Dynamical Analysis of Molecular Decay at Spherical Surfaces
by
P. T. Leung and Thomas F. George

Prepared for Publication
in
Journal of Chemical Physics

Departments of Chemistry and Physics
State University of New York at Buffalo
Buffalo, New York 14260

August 1987

Reproduction in whole or in part is permitted for any purpose of the
United States Government.

This document has been approved for public release and sale;
its distribution is unlimited.
Dynamical Analysis of Molecular Decay at Spherical Surfaces

P. T. Leung and Thomas F. George

Office of Naval Research

Chemistry Program
800 N. Quincy Street
Arlington, Virginia 22217

PREPARED FOR PUBLICATION IN JOURNAL OF CHEMICAL PHYSICS

A dynamical approach to the classical decay rates for molecules near a dielectric sphere is presented through the application of the diffraction theory for a dipole antenna established by Van der Pol and Bremmer. This theory is somewhat simpler than but formally equivalent to that established by Ruppin and preserves a feature which is closer to the method of the theory established by Chance, Prock and Silbey for a flat surface. The results, when compared to those obtained from the static image theory, show that this latter theory can be very inaccurate for large molecule-sphere distances or highly-conducting spheres, consistent with previous findings for surfaces with perfect flatness or small roughness.
DYNAMICAL ANALYSIS OF MOLECULAR DECAY AT SPHERICAL SURFACES

P. T. Leung and Thomas F. George
Departments of Chemistry and Physics & Astronomy
239 Fronczak Hall
State University of New York at Buffalo
Buffalo, New York 14260

ABSTRACT

A dynamical approach to the classical decay rates for molecules near a dielectric sphere is presented through the application of the diffraction theory for a dipole antenna established by Van del Pol and Bremmer. This theory is somewhat simpler than but formally equivalent to that established by Ruppin and preserves a feature which is closer to the method of the theory established by Chance, Prock and Silbey for a flat surface. The results, when compared to those obtained from the static image theory, show that this latter theory can be very inaccurate for large molecule-sphere distances or highly-conducting spheres, consistent with previous findings for surfaces with perfect flatness or small roughness.
I. INTRODUCTION

The theoretical aspect of the problem of molecular lifetimes in the vicinity of a flat or rough dielectric (often metallic) surface has recently received considerable attention (see, for example, Refs. 1-3). It is known that for molecules a few Angstroms away from the surface so that the "quantum spreads" of both the surface electrons and molecule can be neglected, the classical phenomenological (CP) approach works adequately.\(^4\) Within the CP approach, there are the exact dynamical (energy transfer) theory (ET) and the approximate but simpler static image theory (IT). In spite of the fact that the exact theories (ET) have been available for some time now for both the cases of flat\(^1\) and spherical\(^5\) surfaces, the simpler theories (IT) have still been applied many times to cases of flat\(^6\), spherical\(^7\) and other kinds of rough\(^2,3\) surfaces. Justification has then been given based on the argument that provided the molecule-surface distance (d) is much shorter than the emission wavelength (\(\lambda\)), IT should be as accurate as ET.\(^1,7,8\) In a recent paper,\(^9\) however, we clarified (with reference to a flat surface) that the condition d \(\ll\) \(\lambda\) is not sufficient and that IT can be very inaccurate for highly-conducting substrates, even though such a condition is realized as in most experimental situations. In a subsequent paper,\(^10\) we also established a dynamical theory (ET) for rough surfaces. Moreover, the theory established in this latter paper is a perturbative theory which is restricted to be practical only for very shallow roughness.\(^10\)

There remains, therefore, the problem of a dynamical theory for molecules decay on a surface of large roughness. For this case, however, it has been found that a tractable model is obtained by replacing the rough surface by a collection of spheres (or spheroids) and allowing the radii of the spheres to be arbitrarily large. Usually, in this approach, the exact solution for an isolated sphere is worked out and then a cluster of neighboring spheres is considered to model the
actual surface. Nevertheless, in most of this previous work except that by Ruppin, IT has been applied with again the erroneous justification for conditions satisfying \(d \ll \lambda \).

In this paper, we shall reformulate the problem for the dynamical decay rates of an admolecule near a dielectric sphere in a different but simpler approach. Our main goal here is to compare the dynamical treatment with the static one (IT) and to point out that this latter theory can be very inaccurate for highly-conducting spheres in spite of \(d \ll \lambda \). Since the formal theory (in a different approach) has already been available, here we shall present the detail of only the simplest case, namely, a perpendicular dipole, for the sake of illustrating the points we have addressed above.

