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SECTION 1

INTRODUCTION AND SUMMARY

1 .1 Introduction

This report has been prepared as the Final Report of a preliminary

study of the possible satellite autonomous navigation accuracy with the r

SHAD (Stellar Horizon Atmospheric Dispersion) concept for various types of

representative orbits.

The SHAD concept is considered to be one of the most promising concepts

yet identified for achieving high accuracy satellite autonomous

navigation. Until now, the orbits of most satellites have been determined

by using ground tracking measurements from radar systems, telescopes, etc.

Unfortunately, earthbound tracking suffers from many limitations. Loss of ft

a tracking station during wartime could prevent ground operators from

obtaining the necessary orbit determination accuracy for certain military

satellites. Ground tracking also limits civilian satellites since the high

cost of tracking strains operating budgets and contributes to the

cancellation of many otherwise cost-effective missions (I ). Furthermore,

the large number of objects in orbit taxes the capacity of existing

monitoring stations and delays their delivery of information to the

operator (2).

In the near future, satellites will be able to navigate using signals

from NAVSTAR satellites (3 ). There are missions being planned, however,

where even this degree of self-sufficiency may be inadequate (4 ).

~. "
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To meet these needs, satellites can be built which estimate their

positions without recourse to either ground stations or other satellites.

Such an "autonomous navigation system" would allow a satellite to carry out

many functions without instructions from the earth. Many people have

suggested ways to navigate satellites autonomously; a few of these methods

have already been implemented. However, the proposed and existing

navigators have not been widely accepted, in part because of their inherent

complexity, poor accuracy, or exorbitant computational requirements (5 ).

The SHAD concept takes advantage of the atmosphere's optical

properties. Viewed from orbit, a star passing behind the earth's upper

atmosphere will appear to be shifted upward from its true position. This

refraction is a property of starlight frequency and atmospheric density.

If a refraction measurement were to be made on a known star near the

horizon, this would provide information on the direction of that portion of

the earth's horizon with respect to the satellite in inertial coordinates.

There are essentially two ways of measuring starlight refraction. One is

is to measure the refraction directly such as with a star tracker. The

other is to measure the difference in refraction (i.e. the dispersion)

between two wavelengths of the starlight such as red and blue. The latter

approach is utilized by the SHAD sensor and there are several advantages to

performing the measurement in this manner. However, it should be noted

that the above two methods are merely different ways of measuring the same

basic phenomenon. The relationship between refraction and dispersion is

very well known for air. Consequently, accurate measurements'of one

automatically imply accurate knowledge of the other.

-8-



Use of refraction or dispersion measurements for satellite navigation

will require access to an accurate atmospheric refraction model and a star

catalog. Each measurement will provide information about a particular

component of satellite position. By performing these measurements on

different stars throughout the orbit, a complete determination of the

satellite position and velocity can be made. The accuracy of this

determination will depend upon many paramenters such as measurement error,

number and direction of star sightings, and type of satellite orbit. One

of the primary objectives of this study is to provide some indication of

the possible navigation accuracy and to indicate the sensitivity of

performance to variation in the most important parameters.

1.2 Background

During the Apollo program, the Charles Stark Draper Laboratory (then

the M.I.T. Instrumentation Laboratory) investigated many techniques for

performing orbit navigation in the Command and Lunar Modules (6 ). Early

in this effort, mission planners felt that ground tracking was not

sufficiently accurate or reliable enough to permit navigation of manned %

spacecraft over large distances. What was desired was a system that 4

allowed the crew to determine its position without depending upon

earth-based systems. Several navigation schemes considered for this

purpose involved the sensing of the Earth's horizon either by measuring the

horizon radiance in some portion of the electromagnetic spectrum (e.g. IR,

UV, visible, etc.) or by measuring the effect on starlight (i.e.

attenuation, refraction, etc.) when it grazes the atmosphere( 7).

-9
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Although some of these approaches were very attractive, the technique

finally adopted was to use a sextant-like device which measures the angle

between an earth or lunar feature (e.g. landmark, limb, etc.) and a known

star. By the time Apollo was launched, however, ground tracking had

improved to the point where the autonomous navigation system could be

relegated to back-up status.

In 1975, interest in horizon sensing by starlight refraction was

renewed at CSDL in a Navy contract concerned with investigating all known

techniques for autonomous navigation of vehicles traveling through

space (8 ). Though many people expressed doubts about accurately modeling

and measuring starlight refraction, a few researchers felt that the method

had potential since better star trackers were now available for this

application and there was no indication that the refraction modeling was

serious. Several sensor designs were conceived for accurately measuring

starlight refraction; and a somewhat different type of sensor was jointly

proposed by ONR, CSDL and Un. of MD in 1979 to measure the starlight

dispersion instead of the refraction. Although dispersion is simply the

variation in refraction with wavelength, previous development and tests of

a two-color refractometer (TCR) at the Un. of MD indicated that this device

could measure the dispersion between red and blue light with very high

accuracy. For autonomous navigation, this device, with appropriate

modifications for star acquisition, tracking, etc., is denloted as the SHAD

sensor.

HavingJAent!id several ways of accurately measuring refraction or

dispersion, there was still the problem of improving our knowledge of

refraction modeling and the general behavior of the basic phenomenon. A

4.,



significant step was achieved in this direction when CSDL conducted a

survey of existing satellites in late 1979 to determine if any could

provide real data on stellar atmospheric refraction. Two NASA satellites %

(OAO-3 and HEAO-2) were found to have this capability and CSDL was granted

guest observer status to obtain this data. Successful observations of -

refraction were obtained from OAO-3 (Orbiting Astronomical Observatory) on

May 14 and July 11, 1980. Further experimentation with OAO-3 was not '-

conducted since it was found that HEAO-2 (High Energy Astronomy

Observatory) had inadvertently been making such observations with high

accuracy since it was launched in November 1978. It is estimated that

several thousand observations were made by HEAO-2 before it was deactivated

in April 1981. Atleast 700 of these observations were retrieved and

analyzed to some extent by CSDL, and a limited number of cases were

processed with the highest available accuracy, using more accurate NASA

determinations of the satellite orbit with ground tracking data. The

results of that effort indicate that the concept has a very high navigation

accuracy potential. The stratospheric density variations indicated by the

more accurately processed data were much less than those indicated by

meteorological balloon and rocket observations.

1.3 Summary

The primary objective of this study was to generate some indication of

the autonomous navigation accuracy that can be achieved with the SHAD

concept for various representative satellite orbits. This was accomplished

by conducting a covariance analysis utilizing a Kalman filter to

- S ii% -S- e-



sequentially process. the measurements as they occur during orbit

operation. ",Past experience has indicated that a significant amount of

qualitative and reasonably accurate performance data can be conveniently

generated with this type of simulation. Such data not only provides a

fairly good indication of performance but also minimizes the number of

cases that one may later wish to analyze more accurately with a full-state

simulation utilizing elaborate gravity and atmospheric models, etc.

The performance results obtained in this investigation indicate that

high-accuracy autonomous navigation is possible using relatively few

stellar refraction/dispersion measurements per orbit. In the baseline

cases examined, steady state position error standard deviations were often

much less than 100 meters which is superior to most satellite navigation

systems. Initial large uncertainties in the navigator's knowledge of

satellite position and velocity were rapidly overcome within the first

orbit of navigation and, thereafter, the performance slowly converged to

steady-state levels in about five or six orbits.

Increasing the number of stars sighted per orbit improves overall

accuracy but near-optimal performance can be achieved with relatively few

sightings. Widening the azimuth span is valuable for optimizing accuracy

in the normal direction. However, for a given number of visible stars in

the sky, the best performance is obtained by making star sightings both

fore and aft of the satellite's direction of motion.

The high accuracies obtained are, of course, due in large part to the

low measurement variance used in the simulations. Preliminary refraction

data from the satellite HEAO-2 show that the atmosphere is sufficiently

stable in the tropics to warrant this low uncertainty. As more is learned

about the upper atmosphere, this figure will certainly be revised to better

- 12 -



account for measurements taken all over the world. Furthermore, possible

improvements in star sensor accuracy, not considered in this study, will

also contribute significantly to the performance in high altitude

satellites. Nevertheless, sensitivity studies on measurement standard

deviations show that high accuracy navigation is possible even with less

accurate measurements.

Simple models of the measurement bias show that we can obtain

substantially better performance by accepting the biased measurements over

the polar and temperate regions rather than excluding them. More

sophisticated simulations, modeling bias over day and night regions as well

as finer subdivisions of climatic zones, should be considered in future

studies.

There is some indication, based on other independent navigation

studies, that the process noise levels used in the present study are less

than what they should have been for the relatively simple gravity modeling

assumptions made for the navigator. If this is the case then the

performance results in this report are somewhat optimistic for a simple

navigator. However, they would be more correct for a navigator utilizing

more complete models of gravity, drag, etc which is not only possible, but

probably desirable.

As previously noted the present study was essentially a covariance

analysis which provides a reasonably good indication of performance but

does not provide the accuracy of a full-state simulation. When one

considers the rather complex environment this concept must operate in, it

would seem most appropriate to develop a full-state simulation in any

future study of this concept. ,-
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SECTION 2

SATELLITE NAVIGATION BY STELLAR REFRACTION

2.1 Atmospheric Refraction

The passage of starlight through the earth's atmosphere bends the rays

inward (see Figure 2-1). Viewed from orbit, the star's apparent position

remains on the horizon long after it's true position has "set". In Figure

2-1 the refracted ray observed by the satellite appears to be grazing the

earth at an apparent height ha but actually grazes the earth at a

slightly lower height denoted as hg.

Refraction is strongest near the surface, becoming progressively weaker

at higher altitudes. In effect, the atmosphere acts like a prism, refract-

ing and dispersing the starlight passing through it. A ray of starlight

passing through the spherical shell of the atmosphere encounters the

gradient in air density which determines the amount by which the starlight
V%

is bent. Densities near the Earth's surface are known to be closely

described by an exponential function of altitude such as the following:

P = P exp H (2-1)

where p is the density at altitude h, Po is the density at some other

altitude ho, and H is the density scale height which is defined by

R T
H. =

M g + R IdT \(2-2)
0 g Ml

dh/

where Rg is the universal gas constant, Tm is the molecular scale
.%

temperature, Mo is the sea-level value of the molecular weight of air, -S

- 15 -



APPARENT LOS

REFRACTED IRO --- ---- TOSA

REFRATION~-.. PARALLEL

ANGLE (R) RTAYRO
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and g is the acceleration due to gravity. Another expression for the

density scale height which may be easier to visualize is obtained by

inverting Equation 2-1 to obtain:

H = (h-ho)/ ln(po/p) (2-3)

Since the gravitational acceleration g and the molecular scale tempera-

ture Tm change with altitude for a realistic atmosphere, one can expect

some change in H with altitude. However, the change in H over a limited

altitude range is generally not very large.

