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ABSTRACT

‘

(. The ability to make computer images more realistic is becoming more
important as the hardware for producing such images is becoming less expensive
and hence more available. The key to producing realistic images lies in the
™ algorithms that can take full advantage of the hardware to produce them. In this
s f ©
* study, we look at a prototype of xfray tracery as presented in [Ref. 1]. Ray tracing,
.':g'. in combination with a global illumination model, currently provides the most
t!

A
;:‘.c realistic images that can be generated on general purpose computing hardware.

= The prototype was succesfully implemented on an IBM AT clone.
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I. INTRODUCTION

From the beginning of recorded history mankind has always had the need to
create pictures. The reasons for creating these pictures ranges from the aesthetic,
pretty pictures are nice to look at, to the functional, pictures can be an excellent
way to communicate information. As mankind progressed, so did his ability to
create pictures, although the techniques used to create pictures basically stayed
the same. The advent of computers gave man yet another tool with which to
create pictures.

The rapid increase in technology has made computer graphics a rapidly
growing field. For the first time since man started drawing pictures, completely
new techniques needed to be developed. In computer graphics the brush, paint
and canvas are replaced by the mouse, algorithm and display. However even
though the tools have changed, the same problems remain: how to make the
picture look better, be it either more pleasing to the eye or to get the information
across more clearly.

Two of the most common and difficuit oroblems in computer sraphics are -he
hidden surtace and lighting and shading problems. A large number of solutions
exist to both of these problems. Very few solutions can be applied to both. One

such solution is ray tracing. Ray tracing is the process of following an imaginary
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ray from a viewpoint through a pixel on a screen and into a scene to determine if

N it intersects any objects in the scene and then calculating the intensity of the pixel
:;1 it went through based on the the final destination of the ray. As in most cases
)
s

where one solution is found to several problems, that solution is seldom the best

for all the problems it is applied to and so it becomes a matter of trade-offs. Such

48
i~
:: is the case with ray tracing. Amorg the hidden surface removal techniques, ray
€N
¢ \. . -
~5 tracing is the least efficient being referred to as a brute force technique. In
:’ contrast, it has been labeled as one of the most elegant techniques in regards to
lighting and shading [Ref. 2: p. 137]. Because of this latter fact, ray tracing has
°
- become an impertant technique in computer graphics. Ever since the idea behind
. -

::‘ ray tracing was suggested by Appel, numerous articles, studies, and
0 implementations have been done on it. These in turn have spawned fruther
N extensions and modifications. [Ref. 1: p. 296

y [

"

..-l
’,‘

~ A. DEFINITION AND OVERVIEW

L]
':j The idea behind ray tracing lies in the theory that the light in our
}
',;:
,: . environment can be modeled as rays. After being emitted from a source, the rays
%

are then reflected and refracted through a scene. Some of the rays eventually find
“fteir vay "o Tne »ve wnere “he scene s tecreated Figure D.la.. These lgnt favs

» are emitted from light sources, such as the sun. An infinite number of light rays
¢ 4
::: exist, but only a small percentage of them are received by us. To try and trace
..
:;: these rays from the source is computationally expensive. Appel suggested that )
W 10
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i View Position

N\
\ Figure 1.1a

Reaction of Light Rays with Objects 'Ref. 3: p.53°

/
, // Light Source

View Position

Figure 1.1b

Tracing Rays Backwards from View Position
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2L

instead of tracing the rays from the source that they should be traced backwards

)
15 from the viewer, thus dealing with only those rays that actually contribute to the
A scene (Figure 1.1b). [Ref. 1: p. 296|
A
‘ The basic ray tracing algorithm is a very simple one and not difficult to
b
. implement. The basic algorithm is 2 hidden surface algorithm. All hidden surface
" algorithms can be classified based on the coordinate system or space in which they
’ are implemented. These are either in object space or in image space. The ray
;. tracing algorithm falls under the category of image space. This category of
: algorithm is implemented in the screen coordinate system in which the objects are
!
= viewed. Unfortunately, the calculations are performed only to the precision of the
E scene representation, which generally provides poor resolution. The image space
J algorithms work by comparing every object in the scene with every pixel. Such an
: algorithm is computationally expensive. Ray tracing algorithms have three parts:
‘;‘; a viewpoint, a raster screen, and a set of objects (Figure 1.2). In the algorithm,
i
A8 the viewpoint is along the positive z axis. From this point, a ray is shot into the
b
) scene through the center of every pixel on the raster. Each of these rays is then
L traced and compared against every object in the scene to determine if there is an
.: . intersection with any of them. It is in the determination of a possible intersection
2
.'! Q01T that 1 otay tracer spends anywiere Stom o fo 35 percenrt of its tune. f
: there is an intersection, then the intensity at the pixel is determined using the
$ intersected object’s attributes and an appropriate illumination model. If there is
no intersection, then the pixel intensity is determined by the background
. w
“
&
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Pixel

Raster Screen

Rays

View Point

Layout of Ray Tracing Scene [Ref. 1:

Figure 1.2
p.297]
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intensity. This procedure is then repeated for every pixel on the raster. When

E? the ray tracer is used as a hidden surface algorithm, intersection testing stops
: after the first intersection. Extensions to the basic ray tracing algorithm, that

-

S showed its usefulness in implementing a global illumination model, were originally
‘: implemented by Whitted [Ref. 4] and Kay [Ref. 5 and 6]. In these extensions of
; ray tracing, additional rays are calculated, specifically the reflected and refracted
XS

:f rays, and then tested to see if they intersect with any objects in the scene. This
o process of generating new rays and tracing them to check for possible intersections
% is continued until the rays either leave the scene or stack space is exceeded. In
)

‘ such a case, the remaining rays are treated as if they had left the scene. This
4

: process, illustrated in Figure 1.3a, for a single ray with intersections is easily
: represented using the tree structure shown in Figure 1.3b. Here each node of the
R tree represents a ray surface intersection. At each node, at least one and
: sometimes two subbranches are generated. One branch of each of the reflected )
4 and refracted rays is generated from the point. [Ref. 1: pp. 190-296]

o

? B. ORGANIZATION

N\ This study is broken into three areas: data requirements, ray tracing
merhodology. and “he nrensity probiem. L he drst section reviews the data eeded
; for a lighting and shading modeler, hereafter referred to as a renderer, of which a

o ray tracer is an integral part. The second section reviews the actual process of

: tracing a ray through a scene to be rendered. The third section looks briefly at the
»
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i:‘.:: Figure 1.3b
oy, Global Data Tree [Ref. 3: p.62]
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e illumination problem and how it relates to the ray tracer. The concluding

K] chapters present the implementation, and known limitations of the model along

1! with areas of future research.
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II. DATA REQUIREMENTS

A. OVERVIEW OF THE DATA REQUIREMENTS
The importance of the intersection routines in the ray tracer is apparent in
the fact that a ray tracer spends 75 to 95 percent of its time determining
intersections [Ref. 1: p. 297]. The key to determining intersections, however, lies
in large part on the data used to describe the scene that is being rendered.
Information is needed not only to describe the entire scene that is being rendered
but more importantly to describe each object in the scene. Scene data is that
information needed to completely describe a picture, i.e., the number, kind, shape,
and color of any objects in the picture along with the background intensity and
light source information. This information must be properly ordered and broken
down. Falby [Ref. 3] suggested that a scene be broken into three categories:
object, view, and light. Each of these areas is examined below in the context of a
ray tracing algorithm.
1. Object Data
The data vertaining to each object in the scene can be zrouped into two
categories: polygon and oounding voiume. The reason ior this oreakdown s
twofold. First, each object in the scene is composed of polygons. They are the

basic building blocks of the scene. Second, in order to reduce the number of

17
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» intersection checks, it is necessary to set up a boundary around each object so
K that the ray tracer only performs the intersection checks in the regions that
actually contain an object. Such a boundary is called a bounding volume. We
o examine the polygon data first.

a. Polygon Data
":: Since the main focus of the ray tracing algorithm lies in determining

the intersections between the rays shot into a scene and the objects that make up

e a scene, and since each object is comprised of polygons, the problem is really one
)

o

:'. of determining the intersection points between the rays and the polygons. From
"

i}

) the fundamentals of vector calculus, it is known that in order to determine the
¥ . . .

: intersection between a ray and a polygon only the vertices of the polygon are
L

"

/ needed as well as the direction of the ray and a point on the ray. Since the object
“

' is to be constructed of polygons, its vertices are known. Therefore, it is only
K
.': necessary to ensure that these points are stored in some manner, such as a record,
)

. so as to be accessible to the ray tracer. In order to determine what the intensity
ol

4,
‘s
; of the pixel is through which the ray passes, it is essential that the characteristics
}

L) . . . . . .

L of the object whose polygon was intersected be available. Since an object is made
:: of polygons, they inherit the characteristics of the object. These characteristics
M
: 1is0 need o He readily accessible i, Reretore. leed to He stored ‘n somne
%

& manner. The following is a list of the basic object characteristics that need to be .
\
N
K available: (1) the specular, diffuse, and transmission coefficients; (2) the Phong
specular exponent; and (3) the index of refraction, see Table 2.1. [Ref. 3: p. 68)
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v TABLE 2.1: OBJECT DATA

o FIELD NAME VARIABLE NAME VALUE
. Polygon Vertices z,y,2 real
;:: ) Diffuse Coefficient Kd, oy real /0-1)
:;:: Specular Coefficient 3, 0b real (0-1)
. Transmission Coefficient t, g real (0-1)
hd ‘ 1¥
Unit Surface Normal z,y, 2 real (0-1)
(A Phong Specular Exponent n integer (0-200)
‘:' Index of Refraction 7, real
U
i
AN b. Bounding Volume Data
“,".‘ The major disadvantage of ray tracing is that it takes so much time.
* S
oy
;'L': This is hard to avoid since it is so computationally expensive. It is essential,

therefore, that more efficient techniques be developed to assist in reducing the

o number of calculations. Several techniques already exist with the bounding
R

‘?,’, ] volume being the most effective [Ref. 1: p. 298]. In the description of ray tracing
:é% given so far, it has been stated that a ray is checked to see if it intersects with any
E!"f object. Upon dissecting this statement further, a better understanding of the
I intersection problem can be realized. Unless some optimization is done, the ray
£

EE::‘\. tracing algorithm is forced to do the following. Each ray must be checked for a
o8

possible intersection with each object. Since each object is made up of polygons,
then the ray must be checked for a possible intersection with each polygon. For a
romplicated onject. such as a reapof, this requires a large number of checks and
must be done for each object. The purpose for establishing the bounding volume

lies in two facts. The first is that generally scenes are mostly background with

just a few objects, hence very few of the rays actually hit anything. Therefore,

f._‘,n 19

DOOODA AN, QOO X . W ML
TCRERG IR RO R Stk ’n‘-us B R RS N o N XA R



most of the intersection tests done are a waste of time. Second, a ray can only hit
one object at a time. To have it process through the entire list of objects, when
intersections with most of them can be eliminated, is needless. A bounding
volume is, therefore, a method of enclosing each object in the scene in a simple
containment vessel, which in effect creates a boundary around the objgct. Once
this boundary is established, the number of overall intersection tests can be
greatly reduced, as in the example of a teapot, which might easily have over a
hundred polygons. If it is surrounded by a bounding box consisting of just six
polygons, the number of intersection tests can be significantly reduced. In this
situation, instead of having to test each ray against each polygon of the object,
only those rays that penetrate the bounding volume need to be checked. Thus
the bounding volume is a way to filter out unnecessary intersection tests by
limiting the tests to those rays that are most likely to intersect an object.

