { 79 =3 Ir(a S0 (-t <r(m -0 (- ahaF) (B)

=1
A more general formulation of this algorithm includes a weighting coefficient for
each term of the sum [24].
Note that in this expression the objective function f(9) is a nonlinear function
of the velocity vector and there is not a closed-form solution to this equation.

Therefore the velocity vector which minimizes the objective function is determined
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numerically with a nonlinear programming algorithm. This is an unconstrained
optimization problem in the vector v.

Since we only have samples of r(Z,t) available, solving Equation (B.1) requires
computing values of r(z,t) which are not on the sampling grid. This is accom-
plished with a spatial interpolator. There are two primary considerations involved
in selecting an interpolator; interpolation accuracy and computational complexity.
We have compared two different interpolation methods. The first method is based
on a truncated interpolation kernel that approximates an ideal interpolator. This

interpolator can be written as

= Z: Z: 3[n1’n2]¢z n, z)¢(y)n2’Ty) (B2)

where

s[nh n2] = s(an:n nva) (B3)

sin [(TL) (z — nT,)]

<%—) (z — nT})

The second method uses a bilinear interplator. If z, y are integers, and d,, d, are

and

¢(Z) n, T:) =

(B.4)

displacements limited to the interval (-1,1), then the interpolated value is given by

s(z+dsy+dy) = (1-4d,)(1-d,)s(z,y)+
(d:)(dy)s(z + 1,y + 1)+

(1 -d,)(dy)s(z,y+ 1)+

y

(d:)(1 - dy)s(z + 1,9).

(B.5)

Several experiments were performed to compare the motion estimation errors
which result when each of these interpolators it used. It was found that the bi-
linear interpolator produced uniformly smaller motion estimation errors than the
truncated ideal interpolator for all signal-to-noise levels. Furthermore, the bilinear
interpolator requires significantly less computation. Therefore in all the remaining

experiments the bilinear interpolator was used exclusively.
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We experimented with two different optimization procedures; a steepest decent
method and a quasi-Newton method. Both procedures are descent aigorithms which

can be written in the form !
Upp1 = U — akaVf(t-)k) (BG)

where H; is a positive definite steering matrix, and a; is chosen to minimize the

function

f(o — ax HeV f(0)). (B.7)

The steering matrix operates on the gradient to produce a descent direction.
A steepest decent algorithm uses the identity matrix as the steering matrix, so

the descent iteration becomes
Ukt = U — oV f(Te). (B.8)

One of the difficulties with the steepest descent algorithm is that the convergence
rate is very slow if the objective function is highly elliptical. Quasi-Newton methods
are often used in order to improve the convergence rate. Quasi-Newton methods
exploit the property that if the steering matrix is approximately equal to the inverse
hessian of the objective function in the vicinity of the optimal solution, then the
convergence rate is considerably faster than steepest descent. The specific quasi-
Newton method which we have used is a member of the Broyden family of algo-
rithms, of which the Davidon-Fletcher-Powell method (DFP), is a special case. This
family of methods construct an approximation to the inverse hessian during the de-
scent process by using a sequence of rank 1 corrections. The implementation which
we used applies the Broyden-Fletcher-Goldfarb-Shanno (BFGS) update formula

1+ ‘7_{_@:?&) _ Pudi He + HiguPi

3 P D

where H, is the approximate inverse hessian for the k* iteration. This algorithm

Hk+l = Hk + ( (B.g)

operates as follows.

!These methods are commonly used for minimizing a nonlinear function of a vector. A complete

discussion and analysis of these algorithms is presented hy Luenberger [20}.

4

"
"

=y

L3

v

D 4

> - o>




233 B

'.', Let Hy = I and g = V f(¥:) at each iteration.
Step 1: Compute the descent direction d; = — Hygi.

Step 2: Minimize f(¥; + aidi) with respect to ay, to obtain @y, = U + ayds.

Step 4: Compute Px = ard; and Jx = Gr+1 —~ Gk

P
» A -
s

o Step 5: Update the inverse hessian according to Equation (B.9).
Step 6: Return to step 1.