If the value of H at some altitude hg is assumed to be the same at

all higher altitudes, an approximate value of the starlight refraction

angle (7,8) is given as follows:

1

R w (ig-1) 2 r e + h (2-4)
gHg

where

R = total refraction (rad)

hg = tangent (grazing) height of refracted ray (kin)

re = earth radius (kin)

Ug = index of refraction at height hg

Hg = density scale height at hg (km)

According to Gladstone and Dale's law, the index of refractioq (u) is

related to the air density (p) as follows:

- 1 k(X)p (2-5)

- 17-



where M(A ) is denoted as the dispersion parameter and is a function of only

the wavelength of the light. Therefore, the refraction angle in Equation

2-4 may be expressed in terms of the air density (pg) at the grazing

height (hg) instead of the index of refraction (jg):

2 ff ( r e + h )9
R - k(A)p g -H (2-6)

where an expression for k(A) may be obtained by considering Equation 2-5

for air at standard temperature and pressure. According to Edlen (9 ) the

index of refraction (ps) for air at standard temperature and pressure is

related to light wavelength as follows:

(us-1) 108= 6432.8 + 2949810 + 25540 (2-7)
146 - 2 41 - 1 2(-

where X is the wavelength in microns. The air density at standard tempera-

ture and pressure is 1225 g m- 3. Substituting the above values for air

density and index of refraction into Equation 2-5 and solving for k(A)

yields

k(MA) = 1 x 10- 8 (5.2513 + 2408 2 20.849 2) (2-8)
146 - I 41 - 1/

To illustrate how well Equation 2-6 approximates the refraction of a

realistic atmosphere such as the 1976 U.S. Standard Atmosphere,( 10 ) the

results with Equation 2-6 are compared in Table 2-1 with those generated by

accurate ray tracing( 1 1 ). The refraction angle given by Equation 2-6 for

-18-



4,

Table 2-1. Refraction angles for the 1976 U.S. Standard Atmosphere

Refraction Angle (arcsec) Computed
Grazing Density At X 0.7 microns By:
Height Scale
(kin) Height (kin) Equation 2-6 Accurate Ray Trace

20 6.225 331.7 333.8

25 6.366 147.9 148.1

30 6.519 67.2 -67.3

35 6.508 30.9 30.7

40 6.897 14.2 14.1

45 7.288 6.8 6.7

50 8.047 3.4 3.3

-19 1



each grazing height was computed using the density and density scale height

indicated for that grazing height in the U.S. Standard Atmosphere. Note in

Table 2-1 that the density scale height of the standard atmosphere does

vary slightly.

2.2 Atmospheric Dispersion

Atmospheric dispersion represents the natural variation in atmospheric

refraction with wavelength in accordance with the dispersion parameter k()

given in Equation 2-8. The passage of starlight through the earth's atmo-

sphere will cause the blue rays to bend more than the red rays (see Figure

2-2). A measure of the dispersion is provided by measuring the difference

in refraction between the red and blue rays. Since the optical properties

of natural air are well known, there is a well known relationship between

dispersion and refraction for two wavelengths, and one may convert either

type of measurement to its counterpart without significant loss of

accuracy.

For a satellite at 1000 km altitude the values of dispersion observed

between wavelengths of 0.35 and 0.7 microns for different grazing heights

in the 1976 U.S. Standard Atmosphere are shown in Table 2-2(11). Note

that the dispersion values are small in comparison to the refraction

values. However, it should be noted that a two-color refractometer has

been developed which can very accurately measure the dispersion, and also

has other design features of merit in the intended application. A detailed

treatment of dispersion and its relationship to refraction is given in

Section 2.4.6.

- 20 -
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Table 2-2. Approximate Values of Stellar Refraction and Dispersion at

Wavelengths of 0.35 and 0.7 Microns for the 1976 U.S.

Standard Atmosphere and a Satellite Altitude of 1000

Kilometers

Grazing Refraction Dispersion Between
Height at 0.7 microns 0.35 and 0.7 microns

(km) (arcsec) (arcsec)

20 333.76 6,44

25 148.13 3.88

30 67.27 2.12

35 30.69 1.05

40 14.07 0.50

45 6.70 0.25

50 3.34 0.12

2.
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2.3 Improved Atmospheric Density Models

The accuracy of horizon sensing with the SHAD concept will depend on

our knowledge of the stratospheric density profile. Until now, most of the

data on stratospheric density has been obtained indirectly through measure-

ments of temperature and pressure made by instruments carried aloft in

high-altitude balloons and rockets. Extensive temperature data has also

been obtained with vertical sounders on satellites. The accuracy of the

above measurements has generally been around 2 to 3 percent and, conse-

quently, places a limit on how well the density can be estimated and

modeled.

The variability of stratospheric density is known to be a function of

at least latitude and season. Stratospheric observations with meteorologi-

cal rockets and balloons indicate a density uncertainty at 25 km altitude

of about 1.3 percent in the tropical region (12 1 3 ). For the summer hemi-

sphere the indicated density uncertainty may increase by a factor of two or

three when going from the equator to the pole. However, the winter hemi-

sphere, especially in the north, may experience local variations as high as

10 percent. It should be noted that most of the above data is based on

temperature measurements which have been combined with pressure estimates

to obtain density estimates. The errors in the density estimates for a

given observation have generally been no better than one or two percent.

More accurate stratospheric density measurements on a worldwide basis

would disclose certain systematic changes in the stratosphere, heretofore

not known or firmly established because of limitations in existing data.

Such an endeavor is being proposed as one of the objectives of a SHAD

satellite experiment where either dispersion or refraction measurements

- 23 -



would be used in combination with very accurate independent knowledge of

satellite position to estimate the observed density. Inspection of

Equation 2-6 indicates that refraction is essentially a direct indication

of density at the grazing altitude. Although the derivation of density

from refraction measurements is not quite that straight-forward, relatively

simple techniques have been developed and are now being used to estimate

density from actual observations of refraction made by the satellite

HEAO-2. Although this satellite was never designed to make stellar

atmospheric refraction observations, CSDL discovered in late 1979 that

HEAO-2 had inadvertently been making such observations with its two

guide-star trackers since its launch date (November 1978), sometimes as

often as once per orbit.

As of this writing, CSDL has processed about 700 HEAO-2 observations

taken throughout the world between ± 45 degrees latitude. Detailed ana±y-

sis of about 140 observations taken in the tropical region at different

times of the year indicate that the stratospheric density variability is

less than 1 percent. The accuracy of the HEAO-2 data in providing

estimates of density is primarily limited by the accuracy of the HEAO-2

orbit determination from ground tracking data. ..

2.4 Navigation by Stellar Refraction or Dispersion

As noted previously, refraction and dispersion measurements may be

regarded as merely two different, but closely related, ways of measuring

the same basic refraction phenomenon. In the following subsehtions, a

discussion is first given on how an observed refraction may be used for

- 24 - .--



I
satellite navigation. This is then followed by a discussion of dispersion

and how it may be converted to an equivalent indication of refraction for

the purposes of satellite navigation.

2.4.1 Basic Navigation Concept

Measurements of atmospheric refraction or dispersion for stars near the

earth's horizon provide an indication of the direction of the horizon with

respect to inertial space which, in turn, provides an indication of the

satellite position with respect to an earth-centered inertial coordinate

system. This is graphically illustrated in Figure 2-3 for the case where a

satellite observes a particular value of refraction (e.g. 150 arcsec) for a

known star. If one assumes a spherically symmetric atmosphere, all of the

starlight refracted by a given amount will define a conical surface

extending out into space and having an axis passing through the center of

the earth in the direction of the star. Observation of this particular

value of refraction by a satellite indicates that it is somewhere on the

surface of the cone. By repeating the same type of observations on stars

in different directions, the navigator can determine the satellite's

complete position by essentially solving for the intersections of the

various cones. It should be noted, however, that the complexity of solving

for cone intersections is seldom necessary since the navigator usually has

sufficiently accurate knowledge of the satellite position before each

measurement to permit it to use a much simpler technique for position

update. At the time of measurement, the navigator will usually have a

prior estimate -f the satellite position which will be in the vicinity of

some small region of the cone. Since the measurement indicates that the

-25-
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satellite is on the cone, the most probable position is that point on the

cone closest to the estimated position. Thus, the navigator should update

along the perpendicular from the estimated satellite position to the cone's

surface.

It is apparent that the above update provides positional information in

only one dimension. However, similar updates for horizon stars in other

directions throughout the orbit will provide a complete update of position

and velocity.

2.4.2 Refraction Cone Dimensions

The actual dimensions of the refraction cone are a function of the

particular value of refraction being considered and the atmospheric density h

model assumed. For every star there is an infinite set of refraction cones

corresponding to an infinite set of refraction angles and corresponding

grazing altitudes. The apex angle of a given cone is equal to twice the

refraction angle associated with that cone, while the base dimension is a

function of the earth's diameter and the grazing height of the refracted

light. The geometry associated with the base of the cone is shown in

Figure 2-4. Here it is seen that the base radius might best be represented

as a function of the apparent ray height (ha) instead of the grazing ray

height (hg). For triangle AOB, the base radius (b) is:

b = (re + ha)/cos(R) (2-9)

Also note in Figure 2-4 that the base radius may be expressed as

b =r + h + a (2-10)

e a

- 27 -
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where the term (a) is a small distance which can be shown to be the

following by equating Equation 2-9 to Equation 2-10:

aI )( + ha
a i ( cos(R) I) (re a)

For a typical refraction angle of 150 arc-seconds at ha 25 km, the term

(a) will have a value of 1.69 meters which can usually be neglected so that

b -r + h (2-11)
e a

It is important to note that the distance term (a) and the refraction (R)

have been greatly enlarged in Figure 2-4 for ease of illustration. The

refraction values of interest in this application are actually quite small

and one could essentially visualize the refraction cone as being a

cylinder.

Having expressed the radius of the cone's base as a simple function of

ha (Equation 2-11), there is the question of how ha relates to hg and

the associated refraction for a given atmosphere.