II. VAN DEL POL-BREMMER THEORY

In spite of the theory worked out by Ruppin who applied the dipole scattering theory of Kerker et al which is in turn based on the Lorenz-Mie theory, one always wonders whether such a problem can be formulated in a fashion which is closer to the original dynamical theory established by Chance, Prock and Silbey (CPS) for flat surfaces through the application of the Sommerfeld theory for radiating dipoles above a "flat earth". Indeed, some time after Sommerfeld published his work, Van del Pol and Bremmer had generalized Sommerfeld's problem to the case of a spherical earth and had shown that the Sommerfeld theory is recovered in the limit where the radius of the earth becomes infinitely large. To apply their theory to our problem, we recall that the Hertz vector for the region outside the sphere is given (in spherical coordinates) by
\[\hat{n} = \pi(r, \theta) \hat{r} \]

\[\hat{r} \frac{-ikR}{R} + \hat{r} i\mu k \sum_{n=0}^{\infty} (2n+1)R_n \frac{j_n(ka)}{h_n^{(1)}(ka)} h_n^{(1)}(kd) h_n^{(1)}(kr) P_n(\cos \theta) , \quad (1) \]

where we have assumed a molecular dipole \(\vec{\mu} \) located at \((d_0, 0, 0) \) and oriented radially above a sphere of radius \(a \). \(k \) is the emission wave number, \(R \) is the distance measured from \(\vec{\mu} \), and \(j_n, h_n^{(1)} \) and \(P_n \) are the usual spherical Bessel functions and Legendre polynomials, respectively. The spherical reflectance \(R_n \) in Eq. (1) is given by \(^{16} \)

\[R_n = \frac{(1+n)(1-\varepsilon) + cka[j_{n+1}(\varepsilon ka)/j_n(\varepsilon ka) - j_{n+1}(\sqrt{\varepsilon} ka)/\sqrt{\varepsilon} j_n(\sqrt{\varepsilon} ka)]}{(1+n)(\varepsilon-1) + cka[j_{n+1}(\sqrt{\varepsilon} ka)/\sqrt{\varepsilon} j_n(\sqrt{\varepsilon} ka) - h_{n+1}^{(1)}(ka)/h_n^{(1)}(ka)]} , \quad (2) \]

where \(\varepsilon(\omega) \) is the complex dielectric constant of the substrate sphere. By considering only the reflected field and using the expression for the radial electric field \(^{16} \)

\[E_r(r, \theta) = (k^2 + \frac{\partial^2}{\partial r^2})(\frac{\varepsilon}{d} \cdot \text{n}) , \quad (3) \]

we obtain finally the reflected field at the dipole site in the form

\[E_r(d, 0) = i\mu k \sum_{n=0}^{\infty} R_n \frac{j_n(ka)}{h_n^{(1)}(ka)} [h_n^{(1)}(kd)]^2 \frac{n(n+1)(2n+1)}{d^2} , \quad (4) \]
and the G-function in this dynamical theory as

\[G_{ET}(\omega) = \frac{E_x(d,0)}{\mu} . \]

(5)

The total (i.e., both nonradiative and radiative transfer) molecular decay rate in the presence of the sphere is then given by1-3

\[\gamma_{ET} = \gamma_0 \left(1 + \frac{3}{2} \frac{q}{k^3} \operatorname{Im} G_{ET} \right), \]

(6)

with \(\gamma_0 \) being the rate for a free molecule and \(q \) the quantum yield of the emitting state, respectively. The results obtained in Eqs. (4)-(6) are mathematically equivalent to those obtained by summing Eqs. (27) and (33) in Ruppin's paper, except that Eq. (4) here is derived and expressed in a somewhat simpler manner, since it does not contain any integrals involving the Bessel functions and there is only one complex reflectance coefficient appearing in the final expression. We have checked numerically that our results have reproduced identically the results in Fig. 1 of Ruppin's paper. For the case of parallel dipoles, the results can be obtained similarly by introducing two Hertz vectors17 and again, one expects somewhat simpler results obtained as compared to Ruppin's Eqs. (28) and (34). In the following, we shall compare Eqs. (4)-(6) with the static image theory and assess better the limiting case provided by this latter theory.

