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ABSTRACT

The specific DC flow resistance, characteristic impedance and complex wave

number of air-filled fiberglass have been extracted fram measurements of the

peak and half-power frequencies of the two lowest-frequency normal modes of a

rectanqular plexiglass cavity partially filled with fiberglass. Usinq Biot

theory [Ref's 8, 9 and 101 to describe the sound field within the fiberqlass,

a dispersion relation for the allowed modes in the cavity was derived, from

which the above properties were extracted. The values determined by this new

method compared favorably (within 25%) with the results of measurements using

classical methods. The new method differs from the classical resonance tube

method (Ref. 41 by 1) the use of a wave theory to descibe the sound field

within the fiberglass and 2) the use of a mode with particle velocity parallel

to the air-fiberglass interface. The differences make it possible to extract

the acoustic properties of bulk fiberglass using only a thin sample.
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I. INTRODUCTION

A. BACKGROUND

Elastic wave propoation in a fluid-saturated porous solid is a very

important and active subject of research with a wide spectrum of applications

including oil prospectin, nuclear test ban treaty verification and sound

transmission and reflection at the ocean floor.

When the fluid in the pores is highly crnpressible (air for example) the

acoustic properties are completely determined by the characteristic impedance,

Zchar, or, equivalently by the complex wave number, k . From these quantities

can be extracted parameters which depend only on the microscopic qecmetry of

the porous solid, the values of which can then be used when the fluid in the

pores is not highly compressible (water for example). It is therefore

desirable to have accurate and reliable methods by which these parameters can

be measured.

B. HISTORY OF CHARACTERISTIC IMPEDANCE AND COMPLEX WAVE NUMBER MEASURING

TECHNIQUES

Rayleiqh (1929) [Ref. i, p. 3281 has investigated the performance of an

idealized absorber of sound consisting of snall bundles of tubes. He extended

the theories of Helmholtz and Kirchoff that relate to the transmission of

sound along tubes and was able to deduce a value for the absorption

coefficient at the surface of such a material in terms of the propagation of

the surface area occupied buy the open pores, the radius of the tubes, and the

physical constants of air. This analysis has provided a basis on which to

found more general theories and description of sound propagation through

porous materials.

11



Scott (1945) [Ref. 21 pronosed a method of determininq the complex wave

number, k which describes the spatial variation of the acoustic disturbance in

a porous medium. This method consists of measurinq the attenuation constant

and the wavelength constant of a plane proqressive wave by nrobing the porous

medium with a probe tube microphone. Scott then determined the chatacteristic

impedance of the material with an anparatus devised by H. 0. Taylor (1913)

[Ref. 31 to measure the sound damping effects of acoustical materials. This

apparatus is similiar to the present day impedance tube.

Beranek (1949) [Ref. 41 describes several methods of obtaining a

material's acoustic impedance by measuring the properties of the sound field

in the vicinitv of an absorbing material exposed to a normally incident sound

wave. Two of the nst tractable methods are based on transmission line

theory: the impedance tube method and the resonance method (normal

incidence), with the latter method generally being viable only for determining

surface impedance. Beranek also developed a method to calculate the complex

nrooaqation constant from measurements of a material's characteristic

properties, i.e. porosity, pore size, etc. Once these properties are

determined, the characteristic impedance can be calculated.

More recently, Yaniv (1973) (Ref. 51 developed a new method of

calculating both the complex propagation constant -y = jk and characteristic

impedance of a material using transnission line theory applied to an impedance

tube device. His method consists of measuring standing wave properties in the

proximity of an absorbing material alternately backed with a high impedance

and a low impedance termination.

Finally, in 1980, Chung and Blaser [Ref. 61 published their article

discussing a Dual-MicroDhone Transfer Function technique for measuring in-duct

acoustic properties, namely the acoustic impendance and reflection

12



coefficient from which the complex wave number can be determined. This

technique was compared to the conventional Standing Wave Tube technique and

found to qive similar results [Tef. 7].

C. PURPOSE OF SIUDY

The objective of this research is to investigate the feasibility of

obtaining the characteristic impedance and the complex wave number of a fluid-

filled porous solid by measuring the resonance frequencies and half-power

widths of a fluid-filled rectangular cavity which is partially occupied by a

porous solid of varying thickness. In this investigation, the fluid is air,

the porous solid is fiberglass and the cavity is made of plexiqlass.

This investigation differs fran previous investigations in that 1) Biot

Theory [Ref. 8, 9, 10, and I11 is applied to solve for the allowed modes of

the partially-filled cavity, and 2) for the primary mode of interest the

particle velocity is directed along the length of the fluid-porous solid

boundary as opposed to normal to this boundary.

Table 1 summarizes the advantages in the course of this research. The

advantage of this technique over the currently existing methods is that it

does not require probing the sound field either within or in front of the

porous solid as do methods 1, 2, 3, and 5, nor does it require a pair of

phase-matched microphones as does method 6. Additionally, characteristic

properties of an absorbing material need not be known as in method 4. Also,

the acoustic properties of the bulk fiberglass can be determined using only

thin samples.

The theory developed for the new method is presented in Chapter II along

with a general overview of the equations used in the classical methods. The

experimental results for each of the methods used in comparison are presented

in Chapter III and comparisons are made and discussed in Chapter IV.

13



TABLE 1

ADVANTAGES AND DISADVANTAGES OF METHODS USED TO DETERMINE THE Q4ARACTERISTIC
IMPEDANCE AND OOMPLEX AVE NUMBER

Method Advantages Disadvantages

1. Probe Tube a) Simple theory. a) Thick sample needed
(Scott) to get character-

istic impedance

without a wave
model for the
porous medium.

b) Simple procedure. b) Must probe sound
field.

2. Impedance Tube a) Simple theory. a) Thick sample needed
(Beranek) to get character-

istic impedance
without a wave
model for porous
medium.

b) Simple procedure.

c) Probing of material
not required.

d) Normal absorption easy
to measure.

3. Resonance a) Probing not required. a) Theory is somewhat
(Beranek) difficult.

b) Measurement of re- b) Discrete frequen-
sonance frequency and cies.
half power widths is
precise.

c) Measures surface
impedance.

d) Requires low losses
for well defined
resonances.

4. Material Properties a) Sound wave not needed. a) Complex theory.
(Beranek)

b) Measurement of
microscopic proper-
ties is comvplex.

14



TABLE I (continued)

flethod Advantaqes Disadvantaqes

c) Requires classifi-
cation of material
as riaid or soft.

5. Yaniv a) Simple theory. a) Time consuminq.

b) Simple Procedure. b) Quarter wavelenqth
termination needs
continuous adjust-
ment with frequen-
cy.

c) Probina of material
not necessary.

6. Two Point Phase Dif- a) Simple theory. a) Thick sample
erence (Chunn and needed.
8laser)

b) Simple Procedure. b) Microphone posi-
tions only optimum
for select frequen-
cies.

c) Probinq of material c) Requires accurate
not necessary. microphone nhase

calibrations.

7. New Fiethod a) Probinq not required. a) Ccmplex theory and
(Maker) numerical methods

required.

b) Simple Procedure. b) Discrete frequen-
cies.

c) Ability to determine c) Requires low losses

DC flow resistance for well defined
non-invasively. resonances.

d) Bulk properties
obtained from thin
samples.

I15



II. THEXRY

The theory behind the new method is presented in detail in this section

with ruch 3f the fundamental concepts and understandinq havinq come fram the

investiciation of sound propagation in a porous solid saturated with

super-fluid Helium [Ref 111. Additionally, the basic theory and equations used

are presented for each of the classical rethods used in comparison with the

new techniques.

A. ThEORY OF A FLUID-SATURATED RIGID POROUS SOLID

The linearized equation of motion for the microscopic fluid velocity

Vnicro in the Eulerian description is [Ref. 12, P. 49],

+ (2.1)L VV)iico
f Ii" o + ( Vmicro ' V)vmi c  -VO + nVmicro +  (C +  mn)(V-vMicro)

Using

V2V Micro = (V.Vmicro) V x V x Vmicro , (2.2

we can write Eq. (2.1) as

Pf lvm ir + (Vmicro-V)v mic ] =-P + n V x 7 x V Micr o + (4 + - n) 1(11'VMicro),

](2.3)

17here pf is the fluid mass density, p is the fluid pressure, n is the fluid

shear viscosity and is the fluid bulk viscocity. The last term in this

eauation can be ingnored here because its affect is small compared to the

other terms on the scale of a pore. Ignoring the last term, Eq. (2.3) becomes

Pf -- - = nVxVxVmicr o  (2.4)

16



N~microwhere -Dt is the total time deriviative of the microscopic fluid

velocity. From Eq. (2.4), a phenomenological, linearized equation for the

average (over the microscopic structure) fluid velocity, denoted <Vmicro>, can

be written:
-9

<Vmicro> +
neff a -V<p> - Rflow<vmicro> (2.5)

Here Pelf is the phenomenoloqical effective fluid mass density and Rflow is

the phenomenological flow resistance [Ref. 13, pp. 252-2551. Rflow is defined

such that in steady state

-<D> = RDC <%micro> • (2.6)

In qeneral (including oscillatory flow) Peff and Rfiow can be operationally

defined by

1 2< micro> eic nergy per unit (2.7)

6 2 = Rate of dissipation of (2.8)
Rflow <Vmicro> kinetic energy density

For eJ~t  time dependance, Eq. (2.5) can be written, upon combininq both

velocity terms on the left hand side,

J[ Peff(W) + Rflow(l)] <vicro> = - <> , (2.9)

where peff and Rflow are now frequency dependent phenomenoloqical properties

which describe the effect on the fluid due to the microscopic geometry [Ref.

II, pp. 334-335]. It should be noted that in Eq. (2.9) and in the remainder of

this thesis complex quantities are denoted by a tilde.

17
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Defininq omnlex effective density, eff(), as

= Rflow( (2.1)
Pef f~ Pef f (w)+-j7(.0

Eq. (2.9) mav be written in a more compact form as

jwpeff(u) <Vmicro> = -7>. (2.11)

Plane progressive wave solutions to Eq. (2.11) travellinq in the positive

x-direction may be sought by lettinq the acoustic pressure be qiven by

Spej(ct - k) and letting <vmicro>2V avq ei(t - Zx), where k = k - ja with

k, a > 0 such that the energy of the wave exponentially decays as one

moves deeper into the porous solid (note in order to avoid confusion later,

the letter a will be used to denote the attenuation constant, reserving

the letter a for the tortuosity in the Biot theory). Eq. (2.11) then

becomes

JZ Pf(a') vg J (2.12)eff av

The microscopic equation of continuity for Vmicro still holds for <Vmicro>

if -we consider a large enough volume so that irregularities on the order of

the pore size averaqe out, and if we consider the density of the fluid in the

pores to oscillate about the bulk fluid density with the passing of an

acoustic disturbance. Hence we let 'P= pf + S'peJ(t - x) and the equation

of continuity becomes, to first order,

Jw6p - Jpf k Vava = 0 . (2.13)

The relation between pressure and density variations (the equation of

state) in a fluid-saturated porous solid can be written

-= cf Y  
(2.14)

18



where cf is the speed of sound in the bulk fluid, I(N) is the cemplex ratio
of specific heats (Cp/Cv) as a function of frequency, and y is the adiabatic

ratio of specific heats.

Eq's. (2.12), (2.13) and (2.14) lead to a wave equation with the phase
velocity determined as follows: writing Eq. (2.12) (the equation of motion)

as

W Atf( V, 
(2.15)

and substituting Eq. (2.14) into it results in

W Pf(~)V =C 2 Y 6W (2.16)

Recasting Eq. (2.13) (continuity) as Pf avq = 6 and dividing Eq. (2.16)
by it results 

in

W1)2 = cf 2 IN) (2.17)f y R ef f ((.7

Pf
Defining the complex tortuosity in the fluid saturated porous solid by [Ref.

8, p. 185 and Ref. 11, p. 37]

Off 
(2.18)

the phase velocity can be written as

-2 2C 4) Cfw) (2.19)

The complex tortuosity can be written as

a (2.20)

19
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where a is the intrinsic, or infinite frequency (inviscid) tortuositv, and

E(:) is a dimensionless correction function whose purpose is to make the

frequency dependence of a(w) come out riqht [Ref. 8, n. 185 and Ref. 11, r.

371.

The complex tortuosity can be written in the form [Ref. 11, p. 491

a(a) = a- jrF(w) (2.21)

where

(2.22)

is a dimensionless flow resistance.

The mathematical form for the dimensionless correction function can be

taken as [Ref. 11, p. 57 and Ref. 141

F(j , 1Z + j 2 1/2
= 1, (2.23)

where 6(-r/2 (2.24)

Here 6 is the structural factor in Siot's universal correction function and a

is the intrinsic tortuosity of the microscopic pore qeometry [Ref. 101.