If the atmosphere is spherically stratified in the region where refrac-

tion occurs, application of Snell's law leads to the following important

relationship for any point on the ray path:

r sin(Z) = Constant (2-12)

L

where V is the index of refraction at a given point, r is the radial

distance of that point from the center of the earth, and Z is the zenith

- 29 -



angle of the ray at that point. The constant is sometimes referred to as

the impact parameter and may be determined by applying Equation 2-12 to the

grazing point G of Figure 2-4 where Z = 90*, r = re + hg, and V = ig,

i.e., Constant g e + h (2-13)

Substituting the above value of the constant into Equation 2-12 and apply-

ing the equation to the satellite point S of Figure 2-4, where Z = Z. and

1=I, yields the following:

sin(Z IV (r + hg) / r (2-14)si(s e a gre

Also note for triangle SAO of Figure 2-4 that

sin(Z) = (re + ha) /rs  (2-15)

Therefore

r + h -- (r + h) (2-16) ,
e a g e g

'N.

or

h =r 1) + h (2-17)

Note that the above relationship between ha and hg requires only the

index of refraction at hg. Also, note that this relatively simple rela-

tionship applies to any spherically stratified atmosphere, whether it

varies exponentially with altitude or otherwise. Since pg can be

expressed in terms of Pg and k(X) in accordance with Gladstone and Dale's

law, Equation 2-17 may also be expressed as follows:
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ha = k(W) P (r e+ h ) + h (2-18)

At the altitudes of interest in the present study (i.e. 20 km and greater),

the first term on the right of Equation 2-18 will be very small, causing

ha to be slightly larger than hg. An indication of the relative magni-

tudes of ha and hg is given in Table 2-3 for two different representa-

tive atmospheres (1976 U.S. Standard and 1962 Tropical). Note that the

values of ha obtained with Equation 2-18 are the same as those obtained

by accurate ray tracing. This is to be expected since the ray-trace

results were for two atmospheres which were assumed to be spherically

stratified. Also note that the relationship between ha and hg is

essentially the same for both of the atmospheres considered in Table 2-3,

even though there are larger proportional differences in the corresponding

densities and refraction angles. At a grazing height of 20 km it is seen

that the density is about 7 percent higher for the tropical atmosphere.

However, the corresponding apparent height is only 9 meters higher.

2.4.3 Relationship Between Satellite Position and Refraction Cone

Having established the dimensions of the refraction cone as a function

of refraction angle and apparent ray height, the question is now one of how

a refraction measurement can be used to relate the satellite position to

the cone. This problem is facilitated by introducing a new quantity re-

ferred to as the vacuum tangent height (hv) of the star LOS (i.e. the

tangent height of the star LOS if no atmosphere were present). It will be

shown that the vacuum tangent height provides the "connecting link" between

the satellite position and the refraction cone since it may be expressed

- 31-
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Table 2-3. Refraction data at X = 0.7 microns for the 1976 U.S.

Standard and 1962 Tropical Atmospheres

h J ha (kin) Estimated By Density (pg) R
(kin) (arcsec)

Equation 2-18 Ray Tracing (g/m3 )

U.S. Standard:

20 20.128 20.128 88.910 333.76

25 25.058 25.058 40.084 148.13

30 30.027 30.027 18.410 67.27

35 35.012 35.012 8.463 30.70

40 40.006 40.006 3.996 14.07

Tropical:

20 20.137 20.137 95.154 376.49

25 25.058 25.058 40.450 150.46

30 30.026 30.026 18.306 66.27

35 35.012 35.012 8.600 30.37

40 40.006 40.006 4.181 14.47
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either as a function of star direction and satellite position only or

approximately as a function of refraction and one particular component of

satellite position with very little error.

Figure 2-5 illustrates how hv is related to star direction and satel-

lite position. The satellite position vector (r) can be expressed as the

sum of two orthogonal vector components as follows:

_ U( . uS) u + (r. up ) up (2-19)

where !s is a unit vector in the known star direction and uup is a unit

vector normal to u and in the plane defined by !Is and r, i.e.
N

u = Unit [u x _rx u] (2-20)

Note in Figure 2-5 that hv can be expressed in terms of the magnitude of

the second vector component of r of Equation 2-19 as follows:

h = r e u - r (2-21)
v - -up e

Equation 2-21 therefore gives the relationship between hv and satellite

position without any consideration being made for refraction.

Figure 2-6 illustrates how hv may also be expressed in terms of the

refraction angle (R), the apparent ray height (ha), and the magnitude of

the other orthogonal component of satellite position. Using triangle BSE,

the vacuum tangent height can be expressed as follows:

h = h + a - d tan(R) (2-22)
v a
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where d is the distance of the satellite from the cone base and a is the

small distance previously indicated to be negligible. Note that d is equal

to the magnitude of (r * s) so that Equation 2-22 may be expressed as

follows:

h =h + a- u uI tan(R) (2-23)
v a si

Equation 2-23 therefore gives the relationship between hv and the refrac-

tion cone. In addition, this equation may also be regarded as the

measurement equation for satellite navigation since its relates hv to the

measured refraction and the apparent height which may be derived from the

measured refraction for a known atmospheric density profile. The

relationship between refraction and apparent height is independent of

satellite position and may be represented by the following general

expression which expresses ha as a function of R and the atmospheric

density profile (denoted merely as p): 4

h = h (R, p) (2-24)

Since the atmospheric density profile is assumed to be known in the case of

satellite navigation, the apparent height for a given refraction can be

obtained analytically or by interpolating a table of precomputed matching

values of ha and R. In the case of an exponential atmosphere, the

density profile is exponential by definition and an approximate analytical

expression of ha (see Appendix A) is as follows:

2-r H r e 2

h (R, po) h - H ln(R) + H ln k(A) p[-+ R [- (2-25)a 0 o 2 2 I
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where po is the density at some arbitrary reference height h., and H is

the fixed density scale height. This expression will be used later to in-

dicate the effect on hv of errors in R and p. For the moment, however,

the function in Equation 2-24 is assumed to be that for any known arbitrary

atmosphere, and when substituted for ha in Equation 2-23 yields the

following:

hv = ha (R, p) + a -Ir . ul tan(R) (2-26)

This expression for hv provides the key for how a refraction measurement

may be used to update satellite position. As previously shown in Equation

2-19, the satellite position vector can be expressed as the sum of two

orthogonal vector components as follows:

r= (r . u) u + (r up) u (2-27)-- -up 

where 2. is the unit star vector and aup is a unit vector normal to

s and in the plane defined by s and r. Although aup is normal to

the star direction, and not the cone's surface, the difference in direction

is negligible since the refraction angles are small. From Equation 2-21

the magnitude of the second vector component of Equation 2-27 can be

expressed as follows:

r u = h + r (2-28)- -up v e

Substituting the expression for hv from Equation 2-26, neglecting the

small distance a, and assuming R * tan(R), yields:

r*u =h (R, p) - R + r(2-29) 5r.u -- Ir. ul re
-up a , e
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which when substituted into Equation 2-27 yields the final expression re-

lating the satellite position vector to the refraction angle and atmospher-

ic density:

.E = E - sae ur r.u)u + hRP I r *ul R r]U u(-0

Here it is seen that only the position component in the direction of up

would be updated by a refraction measurement.

2.4.4 Error Relationships Between Satellite Position, Refraction Angle and

Atmospheric Density

A good indication of the effect of errors in refraction measurement and

atmospheric density modeling on satellite position update can be obtained

by considering the case of an exponential atmosphere which agrees with the

1976 U.S. Standard Atmosphere at 25 kilometers altitude. Substituting the

expression for ha(R,p) from Equation 2-25 into Equation 2-29 and

differentiating gives:

P

I I"

dp 0 dR [r ]
d(.-- H - u dR (2-31)

'-S

where " is the distance of t/he satellite from the cone base which

may be approximated as:

u - r - (6400) 2 (2-32)

0%
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Inspection of Equation 2-31 indicates a relatively simple relationship

between the satellite position error (d(r._jup)), refraction measurement

error (dR), and density error (dpo). Note that the first twu error terms

on the right of Equation 2-31 are proportional to the percentage error in

density or refraction; the third term is proportional to the refraction

error and the distance to the cone base; and the last term, which happens

to be very small, is proportional to only the refraction error.

At 25 kilometers altitude, Tables 2-1 and 2-3 give the following values

for the U.S. Standard Atmosphere:

H = 6.366 km

Po = 40.084 gm/m
3

R = 148.1 arc second (0.000718 rad)

For a one percent error in our knowledge of density at 25 kilometers,

Equation 2-31 indicates that this will cause a satellite position error of

63.7 meters. Likewise, a one percent error (1.48 arc seconds) in

refraction measurement for a satellite at an altitude of 1000 kilometers

will cause an overall satellite position error of 89.4 meters (i.e., 63.7

meters for the percentage error term and 25.7 meters for the last two terms

of Equation 2-31).

2.4.5 Adoption of hv as Navigation Measurement

It is interesting to note that the satellite position error given by

Equation 2-31 can also be interpreted as an equivalent error in the

indicated vacuum tangent height since $

39



h = r • u - r (from Equation 2-28)v - -up e

dhv d ur uP) (assuming dr = 0)

Therefore

dh H -- - - e dR (2-33)
v P R PoL2 w

For the purposes of the present study, Equation 2-33 suggests that it

would be simpler to consider hv, rather than R, as the parameter being

measured since it conveniently includes the error-effects of density and

refraction measurement, and permits one to express the overall error in

common units of meters. This approach was taken in the present study and

very little comment is made in the later sections of this report about the

relative contributions of each error source since this is considered to be

somewhat arbitrary in a general study of this type. Most of the navigation

performance data generated in the current study was for a baseline measure-

ment error of 70 meters in hv, although some data was generated for other

values. An indication of the error in hv for various values of refrac-

tion measurement error combined with a one percent error in density is

provided in Table 2-4 for three different satellite altitudes. The results

were generated using Equation 2-33. Assuming a density error of one per-

cent, it is seen that the baseline value of 70 meters adopted for the

current study is representative of what one could expect with a refraction

measurement error of 0.5 arc second at a satellite altitude o. 1000 kilo-

meters, or with a refraction measurement error of 0.1 arc second at geosta-

tionary altitude. It should be noted that the star trackers on the satel-

lite HBAO-2 demonstrated a refraction measurement accuracy of better than

0.5 arc second.
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Table 2-4. Equivalent hv Error for Various Refraction Measurement Errors

Combined with a One Percent Density Error. (For Observation at

25 km Grazing Altitude)

Satellite Density Refraction Equivalent hv
Altitude Error Error Error (m) For RSS

(km) (%) (arcsec)
p R m)

1000 1 1.0 64 60 88
.5 30 71 m

.1 6 64

20,242 1.0 168 180
(GPS) .5 84 106 - -

.1 17 66

35,866 1.0 276 283

(Geo) .5 138 152
(. 28 70

dJ.
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2.4.6 Navigation with Dispersion Measurements

The dispersion represents the difference in refraction between two

wavelengths of light. According to Equation 2-6 the refraction at

wavelength X for an exponential atmosphere is approximately

1
R() - k(X) p ( 2irb (r + h 2 (2-34)

where Pg is the density at grazing height hg, and b is the inverse

density scale height (i.e. b = 1/H). Since hg << re, the refraction

may be expressed fairly accurately as

1

R(X) - k(A) p ( 27rb r 2e (2-35)

Using subscripts b and r to denote the blue and red wavelengths, and

denoting Pb and Pr as the densities at the grazing heights for the blue

and red rays, the dispersion between the two rays is

6 R Rb - Rr

6 = (2gb re)2 (k b Pb- kr Pr )

Since

-b h -2 h2
Pb Pr • gr (2-36)
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-b(h - )
6 

kb  hgb gr
r Or ( e) k -e
-r er

-b(h hgr)
6 = Rr[1Ke (h gb g 1] (2-37)

where K = kb/kr.