Just as the use of a bounding volume greatly increases the efficiency
of the ray tracing algorithm, the use of the right kind of a bounding volume can
improve upon that even more. In Rogers [Ref. 1], the bounding volumes
suggested are a bounding box and a bounding sphere (Figure 2.1), each of which
has advantages and disadvantages. The bounding sphere is much easier to

impiement aithough it is less =thHcieat n reducing -he -arget area rhan is rhe

I bounding box, see Figure 2.1. The bounding box, on the other hand, is .

Ko

~; computationally expensive to implement. The data needed to establish a

K )
bounding sphere is minimal. It only requires a center point for the object and a
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Figure 2.1a

bject Surrounded by Boundin Spheré [Ref. 1: p.298]
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Figure 2.1b

Surrounded by Bounding Box [Ref. 1: p.298]
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radius that encompasses every point of the object. The bounding box, on the
other hand, requires far more data in that the polygons that make up the box
must be described.
2. View Data
In rendering any scene, certain information can be applied to the scene
as a whole. This information is grouped together to form the view data. This
data consists of the viewpoint position, a constant to prevent division by zero, a
refraction index for the global medium, the ambient light intensity, the
background color, and the scene dimensions, see Table 2.2. [Ref. 3: pp. 74-75]
3. Light Data
To support a lighting and shading model, it is necessary to include
certain information on the light source for the scene. That information must
include the position of the light source, its intensity, its type, geometry, and

dimension, see Table 2.3.

TABLE 2.2: VIEW DATA

FIELD NAME VARIABLE NAME | VALUES
Viewnoint Toul | real
No Zero *lonstant Ao boreal 1 0)
Globai Refraction [ndex | n, ( reai
Ambient Light Ia, ,, real (0-1)
Background Light b real (0-1)

LScene Size z,y integers
22
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e TABLE 2.3: LIGHT DATA

"é!

g FIELD NAME | VARIABLE NAME VALUE

i Light Position z,y,2 real

GO Intensity L,, real /0-1)

P Type type enumerated (point,distributed)
e Shape shape enumerated (circular, rectangular)
Dimensions z,y real

!

e

:: ,( B. DATA STRUCTURE FOR A RAY TRACER

Sely

Qe

W Falby [Ref. 3] suggested a data structure for a multi-illumination model
gt renderer. That data structure, with minor variations, has been used in this study.

A8Y

¥ §

;& : In [Ref. 3| a complete derivation of the data is presented, so for the purposes of

R

R

. this study only a brief description is given here. Figure 2.2 illustrates the layout
&

\ of the data structure as used in this study. This data structure essentially consists
"

<2

et of arrays of records layed out in a hierarchical organization. Starting from the
®.5

:":'l highest level it consists of the following: a picture record, an array of light records,

)

. y .

:E : an array of objects, an array of subobjects, an array of common part records, an
oy

_._). _ array of polygons, and three arrays for the vertices. Each of these is now
]

"

W .

P s, examined.

o

i 1. Picture

.

: el Picture is a single record which contains the view data mentioned earlier.
5
. 2. Lights

1, "‘ - il

RER The lights array is an array of records, with one record for each light
"E source in the scene. Each record contains the light data mentioned above.
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2N 3. Objects
: " The objects array is an array of records, with one record for each object
W in the scene. In this study, an object is the highest order item in a scene. Just as
A
.~ - . . . . . - - .
}' o the scene is divided up into objects, each with its own bounding volume, so is
3:'& -
. each object broken down into subobjects, each with its own bounding volume.
i
N .
"‘.1,: 4. Subobjects
‘).5
‘
s The subobjects array is an array of records, with each array belonging to
" one object record. For example Figure 2.3a shows one object, a barbell, that is
s
S
e divided into three subobjects which are: the left weight, the right weight, and the
N
N K bar. The record layout for this is as illustrated in Figure 2.3c. A subobject is the
e
oe . . . X .
:,:_.- smallest item in the scene. Each object has at least one subobject. A subobject is
3N
" composed of polygons or it is a sphere. Using “igure 2.3a as an example again,
: ‘\‘d the left and right weights are spheres and the bar, instead of being a perfect
()
' ,\;‘
e cylinder, is composed of polygons and actually has an octagonal shape, Figure
"
‘;’ 2.3b. Aside from containing a pointer to the common part record, examined next,
Shel
.' 1] . . . . . . .
i) and data for its bounding volume, it also contains information on the subobject
P
L type. This subobject type field indicates the geometry of the subobject, i.e., it is
,p.
e either a sphere or a polygonal object, which is an object composed of polygons.
%)'
\.,'
)t" This niormaton s stored secnise Gtferent pTersecron conlfies are Clsed J0r ocacn
_“. object type. Currently a 1 indicates that planar intersection routines should be
i" used and a 0 indicates spherical intersection routines should be used.
o
h‘q
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Subobjects

Figure 2.3a

Subobjects [Ref. 7]
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Figure 2.3b
lygonal Object

PICTURE

LIGHTS

Record Layout for Figure 2.3a

OBJECTS

barbell

SUBOBJECTS

CPARTS

left

weight

o

bar

CPARTS POLYGONS

~ight

welight

h.‘CPARTS

Figure 2.3c
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5. Common Parts

A good illustration of common parts is found in an ordinary
checkerboard. Figure 2.4a. In this figure one object exists--the checkerboard. This
in turn has one subobject, itself. This subobject has two common parts: the white
squares and the black squares. Table 2.1 listed the characteristics of an object
and it is in the common parts record that these characteristics are stored. Each of
these common parts records contains a pointer to an array of polygon records. It
is through this arrangement that the polygons inherit the characteristics of the
object. Therefore, the common parts array, also called the Cparts array, is an
array of records, with one array per subobject, and each common parts record
points to its own set of polygons, Figure 2.4b.

6. Polygons

The polygons array, too, is an array of records with one array for each
subobject. This is the smallest physical item in the scene and the cne against
which the actual intersections are determined.

7. Vertex Array
The vertex array is an array of points that define the polygons that

compose the subobject.

This data structure as presented by Falby [Ref. 3] proved itself to be both
flexible and easy to use. An example of a data base that used this structure and

which was used in testing this ray tracer can be seen in Appendix B.
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N Figure 2.4a - Example of Object with Two Common Parts

CPARTS

PICTURE OBJECTS

.
w8 TIcHTS & SUBOBJECTS | Lhiee

squares

black

squares

kY Figure 2.4b - Record Layout of 2.4a
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o III. RAY TRACING INTERSECTION CONSIDERATIONS
v *
g
I : . . : .
o The methodology behind ray tracing is quite simple. However, it does require
+ ’.
o an understanding of the fundamentals of vector calculus and geometric optics. A
i
b discussion of the fundamentals is beyond the scope of this study. An overview of
B
Al
' some of the fundamentals is in order.
-
‘Wi
2-_. A. RAY TRACING MECHANICS
oy
vy
e By its very definition, ray tracing is simply the tracing, or following, of a ray
,%}h
j from its source through space and determining any possible intersections that may
o
?. occur between it and an object. The natural way to model a ray in order to do
a this tracing is by using vectors. A vector is not only a precise way to represent a
{
[, .
X ) ray but the basic operations on vectors in three space, addition, subtraction, dot
)
“h
4 product, and cross product provide the tools necessary to determine the
0
)
,:" intersections. These tools, along with other techniques found in vector calculus
I
W and geometric, optics provide the means to deal with the two problems
: encountered in ray tracing, i.e., the ray direction determination problem ans the
=
:' nrersection probiem.
L)
— 1. The Ray Direction Problem
‘2
L2
4 i Solving the ray direction problem is both the first and last step
e
x" .
h encountered in the ray tracing process. Determining the initial ray from the view
‘;* 29
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position, usually referred to as the view ray, is the simplest to solve. Every point

0
T
AP V]

in a coordinate system can be associated with a ray, and determining the direction

P

of a ray between two points can be solved by using vector subtraction. The last

PN
¥ ey
Pl

step in the ray tracing process is determining what takes place when a ray

intersects an object. This requires the application of the laws of geometric optics.

‘::. Once a ray strikes an object, either one or two additional rays will be generated.
0
:: These new rays are referred to as the reflected and refracted rays, Figure 3.1. The
IS three basic laws of reflection and refraction are listed as [Ref. 8: pp: 32-33]
~
1. The incident, reflected, and transmitted rays all reside in a plane, known
;' as the plane of incidence, which is normal to the surface of the object.
(
_'_\: 2. The angle of incidence is equal to the angle of reflection ©, = © .
3 "
k. 3. The incident and transmitted ray directions are related by Snells’ law:

nisin(-)i = ntsinOt.

B
{1

R o=

An illustration of these laws is shown in Figure 3.1. Rogers [Ref. 1: p. 367]
provides a method for determining the direction of the reflected and refracted

rays. The direction of r, the reflection ray, and p, the refraction ray are given as:

(2 A A LA

PN
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Figure 3.1
g‘;‘.' Creation of Reflected and Refracted Rays [Ref. 3: p.55)
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e e e

Here kn is the ratio of refractive indices, kj is the Fresnel coefficient, v is the

normal vector in the direction of the incoming ray, v“ is the unit normal vector in

<

L

' the direction of the incoming ray, ri is the unit surface normal, and 71, and 7, are
[}

the refraction coefficients for mediums the rays pass through. This is illustrated

‘I

R in Fignre 3.2.

3

N 2. The Intersection Problem

X As stated above the intersection computation is the most time
1 consuming part of the ray tracing process. It is not that the process itself is so
" difficult but because several steps need to be done for each iteration. Two types
2.
- of intersection computations are required to be performed: determining the )
R intersection between a line and a sphere and determining the intersection between
b a line and a polygon. The first type is the simplest to solve and is why the sphere
e is generally used as the bounding volume. The calculation of the intersection
T M

b point between a line and a sphere involves solving the equation for the line and
%
M Tne spaere Smutaneousiy. e spiere s clefined Hv o Tne squation
p
2 2

- (z-a) +(y-8)"+(z-8" =+ (3.1)
- .
v‘l where (a, 3, 6) is the center point, r is the radius, and (z, y, z) is a point on the
A
)

sphere. The line is defined by the parametric equations
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K3 Direction of Reflected and Refracted Rays [Ref. 3: p.57]
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0
K
3
K z=at +z, y=bt+y, z=ct+z (3.2)
Y
K where (z,, y,, zo) is a known point on the line, and a, b, and ¢ are coefficients
by from *he vector a7 ~ 47 ~ ck which is narallel to the line. These equations must,
§
§‘ first be solved for t. The solution to this provides two answers. First, it indicates
P';
whether or not an intersection actually takes place. Second, if there is one, it
.
4
- indicates how many intersections, either one, in the case where the line is tangent
' to the sphere, or two, in the case where it actually enters the sphere. In the case
)
") of two intersection points. a check must be done to determine which is closer to
4]
‘ the origin of the ray.
a The intersection between a line and a polygon is more involved. This
7, . . .. . : .
B, problem is comprised of two parts: determining the intersection point between a
.
) line and a plane, and determining whether or not the intersection point lies within R
p2 the polygon. Like the line-sphere intersection problem, this one also involves the
B -
5
! solving of two equations simultaneously. The first of these is the equation for a
d plane which is defined as
)
L4
? Az + By +Cz =D (3.3)
X
. where A, B, C, and D are constants and (z, y, 2) is a point on the plane. The
N
: Second nation 1sed (s "{e Daramerric equation that dednes a iine. Zq. 2.2. The
W
"' 3 . - . . . .
) solution of this requires first substituting the equations for the line into the
i
4
$ equation of the plane. The result is an equation in t, which when solved and
substituted back into the equations for the line, provides the intersection point
i 34
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between the line and the plane. Once this point is calculated, it is then necessary

T
- n e Sl

 m im em pm e
/o

to determine whether or not it lies within the polygon. A general way of solving

5:': this is to simply determine the relationship between the intersection point and
D
;3 each edge of the polygon. The point that lies on the inside of each edge also lies
!!:-}‘

o within the polygon. If it fails the test for any edge, then it lies outside the
W

XY

! polygon. The drawback to this approach, is that it only works for convex
“Q'

\

RL polygons. In this study we assume all polygons are convex. [Ref. 9].

h

o B. THE RAY DATA STRUCTURE

;M .

y Rogers [Ref. 1] suggests a data structure for a ray in a ray tracer. It is that
J data structure which is used in this study. Table 3.1 lists the data used to model
‘ each ray. We examine each item of this structure as adapted from Rogers [Ref. 1:
+ p. 373).

