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ABSTRACT

The three significant variables identified in thermo-
mechanical processing of an Al-10Mg-0.1Zr alloy to obtain
superplastic ductilities are reduction per pass, reheating
time between passes, and total strain during warm rolling at
573K. The effect of adjusting these variables on elevated
temperature mechanical properties has been evaluated and the
microstructures characterized using transmission electron
microscopy. Comparison of the differential scanning
calorimetry results with mechanical property and
microstructural data reveal that the endothermic energy
absorbed by the material, which is related to
microstructural stability, can be correlated with

superplastic behavior.
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I. INTRODUCTION

Superplasticity refers to the ability of a material to
elongate more than 200 percent in tension when it is tested
under certain combinations of strain rate and temperature.
Superplastic elongations of 500 percent are frequently
reported and values of elongation in excess of 1000 pecrcent
are not uncommon. When it was first reported by Rosenhain
in 1920, as noted by Johnson [Ref. 1l:p. 115)]), a cold-rolled
zinc-copper-aluminum eutectic alloy exhibited this
superplastic response. Superplasticity was initially viewed
as a curious observation limited to eutectic alloys when
tested under the correct laboratory conditions. However, in
1962 Underwood {Ref. 2] reviewed Soviet work; this review
caused the rest of the world to take note and investigation
into superplastic response of many materials began in
earnest. Interest has continued to increase and in the
recent past the commercial applications of superplastic
aluminum alloys has redoubled the interest and research into
this field.

The commercial applications include the ability to form
complex shapes from a single piece of material while
maintaining extremely accurate dimensions. Additionally,
the complexity and cost of the special tooling for forming

these complex shapes has been drastically reduced. The

11
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greatest impact of superplastic forming will be felt in the
aerospace industry as the requirements for fasteners and
weldments are minimized. Also, while maintaining good
mechanical properties the weight of these superplastically

formed shapes is less than that of the original component -
with its associated fasteners.

Research at the Naval Postgraduate School in the recent
past has centered on a high-Mg, Al-Mg-Zr alloy. This type
of alloy was chosen because it has a relatively high
strength, low density and can superplastically deform after
being properly processed. The purpose of this thesis is to
examine how <changing the thermomechanical processing
variables affects the superplasticity and to correlate this
information with data concerning microstructural evolution
and the stability (or lack of stability) of the
microstructure as detected by the differential scanning
calorimeter and as seen through the transmission electron

microscope.
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II. BAGKGROUND

. A. ALUMINUM ALLOYS--GENERAL
Aluminum alloys are widely used industrially and are of
special interest for military and aerospace applications due
to good strength-to-weight ratios, low density, and good
ductility. 1In general, aluminum alloys are strengthened by
solid solution, precipitation, and dispersion strengthening
mechanisms.
Solid solution strengthening occurs by a variety of
mechanisms reviewed by Meyers and Chawla [Ref. 3:pp. 387-
393] and Dieter [Ref. 4:p. 213). Precipitation strengthen-
ing, or age hardening, is designed to impede dislocation
. motion in a relatively soft, ductile material, 1like

aluminum, by a fine homogeneous dispersion of a hard

precipitate throughout the parent metal matrix. The three
basic steps to accomplish this, described in detail by
Askeland [Ref. S5:p. 281] are:

1) Solution treatment

2) Quenching

3) Aging. ~

I_g_A_A

Dispersion strengthening is accomplished, similar to
precipitation strengthening, by introducing a second phase
into the parent matrix. These disperoids, like the

precipitates, are hard particles which restrict dislocation
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motion, stabilize dislocation structures and thereby

strengthen the parent metal.

B. ALLOYING ELEMENTS *
The principal alloying addition in the material of this

research is magnesium (Mg), nominally 10 weight percent.

Since magnesium is less dense than aluminum, its addition

reduces the density of the alloy. The addition of magnesium

enhances the alloy's weldability and corrosion resistance

{(Ref. 6:p. 147] while also providing solid solution

strengthening. As reported by Mondolfo [Ref. 7:pp. 311-317]

the precipitation sequence is from a supersaturated solution

to Al + g (MggAlg) upon cooling. It is the precipitation of

this 8 phase during processing that has been a focal point

of research at NPS. .
The second element added, zirconium (2r), is present in

the amount of 0.1 weight percent nominally. This addition

results in the formation of a very fine dispersoid, ZraAlj.

This dispersoid results in grain refinement, raises the

recrystallization temperature [Ref. 7:p. 414] and gives rise

to the potential for control of recrystallization during

processing [Ref. 8:p. 2320].

C. SUPERPLASTICITY

A complete explanation for superplasticity has not been
presented. Consequently, phenomenological models have been :

proposed, of which the most widely accepted is the Sherby- R
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Wadsworth model [Ref. 9:p. 242). This model indicates that
the superplastic strain r “e is inversely proportional to
the microstructure's gr size. Identification of an
acceptable model has led to the development of prerequisites
of superplastic materials, which are [Refs. 9:p. 245; 10:pp.
3-10; 1l:pp. 324~-334; 1l2:pp. 151-152; 13:pp. 367-371]}:

1) a fine, equiaxed grain size (<10 microns) with
boundary misorientation sufficient to support grain
boundary sliding

2) mobile grain boundaries

3) a deformable second phase

4) a thermally stable microstructure at the deformation
temperature

5) a resistance to cavitation

6) low strain rates

7) elevated temperatures (0.5 to 0.7 Ty).
To attain these conditions requires that a method of grain
refinement be identified.

Grain size control is obtained by controlling the
effects of recovery, discontinuous recrystallization and
continuous recrystallization thét may occur upon heating
after mechanically working the material. Recovery is the
process involving the rearrangement of dislocations into
lower energy arrays, without recrystallization [Ref. 14:pp.
363-366]. This results in a boundary misorientation of less
than 1 degree, whereas when recrystallization occurs, the
misorientation typically exceeds 10 degrees [Ref. 15:p.