A particular value of 6 sometimes useful in the present instance is

that value commonly referred to as the local dispersion angle (6t). This

is the dispersion between the red and blue rays for the same grazing height

where

6£ = Rr( K-I ) (2-38)

It is important to note, however, that a satellite cannot observe 6Z

since the red and blue rays for the same grazing height will diverge after

passing through the atmosphere and are sufficiently separated by the time

they reach a satellite that they cannot be observed simultaneously with

reasonable size optics. Likewise, a satellite cannot observe the

dispersion given by Equation 2-37 except for the case where the red and

blue rays converge to a point at the satellite as shown in Figure 2-7.

Note in Figure 2-7 that the grazing height of the blue ray must be above

that of the red ray since the refraction is larger for the blue ray.

To guarantee that a satellite can observe the dispersion given in

Equation 2-37, a constraint must be placed on the difference in ray grazing

heights shown in that equation. This constraint will be a function of the
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satellite distance from the horizon. In the following derivation, the

required difference in grazing heights is determined by first expressing

the grazing height difference in terms of the corresponding difference in

apparent heights. Afterwards, the desired constraint is placed on the

apparent heights so that ray convergence occurs at the satellite:

According to Equation 2-18 the grazing height difference can be

expressed in terms of the apparent height difference as follows:

h -k bpbr h -k p r ra b e _ar  ____e

rhb hg 1 + kb Pb 1 + kr pr

Since the denominator terms kb Pb and kr Pr are never any larger

than about 2 x 10- 5 for altitudes above 20 kilometers, they can be

neglected and

Ah w Ah - r (kb Pb -k p r
g a e bb r r

where

Ah = h - h and Ah =h -h
g gb gr a ab a r

Substituting for pb from Equation 2-36

-bb h

Ah -Ah -k p r (K e - 1) (2-39)g a r re

Since

-bA h
e g--& 1 - bah for bAh << 1 (2-40)

g g
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Equation 2-39 may be expressed as

Ah Ah a k pr re (K-i)

g 1 -Kbk p r r (4
rr e

To determine the required constraint on the apparent height difference, use

is first made of Equation 2-15 to obtain

Aha = h - h = r [sin(zb) - sin(Zr)] (2-42)
r

where Zb and Zr are the zenith angles shown in Figure 2-7. Note in

Figure 2-7 that Equation 2-42 may be expressed in terms of the angles Eb

and Er instead of the zenith angles as follows

Ah = r cos(E) - cos( Er)a s b

Ah =2r sin -E + Er) sin-2( Er  E )a s 2 r r

Since 6 = Er - Eb and Er - Eb

Aha 6 rs sin(Er) (2-43)
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Note that Equation 2-43 could have been obtained by inspection of Figure

2-7 since Aha is the distance subtended by 6 at a satellite-to-

horizon distance of rs sin(Er)° Substituting Equation 2-43 into

Equation 2-41 yields the desired constraint on the grazing height

difference

* 6 r sin(E ) -k pr r (K-i) (2-44)s r r re (-4
g 1 - Kbk pr r

rr e

Using the approximation of Equation 2-40 in Equation 2-37, substituting the

expression for Ahg from Equation 2-44 into Equation 2-37, and

substituting the equivalent expression for Pr in accordance with Equation

2-35, yields the following desired expression for the dispersion observed

by a satellite:

6 M 6 t/C (2-45)

where 6, is given in Equation 2-38 and

C 1 1 + K b Rr [rs sin(Er) - (re /2rb) 2 ] (2-46)

An indication of how well Equation 2-45 indicates the dispersion for a

realistic atmosphere, such as the 1976 U.S. Standard Atmosphee, is shown

in Table 2-5 where the results are shown along with those generated by
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accurate ray tracing (11) The values of b and Rr used to generate the

results with Equation 2-45 are those given for the 1976 U.S. Standard

Atmosphere.

Note that, for a given grazing height, the magnitude of the factor C

increases with satellite altitude, thereby reducing the magnitude of the

observed dispersion. However, as previously noted, the dispersion can be

measured very accurately with a two-color refractometer. The potential

accuracy of this device is a function of various parameters such as

telescope aperture size, star brightness, and optical transmission

characteristics. Tests conducted by the University of Maryland have

indicated an accuracy better than 0.001 arc second.

As previously indicated in Section 2.2, the dispersion measurement can

be converted to an equivalent refraction measurement. Equation 2-45

provides a fairly good indication of what the relationship would be between

the dispersion for two wavelengths (red and blue) and the refraction Rr

for the red wavelength. It will be recalled that the locus of constant

refraction may be visualized as an earth-based cone extending out into

space, thereby permitting a relatively simple relationship between

refraction and satellite position. Such is not the case for dispersion

since the locus of constant dispersion is a more complicated surface in

space. However, by converting the dispersion measurement to an equivalent

ref:action measurement, one can make use of the latter's relatively simple

cone geometry to relate the dispersion measurement to satellite position.

A fairly good indication of the equivalent refraction is obtained by

inverting Equation 2-45:
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R = 1 (2-47)
r K-1 - Kb6 [r s sin(Er) - (re/2b) 2 ]

The error relationship between dispersion and its equivalent refraction

is obtained by differentiating either Equation 2-47 or 2-45:

d K-i C2

dR = E d6 = K d6 (2-48)

where G is the denominator of Equation 2-47 and C is the denominator of

Equation 2-45.

Substituting the last expression in Equation 2-48 for dR in Equation

2-33 yields the following relationship between the errors in dispersion,

atmospheric density modelling and vacuum tangent height:

1 
2dh = H + H re/2,) 2 -r u 2 - d6 (2-49)

[(He r K-1
PO.

Substituting b = 1/H and assuming rssin(Er) - I. M Is, one can use

the relationship of Equation 2-46 to re-express the bracketed expression of

Equation 2-49 so that

2i

dhv dp. KR (C+K-i) d 2-0Po 0  K Rr (K 1)

.5
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The sensitivity of dispersion measurement to satellite position (e.g.,

hv) is:

K b R (K -i)
-_ 2 (2-51)

2
v C (C +K - 1

Figure 2-8 shows how well the sensitivity values generated by Equation 2-51

compare with those obtained by differentiating the ray trace data with a

"5-point derivative" formula for a satellite at two different altitudes.

Note that the ray trace curves in Figure 2-8 contain some high frequency

oscillation due to differentiation of the discrete data associated with a

multi-layered atmospheric model consisting of 72 levels between 14 km and

100 km altitude. Also note that the maximum sensitivity for the

higher-altitude satellite occurs at a higher grazing height than that for

the lower-altitude satellite. By differentiating Equation 2-51 it is found

that the maximum sensitivity occurs when

c 2 ..
2 + + K -i = 0 (2-52)

For the wavelengths being considered in this report (X = 0.35 and 0.7

microns), Equation 2-52 is satisfied when

C = -0.02485, 1.5061 (2-53)

where only the latter value is realizable. Substituting this value of C

into Equation 2-46 yields the associated value of red-wavelength refraction P

in radians (denoted as R ):
r
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r 10487 I sjn(Er) - Ir/ l (2-54)
r.

If an exponential atmosphere is assumed, the grazing height (hg), where

maximum dispersion sensitivity occurs, may be determined by substituting

I

Rr for R in Equation A-6:

h h - i In 0,48787 (2-55)
g 0 b 1 Fre

b kr Po ( 21rb r)2 [r sin

where po is the density specified at some arbitrary height (ho ) in the

exponential atmosphere. Using po = 40.084 g/m3 at ho = 25 km from

the 1976 U.S. Standard Atmosphere, the values of hg computed for

satellite altitudes of 1,000 and 20,000 km are 23.8 and 36.3 km,

respectively.
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SECTION 3

ERROR ANALYSIS

3.1 Introduction

3.1.1 Objectives

In choosing an error model, the following objectives were considered.

1) Determination of the navigator's steady state performance

(position error standard deviations) assuming certain baseline

parameters for its measurement capabilities.

2) Sensitivity analysis of the navigator to changes in the number

and direction of star sightings and to changes in atmospheric

modeling.

3) Estimation of the navigator's settling time (time for the

position error standard deviations to approach their nominal

steady state values).

Review of these goals led to the selection of a linearized Kalman filter.

This filter is fundamentally the same algorithm as would be incorporated in

the estimator of the actual navigation system.

3.1.2 Filter

The Kalman filter is a numerical algorithm which recursi'ely estimates

the current state of a system, x, given external measurements, z. The

algorithm incorporates models of the system and measurement dynamics, and

assumed statistics of system noises and measurement errors, to produce

estimates which minimize the mean-squared errors (variances) of the state
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variables. If the system is linear and its errors normally distributed,

then the Kalman filter is truly the optimal estimator (see Gelb( 1 4 )).

The discrete linearized Kalman filter, the estimator chosen for this

analysis, is shown in Table 3-1. The non-linear system of orbital motion

is linearized about a reference trajectory which nominally describes the

time history of the state variables; the state vector and covariance matrix

are then propagated along this path; this filter provides a nearly optimal

estimate of the non-linear system with considerably less computation than

more accurate non-linear filters.

A fundamental component of the Kalman filter is the covariance matrix,

Pi. The diagonal terms of Pi are the error variances of the state

variables; off-diagonal terms are the covariances between pairs of state

variables. The elements of the covariance matrix, especially the diagonal

terms, provide a yardstick for determining how precisely the filter is

estimating the state.