The intrinsic tortuosity is a weiqhted path length correction factor which

satisfies a>1 . It depends most strongly on porosity P , with a+1 as

P+1 (as is the case for fiberglass). Typical values ranqe from 1 to 4 [Ref.

11, n. 227 and Ref. 151.

The DC flow resistance is proportional to rV(pore size)2, so that

r - n 1 viscous penetration depth)2 (2.25)
a ---f " (pore size) - pore size

20
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The quantity r/a determines the relative importance of flow resistance versus

fluid inertia in determininq the microscopic flow field.

The structural 6 depends upon the averaqe cross-sectional shape of a

pore [Ref. 8, p. 1851. Experimentally it appears that 6=4 for many qranular

porous solids [Ref. 161.

Substituting Eq. (2.22), (2.23) and (2.24) into Eq. (2.21) results in
--al-[)]1 / 2} • (2.26)

For all calculations in this research it will be assumed that x=l and 5=4 for

fiberqlass [Ref. 11, pp. 49-59).

The complex ratio of specific heats, -y(w) , is defined as

v(2.27)

where cp and cv are, respectively, the complex, frequency dependent specific

heats per qram at constant pressure and at constant volume. For an ideal qas
R

Cp - cv = F , where ri is the molar mass, and so
+R

(w) = 1 +. R (2.28)

The propaqation of sound in the porous medium will vary from isothermal

at low frequencies when the thermal penetration depth is larqe compared to

a pore size, hence cv + *a, to adiabatic at hiqh frequencies when the thermal

penetration depth is small compared to a pore size, and cv = bulk fluid

value. Since the transport of momentum and enerqy in a qas both arise from

molecular collisions, it will be assumed that thefunctional form (y - 1) has

the same form as the complex tortuosity (), only with the thermal

penetration depth 6th in place of the viscous penetration depth Svisc.

Hence we take (S. Baker, private comunication]

I 1 (y-) (2.29)
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where r and F(w) are given by Eq's (2.22) and (2.23), respectively. The

viscous penetration depth, vis , and the thermal penetration depth 6th are

defined by

= t = 2 (2.30)

where n is the fluid shear viscosity, pf is the bulk fluid density, K is

the thermal conductivity and cp is the specific heat per gram at constant

pressure.
26th

The factor can be recast as

6visc

26 thi
=h =(2.31)

PC

6visc

where

v = r/pf - kinematic viscosity (2.32)

and

X = K/P cp = thermal diffusivity (2.33)

and Pr Prandtl number which has a value of 0.733 for air at 200C. Hence the

complex ratio of specific heats can be rewritten as

Y(Z) = I + 7j (2.34)

In the high frequency limit, the square of the phase velocity in the

porous material (Eq. 2.19) qoes to the fluid inertia dominated limit in which

sound propagates at the bulk fluid speed reduced by the square root of the

tortuosity. Conversely, in the low frequency limit, flow resistance
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dominates, and pressure oscillations diffuse through the porous material. The

crossover from inertia dominance to flow resistance dominance occurs when the

viscous penetration depth is approximately equal to a characteristic pore

size. Figure 2.1 summarizes the limiting conditions.

1. Development of Dispersion Relation in a Fluid-Filled Cavity Partially
Filled With a Porous Solid

Consider a rectangular cavity which is partially filled with a fluid-

saturated porous solid. The region occupied by bulk fluid is denoted as

region 1; the region occupied by the fluid-saturated porous solid is

identified as region 2. The porous solid is assumed homogeneous and

isotropic. Figure 2.2 depicts the geometry used to develop the dispersion

relation for standing waves in the cavity. It will be assumed that all cavity
A4

cavity walls are perfectly rigid so that n*u = 0. Then n.7p = 0 at these

boundaries and the velocity potential in regions 1 and 2 can be written as

follows:

In region 1 (bulk fluid),

j= io0 e j ' t cos[kx x cos[iZ1z(z-di)1 (2.35)

where

k x = - n = 0, 1, 2, . . . ,(2.36)

2= (k 2 + jz 2) cf 2  (2.37)

cf2 = Bf/pf , (2.38)

and
Bf = bulk modulus of fluid

;10 = complex amplitude of the velocity potential in region 1.

.1*

23

.-,

'~ m



High and Low Frequency Limits on Phase Velocity
in a Porous Material

High Frequency Limit Low Frequency Limit

Plug Flow Laminar Flow

cf2 fmo

+ Fluid Inertia Dominates + Flow Resistance Dominates

+ Sound Propagates + Sound does not Propagate
(Pure Diffusion)

Cross-over when:

6visc- characteristic pore size

Figure 2.1 High and Low Frequency Limits on Phase Velocity in a PorousMaterial
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Figure 2.2 Rectangular Cavity Geometry for New Method.
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The x-connonent of the wave number is a pure real number since the Woundary

conditions of riqid walls normal to the x-direction at x = 0 and x = L forte

real and discrete values for kx

In region I the Particle velocity can be written as

v= (2.39)

and the pressure as

PI - Pf ( (2.40)

In reqion 2 (porous material),

42 = 20 e Jtcos[k xX cos[z2z(z+d 2 )] (2.41)
where

k= ; n = 0, 1, 2, . . . , (2.42)

2= ( 2 2 )C2 2 (2.43)

2,2 cf yw
C 2= - (2.44)

and

20 = complex amplitude of the velocity potential in reqion 2.

The particle velocity in region 2 is

V2  02 (2.45)

and the Pressure is, from Eq. (2.11),

-2 = -Jc( ) Pf *2 • (2.46)
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With the velocity potentials defined in both regions 1 and 2 all that

is left is to match conditions at the boundary between the bulk fluid and

porous material (i.e., at z = 0) to produce the desired dispersion relation.

The two boundary conditions that must be satisfied at z = 0 are:

1. continuity of pressure across the boundary:

01(z=o) = a(W) *?(z=o) (2.47)

and

2. continuity of the normal comonent of volume velocity:

az-i = P 1---1(2.48)
z=o Z=o

where P is the porosity of the material. Apolying boundary condition I

results in

"10 cos[KlZdl J () *20 cos[IZ2zd 2] . (2.49)

Applying boundary condition 2 results in

1o kIz sin [klzdl] = -020 P k2Z sinlkzzdzl • (2.50)

Dividing Eq. (2.50) by Eq. (2.49) results in the dispersion relation

P

kiz tan [kizdl] + w k2z tan [Jzzd 2I = 0 , (2.51)

where

WZ= f- , (2.52)
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iZ2Z -C- Y~ -(~ k/ (2.53)

and

k =n 0,1,r2f.. (2.54)
x L'

In Eq. (2.53) the forms of a(w) and y(w) have already been defined in Eq.

(2.26) and Eq. (2.34), respectively. Eq. (2.51) is a transcendental equation

in wi whose roots determine the natural frequencies and half power widths or,

equivalently, the quality factors, of the allowed "standing wave" rmodes of

this system. Fromi these roots can be determined the complex wave numbers

k and 12zand the resulting pressure distribution.

Two approaches to the use of the dispersion relation become evident.

The first is the "forward" problem, where the roots of Eq. (2.51) for W may

be regarded as functions of RDC and a , and mreasured resonance frequencies

and Q's may be compared with predictions; the second in the "inverse"

problem, where RDC and a are regarded as functions of the roots of Eq.

(2.51) for w and are found by variation such that the best fit is obtained

between the m'easured and calculated spectra. The aim of this work is to

verify the technique to solve the inverse problem by comparing the value of

Rcextracted frm~ resonance data with that actually measured. Appendix

A discusses the numerical technique to determine the roots of the dispersion

relation and the algorithm used to determine the best fit value of RDC.

Once the "best fit" value of RXC has been determined, then, since

the roots of the dispersion relation in terms of w are known for this value

of Rzc , the complex wave number is found from

k ~ k ja (2.*56)
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with Z found fran Eq's. (2.19), (2.26) and (2.34). The characteristic

impedance can be calculated from

Zchar = Peff (" )  (2.57)

where Peff(") is given by Eq. (2.10). Noramlizing the characteristic

impedance to that of the bulk fluid (p0c) results in

Zchar (normalized) = Zchar/fc . (2.58)

The complex pressure field for both regions may be calculated once

the roots of Eq. (2.51) are found. The pressure distribution in region 1 can

be written in terms of the velocity potential in reqion I as

=, jI rf f , (2.59)

where 0 1 is given by Eq. (2.35). The pressure distribution in region 2 can

be written in terms of the velocity potential in region 2 as

= ..-- -(2.60)

where 02 is given by Eq. (2.41).

The velocity potentials 01 and 02 are related by the boundary

condition that pressure be continuous across the interface between the bulk

fluid and the porous material, Eq. (2.47), which requires that

0. cosfkzdl ;P) ao Cos kzzdal (2.61) I
For simplicity, choose 020 to depend on 0 , resulting in

00 cos kjzdj
20 = cos .ez d, (2.62)

The pressure distribution in each region may be written as follows:

= -jW f cos[kx] cos[,z(z-d,)]010 ej t (2.63)
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and for region 2,

cos, kz (2.641P2 L COs['zZ(Z+d 2 )I3 0 e  (2.64)

With Eq. (2.63) and Eq. (2.64), and the values of kiz and k2z determined

from the roots of the dispersion relation of Eq. (2.51), the pressure

distribution throughout the cavity may be calculated. See Appendix B for a

more detailed discussion of the pressure calculation.

B. CURRENT METHODS USING TRANSMISSION LINE THEORY

Three of the five classical methods for determining the characteristic

impedance and complex wave number of a porous acoustic material are based on

transmission line theory. These methods involve measurement of various

properties of the standing wave and data are taken at various points somewhat

removed from the sample surface (Ref. 4, pp. 317-3211. The three methods

considered are:

- Impedance Tube Method

-- Resonance Analysis Method

-- Yaniv's Method

Only Yaniv's method allows direct determination of the material's

characteristic impedance and complex wave number. The impedance tube method

allows direct measurement of the resistive and reactive camponents of the

surface impedance. The complex wave number can only be calculated if

reflections from the far side of the porous material can be neglected and one

has some knowledge of the complex effective mass density of the fluid in the

pores. As developed by Beranek, the resonance anlaysis method measures the

same quantities as the impedance tube method, with the same limitations. It is
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discussed primarily for its similarity to the new technique in that the

parameters of the resonance curve are measured.

1. Impedance Tube Method

In this method the non-dissipative acoustic transmission line is

considered a smooth rigid-walled tube whose lateral dimensions are small

compared to a wavelength. The losses at the wall and in the bulk voluma are

considered small omnpared to the losses associated with the absorbing material

under test. Assuming that the source of sound is at one end of the tube (x=O)

and the sample under test is located at the opposite end (x=L), the surface

impedance can be determined. Figure 2.3 depicts the qeometry of the impedance

tube.

The impedance tube that has a constant cross section S and the

source vibrates harmonically at a frequency sufficiently low that only plane

waves can propagate. A standing wave pattern is set up by the right and left

travelling waves and can be expressed mathematically as

= e[ wt + k(L-x)] + j[wt - k(L-x)]
p P Ae~ + B e (2.65)

where p is the acoustic pressure, A and B are determined from the boundary

conditions at x=O and x=L.

It has been shown [Ref. 17, pp. 200-206] that the surface impedance

of the termination may be written in the form,

ZLc + B/AeJ6 (2.66)P°c I-B/A e e -

where B/A is the ratio of the relected wave amplitude to the incident wave

amplitude and 8 is the phase difference between the relected and incident I
wave. Thus given B/A and e , the surface impedance of the termination can be

calculated.
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Solving for the amplitude Ipi of the standing wave it can be seen that

the amplitude at pressure antinode is A+B, and at a pressude node is A-B. The

ratio of the pressure amplitude at an antinode to that at a node is the

standing wave ratio, or SWR:

A+B Panti (2.67)SWR- - ,(.7
A-B Pnode

which can be rearranged to give the ratio B/A:

B SWR-I= .(2.68)A SWR+I"

Thus measurement of the SWR by probing the sound field in the impedance tube

with a small microphone yields the value of B/A (Ref. 17, p. 206].

POPAUS
#' TN.AL.