04

‘\‘

I TABLE 3.1 - RAY DATA

Ly

FIELD NAME VARIABLE NAME VALUE

K Ray Type type enumerated or coded

Y, Ray Origin z,y,2 real

i Ray Vector z,y, 2 real

] Source Ray Type Stype enumerated or coded

.‘ Intersection Flag flag boolean or coded
RS Object Index obj idx integer

" Subobject Index subobj ~'tdx ‘ntecer

'.“_' fommon JAart inaex “part udx nreger

e Poiygon index poiygon_idx integer

- Intersection Point z,y, 2 real

: Distance d real

v Transmitted Intensity 1, real

:: _ Specular Intensity I real

Y

:
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1. Ray Type
The ray type field identifies a ray as either a view ray, a reflected ray, or
a refracted ray. The values put in this field are generally of an enumerated type
and consist of reflected, refracted, view, and none.
2. Ray Origin
The ray origin field contains the point that identifies the position from
which the ray originated. For instance, if it is the view ray, its point of origin is
the view position. If it is a reflected or refracted ray, its origin is the intersection
point that it originated from.
3. Ray Vector
The ray vector field contains the vector heading of the ray.

4. Source Ray Type

The source ray type field contains the ray type of the source ray for this
pariicular ray. For instance, a view ray does not have any source ray as it is the
starting ray for the process. Hence, none is in the type field. If the view ray
intersects an object and both a reflected and refracted ray are generated, then the
source ray for both of them is the view ray. Likewise if the reflected or refracted
rav hits an object and creates further ravs then it becomes the source ray for
rhose rays it creates.

5. Intersection Flag

Originally the intersection flag is set to false and it is only set to true

when there is an intersection between this ray and an object.
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6. Object Index
The object index provides an index into the array of object records
making it possible to select any object easily.

7. Subobject Index

The subobject index provides an index into the array of subobject
records and helps uniquely identify each subobject.

8. Common Part Index

The common part index provides the index into the array of common
part records uniquely identifying each common part record.

9. Polygon Index

The polygon index provides the index into the array of polygon records
and uniquely identifies each polygon.

10. Intersection Point

The intersection point field holds the position of the intersection point
between the current ray and an object.
11. Distance
The distance field contains the distance between the current ray’s point
of origin and its point of intersection.

22, Transmitted nrensity

The transmitted intensity field contains the red, green, and blue
intensity values, in a range between O and 1, of the light that is incoming along

any refracted ray that this ray produces.
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13. Specular Intensity

The specular intensity field contains the red, green, and blue intensity
values, in a range between 0 and 1, of the light that is incoming along any

specular ray that this ray produces.

C. INTERSECTION METHODOLOGY

1. Intersecting a Planar Polygon

a. Generating the Initial Ray
The generation of the initial or view ray is shown in Figure 3.3.
This ray, p — v, is calculated using vector subtraction. The two vectors used are
the ones associated with the points for the view position, v, and the pixel through
which the ray passes, p. The ray associated with the view position is to be
subtracted from the ray associated with the pixel.
b. Intersecting the Bounding Volumes
After each ray is generated, each object in the object list is checked,
one at a time, to determine whether or not the ray strikes any of the bounding
containers of the objects in the scene. In our implementation, the bounding
container is the sphere, which is reduced to a bounding circle, C, see Figure 3.4.
Tlls cirele’s radius s the same as “ne radius of ae counding sphere. Y. and toles
on the plane, P, which ccntains the center point, ¢, of the bounding sphere. The
inverse of the incoming ray, U, is the surface normal of this plane. It is not

necessary to determine where on the bounding sphere a ray hits since at this stage
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Figure 3.3 - Determining the Ray View
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Figure 3.4 - The Bounding Circle
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::::‘ we are only interested in just finding out whether or not it hits it. Because we are

g

4ot

:;::. not concerned with where the ray strikes the bounding sphere, a bounding circle is

;:;‘;. used. Determining the intersection with a circle requires less work than

s

E: $ . determining the intersection with a sphere.

R

i . The first step in tracing the ray begins by taking each object and

op constructing a bounding circle. Once this circle is constructed, the intersection

e point of the view ray with it is calculated. Then the distance between the

: NN intersection point and the center point is determined and compared to the radius

8° 'w

fi. of the bounding circle to see if it falls within the circle. If it does fall within the

Y

D2

- 2 circle, this indicates that the ray intersected the bounding volume. This process
~

14

then needs to be repeated for each object. If an object’s bounding circle is hit,

R
*y 5y Yy

NN
LR

(3

T

this process must then be repeated for each subobject of that object.

K
&

alal e

c. Intersecting the Polygon

N
b _‘r&
iy

Once a particular subobject is identified by the bounding volume
tests, the common parts list is processed, one record at a time. Each one of these
common parts records contains a pointer to those polygons that make up the
object being rendered. This list of polygon records is then processed after the
bounding volume processing is completed. The entire list needs only to be
arocessed N0 AN NtersecTion s ound. Tae drocessing avolved in rthis s -he
most computationally expensive part of the entire ray tracing algorithm. This
computation consists of three steps: determining the orientation of the polygon,

calculating the intersection point between the ray and the plane that contains the
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b o polygon, and determining whether or not the intersection point lies on the
o polygon.

o (1) Establishing the Orientation. First. each polygon needs to be

;5 checked for a correct orientation. This is a straightforward step carried out by
ot calculating the angle between the surface normal of that polygon and the inverse
U of the view ray. If it is 90 degrees or greater, it is facing in the wrong direction to
be intersected. If it is less than 90 degrees, the next step is to determine whether
K the ray intersects the particular plane that that particular polygon lies on. The
s first step in doing this is to determine the equation for the plane in which that
polygon lies.

S (2) Intersecting a Plane. If the correct orientation exists for a

polygon to be intersected, the next step is to define the plane containing the

- polygon of interest. The equation for a plane was given earlier as
ol Az + By + Cz: =D

S where A, B, C, and D are constants and can be calculated by the following

equation.

C = Il(yz - y3) - Iz(yg - yl) - IJ(U] cy

D = —z,(y,23 — v32,) - 1, (v32) - vy233) - 15wz, y,e))

where (z,.y,.2), (25, ¥, 2,). and (z,. y;, ;) are points of the vertices of the

A ‘-.‘“A ¥
S SN
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N polygon. Once the equation for the plane is known, it must then be solved

¥

Ly . . . . .

" simultaneously with the equation of the line representing the ray.

..," (3) Location of a point with respect to a polygon. Once the

D™

:' intersection point is determined, it needs to be checked to see whether or not it

0']‘ 4

‘ lies within the polygon. This is the most computationally expensive part of the
M
N"
<.._ process. This process, see Figure 3.5, requires that a plane, P, called the bounding
‘N . .

. plane, containing two vertices, for example A and B, of an edge and another
L1
& arbitrary point, A, not on the polygon or its plane, be constructed. This must be

"." done for each edge. Once the bounding plane is constructed, the point in question
¥ X,

- must then be checked to see whether or not it lies to the polygon’s side of the
# r

:: plane that now contains the edge of the polygon. This is done by plugging in

-,

= another vertex of the polygon into the equation for the plane that was just
.' -’ - -

e constructed, and then plugging in the intersection point. If the results from these
-~

N two equations have the same relationship, i.e. if the sign is the same, then the
"

N intersection point lies on the polygon side of the bounding plane. This check
4

*‘

\'_‘ must then be repeated for each edge of the polygon. In order for the intersection
y

>

g point to lie on the face itself, it must be found to lie on the polygon’s side of each
#

‘_-f edge. Ar this point. it is determined whether or not the ray strikes the object. If
" TLe TR loes STTIKe CIle o0gect. thle Hotnters To o tjlls polygon must e siored notne
»

-" ray structure along with the intersection point. This information is needed later
Y - o

A2 on when determining the direction of reflected and refracted rays as well as the
7

- intensity of the light that is reflected from this position.

1
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Backside of the bounding plane

E
Polygonside of the bounding plane

Figure 3.5
Location of a point with Respect to a Polygon [Ref. 9]
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he 2. Intersection of a Sphere

The sphere is the easiest object to work with in a ray tracer. Since the

-
3

sphere can act as its own bounding volume, the center point and radius are

AN e Sk

i
2%y
.

already available in the subobject record. This eliminates the need for the polygon

array. The center point and radius are the only information necessary to model a

o e o

sphere for a ray tracer. Determining the intersection of a line and a sphere is

e Tl ol e

nothing more than the simultaneous solving of their equations for the variable t .

The solution to this gives a quadratic equation in t which can then easily be

;’}’{Zf’i

solved.

-~
B

+
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4':} IV. THE INTENSITY PROBLEM
N One of the strong points of the ray tracing algorithm is that a global
&. illumination model can easily be integrated into it. In fact, ray tracing and global
Y
‘ r; illumintion models seem to naturally complement each other. A global
oy illumination model takes into account all of the light sources in the scene in
M}
s
)
e calculating the intensity at each point. This means taking into account the
AN
Wi
e ambient light that exists in a scene, light that comes directly from a particular
;\:,' light source(s), and light that is reflected off an object(s). It also includes the
(]

3¢

:;: coefficients necessary to model the way an object reacts with light. A great deal
IR
G y of work has been done in this area. The most notable model is the Whitted
ol
(%)
::e::: illumination model, and it is the one that has been implemented here [Ref. 1: pp.
(VN ’
'Q
'l
'3‘ 365-366]. The Whitted algorithm is based on the three models shown in Figures

4.1, 4.2, and 4.3. These models will now be examined more closely.*

A. LOCAL ILLUMINATION MODELS

: 3}3 1. Diffuse Reflection Model

A
o o - S . . .
b2 The 4rst of these modeis s a oerfect diffuser. Yuca 1 modei 5 zoverned
N by Lambert’s cosine law. This law states that the intensity of light reflected from
NS a perfect diffuser is proportional to the cosine of the angle between the light
‘f"
o' N

' *The contents of this chapter are close adaptations from Rogers [Ref. 1] and Falby |Ref. 3|.