A very valuable property of the Kalman filter is that the error

covariance matrix can be propagated and updated without estimating the

state itself. This represents a significant saving in computer time

compared to other techniques. Such covariance analyses have become widely

accepted tools in analysing system performance.

3.2 System Description

3.2.1 States

The linearized state of the navigator may be described b seven

elements: three components of position error, three components of velocity

error and a scalar measurement bias error. These elements form the state

vector

- 56 -
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Table 3-1. Discrete Linear Kalman Filter.

System Model x k-4 1 4-1 E YN'(OQk)

Measurement Model z = h Wxt )) +k (,

Initial Conditions E x(O) Eo E x(O)x T(0) = P0

T
Other Assumptions E wv =0 for all j,k

Nominal trajectory i(t) is available

State Estimate=
Extrapolation Ckk-llk-l (+

Error Covariance P T_
Extrapolation k k-i k-1lk- 1+ k-1

State Estimate Update ++ K k(h)Wt k

- k(-x(tk)) -x k- (k

Error Covariance Update P k I - Kk'k(4tk)) ~k

Kalman Gain Matrix K Pk(-)Hk TxWtk

H T + Rk-1
H (x (tk))Pk(-)Hk(x (tk))R

=k(- tk))
Definition R k(x(tk)) = ~

-k x1(t )=X(t
-k-k
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ri
x = 6v (3-1)

6b

with the error covariance matrix

P = 4E xx} (3-2)

where 6r and 6v define the errors in the trajectory estimated by the

navigator. Their units are kilometers and kilometers/second,. respectively.

The scalar measurement bias error was introduced as. an additional

variable in the above state to account to some extent for bias-type errors

in atmospheric modeling and refraction or dispersion measurements. The

addition of this variable to the estimated state permits the navigator to

remove its effect from the estimated position and velocity. It should be

noted, however, that the addition of this state variable (and its

associated variance) adds complexity and randomness to the system and so

increases the size of the position and velocity error variances compared to

the case where no bias error is present. In the present study this bias

error is treated as the overall bias error in the measurement of vacuum

tangent height resulting from systematic errors in atmospheric modeling and

refraction or dispersion measurements. In Section 2.4.5 the relationship

between errors in vacuum tangent height, atmospheric modeling and

refraction measurement are given for an exponential atmosphere. This

relationship indicates that a more elaborate representation Qf systematic

error could have been included in the present analysis (i.e. separate

systematic errors for density, refraction and density scale height).

However, for the purposes of this preliminary investigation, it was felt

that the use of a bias error in vacuum tangent height was sufficient.
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3.2.2 Coordinate Systems

The satellite's position and velocity may be described in

earth-centered inertial (ECI) coordinates. The z axis points north along

the Earth's polar axis, the x axis points in the direction of the vernal

equinox and the y axis completes a right-handed coordinate system. This

system is the one ultimatly used to propagate and update the covariance

matrix.

While the ECI coordinate system is convenient for computation, the

position uncertainties and update directions are more readily visualized in

terms of the satellite-centered coordinate system TNR (Tangential, Normal,

Radial) shown in Figure 3-1. In this system 2R points toward the earth

along the local vertical, uN is normal to the orbital plane and points in

the opposite direction of the satellite's orbital angular momentum vector;

HT is orthogonal to aR and u2N and is directed in the same sense as

the satellite's velocity vector. In Figure 3-1 the direction of a star

(ps) undergoing refraction can be specified in TNR coordinates by an

azimuth angle (9) and elevation angle (e) where the latter is also shown in

Figure 3-2.

The direction of satellite position update for the star in Figures 3-1

and 3-2 is given by the unit vector Hp where

-up = cos e (cos .2T + sin * 2) - sin e u r (3-3)

The relationship between the ECI and TNR coordinate systems is given by

TNR TNR ECI
r ECIr (3-4)

-59



ZENITH UNIT

SATELLITE

!LR 
ORBIT

TO EARTH CENTER

7'i-ure 3-1. Satellite-Centered Coordinate System

W

60-



Man LM a mm smam~nmomnownn.

h1

vp

ASatellite

Figure 3-2. Definition of Elevation Angle (0)

-61 -



where

unit (r x (v x r))T

C ECI  unit (v x r)T (3-5)
ECI- unit (-r) T

The transformation for the full state vector is given by

TNR c*xECI (3-6)X =C1-6

where

ECI
CTNR I 1

C ECI R(3-7)
I TNR,

L I _ _7x7

Note that the measurement bias, a scalar, is not affected by the trans-

formation of coordinates.

3.3 Propagation

3.3.1 State Transition Matrix

The state transition matrix 0(t,t0 ) permits the direct and simple

linear calculation of the state vector at time t given the state at time

to, provided that the system is unforced during that time interval.
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Thus, x(t) = (tt0)x(t 0 ) (3-8)

Similarly, the error covariance matrix P at time to may be propagated to

time t using

P(t) = (t,t 0 )P(t 0 )oT(t,t 0 ) (3-9)

Let x be the navigator's reduced state vector (position and velocity)

and 0*(t,to) be the corresponding transition matrix between time t and

to. Let

G(t) =(3-10)
rr

ia-r --rref

where

= local gravitational acceleration

rref = reference trajectory

and

F(t) = (3-11)

JG(t) 0]
66

Then ,*(t,to) is the solution of the matrix differential equation

d * *d- (t, to) = F(t)o (t, to) (3-12)

subject to the initial conditions

D (t o , t0 ) = 6x6 (3-13)
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These equations may be solved in closed form, using methods described by

Goodyear( 15 ).

The transition matrix for the full state vector x is related to the

reduced state transition matrix by

It (t t 0 )  0 06x 1

* (t, t 0 ) = -- (3-14)
06x 1 1

Note that the estimate of the measurement error bias remains constant

during the transition.

3.3.2 Process Noise

Disturbing accelerations strongly affect the long term behavior of an

orbit. Such disturbances( 16 ) are introduced by the higher-order gravity

field terms, atmospheric drag, solar pressure, etc. To correctly model

these effects in the present study would be computationally expensive and

somewhat unnecessary. Therefore, these disturbances were treated as

process noise driving the unforced continuous system, i.e.

= Fx + w (3-15)

where

x = system state vector

w = unmodeled disturbance vector
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and

3X1

W [Vi 3x1  (3-16)

0lxi
LO4'

since the noises (disturbing accelerations) directly act on the velocities

only. These noises are treated as white and unbiased, with the spectral

density Q for the discrete case given as

Q E{w T (3-17)

The propagation of the error covariance matrix is similarly disturbed

by an additive term

Pi+1 = 0 (ti+1'Iti)Pi Ti+1'ti) i(-8

where Qi is the covariance matrix of the process noise.

Formally, the transition from the ncise spectral density matrix to the

noise covariance matrix is given by

t.•+1 T
i t (t i+,T)Q(T )0 (t i+1,T)dT (3-19)

However, for small time step At this equation can be approximated by

Qi = Q t (3-20)

(see Schweppe (1 7)).
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3.4 Measurement Incorporation

The linear Kalman filter requires that the system measurements z be

linear combinations of the current state x and a random measurement error,

e.

z = H x. + e. (3-21)

The error covariance matrix Pi is updated using only the measurement

matrix Hi.

P.(() ; ri - . .)Pi(-( - K.H) + K. R.K. (3-22)1 ii 1 1i l

where

K. = P.(-)H.(H.P.(-)HT + R. (3-23)

and

R = ~e

e i. e. (3-24)

What follows are derivations of the matrices required for the

covariance update.

3.4.1 Measurement Matrix

By observing starlight refraction through the atmosphere, *the navigator

effectively measures the vacuum tangent height with an unknown measurement

bias b. Thus

z = h + b (3-25)
v
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The bias and its variance may not be the same everywhere and some

consideraticn is given to its treatment in Section 4.3.1.3.

According to Equation 2-21

h = r • u - r (3-26)
v -p e

where

r = satellite position

re = earth radius

and aup is the update direction (Equation 2-20) given by

u = Unit [(u x (r x u (3-27)
-up s 

By definition

H = z -(3-28)
;x

where x is the non-linearized state vector

x = (3-29)

Lb

Since z is not a function of velocity

0I
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Solving for the measurement gradient with respect to position:

ah T u TV = r+ - Ui-r -up (3-31)
ar -

It can be shown, however, that the gradient vector is

normal to r, i.e.
\ ar o (3-32)

Therefore,

H U u 01x 3  1 (3-33)

1x7

3.4.2 Measurement Error Matrix

Since the navigator's measurement is a scalar, the measurement error

matrix Ri (see Equation 3-24) contains only the single variance

associated with the error in estimating the vacuum tangent height hv,

i.e.

2 ,
R. (3-34)1 v 

-68-

... -. 4, -.r - b 4



SECTION 4

IMPLEMENTATION

4.1 Programs

Two different computer programs, arbitrarily designated as SHADI and

SHAD2, were developed to implement the Kalman filter described in Section

3; each used a different means to simulate star sightings and orbital

trajectories. By comparing the results of SHADI with those of SHAD2, one

can judge the validity of the assumptions made in each.

4.1.1 SHADI

SHADi used the the following approximations in its implementation of

the navigation filter.

1) The satellite's orbit is Keplerian.

2) Times and directions (in satellite-centered coordinates) of

measurement stars (those appearing close to the horizon) were

randomly generated.

3) The covariance matrix was propagated and updated only at

uniformly spaced time intervals.

SHADI did not utilize a catalog of star positions in terms of celestial

coordinates. Rather, the program selected a number of random sighting

times where the satellite would observe a grazing star. For each sighting
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time, an independently generated random star direction was assigned which

placed the star at a specified tangent height when viewed from the satel-

lite. The sighting times and star directions were generated in a manner which

is consistent with the probability distribution expected of measurements

taken from a uniformly distributed star field.

4.1.2 SHAD2

SHAD2 used more realistic assumptions for the navigator than SHADI.

1) Any trajectory can be used, provided the positions and velocities

are given for the times of interest.

2) Star directions for measurements were obtained from the Yale

University Catalog of Bright Stars.

3) The covariance matrix was propagated between irregularly spaced

time intervals corresponding to the times between actual

measurements.