Figure 2.3 Geometry for the Impedance Tube

The phase angle e can be evaluated from determining the distance to

the first node from the end at x-L. These nodes are located at

k(L-x n ) - 8/2 - (n-1/2)w ; n I 1, 2, . . . , (2.69)

so that the phase angle for the first node is

81= 2k(L-x 1 ) - i • (2.70)
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With the SW and 81 known, the resistive and reactive portions of the

impedance can be determined graphically using a "Smith" chart. To determine

the characteristic impedance of the porous material, the sample thickness is

increased such that the reflected wave from the rigid termination is

insignificant compared to the incident wave. From the definition of the

material's characteristic impedance, the complex wave number can be found

assuming that we know how the fluid reacts in the pores of the material. The

characteristic impedance may be written as

Zchar= Peff c (2.71)

where Peff is the cor lex effective fluid density in the pores and c is the

phase velocity of the acoustic distrurbance in the pores. The phase speed

c in a fluid, can expressed as

c2 = Bf/Peff (2.72)

where is the complex bulk modulus of the fluid in the pores. Therefore

Eq. (2.71) becomes, upon substituting Eq. (2.72) for Peff,

Zchar = Bf/c (2.73)

and since Z = ' , the equation that describes the complex wave number Z can

be written as

= ~ char • (2.74)

If is is assumed that the material pore size is snall compared to the viscous

and thermal penetration depths (in air these two parameters are approximately

equal) in the frequency range of interest, we can write

Rf ; BT (2.75)

where BT is the isothermal bulk modulus of the fluid in the pores.

Additionally for an ideal gas, the isothermal bulk modulus can be written as
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BT = I/ (2.76)

where Kr is the isothermal compressibility of the gas, and is equal to I/P,

where P is the pressure in the Pores [Ref. 18, p. 471. Hence Eq. (2.74) can

be written, assuming isothermal conditions exist, in the form,

k = T Zchar (2.77)

where k = k - ja, for a wave travelling in the positive x-direction in the

porous solid. Eq. (2.77) is presented to show the relationship between the

complex wave number and the characteristic impedance assuming isothermal

conditions in the pore volume. This equation was used only to check Beranek's

Material Properties Method in the isothermal limit. Only the values for

Zchar extracted by the impedance tube method are reported here.

2. Resonance Analysis Method

The resonance analysis method is used to determine the surface

impedance of a porous acoustic material. This method requires low loss within

the material to be successful. A resonance curve may be traced out by varying

either the tube length or the frequency in this method. For the present

research, the impedance tube discussed previously was used, with frequency

swept to trace out a resonance.

Beranek presents the equation needed to determine the impedance of a

sample under test and is rewritten here only for discussion [Ref. 4, pp. 329-

3341.

The normalized surface impedance of the sample is written,

Zsurf = / km/n =_ coth [(km - jim)t/c1 (2.78)

where 'Y = IZsurfl/PoC , * being the phase angle of IZsurfl and Zsurf

is the impedance at the surface of the sample which is to be determined. At
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the resonance peak, the peak frequency wp is approximately equal to the

normal angular frequency of lonqitudinal vibration, 4n , or

Wp -4 - •(2.79)

At the half power frequencies (-3 dB down from the peak) the half-power half

width (HPHW) can be written as

HPHW 1u , (2.80)z D

where kI = km + kna, and kna is the spatial damping constant without the

porous material present (i.e., it takes into account wall and driver losses).

Therefore k., the spatial damping factor due to the sample under test can be

written as

km = k - kna (2.81)

Assuminq the ratio km/4n << 1, the surface impedance of the sampole can be

determined once eA, w~,wp, X, and c are measured.

3. Yaniv's Method

Equations have been developed in transmission line theory for

determination of the input impedance of an electrical transmission line in

terms of the line characteristics: propagation constant, characteristic

impedance and length of line (Ref. 5]. When the line is terminated in an

open or short circuit, the input impedance of the line may be expressed in

terms of the line parameters with the following equations:

Zos = Zchar coth [yL] (2.82)

and

Zss = Zchar tanh [yL] (2.83)

where Z is the input impedance to a line terminated in an open circuit

(Figure 2.4), Zss is the input impedance to a line terminated in a short
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circuit (Figure 2.5), Zchar is the characteristic impedance of the line,

y s jk is the complex propagation constant of the line and L is the length

of the line.

Fran Eq. (2.82) and Eq. (2.83) we can solve for the material's

characteristic impedance:

Zchar = [Zss Zs] 1/2 , (2.84)

and for the complex propagation constant

tanh~ l = [• (2.85)

The high-impedance termination for an acoustical line may be realized by

termination with a rigid wall and a low-impedance termination for an

acoustical line may be realized by terminating the line with a column of fluid

equal to a quarter wavelength, itself terminated in a rigid wall [Ref. 51.

Figure 2.4 Geometry for Yaniv's Open Circuit Determination

Figure 2.5 Geometry for Yaniv's Short Circuit Determination
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By measuring the standing wave inside the tube alternatively

terminated with an open circuit and then a short circuit, both ios and 7ss

may be determined. With these two values, Eq. (2.84) and Eq. (2.85) may be

solved for the desired complex propagation constant and characteristic

impedance.

C. PROBE TJBE METHOD

This method was first presented by Scott (1946) [Ref. 2] to allow the

determination of the complec wave number from the characteristics of an

acoustic disturbance propagating through a fluid-saturated porous solid by

probing the sound field existing in the material and extracting the wave

number and absorption coefficient.

To determine the complex wave number in the porous medium, which describes

the spatial variation of the acoustic disturbance for a uniform, progressive

plane wave, Scott writes the velocity potential ; of the average motion in the

pores as,

= oe-jx eJwt (2.86)

where k = k - ja is the complex wave number and x represents distance in the

direction of propagation of the wave. Eq. (2.86) may be rearranged such

that,

= oe-aX eJ(wt - kx) (2.87) .

where a is the absorpotion coefficient and k 27r/X is the wave number.

Experimentally, one measures the acoustic pressure amplitude as a function of

distance in the material, along with the wave length.

To determine the characteristic impedance of the porous material, Scott

writes, 0
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~ eff (w)w

Zchar - (2.88)

where peff() is the complex frequency dependant effective density of the

fluid in the pores. Determination of Zchar assumes of course, that the

effective fluid density is known, for example, from Biot theory. EQ. (2.88)

was used only to check that the measured values of k were consistent with the

values of ichar fron the other methods. Only the values of k measured with

Scott's ethod are reported here.

D. MATERIAL PROPFRTIES TIETHOD

This method requires determination of five properties of the material to

calculate the complex propagation constant and characteristic impedance of a

material. Beranek [Ref. 4, Ch. 19] discusses this method in detail and only

that portion of the theory applicable to the comparison with the new technique

will be presented.

Beranek has shown that both the propaqation constant and characteriustic

impedance are derivable with the aid of charts from the basic physical

properties of the material [Ref. 4, D. 8391.

These properties are:

(a) the specific flow resistance

(b) the porosity

(c) the structure factor

(d) the volume coefficient of elasticity of the air in the interstices

(e) the volime coefficient of elasticity of the skeleton of the material.

First, one must determine whether the material under investigation can be

considered a soft blanket or a rigid/dense blanket. This determination is

made by considering the ratio of the volume coefficient of elasticity of the
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air in the interstices to that of the skeleton. If this ratio is less than

1
2- the material is considered to be a rigid/dense blanket [Ref. 4, p. 8401.

The fiberglass material chosen for the rigid/dense blanket criterion for

Beranek provides an equation for the propaqation constant b = ]k, of such a

material, namely

S= j=sY = (2.89)

K pkstw

where

b = complex proDaqation constant (same as Yaniv's ),

k = complex wave number,

kst = structure factor (same as Biot's tortuosity, c),

K = volume coefficient of elasticity of air in the interstices (i.e.,
the bulk modulus, and can be isothermal, adiabatic or camplex),

R, = dynamic specific resistance per unit thickness (approximately the DC
flow resistance),

= denisity of air, and

Y = porosity (same as P in Biot's theory).

By the use of Fiqure 2.6 and Figure 2.7 the magnitude and phase of b can be

determined. The characteristic impedance may then be determined from

j  (2.90)

char WY

This method suffers from the fact that not all of the material properties can

be experimentally determined and thus reasonable assumptions for their values

must be made [Ref. 4, p. 840].
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III. EXPERIMENT AND RESULTS

The objective of this study was to develop a new technique to measure both

the complex wave number and characteristic impedance of a fluid-saturated

porous solid. As with any new technique, comparison with classical methods is

a good basis on which to judge one's theory. This section will first present

the experimental results of the five classical techniques discussed previously,

and then the new technique. A comparison of measured data for all methods will

be presented in Chapter IV.

A. PROPERTIES OF THE POROUS SOLID

The porous solid used in all experiments was a semi-rigid type of

fiberglass, much like Owens-Corning Tupe 705 fiberglass, used in the insulation

of refrigeration type equipment. This material has sufficient rigidity to

allow it to be cut from sheets into a variety of shapes and to allow it to be %

inserted into tubes without excessive capression. This property was important

in the flow resistance and impedance tube measurements where a snug fit was

required %

Discs with nominal dimensions 3-29/32 inches in diameter and 1-29/32

inches thick were cut from three sheets of this material, weighed, and measured

to determine the material's volume. From two sets of measurements, the average

material density was found to be 43.0 ± 5.0 kg/m 3. For comparison,

Owens-Corning Type 705 fiberglass is reported to have a denisty of 96 kg/M 3

[Ref. 5], while rock-wool, also known commercially as Stillite, is reported to

have a density of 80 kg/m 3 [Ref. 21.

The porosity of the fiberglass material was measured by immersing a 1-inch

cube in a graduated beaker of water and measureing the volume of displaced

water. The fiberglass material itself was assumed to be non-absorbing. The

resulting porosity was found to lie between 0.99 and 1.0.
41
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1. Flow Resistance Measurements

Next, measurement was made of the specific DC flow resistance per unit

lenqth of sample. For most homogeneous, isotropic materials this flow

resistance may be measured with sufficient accuracy by applying a known steady

air flow across a sample and measuring the resulting pressure differential.

The actual method used is similiar to that presented by Beranek [Ref. 4, p.

8501.

The quantities measured were: [Ref. 4, p. 847]

bp = pressure differential between the two faces of the sample

v = velocity of the linear flow of air through the sample due to Ap

The pressure differential was measured with a standard water manometer (± 0.1

cm accuracy) and the velocity of linear flow was determined buy measuring the

time required to collect a sufficient volume of water (which drew air through

the sample by a siphon) in a graduated cylinder. The experimental apparatus

used is shown in Figure 3.1. All tube connections were sealed with RIV Silicon

Rubber to prevent leaks.

The velocity of linear flow produced by Ap is,

V = - (3.1)At

where

V = volume of water collected in time t, and

A = cross-sectional area of sample.

Then the DC flow resistance RDC is given by

RDC = = = ,g &At (3.2)

VT VT VT

where p is the density of water, g is the acceleration of gravity, Ah is

the difference in water height in the two arms of the manometer, and T is the

thickness of the sample. The units of RDC are in Rayl/unit thickness, which

can by written in CGS or MKS units gm/cm 2"sec/cn or kg/m 2"sec/m, respectively.
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Figure 3.1 DC FlOw Resistance Measuremient Apparatus
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In the first flow resistance experiment seven discs were placed into

the large sample holder, each disc having a diameter of 9.85 an and a thickness

of 4.76 orn. The samples were made as close-fitting as possible but,

unfortunately, the die used to cut these discs had a diamter approximately 0.1

cm greater than that of the sample holder. While providing a tight fit along

the tune wall, this led to a compression in the material's thickness by

approximately 10% as they were pushed into the holder. At that time it was

thought that the effect of this compression would not be significant enough to

require re-machining the cuting die. Later measurements of flow resistance

using a different holder, however, gave values which were a factor of 2 smaller

than that for flow normal to the fiberglass surface.

Measurements were conducted over a limited range of air flow velocity

by adjusting the 3/4 inch Hoke valve on the water side of the apparatus to give

the desired pressure differential. When steady state conditions were reached,

the volume flow was then plotted as a function of volume flow rate. This is

shown in Figure 3.2. Within experimental error, the variation in Ap with V was

found to be linear up to the highest flow rate measured, which was many orders

of magnitude greater than expected for a sound wave. Since the sound pressures

appearing at the surface of a sample are seldom greater than 1000 dynes/cm2 in

practice (100 Pa or 0.5 inches water) it can be seen that even at higher

pressure differenitals the linear relationship betwen Ap and V is maintained.

The DC flow resistance had a value of 59,100 ± 4,200 MKS Rayl/m using the

uncompressed thickness. Table 2 lists the experimental data and

Table 3 lists the Dr flow resistance results using the compressed and

uncompressed thickness.

It was discovered later (while attempting to reconcile these

measurements with the DC flow resistance required to fit the resonance data)

that the DC flow resistance of our fiberglass samples is quite anisotropic (the
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DC flow resistance required to fit the [1001 nodes resonances, which has its

particle velocity parallel to the air-fiberglass surface, was between 10,000 to

20,000 MKS Rayl/m).

Press. Difference vs Volume Flow
(VOLUME FLOW NORMAL TO SURFACE)

4=A -

LL.