192]. Recovery is usually followed by recrystallization and

15
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can be either continuous or discontinuous. Continuous
recrystallization forms high angle grain boundaries by
subgrain boundary migration and coalescence [Ref. 16],
whereas discontinuous recrystallization is a process
involving nucleation and growth of new, strain-free grains. -
The discontinuous recrystallization is relatively rapid
[Ref. 16:p. 75}, but when suppressed, the misorientation
increase of adjacent subgrains via continuous recrystalliza-
tion results in a finer grain size and has been observed by
Nes [Ref. 17:p. 2055], Ahlborn et al. [Ref. 18:p. 944] and
Watts et al. [Refs. 19:p. 196; 20:p. 205] in other aluminum
alloys exhibiting superplasticity.

Prior to exhibiting superplastic response most of the
technologically important alloys require some sort of
processing. The three significant variables affecting the
superplastic response of this alloy during thermomechanical
processing (TMP) have been identified as final true strain,
the reduction in thickness during each warm rolling pass,
and the length of reheating time between each warm rolling
pass [Refs. 21-28). The observations previously made led to
the development of a plan to investigate the effects of
changing the three variables. Final rolling true strain was

either 1.5 or 2.5, the amount of reduction per pass was

either 1 mm or 2.5 mm, and the length of the reheating time

—
»

between passes was either 4 minutes or 30 minutes. Various

s rA

combinations of these variable changes yield a number of -
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comparisons which may potentially isolate the effect of each

of the variables.

D. DIFFERENTIAL SCANNING CALORIMETRY

To investigate microstructural evolution of a material
the differential scanning calorimeter (DSC) can be used to
determine changes that occur. Figure 2.1 schematically
shows how the DSC operates. Both the sample of interest and
the reference sample are heated or cooled at programmed
rates while the differences in power required to maintain
the programmed rate are monitored. If the sample of
interest requires more power to maintain the programmed
heating rate than the reference sample, then the reactions
that are occurring in the sample are enthothermic;
conversely, less power requirement indicates that an
exothermic reaction is occurring and releasing energy..

The DSC has been used as an investigative tool that has
accurately identified the dissolution, precipitation, and
recrystallization ([Refs. 29~32] reactions occurring in
various alloys. The DSC traces that are produced during a
heating (or cooling) run can be used to determine the
specific heats or energies of the reactions that are
occurring ([Ref. 33]. Since the DSC has been used to
investigate the differences between alloys [Ref. 34], it
should be very informative when specific mechanical

processes are compared in the same alloy.
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E. TRANSMISSION ELECTRON MICROSCOPY

The DSC 1is capable of identifying microstructural
changes that occur, but is not able to distinguish between
which type of endothermic or exothermic reaction is
occurring. Microscopy has been used in conjunction with the
DSC previously [Ref. 35] by using the microscopy to investi-
gate the changes detected by the DSC. The transmission
electron microscope (TEM) is able to distinguish between
fine microstructural differences and can give an indication
of the magnitude of the misorientation between adjacent
substructures. This makes the DSC-TEM combination an

investigative tool that can yield significant results.

F. SUMMARY

The variety of TMP variable combinations results in a
potential experimental matrix that 1is unmanageable;
judicious selection of variables can indicate the effect of
each variable. When significant variations in mechanical
properties are observed the DSC can detect the nature of the
reaction and the temperature at which it occurs. Then, the
TEM can be used to accurately identify the microstructural

evolution occurring.
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III. PERIMEN ROCEDUR

A. MATERIAL

The nominal composition of the aluminum alloy was .
reported as Al-10%Mg-0.1%Zr (wt. %). The ALCOA Technical
Center, Alcoa Center, Pa, produced the direct-chill cast
ingot using 99.99% pure aluminum alloyed with commercially
pure magnesium, aluminum-zirconium master alloy, titanium-

" boron addition to control the as-cast grain size, and, for

oxidation control, beryllium as 5% Be aluminum-beryllium
master alloy [Ref. 36). The alloy's chemical composition is

shown in Table I.

TABLE I
ALLOY COMPOSITION (WEIGHT PERCENT)
Serial No. Si Fe Mg Zr Ti Be Al

5572826 0.02 0.02 9.89 0.09 0.01 0.0003 Balance

B. THERMOMECHANICAL PROCESSING
The as-cast ingot was sectioned into billets with a

cross section of 31.8 mm (1.25 in.) square and a length of

95.3 mm (3.75 in.). Each billet was then solution treated
and upset forged at 440°C which follows the procedure
developed by Johnson [Ref. 37), modified by Becker [Ref.

38], and refined, concurrently with Wise [Ref. 28). This

20
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hot working resulted in a reduction of about 70%, or a true
strain of about 1.3.

After upset forging the material was processed
differently by warm-rolling and changing the three
processing variables as illustrated in Table II. The
potential number of different variable combinations was
initially reduced to 5, concurrently with Wise [Ref. 28],
and then increased to the 6 different processes shown in
Table 1II. The additional process used allowed for an
increase in the ability to isolate the effects of each
variable. The various processes, TMP1 through TMP6,

tabulated in Table II, provide a wide range of comparisons.

TABLE II

- THERMOMECHANICAL PROCESSING SCHEDULE

TMP FINAL ROLLING REDUCTION PER REHEATING TIME % ELONGA-

STRAIN PASS (MM) PER PASS (MIN) TION
1 2.5 1 30 480
2 2.5 2.5 4 260
3 2.5 1 4 470
4 1.5 1 4 168
5 1.5 2.5 4 250
6 2.5 2.5 30 525

21
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C. SAMPLE PREPARATION

- ey 7T

Elevated temperature tension test specimens were
fabricated as described by Alcamo [Ref. 22]. The samples :
for use in the DSC were preparec »f a size that could also i E
be used in the TEM. Thin disc-shaped specimens were
prepared by wafering the as-rolled material, parallel to the
long transverse direction, to a thickness of about 0.40 mm: ¥

and then further reduction, by a fine grit silicon carbide

paper, was accomplished to a thickness of about 0.15 mm.