)
%
>
=

'::;‘ Both the steepest descent and BFGS algorithms involve a line search, where the

function

»e'e
- .
TS
55

g(a) = f(¥ + ad) (B.10)

#L:

X is minimized. By virtue of its construction, only positive values of a are involved in
}:o: ﬁ the minimization and g(a) is guaranteed to possess a negative derivative at a = 0.
? The line search procedure which we used is based on an iterative quadratic curve
? : .N fit and involves two steps. First, a value of a is found such that g(a) possesses a
" 3 positive derivative. Let this point be denoted as a,,,,, and let a,,, = 0. If the
B ﬁ function is unimodal, there is a unique point where g(a) has zero slope and hence
: . is a local minimum of the function. This local minimum lies between a,,;, and
;:.E :*3 Qmaz- A quadratic function g(a) is determined that has the same derivatives as
;e‘e g(a) at the two endpoints amin and ames- The position of the stationary point of
%,’i l g(a) is taken as an approximation to the value of @ which minimizes g(a). Let this
:%EE value be denoted as &. The derivative of g(a) at & is evaluated and if it is positive,
EEE: E then apq, is set to &, otherwise a,,;, is set to & This process is repeated until the

difference between a4, and apn,, is less than some threshold. The value of & at

dap -
S
et
-8

K the end of the iteration is taken as the value of & which minimizes Equation (B.10).

g v

One iteration of this procedure is illustrated in Figure B.1. In Appendix D we prove

that this algorithm converges to the stationary points of g(a).

SN

E&E: :: Initial experiments with both the steepest descent and BFGS algorithms re-
'

E::; vealed the following properties. If all the samples used in forming the estimate lie

|‘|

| Ll

in a region with a perfect edge, the objective function is constant along lines that

are parallel to the edge and the hessian becomes singular. This poses no problem

s

for the steepest descent algorithm, but the BFGS algorithm becomes numerically
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o
"; 4 Figure B.1: Iterative line search procedure
o3
,“’ » unstable because the inverse hessian does not exist. Furthermore, the objective
e function is rarely approximated well by a quadratic funciion. Therefore the descent
) . . .
X .3 direction chosen by the BFGS algorithm is not always substantially better that the
Y .
,». direction of steepest descent. This was confirmed by noting that the convergence
" . .
- rate of the BFGS algorithm was only slightly faster than the convergence rate of
t
EE::. the steepest descent method, but involves more computation. For these reasons the
;g remainder of the experiments used the steepest descent algorithm exclusively.
ke
J
‘1t . .
R B.1 Summary of region matching method
i‘i}i‘s
:.":‘;:' In summary, the region matching algorithm which we have implemented generates
2 continuous estimates of the velocity field at arbitrary spatio-temporal positions and
[a.%%
2‘22 involves three primary components:
‘ ".
el . . : e .
Mot e The velocity field is determined by minimizing the sum of squared differences
Ky between two displaced frames.
e
<
.. .
.:'} e A steepest descent algorithm is used to minimize the objective function. The
h \J
o line search 18 accomplished with an iterative quadratic curve fit procedure.
,o;.;
::: e A bilinear interpolation procedure is used to compute the values of the signal
8 1S
f::’,. at points which are not on the sampling grid.
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One of the problems with this algorithm is that the objective function does
not have continuous first-order partial derivatives at all points (the derivatives are
discontinuous at the sampling points). Therefore it is not possible to guarantee

convergence of the algorithm (refer to Appendix D). In practice it was found that

this is only a problem at low signal-to-noise levels.




Appendix C

! Cramer Rao Bounds

L™

o
::. In this appendix we derive the Cramer Rao bounds which apply to the motion
- estimation algorithms described in Chbapter 3. This derivation is based on the
5

Y presentation developed by Van Trees [36]. The bounds are derived for the case
o
K when a known signal is degraded with additive white Gaussian noise !. Therefore,

t
) the observed signal r(z, y,t) is defined as
\“
‘ r(z,y,t) = s(z,y,t) + n(z,y,t). (C.1)
& . _ — . .
: The bounds are derived for a translation motion model in which the signal satisfies
:- the relation
"
\’:l 8(:3, Y, t) = 30(-'5 - Uy (t - tO)l Yy—vy- (t - tﬂ))' (C2) ]
0 '
X We are interested in deriving the bounds when our observations consist of sam-
. ples of r(z,y,t) on an arbitrary sampling grid. Therefore, assume we are given N
; discrete observations
b ry=r(z1, ¥, t)

ro=r(z t
x 2 (72,92, t2) (C.3)
:: r~ = r(zZn, YN, tN)
o
1Becanse we assume a knowa signal in deriving the bounds, the bounds are actually lower than

’0"
‘%: necessary. Iu practice we are dealing with unknown signals; therefore the bounds are optimististic
.:.;' and no estimator should achieve the bound.
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where the points (z;, y;,t;) are spatio-temporal sampling instances of r(z,y,t). In