III. LIMIT OF THE IMAGE THEORY

It has been widely argued that for \(d \ll \lambda, E_x \) in Eq. (4) can be replaced by the static image field given by18
\[E_r^i(d,0) = \mu \sum_{n=1}^{\infty} \alpha_n(\omega) \frac{(n+1)^2}{d^{2(n+2)}} \]

(7)

where the n-pole polarizability \(\alpha_n(\omega) \) is given by\(^{12} \)

\[\alpha_n(\omega) = \frac{n(\varepsilon-1)}{n(\varepsilon+1) + 1} a^{2n+1} \]

(8)

The G-function may then be defined accordingly \((G_{IT} = E_r^i/\mu) \), and \(\gamma_{IT} \) will be just as in Eq. (6) with \(G_{ET} \) replaced by \(G_{IT} \). We have carried out numerical calculations for both the distance dependence and the frequency spectrum of both \(\text{Im} G_{ET} \) and \(\text{Im} G_{IT} \) for a sphere of radius \(a = 100 \) Å. Figure 1 shows the distance variation of \(\text{Im} G \) according to both \(ET \) and \(IT \) at \(\omega = 2.5\text{eV} \) \((\lambda \approx 5000 \) Å\) for both a silver and a nickel sphere.\(^{19} \) It is not difficult to see that under these conditions where \(d \) and \(a \) are much smaller than \(\lambda \), \(IT \) can be very inaccurate for a highly-conducting sphere such as Ag, though for the case of a Ni sphere, \(IT \) and \(ET \) are fairly close to each other for this range of distances. This is consistent with the previous observations for a flat\(^9 \) and a shallow grating\(^{10} \) surface, and the physical origin for such a phenomenon has been well explained in the previous papers.\(^9,10 \) Figure 2 shows the frequency spectrum of \(\text{Im} G \) for \(d = 500 \) Å for a Ag sphere, for which \(IT \) is expected to break down appreciably. Nevertheless, for the small region close to the surface plasmon resonance (\(-3.5 \) eV), the relative agreement between \(ET \) and \(IT \) is the best. This is in contrast to the previous comparison for the shallow grating case\(^{10} \) and may be due to the fact that for \(ka \ll 1 \), both \(ET \) and \(IT \) have a very similar resonance structure.\(^{20} \)
IV. CONCLUSION

In this paper, we have presented an alternative formulation of the dynamical decay rates of molecules near a spherical surface following an approach which differs from that of Ruppin5 and stays closer to the framework of the original CPS theory for a flat surface.1 In fact, it is straightforward to show that Eqs. (4)-(6) lead back to the results for a perpendicular dipole in the CPS theory by taking the limit $a \to \infty$, $d \to \infty$, but with the difference $d-a$ kept as a finite constant.16 Furthermore, in spite of the availability of the Van del Pol-Bremmer theory which takes the advantage of the concept of the Hertz vector,16 it is interesting to note that most of the previous dynamical theories5,13,20,21 for molecule-sphere interactions are based on the Lorenz-Mie theory14 whose mathematical structure is in general more complicated. In the light of the present investigation, it seems that an alternative approach to all these previous problems based on the Van del Pol-Bremmer theory is worthwhile because of its comparatively simpler structure, as illustrated by the sample calculation in this paper. In addition, due to the fact that the present approach is more of a scalar-type expansion (in contrast to the use of the vector harmonics in the other theories), one may find it easier to generalize the theory to the case of a cluster of spheres.

We have further compared this theory with the static theory and have shown once again9,10 that, in contrast to many previous expectations,7,8,11,12 the static theory can be very inaccurate for highly-conducting (e.g., Ag) spheres, in spite of the fact that $d \ll \lambda$. Hence, all the previous work on SERS, fluorescence and other resonant absorption processes7 which has utilized image fields in their formalisms becomes inaccurate subject to the present observations, and therefore must be reformulated by introducing a dynamical description for the decay rates of the admolecules.
ACKNOWLEDGMENTS

We thank Mr. Y. S. Kim for help in computations. This research was supported by the Office of Naval Research, the Air Force Office of Scientific Research (AFSC), United States Air Force, under Contract No. F49620-86-C-0009, and the National Science Foundation under Grant No. CHE-8620274. The United States Government is authorized to reproduce and distribute reprints for governmental purposes notwithstanding any copyright notation hereon.
REFERENCES

17. See the discussion in Chapter VI of Sommerfeld's book as quoted at the end of Ref. 15.
FIGURE CAPTIONS

1. Comparison between the energy transfer theory (ET, solid curves) and the image theory (IT, dotted curves) for a (a) Ag and (b) Ni sphere at $\omega = 2.5$ eV for a range of molecule-sphere distances. The unit of G is Å^{-3}.