Then, discs of a diameter of 3.0 mm were produced by using a %
through~type punch. 3
This size sample was adequate for use in the DSC, é
weighing about 5 mg. After the information was obtained g
from the DSC these samples were prepared for investigation g
in the TEM. Foils for the TEM were prepared by a twin-jet ) s
polishing in a Struers Tenupol 2 Electro-Thinning unit. A E
setting of 15 vdc was used, and a solution of 25% HNO; in R
methanol cooled to -20°C was the electrolyte. N
}

D. MEASUREMENTS AND DATA REDUCTION i

1. si es
Elevated temperature testing was conducted following
the procedures outlined by Becker [Ref. 38] and Hartman

{Ref. 24], with minor modification. An Instron Model TT-D

= -

with a Marshall Model 2232 three-zone furnace, for

= . "
2, 4t

temperature control, was used to conduct the testing. The

[4
ol ad

crosshead speeds used in this research ranged from 0.05
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mm/min (0.002 in/min) to 127 mm/min (5.0 in/min), which
correspond to strain rates ranging from 6.67 x 10”2 1/sec to
1.67 x 10~1 1/sec.

Elongation was determined by measuring the marked
gage section before and after testing. Percent elongation
was determined by measuring the difference between these
gage marks and dividing by the initial length. The Instron
strip chart measured applied 1load (lbs.) vs. chart
displacement. From the strip chart raw data points of lcad
and chart displacement were taken using the "floating of
slope" and computer program (see Appendix A) developed by
Grider [Ref. 25]. Data for the peak elongation attained in
the tension testing of each TMP are included in Table II.

2. alorim
- The calorimetric measurements were ¢taken with a
Perkin-Elmer DSC-2C Differential Scanning Calorimeter with a

Perkin-Elmer Scanning AutoZero accessory attached. These

results were recorded with a two-pen Perkin-Elmer Model 56
strip-chart recorder. The samples of interest were placed

in an aluminum pan with an aluminum cover. Since the

prepared samples were small enough [Ref. 33], the reference

;g
W~
material was simply an aluminum pan and cover, the same one tb
”

being used for all DSC runs made. The sample and reference W
-y

holders were kept in a dynamic atmosphere of dry nitrogen ;g
-"\ .

flowing at 20 ml/min. The temperature range investigated $§
L4

&t

O

R

l\. -
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was 323K-723K (50°9C-450°C) at a programmed rate of 40K/min

-
!

el

for both heating and cooling.

Three runs were made for each sample. The DSC trace
from the third run was assumed to represent the response of
the solution treated condition in which no further
microstructural changes would be expected for the heating
(and cooling) rates employed. The data for the endothermic
and exothermic reactions were obtained by taking the
difference between the third trace and the trace of the
first run. This is a slight modification to the two-run
approach developed by Andrews [Ref. 27]. This change was
made to ensure that the data collected reflected the
reactions that did occur during the heating cycle. These
data were then reduced to heat capacity vs. temperature data

as prescribed by the manufacturer [Ref. 33].

E. MICROSCOPY
After the samples had experienced the heating cycles of
interest they were prepared for examination in the transmis-

sion electron microscope, as described in Section C of this

chapter. A JEOL JEM-100CX 1II transmission electron
microscope was used to examine the microstructure and
produce the micrographs presented in this work. The

accelerating voltage used throughout this work was 120 kV.

o . o Ry
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IV. RESULTS_AND DISCUSSION

- This chapter will report the results obtained in this
research on the effect of the three thermomechanical
processing variables on superplasticity. Three distinct
areas of results are: first, mechanical properties observed
in tensile testing: second, differential scanning
calorimeter (DSC) measurements of the energies involved in
various reactions that occur in the samples when they are
heated to elevated temperatures; and, third, transmission
electron microscopy (TEM), to characterize the microstruc-
tural evolution that occurs in heating to elevated

temperatures.

A. MECHANICAL PROPERTIES

Mechanical testing at elevated temperatures was conduct-

ed to investigate the deformation characteristics of proc-
esses TMP1 through TMP6. As previously described in Chapter
IIT, tension testing was conducted at 300°C while varying
nominal strain rates from 6.67 x 10~° 1/Sec to 1.67 x 10~1
1/Sec. The stress vs. strain results of the tension tests
are presented graphically in Figure 4.1 for TMP2 and the

stress vs. strain plots for the other processes are included

in Appendix B. The data for the true stress observed at 0.1

hY

)

plastic strain and the percent elongation as a function of N
Y

- strain rate will be presented throughout this chapter. The b
=

-
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three processing variables investigated were total rolling
strain, reheating time between each pass during rolling, and
the reduction per pass.
1. Effect of Total Rolling Strajn (1.5 vs, 2.5)
The two different nominal strains investigated were
- 1.5 and 2.5. As indicated in Table II, TMP4 and 5 represent
warm rolling to a final true strain of 1.5, while TMP1, 2,
3, and 6 represent warm rolling to a final true strain of
2.5. From Table II it is seen that the effect of final true
strain may be observed by comparing TMP3 and TMP4 for 1 mm
reduction per pass, and by comparing TMP2 and TMPS for 2.5
mm reduction per pass.
In Figure 4.2a the effect of increasing total
rolling strain from 1.5 to 2.5 seems to produce only a
. slight increase in ductility. Figure 4.2b supports the
observed differences in ductility with the large, 2.5 mm per

pass reduction, as it shows TMP2 to be weaker than TMP5 as

well as more ductile. The second comparison of increasing
total true strain (TMP3 versus TMP4) shows an effect that is
much more pronounced with the smaller, 1 mm reduction per
pass. Figure 4.3a shows that increasing the final true
strain results in a significant increase in ductility for
the range of strain rates from 6.0 x 104 to 3.0 x 1072
1/Sec. Figure 4.3b shows a similar strength as when TMP2

and TMPS5 were compared.
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From these comparisons the actual effect of final
true strain cannot be accurately isolated. 1In each case the
increase in final true strain showed both an increase in
ductility and a decrease in strength. However, the
magnitude of the ductility enhancement of the smaller
reduction scheme (TMP3 and TMP4) is much greater than for
the large reduction process (TMP2 and TMPS5). The primary
difference between these comparisons is that TMP3 and TMP4
have experienced more time at the warm rolling temperature
than TMP2 and TMPS. Consequently, the next variable that
will be investigated is the reheating time between each warm
rolling pass.

2. Effect of Reheating Time Between Passes (4 vs. 30
Min)

Two values of reheating times between warm rolling

passes were investigated: 4 minutes and 30 minutes.

Comparison of Figures 4.4 and 4.5 reveals that the increase
in reheating time between passes resulted in significant
changes in ductility and strength.