N
‘o':,l
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direction and the normal to the surface. This can be expressed mathematically as

n
I= Ilkdcos(a 0<O—

2
where . s the redected intensity, [, s the .ncident intensity from a point .ight
source, k, is the diffuse reflection constant, unique to each object, and © is the
angle between the light direction and the surface normal, see Figure 4.1. Since the
diffuse reflection coefficient k, varies from material to material and is also a
function of the wavelength of the light, it is often easier to just assume it a

constant for simple illumination models. Ref. 2: p. 312|

2. Specular Reflection Model

The second model illustrates the characteristics of specular reflection
which is directional, unlike diffuse reflection. This means that the greatest
intensity of the specularly reflected light can only be seen if the view angle
coincides with the reflection angle, Figure 4.2. The further off the viewing angle is
from the reflection angle, the dimmer the intensity becomes. Because of the
complex physical characteristics of specularly reflected light, an empirical model
due to Bui-Tuong Phong is usually used for simple illumination models [Ref. 10j.

This is expressed mathematically as
.‘— = .r,fb'!("):.,\) COS" 4

where (O, A), the reflection curve, gives the ratio of the specularly reflected
light to the incident light as a function of the incidence angle © and the

wavelength ). Because w(©, A) is such a complex function, it is frequently
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Light Source

Figure 4.1
Diffuse Reflection

fRef. 1: p.3127

Light Source

Figure 4.2

{Ref. 1: p.314]

Specular Reflection

View position

OLight Source

Figure 4.3
Global Illumination Model
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replaced by an aesthetically or experimentally determined constant k, which then

yields
Ij = I!kjcos"a

Also, n is a power that approximates the spatial distribution of the specularly
reflected light. Typically a value of 200 for n is used to model a very shiny
surface and a value of 10 is used for a dull surface [Ref. 3: p. 72]. [Ref. 1: pp. 313-
315)

3. Combined Model

If just point sources are assumed, as in the two models just discussed,
any object not receiving light directly from the source appears black. In order to
properly render a scene, it is also necessary to take into account ambient light, the
light that is reflected off other surfaces. Including a model for ambient light into
the intensity calculations is not feasible. Ambient light represents a distributed
light source and as such is a very complex function. Therefore it is treated as a
constant diffuse term and linearly combined with the other terms. Also not
included in the above model is the effect that distance has on light. It is well

known that the farther away an object or light source is, the dimmer it gets. The

r
s

actual formula to produce tfiat proper attenuation is —. wiere The intensity of

]

0
light decreases as the square of the distance from the source increases. However it

has been shown that linear attenuation can actually produce more realistic results.

With these two additions the complete model now looks like:
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O I,
KRR I=1k +
0 "t 4+ K

(kycos© + k’cos"a)

<y where I is the incident ambient light intensity, k, is the ambient diffuse
' reflection constant and K is an arbitrary constant that can be used to adjust the
results. [Ref. 1: p. 313]

W The complete model just presented can now be modified to better fit in
D) with a ray tracer. Recalling the formula for the dot product of two vectors allows

0 writing the cos© as L and writing cosa as R-S which gives us:

(2 I=Lk + [k, (R-L) + k,(B-5)")

,,'b So far we have only examined the case where just one light source is present. If
there are several light sources, the effects are added linearly, and the equation now

becomes:

" m L

y = Lk, + 5~

) .
=1
. J
[
\)

" ¥ This then is the complete local illumination model. [Ref. 1: pp. 312-316]

lky(A-L) + k,(R;-$)"]

] B. GLOBAL ILLUMINATION MODEL
... The ~ompiete .ocal 'ilumination modei just presented forms the Hasis ‘or she
“ : algorithm that was implemented for this study [Ref. 1: pp. 363-378] see Figure

A 4.3.
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n
I=kI +k, 211’_(13 : LJ) + kaEII,( S - R]) + kI, + k1,
J ]
In the above equation k,, k,, k,, and k, are the ambient, diffuse, specular
reflection, and transmission coefficients, all of which have values between 0 and 1.

I, 1

. I, and II,_ are the intensities of the ambient light, the specularly reflected
light, the transmitted light, and the light directly from a light source. These also
hold values between O and 1. The remaining variables n, L i S, and ﬁj are the
surface normal at the intersection point, the direction of the jth light source, the
local sight vector, and the local reflection vector from the jth light source. A
careful comparison between this model and the complete local illumination model
reveals that the only new terms are the ] and I, terms. These are the terms used
to account for the light that comes in along the reflected and refracted rays that
originated at this point. I holds the intensity for the reflected ray and I, holds
the intensity for the refracted ray. These two values in turn are calculated using
the exact same model. For the last intersection point in the scene, the one whose
reflected and refracted rays do not intersect anything, I and I, are set to 0. The
k, and k, terms are coefficients included to better model the way this object reacts
with the light incoming along the reflected and refracted rays.

This shen is the compiete zlopai :lluminartion model used in this study. It is
the simplicity of this algorithm that makes it so easy to understand and

implement. In essence, it is saying that the output intensity is nothing more than

50




e"': a sum of all possible light sources with the coefficients determining the intensity of

[+ light that comes from a particular object.
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o V. RAY TRACING ALGORITHM
A/
"y
e
(e Rogers suggested an algorithm for ray tracing [Ref. 1: pp. 374-377]. It is that
IR 2
1;;‘ algorithm that has been the basis for this study. The following is a description of
0
"‘Q
z::, A that algorithm as it has been implemented here.
i:::l.
N A. TRACING THE RAYS
X8
) "\.
' ::t To begin the ray tracing process, the first thing done is the determination ot
“
= the direction of the view ray.* The ray data, mentioned in chapter III, is then
",
WA
" "','.:: initialized. After the view ray is generated and the ray data initialized, the ray,
~
o
o which is represented by this ray data, is pushed onto the stack, which is used to

;\‘-“.- implement the ray tracing tree. The process then moves into the actual ray
i
h‘l_) t . 1
) racing loop.
.'.
J Orce in the loop, the stack is checked to see if it is empty. If it is not empty,
3 "
e . .
'."_j the stack is then popped to access the ray information. The first thing checked is
W
W whether or not the intersection flag is set. If it is, that indicates that that
l:: y particular ray has already been terminated (by hitting an object), and the process
o
R )f «letermining “he intensities Hegins.
' -
v
2
hEN
X -r:;. *Each ray, is modeled as a vector, and is converted to a unit vector immediately after its
' :.':-_' determination.
W/
v
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If the intersection flag is not set, a new ray has been generated, either a new

ALEXLRE

view ray or e new reflected or refracted ray. All of these rays are grouped under

-
s

i the more general title of a shooting rav. At this stage. the ray must be sent
s
:‘: through the intersection procedures to determine whether or not it intersects any
& object. The intersection routines start at the highest level of the picture and step
- through the linked list of objects, subobjects, and common parts to the actual
-,
\..
polygons.
-l."
At the top level of the intersection routines, each one of the objects is
::_' checked. First, they are checked to see if there is an intersection with the object’s
hy
o bounding circle. If there is an intersection, the distance between the intersection
a3
- . .. . .
(-2 point and the origin of the ray is calculated and placed in the ray data. Second, a
.
. check is done to insure that the objects lie in front of the ray’s origin. In front
- refers to those objects that lie in the direction of the shooting ray from its point of
':‘ origin. Since the ray is being modeled by a vector, which only indicates direction,
.
every object along the line described by the vector and the origin of the ray is
".
o considered, see Figure 5.1. The way to test for this is to generate a test vector
.‘l
}
. between the origin of the ray and any intersection points of the shooting ray,
.::: eliminating the intersection noints that lie in the onvosite direction from the
e
‘_ ~IOOTINY .
;.: As each object is processed, the objects whose bounding volumes are
p- intersected by the shooting ray are processed further to see if any of their
- et subobjects are also intersected. The same basic procedure for finding an
Y
'_:;: 93
‘-:
“
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intersection is used here as is used for finding an intersection for the objects. If the
object and the subobject are one and the same, this check need not be done.

For each subobject whose bounding volume is intersected, the next step is to
check the type of geometric object, i.e., a sphere or a polygonal object. This needs
to be done in order to determine which intersection routines are needed. In the
case of a sphere, it becomes just a matter of solving two simultaneous equations,
discussed earlier--one for a line, the other for the sphere. When dealing with a
polygonal object, it becomes more complicated because each face of the polygon
must be checked. The first thing that needs to be done is to check the orientation
of the face in question. When the polygon does have the right orientation, the
intersection process continues. The first step is to determine the equation of the
plane that contains the polygon. This plane is calculated from any three vertices
of the face in question. Once the plane has been established, the intersection point
between it and the shooting ray is calculated. With the intersection point thus
established, the next step is to determine whether or not the point lies on the face
of the polygon. If the intersection point is found to lie on the face of the polygon.
then this point is saved and placed in the ray data.

If no intersection is found and the shooting ray is either a reflecting or
.‘"!.T'l("lﬂ'i TAV, Tnhenn T oS ‘l.'ﬁ(“iffl("'l N e nTenlsry oot ion AT eSS
the shooting ray is a view ray, then the intensity is set to the background

intensity which is then displayed and the next ray is generated.
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When there is an intersection, the first thing to be checked is whether or not
there is enough room on the stack. Since the stack holds only part of the ray tree
at any one time, it need only be long enough to contain the longest anticipated
branch. A particular branch of the ray tree is terminated when both the reflected
and refracted rays at an object intersection leave the scene or when the available
stack length is exceeded. When both rays leave the scene, their contribution to
the illumination at the source ray is zero. When the available stack length is
exceeded, the algorithm calculates the illumination at the source ray using only
the ambient, diffuse, and specular reflection components at the source ray
intersection. An extension algorithm is given in Rogers whereby the algorithm can
be extended one additional depth in the tree without exceeding the maximum
stack depth. However, the implementation of that was not necessary here. When
the stack does get full, it becomes a matter of calculating the intensity at that
intersection point and setting the appropriate value [, or I, in the source ray.
Ref. 1: p. 372]