2. Comparison between ET and IT for the frequency spectrum $\text{Im}G(\omega)$ at $d = 500$ Å for a Ag sphere.
<table>
<thead>
<tr>
<th>No. Copies</th>
<th>Office of Naval Research</th>
<th>Attn: Code 1113</th>
<th>800 N. Quincy Street</th>
<th>Arlington, Virginia 22217-5000</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Dr. David Young</td>
<td>Code 334</td>
<td>NORDA</td>
<td>NSTL, Mississippi 39529</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Dr. Bernard Doula</td>
<td>Naval Weapons Support Center</td>
<td>Attn: Dr. Ron Atkins</td>
<td>Chemistry Division</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Code 50C</td>
<td>China Lake, California 93555</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Crane, Indiana 47522-5050</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Naval Civil Engineering Laboratory</td>
<td>Attn: Dr. R. W. Drisko, Code LS2</td>
<td>Port Hueneme, California 93401</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Defense Technical Information Center</td>
<td>Building 5, Cameron Station</td>
<td>Alexandria, Virginia 22314</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>DTNSRDC</td>
<td>Attn: Dr. H. Singerman</td>
<td>Applied Chemistry Division</td>
<td>Annapolis, Maryland 21401</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Dr. William Tolles</td>
<td>Superintendent</td>
<td>Chemistry Division, Code 6100</td>
<td>Naval Research Laboratory</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Washington, D.C. 20375-5000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ABSTRACTS DISTRIBUTION LIST, 056/625/629

Dr. J. E. Jensen
Hughes Research Laboratory
3011 Malibu Canyon Road
Malibu, California 90265

Dr. C. B. Harris
Department of Chemistry
University of California
Berkeley, California 94720

Dr. J. H. Weaver
Department of Chemical Engineering
and Materials Science
University of Minnesota
Minneapolis, Minnesota 55455

Dr. F. Kutzler
Department of Chemistry
Box 5055
Tennessee Technological University
 Cookeville, Tennessee 38501

Dr. A. Reisman
Microelectronics Center of North Carolina
Research Triangle Park, North Carolina 27709

Dr. D. DiLella
Chemistry Department
George Washington University
Washington, D.C. 20052

Dr. M. Grunze
Laboratory for Surface Science and Technology
University of Maine
Orono, Maine 04469

Dr. R. Reeves
Chemistry Department
Rensselaer Polytechnic Institute
Troy, New York 12181

Dr. J. Butler
Naval Research Laboratory
Code 6115
Washington, D.C. 20375-5000

Dr. Steven M. George
Stanford University
Department of Chemistry
Stanford, CA 94305

Dr. L. Interante
Chemistry Department
Rensselaer Polytechnic Institute
Troy, New York 12181

Dr. Mark Johnson
Yale University
Department of Chemistry
New Haven, CT 06511-8118

Dr. W. Knauer
Hughes Research Laboratory
3011 Malibu Canyon Road
Malibu, California 90265

Dr. Irvin Heard
Chemistry and Physics Department
Lincoln University
Lincoln University, Pennsylvania 19352

Dr. K. J. Klaubunde
Department of Chemistry
Kansas State University
Manhattan, Kansas 66506
ABSTRACTS DISTRIBUTION LIST, 056/625/629

Dr. G. A. Somorjai
Department of Chemistry
University of California
Berkeley, California 94720

Dr. R. L. Park
Director, Center of Materials
Research
University of Maryland
College Park, Maryland 20742

Dr. J. Murday
Naval Research Laboratory
Code 6170
Washington, D.C. 20375-5000

Dr. W. T. Peria
Electrical Engineering Department
University of Minnesota
Minneapolis, Minnesota 55455

Dr. J. B. Hudson
Materials Division
Rensselaer Polytechnic Institute
Troy, New York 12181

Dr. Keith H. Johnson
Department of Metallurgy and
Materials Science
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Dr. Theodore E. Madey
Surface Chemistry Section
Department of Commerce
National Bureau of Standards
Washington, D.C. 20234

Dr. S. Sibener
Department of Chemistry
James Franck Institute
5640 Ellis Avenue
Chicago, Illinois 60637

Dr. J. E. Demuth
IBM Corporation
Thomas J. Watson Research Center
P.O. Box 218
Yorktown Heights, New York 10598

Dr. Arnold Green
Quantum Surface Dynamics Branch
Code 3817
Naval Weapons Center
China Lake, California 93555