In the 1 mm per pass processes (Figure 4.4) the
increased reheating time between the passes caused the peak
ductility to increase very slightly (from 470% to 480%).
With increased reheating time, however, there is a signifi-
cant ductility increase seen at lower strain rates and also
a much wider range of strain rates over which superplastic
behavior was observed. The 2.5 mm per pass processes

(Figure 4.5) similarly showed a wide strain rate range over
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which superplastic behavior was observed when reheating time
was increased. However, the most significant shift due to
the increased reheating time was a dramatic increase in
ductility over the entire range of strain rates
investigated. The magnitude of the increase in ductility
when TMP2 and TMP6 are compared suggests that the reheating
time between each warm rolling pass is the most significant
variable. Since there is the additional variable of the
total time which the sample has experienced the rolling
temperature, seen when Figures 4.4 and 4.5 are compared, it
is apparent that when the reduction per pass is increased
the length of reheating time between each pass must also be
increased to obtain the superplastic behavior desired.

Also, the third variable, reduction per pass, needs to be

- isolated and investigated.
3. [o) i vs. 2.5

The two different reductions per pass investigated
were 1 mm and 2.5 mn. When the reduction per pass is
increased from 1 mm to 2.5 mm (at 4 minutes reheating time)
the ductility is dramatically decreased (Figure 4.6).
However, when the reheating time is increased to 30 minutes
the greater reduction per pass condition (TMP6) shows a

slight increase in ductility (Figure 4.7a) and exhibits

lower strength (Figure 4.7b) when compared to the lesser

'I

A

reduction per pass condition (TMPl). This indicates, again, v,
that the most significant variable considered is the ﬁl
g
ozl
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reheating time between warm rolling passes. When Figure

4.6a is compared to Figure 4.7a it is obvious that to obtain
superplastic behavior with large reductions per pass, the
reheating time between passes must also be increased.
4. Summary

Each of the three variables investigated cause
discernible shifts in ductility. Increasing the total true
strain from 1.5 to 2.5 caused an increase in the ductility.
This increase was much more pronounced in the material that
was reduced by 1 mm per pass than in the samples reduced by
2.5 mm per pass. Increasing the reheating time from 4 to 30
minutes caused a significant increase in ductility over a
wide range of strain rates. These increases were much more
significant in the material that was reduced by 2.5 mm per
pass than the samples reduced by 1 mm per pass. Increasing
the reduction per pass from 1 mm to 2.5 mm caused a decrease
in ductility in the material that was allowed 4 minutes
reheating time between passes, but caused an increase in
ductility in the samples that were reheated 30 minutes
between passes. All of these observations indicate that
superplastic response may be obtained to differing degrees
by varying final true strain, reheating time between passes
and the amount of reduction per pass.

The specific effect of each variable on superplastic
response cannot be isolated and studied independently.

However, the single most important variable appears to be

36
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the reheating time between warm rolling passes. In each
case when the amount of strain a sample experiences is
increased, the superplastic response is enhanced when the

- amount of reheating time is also increased.
Superplasticity is enhanced by grain refinement.
Grain refinement in these Al-Mg alloys has been proposed
[Ref. 39] to result from continuous recrystallization of an
initially non-recrystallized microstructure. This is
essentially a recovery process, i.e., the initially high
dislocation density recovers to form subgrain boundaries
which coalesce in turn to form higher misorientation
boundaries. This process was thought to occur mainly during
the heating prior to superplastic testing and in response to

the large dislocation densities attained in the penultimate

- and final passes. Thus, combinations of processing
variables which raise the number of dislocations available
for continuous recrystallization should result in a refined
grain size and enhanced ductility. This 1is, in fact,
observed for total rolling strain; increased strain resulted
in increased subsequent superplastic ductility. Also,
larger reductions per pass result in enhanced superplastic
ductility, especially at the longer reheating times.

A short reheating time should also aid in retaining
a high dislocation density to provide for finer recrystal-
lized grains. This was not observed; a longer reheating

time generally resulted in higher superplastic ductility or
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in broader strain rate ranges for such ductility. This
result can only be interpreted in terms of a model including
continuous recrystallization during the warm rolling process
and requiring time in excess of four minutes between passes

for the heavier reduction per pass materials.

i.

A high dislocation density alone, in conjunction
even with prolonged annealing after the completion of
rolling, is not sufficient; as noted by Grider [Ref. 25], a
process including large reduction per pass, large total
strain and a short reheating time was only marginally
superplastic and annealing for one hour at 300°C resulted in
little apparent improvement in ductility. The data of this
research show clearly that similar total time at temperature
with the more lengthy reheating time between warm rolling
pass will result in a much improved superplastic ductility.
The subsequent analyses by DSC (Differential Scanning
Calorimetry) and TEM (Transmission Electron Microscopy) are

intended to assess further this conclusion.

B. DIFFERENTIAL SCANNING CALORIMETRY

Due to the number of variables investigated, several
comparisons of results were developed. The significant
effects of each ;rocessing variable identified in the
mechanical testing stage of this research were discernible,
but not quantifiable. The Differential Scanning Calorimeter
(DSC) was chosen as a second investigative tool to be used

to further understand the effects of the processing
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variables. In the DSC the microstructural events that occur
during heating can be identified as either endothermic or
exothermic reactions. Consequently, when a reaction occurs
within the microstructure of the material (like recovery,
recrystallization or second phase dissolution) the DSC will
be able to detect these changes and produce results that
indicate how the magnitude of each effect varies between the
differently processed materials. The plots of the data
obtained from the processes investigated by the DSC are
included in Appendix C.

The first point noted was that there was an endothermic
peak observed in all of the five differently processed
materials investigated. Process TMP5 was not included in

the DSC investigation because the low final true strain

. samples were only marginally superplastic. Each of the
peaks occur within a relatively narrow temperature range
(3559C to 390°C) which indicates that a significant portion
of the energy absorbed by the sample is used for the
dissolution of the B phase. This observation is supported
by the fact that the reported solvus temperature for the B

phase is about 360°C in a 10 pct Mg Al-Mg alloy ([Ref. 7].

The positions of the endothermic peaks are indicative of the

ey B P ¥
+

approximate temperature at which a transition occurs [Ref.