When the stack is not full. then the distance between the source point of the
shooting ray and the intersection point is determined and placed in the ray data.
The rav 1s then placed back on the stack. Once that is done. anyv reflecting and/or
CTTTO LT e, A T L TTer e LTersectiarn Tl e letertiiinedl. T et oty
dara imminialized. and then placed on the stack as new rays with the reflecting ray
being placed on first. It 1» important to keep this order of rays in mind because it

is necessary to know the number of rays to pop when setting the intensities of the
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0
Q' source rays. With these new rays in place on the stack, the program returns to
u
fﬁ'f the beginning of the ray tracing cycle. In the absence of reflecting or refracting
N rays. then the first ray popped is the view ray. Now since this ray already has its
3,
i
',.’ intersection flag set, the intensity at the point of its intersection is caiculated and
u'
Qr displayed. If the ray popped is a reflective or refractive ray, then it becomes the
#
2 new shooting ray. This cycle continues until either no more reflecting or
B
al refracting rays are produced or until the stack becomes full. This process is
K ..“ . . .
! :‘j summarized by the pseudocode description in Figure 5.2.
.' ‘
W
K B. DETERMINING THE INTENSITY
:‘}'_- If a ray’s intersection flag is found set at the beginning of the ray tracing
2
-.:,'- process, that ray is sent into the intensity processing part of the ray tracer. The
N first step in this process is to take the ray data and to determine the intensity at
n\ that ray’s intersection point. This intensity is then divided by the distance
v
»
) between the ray’s point of origin and its intersection point in order to properly
l"
"
{ _-t: attenuate it. This process is done for each of the primary colors -- red, green, and
LS
-
N
f- . . . - .
o blue. If a view ray is being considered, that means that it was the last ray on the
_ stack. Therefore, it is the final intensity to be calculated and hence is the actual
.':;: me fisoved. f 1 s a cefracred tay. “hen the :ntensity just caiculated hecomes
!
. the I, intensity in the source ray for the ray currently being examined. If it is a
3 Fo,
s
| ":.: reflected ray, then the intensity just calculated becomes the I intensity in the
-
v )'.:
source ray for the ray currently being examined. The stack is set up so that the
iy
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READ IN DATA FILE

tor ¥ ;=1 to .\‘I.-\.X_ROWS do
for X := 1 to MAX COLUMNS do

; INITIALIZE VIEW RAY .
PUSH RAY ONTO STACK
.g - repeat
K POP RAY FROM STACK
" if INTERSECTION FLAG SET then
W CALCULATE INTENSITY
else
s CHECK FOR INTERSECTION
) if INTERSECTION FLAG SET then
o if STACK EXCEEDED then
. CALCULATE INTENSITY
else
,:: PUSH RAY BACK ON STACK
;’ CALCULATE REFLECTED RAY
b, CALCULATE REFRACTED RAY
" if REFLECTED RAY EXISTS then
INITIALIZE REFLECTED RAY .
1',‘ PUSH REFLECTED RAY ON STACK
3_: end if
::: if REFRACTED RAY EXISTS then
R INITIALIZE REFRACTED RAY
: PUSH REFRACTED RAY ON STACK
;;0 end if
:; end else
. else
i if (CURRENT RAY TYPE = VIEW RAY) then
. SET INTENSITY TO BACKGROUND COLOR
Y end else
" intil STACK ZMPTY
by DISPLAY PIXEL
o end FOR-X
E end FOR-Y
v
:: Figure 5.2 - Pseudocode Description of the Ray Tracing Process
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{:; source ray is on the bottom of the ray tuple with the reflected ray above it and
g0

‘::E: the refracted ray above that. In order to set these values, it is necessary to pop
fé ' the stack to gain access to the source ray. Once these values are set in the source
E!-:: _ ray, the program returns to the beginning of the loop and pops the next ray off

the stack discarding the last ray as it is no longer needed. [Ref. 1: p. 377]

Y
P . . . . . .
:E:: The intensity algorithm [Ref. 1: p. 377] although very simple in design,
et
.';‘
- depending on the number of light sources in the picture, can also become a time
W
‘§ intensive part of the ray tracing program. The entire ray data set, listed in Table
¥,
:‘ “ 3.1, is sent into this routine as well as the pointers to the object and light source
h"
o : list. As in the intersection routine, rays are generated here. In Rogers, they are
)
L) .
o referred to as shadow feelers and the same term is used in this study. These
i
" shadow feelers are those rays represented as the vectors from the point of
?; intersection to the light source, see Figure 5.3. They are used to determine the
75
)
‘::,‘ intensity contributed to that point from that light source. Once these rays are
y
& ~ generated, they also pass through the intersection routines in order to determine
:;l'
:‘, which objects, if any, the light rays pass through en route to the intersection
1‘ L
v.t
point. The first test that must be done is to determine if any of the objects passed
oo
;: through are opaque. If any are opaque. then no light reaches the intersection
e
i Jo1t Srom that Ugat source. That pont s Then cousidered ‘o De vy in leep
7' ! shadow with respect to that light source. If none of the objects intersected by the
ﬁ$ light ray is opaque, then the light intensity needs to be attenuated accordingly for
G.‘ l
- each of them. This attenuation entails multiplying the intensity at each point by
<
\:: 59
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) Shadow Feelers [Ref. 3: p. 64]
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o the transmission coefficient of the object. This process then needs to be repeated
v for each light source. A running total of the intensities is maintained to be
included in the final calculation. The calculation takes into account the ambient
§.' light and the light that comes in along the reflection and refraction rays. This
process then produces the final intensity. If the input ray type is a view fay then
:,: it is displayed. If it is a reflected ray, it becomes the I value in the source ray. If

it is a refracted ray, it becomes the I, value in the source ray. [Ref. 1: pp. 376-377]
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. VI. IMPLEMENTATION
) L .
o The prototype was written in BORLAND’s Turbo Pascal and implemented
Y .
W on an IBM AT clone. The program is 2500 lines long and takes two hours to
byl
o
";::'i generate a scene of 200x200 pixels. The scenes generated on the AT were then
T
'. . - LR £ . -
B displayed using the RGB monitor of a Silicon Graphics IRIS 2400 graphics
.(-
5 workstation.
-
“
h 2 The main focus of this study was to develop a prototype ray tracer, which by
D)
g itself is just a hidden surface removal technique. The secondary consideration was
"8y
N to integrate an illumination model into the ray tracer. Because of this focus,
!.l“ ' 3 . . 3 .
more time was spent examining the ray tracing algorithm than any of the global
\l‘
and
X illumination models that could have been integrated along with it.
o
g" The top three scenes in Figure 6.1 tested the ability of the prototype to
oJ
s perform as a hidden surface remover. The program proved successful in this area.
s
:: For these scenes, a stub was used in place of the illumination model and each
B
s
- scene was lit using only ambient light. From left to right the scenes show: An
(TR
G
o inobstructed riew of the *hree nbjects. described in a later section: the cube and
7
:v spnere suspended apbove ihe idoor put with the cupe partiaily biocking the spiere;
j-c: the cube and the sphere sunk part way into the floor with the cube still in front.*
1.:'2
"’: *These were the only scenes generated to test for hidden surface removal. The remainder of
- . the tests were done trying to integrate a global illumination model.
o
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:'\jﬁ‘ The testing of the global illumination model integrated into the ray tracer
e unveiled some problems. The two bottom scenes in Figure 6.1 are representative
b of the successful results. The first problem discovered was that attenuating the
o intensity by the full distance between the origin of the view ray and its

intersection point produced totally blackened objects. The results shown in

b .
'\-‘. Figure 6.1, the bottom row, were obtained by either dividing the intensity by two,
D!
ik see the scene on the left, or by not dividing it at all, see the scene on the bottom
4y right of the object. The second problem can be clearly seen by the black line that
\
B runs up the center of the floor on the bottom right scene. This result along with
i
[
. those test that generated shadows, not shown, indicated that the intensities for
2 )]
5,‘: the floor were reversed. The black line, clearly seen in color Figure 5 and just
o vaguely visible in color Figure 4, is actually specular reflection and should be
?: y much brighter than the rest of the floor. In those scenes where shadows were
]
A
1, . 3
ﬁ generated the shadows were also brighter than the rest of the floor--just the
. (]
;:f . reverse of what it should have been.
OLN
N ‘r.
a
W
) A. INPUT
2!
The test data used in this study produced the scenes shown in Figure 6.1.
'
‘:";-: This "est tata 'vas in she ‘orm of a sequential ile with rhe ‘lata strucrure ouriinea
D \'
1 in Figure 2.2. The data had in it one picture record, one light in the lights array,
oy
y j and three objects in the objects array. The first object is a cube which contains
1
~.: one subobject. This subobject has one common part. The common parts record
o 63
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p . then points to the six polygon records that where used to construct the cube.
;:::': ‘

{ )

Aatle Each one of these records has its own vertex arrays. The second object is a
W . sphere. This object has one subobject, and the subobject has one common part.
.‘.{,\33

‘C 31 Since a sphere can be its own bounding volume and since it is not constructed of

polygons, then the object chain for the sphere need go no further than the
common parts array. The third object is the floor.* This consists of one
subobject, one common part and one polygon. All objects in the scene are opaque

sty and have a highly reflective surface.

R B. OUTPUT

<l The output generated by the ray tracer is in the form of a bitmap, with
values for each of the red, green, and blue components. These values range from
0 to 1. To display these on the RGB monitor of the IRIS, each red, green, and
Bt blue component is then multiplied by 255 and assigned an index in the color

L table.

*The floor is at a 10 degree angle to the screen to provide a better perspective.

65 |

"

------------------------------

ey
O
5 w“‘w‘

-,
". <, o T
.




-‘ -

-~
-

* itk

= 2 b6 36 b e S L SN o

% & a

‘. S
.';&d‘ L

VII. CONCLUSIONS

A. AREAS OF FUTURE RESEARCH

The ray tracer is a powerful tool in computer graphics. In its original design,
it produced the finest rendered pictures at that time. Since then there have been
numerous extensions, among the most widely known are the ones by Phong, Blinn
and Newell, Kay. and Whitted each of which have further enhanced the
performance of the ray tracer [Ref. 2: pp. 343-344]. There are two main areas for
future research: global illumination models, and intersection algorithms. Both of
the areas are of great interest in the graphics world. Since ray tracers and global
illumination models can be integrated so easily, working on either problem would
undoubtedly lead to insight into the other. This would also be very easy to do
because ray tracing naturally lends itself to a modular design making it easy to
establish hooks for the testing of a large number of algorithms, both illumination

and intersection.

B. CONCLUSIONS

Ve nave -xamined -Re Ciaree mator ireas of -av Cracing: Cne scene  iaia
needed, the intersection problem, and the intensity problem. The data structure
used was adapted from [Ref. 3] and proved to be useful. The intersection
problem, although involved, is not complex. The algorithms used in this
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implementation are simple.

was easy to integrate and provided fair results.

The inclusion of a simple global illumination model,

The ray tracer provides an

excellent test bed program and implemented can provide a useful tool to study

numerous problems, not only in lighting and shading but also in intersection

determination.
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APPENDIX A —~ SOURCE LISTINGS

DECLARATIONS

const

{ THIS IS THE CONSTANTS DECLARATION SECTION }
maximum_size_of stack = 100;
initial plxel 2=0;

type
{ TYPES DECLARATION AREA }

vertices_array = array [1..4] of real;

polygon rec = record
num_vertices : integer;

vertice X, vertice y, vertice 2 : vertices array;
surface _normal_x, surface_normal y, surface_normal z : real
end;

polygon ptr = “polygon_array;
polygon_array = array [1..6] of polygon _rec;

common_part_rec = record
K ar, K ag, K ab:real; { AMBIENT DIFFUSE COEFFICIENT }
K dr, K dg, K db:real; { DIRECT DIFFUSE COEFFICIENT }
K sr, K sg, K sb real; { SPECULAR COEFFICIENT }
K _tr, K tg, K tb real; { TRANSMISSION COEFFICIENT }
Obj refraction mdex real; { OBJECTS REFRACTION COEFFICIENT }
ob_)_phong_exp : integer; { PHONG’S SPECULAR EXPONENT }
num_polygons : integer;
polygons : polygon ptr
end;

common_part_ptr = “common _part_array;
common_part_array = array [1 .3| of common_part rec;

sub_object _rec = record
aum _ommon darts lateger:
‘ommon ?a.rts_ omimon oart Hir:
sub D~pher° radius: rear. RADIUS OF SUBOBJECT S 800 NDING ~PYERE,
sub bsphere x :real; { CENTER OF BOUNDING SPHERE }
sub bsphere Yy  :real

sub_bsphere z : real;
subobj type : integer; { 0: SPHERE. 1 PLANAR-POLYGON }
end;

sub_object ptr = “sub_object array,
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sub object array = array 1 3 of sub object rec.

object rec = record
num—_sub_objects integer
sub objects sub object pur.
sbi bsohere radius real: { RADIUS OF OBJECTS BOUNDING SPHERE
qDJinspnere_\ reat. , CENTER OF 301 NING SPHERE
obj bsphere y real.
obj bsphere :z real;
opcode integer { CURRENTLY NOT USED |
end;

¢ object ptr = “object array.
¢ object array = array 1 4 of object rec.

light_rec = record
) I rl g 1b- real { INTENSITY OF THE LIGHT )
2 light x. light y light z real { LIGHT POSITION }
A Yimensionl dimensionl  rea, PNOT <D
(¥
:! end;
'

hight_ptr = “hght array:
. hght array = array 1 3 of Light rec.