II

1.6 24.8 We,

VOLUME FLOW RATE

Cc/aec)

Figure 3.2 Ap vs in the Large Sample Holder
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TABLE 2

LARGE SAMPLE HOLDER DC FLOW RESISTANCE MEASUREMENT DATA

(Flow Normal to Surface)

Uncompressed thickness = 33.34 ± 0.1 an
Compressed thickness - 29.80 t 0.1 cm

Sample holder diameter = 9.84 t 0.1 an
Room temperature = 23.3 deg. Centrigrade

Vol. t RDC*(cc), (cc) (sec). (cc/sec) (MKS Rayl/m)
6.4 ± 0.1 2038 ± 4 7.3 ± 0.1 278.0 ± 0.5 57.5x10 3 ± 7006.4 2102 7.6 277.7 57.66.3 2074 7.4 278.8 56.55.6 2016 8.4 240.6 58.25.5 2056 8.7 236.6 58.15.3 2008 8.9 225.1 58.84.5 2046 10.3 198.6 56.64.5 2122 10.6 201.1 55.94.3 2108 11.4 184.9 60.83.5 2128 14.1 151.5 57.73.5 2063 14.3 144.7 60.43.5 2074 13.5 153.6 56.92.5 2077 18.1 114.6 54.52.5 2062 18.8 109.5 57.12.5 2103 19.0 110.9 56.31.7 2098 27.0 77.9 54.51.7 2081 26.8 77.6 54.81.7 2072 26.7 77.5 54.81.1 2086 46.9 44.4 61.81.2 2120 46.0 46.1 65.11.2 2100 44.3 47.4 63.30.6 2110 98.5 21.4 70.00.6 2116 94.4 22.4 66.80.6 2161 93.3 23.2 64.7

*Comvressed Thickness Data
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TABLE 3

LARGE SAMPLE MkLDER DC FLWxj RESISTANCE rIEASUREMENT RESULTS

(flaw normial to surface)

CcwlPressed Thickness:

Mean RDC = 59.1 X 103 MKS Rayl/n

Std. Deviation = 4.2 X 103 11(5 Rayl/M

Uncompressed Thickness:

Mean Rc= 53.2 X 1O0 3 IKS Rayl/Tn

Std. Deviation =4.2 X 10 MKS Rayl/m
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N smaller samle holder was subsequently constructed and samples were cut which

allowed the measurement of flow resistance with particle velocity normal to the

fiberglass surface and with particle velocuty narallel to the fiberqlass

surface. F'iqure 3.3 shows the results.

NIot only is the DC flow resistance anisotropic by a factor of two to

three but the etfect of the 10% compression of the material in the larqe samole

holder is evident. The resultinq flow resistance parallel to the surface of

the material was found to be 15,200 t 500 MKS Rayl/m while that normal to the

surface was 34,000 t 900 WIKS Rayl/m. Table 4 and Table 5 give the measured

data.

2. Viscous-Inertial Transition Freguency

The ratio of the viscous penetration depth to the characteristic Dore

size is one of the most fundamental dimensionless parameters that determines

the nature of elastic wave prooqation in a fluid-saturated porous solid. If

5visc < < pore size, then the motion of the fluid in the pores is essentially

the same as if the fluid were inviscid. However, if 6visc >> pore size then the

fluid in the pores is essentially frozen to the solid, and sound cannot

propagate within the fluid. Microscopic photographs of the fiberglass material

orovided an estimate of the average distance between fibers. This mean

distance was determined to be 220 ± 80 M. The crossover from where fluid

inertia dominates to where flow resistance dominates occurs when 6visc - 1/2

(mean pore diameter). This value was estimated to be 110 t40 Wn. Since, the

thermal penetration depth in air is approximately the same as the viscous

penetration depth, the crossover from isothermal to adiabatic compression in

the pores was expected to be nearly coincident with the viscous-inertial

transition. Figure 3.4 shows the viscous penetration depth over the

frequencies of interest. The transition frequency for this case was
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3. CL-SSIC 'ETHODS OF rpISIISrcIyqI LI'IE P-,EOPY

1. Impedance Tube Fxperiment and Results

The impedance tube technique is the most widely used to detet-une a

aterial's characteristic impedance, being relatively simnle in :th tneorv

and measurement. This experiment was the first conducted of the five classical

methods.

A FmJel and Kjaer TyDe 4002 Standinq Wave annaratus was used for t!ese

-easurenents. The tube was constructed of clear olexiglass which allowed

visual inspection of the sample. The tube is I meter in length and 9.8 c in

diameter. This sets a lower limit on the usable frequency ranqe to be
1

aoproxiatelv 95 Hz for the lenqth of the tube to be qreater than 1/4

wavelength, and a hiqher limit of approximately 2006 Hz for operation below the

lowest crossmode, thus ensurinq only nlane waves are propaqated. the HP4192A

Low Frecuency Impedance Analyzer was used for siqnal qeneration and detection.

It has a built in frequency synthesizer with a resolution of 1 mHz and a

Dhase-sensitive detector with a 0.1 Hz bandwidth to preclude noise and

har-onics interferinq with measurements. Figure 3.5 shows the exneri-ental

setup. Since we are nrimarilv interested in the lowest longitudnal mode in the

rectangular cavity (particle velocity parallel to the surface of the

fiherqlass), which has a freguencv in the range of 600 to 700 Hz, the impedance
49
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TABLE 4

SMALL SAMPLE HOLDER DC FLOW RESISTANCE MEASUREMENT DATA AND RESjLTS
(Flow Normal to 

Surface)

Thickness = 15.60 ± 0.01 an
Cross-Sectional Area = 20.5 ± 0.1 cm2

Ah Vol. t V RDC
(cc) (cc) (sec) (cc/sec) (M KS Rayl/m)

7.6 ± 0.1 2165 ± 4 7.8 t 0.1 278.6 ± 0.5 35.1X10 3 ± 900
7.5 2086 7.6 275.2 35.1
6.0 2052 9.0 229.3 33.7
5.9 2096 9.4 222.3 34.2
4.9 2082 11.2 185.6 34.0
5.0 2108 10.9 192.9 33.4
4.0 2084 13.5 154.3 33.4
4.0 2116 13.4 157.4 32.7
3.0 2150 18.3 117.6 32.9
3.0 2098 18.0 116.6 33.2
2.0 2118 28.4 74.6 34.6
2.0 2151 29.1 74.0 34.8
1.0 2116 57.8 36.6 35.2
1.0 2121 55.4 38.3 33.7

Mean RCr = 34.0 x 10 3 MKS Rayl/m
Std Deviation = 0.9 x 10 3 MKS Rayl/m
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TABLE 5

SttALL SAMPLE HOLDER DC FLOW RESISTANCE AIEASUREP1ENT DATA AND RESULTS
(Flow Parallel to Surface)

Thickness = 17.80 ± 0.01 m n

Cross-Sectional Area = 20.5 ± 0.1 cn2

L vol. t V RDC
(cc) (cc) (sec) (cc/sec) (MKS Rayl/m)

3.6 - 0.1 2068 ± 4 7.5 - 0.1 276.8 - 0.5 14.7x10 3 ± 500
3.6 2100 7.5 281.1 14.4
3.1 2066 9.0 229.8 15.2
3.1 2120 9.1 232.2 15.1
2.5 2109 11.9 177.7 15.9
2.5 2124 11.1 191.5 14.7
1.9 2126 14.9 142.8 15.0
1.9 2115 15.2 139.0 15.4
1.3 2075 22.1 94.0 15.6
1.3 2108 22.9 92.0 15.9
0.7 2150 42.2 51.0 15.5
0.7 2104 39.6 53.3 14.9

tiean RDC = 15.2 x 10 3 IKS Rayl/M
Std. Deviation = 0.5 x 103 MKS Rayl/mT
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tube measurements were carried out at frequencies between 100-1000 Hz with

sample thicknesses of 4, 8, and 12 inches. The different samnle thicknesses

were used in order to determine how thick the material had to be for

retlections from the riqid termination to be neqliqible, thus allowing the

material's characteristic impedance to be determined.

Measurements of the reflection coefficient from 100 to 1000 Hz for all

three samples indicated that the material could be considered infinite for

thicknesses greater than 8 to 12 inches. The reflection coeffic-ient, R, is

given by

R = JB/A, (3.4)

where the ratio B/A is given by Eq. (2.68). The reflection coefficient chanqes

noticeably in the frequency region betwen 400 and 500 Hz. This is thouqht to

be due to the transition from isothermal to adiabatic compression of the gas in

the pores.

The standing wave ratio and the distance to the first pressure node

were measured for the 12" sample at frequencies between 100 and 1000 Hz. The

normalized characteristic impedance tZcharl/Poc was calculated usinq the

"Smith" chart ncmogram with the SWR and phase at the first node as input

parameters. Table 6 gives the results.

It was observed that at frequencies below 200 Hz fluctuations occur in

both magnitude and phase of the impedance. The position and the amplitude of

the oressure antinode and node were very difficult to measure accurately below

200 Hz, and so these data are not as reliable as the data taken above 200 Hz.

From 200 to 400 Hz, the impedance magnitude decreases at a larger rate than at

frequencies above 500 Hz, apparent evidence of the isothermal to adiabatic

transition occurrinq in the pores. This transition is seen in both magnitude

and phase as well as the reflection coefficient. The transition coincides
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TABLE 6

IMPEDANCE TUBE MEASUREMENT RESULTS ON 12" OF FIBERGLASS

DistanceFre . to first 
zchar(HZ ) SWR node(cm) IZcharl/PoC (Derees)

100 2.79 59.70 1.60 -44.0
125 5.83 59.70 3.74 -48.0
200 4.79 36.80 2.64 -52.7
250 4.40 28.75 2.87 -45.6
300 4.00 24.10 2.83 -42.1
400 3.46 18.00 2.60 -38.0
500 2.23 14.45 1.95 -22.9
600 2.47 11.40 1.94 -31.7
700 2.26 9.65 1.80 -29.3
800 2.30 8.25 1.75 -31.7
900 2.15 7.75 1.81 -24.4
1000 2.11 6.90 1.77 -25.1
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with the velocity nrofile chanGing from laminar flow in the tow frequency limit

to pluq flow in the hiqh frequency limit (see FiGure 2.1).

2. Resonance Analysis Experiment and Results

of all the classic mehtods, this technique in most similar to the new

technique in that parameters are extracted from the resonance curve to

determine a sample's characteristic impedance. ks previously commented, this

riethod is limited to discrete frequencies and thin samples since the resonances

of the tube become weaker as thicker samples are introduced. The upper limit

thickness for our fiberqlass was found to be about 2 inches. A 1 inch thick

sample was chosen since Yaniv's method was conducted with the same sample

thickness and since three of the five empty tube resonances were still distinct

enouqh to make measurements.

The experimental setup is very similar to the impedance tube

experiment. A Bruel and Kjaer Type 4002 Standing Wave apparatus was used along

with a HP3580A Spectrum Analyzer. The spectrum analyzer was used to determine

the resonance frequencies and half-power widths of the lowest three peaks in

both the empty tube and in the tube filled with the I inch thick fiberglass

sample. A HP3314A Function Generator was then set to the frequency of each of

these peak and the distance between the fiberqlass surface and the pressure

maximum closest to the speaker was measured. This is needed to calculate the

effective tube length, as an infinite impedance loudspeaker is assumed in the

theory. The surface impedance of the sample was then determined from these

measurements using Eq. (2.78). Figure 3.6 shows the experimental setup and

Table 7 gives the resulting values of normalized impedance values.

The lowest two resonances (center frequencies of 253 Hz and 400 Hz,

respectively) qave plausible values of surface impedance, however the highest

mode with the absorbinq material present (center frequency of 538 - 544 Hz) had
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TABLE 7

RESONANCE ANALYSIS SURFACE IMPEDANCE RESULTS
(Impedance Tube and Rectangular Cavity)

(1 Inch Thick Fiberglass Sample)

Surface Impedance Results in Impedance Thjbe

Center
Resonance Frequency
Peak (daimped) HPFW OZsurf
Numiber (Hz) (Hz) Izsurfl/Poc (degrees) x

1 253 23 2.9 -85.9 0.0078

2 400 18 2.1 -88.9 0.0013

3* 543 41 7.7 +-66.4 -0.0055

Surface Impedance Results in Rectangular Cavity

Center
Resonance Frequency -~sr

Peak (damped) HR sr
Nunber -(Hz) (Hz) IZsurfl/Poc (degrees)

1 841 126 1.8 -65.4 0.071

*This point was discarded, as discussed in text.
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a higher Q than in the empty tube and was therefore discarded. The erroneous

data for the third resonance neak is attributed to tie significant broadening

of its resonance curve and the resultant overlapping with adjacent modes.