33)], the observed peaks indicate that a transition occurs at

AN ITIE 2

about 360°cC. Additionally, similar endothermic peaks have “
L] "

been reported [Refs. 31,32,34,39] within this temperature ‘A
A

o,
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Each of these

range for a variety of aluminum alloys.

authors report the reason for the endothermic peaks to be

the dissolution of precipitates. Comparing these results

with Figure 4.8 indicates that a ¢ phase solvus temperature

of 360°C is reasonable since this is near the solvus

temperature of a binary Al-10 Mg alloy, about 360°cC.
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Figure 4.8 Partial Aluminum-Magnesium Phase Diagram
with TMP Region Indicated
1. ot i i 5 Vv 5
The first comparison considered, as in the previous
section, is the effect of total true strain the material has

experienced during the warm rolling. Increasing the total

strain increases the dislocation density so that when the
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elevated temperature testing is performed the recovery and
the continuous recrystallization that occurs at the test
temperature should cause the production of a fine
microstructure. Since recovery and recrystallization are
energy-releasing reactions, the DSC will indicate that an
exothermic reaction is taking place. A fine microstructure
results in a large number of grains and since superplastici-
ty is exhibited via grain boundary sliding, the microstruc-
ture should be able to support superplastic ductilities if
the microstructure is also stable. This microstructural
stability can be seen, in a relative sense, when the
magnitudes of the areas under the exothermic peaks are
compared.

The increased total strain may be so severe that
significant microstructural damage may be introduced by the
cracking of the hard Al,2r precipitates, as proposed by Wise
[Ref. 28], which then provide sites for cavitation and
subsequent early failure during the tension test. This type
of microstructural damage is not representable as an
endothermic or exothermic reaction and cannot be detected by
using the DSC. Consequently, this investigation is limited
to the actual, observable changes in energy required by or
provided by the microstructural evolution upon heating. 1In
Figure 4.9 a comparison of the effect of increasing the
final true strain from 1.5 (TMP4) to 2.5 (TMP3) shows that

this increased strain increases somewhat the amount of
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endothermic energy required to drive the reactions that
occur in the sample during heating. The magnitude of this
increase possibly could be related to increased stability or
to differing amounts of intermetallic B (AlgMgs) precipi-
tated. Also, TMP3 exhibits a slight exothermic reaction
; which may indicate recovery during heating at temperatures
up to the rolling temperature. Further investigations are
limited primarily to the effects of other variables on the
samples that have experienced a final, nominal, true strain
of 2.5.
2. Effect of Reduction Per Pass (1 mm vs, 2.5 mm)
The effect of increasing the reduction per pass was
beneficial for the shorter reheating time, according to the
ductility data presented previously. If these differences
. are caused by an evolution of the microstructure during

heating to the tensile test temperature, then the DSC should

be able to identify at what temperature the changes occur.
Differences are observed when TMP2 and TMP3 are compared, as
shown in Figure 4.10. TMP2 exhibits an endothermic peak at
about 355°C followed by a smaller peak at about 385°cC. A
different situation is observed in TMP3, which exhibits a
plateau at 355°C and a significant endothermic peak at about
3859C. Andrews [Ref. 27] reported the same results when a
similar comparison was made between large reduction material
and a 1lightly reduced material. These results are

consistent since the only difference between TMP2 and TMP3

43

L LA i P Sy



|
m_
:
:
:
2
:

€ANL pUe 24Nl S9SS9001d 103 aanjexadud], *sa Atoede) 3esy jo yderm Q1 2InbTd

(AAVIDIINID) AYNIVIAdWNAL

orv omw 00F% 0BE 09t OPE 0ZE 00€ 08 092 O¥2 02 002 08T 091 OFI G2DO!T
i ! ~ 4 | { | t { ' 1 1 i 1
| \ 1
o .
__ i 1 _ _ ' _ |
i ! _ ! _
- 4w\ { — N 7 T _AIDDJ
e |
N |
l\ll._y..,...::L.i ll.m —_— L_.I Ll ! : -
PR . ) . M LT
v ! . X ! i '
' .,/_ , ' _ _ ' ! . A
BN N A B L L
S U R B A B S I R
i U . | _h L
| \ m X / _ _ _ _ i . _
SR AN SR N 2 4_ : P Lo
T T AT : i d T 1 T N
Y \ ! \_ __ m ; w _ i _
\ i ;o : i { i ~ | _
L S LA B R P b _
| . 3 .. W.T if . A—x : P N i !
P / R m ~ _ T
7 | |
R
w .. _ 1 edNL
| | | o cdNL
| o | b ANIDAT
! j ; !
r——t H

ROOWMATY IR Tadh duy e bt

\

[9) ]

o

o

[y ]

S
[
]

-

= =

=
]
>
by

— \y

o >

SN
[
—

o

0..A

o~
o]

=

o

QD2

o |
A

S’

w

=)

(=

(&)

1]

o

o

=

=

44

[
’
A

AN

Y

o)

LMW%:&&)




T O S T P I PR T T IR RN RN (e v e e e B e e

is that TMP2 was reduced 2.5 mm on each warm rolling pass
(more heavily reduced) whereas TMP3 was reduced only 1 mm
per pass (light reduction).

Since the areas under both curves are similar, one
would expect the microstructures to be comparable and
resultant superplastic responses the same. However, TMP2
had a peak ductility of 260% and TMP3 had a peak ductility
of 470%, indicating that the area under the DSC curves are
not conclusive as a tool in predicating the potential for
superplastic ductilities.

The suggestion by Andrews [Ref. 27] to account for
the variations in the endothermic peaks was that there may
be a morphological difference in the phase produced by the
different processes. Although the establishment of the

. composition or morphology of the phase is beyond the scope

of this work, the additional experimental work with TMP2 and

TMP3, shown in Table III, consisting of annealing (TMP200
and TMP300) and recrystallization at 440°C followed by aging
at 300°C (TMP240 and TMP340), indicate that a difference
does exist between the unprocessed material and the material
that has experienced a thermomechanical process. Figure
4.11 shows that the rolled and annealed material has
endothermic peaks at 370°C (TMP300) and 380°C (TMP200) at
about 345~350 J/kg-K, whereas the rolled, recrystallized and
aged materials have endothermic peaks at 405-410°C of 320

J/kg-K (TMP340) and 345 J/kg-K (TMP240). The shift of the

v
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TABLE III

HEAT TREATMENT SCHEDULES FOR TMP2 AND TMP3

TMP PROCESS TIME AT 440° (HR) TIME AT 300°C (HRS)
2 200 0 42
2 240 2 40
3 300 0 42
3 340 2 40

peaks in each TMP is about 30°C, which is significant enough
to indicate that there is a distinct difference between the
rolled and the undeformed materials. This difference is
most likely due to differences in the B phase, either in
morphology or a metastability of the deformation-induced B
when compared to the thermally-induced B.