X picture rec = record

‘ num obys integer

objects object pir.

num Lights integer

Lights hght ptr.

global refraction index real

R

no zero real.

ambient r real,
ambient g real.
ambient b real.

.

B background eolor r  real
. background color g real.
background color b real
view position X real
view position y real
view position i real
screen max x integer

wrreen mMmax ‘ntegear

{ PP S S P I I NP P I NS S P PRI NSNS S ISP RSP IS NS SRR S0EEPPARVRB I IPONCOP OISR BRRESETLA

K rayty pe inone siew reflected refracted]

~olorty pe (red green bluye:
~

{ RAY DATA RECORD

ray ptr - ray rec

.
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ray rec - record

ray Lype raytype.
ray origin x real { YRIGIN OF RAY }
ray origin real.
ray ofigin 1 real.
ray vector x ceal. { DIRECTION OF RAY }
B Y A il ¥
ray vector g real
ray stype raytype. { TYPE OF SOURCE RAY }
intersection flag  boolean
oby dx integer { PATH DECSRIBING OBJECT INTERSECTED }
subahr dx Nteger
rpart 1dx integer
polygon adx integer
intersertion x real { INTERSECTION POINT }
Intersection y real
intersection 1 real
¢« DISTANCE BETWEEN RAY S ORIGIN AND INTERSECTION POINT |}
! “eal

INTENSITY OF LIGHT COMING IN ALONG THE REFRACTED RAY GENERATED BY THIS
RAY

Ltroatg bt reas

INTENSITY OF LIGHT CGMING IN ALONG THE REFLECTED RAY GENERATED BY THIS
RAY

I sr | sg [ st reai
ray ank ray ptr
end ¢ ray ptr}

< PAj

S0P SN0 ESNB IR NN ERSSN SRR IRNSESES \ ‘\R IR RN R R AN YRR ER AR RS SR N A RN RN 2 J }

v Af

Suthie tent
syan text

Sy syt text

CESELOIN CONVERTING ALL RAYS VECTORS TO UNIT VECTORS |}

x v 1 reaj

Tay Numbet nteger

S USED A SHORTHAND BEOAT SE THE OBJECT PATHS GET LONG
part path  ormmoen pArt ptr
subet o path sut o bjecr prr

colar e :.n.\‘,p
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{ USED TO IMPLEMENT THE STACK }
ray top,
ray current,
ray next . ray ptr,

intensity red,
intensity Ireen,
intensity blue : real:

pixel x,
pixel y,
pixel z - integer:

ray generation number : integer;

intersection point X,
intersection point y,
intersection point z : real;

old intersection _point x,
old intersection point y,
old intersection point 3 : real;

temp integerl,
temp integer2,
temp integer$ : integer;

reflected ray x,
reflected ray y,
reflected ray 3 : real;

refracted ray x,
refracted ray y,
refracted ray z : real;

surface normal x.
surface normal vy,
surface normal z : real;

—~—

USED TO INITIALIZE RAYS }

mitial ray type :raytype;
‘mitial rav origin <. initial rav origin v. initial rav origin z - real:

nitial Cy Cectof o0 ntial oty o ector o nliay Ay sectar o Teall
mitiar Tty oy pe 7 VIV D 7
Initias_intersection_flag . poviean,

initial_ob) 1dx . integer;

initial subobj idx . integer,

initial cpart idx : integer;

initial_polygon 1dx . integer:

initial intersection x,
initial intersection y,
initial intersection z - real;
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o N l'i., S0,

initial d  : real;
initial I tr, initial 1 tg, initial I tb : real;
initial 1 sr, initial I_sg, initial I _sb : real;

{ HOLDS CURRENT RAY WHILE IN ACTUAL RAY TRACING LOOP }
current ray type : raytype:
current_ray Origin_X, current_ray Origin_y, current_ray Origin_z . real;
current ray _vector X, current _ray vector_y, current ray vector 3: real;
current ray stype : raytype;
current_intersection_flag : boolean;

current_obj idx T integer;
current_subobj idx ' integer;
current _cpart_idx : integer;
current_polygon_idx : integer;

current_intersection x,
current_intersection y,
current_intersection_: : real;

current d : real;

current l _tr. current 1 tg, current | tb : real:
current l _sr, current I _sg, current I sb real;

reflected ray : boolean;
refracted ray : boolean;

source ray num : integer;
source ray Ltype : raytype;

{ POINTER TO PICTURE RECORD }
picture : picture rec;

{

POLYGONS.
}

light _cntr : integer;
light _current : light ptr;

USED TO ESTABLISH LINKED LIST OF OBJ, SUBOBJ, LIGHTS, CPARTS, AND

obj cntr : integer;
obj curr : object ptr;

subobj cntr : integer;
subobj curr - sub object btr:

“part ntr integer:
cpart _curr : common_part ptr;

poly cntr : integer;
poly next,
poly curr : polygon ptr,

vertice cntr : integer;
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{ USED WHEN READING IN DATA }
poly loop_cnt : integer;
light _loop cnt : integer;
cpart_loop cat : integer;
subobj loop cnt : integer;
object foup cnt : integer;
vertice .oup C¢nt .integer:

intersection X, intersection Y, intersection Z : real,
{ USED TO IDENTIFY INTERSECTED OBJECTS }

object idx.

subobj_idx,

cpart idx,

polygon idx : integer;

intersection flag : boolean;
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INTERSECTION PROCEDURES

{

0800003000300 8800000008%8¢00 uv11)R£:SGJ)AS (TR RN SRERE SRR 22 0Y)

® These are the inters>ction procedures used in the ray tracer program

C I EN TR R eI N AT SRS CECREIEIENEEETNETRATCETENNSNSEEEIUGEEECNEOESbSeTeeuURTERSa

! }
~ {
00008 C 088009000 CRSIOSISEREGCOED SP*lE'{E:[h?rEilSE(“rl()N [ EEXRSAESNRINYREISRNNRER Z 03
* CALLED FORM CHECK FOR SUBOBJ-INTERSECTION
¢ CALLS TO NONFE
* DESC CALCULATES THE INTERSECTION POINT BETWEEN A RAY/VECTOR AND A

\ ¢ SPHERE
. * INPUT The centerpoint of the sphere and 1t’'s radius. The direction of
* the ray and a known point on the ray -- which would be it's
* orgin
* OUTPUT A flag \ndicating whether or not there was an intersection and
. ) Y "ners was ‘he sctu: ntersecrion noint o self
P ececesssstsaes et et acauues st ac et st s s tesstoereneasess asEsTIsRNTS
}
procedure sphere intersection (Px. Pv. Ps  real
Ve Vy Vi oreal
y tUx Uy s rems
r real
var o intersection flag boolean
var Sphere x_ Sphere y Sphere § real )
. var
. a b et 2 real
3 X1 Y1 Zi real
y X2 Y2 12 real
{istancel Adistancel real
radical  real
tiffw iy 1 F2 real
hegin
CINITUAL IR
~phere '
Sphers
~t here
Tav o
N A SR I T A LY R R Y ST 1 e W Lo S [ W B A I (W
. wti Vx TR IR W
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. T T T VTR TR T T T Y W W

‘:n: ¢ := ( sqr(Cx) + sqr(Cy) + sqr(C3) +
- sqr(Px) + sqr(Py) + sqr(Ps) -
L (2*Cx*Px)-(2*Cy*Py)-(2* Cz* Ps3)-sqr(r));
radical := (sqrt ( sqr(b) - (4 * a * ¢)));
¥
" % { START COMPUTATIONS ON QUADRATIC EQUATION }
.. if (radical < 0) then begin
o writeln("WARNING - imagionary number possible in SPHERE INTERSECTION’});
v o intersection flag := false
" end
:l » slse begin
',. >, if (radical = 0) then begin
::'7 IF 0 THEN JUST ONE INTERSECTION POINT(THE LINE IS TANGENT TO THE SPHERE)
‘ }
.o tl:=(-b/2°a) { SOLVE FOR t }
,:.;. Sphere x := Px + (Vx * t1); { CALCULATE POINT USING t }
::- Sphere v = Pv ~ (Vy * 1.
v Sphere 3 := Ps + (Vs * t1);
w o_intersection flag := true
end
o else begin
\:,' {
.
- THERE WERE TWO INTERSECTION POINTS -- ONE ENTERANCE POINT AND ONE EXIT
s POINT SOLVE FOR BOTH ts’
' }
th:= (-b+ (sqrt (sqr(b) - (4 *a*¢c))})} /2 ° u
. t2:= (-b-(sqrt (sqr(b) - (4 *a*¢c))}))/ 2"q;
"
*'. X1 :=Px + (Vx * t1);
" Yt =Py« (Vy * u);
N Z1 := Py + (Vs * 1),
2 {
N CALCULATE DISTANCE FOR BOTH INTERSECTION POINTS FROM THE POINT OF ORIGIN
‘
}
:’ : distancel = (sqrt (sqr(X! - Px) + sqr(Y1 - Py} + sqr(Z1 - P3)));
X2 = Px « (Vx *t2).
d Y2 = Py - (Vy *2).
3 72 - P2 - Vgt a2
: fistance2 sart saee X2 g - oaaeeYI o o qenZ o D)
- - { COMPARE DISTANCES AND SELECT THE INTERSECTION POINT THAT IS CLOSER }
if distancel < distance? then begin
» Sphere x = X1,
: Sphere y = Y1,
\ Sphere 3 - Z1,
end
: else begin
0
) {3
\J
n
) ¢
"y + R