This resonance analysis method was applied to the rectangular cavity

with and without a 1 inch thick strip of fiberqlass while exciting the [010]

mode to verify the results obtained in the tube. The (0101 mode was chosen

because for this mode the particle velocity is normal to the fiberglass

surface, as in the impedance tube. For these measurements in the rectangular

cavity the source was placed at grid point (0,0) (Figure 3.11) and the receiver

at grid point (20,0). The resonance curve was first measured in the empty

cavity; it had a center frequency of 873 Hz. The normalized magnitude of the

surface impedance obtained agreed closely with the value obtained by the

impedance tube for frequencies between 800 and 900 Hz. However a significant

phase discrepency was evident. The reason for the discrepency is not known.

Perhaps it is a result of using a point source located in a corner . Table 7

lists the results.

As with other impedance tube measurements, this method relies upon a

plane propagating wave, where incidence on the porous material is assumed

normal to the surface of the sample under test. With a point source located in

one corner of the cavity used, departure frcan plane wave propagation can be

expected with increasing sample thickness as the quality factor of the

resonance degrades. The extracted impedances are surface values. In both

geometries in which this method w.as used the magnitude of the surface impedance

decreased with increasing frequency (which was expected). The phase in all

measurements indicates that the impedance remains largely reactive, and that

the gas in the pores acts like a stiffness. Use of samples of greater

thickness would only suppress the resonance curves more.
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3. Yaniv's 0lethod, Experiment and Results

The third and last technique which uses transmission line theory is the

method proposed and experimentally verified by Yaniv [Ref. 51. The experiment

was conducted usin( the impedance tube of the previous two experiments, with

several modifications. Yaniv's method requires measurinq the surface impedance

with the sample backed by a rigid termination and by an acoustic short-circuit,

obtained by moving the rigid termination such that a 1/4 X air jap exists

between the rear surface of the material and the rigid termination.

The rigid end cap used in the two previous experiments was replaced

with a 2 inch thick disc of plexiqlass with a 3/8 inch diameter hollow aluminum

tube threaded into the side away from the driver. A small amunt of hiqh

vacuum grease was used to seal the edges of the disc at the tube walls while

still allowing for positioning. The front face of the disc had a recess cut

out of it into which a FET microphone mounted at the end of a 3/16 inch hollow

aluminum rod could fit snuqly and flush so as to provide a smooth surface when

the disc was placed aqainst the back end of the sample. The 3/16 inch diameter

rod fit inside the 3/8 inch diameter rod, providinq support and allowinq the

microphone to be positioned anywhere between the backside of the porous solid

and the rigid termination. Electrical connection to a power supply switchbox

was also made by wires which passed through the small hollow rod. This

configuration allowed the disc and microphone to serve as the rigid termination

for the open circuit impedance measurement and also allowed accurate

positioninq of the termination to provide the required one-quarter wavelength

air Gap between the porous solid and the rigid termination at each frequency.

Figure 3.7 shows the movable termination and Figure 3.8 shows the equipmxent set

setup.

A 1 inch thick disc of fiberglass was inserted into the impedance tube

such that the distance betwen the driver and the sample was at least a quarter
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Figure 3.7 The Rigid Sliding Termination (Yaniv'S Method)

wavelength. The lowest usable frequency was therefore approximately 250 Hz,

the upper limit remaining approximately 2000 Hz to preclude the lowest

crossinode. Measurements were made of the first minimu and maximum pressure

amplitudes in front of the sample and of the distance between the sample

surf ace and the first pressure minimum in from of the sample. For each

frequency, these measurements were performed under conditions of cpen and short

circuit terminations. A~ short circuit termination at the back side of theq

fiberglass disc was obtained by adjusting the position of the plexiglass plug

until a null output was observed from the microphone, which was held flush to

the fiberglass disc. It was found that, within experimental error, the result-

inq distance between the porous disc and the plexiqlass plug was within 1%

of the 1/4 wavelength determination made in the epty tube at the frequencies

used in the experiment. The standing wave ratio and the reflection cefficient

phase angle were calculated using Fq. (2.67) and Eq. (2.70), respectively. The
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open and short circuit impedances were found using the "Smith" chart. The

characteristic impedance was then found by use of Eq. (2.84).

Determination of the complex propaqation constant, y jk, required

finding the roots of Eq. (2.85) such that,

tanh[ yL] - [Zss/ZoS 1/2 = i (3.5)

The roots were found using a numerical technique known as Ward's method. The

details are given in Appendix A [Ref. 19]. The results of this experiment are

listed in Table 8.

As for the previous methods, a decrease in impedance magnitude with

increasing frequency was observed, with the transition from isothermal to

adiabatic compression between 400 to 700 Hz in this 1 inch thick sample. The

complex wave number also shows this transition. The data and results for 400

Hz appear to anomalous. The reason is not known.

C. PROBE TUBE METHOD, EXPERIMENT AND RESULTS

rhe probe tube measuremnets were made by setting up a plane wave in the

Bruel and Kjaer Type 4002 Standing Wave apparatus filled partially with

fiberglass and exploring the sound dield by means of a probe tube extension to

the impedance tube microphone. The slope of the decay of the pressure

amplitude with distance provided a measurement of the attenuation constant a.

The change in phase of the oscillatory wave with distance provided the wave

number k. The complex wave number is then found from k - k - ja.

The equipment setup is shown in Figure 3.9. Three specimens, of

thickness 4, 8, and 12 inches, were chosen for measurement and comparison with

the impedance tube results. Each sample thickness was made up of the required

number of fiberglass discs, 9.84 an diameter and 4.76 an thick, inserted into

the tube opposite the driver, taking care to avoid compression of each disc
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TABLE 8

YANIV'S t-ErHOD EXPERIMENTAL RESULTS

z-os ss
Distance t Distance to

Freq. first node first node
(Hz) (cM) SMR (cm)

250 50.40 30.90 1.36 30.50

300 42.40 25.80 1.33 25.70

400 24.03 18.60 1.89 33.20

500 24.71 14.10 1.68 21.70

600 12.29 11.50 1.65 17.20

700 9.57 9.70 1.56 14.70

800 8.71 8.20 1.70 12.60 ,.

900 7.16 6.80 1.70 11.15

1000 6.42 5.90 1.67 10.45

A.
%

Freq. Zchar k a Cph
(Hz) lZcharl/POC (degrees) (Rad/m) (Np/m) (m/s)

250 2.79 -44.8 12.82 13.96 122.5

300 2.78 -43.6 12.56 13.86 150.2

400 2.04 -22.3 15.17 8.80 165.7

500 2.17 -30.1 20.82 12.75 150.9

600 2.10 -28.9 21.70 15.77 173.7

700 1.98 -28.4 21.73 16.81 202.2

800 1.94 -27.9 24.88 17.50 202.1

900 1.75 -27.7 27.75 18.40 203.7

1000 1.62 -25.6 28.41 17.92 221.2
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while trying to minimize any air qaps between disc surf aces. Each disc had a

0.71 cmi diameter hole cut in the center for a close fit around the probe tube

without any deformation of the fiberglass.

The probe tube was manufactured out of steel tubing with the same outside

and inside diameter of the existing open ended probe tube on the standing wave

apparatus. A copper cap was welded onto the end of the extension next to a

3/16 inch diameter hole to allow the measurement of the sound field. The

extension attached to the existing probe tube with a plastic sleeve. This is

shown in F7igure 3.10.

The experiment was conducted at frequencies of 125, 250, 500, and 1000 Hz

for each of the three sample thicknesses, but only the 12 inch thick sample

was long enough so that the wave reflected fromi the rigid end of the tube was

sufficiently attenuated to be negligible comnpared to the incident wave. The

pressure amplitude at the rigid termination was measured to be 20 dB less than

that at the sample boundary. Determination of the attenuation constant was

made by plotting pressure versus distance on semi-log paper and extracting the

slope. The phase of the pressure was reasured with a SR-350 [Dual Channel

Lock-In AMiplifier. The wave number was determined fromi the change of phase

with distance into the fiberglass. Table 9 displays the experimental results

in terms of k and a.

The impedance magnitude decreases with frequency while the phase indicates A

that the material becomes mrore resistive with increasing frequency. Only the

absorption coefficient shows any sign of the transition between isothermal and

adiabatic comipressions in the pore volume.

D. MATERIAL PIR)PERrY METHOD, EXPERIMET AND RESULTS

All the methods discussed so far involve measuring certain characteristics

of a progressive plane wave in the porous material or its proximity. Beranek
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has shown that the complex wave number and characteristic impedance can also be

derived from the basic physical properties of the material with the aid of

charts. These properties are:

a) specific flow resistance per unit length, RI(- RDC)

b) porosity, Y

c) structure factor, kst (tortuosity)

d) volume coefficient of elasticity of air in the interstices K (Bulk
modulus)

e) volume coefficient of elasticity of the skeleton of the material.

Measurements of the specific flow resistance and porosity have already been

discussed. The remaining three material properties are difficult if not

impossible to measure, and will, based on a reasonable knowledge of the

material, be approximated.

The structure factor kst, known as the tortuosity in Biot theory, is

essentially a path length correction factor. Experimentally, it is found to

depend most strongly on the porosity of the porous solid [Ref. 111. In the

limit porosity = 1, the tortuosity also equals I for typical porous maerials,

and certainly for fiberglass. As the porosity of the samples used in this

research was found to be very close to 1, a value of 1 for the tortuosity was

assumed in all calculations.

The volume coefficient of elasticity of air in the interstices, K, is an

important term; if isothermal conditions can be assumed then K - 1 x 106 dynes/

cm2; if adiabatic conditions exist then K = 1.4 x 106 dynes/cm2 . For most

fibrous acoustic materials however, K will, in same frequency reqion, be

neither isothermal nor adiabatic but will be somethin in between and will be

complex valued and frequency dependent, as is our case.

Finally, the volume coefficient of elasticity of the skeleton, Kskel,

although not directly involved in the calculation of k and Zchar, -lust be

known or approximated since it is the ratio of K/Kskel that determined whether
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TABLE 9

PROBRE IIJBE EXPERIMENTAL RESULTS
12" Thick Fiberqlass Sannle)

Fr-eq k a Coh

125 14.8 13.6 53.1

250) 20.9 16.3 75.2

50J0 29.7 22.7 105.8

10043.3 21.7 145.1



a material is treated as a soft blanket or a rigid/dence blanket. Based on the

appearance, texture, and high flow resistivity of the fiberglass it was assumed

that the material should be treated as a rigid/dense blanket. [Ref. 4, pp.

839-840]

Once the properties of the material were characterized, Eq. (2.89) could be

used to directly calculate or Figure 2.6 and Figure 2.7 used to graphically

determine the magnitude and phase of the complex propagation constant b - jk as

a function of frequency, from which the complex wave number is determined.

Once these were determined the characteristic impedance could be calculated by

use of Eq. (2.90). The values determined from the graphs for k and the

calculated values of Zchar assuming isothermal conditions in the pore volume

are listed in Table 10. The same quantities, assuming adiabatic conditions,

are listed in Table 11.

As expected, the impedance magnitude decreases with increasing frequency.

The impedance phase calculated for both isothermal and adiabatic conditions is

the same, a consequence of the bulk modulus being a real quantity in the two

limiting cases. If isothermal conditions were to exist, then the impedance

phase would approach an angle of -45 degrees (pure diffusion of sound

pressure). Since the calculated phase values remain nearer to the diffusive

limit, the assumption that isothermal conditions exist in the pore volume would

be most nearly correct.

Over the frequency range considered, the isothermal values for k and a are

greater than the adiabatic values, which is consistent with the fact that the

isothermal sound speed is less than the adiabatic sound speed.

E. THE NEW TECHNIQUE, EXPERIMENT AND RESULTS

The plane wave resonator chosen to conduct all experiments was constructed

out of plexiqlass with interior dimensions as follows:
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Length (x-direction) = 25.4 ± 0.1 cm

(lidth (y-direction) = 19.8 ± 0.1 cm

Heiqht (z-direction) = 7.3 t 0.1 cm.

This particular cavity was constructed for a laboratory experiment on standing

waves in a rectanqular rom. The minimum wall thickness was 1.27 cm (1/2").

The cavity was mounted on three legs with the source hole located in the floor

at one corner to allow the excitation of all modes. The top cover of the cavity

is removable to allow insertion of fiberglass samples. When installed, the too

cover seals the cavity and slides to allow the receiver position to be varied.

A small microphone receptacle mounted on a slidebar installed in the

removable cover allows the pressure to be measured throughout the cavity with a

probe tube. All sliding surfaces were constructed with very close tolerances

and coated with high vacuum grease to reduce leakage and to provide a tight

fit when the cavity cover was installed.