This apparent difference in the type of { requires

further investigation. To try to identify differences in
the precipitates the two previously mentioned heat
treatments (annealed at 300°C for 42 hours and recrystal-
lized followed by aging at 300°C for 40 hours) were compared
(Figures 4.12 and 4.13). These comparisons show that a
proposal to deconvolute the doublet endothermic peaks
observed in TMP2 and TMP3 into two separate curves is not
unreasonable since they appear as though they could result
from some combination of the two different types of the 8
precipitate. The plots of the heat treated materials appear

to include a different portion of the curves resulting from

46
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the as-rolled materials. So the possibility exists that the
production of either of these as-rolled plots could be
accomplished by combining two separate endothermic
dissolution reactions, which is possibly attributable to the
deformation-induced and the thermally-induced B, and some
combination of exothermic reactions (recovery and either
continuous or discontinuous recrystallization).

An additional comparison of the effects of reduction
per pass is available when a comparison of the DSC plots for
TMP6 (large reduction) and TMP1l (small reduction) are made,
as shown in Figure 4.14. 1In both of these cases there are
two endothermic peaks, as also observed in TMP2 and TMP3.
The major difference seen when TMP6 and TMP1l are compared is
that the magnitude of the 1lower temperature endothermic
peaks are significantly less than the peaks observed at the
higher temperature. The fact that the two different
endothermic peaks exist in each case supports the
proposition that superposition of the effects of the
differing B phase morphology or its metastability and

various exothermic reactions are potentially the cause of

the doublet peak curve shape.

The significant and consistent observation noted is
that the second endothermic peak of the heavy reduction
material occurs at higher temperatures and are of a lesser
magnitude in each comparison. This indicates that the most

significant contribution of the reduction per pass is that,
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as the reduction per pass is increased, the second of the
endothermic peaks occurs at a higher temperature and the

amount of energy to drive the reaction is decreased. This
decrease is also indicative of a decrease in the stability

of the microstructure and one would expect the ductility to -
also decrease. However, this is not what is observed since

TMP6 shows a higher peak ductility than TMP1.

When the area under the DSC traces of TMP1l and TMP6
are compared, it is apparent that TMP6 has the more stable
microstructure and should, therefore, exhibit the greater
superplastic response, which it does. Consequently, to
predict the superplastic response from the DSC data one
would have to say that the second endothermic peak appears
to be a good indicator of the microstructural stability.
However, by itself it 1is inconclusive and requires <the
additional information provided by the calculation of the
area under the DSC curve to be more accurate. Although this
is not exact it is a possible predictor for the expected

superplastic response.

The effect of the reduction per pass on the samples'
superplastic response cannot be isolated. Additionally,
there is no strong evidence to support a specific reason for
the actual effect. The additional uncertainty introduced
when the effect of reduction per pass is compared in the

short (4 minutes) reheat and the long (30 minutes) reheat
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times make it even more difficult to determine a distinct

effect attributable only to the reduction per pass.
3. Effect of Reheating Time (4 Min vs. 30 Min)

The results obtained from investigating the effects
of the reduction per pass were not conclusive. The single,
most significant variable in the thermomechanical processing
identified is the amount of reheating time experienced
between each warm rolling pass. In either the large
reduction material (Figure 4.15} or the 1low reduction
material (Figure 4.16), increased reheating time from 4
minutes to 30 minutes produces a very profound increase in
the magnitude of the heat capacity. 1In each case, when the
reheating time was increased the magnitude of the
endothermic peak was seen to be much higher and the area
under DSC traces were significantly greater. These
increases indicate that the microstructures are more stable
and a higher ductility is expected in either of the longer
reheating time thermomechanical processes.

Increasing the reheating time between each pass
caused an increase in the superplastic response of both
reductions per pass schemes investigated. The magnitude of
the increase in the ductility was most significant when TMP2
and TMP6 were compared.

4. Summary
A distinct effect for each of the three variables

investigated could not be isolated. Increasing the final
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true strain from 1.5 to 2.5 caused the ductility to

increase, indicating a finer, more stable microstructure as
also evidenced by the increase in energy required to cause
the endothermic reaction(s) to occur. When the reduction
per pass is increased the potential for superplastic
response exists, but to achieve this superplasticity a
concurrent increase in the reheating time between each warm
rolling pass must also occur. This increase in reheating
time must be long enough to allow sufficient microstructural
stabilization which is seen as a removal of the exothermic
reactions, i.e., by allowing time for recovery and/or
recrystallization to occur, and this can also be seen in an
increase in the endothermic energy detected by the DSC. The
reduction per pass seems to be relatively less significant
in obtaining superplastic response, but it does dictate the

reheating time required between passes.

C. TRANSMISSION ELECTRON MICROSCOPY

To accurately characterize the microstructure and its
evolution during heating the transmission electron
microscope was employed to investigate the changes that the

differential scanning calorimeter detected. The first

comparison considered was between the as-rolled samples and
those that had been heated to 573K (300°C) and held for 10

hours, for each of the differently processed materials.
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1. As-rolled Microstructure

The microstructures for the as-rolled condition of
each TMP were similar. Each process produces a highly
distorted matrix containing an extremely high dislocation
density. In spite of this high dislocation density one
feature was identifiable in all processes, namely, a banding
parallel to the rolling direction. 1In the absence of recry-
stallization one would expect grains to simply elongate, so
this banding effect is not unexpected. The magnitude of the
banding varied from the distinct stratification seen in
TMP2, Figure 4.17a, to being just discernible in certain
areas in TMP6, Figure 4.17b. This banding is accentuated in
TMP2 by 'stringers' of submicron size visible at the band

boundaries, whereas in TMP6 larger, more

. discrete B particles are observed and appear to be located
adjacent to the apparent grains.