4.2 Progagation

4.2.1 Trajectories

Both SHADI and SHAD2 required a nominal trajectory (time, position, and

velocity of the satellite at frequent intervals) about which 'to propagate the

err, r covariance matrix. Auxiliary programs were used to generate the

trajectory files for the two filter programs. For SHAD2, use was made of the

Goddard Trajectory Determination System (GTDS)(18 ) to generate satellite

trajectories perturbed by the dominant higher-order gravitational term J2-
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4.2.2 State Transition Matrices

Propagation of the covariance matrix between updates was accomplished

with state transition matrices computed for the time steps required. A

technique developed by Goodyear (1 5 ) was used to calculate the state

transition matrices for the Keplerian orbits of SHADI. P

Since the direct calculation of state transition matrices for the

perturbed orbits of SHAD2 was considered to be very costly, a method of

patched conics was utilized to obtain an approximate solution. Insofar as

propagation of the covariance matrix is relatively insensitive to small em

changes in the state transition matrix, this approximation was considered

to be satisfactory. Given a description of a perturbed orbit with closely

spaced time steps, the method of patched conics was used as follows. The 01

instantaneous position and velocity of a satellite describes a Keplerian 'p

orbit which is tangent to the satellite's actual path at that point. Over

a short time interval this instantaneous conical path, or osculating orbit,

remains very close to the perturbed trajectory. By calculating the

osculating orbits for all known points in the perturbed orbit, one can

approximate the true trajectory with one consisting of a series of conical

orbits patched together ( 19 ). The state transition matrices along these %

osculating orbits are readily calculated with the technique employed in

SHADI.

4.2.3 Estimation of Process Noise

As previously indicated in Section 3.3.2, a process nois4 was included

in the linearized filter to statistically account for the un-modeled

disturbing accelerations due to air drag, solar pressure and the higher

order gravitational terms. This noise was estimated by first sampling the
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disturbing accelerations indicated by the GTDS program at discrete times

throughout the satellite orbit and estimating the variances of the samples

in TNR coordinates. A spectral density matrix Q was then formed, with all

of its non-zero diagonal elements being assigned the value of the largest

variance component. This assured that the probability distribution of the

process noise would be spherical and large enough to conservatively model

the system. From the spectral density matrix, the process noise covariance

matrix Qi was calculated as shown in Equation 3-20.

It should be noted that the process noise used in this study included

the effects of all higher order gravitational terms of the Goddard Earth

Model Number 9 (GEM9) except for the dominant oblateness term J2 whose

effect was already included in the generation of satellite trajectories for

SHAD2. This process noise was used in the generation of performance

results for both SHADI and SHAD2. Consequently, the performance results of

SHADi are those for the case where the precession effect of J2 is assumed

to be non-existent, while those of SHAD2 do include its effect. An actual

navigator would probably incorporate the dynamics of J2, and possibly

some additional terms, in the state transition matrix and treat all other

disturbances as process noise. However, for the purposes of the present

covariance analysis, it was felt that the performance results would be

fairly indicative of what one can expect.

4.3 Measurements

4.3.1 Measurement Parameters
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4.3.1.1 Number of Stars

The number of star sightings, and hence the number of covariance

updates, performed during an orbital revolution is primarily dependent on

the brightness limits of the navigator's star sensor. As the navigator's

sensitivity is improved, more stars can be acquired for navigation. This

can be simulated in the program by varying the number of star positions

made available for covariance updates.

SHADi requires the user to enter the number of stars in the sky which

are detectable (i.e. of sufficient brightness) to the navigator. SHADi then

estimates the average number of stars that the navigator can expect to view

during a single orbital rotation and generates the appropriate number of

star sighting directions.

SHAD2 employs the Yale University Catalog of Bright Stars to describe

its star field and uses brightness limits to decide whether or not an

individual grazing star will be sighted. If not, the program will continue

covariance propagation through the time that a star sighting might have

been made.

4.3.1.2 Azimuth Span

The azimuth span specifies how much and what part of the horizon will

be scanned for grazing stars (see Figure 4-1). Increasing the width of

this span places more stars within the navigator's field of view. For

applications requiring extreme accuracy this span should encompass 360

degrees. In most cases the azimuth span may exclude the forward section of

the horizon since rising stars are more difficult to locate before they

leave the atmosphere. Stars near ±90 degrees azimuth will take much longer
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to go into refraction than those close to the orbital plane. In the time

taken to observe one star near ±90 degress it might be possible to observe

two or more stars closer to the orbital plane. For this reason, most

simulations use an azimuth span between 135 and 225 degrees.

# a #1* * # a 1800 (MAXIMUM•
(MINIMUMI . AZIMUTH)
AZIMUTH) +, &

AZIMUTH SPAN

ORBI.

t RAING ATMOSPHERE

-T

Figure 4-1. Description of azimuth span

4.3.1.3 Measurement Bias

The grazing latitude, *, is the earth latitude over which a particular

ray of grazing starlight makes its closest approach to the surface. It is

given by

sin up• i z(4-1)
-up -z
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where 1z earth's polar axis

and

u up Unit [u x r a u (4-2)

Both SHADi and SHAD2 use the grazing latitude to model the measurements of

atmospheric refraction in one of three different ways:

1) Bias Everywhere

The program treats every measurement as if it contained a bias which

can be estimated. Measurements may be taken over any part of the

earth. The measurement matrix H is always given by

T
[H U 01 1] = (4-3)p UP i x 3 li1 1 1x 7

2) No Bias, Measurements Limited

Refraction measurements are limited to those for which the grazing

latitude falls within a band about the equator given by ±*max (see

Figure 4-2). Within this band atmospheric behavior is understood

well enough to model measurements without a bias. Any star found to

graze outside of this band will be ignored for measurements.

Since a measurement bias is not observed during a measurement, the

measurement matrix becomes

H up 0ox3 3 T ox7 (4-4)
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Without the observation of a bias, no cross correlation can be built

up in the covariance matrix between the measurement bias variance

and other state variances. The value chosen for the initial

measurement bias variance can be arbitrary since it will not be

changed by a measurement nor will it affect the other state

variances. Effectively, the state of the system is reduced by one

state variable.

NORTH- /

POLE SATELLITE

POINT OF

TANGENCY

EQUATOR.

Figure 4-2. Measurement restrictions due to grazing latitude

In the cases tested, the maximum grazing latitude was set at 30

degrees for this option.
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3) Latitude-Dependent Bias

Refraction measurements are made everywhere but measurements made

outside of a specified equatorial band Ymax are treated as

containing a bias while those inside are not. For an individual star

sighting, if its grazing latitude is within the equatorial band then

rT0H = [u 0, (4-5
p, 1x313  

1 1x7

otherwise TH[.u, , 'i] (4-6)
up 1x31 1x7

4.3.2 Simulated Star Field (SHADI)

4.3.2.1 Description

The brighter stars visible from the Earth are distributed almost

uniformly throughout the sky. This makes it possible to greatly simplify the

simulation by updating the filter with artificially generated star

sightings. The artificial star field should yield approximately the same

navigator performance as an actual star field.

These random, artificially generated star positions need not be specified

in inertial space. Suppose we have arbitrarily assigned a star. This star

must be placed in the sky so that its light will graze at the desired tangent

altitude. For convenience, let the star direction ys be given in TNR

coordinates. If we assume a spherical earth, the horizon elevation angle 8

is specified by the satellite and vacuum tangent altitude (see Figure 3-2): a

star's position can thus be defined given a sighting azimuth %
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An artificial star field can be created by randomly assigning azimuths

and a schedule of sighting times (tantamount to specifying positions in the

known reference orbit). If desired, this data can be converted to

represent star positions in ECI coordinates.

4.3.2.2 Probability Distribution

To simulate a realistic star field, the schedule of star sightings

(sighting times and azimuths) must be consistent with the presumption that

bright stars are uniformly distributed over the sky. Therefore, the

probability distributions used to randomly generate sighting times and

azimuths must be such that they conform to a uniform star field when

converted to ECI coordinates.

Circling about the earth, the navigator observes stars near the horizon

moving into and out of refraction. If its orbit is circular the navigator

has a constant expectation of viewing a grazing star anywhere in the

orbit. In this case, the orbital angular positions of the satellite when

star sightings occur will be uniformly distributed between 0 and 360

degrees. These angular positions can be readily converted into times when

the navigator observes a star.

As the navigator scans the horizon within its azimuth span, it will, in

the course of one orbital period, survey a sector of the celestial sphere

(see Figure 4-3). It can be readily shown that the fraction of the

celestial sphere scanned is given by

Fr = sine sin 2 - sin (4-7)
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Figure 4-3. Sector of the celestial sphere scanned by navigator.

where fI and *2 are the lower and upper limits of the azimuth span.

Clearly, if we specify that there shall be N stars on the celestial sphere

of sufficient brightness to be used by the navigator, then, on the average,

only N* of these will actually be usable during one orbital period where

N = Fr N (4-8)
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The distribution of star sightings as a function of azimuth may be

derived by observing that the probability of observing a star within a

narrow annular segment of width d4 is proportional to the area of that

segment; the differential area depends upon its azimuth. It can be shown

that the probability density of star sightings as a function of azimuth is

= Cos (49-,

P(O) sin - sin (4-9)

02a

The user specifies the number of stars, N, which he wishes to place in

the artificial sky and the azimuth span, 01 and 02, of the sensor. For

a given orbit, SHADI estimates the number of stars that the sensor can

expect to find within its azimuth span and generates that number of star

sightings and directions for each orbit.

4.3.2.3 Sighting Times -

Sighting times were created by generating random numbers uniformly

distributed between 0 and 1. The random numbers are used to specify the

fraction of the orbit traveled from the satellite's initial position. For

a circular orbit, this fraction readily gives the time of flight since the

satellite last passed its initial position. Sighting times for additional

revolutions were obtained by adding the appropriate number of orbital

periods.

4.3.2.4 Azimuth Angles

To generate random azimuth angles such that they have the probability

distribution given in Equation (4-9), use was made of the probability

function Pr (0 <i). Let us consider the random variable
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s P Pr < (4-10)

where is one of a random ensemble of azimuths having the desired

distribution. By definition, s. is uniformly distributed between 0 and 1.

Furthermore, every value of s uniquely specifies a value for 0 by

= sin [s( ) (sin 0- sin 01 ) + sin 1]

0 10 2 "

+ (4-11)
2< <2

If we choose random numbers between 0 and 1 and assign them to s, the

corresponding values of * will have the proper distribution. For SHADI, ;f

N random angles would be generated in this manner and paired with the

randomly generated sighting times for each orbital revolution.

4.3.3 Real Star Field (SHAD2)

4.3.3.1 Star Catalog

The Yale University Catalog of Bright Stars lists 9091 stars according

to position, type, and visual magnitude. From this catalog, a new catalog

of 362 stars was created which contained those stars having a brightness of

at least fourth magnitude as seen by an S-20 star sensor.