J. order to simplify the notation we define the observation vector

, F= (rlr 29000y rN)T (C4)
i

along with the signal and noise vectors

i

o 5=(s1,52,..-,8n)T (C.5)

<)
ﬁ% and

i = (n,,ng,...,nN)T (CG)

@ so that
¥~ P=3+7. (C.7)

ET

The noise field is assnmed to be zero-mean, white Gaussian noise with variance

o2, so the probability density of the noise vector i is given by

Substituting the observation Equation (C.7) into Equation (C.8) we arrive at an

expression for the probability density function of the observation vector

o(7) = (75‘;0—) exp (357 i( - 7). (e

Define the log-likelihood function A to be

Ye :-,:Q!

A = log(p(F)), (C.10)

A

and the Fisher information matrix to be

ES £ E)
3v2  3v,0
J = —E a;)i ngu' (C‘ll)

I‘I)

N

dv,0v, Ov}’
where E[] is the expectation operator. The bounds are expressed in terms of the

Fisher information matrix are given by

Jrz
]

== B

Varli, —v,] > J;! = (C.12)




‘ty and

"’
K Varld, - v,| 2 J5' = i{]—ll| (C.13)
:.:: The elements of the Fisher information matrix are evaluated to be
R \
1 LD ds;
;e-, wesllaE@) e
! D) 1 N ds; ds;
':i Je=Ju=F [av:a”v] T o ; (a”z) (3’-’;) (C.19) !
‘r
Og' N
] LD 1 0s;
oy = [ 6v2] p X} ( au,,) (C.16)
::: From the motion model given by Equation (C.2) we can evaluate the partial deriva-
")
': tives with respect to v, and v, to be
o
it dsi _ _Osif, _

0. = "3z, (¢ — to) (C17)
"y
% .‘?ﬁ = _% t. —¢
" Fu, = "oy, ) (C.18)
‘.i‘: so the Fisher information matrix can be written as
| N (3s:\’ N, (3s; as.
’ > (—-) (ti — to)? Yo l5= (ti — to)?
o 1 —\ 0z o\ 0z
7 T=57| &8s\ (05 N (ds; Gy (C.19)
7 n === (- to)? =) (t; —t)?
é(az)(ay)( o) ;(@) (b~ )
. Therefore the bounds are given by
5 o2 N (9s;\?
o 0, — v, > = — ) (t; —to)? .
! Var[t, — v,] 2 7] E:l (ay) ( 0) (C.20)
l:‘
" and
~ asl 2
o Var(t, — v,] > > In 7 Z (t: ~to)% (C.21)
K M=
b A special case of the bounds occurs when the sngnal is independent of either z or
of
"t y. This occurs when there are well defined vertical or horizontal edges in a picture.
o In these cases the Fisher information matrix becomes singular, but the bound for
5
?, the velocity component orthogonal to the edge remains finite. In these cases the
)
" bounds become

. 2

W i _ 0=>Var(d, —v,] > In (C.22)
‘:‘ dy f: (38.‘)2 (t ¢ )2
» Y. i— ¢t
2, i\ oz
I";
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and
) 2
9% _ 0 = Varld, - v, > - Za . (C.23)
az ad 6s.~ ¢ 2
; (E (ti — to)

We refer to this case as the one-dimensional motion estimation problem. More

generally we can have edges oriented along arbitrary directions rather than along I
either the z or y axis. By rotating the coordinate system to obtain a new coordinate

system (z',y'), the same result follows.
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Appendix D

Convergence analysis of descent

i

Both the region matching and maximum likelihood estimators use descent al-
gorithms to minimize an objective function. The descent algorithms attempt to
minimize a nonlinear scalar-vaiued vector function. In formal terms we want to

solve the following problem
min {f(z)} (D.1)

where f(-) is a given nonlinear function of the vector 2. The approach which is
often used to solve problems of this type is to use iterative descent methods that

begin with an initial estimate Z, and generate a sequence {Z;} such that

) <f(z;) v i>j. (D-2)

Successive vectors in the sequence {Z;} strictly decrease the objective function f(-),
unless the sequence has converged to an element of the solution set. An iterative
algorithm is said to converge if the sequence {Z;} approaches a limit point that is a
local minimum of the objective function. In this appendix we discuss the conditions
under which these iterative algorithms are guaranteed to converge.

Luenberger [20] discusses a very general convergence theory which is specifically

related to this problem. Musicus [23] discusses similar results in the context of
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parameter estimation problems. Our discussion is based on the presentation of

Luenberger.