The dislocation density was sufficiently high to
preclude identification of grain boundaries in the samples
that had only 4 minutes per pass reheating time (TMP2, TMP3,
and TMP4). Although some portions of the grain boundaries
were visible, the actual grain size could not be determined.
The increased reheating time between passes to 30 minutes in
TMP1 and TMP6é resulted in a microstructure that showed some
areas where grains could be identified (from 0.5 to 4.0
microns in size) and discrete 8 particles could be seen (0.5

to 1.0 ym in size) in TMPS6.

PR
atataly

57

o
“
A
P
N
-
-

PN a8 AN s st N



WA RN RMA R E- S g mr == - -

»

-

Figure 4.17 TEM Micrograph of an Al-10Mg-0.1Zr Alloy
in the As-rolled Condition (a) TMP2
(b) TMP6
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Such microstructure in general would not be expected
to exhibit superplastic behavior, however superplastic
response has been observed previously in this alloy by
Hartman [Ref. 24)], Berthold [Ref. 21], Klankowski [Ref. 23],
Grider [Ref. 25], and Wise [Ref. 28], as well as here.
Therefore there must be some point before or during the
mechanical testing at which the microstructure transforms to
a condition such that it can support superplastic
deformation.

2. Microstructure After 10 Hour Anneal at 573K (300°C)

The samples that were heated to 573K (300°C), held
for 10 hours and then cooled to room temperature, fall into
two microstructural categories; small (0.5 im to 5.0 um)
grain size and large (3 to 15 um) grain size. The apparent
small grain size was observed in TMP2, TMP3, and TMP4, as
shown in Figure 4.18a, and the large grain size was found in
TMP1 and TMP6, as shown in Figure 4.18b. Again, the
reheating time between each rolling pass seems to be the
factor that significantly affects the microstructure.

In the processes that experienced only 4 minutes
reheating between passes, TMP2, TMP3, and TMP4, the small
apparent grain size was not expected since these samples
have undergone static annealing for 10 hours. Since
dislocation structures were visible 1in some of these
apparent grain boundaries, these boundaries were examined

further. 1In Figure 4.19 the dark field micrograph of the
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Figure 4.18 TEM Micrograph of én Al-10Mg-0.12r Alloy
in the 10 Hour Annealed Condition
(a) TMP2 (b) TMPé6

60

P R I L R s N RN
‘..-f_".“’. \" LR

N AN N L A N N e Y T e Ty



0.5 win

Figure 4.19 TEM Micrograph of an Al-10Mg-0.1Zr Alloy
Processed by TMP2 and Annealed for 10
Hours (a) Bright Field (b) Dark Field
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observed apparent grain boundary images the dislocations,
indicative of a subgrain boundary. This is typical of the
apparent dgrain boundaries throughout the TMP2 sample.
Consequently, the observed boundaries are judged to be
subgrain boundaries and the observed substructure is simply -
contained within a relatively large grain.

An additional similarity observed between the three
short reheating time samples was that there were regions
throughout the microstructure rich in precipitates and
other regions that were lean in precipitates. In each of
these short reheating time samples the B-rich regions
possessed an extremely fine structure with a spacing between
boundaries of 0.25 to 1.5 um where in the B-lean regions the
spacing was of the order of 2 to 5 ;m.

The microstructure observed in the long (30 minute)
reheating time samples, TMP1 and TMP6, was that expected of .

an annealed material. The size of tne grains in the TMP1

sample was, in general, larger (5 to 15 um) than those in
the TMP6 sample (3 to 8 im), which may reflect on the total
time at temperature during processing being twice as long in
TMP1 as in TMPS6. In each case a distinct absence of
dislocations in an equiaxed grain structure was observed,
indicating that recrystallization has occurred. Within some
of the grains a finer substructure (1 um in size) was
observed. The dark field micrographs, Figures 4.20 and

4.21, show that such boundaries are subgrain boundaries.
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Figure 4.20 TEM Micrograph of an Al-10Mg-0.1Zr Alloy
Processed by TMP6 and Annealed for 10 Hours
(a) Bright Field (b) Dark Field
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Figure 4.21
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TEM Micrograph of an Al-10 Mg-0.1Zr Alloy
Processed by TMP6 and Annealed for 10 Hours
(a) Bright Field (b) Dark Field
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The distribution of the B phase in TMP1 and TMP6 was
essentially uniform and no stringers were found. There was
a trimodal size distribution of particles found in
specific microstructural locations. Precipitates of 0.2 to
0.5 ym size were found in the grain interiors, 0.75 to 1.5
um along the grain boundaries, and 2 uym sized B particles at
grain boundary triple points. The largest particles,
located at grain triple points, appeared faceted and

exhibited heavy faulting.

3. Comparison of As-rolled and the 10 Hour Anneal
Samples

A comparison of the as-rolled material to that
rolled and then annealed for 10 hours at 573K (300°C) shows
significant changes occur upon annealing. These changes
warrant further investigation into the actual microstruc-
tural changes occurring by comparing the microstructures at
shorter annealing times. The majority of previous work
completed more nearly approximates to TMP2 than any other
thermomechanical process. Couple this fact with the
observation that reheating time between each pass is the
most significant variable indicates that an in-depth
comparison of TMP2 and TMP6 could potentially lead to a
better understanding of the evolution of the microstructure.

4. TMP2 and TMP6: Annealed One Hour

The microstructures for the samples that were

processed by TMP2 and TMP6, heated to 573K (300°C), and held

for one hour are shown 1in Figures 4.22a and 4.22b. When
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Figure 4.22 TEM Micrograph of an Al-10Mg-0.1Zr Alloy b

in the 1 Hour Annealed Condition
(a) TMP2 (b) TMP6
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these microstructures are compared to the samples that have
been annealed for 10 hours at 573K (300°C) there is little
discernible difference. Other than very slight grain
growth, 1t may be inferred that the microstructure of the
| samples that were annealed for one hour at 573K (300°C)
E . essentially is a stable structure.
I To verify this microstructural stability a sample of
E the TMP2 sample was annealed for 42 hours at 573K (300°C).
: Figure 4.23 shows that even after 42 hours the microstruc-
tural changes basically are insignificant. This indicates
rapid microstructural change initially (up to 1 hour)

followed by little change thereafter.