The receiver slide bar assembly consisted of three portions: the slide bar,

the microphone receptacle, and the receiver microphone. The slide bar fit into

a groove machined into the interior surface of the top cover and fit flush with

this surface. . threaded hole was cut into the slidebar to allow mounting the

microphone receotacle. The microphone receptacle consisted of a hollow

aluminum cylinder with a thumb screw to set and hold the height of a brass

probe tube assembly. The probe tube assembly allowed insertion of a General

Radio precision microphone flush with the smaller bore probe tube extension

which could be inserted into the cavity interior without disrupting the sound

field.

The bottom of the cavity was marked with grid lines, 21 in the length

direction, 15 in the width direction, spaced 1/2" apart, producing 336

individual grid points. The in-phase and quadrature components of pressure
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TABLE 10

MATERIAL PROPERTIES WEIOD RESULTS
(Isothermal Conditions)

(RDC = 15,000 MKS Rayl/m)

Freq. Zchar k a. Cph

(Hz) PZchari/P0c  (degrees) (Rad/m) (ND/m) (a/s)

100 3.66 -43.5 6.83 6.48 92.0

125 3.17 -43.0 7.47 6.96 105.1

200 2.64 -42.0 10.08 9.08 124.7

250 2.32 -41.5 11.17 9.89 140.6

300 2.12 -41.0 12.33 10.72 152.9

400 1.83 -39.0 14.66 11.82 171.4

500 1.66 -37.5 16.94 13.00 185.5

600 1.49 -37.0 18.37 13.84 205.2

700 1.40 -35.0 21.26 14.88 206.9

800 1.32 -33.5 22.63 14.98 222.1

900 1.24 -32.0 24.46 15.28 231.2

1000 1.20 -31.0 26.38 15.85 238.2
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TABLE 11

MATERIAL PROPERTIES MehOD RESULTS
(Adiabatic Conditions)

(Rc 15,000 MKS Rayl/m)

Freq. hZchar k o Cph
(Hz) IZcharl/POC (degrees) (Rad/m ) (Np/M) (M/s)

100 4.28 -43.5 5.69 5.40 110.4

125 3.93 -43.0 6.60 6.16 119.0

200 3.04 -42.0 8.31 7.48 151.2

250 2.70 -41.5 9.29 8.22 169.1

300 2.39 -41.0 9.96 8.65 189.3

400 2.09 -39.0 11.91 9.65 211.0

500 1.88 -37.5 13.71 10.52 229.1

600 1.71 -37.0 15.05 11.34 250.5

700 1.68 -35.0 17.65 12.36 249.2

800 1.54 -33.5 18.86 12.48 266.5

900 1.44 -32.0 20.14 12.59 280.8

1000 1.39 -31.0 21.82 13.11 287.9
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were measured at each qrid point for the mode and sample selected. Fiqure 3.11

shows the location of the source and the qrid numberinq scheme that was applied

to the interior floor of the cavity.

Ten fiberglass samples were cut from a fiberqlass sheet, with thicknesses

ranginq from 0.48 cm (3/16 inch) to 4.76 cm (1 7/8 inch) the maximum thickness

being equal to the full thickness of the sheet. The samples were cut in the

form of rectangular strips so as to fit sr.qly alonq the side wall Opposite the

source. Fiqure 3.11 shows the location. The strips extended from qrid point

(0,15) to qrid point (20,15). The samoles were cut such that the surface

normal to the flow velocity in the oriqinal flow resistance experiment would

also be normal to the particle velocity expected when the [0101 mode was

excited (i.e., the "width" direction in Fiqure 3.11) and parallel to the

particle velocity when the [1001 mode was excited (the "lenqth" direction).

Table 12 lists the samples used and their thicknesses.

Three experiments were conducted:

1. The -ode structure in the cavity was measured over the frequency ranqe

of interest for each sample. The effect of introducing the fiberalass

samples on the strencth and shape of the resonances was noted. Of

particular interest were the [100) and [0101 modes, which were expected

to r relatively distinct.

2. The DC flow resistance of the air-filled fiberqlass was then extracted

trqm the above measurements usinq the dispersion relation developed

in Chapter 2 for the allowed modes (Eq. (2.51)), followinq which the

comnlex wave number and characteristic impedance were calculated.

3. The pressure field of the [1001 and 10101 modes was measured for

varyin sample thicknesses and compared to that predicted by theor-.

The enuinment %etup used to cnnduct all three of these experiments is shown

in F! ;ure 3.12.
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Figure 3.11 Rectangular Cavity Grid Map

1. Modal Frequencies Up to 2000 Hz for Various Fiberglass Thicknesses

The first c' the three experiments was conducted to determine the modes

present in the empty cavity and the effects of increasing sample thickness on

the shape and strength of each resonant mode. From node theory, seven modes

were expected to exist in the empty cavity for frequencies less than 2000 Hz.

Of these seven modes, the two lowest were the [100] and [0101 modes, both of

which occur below 1000 Hz. All seven modes were observed, with the two lowest

modes being strong and relatively distinct omipared to the others. This is.

shown in Figure 3.13. Table 13 lists the theoretically calculated and

experimentally measured peak frequencies of the modes present in the cavity up"

to 2000 Hz.
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There was sae concern that as thicker samples were introduced the

resonance peaks would overlap, making the measurement of the half-power widths

unreliable. This condition set the upper limit on usable sample thickness to 1

7/8" for the [1001 mode (sample #10) and 11/16" for the (010] mode (sample

#5).

For all observed modes, the center frequency down-shifted as the sample

thickness was increased, while the 0 decreased. The [1001 mode has an emoty

cavity peak frequency and 0 of 680.2 Hz and 147.9, respectively. Inserting the

1 7/8" (sample #10) fiberglass strip down-shifted its center frequency and

lowered the Q to 570.0 Hz and 3.2, respectively, for a total frequency change

of 110.2 Hz. The [0101 mode has a center frequency of 870.2 Hz and a Q of 57.6

in the enpty cavity, but when the 11/16" (sample #5) fiberglass strip was

inserted the peak frequency only down-shifted 17 Hz to 853.2 Hz with a Q of

21.1. For both mode measurements the receiver probe tube remained flush with

the ceiling of the cavity at grid point (20,0). See Fiqures 3.14 and 3.15

Several observations from this experiment were made:

4 (1) The Q and the center frequency of both modes decreased with increasing

sample thickness.

(2) Compared to the [010) mode, the 1100) mode, with particle velocity

parallel to the fiberglass surface, allowed thicker samples to be

introduced before the resonance curve spread such that the Q could no

longer be reliably determined.

(3) For all sample thicknesses, the Q of the resonance curves was

larger with the receiver positioned above the source (grid point (0,0))

than in the opposite corner (grid point (20,0)). This was assumed

to be due to near field effects of the source on the receiver.

Consequently, only the resonance data taken with the receiver at grid

point (20,0) is reported here.
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TABLE 12

FIBERGLASS SAMPLE THICKNESS

Thickness Thickness

Sample (inches) (cm)

1 3/16 ± 1/32 0.48 ± 0.01

2 1/4 0.64

3 3/8 0.95 :
4 1/2 1.27

5 11/16 1.75

6 7/8 2.22

7 1 2.54

8 1 1/4 3.18

9 1 1/2 3.81

10 1 7/8 4.76

IN
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TABLE 13

RESONANCE MODES OF THE EMPTY CAVITY
(Theoretical and Measured)

Resonant Resonant
Frequency Frequency

Mode # (calculated) (measured)

100 679±t4 676±1

010 871 ± 5 868

110 1105 t 9 1099

200 1358 t 12 1354

210 1614 ± 14 1608

020 1742 ± 19 1738

120 1870 ± 23 1865

losa

p [Ito]

o')

Ficure 3.13 'Mode Strjcture ,f the EDrDtv a'~t';"
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(4) Overlap of the [1101 mode with the (0101 mode was evident for

fiberglass thickness of 1/2" (sample 44) and greater. Overlap of

the [100] mode with the [0101 mode was not significant until a

thickness of 1 1/4" (sample #8) of fiberglass was introduced. See

Figures 3.14 and 3.15.

2. Ileasured fc and 0 of the [1001 and (0101 Modes for Various Fiberglass
Thicknesses

The second experiment consisted of measuring the center frequency and Q

of the (1001 and [0101 modes as a function of sample thickness. The receiver

was placed in the ceiling of the cavity at grid point (20,0) at the opposite

end of the long wall from the source. This location was chosen to minimize

direct acoustic cross-talk between the source and receiver. For the (1001

node, each of the 10 samples was inserted and the center frequency and Q were

neasured from the resonance curve. This sample procedure was repeated

for the (0101 mode except only samples 1 through 5 were used. The center

frer.uencv and half-Dower frequencies were mesured to within a tenth of a Hertz

5y reading the frequency of the I to 1.5 MHz Local Oscillator output of the

;ir3580A Spectrum Analyzer on a HP5300B Frequency Counter. Setting the scale to

I IB/div on the Spectrum Analyzer allowed the center frequency and half-power

full width of the resonance curves to be measured. Tables 14 and 15 list the

expervnentally determined values of fc and Q for the [1001 and [010] modes.

Following the experimental measurements, theoretical values of fc and

fgr the [1001 and [0101 modes as a function of sample thickness were

:alcjlated from the camplex roots of the dispersion relation (Eq. (2.51)) for

vari)us vaijes -f DC flow resistance using a numerical analysis technique known

3s .aard's method [Ref. 19, p. 169-170]. A brief description of this method is

'iven in 4ppendix A. However, before a comparison between theory and

80



7PWWW

CAI-I ~r*
AO

(sap4 rasa

MV IS34

Fiue317oeSrcueo aiyWt 11"Fbrls ti

(smpeJ5

wr4

4000

Figure 3.15 Mode Structure of the Cavity With 1 7/8" Fiberglass Strip
(sample #10)

81



exprrI met -)U' )p l~'e, IrV tiieh ei t I I pror /al.Ap 4 fl 1W r'iti v-

lue t 'JiscfM.s t er',ai 1, Asses 1tI n 1she t1 .' a raro-~ 'j)r, !.

AI AtnouqW these i re .n~e lar-ies if r:Ps A loss in the :av It -v, 't'er 'S

-iechanists mujst, ne acrunf-',- tfr. S' ccoxunt f-or these, sevsral r

were -v1e:

t 1 tr losses I n "o rw pty ':aV It V rspwr the sarw ev' n t,

oort ic)n )t tohe ,wline ind wall Surface Is lost lue to) th"e ~nr',ouct 1,)n

') titberlass saTvle (less than 10U~,I. 1 the shift At revurance f requency A.*e to the intrcxluct io.n At i I ,)r

,lass s'ame Joes P-t ettect the ) 'f the #wpty :avity andl,

3) each Iross -iL-hanisn' :an li troated as actirorl irvideondently.

jenerally, sttoel, it -was aftslvws1"tat

,otal Losses In the1losses in the I sse% Jue t,)
-wVt av Ity )n ly tr)ihr

whchcn*j written in terrm )f iuality factors 3.s
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cavity Q and o Is the Q rlue tor vi scous and themral1 losses within the

fiberqlass. Eq. ( 3.6) was used to cy~nare the measured values of k)" to the

calculated values of OF for the [1001 and [010) modes by' settirxq the values of

OE equal to those experimentally Jetermilned for the amoty cavity.
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TABLE 14

1100) PrUnf (J'FlrER FRE XJFWY AND Q VAW4FS

rhickress fc f, f !!
Sarple 8 (c,,) (Hz) (Hz) (Hz)

D9rty 0.0 680.2 ( ).1 679.2 t 0.1 682.9 t 0.1 147.9 J.8

0 0.48 669.5 663.9 675.3 58.7

2 0.64 667.5 661.3 674.1 52.2

3 0.95 658.6 648.8 668.1 34.1 *

4 1.27 652.1 640.1 664.2 27.1

5 1.75 646.3 628.9 659.9 20.9

6 2.22 623.6 587.0 650.5 9.8

7 2.54 614.1 567.4 647.6 7.7

8 3.18 592.3 531.9 629.7 6.1

9 3.81 571.6 506.6 624.3 4.9

10 4.76 570.0 495.4 672.6 3.2
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TABLE 15

[0101 M1DE CENTER FREQUENCY AND 0 VALUES

Thickness fc ft fuSample 0 (cm ) (Hz) (Hz) (Hz) Q
Empty 0.0 870.2 t 0.1 863.0 t 0.1 878.1 t 0.1 57.6 t 0.9
1 0.48 865.1 854.5 874.4 43.5

2 0.64 864.4 852.0 876.2 35.7
3 0.95 858.8 846.4 872.3 33.2

4 1.27 856.5 841.1 873.1 26.8

5 1.75 853.2 834.4 874.9 21.1
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An attempt to identify the major source of loss in the empty cavity was

made, as r-is in turn determined the value of QE to be used in correcting for

losses other than in the fiberglass. The loss mechanisms in the empty cavity

were assumed to be due to 3 mechanisms:

- transmission of energy through the plexiglass walls of the cavity,

-- viscous and thermal losses at the interior surfaces of the cavity,

leakage of energy due to incomplete sealing of the top cover and sliding
section of the cavity and slide bar assembly.