4.3.3.2 Estimation of Sighting Times

To estimate the time when a satellite can expect to see a star rise or

set, the star's position was first converted to the orbital coordinate
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system (1, 1je, ih) shown in Figure 4-4. The catalogued star's

position as a unit vector us in ECI coordinates can be converted to

orbital coordinates by the transformation

.T

-p
* .

u = T u (4-12)
-S -e --S

.T

where ip, i_e and ijj are unit vectors defining the directions of the

orbital coordinate axes in ECI coordinates. From this one can define the

star's direction in terms of an orbital right ascension a (measured from

the perigee direction, 1) and orbital declination 6 (measured from the

orbital plane) as follows:

= tan S s e  (4-13)

= tan -1 u *2 + u 2 (4-14)
•t . [ e pI

8I
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Figure 4-4. orbital coordinates for star direction
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For a particular orbit, the horizon elevation angle e is given by

(re + hv)(1 + e cos f) (4-15)

where

re = mean Earth radius

hv - vacuum altitude of starlight

p = semi-latus rectum of orbit

e = orbital eccentricity

f = true anomaly (satellite angular position with respect to perigee)

To place the Earth directly between the satellite and the star, the

satellite should be 180 degree from the projection of the star direction

onto the orbital plane, i.e.

f =a + 7 (4-16)

Substitution of this value of f into Equation 4-15 yields a value for 0

which if greater than the star's orbital declination 6 implies that the

star will rise and set at the vacuum altitude hv (see Figure 4-5). The

angle 6 shown in Figure 4-5 describes the angular half-width of the chord

formed by the passage of a star behind the Earth. By spherical

trigonometry
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GRAZING STAR GRAZING STAR
(SETTING) (IIG

Figure 4-5. Selection of grazing stars

Cos X. =Cos 8/cos 65 (4-17)

or, using the results of Equation 4-15,

F 2
1 [1 + hv)(1 + e cos f') 2 e

1o _ (re ________ (4-18)

In terms of the satellite's orbit (see Figure 4-6), fs and fR determine

where the satellite should be in order to observe a particular star either

rise or set at the tangent altitude hv. For a rising star

f CL + 1 +) (4-19)
R
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Figure 4-6. Orbital positions for observing a grazing star

and for a setting star

fs = + -) (4-20)

The satellite angular position where the grazing star is observed may be

solved recursively using Equations 4-18 and 4-19 or 4-20. From this the

time for observing the star is calculated.
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4.3.3.3 Effects of Orbital Precession

The estimate of satellite sighting times developed above presumes a

stationary Keplerian orbit for at least one revolution. One can

approximate the precise sighting times for a perturbed trajectory by

considering only the effects of the zonal harmonic term J2. Since J2

dominates all other effects for low earth orbits, this corrected sighting

time should assure that when the indicated star is sighted from a perturbed

trajectory the vacuum altitude obtained should be very close to the one

desired.

The presence of J2 causes the orbit to precess about the Earth's

polar axis. The amount of this precession during a single orbit is given

by

= - 37r J 2 (req/P) cos i (4-21)

I'

where

r.

J2 = gravitational potential term

req = equatorial radius of the Earth

p = semi-latus rectum of the orbit

i = orbital inclination

To correct for orbital precession after each orbit, the orbital

coordinate unit vectors (., ie, ih) used in Equation 4-12 were

rotated about the Earth's polar axis by the amount given in Equation 4-21.
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SECTION 5

NAVIGATION PERFORMANCE RESULTS

5.1 Introduction

Performance results were generated for three different satellite orbits

which are considered to be fairly representative of those used today. All

of the orbits were circular and had the following distinguishing

characteristics:

Type Orbit Altitude(km) Inclination(deg)

Low Orbit 915 65

GPS 20,242 63

Geosynchronous 35,866 0

The sensitivity of performance to variation in measurement error and

number of star sightings is presented for all of the above orbits.

However, the effect of variation in other parameters is shown only for the

low orbit and can be considered to be somewhat similar for the other

orbits.

In most cases, only "setting" stars were used for navigation (i.e.

stars in the aft direction of satellite motion). Such stars can be

acquired before they undergo refraction which is much easier than acquiring

stars coming out of refraction. However, since there are some performance

benefits in using both setting and rising stars, data was also generated

for this situation so that one can weigh those benefits against the

additional difficulty in system design.
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All star sightings for position update occurred when the ray grazing

height was 25 kilometers. As previously indicated in Section 2.4.5, each

star/horizon measurement was treated as an equivalent vacuum tangent height

measurement so that the errors in atmospheric density modeling, and in

dispersion or refraction measurement, could be expressed in common units of

meters without being concerned with the relative contributions of each.

Most of the performance results were generated with a baseline measurement

error of 70 meters (one sigma) in vacuum tangent height, although some data

was generated for other values.

The effect of a bias-type measurement error was also included in the

study and was treated as an additional state parameter to be updated by the

Kalman filter. Again, no strong distinction was made between the relative

bias error contributions made by errors in atmospheric modeling and in

dispersion or refraction measurement. However, most individuals feel that

the major contributor will be atmospheric density modeling, and that

systematic bias-like errors in atmospheric modeling will occur over

temperate and polar regions. Most of the performance results are for the

case where a bias error is present for all observations outside + 30

degrees latitude. At the start of each navigation run, the uncertainty in

the bias estimate was generally assumed to be 100 meters (one sigma).

Preliminary studies indicated that larger initial bias uncertainties (up to

500 meters) had little effect on the final results.

It should be noted that the present treatment of a systematic

atmospheric density error as only a bias type error is probably not the
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best approach since one would expect systematic changes in the error as a

function of season and geographical location. However, for the purposes of

this study, it was felt that an equivalent bias in vacuum tangdnt height

would be sufficient.

Three different measurement bias options were employed in the study and

are as follows:

Option 1 - All measurements have no bias.

Option 2 - All measurements have the same bias which is to be.estimated.

Option 3 - All measurements within a specified latitude band (+ Tmax)

have no bias while those outside this band have a common bias

which is to be estimated.

5.2 Low Earth Orbit

5.2.1 Introduction

The low-earth orbit selected for study was a circular orbit of 915

kilometers (497 nautical miles) altitude and 65 degrees inclination.

Performance results were generated using programs SHADi and SHAD2 where

SHAD1 propagated the covariances along a Keplerian orbit and SHAD2 included

the effect of orbital precession due to the earth's zonal harmonic term
J2"

All navigation runs were for a time of flight of ten hours (w 5.8

orbits). At the start of each run the uncertainty of eaci. component of

satellite position and velocity was usually 1000 meters and 1 meter per
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second, respectively, although other values were sometimes used with very

little effect on navigation performance after the first orbit of operation.

In addition, these uncertainties were initially assumed to be uncorrelated

which is seldom the case in real practice and, when included, usually reduces

the early transients in the state estimates.

The navigation runs performed with SHAD1 used a time integration step size

of 30 seconds. Using the program GTDS in the manner indicated in Section

4.2.3, a value of 2x10 - 1 5 kilometers/second 2 was obtained for the non-zero

terms of the process noise spectral density matrix(Q). For a time step of 30

seconds, the corresponding values of the non-zero terms of the process noise

covariance matrix (Qi) were 6x10- 4 kilometers2/second2 .

A typical example of the performance obtained during a navigation run is
el

show in Figure 5-1 where the time histories are given for the standard

deviations of the tangential, normal and radial components of satellite

position error. The results are for the case where sightings were made on 40

different setting stars per orbit and the stars were restricted to be within

45 degrees of the orbital plane (i.e. the observations were restricted to an

azimuth look-angle (9) of 180 + 45 degrees about the local vertical where zero

azimuth is defined to be in the direction of satellite motion). During the

early part of the first orbit it is seen in Figure 5-1 that large position

error transients occur because of the initial (and uncorrelated) position and

velocity uncertainties selected for the navigation run. However, as the

navigation filter continues to process measurements, the errors are brought

under control during the latter portion of the first orbit and start

approaching steady-state levels. Note that at least one of the error

components is oscillatory in nature which is actually the case for all three

-92-



.4

components and is inherent in the dynamics of this problem. Since these

components happen to oscillate asynchronously, it would be ambiguous to

quantify the navigator's performance at a specific time such as at the end

of the navigation run. A more consistent and representative performance

indication is obtained by performing a linear least-squares fit of the data

over the last orbital period and extrapolating the resulting line to the

final time. For the case in Figure 5-1, the average estimates of the

tangential, normal and radial components at the final time are 39, 43 and

11 meters, respectively.

o/
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TIME (I-11) I

0.0 1.0 a0 3.0 4.0 5.0

Number of Orbits

Figure 5-1. Time history of navigation position error standard deviations
(low-earth orbit)
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5.2.2 SHADI Performance Results

5.2.2.1 Bias Option 1 (No Bias)-

Before presenting data for those cases containing measurement bias it

is felt that some indication should be provided of the performance when

there is no bias, and no attempt is made to estimate a bias along with

satellite position and velocity. For this option the effect of increasing

the number of star sightings per orbit was analyzed for two different

sighting-azimuth restrictions.

Figure 5-2 shows the effect of increasing the number of star sightings

per orbit when only stars within the azimuth sector of 180 + 45 degrees are

used. In addition, this figure provides some indication of the effect of

restricting the observations to certain latitudinal regions df the world.

The data on the left of the vertical dashed line was obtained for

observations only within + 30 0 latitude, while that on the right was for

observations within + 67.50 latitude. Note that most of the performance

improvement is achieved after making 30 to 40 star sightings per orbit.

Also note that for 30 or more star sightings per orbit there is little to

be gained by going from a latitude restriction of + 300 to + 67.50. This

result tends to support the idea of using only observations within some

latitude band about the equator where there is less random and systematic

variation in stratospheric density.

Figure 5-3 shows the sensitivity of performance to number of star

sightings per orbit when sightings are made in both the 180 +. 450 and + 450

azimuth sectors (i.e. both setting and rising stars are used). It is seen,

by comparing Figure 5-3 with Figure 5-2, that little improvement is

achieved by including the + 450 azimuth sector except for the normal compo-

nent of position error when the number of star sightings per orbit is

small. -
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Figure 5-3. Sensitivity of performance to number-of star s ightings when
measurements are made fore and aft (low-earth orbit).
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5.2.2.2 Bias Option 2 (Bias Everywhere)

A fixed bias error in all of the observations can be due to one or more

"of the following:

1) Fixed dispersion/refraction measurement error.