..........
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K
')'
0 Sphere x := X2;
" Sphere y := Y2,
o Sphere s := Z2;
i end;
‘ o _intersection flag := true
. end: ( ELSE }
\,
4 diffx := Px - Sphere x;
diffy := Py - Sphere y;
diffs := Pz - Sphere 3;
{
)
! A CHECK TO INSURE THAT THE POINT SELECTED ISN'T THE RAYS POINT OF ORIGIN
if ((diffx <= 0.0000) and (diffy <= 0.0000) and (diffs <= 0.0000)) then
o_intcrsection_ﬂng := false;
' end:{ ELSE )
N end; {* SPHERE INTERSECTIONS *}
, { PA}
§
t
RO ROBENOBASIRGENSRONS CALCULATE PLANE EQUAT]ON (2R ERSEREESRR SRS R T ]
'.‘_' * CALLED FROM : FIND INTERSECTED _POLYGON
. * CALLS TO : NONE
* DESC ' Calculates the constants of the equation of a plane when given
y . three point on the plane. .
e * INPUT : Three vertices of a planar polygon.
o * OUTPLUT : The A, B, C, and D constants for the equation of a plane
h. [ RN R R R R R E N R N R R R N N RN R SRS EESRN NN RSN R R ERERERNER YR
oy }
)
- procedure calculate plane equation(X1, Y1, Z1 . real;
o X2, Y2 22 . real
" X3, Y3, Z3 : real,
o var A.BC.D :real ):
.
begin
;: A Y1*i22-78) - Y2*(23-21) - Y3°*(Z71-22),
.’ 3 U CUNNG A IS SRR G B O
i LU R S I DA B S R v Y
L o) KU AT R PY IR GRS ROEA UIE O SRS
) (X3 (Y12 Z22)-(Y2°21))).
)
Y
: end. { calculate plane equation }
"
)
{
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Ly
‘:;;:: SHBEABAE LB T RTREB XL R FIND INTERSECTION PO[NT EREEBEES XL XRESET R R UK BES
:'.': * CALLED FROM: FIND INTERSECTED POLYGON,
v * CHECK FOR_SUBOBJ_INTERSECTION
* CHECK _FOR_INTERSECTION
f * CALLS TO : NONE
:A:::::. * DESC : Calculates the intersection point between a ray/vector and
. * a plane.
':". * INPUT : Ray direction and a known point on the ray, i.e., it’s
f".*»" * point of origin. The constants {A,B,C,D) of the equation
* of a plane.
s * OUTPUT : The intersection point.
;f.' (AR T SRR R 22 22222 SR R R R SR R R R RS R R RS2 RS R R R SRR R 2R R R 2
1
ury }
,‘:,5: procedur- find_intersection point{i_A,i B,i C,i D : real;
! :-‘ i ray x,i ray y,i_ray s :real
i_source x, i source_y, i source s : real;
s var o_intersection_point_Xx,
Mo o_intersection point y,
‘,o:?, o _intersection point z - real):
i
(L var
t :real;
b
Vil begin
¥
oihy
‘\ { SET UP FOR FINDING t FROM THE EQUATION FOR A LINE AND A PLANE }
N t:=(i_ D-((i_A*i source x) + (i B*i source y) + (i_C *i_source 3}}) /
((i_A*i ray x} +
;,ﬁ; (iB*iray y)+
;c: (i C*iray s));
D {
fl::' SUBSTITUTE t BACK INTO THE EQUATION FOR A LINE TO GET THE INTERSECTION
e POINT.
}
:,,
','i:‘ o_intersection _point x := (i_ray x *t) + i_source x;
:r:: o_intersection point y := (i_ray y *t} + i _source y;
Ny o intersection point s := (i ray & *t) + i source 1;
oo - = - - - - -
e end; { find_intersection point }
o " PA}
o
.l: A AN EEREEERREEERERNENEEE NN RNE] "‘\LEQ llllll S ERawwsrw AR R B NEEREERNEEER ENE XN ]
— * CALLED FROM: FIND INTERSECTED POLYGON
- * CHECK FOR SUBOBJ INTERSECTION
> 19! ‘ CHECK FOR INTERSECTION
Ly * CALLS TO : NONE
o * DESC : This calculates the constants A.B,C,D of the equation of a plane
B . i I i he pl d the surf | of the
ey given only a point on the plane and the surface normal o
¢ plane.
e * INPUT : A point and the surface normal of the plane whose equation you
i.“
" (L
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e

* are trying to figure out.

* OUTPUT: The constants A,B,C,D of the equation of a plane.

SRS EBABEBLERRBILIB XL BB REZE SRS RAL S RSB XSS AN ES SIS ELT IR AR IR EETRXSE SRR

}
procedure caleq(bsphere x, bsphere y, bsphere 3,
vector x, vector y, vector s : real
var A, B. C. D: reai):

begin
A = vector x;
B = vector v:
C := vector s;
D := (vector x * bsphere x) -

(vector y * bsphere y) +
(vector 3 * bsphere 3);

end; { caleq }

{
(XX E AR RN RS LR ER AR RN 2} ] POLYGON ORIENT‘ATION (A ISR RN RNER NS EASE NN R

* CALLED FORM: FIND INTERSECTED POLYGON

* CALL3 TO . NONE

* DESC : This checks to see if the incoming ray will hit the front face of
this polygon. It does this by comparing the angle between the
surface normal of the polygon and the inverse of the incoming ray
If the angle is greater than 90 degrees then the ray 1s
approaching the back of the polygon

INPUT The direction of the incoming ray The surface normali of hte
object

* OUTPUT A boolean value TRUE FALSE depending on whether or not the

polygon s facing the nght direction

€080 SN0 EE000Q08 00000000800 0CQA0RCRARRRSTUR0CEITR0RCGCCELIEERUCEETERIERREEREOPEBSBROOIETRS

}

procedure polygon orientation (view vector x view vecltor y view vector @ real
surface normal x, surface normal y. surface normal 1 real
var o good orentation boolean)

var
snaine theta real
angth d ] RN A Y
LA N BT A W 44T B ¥
preclust A
begin

{
TARE THE DOT PRODUCT OF THE INVERSE OF THE VIEW VECTOR AND THE SURF AL
NORMAL OF THE POLYGON IN QUESTION
)

78




B R
ko
xE
:'\:l' dot_product := (- view_vector_x) * surface_normal x +
3:: (- view_vector y) * surface_normal y +
,‘l': (- view_vector_3) * surface_normal z;
' { CALCULATE THE MAGNITUDE OF THE VECTORS }
:-_; length view vector := sqrt(sqr(- view vector x) +
_, 3qri- view vector y) —
:,1:' sqr(- view vector 1));
“,'0‘
' length _surface normal := sqrt(sqr( surface_normal x) +
i sqr( surface_normal y) +
:;:"-l sqr( surface_normal z));
0
::l { CALCULATE THE COSINE OF THE ANGLE BETWEEN THE RAYS }
" cosine_theta := dot_product / (length _view vector * length _surface normal):
Ly if (cosine theta > 0) then
X o _good orientation := true
NG eise
::0» ' o good orientation := false;
A - -
end; { polygon orientation }
Y
.
-~ { PA}
\"; {
:‘ ' [ 2SI ESERNR AR R AR RN N Fl.\'D l‘\‘TERSECTED POL\’G()N 8GN 000 CO0RIRIEEOITIOIISIOIOIRETS
. * CALLED FROM CHECK FOR SUBOBJ INTERSECTION
.',t‘ * CALLS TO POLYGON ORIENTATION
;', "~ . CALEQ
" ‘ FIND INTERSECTION POINT
ity . CALCULATE PLANE EQUATICON
" * DESC This determines if there is an intersection between a line ray
* and a polygon [f there 15 1t calculates what 1t 1s
N * INPUT The direction of the shooting ray. & known point on that ~a»
,";)' * it s origin. and the abject path identifying the subobject 1o
Y ¢ examine
g *OUTPUT A flag indicating whether or not a polygon was hit [f ine wae
T * hit the path (dentifving which sme it was and the actual
‘ intersection pownt tself
W
‘. t EPRY
- ©auteh o pix integer
q,' Ar Y poelygn ntersectior
>, polvgn nteresction
N :). Copelvgn ntersection 1 rea
~ var - pars wix
o privgn wfn o nteger
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THIS IS SET UP TO HANDLE 8 SIDED POLYGONS AX FACH SIDE OF THE POLYGON
IS TESTED TO SEE WHETHER THE INTERSECTION POINT LIES INSIDE OR OUTSIDE OF
IT THE CORRESPONDING ELEMENT IN THE ARRAY IS SET EITHER TRUE OR FALSE AN
ARRAY OF ALL TRUE MEANS THAT THE INTERSECTION POINT LIES WITHIN THE
PoLY GON
}

intersection array = array 1 6 of bociean.

var
point outside polvgon  boolean
Intersections inlersection array

“part ont
polygon ont
vertice -nt  nteger

mrerse o pn fn
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'.i cpart cnt == L
v, polygon cnt = 1.
] ': vertice cnt (= 1;
intersection found = false;
good orientation := false;
o cput—‘puh := picture.objects *[i obj idxl.sub objects"[i _subobj idx].
’ f‘ ommaon Carts.
-,::-. polygon path := cpart path “[cpart_cnti.polygons;
N
" {
" THIS CHECKS EACH COMMODNM PART FOR AN INTERSECTION WITH ONE OF IT’S
. POLYGONS
-
n }
i repeat
{ THIS LOOP CHECKS EACH POLYGON OF A COMMON PART FOR INTERSECTION }
repeat
b point outside polygon := false;
4-\ ‘iVEOR wrientation{l ray x.i ray v.i ray gz,
o poiygon pat.h “{polygon _cnty.surface_normal x,
.{ polygon_path “[polygon cnt|.surface norma.l B2
: polygon path “[polygon cnt|. surface_normal_z,
' good orientation);
Y
» if good orientation then begin
=
o caleq{polygon _path “{polygon_cnt|.vertice x[1],
polygon_path “Ipolygon_cnt].vertice y|1],
polygon_path “[polygon_cnt|.vertice z[1],
I: polygon_path “[polygon cnt|.surface normal x,
,"\' polygon _path “[polygon cnt|.surface “normal Y
N polygon _pa.th [polygon _cnt]|. surface_norma.l_z
" A.B.CD):
‘ : find _intersection point(A, B, C, D,
:l’ 1 ray x,
‘vl' iray y,
’:' i_ray z,
i_source x, i_source y, i source z,
.\.E polygonx polygonY polygonZ)
o
:; HECK 70 MARE SURE YOU ARE NOT CONSIDERING THE 3OURCE POINTIORIGIN)Y OF
"N THE RAY
- }
- 41ffx := 1 _source x - polygonX;
:}_ diffy = i _source y - polygonY;
\j- diffz := 1 _source z - polygonZ;
N {
THIS SETS A FLAG IF YOU DO CONSIDER THE SAME POINT, THE CHECKS IN THE
OTHER PROCEDURE SHOULD PREVENT THIS BUT JUST IN CASE.
.
: 81




- )
3 if ((diffx <= 0.000) and {diffy <= 0.000) and (diffz <= 0 000))
4 then begin

{ writeln(sysout,’set trip-wire’);}
; intersections(1] := false
. end
N else begin

THIS LOOP CHECKS EACH EDGE OF THE POLYGON TO SEE IF THE INTERSECTION
POINT LIES INSIDE OR OUTSIDE OF IT.
5 }

repeat
{ THIS SELECTS THE FIRST VERTEX OF A POLYGON }
> x1 := polygon_path “[polygon_ cnt|.vertice x|vertice ent|;

y1 := polygon_path “{polygon_cnt|.vertice y[vertice cnt};
21 := polygon_path “[polygon_cnt].vertice z|vertice cntl;

3 if (vertice ent = (poivgon path ~'polygon enti.num vertices -

1))

WHEN YOU PICK THE NEXT TO LAST VERTEX YOU CAN SELECT THE NEXT
CONSECUTIVE VERTEX TO ESTABLISH THE EDGE THROUGH WHICH YOU WANT THE
1 BOUNDING PLANE TO PASS. YOU THEN MUST PICK ONE OF THE OTHER VERTICES (AND
» IT DOES NOT MAKE ANY DIFFERENCE WHICH ONE. [ PICK THE FIRST ONE.) TO BE

- USED TO PUT INTO THE EQUATION OF THE PLANE THE RESULT OF WHICH IS COMPARED
; AGAINST THE RESULT THAT COMES FROM PLUGGING THE INTERSECTION POINT INTO
THE EQUATION OF THE BOUNDING PLANE. .
o }
3 then begin

x2 := polygon path “[polygon cnt].