D.1 Global convergence theorem

Let us denote an arbitrary descent algorithm by A(-), so that successive members

of the sequence {Z;} are generated as follows
Zr+1 € A(Z). (D.3)

In general the algorithm A(-) is a point-to-set mapping and Z;4, is a point in the
set. The points T are members of a set X and there is a subset I' C X which is
the solution set. For continuous objective functions the solution set is comprised
of all the points which are a local minimum of the objective function. The central
result of the global convergence theorem is as follows. If these three conditions are

satisfied:

i) all points Z; are contained in a compact set S C X

ii) there exists a continuous descent function z(-) such that:
if Z €T then 2(§) < 2(Z) for all § € A(Z)
otherwise z(§) < z(Z) for all § € A(T)

iii) the mapping A(‘) is closed at points outside T’

then the limst of any convergent subsequence of Z; ts a solution.

A corollary to this theorem states that if the set I' consists of a single point z*,
then the sequence {Z;} converges to that point (this is the global minimum of the
function). The proof of this theorem is given by Luenberger [20] on page 188.

The first condition requires that the sequence {Z;} lies within a compact set
S C X. This implies that S is both closed and bounded. In many cases this
condition is not a restriction on any particular algorithm, rather it is a condition

under which a particular objective function f(-) will contzain a bounded solution set.
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The second condition requires that each step of the algorithm strictly decreases

' the descent function at all points which are not in the solution set.
::: The last condition restricts the algorithm A(-) to be closed at all points outside
s : of I'. An algorithm A(-) is closed at a point Z if the conditions:
9‘_
vt

) Z -2, €X
I;‘
0 ii) e — 9, 9x € A(Zi)
:i:'
e imply § € A(Z). An equivalent condition for point-to-point mappings is that A(:)
o is continuous. If A(%) is closed at each point z € X, then it is said to be closed on
,' X. In many algorithms this is the restrictive assumption which must be satisfied in
q order to guarantee convergence.

P Several algorithms which we will analyze are composite mappings of the form
C = BA,where A: X > Y and B:Y — Z,s0 that C: X — Z. Luenberger [20]
(page 187) proves the following:

Composite mapping theorem. Let A : X — Y and B:Y — Z be point-to-set

Ny mappings. If A is closed at 2 € X, B is closed on A(Z), and Y is compact, then
e the composite map C = BA is closed at Z. An important corollary states that if

A: X - Y is a point-to-point mapping that is continuous at Z and B is closed at

e A(Z), then the composite map C' = BA is closed at Z.
o,

' D.2 Convergence of iterative line search
-
z Virtually all descent methods incorporate a line search procedure. We use an
o5
: iterative quadratic curve fit procedure to locate the approximate value of a which
= minimizes the function f(Z + ad). It is straightforward to derive the necessary
o
{E , conditions for the algorithm to converge by invoking the global convergence theorem.
::.. Let g{) = f'(~). The line search algorithm determines & such that g(a) ~ 0
1o

‘ The iteration begins with a given initial interval (@min, @maz), Wwhere
:‘ 0 S Qmin S QAmaz (D4)
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; : and
2 ‘ g(ami'N) S 0 and g(amoz) 2 0. (D5)
. Define the vector @ = (a;,@2)T, where a; < a;. From a given interval [a;,a,}, a
S -
4 E: new point & is determined with a quadratic curve fit
3 -/
]
- (01 - 02) ]
a=a —glay) | ————]. D.6
R L gle) [9(01) - g(az) (D-6)
: ' The point-to-point mapping (&, &:)T = A(&) is defined as:
N K
i) if g(&) = O then & = &; = &
g
4

ii) if g(&@) < 0 then &; = & and a; = a;

- -
- - -

B5

iii) if g(a) > O then &, = a, and &; = &

A A
L h]

’

By construction, & is contained in the interval [a;, a;]. Consequently the se-

quence &; defined by this algorithm is guaranteed to lie in the compact set amin <

o
-

L2

ay < Amez a0d apin € @2 £ Ama,. Therefore condition i) of the global convergence

theorem is satisfied.

A suitable descent function for this algorithm is

- -
C ﬁ;l

z(a) = |al®. (D.7)

h & By construction, each iteration strictly decreases z(a) unless a; = a; = a* and
:; o g(a*) = 0 (which is a point in the solution set I'). Therefore condition ii) of the
. ": global convergence theorem is satisfied.