2) Fixed time reference error.

3) Incorrect knowledge of Earth's radius.

4) Fixed atmospheric density error for all observations;

The first two error sources can be minimized by proper system design and

the third is considered to be minor. However, the fourth error source is

considered to be the most important and likely source because of present

limitations in man's knowledge of atmospheric behavior with season,

geographic location, etc. Meteorological observations of the stratosphere

near the equator indicate a fairly well-behaved and predictable density

with little chance of a meaningful bias error. As one departs from the

equator by more than 20 or 30 degrees latitude, there are larger systematic

changes which have some meaningful uncertainty. For this reason Option 3,

presented later, is felt to be more representative of the situation than

Option 2. However, as a matter of interest, some performance data was

generated for Option 2.

Figure 5-4 shows the results with Option 2 when star sightings are made

within the azimuth sector of 180 + 45 degrees. There was no latitude

restriction on the star sightings. Note that the performance in estimating

the normal and radial components is essentially the same as Option 1 (see
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Figure 5-4. Sensitivity of performance to number of star sightings when
all measurements are biased (low-earth orbit).
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Figure 5-2). However, the tangential position error of 80 to 110 meters is

twice as large as that for Option 1. The reason why the tangential

performance is not as good is due to the difficulty of the navigation

filter in distinguishing between a tangential position error and a

measurement bias error when using only star sightings in the aft

direction. A larger azimuth sector in the aft direction and/or more orbits

of data processing would undoubtedly result in further improvement of the

tangential component, however, a more dramatic improvement may be achieved

by also using forward star sightings. Use of both forward and aft star

sightings enables the navigation filter to easily distinguish between the

tangential position error and a measurement bias error. This is clearly

demonstrated in Figure 5-5 where star sightings were made in the 180 + 450

and + 450 azimuth sectors. The overall prerformance is equivalent to that

obtained with no measurement bias and demonstrates the ability of the

filter to handle a bias.

5.2.2.3 Bias Option 3

Option 3 assumes that all measurements within a specified latitude band

(+ Tmax) have no bias while those outside have a common bias which is to

be estimated. As previously indicated, this option is considered to be the

most representative of the three options if the bias is associated with

atmospheric density modeling.

Figure 5-6 shows the performance with Option 3 when the azimuth sector

is 180 + 450 and a bias exist only outside + 300 latitude. NQte that the

performance is similar to that obtained with no bias anywhere (Figure 5-2)

even though the star sightings are restricted to the 180 + 450 azimuth

sector. It would appear that no sightings are required on rising stars

(i.e. stars in the forward azimuth sector) if there is no atmospheric bias

error within + 300 latitude.
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Shown in Figure 5-7 is the effect of changing the azimutl' sector size

for star sightings in the aft direction. The results are for 40 star

sightings per orbit and no bias within + 300 latitude. Note that only the

normal component is significantly improved by using a sector size larger

than 180 + 45 degrees. This is as expected since star sightings at larger

azimuth angles with respect to the orbital plane provide more normal

positional information. However, it should also be noted that stars at

large azimuth angles require more time to enter the atmosphere than those

near the orbital plane.

A baseline measurement error of 70 meters (one sigma.) was used to

generate all of the prior performance data. Figure 5-8 shows the effect of 4.

varying this error for the case of 40 star sightings per orbit, no bias

within + 300 latitude, and an azimuth sector of 180 + 450. It is seen that 4

the effects are fairly linear, with the radial error remaining small and

the other two components being about half as large as the measurement

error.

5.2.3 SHAD2 Performance Results

The program SHAD2 provides the capability to model satellite orbits

more accurately and to base star observations upon real star positions.

Since the zonal harmonic coefficient J2 dominates all other disturbing

acceleration coefficients in low-earth orbit, it was decided to study the

effect of this term alone on navigation preformance. The star positions

were taken from the Yale Bright Star Catalog.

Figure 5-9 shows the effect of varying the number of star sightings per

orbit with SHAD2 for the case where the other conditions were the same as

those used to generate the SHADi results of Figure 5-6 (i.e. star sightings
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Figure 5-7. Sensitivity of performance to azimuth sector size

(low-earth orbit).
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Figure 5-8. Sensitivity of performance to measurement error
(low-earth orbit).

-104-

% V ".f.ff~ttf.**. f. f . - . 't -t- t- t* ~ * ~ tffff t f



70 orbit Altitude = 500 nmi

Orbit Inclination = 65 0

Meas. Error = 70 m

60 Azimuth Sector = 180 0 +45 0

No Latitude Restrictions

Fixed Bias Outside + 30 0 Lat.
E-4 50

Z 40

Z 3 Tangential
0

W 20
0 V Radial

10

0 -4II
20 40 60 80 100

STAR SIGHTINGS PER ORBIT

Figure 5-9. Sensitivity of performance to number of star sightinqs when

using SH-AD2 program (low-earth orbit).

-105-



restricted to an azimuth sector of 180 + 458 and a measurement bias only .

outside + 300 latitude). It is seen that the results are about the same as

those in Figure 5-6, thus providing some validity to the results of SHADI.

These results were also confirmed by M. Slutsky using the Kalman filtering

options of GTDS. As a matter of interest, the left-most set of data points in

Figure 5-9 represent the performance near the end of the time history in

Figure 5-1.

5.3 GPS Orbit

The second orbit analyzed in the study is similar to that of the Global

Positioning System (GPS) and had an altitude of 20,242 km, orbital inclination

of 630, and period of 12 hours.

All of the performance data generated for this orbit was obtained using

program SHADi. The covariance matrix was propagated at 150 second intervals

for 100 hours (8.3 orbits). Using the program GTDS in the manner indicated in

Section 4.2.3, a value of 1.4 x 10-17 kilometers2/second2 was obtained

for the non-zero terms of the process noise covariance matrix (Qi).

A typical example of the performance during a navigation run is shown in

the time history of Figure 5-10. The results are for the case of 26 star

sightings per orbit with no sightings outside an azimuth sector of 180 ± 900,

no observations outside + 30
° latitude and no bias error. It is seen that the

initial transients settle out after one orbit of data processing.

Figure 5-11 shows the effect of changing the number of star sightings per

orbit when all other conditions remain the same as those of Figure 5-10. The

right-most data set of Figure 5-11 represents the final average values of the

time histories in Figure 5-10.
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Figure 5-10. Time history of navigator position error standard deviations
(GPS orbit).

* Figure 5-12 shows the effect of changing the number of star sightings

per orbit when all other conditions are the same as those of Figure 5-11

~except that observations are also permitted outside + 300 latitude but

contain a bias error which is to be estimated. No latitude restrictions

permit observations to be made throughout the orbit, however, it is seen

that, for 20 or more star sightings per orbit, the performanc is only

slightly better than that of Figure 5-11 where all of the observations were

inside _± 300 latitude.
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Figure 5-11. Sensitivity of performance to number of sightings when all t.

measurements are within + 300 latitude (GPS orbit).
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Figure 5-12. Sensitivity of performance to number of sightings when all
measurements outside + 300 latitude have a bi~s (GPS orbit).
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The sensitivity of performance to measurement error is shown in Figure

5-13 for the case of 10 star sightings per orbit and for an azimuth sector

of 180 ± 450. Note that the normal component of position uncertainty is

now larger than the tangential component primarily because the azimuth

sector is smaller than that used for the results in Figures 5-11 and 5-12.

5.4 Geosynchronous Orbit

The third orbit analyzed in the study was a geosynchronous orbit which

lies within the equatorial plane and has an altitude of 35,866 km and

orbital period of 24 hours.

All of the performance data generated for this orbit was obtained with

the SHADI program. The covariance matrix was propagated at 300 second

intervals for 200 hours. Using the program GTDS in the manner indicated in

Section 4.2.3, a value of 1.5 x 10-20 kilometers2/second2 was obtain-

ed for the non-zero terms of the process noise covariance matrix (Qi).

All of the performance results presented for the geosynchronous orbit

are for Bias Option 3 (see Section 5.2.2.3) where all observations within a

specified latitude band (± 30 ° ) have no bias while those outside have a

common bias which is to be estimated.

Figure 5-14 shows the navigator performance as a function of the number

of star sightings per orbit. Since the satellite velocity is much slower

than at low-earth orbit, the amount of divergence in the error covariance

matrix between measurements is also much slower. Thus, the reduced number

of grazing stars seen from this altitude does not sacrifice performance N-

compared to low-earth orbit.

1.
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Figure 5-13. Sensitivity of performance to measurement error (GPS orbit).
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Figure 5-14. Sensitivity of performance to number of star sightings
(geosynchronous orbit).
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The sensitivity of performance to measurement error is shown in Figure

5-15 for the case of 10 star sightings per orbit. Here again, it is seen

that the sensitivities are similar to those obtained for the GPS orbit,

with the normal component of position uncertainty being about twice as

large as the tangential component.

-

'
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Figure 5-15. Sensitivity of performance to measurement error

(geosynchronous orbit).
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APPENDIX A

Derivation of ha(R, po) for an Exponential Atmosphere

The density of an exponential atmosphere is completely defined by the

following: 'a

P = P exp H(A-)

where p is the density at altitude h, po is the density specified at some

arbitrary altitude ho, and H is the specified constant for density scale

height. According to Equation 2-6 the approximate refraction for this

atmosphere is as follows:

R - k(X)p re (A-2')g H %

where hg is the grazing height of the refracted ray anid pg is the

density at that height. Since re >> hg the refraction may be expressed %9 %'

as follows:

2wf re  A 3
R =k(A)pg[ e] (A-3)

Using Equation A-I the density pg can be expressed as % a.

P =p exp I- - (A-4)

-115-

.~ ~ ft W~ V.. t ~



which when substituted for pg in Equation A-3 yields

R - k(X)poLHe exp 0 (A-5)

Inverting the above expression gives

h - h - H ln(R) + H n P e 2 (A-6)
g o0

According to Equation 2-18 the relationship between the apparent height

(ha) and grazing height (hg) for a spherically stratified atmosphere is

ha = 1 + k(X) pg] hg + k(X)pg re  (A-7)

Since the term k(X)pg is never any larger than about 2 x 10- 5 for

altitudes above 20 kilometers, it may be neglected in the first expression

on the right of Equation A-7 so that

h - h + k(Xlpg r (A-8)a g ge

Substituting for pg from Equation A-3 and for hg from Equation A-6

gives

r *el H re
h (R, p) h - H In(R) + H In k(X)po| .. - + R
a o 2W[ (A-9)
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