Dr. M. G. Lagally
Department of Metallurgical
and Mining Engineering
University of Wisconsin
Madison, Wisconsin 53706

Dr. A. Wold
Department of Chemistry
Brown University
Providence, Rhode Island 02912

Dr. R. P. Van Duyn
Chemistry Department
Northwestern University
Evanston, Illinois 60637

Dr. S. L. Bernaske
Department of Chemistry
Princeton University
Princeton, New Jersey 08544

Dr. J. H. White
Department of Chemistry
University of Texas
Austin, Texas 78712

Dr. W. Kohn
Department of Physics
University of California, San Diego
La Jolla, California 92037

Dr. D. E. Harrison
Department of Physics
Naval Postgraduate School
Monterey, California 93940
ABSTRACTS DISTRIBUTION LIST, 056/625/629

Dr. F. Carter
Code 6170
Naval Research Laboratory
Washington, D.C. 20375-5000

Dr. Richard Colton
Code 6170
Naval Research Laboratory
Washington, D.C. 20375-5000

Dr. Dan Pierce
National Bureau of Standards
Optical Physics Division
Washington, D.C. 20234

Dr. R. Stanley Williams
Department of Chemistry
University of California
Los Angeles, California 90024

Dr. R. P. Messmer
Materials Characterization Lab.
General Electric Company
Schenectady, New York 22217

Dr. Robert Gomer
Department of Chemistry
James Franck Institute
5640 Ellis Avenue
Chicago, Illinois 60637

Dr. Ronald Lee
R301
Naval Surface Weapons Center
White Oak
Silver Spring, Maryland 20910

Dr. Paul Schoen
Code 6190
Naval Research Laboratory
Washington, D.C. 20375-5000

Dr. John T. Yates
Department of Chemistry
University of Pittsburgh
Pittsburgh, Pennsylvania 15260

Dr. Richard Greene
Code 5230
Naval Research Laboratory
Washington, D.C. 20375-5000

Dr. L. Kesmodel
Department of Physics
Indiana University
Bloomington, Indiana 47403

Dr. K. C. Janda
University of Pittsburgh
Chemistry Building
Pittsburgh, PA 15260

Dr. E. A. Irene
Department of Chemistry
University of North Carolina
Chapel Hill, North Carolina 27514

Dr. Adam Heller
Bell Laboratories
Murray Hill, New Jersey 07974

Dr. Martin Fleischmann
Department of Chemistry
University of Southampton
Southampton 509 5NH
UNITED KINGDOM

Dr. H. Tachikawa
Chemistry Department
Jackson State University
Jackson, Mississippi 39217

Dr. John W. Wilkins
Cornell University
Laboratory of Atomic and Solid State Physics
Ithaca, New York 14853
ABSTRACTS DISTRIBUTION LIST, 056/625/629

Dr. R. G. Wallis
Department of Physics
University of California
Irvine, California 92664

Dr. D. Ramaker
Chemistry Department
George Washington University
Washington, D.C. 20052

Dr. J. C. Hemminger
Chemistry Department
University of California
Irvine, California 92717

Dr. T. F. George
Chemistry Department
University of Rochester
Rochester, New York 14627

Dr. G. Rubloff
IBM
Thomas J. Watson Research Center
P.O. Box 218
Yorktown Heights, New York 10598

Dr. Horia Metiu
Chemistry Department
University of California
Santa Barbara, California 93106

Dr. W. Goddard
Department of Chemistry and Chemical Engineering
California Institute of Technology
Pasadena, California 91125

Dr. P. Hansma
Department of Physics
University of California
Santa Barbara, California 93106

Dr. J. Baldeschwieler
Department of Chemistry and Chemical Engineering
California Institute of Technology
Pasadena, California 91125

Dr. J. T. Keiser
Department of Chemistry
University of Richmond
Richmond, Virginia 23173

Dr. R. W. Plummer
Department of Physics
University of Pennsylvania
Philadelphia, Pennsylvania 19104

Dr. E. Yeager
Department of Chemistry
Case Western Reserve University
Cleveland, Ohio 44106

Dr. M. Winograd
Department of Chemistry
Pennsylvania State University
University Park, Pennsylvania 16802

Dr. Roald Hoffmann
Department of Chemistry
Cornell University
Ithaca, New York 14853

Dr. A. Steckl
Department of Electrical and Systems Engineering
Rensselaer Polytechnic Institute
Troy, New York 12181

Dr. G. H. Morrison
Department of Chemistry
Cornell University
Ithaca, New York 14853
END
10-81
DTIC