:i Finally, the algorithm defined above is continuous at all points, except when
?:: E}- a; = a; = a*, g(a') =0, and g(a*)/g'(a*) is unbounded. Therefore condition iii)

of the global convergence theorem is satisfied.

o

P

o Y Since all the conditions of the global convergence theorem are satisfied, the line
: o search procedure is guaranteed to converge. However, we have only guaranteed that
‘ the algorithm converges to a stationary point of f(-). We still need to guarantee

that it is a local minimum and not a local maximum. If f(-) is unimodal, there

-y . -

% is only a single local minimum to which the algorithm is guaranteed to converge.
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In general, if the initial interval [@min, @ms:) contains at least one local maximum,
under pathological conditions the algorithm can converge to such a point. To guard
against this the higher order derivatives of f(-) are tested. If the point is a local

maximum the entire procedure is repeated with a different initial condition.

D.3 Closure of line search

In actual practice the line search is terminated after some criterion is satisfied.
Therefore in most cases the iteration does not reach a true limit point. The iter-
ation is terminated when a; — @; < € and f(Z + ad) < f(z). In other words, the
uncertainty as to the true value of « is less than ¢ and the line search decreases
the objective function. One of the conditions required in order to guarantee conver-
gence of the steepest descent algorithm is that the line search procedure is closed.
Therefore in this section we prove that our line search procedure is closed.

The line search procedure is a point-to-set mapping S : E**+? — E" defined as
follows:

5(2,d, Amin) Omaz) = {§: § = Z + ad} (D.8)
where « satisfies the conditions
Amin < @ < Amaz. (D.9)
Theorem D.1 The mapping defined by Equations D.8 and D.9 is closed at all
(Z,d, Amin, @mas) $f d # 0.

Proof: Suppose {Z:}, {di}, {@min(K)}, {Qmez(k)}, and {§x} are sequences such
that 2, — 2, dy — d, Amin(k) = Qminy Xmaz(k) — Qmaz; I — ¥, and § €
S(Zk, di, Amin(k), Amaz(k)). We want to show that § € S(Z,d, Amin, Xmaz)-

For each k we have g = %; + aid, for some a;. Therefore

Taking the limit results in

-
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Therefore § = Z+a*d. Now we must show that oy < a* < @mes. By construction
of the algorithm, o is obtained from a continuous function of amin(k) and e, (k)

such that

B Ek & B2

amin(k) S a S amaz(k)- (D.l2)

Taking the limits as k — co we get

."
s |

'::: Amin S a’ S Amaz- O (D.13)

T
P
¥

M g D.4 Convergence of steepest descent

&

ig’: @ The steepest descent algorithm is defined by the iteration

h

m Zeer = Tk — axV f(Z4), (D.14)
L) J‘:

E'?: 2 where a; is a nonnegative scalar that is determined with the line search procedure.
s “ To insure that the line search procedure is well-defined for all descent directions,
e we will assume that f(Z) — oo as |Z| — oo and that there exists a radius R,
‘:l, Q such that f(%Z) < f(2*) if |Z| < Rp,. for some Z*. This condition insures that if
'4-:. h iZ| < Rpmes then there exists an a = ayimir such that f.(Z — aumaV f(Z)) > 0. This

value of a is given by the positive root of

=
*
= A

TV f(z) (l + J - I(Z|% - Rmaz)|vf(f)|2) (D.15)

QAimit = TS r7av12 3TV f(2)

V£(z)?

Each step of the steepest descent algorithm is a composite mapping A = SG.

<4

LY At each point z € X, G is a continuous point-to-point mapping G : Er — E?"+?

--
S

defined as follows

g ¥ G(2) = {§:9 = (2, ~V/(2), 0, ctima)"}. (D.16)

¥ i) :"u

l‘,'

¢

‘,:E' m The mapping S is the line search procedure defined in the previous section. Since
' ﬁ G is a continuous point-to-point mapping and S is closed, it follows from the corol-

lary to the composite mapping theorem that the mapping A is closed. Therefore

)
rr.-ﬂ 4

X condition iii) of the global convergence theorem is satisfied.
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By construction, each iteration strictly decreases the objective function f(-),
unless Vf(Z) = 0. Therefore condition ii) of the global convergence theorem is
satisfied.

Finally, for any point Z, such that |Z,| < R,,. it follows that the sequence
{Zi} lies within the compact set X = {Z : |Z| < Rms:}. Therefore condition i) of
the global convergence theorem is satisfied and the steepest descent algorithm is

guaranteed to converge.