Figure 4.23 TEM Micrograph of an Al-10Mg-0.1Zr Alloy
Processed by TMP2 and Annealed for 42 Hours
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5. Grip Section Microstructure

To investigate the microstructure during the first
hour at 573K (300°C) samples were taken from the grip
sections of tensile test specimens tested at a strain rate
of 1.67 x 1071 1/sec (this strain rate was chosen because
deformation to failure occurred within about 15 seconds).
The heating of the test specimen from room temperature to
the test temperature, allowing for equilibration of the
furnace, takes 40 to 55 minutes. Consequently, after the
sample has failed it has been at 573K (300°C) for less than
an hour.

In these samples similarities between the
microstructures has been noted; the substructure was 0.25 to
2.0 ym in size; the size of the B precipitates is less than
or egqual to 1.0 pum, and there are B-rich and B-lean regions
in each sample. Figure 4.24 shows that the microstructure
of the TMP2 sample has the same substructure size seen in
the 1 hour or 10 hour annealed samples, but the TMP6 sample
has larger grains (up to about 5.0 um). It is quite
apparent that there must be some microstructural coarsening
occurring in TMP2 even though this investigation was unable
to determine the actual grain size of the material that

underwent TMP2 since the TMP6 microstructure shows that
grain growth is occurring.

Comparing these microstructures to those of the one

hour anneal, Figure 4.22, shows 'that the TMP sample
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Figure 4.24 TEM Micrograph of an Al-10Mg-0.12Zr
from the Grip Section of a Tensile
Test Sample (a) TMP2) (b) TMPé
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apparently undergoes no microstructural change whereas the
TMP6 sample may. The apparent change of the microstructure
of the TMP6 sample from the grip section with respect to
that of the one hour static anneal cannot be accurately
accounted for. This difference may be due to stress-induced .
effects in the grip section, the difficulty arises since the
effects of the stress experienced by the grip section sample
cannot be isolated from the thermal effects. The comparison
supports the hypothesis that microstructural evolution
occurs, but one cannot accurately distinguish between the

thermally induced and stress induced effects.
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A.

V. CONCLUSIONS AND RECOMMENDATIONS

CONCLUSIONS

The following conclusions are drawn from the data and

observations made during this research.

1'

- ~ - - . - . L%
P A N A 0, A O N

When the warm rolling total true strain is increased
from 1.5 (TMP4 and TMP5) to 2.5 (TMP2 and TMP3) higher
ductilities are observed.

The increased ductility with increased total true
strain is much more pronounced and is observed to be
of higher values in the 1lightly reduced material
(TMP3) than in the heavily reduced material (TMP2).

The increase in total true strain weakens the
material.

Increasing the reheating time between passes from 4
minutes to 30 minutes results in higher peak
ductilities and a wider range of strain rates over
which superplastic response is observed.

The increase in peak ductility caused by the increase
in reheating time and the range of strain rates over
which superplasticity is observed is significantly
more pronounced in the heavily reduced material than
in the lightly reduced material.

The effect of the amount of reduction per pass is an
intricate function of total true strain and reheat
time between passes.

The Differential Scanning Calorimeter shows that the
beta precipitate resulting from deformation processing
is different from the thermally induced Dbeta
precipitate observed in a fully recrystallized
material.

Differential Scanning Calorimetry results indicate
that ductilities are an intricate function of the
three variables investigated, but can predict which
process will be more ductile when the relative
position of the second endothermic peak and the area
under the DSC traces (endothermic energy) are
compared.
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9. Transmission Electron Microscopy reveals that for the
large reduction per pass materials the short reheat
time between passes results in a much finer
substructure. The observed higher ductility in the
coarser substructure (TMP6) occurs because the fine
substructure of TMP2 is subgrains whose misorientation
is not sufficient to support boundary sliding.

10. The Transmission Electron Microscope shows that the
grain sizes of the two longer reheating time samples
(TMP1 and TMP6) are quite similar and thus reveals a
reason for the coincidental similarity in observed
ductility.

11. The ability to obtain superplastic response is
| critically dependent upon the thermomechanical process
used. The key variables are the final true strain and
the reheat time between passes. When the reheat time
between passes is correctly chosen an increase in
final true strain results in significant increases in
ductility.

B. RECOMMENDATIONS
The following recommendations are presented for

consideration for further study.

1. Conduct a similar series of experiments with a higher
reduction per pass to verify this variable's effect.

2. Using TMP1 and TMP6é as base lines conduct similar
experiments for longer and shorter reheat times to
accurately determine the optimum process variables.

3. With the large and small reduction per pass identified
conduct experiments to a final strain of 3.0.

4. Utilize the slower scan rates, 20 K/min and 10 K/min,
on the differential scanning calorimeter to determine
if the DSC traces for TMP2 and TMP3 are actually a
combination of two distinct transitions.

S. Reduce and analyze the data available from the
differential scanning calorimetry traces produced in
this research for the ramp to 573K and hold for O,
0.1, 1.0 and 10 hours.

6. Conduct tension testing on this alloy processed
according to the schedule used in this research, but
stop the test at various increments of ductility
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(100%, 200%, etc.) and investigate the microstructural
evolution that occurs during the mechanical testing in
the transmission electron microscope.
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APPENDIX A
Q R G
10 INPUT "WHAT FILENAME.<FT> DO YOU WISH TO USE ";D$

20 INPUT "SAMPLE ID..",IDS$
30 INPUT "SCALE FACTOR..",6SCALE

40 INPUT "CROSSECTIONAL AREA CU. IN..",AO
50 INPUT "MAGNIFICATION RATIO..", MAG

60 OPEN “O“, #1,D$

70 INPUT "ENTER THE LOAD,LBF..",F

80 INPUT "ENTER X MEASURE FROM CHART,IN..",DELX

90 S=F/AO

100 DEL=(DELX*SCALE)/MAG

110  E=DELX/0.5

120 SIGMA=S*(1+E)

130 EPSILON=LOG (1+E)

140 WRITE #1,F,DELX,S,E,SIGMA,EPSILON

150 INPUT "HIT RETURN TO CONT.,N NEW SPECIMEN, OR Q..",
ANSS

160 IF ANS$="" GOTO 70

170 IF ANS$="N" THEN CLOSE #1:CLS:GOTO 10

180 IF ANS$="Q" THEN CLOSE #1:GOTO 190

190 END
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