The transmission of energy through the walls was of concern mainly since the

cavity was not designed specifically for this experiment. For normal

incidence, the transmission loss through the walls of the cavity was calculated

to be 32 dB for the minimum wall thickness (1.27 an), [Ref. 17, p. 1281. Based

on the maximum wall thickness (2.54 an) the lowest expected coincidence

frequency for a free plexiglass plate was calculated to be 1282 Hz. For a

plate fixed about its edges this frequency is higher. Therefore, transmission

by coupling to flexural waves in the walls can be ignored. The following

equation was used to estimate the Q resulting from each source of loss:

2,r Estored (37)
Elost/cycle

where

Estored : cV (3.8)

and e is the average energy density, and V is the interior volume of the

cavity. The energy lost per cycle can be written

Elost/cycle - c E TI  1 (3.9)

where A is the surface area, c is the speed of sound in the fluid, T, the

power transmission coefficient and f is the frequency. Inserting Eq. (3.8)

and (3.9) into Eq. (3.7) results in
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Qtrans -,r T3,A

For loss due to transmission throuqht the cavity walls, assumiing 1000

Hz as the worst case (X - 0.343 m), the value Of Otrans was calculated to n

2700. It was concluded that transmission through the walls was Yot

significant.

Next considered were the effects of the viscous and thermal l-)sses

occurring at the cavity surfaces. Again Eq. (3.7) was used to determine )surf'

with Estored remaining the same as in Eq. (3.8). The energy lost oer

cycle due to viscous effects can be written approximately as

Elost/cycle 3 'A 6visc

where 6visc is the viscous penetration depth in air. The enermy lost per

cycle due to thermal effect can be written approximately as

Elost/cycle 1_ cA (Y-1) 6th ( 3.1 21

where y is the ratio of specific heats crc/Cv ('- 1.4) for the air 3r i Is

the thermal penetration depths in air. Since the viscous and thermal

penetration depths in air are approximately equal, an expression for the

energy lost per cycle due to both viscous and thermal effects is

Elost/cycle 3 LA 6visc Y . (3.13)

In other words,

6visc + (y-1) 6th - Y6visc * (3.14)

Substituting Eq. (3.8) and (3.13) into E. (3.7) results in

Osurf - A6visc Y

Choosing a fre(uency of 100 Hz for the worst case (greatest viscous and thermal

penetration depths), with the air temperature in the cavity assumed to be 200C,

the resulting Qsurf was 450. Therefore, viscous and thermal wall losses are

negligible.
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Lastly, the loss Ame to leakarie )ast :avitY sileivo surfices 'Mvi

considered. Since this lose could rnot ne directly c-alculatei j jeas,,r;! )t

its si'oniticance was estima~1 ted by oressinq1A-w ~i n the to -'o-er -)f tr-e -avis-,

at the wall edries while retakinq the 1100 -nde resonance ,Ajrve latai for each

savle. The *vnrwv -avity 0 increased frim 147 to 25 2 , with a .4 'z vsift it)

the cionter f requency. Frrin this epx~riment, i valup )f f'-r la J I

onti-ated to tbe Acxproximiately 280. rhis inicateti thAt 1.Akaqje was the mair

sxurre ot Loss in the S'vty cavity by at least a factor Af twr). r'W lJ'iki 10

nr-)blem could not be corrected without -akiryj major chmes in the:vw

dies iln. No" itte'vt was "ade t,- account fo)r the sushift in the enter frewrjen.cy.

that occurred *Cile nresniryl twn in the c;avity trX (the frequency ;psh If~ t a

,-n the w)der f I 4z for each saimle, while the frequency iownift 1up

intrr-Aucinil the fih*rtlass "a (in the aver"r~ of 10 to 12 4z dlrop ner wMle).

4. rterviination ,of Rrr- f rim' f, and -

For the II 0 1 ce, the i terat ive prrocess use1 to ex' rac t the 'I' f I~

resistance ot the fiherrjlass frr"' the *i~prsiori relation (Fq. 12.crl)wa

,it-arted tvy i-Nwtx)iv R) equal tI- S9,200 W-1; RAYP"' ithe ,*wan flow rvesiqtance

letem'i~i in the lanje sample 4older with rarticle veloc-ity vnrmal tthe

iir-fitorrjlass surfaice). kfttr enteriryj the fluid andz :avity parawtoars (

Nnprv i~ x N Vr ;arv'mtorq andi values unwi) the rr'~ts )f the ilisnersion

rplation fo)r mowre then Avt~mrmw t,)r each sample irwi the -wasuret values

,f f,, kmi j as an initial start ir( nnint. Thew resultinrq rrrt% for each %amle

*-re xroricolly xrvuted tintil thp sir Af the qwwnitudes of the rea I and

kmarjirr :arts of( the Itsnerntoq, relat ion (Fq. 2.5j1 ) was less than I x 10"'.

4V thin -pwan%, -alc'ulated value% ift OF vs, f,: were (tflained for a Earticular

value 'f 41(.

rho calculated and measured values of 0 vs t,. were ctJx)red in two

way%. Fi'iure I.I# shos ) vs% f(-. 4ere the calculated1 values of ) have
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been corrected for empty cavity losses using Eq. (3.6). FiGure 3.17 shows 'F

vs fc" Here the measured values of 0= have been corrected for empty cavity

losses isirvi

1 1 1

OF Z- ~

If the calculated curve plotted above the measured curve, this

indicated too high a value of Rn-C and a lower value of RDc was chosen. It the

curve plotted below the measured curve, this indicated too low a value of RrC

and a larger value of RDC was chosen. This process was continued until the

rwasured curve was bounded between two values of RDC. Once bounded, smaller

increments were chosen for RpC and the process was continued until a best fit

(qraohically) was obtained between the calculated and measured curves

of OF or 01= vs fc" For the I00) mode, the best fit value for RDC was

15,000 PI(S Rayl/m, which was four times less than that measured experimentally.

Tw pxssible causes were investigated to explain this discrepency. The

first rssible cause is the 10% ccmpression of the samples Observed in the

orllinal rC flow resistance experiment (large sample Nolderl. Assuninq the

total nressure dron across the test sample was independent of the crvmressed

thickness, the extracted value of DC flow resistance per unit length s)uld .be

corrected trnm 59,200 MKS Rayl/m to 53,000 MKS Rayl/m. The second nossihle

cause is that the flow resistance of the fiberglas is not isotropic, and that

it is ireater for flow perpendicular to the sheet faces. This might be

exrected, as there is visual evidence that the fiberglass sheets have been

compressed. In the first flow resistance measurement, the fiberglass sample

was oriented so that the fiberglass sheet surface was normal to the flow

velocity. However, for the (1001 mode, the particle velocity is parallel to

the fiberglass sheet surface. Flow resistance tests were again conducted,

using a much smaller sample holder, with samples cut so that the anisotropv in
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ROC could be measured. As indicated earlier in this chapter, the flow

resistance normal to the sheet surface now measured approximately three times

greater than that narallel to the sheet surface. The value measured with flow

narallel to the surface was 15,200 wICS Rayl/m. With this value of RrC, the

roots of the dispersion relation were recalculated, OTOT and QF calculated and

plotted. These values fell within 8% of measured values for QTOT vs fc and

within 12% for OF vs fc for all samples.

The method of extractinq RDC from measured values of f. and Q was then

applied to the (0101 mode, which has narticle velocity normal to the sheet

surface. Starting with a value of 34,000 MKS Rayl/m for RrC (the value

measured in the small sample holder), values of Q vs f. were calculated for

various values of ROC and were compared with measured values of 0 vs f." The

measured values of 0 vs fc are bounded by the calculated curves for

RDC - 5,000 MKS Rayl/m and RDC - 20,000 MKS Rayl/m, and are consistent with a

value of 15,000 MKS Rayl/m for RDC, the same as for the 100] mode. This is

shown in Figures 3.18 and 3.19. The reason for the discreency between these

bounding values and the measured value of RnC for flow normal to the fiberqlass

sheet face is not known. It may be due to mode overlap of both the [110) and

[100] modes on to the [010) mode. Figures 3.20 and 3.21 show plots of the

resonance center frequency for the [1001 and [0101 modes, respectively, as a

function of sample thickness for the same values of RDC as in Figures 3.18

and 3.19.

Having determined that the best fit value of the DC flow resistance in

the porous material was approximately 15,000 MKS Rayl/m, the complex wave

number and characteristic impedance were calcualted using Eq. (2.56) and Eq.

(2.57) and the roots of the dispersion relation, (Eq. (2.51)). Table 16 lists

the results for the [1001 mode, while Table 17 lists those for the [0101 mode.

The data for both modes is graphically presented in Figures 3.22 through 3.26.
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5. Sensitivity of Roots of the Dispersion Relation to Variat ion i

Parameters

In order to determine the sensitivity of the roots of the disners ion

relation to variations in fluid and porous material physical orooerties, tne

roots were again calculated for the [1001 mode with each -f t-he -inut

parameters changed by a small amount, one at a time, and the charicterist.:

impedance and complex wave number were recalculated.

It was found that there was less than a 1% change in K an ,!

when porosity was decreased to 0.95 (5% change), when nulk fluid u-d

was changed to 343 m/s (0.6% change or 2 mr/s), and when bulk fluid lensit; ils

changed to 1.23 Kq/m 3 (1.6% change or 0.02 Kq/m3). However, in 11% z-hange

and Zchar was found when the DC flow resistance was varied ny -,k)C 9K>

Rayl/m about 15,000 MKS Rayl/m. Because the uncertainty in the -wasure&, iata

is so much greater, the sensitivity of the best fit value of RDC, and irrnce ,,

and Zchar, to slight uncertainties in other r'hysical properties is niii...

6. Modal Pressure Field in a Rectangular Cavity with Porous *\ui.:
Miateri~al

To theoretically determine the 1100] and 1010) -,ra I nress re

distribution in the cavity for each fiberglass sawle requires the valies, -t

klz and k2 z be determined from the roots of the dispersion relation tlr

for the best fit value of RDC. Then, using Eq. (2.63) for the bulk rluid ind

Eq. (2.64) for the porous material, the normalized maonitude and nhase -t toe

pressure at each Grid point can he determined. See Appendix 9 for a -ure

detailed discussion. For the [1001 mode, Figure 3.27 shows Iraphically the

results for sample #1 (3/16") and Figure 3.28 shows the results for sample 010

(1 7/8"). For the [0101 mode, Figure 3.31 shows graphically the results for V
sample #1 (3/16") and Figure 3.32 shows the results for sample #5 (11 ib").
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Wave Number vs Frequency
(NEW TECHNIQUE--C18J & 183)
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TABLE 16

Zchar AND W RESULTS FOR [100) MVDE
(RiC - 15,200 MKS Rayl/m)

fc k a Zchar Cph

Sample # (Hz) (Rad/m) / IZcharl/Poc (degrees) (iVs)

1 669.4 ± 0.1 21.54 14.53 1.48 -37.2 195.2

2 665.4 21.47 14.47 1.48 -37.2 194.8

3 657.7 21.32 14.35 1.49 -37.1 193.8

4 649.8 21.17 14.21 1.50 -37.1 192.9

5 637.6 20.95 13.98 1.52 -37.0 191.2

6 625.3 20.74 13.71 1.53 -36.8 189.4

7 617.1 20.61 13.52 1.54 -36.6 188.1

8 601.5 20.38 13.10 1.56 -36.2 185.4

9 587.4 20.19 12.66 1.58 -35.6 182.8

10 569.5 20.03 11.96 1.61 -34.4 178.6

100

100,
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TABLE 17

Zchar AND k RESULTS FOR [010] MVDE
(RDc = 15,000 MKS Rayl/m)

fc k o char cph
Sample # (Hz) (Rad/m) (Np/m) IZcharl/Poc (degrees) (M/s)
1 865.0 ± 0.1 25.76 15.67 1.30 -34.8 213.5
2 862.9 25.72 15.63 1.30 -34.8 210.8
3 858.5 25.64 15.55 1.31 -34.8 210.4
4 854.3 25.57 15.46 1.31 -34.8 209.9
5 848.3 25.47 15.29 1.32 -34.7 209.3

01
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These plots present the rode's modal pressure field in phasor notation. The

magnitude is represented by the size of the arrow and the phase angle Dy the

angular rotation of the arrow in degrees from the horizontal (i.e., zero

degrees of phase angle is a phasor pointing horizontally to the right).