D.5 Convergence of region matching

In the region matching algorithm we minimize the objective function

mgn {f(v) = Z [7(Z — 0(t — to),t0) — (2 — B(t - t,), tl)]z} (D.17)

=1

In evaluating the objective function at arbitrary ¥ it is necessary to compute
the values of r(Z,t) at points that are not on the sampling grid. These values are
computed with a spatial interpolator. We have used a bilinear interpolator which
has the property that f(%) is continuous but the first-order partial derivatives are
not. In fact, any interpolator which uses a finite support window will have the
property that the first-order partial derivatives of the objective function with respect
to ¥ are not continuous.

The steepest descent algorithm uses the negative gradient as the line search
direction. Therefore the algorithm is not defined when the gradient is evaluated at
a point of discontinuity. Based on this fact we cannot guarantee convergence of the
region matching algorithm. Nevertheless, we found that in practice the algorithm
converges properly when the signal-to-noise levels are high, but often diverges at

low signal-to-noise levels.

D.6 Convergence of maximum likelihood

The maximum likelihood algorithm involves determining the parameter values

(S,%) that minimize the distance function A(S, %), where S is an element of E? and
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;::: U is an element of E?. Because of the special structure of the problem, the mini-
i . mization is carried out in two steps. Given an estimate (Sy,¥:), another estimate
:E (Sk4+1, Uk+1) is generated as follows:

ik Step 1

W

min {A(8, %)} => Sisy (D.18)

M
o
L=
>
n

;,a > Let ®(S,7) be the set of points such that #* € ®(S,#) iff A(S,9*) < A(S, ).
:3: : More specifically, if the gradient of A(S, %) with respect to ¥ is a nonzero vector,
:t“: 3 then we require this to be a strict inequality. The vector ¥4, is taken to be a point
RS in ® as determined by the steepest descent algorithm.

‘::.; \&‘ The overall algorithm is a composite mapping C : EP*? — EP+? = AB, where
- A is a point-to-point mapping and B is a point-to-set mapping. These mappings
’% {:: can be defined formally as follows.

': | A : Ert? — EP*? where

. i A(S,v) = {(5*,9) : A(S°,9) < A(S5,8) V §} (D.19)
%EE tg, B : Ert? — EP*? where

i

g B(8,%) = {(8,v") : #* € ®(5,v)} (D.20)

By construction, the overall mapping C is guaranteed to decrease the descent
function A(:) unless a local minimum has been reached. Therefore condition ii) of

the global convergence theorem is satisfied.

-
R
-
P
> -" i _
v

= The mapping A is a continuous point-to-point mapping because it is obtained
>
’:_Q v by solving a set of linear equations. We now prove:
i _
— Theorem D.2 If A(S,0) s continuous, then the mapping B defined by Equation
"
o ‘; D.20 is closed on all A(3, ©).
TR
U
j::.‘ Proof: Let Z,§ € EP*? such that § = B(%). Suppose {Z;} and {#:} are sequences
'!"
E such that Z, — Z, §: € B(Z), and §, — §. We want to show that § € B(z).
'}
o)
*‘:‘ For each k we have
i B
i A(Te) < A(Z4). (D.21)

. 1
-~ E 155

"34‘s=‘, oy ?"‘7?3.ffa‘\?rifl.}'."*flM :&-’*‘.y"’,f" ..

Py

M OLN 0 OAD) 0 ’ Ln T A RN ; o, XN
B TN A AN A X AR A B K ot AR B T O X WA




Because A(S, ©) is continuous for all Z, taking the limit as k — oo gives
AMy) <Xz = y€B(E). O (D.22)

According to the corollary to the composite mapping theorem, it follows that A is
closed at all (5, %) and therefore condition iii) of the global convergence theorem is
satisfied.

From the global convergence theorem it follows that if the sequence (S, 7;) lies
within a compact set, then the algorithm converges to a limit point which is a local
minimum of the distance function. For the choice of model basis functions used in
the estimator, it turns out that the distance function is a multivariate polynomial
in (S,9). Furthermore, it is constrained to be nonnegative. Therefore as (5, 7)
tends toward infinity along any direction, one of two things must happen; either
A(S,?) remains constant or it also tends towards infinity. In the former case the
extrema are multidimensional surfaces, while in the latter case the extrema are
discrete points. In both of these cases we can construct a compact set composed of
all points where |5, 9| < Rpnq. such that all members of the sequence (S, ¥;) remain

within the compact set. Therefore convergence can be guaranteed.
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