Experimentally, the pressure field was measured by inserting each

sample into the cavity and exciting the desired mode at its center frequency

for that sample. By programming a HP-300 series computer to take data from the

SR 530 Dual Channel Lock-In Anlifier (in the X, Y mode), the in-nhase and

quadrature components of pressure were measured at each grid noint. The

normalized maqnitude and phase of the pressure was then plotted. For the [1001

mode, Figure 3.29 displays the results for sample #1 (3/16") and Figure 3.30

displays the results for sample #10 (1 7/8"). The results for the (0101 node

are displayed in Figures 3.33 and 3.34 for sample #1 (3/16") and sample 45

(11/16"), respectively.

In comparing the theoretical and experimental pressure field plots

several observations can be made:

(I) The effects of cavity leakaqe at the sliding surfaces is evident

when the experimental plot (Figure 3.29) is compared to the theoretical

plot (Figure 3.27) of the [100] mode for sample #1 (3/16") bV noting

that the pressure phasors along the boundaries not in contact with the

fiberglass strip in Figure 3.29 exibit a small increase in phase angle

(i.e., they are not horizontal as they would be if no losses existed at

the boundaries) which is not present in Figure 3.27. This effect may

also be seen for the [0101 mode in Figure 3.31 and Figure 3.33.

(2) The effects of the porous material on the pressure distribution in

the bulk fluid can be seen to "grow" with increasing sample thickness by

observing the relative increase in the nhase angle away from the
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air-fiberolass boundary from the theoretical plot of the 3/16" (sample

#1) fiberglass strip compared to the theoretical Plot of the 1 7/8"

(sample #10) fiberglass strip. This can be seen in Figures 3.27 and
A!

3.28, respectively. This effect is not seen in the theoretical olots of

the [010] mode for sample #1 (Figure 3.31) and for sample *5 (Figure

3.32)

(3) The effects of mode overlap become more evident as sample thickness is

increased by comparing the measured and calculated modal pressure fields

for the same sample thickness. For example, compare Figure 3.29 (sample

#1) to Figure 3.30 (sample #10) for the [100] mode and Figure 3.33

(sample #1) to Figure 3.34 (sample #5) for the [0101 mode.

(4) The pressure distribution at the air-fiberglass boundary shows the

effect of the relative size and sign of klz and k2z by noting that for

the thickest samples the pressure Dhasor's angle increases as the

interface is approached. For the [100] mode compare the theoretical plot

for sample #1 (Figure 3.27) to the theoretical plot for sample #10.

(Figure 3.28) and for the [0101 mode compare the theoretical plot for

sample #1 (Figure 3.31) to the theoretical plot for sample #5 (Figure

3.32).

The primary reason for omparing the calculated and measured pressure

distributions was to verify which mode was excited and to check its Purity. The

determination of whether the expected mode had been excited was made by

comparing the calculated and measured pressure field plots for the thinnest

fiberglass strip (3/16"). For the [1001 mode the nodal plane runs normal to the

length direction from grid point (10,0) to grid point (10,15). Travelling

across the nodal plane, a 180 degree phase shift in the pressure Phasor is

observed, with the pressure magnitude reaching a maximum at the cavity

110
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boundaries normal to the lenqth direction. Likewise, for the [0101 mode the

nodal plane is normal to the width direction falling half-wav between the

boundaries parallel to the lenqth direction. The pressure phase also changes

180 deqrees in crossing this nodal plane, with its magnitude reaching a maximum

at the fiberglass boundary and opposite wall.

The purity of these modes is retained only with the thinner samples and

becomes contaminated as thicker samples are introduced. This is clearly seen by

comparing Figures 3.29 and 3.30.
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IV. COMPARISON OF RESULTS AND CX)CLUSION

A. COMPARISON OF THE 00HPLEX ttAVE NJMBER

The complex wave number may be written in terms of its real and imaqinery

parts as the wave number k and the absorption coefficient a , respectively.

Figure 4.1 shows the wave number k as a function of frequency for each method.

Values of k determined by the new method fall between those found by Yaniv's

method (the upper bound) and by Beranek's Material Properties method in the

isothermal limit (the lower bound). For example, at 600 Hz the value of the wave

number determined by the new method was within 6% of the value determined by

Yaniv's method. The values of k from the probe tube experiment are about twice

those determined by the new method. This is to be expected, since the particle

velocity in the probe tube experiment was normal to the air-fiberglass boundary,

i.e., was in the direction of higher measured flow resistance. (Note that

although the [010] mode also has particle velocity normal to the fiberglass

surface, the best fit value of RDC (15,000 MKS Rayl/m) was used to calculate both

the complex wave number and characteristic impedance).

The abosorption coefficient as a function of frequency is displayed in Figure

4.2 for each method. The values determined by the new method fall about those

obtained by Beranek's Material Properties method (in the isothermal limit). For

example, at 600 Hz the value of the absorption coefficient determined from the

new method falls with 17% of the value determined by Yaniv's method. Again, the

values determined usinq the probe tube method were about twice those measured by

the new method. The cause of the dip in the values of the absorption coefficient

determined by Yaniv's method is not known.

Figure 4.3 displays the phase speed in the porous material as a function of

frequency for each method. Values determined by the new method are bounded by
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those found by Yaniv' s mrethod and by Beranek' s Material Properties method (in

the isothermal limit). For example, at 600 Hz the phase speed determined by the

new method is within 7% of the value determined by Yaniv's method. The values

of phase speed determined by the probe tube method are approximately one-half of

those found by the new method for the same reason discussed above.

B.* COMPARISON OF THE CHARACTERISTIC IMPEDANCE

The normalized characteristic impedance as a function of frequency for all

methods is displayed in Figure 4.4. Values determined by the new method are

bounded by those from the adiabatic and the isothermal material properties

method. Values from the new method plot almost directly on too of the Biot

theory in the diffusion limit. For example, at 600 Hz the value determined by

the new method fell within 26% of that determined by Yaniv's method and within

20% of the impedance tube value.

Figure 4.5 displays the impedance phase as a function of frequency for each

method. The values determined by the new method fall about the values

determined by the material properties method. The low frequency values (< 200

Hz) determined by the impedance tube method are thought to be in error due to

the difficulties in measuring the distance to the first node in that method. It

is not known why the values of the phase extracted using the new method from the

[1001 mode data increase for decreasing frequency, since in the low frequency

limit, the phase should approach -45 degrees (pure diffusion of sound pressure).

C. CONCLUSION

The ability to determine a material's DC flow resistance from parameters of

the resonance curve in a plane wave resonator was verified. Additionally, the

values of both the complex wave niriber and characteristic impedance determined

from the new method compared well with classical methods; the values obtained by

the various methods aqree with each other to within 26%.w
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APPENDIX A

.'ETHOD OF SOLUTION OF THE DISPERSION RELATION AND ITS IMPLEMENTATION

The mehtod used to find the roots of the dispersion relation (Eq. (2.51))

was Ward's method [Ref. 19, pp. 169-1701. This method is not the only -ethod

available to find the roots of a complex transcendental equation but is -Isy to

understand and to implement, as no deriviatives are needed.

1. VARD'S MTOD

If we let the polynomial f(z) be a function of the complex variable

z = x + iy such that

f(z) = u(x,y) + iv(xy) , (A.I.I)

it can be shown that f(z) has a zero a = b + id if and only if u(b,d) = v(b,d) =

0. This pair of simultaneous equations in u(x,y) and v(x,y) may be

conveniently solved in two ways. First, one can seek to minimize

u 2 (x,y) + v 2 (x,y) (A.1.2)

or, secondly, on can minimize

w(x,y) = lu(x,y)l + jv(x,y)l. (A.1.3)

Since no derivitives are employed, this method seems well suited for finding

multiple roots.

Ward's technique is based on the knowledge that in every neighborhood of a

point (x,y) such that w(x,y) * 0, there exists a point w(x',y') such that w(x',

Y') < w(x,y). At a given step in the process, which is iterative, the current

value of w(x,y) is comnpared with the vlues w(x+h,y), w(x-h,y), w(x,y+h) and

• *w(x,y-h) until a smaller value is found (if possible). The coordinates yielding

this smaller value of x and y are used in the next iterative step. Should these

four points yield no decrease in w = Jul + JvJ, the increment h is decreased
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by some amount and the process is repeated. As with other methods which can show

convergence within certain limits, there is no quarantee of converqence

with this method.

2. IMPLEMENTING .RD'S MEMOD

In order to apply Ward's method to find the roots of the dispersion

relation, it must be separated into its real and imaginary parts. To do so note

that the parameters kiz and k2z and ( ) are functions of w , they may be

separated into their respective real and imaginary components (these three terms

also have complex parameters buried within them which are frequency dependent).

Althouqh tedious, it is necessary with this method.

Once each parameter has been reduced to its simplest complex form (real

and imaginary portions), these can be inserted back into the dispersion equation

and by use of complex arithmetic, the dispersion relation may be recast in the

form

Re(Dispersion Relation) + jlm(Disperson Relation) = 0

and Ward's Method of Eq. (A.1.3) may be now implemented in a computer algorithm.

The numerical analysis program written using Ward's Method required the

following inputs for each sample thickness:

(1) Measured Quantities

a) fc (measured in the cavity)

b) Q (measured in the cavity)

(2) Cavity Parameters

a) Length of the cavity, L. (in x-direction)

b) Width of porous material, d2. (sample thickness)

c) Width of remaining bulk fluid, dl.

d) Mode number in the long direction. {n s0 for the [0101 mode,
n - 1 for the 1100] mode)
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(3) Fluid and Porous Solid Parameters

a) Adiabatic fluid sound speed, cf. (@ 23C, 345.2 ,iVs)

b) Fluid bulk density, pf. (@ 200C, 1.21 Kq/M 3)

c) Adiabatic ratio of specific heat of fluid, y. (@ 200C, 1.402)

d) Prandtl number, Pr. (@ 20*C, 0.733)

e) Porosity, P. (u 1.0)

(4) Program Parameters

a) Angular frequency increment, Aw.

b) Damping frequency increment, 65.

c) An ending criterion for w(w,s).

(5) Initial Estimate of RDC

a) If no a priori knowledge of material's flow resistance, then

assume very hiogh or low value as the starting point.

b) Perform a DC flow resistance experiment to extract a mean value

for RDC.

Once these quantities are entered, the program calculates its first w(w,8) based

on the initial inputs of fc and 0. This value of w(w,B) will be compared to the

four incremental values of w(w t Aw, B t AS), that is, it capares the

initial w(w,a) with

w( w4Aw, 0)

w(w-Aw, 8)

w( we, +A)

Which ever is the lowest, those coordinates in w, B space are chosen as the new

values and the process is continued until w(w,$) is less than the ending

criterion. The output converts the roots of w and 0 to fc and 0.

122



This process is continued for each sample thickness, and the resulting

values can be plotted either as Q vs fc or as fc vs sample thickness and

compared with the respective curve after loss corrections to Q are made. An

evaluation is made as to whether RDC is too hiqh or too low, the value of RDC

changed and the process repeated for this new value of ROC for all samples.

This iterative process is completed when the roots are found for a value of RDC

which provides the best fit curve through the measured data. With this value of

RDC and the roots for each sample thickness determined, the characteristic

impedance and complex wave number may be calculated by use of Eq. (2.56) and Eq.

(2.57).
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APPENDIX B

DETERMINATION OF THE THEORETICAL MODAL PRESSURE DISTRIBUTION IN A PLANE

WAVE RESONATOR WITH AN ACOUSTICALLY ABSORBING MATERIAL

The equation that governs the pressure distributuion in the bulk fluid

(region 1) is:

jl - PfCS[kxx] j coS[lz(Z-dl)] e (B.1.1)

The equation that governs the pressure distribution in the porous material

(region 2) is, after substituting Eq. (2.62) for .20:

Cost' dk JZ1
&P2 = coPfC°S(kxX] e s2(B.1.2)

2z 2

With the value of RDC known, along with the roots of the dispersion relation for

a given sample thickness, the pressure distribution in region 1 and region 2

can be calculated.

In the experimental measurement of the modal pressure field, the quadrature

component of the pressure was zeroed at the reference position of (0,0,1) to set

a reference point such that both theory and experiment could be compared. The

0,0 indicates the grid point (0,0) and the 1 indicates that the receiver probe

tube was located in the ceiling of the cavity. To set the reference at x = 0, z

= dl such that the phase of the pressure distribution at this point is zero,

requires that

010 = 1 /-ATN(-w/8) . (B.1.3)

To calculate the theoretical modal pressure distribution, start at the

reference location of x = 0 and z = di and incrementally move away from this

position in increments of Ax and Az such that the theoretical grid points match

those existing in the actual cavity.
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