“' vertice x[vertice_cnt + 1;
K y2 := polygon_path “[polygon cnt|.

vertice_y|vertice cnt + 1J;
; 22 := polygon_path “[polygon_cnt|.
: vertice z|vertice cnt + 1J;
' x3 := polygon path “[polygon_cnt|.vertice x|1};

y3 := polygon_path “(polygon_cnt|.vertice y[1];
23 := polygon _path "[polygon cntj.vertice z1]
end
alse begin
_, | iIF YOU DO NOT HAVE THE NEXT TO LAST EDGE THEN [UST SELECT THE NEXT
' CONSECUTIVE VERTICE TO ESTABLISH THE EDGE FOR THE BOUNDING PLANE AND
THE ONE AFTER THAT TO PLUG INTO THE EQUATON OF THE PLANE.

p }
' x2 := polygon_path “[polygon cnt|.
\ vertice x|vertice cnt + 1];
K} y2 := polygon_path “[polygon_cnt|.

vertice y|vertice_cnt + 1J;
. 22 := polygon path “|polygon cnt|.
: o _
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vertice i vertice cnl - |

x3 := polygon path” polygun «cnt
venlce_x;enlce_cnt -2

y3 ‘= polygon psth ™ polygon cnt
vertice yivertice cnt + 2

¢d - puiygun patn’ puiygen  nt
venice_z.vernce_cm ~ 2

end;

if (venice_cnt = polygon _puh " polygon cnt num vertices )
{
IF THE VERTICE SELECTED IS THE LAST ONE THEN JUST PICK THE FIRST VERTICE
TO ESTABLISH YOUR BOUNDING EDGE AND THE SECOND VERTICE TO PLUG INTO THE
EQUATION OF THE PLANE.

}
then begin
x2 := polygon _path “'polygon cnt .vertice x 1
y2 = poiygon path’ puivgon :nt vertice v |
22 := polygon_path "|polygon cnt vertice 1] .
x3 := polygon path “'polygon cnt. .vertice x 2.
y3 := polygon path “'polygon cnt .vertice y 2.
23 := polygon path " poiygon cnt .vertice 22
end;
{

ESTABLISH THE ARBITRARY POINT THROUGH WHICH THE PLANE WILL PASS
}
anchor x := ((x2 + x1) / 2) + 10;
anchor y := ((y2 + yl) / 2) + 10;
anchor z := ({32 + 21) / 2) + 10;

calculate plane equation( x1, y1, 21,
x2, y2, 32,
anchor x, anchor y, anchor 1,

A, B, C, D)

{
THE RESULT OF PLUGGING IN THE VERTICE OF THE POLYGON INTO THE EQUATION

OF THE PLANE.
}

marker = A "3t - B ooy - O

THE RESULT OF PLUGGING IN THE INTERSECTION POINT INTO THE EQUATION UF
THE PLANE.

}
check point D := (A * polygonX) +
(B * polygonY) +
(C * polygonZ);

if ((markerD <= -D) and (check_point_D <= -D}) then
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{
IF THE RESULTS HAVE THE SAME SIGN THEN THEY BOTH LIE ON THE SAME SIDE OF

THE BOUNDING PLANE HENCE THE INTERSECTION POINT LIES WITHIN THE POLYGON
WITH RESPECT TO THAT EDGE.
}

\nteraections vertice cnt = true

vine

{
IF THE RESULTS DON'T HAVE THE SAME SIGN THEN THEY LIE ON OPPOSITE SIDES

OF THE BOUNDING PLANE AT THIS POINT THE INTERSECTION POINT HAS BEEN
PROVEN TO LIE OUTSIDE THE POLYGON.

f ((markerD >= -D} and (check point D >= -D}) then

mtersecnons‘verw:e_cnt; .= true
else
intersectionsivertice cnt| := false;
vertice cnt = vertice cnt + 1
untnvertice cat o polygon path T poiygon ent .aum vertices),
end
end.

{
CHECK THE POLYGON INTERSECTION ARRAY TO SEE IF THE INTERSECTION POINT
FAILED THE INSIDE TEST FOR ANY OF THE EDGES.
}
for loop cnt "= 1 to polygon path “/polygon cnt,.num_vertices do
if not(intersections|loop cnt)) then
point outside polygon := true;

f point_outside polygon then
intersection found := false
else

intersection found := true;

polygon _cmt := polygon ent + I;
until ({polygon _cnt > cpart _path " cpart_cnt|.num_polygons) or
(intersection found)),

cpart cnt .= cpart cnt + [
until ((cpart _cnt > picture.objects “[i_obj_idx|.sub_objects (i subobj idx].
um “ommon Apur,s) or {intersection found)):

SET P THE QUTPUT FOR THE PROCEDIURE
o _cpart_1dx := {cpart_cnt - 1}

o_polygon_idx := (polygon _cnt - 1);

o _polygon_intersection x := polygonX;

o_polygon intersection y := polygonY;
o_polygon_intersection z := polygonZ;
o_intersection flag := intersection_found;

)
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RN end, { find intersected polygon }
e
Y {.PA}
s R {.“.‘.‘.“‘.‘.“‘... CHECK FOR SUBOBJ lNTERSECTION I E R 222 EE R 2R 2 2 Y )
& * CALLED FROM: CHECK FOR _INTERSETION
il * CALLS TO: CALEQ
' i * FIND INTERSECTION POINT
! * SPHERE INTERSECTION POINT
. * FIND INTERSECTION_ POINT :
:0; * DESC : Check to find out if the shooting ray intersects this
",v * subobject’s bounding volume.
:::l * INPUT : The object whose bounding volume has been hit.
"y * The direction of the shooting ray.

The origin of the shooting ray.
* OUTPUT : A flag indicating whether or not there has been an intersection.
o * The intersection point -- if there is one.

» * The path to the intersected nbject.
2B LSSV NB RIS IEEI TP PA SR E VXA E U EL ST IR EXEEEERERIB LR ER SRR S S S EA XS EER X

]
i }
™ procedure check for subobj intersection (i object idx : integer;
:‘, i_ray x,i ray y,i ray z :real;
‘ :\f i_source x,
\'5 i_source y,
s i_source 3z : real;

var o_intersection Xx,
Vo o_intersection y,
% o_intersection 1 : real;
o var o_subobj idx,
g ’ o_cpart idx,
& o_polygon_idx : integer;
var o _intersection flag : boolean);

y,".'!

4y var

T, closest object : real;

ac: —

A { VECTOR BETWEEN THE RAYS ORIGIN AND INTERSECTION POINT }
view polygon_vector x,

oy view polygon_vector y,

view solygon vector 1 - real:

g listance ‘rom :ncersection.

_f[’ distance from view position : real;

.}.;! . subobj path : sub_object ptr;

:2. obj path : object ptr;
oty

~':' cpart _cnt,

(AN -

o polygon cnt,

-, subobj cnt : integer; { USED TO GO INTO RESPECTIVE ARRAYS }
¢ o8

]
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A, B, C, D : real; { CONSTANTS FOR EQUATION OF A PLANE }

INTERSECTION POINT BETWEEN THE RAY AND PLANE THE BOUNDING CIRCLE IS
INSCRIBED ON.
}

bplane_intersection x,

bplane intersection y,

bplane_intersection 1z : real;

INTERSECTION POINT BETWEEN THE RAY AND A POLYGON.

}
polygonX, polygonY, polygonZ : real;

intersection flag : boolean;

begin

o_subobj_idx := 0,
o_cpart_idx :=0;

o _polygon idx := 0;
o_intersection flag := false;
o_intersection x := 0.0;
o_intersection_y := 0.0;
o_intersection _z := 0.0;

ESTABLISH A DEFAULT DISTANCE WITH WHICH THE ACTUAL DISTANCES WIL BE
COMPARED.
}

closest_object := 10000.0;

subobj path := picture.objects *[i_object_idx].sub_objects;

obj_path := picture.objects;

{ THIS LOOP CHECKS EACH SUBOBJECT OF AN OBJECT }
for subobj _cnt := 1 to obj_path"{i_object_idx|.num_sub_objects do begin

{ FIRST ESTABLISH THE PLANE ON WHICH TO DRAW THE BOUNDING CIRCLE }
caleq{subobj path “'subobj cnt!.sub bsphere x.
subob) path “'subob) rntisub bsphere v.
subobj path “'subobj rnt .sub bsphere E3
i ray x,1 ray y,1 ray z, B

A, B, C, D);

{ FIND THE INTERSECTION POINT ON THAT PLANE }
find_intersection_point(A,B,C,D,
i_ray x,i_ray y,i_ray z,
i_source x, i_source y, i_source_z,
bplane _intersection x,
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bplane intersection
bplane intersection ¢

{
DETERMINE THE DISTANCE BETWEEN THE INTERSECTION POINT AND THE CENTER
POINT OF THE BOUNDING SPHERF CIRCLE
/
distance from intersection
sqrv.(lqr(lubobj _path " suboby cnt. sub bsphere x -
bplane intersection x) «
sqr{subob) path "~ subobjy cnt sub bsphere y .
bpiane ntersection R
sqr(subobj path ™ subob) cnt sub bsphere 1 -
bplane intersecuion 1) ),

{ IF THE DISTANCE IS LESS THAN OR EQUAL TO THEN YOU HAVE AN INTERSECTION )
if (distance from intersection < =
subob) path “'suboby cnt sub baphere radius) then begin

f {subobj path ™ subobj cnt subob) type = 0) then begin
{
IF SUBOBJECT TYPE IS A SPHERE THEN YOU NEED TO USE THIS INTERSECTION
PROCEDURE.
}
sphere intersection{i source x, i source y, i source 3,
irayxirnyyirny; B i
subob) path “'subobj cnt' sub bsphere x.
subobj path “'subobj <:m1 sub_bsphere y,
subobj path“'subobj cnti.sub bsphere 3,
subob) path “isubob) cnti.sub bsphere “radius,
intersection flag,
polygonX, polygonY, polygon2);
cpart cnt := 1,
polygon cnt := 0;

end
else begin
{ IF IT ISN'T A SPHERE THEN USE THESE }
find_intersected polygon(i_ray x, i ray _y,i_ray 13,

i_source x, i_source y, i _source z,
i obJect “idx,
subobj ent,
polvgonX, poivgonY. potygonl.
‘part °nt.
polygon cnt,
intersection flag);

end; { * ELSE * }

if intersection _flag ther. begin

{
IF THERE HAS BEEN AN INTERSECTION THE ESTABLISH THE VECTOR BETWEEN THE
ORIGIN OF THE RAY AND THE INTERSECTION POINT.
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v Pw LAY T SR SR A Y (YRRTY AL ] ;--"\ ¢ "\
View My ROn vec oy source v peclvgon Yy
View Loy gon o se oo g Cosource 3 polygonl
LT L Y A ) R S )
distan e from view position sqrtisyriview polygon sector x) oo

syriview palygon vector v o

sqriview palygon vectur g}

f tistani= fean view position closest obgect then begin
{
COMPAKRE T AGAINST THE OTHER DISTANCES AND SELECT THE CLOSEST ONE
}

lasest object fistance from view position
+subaby ady suboby ot
fAre 1 Y4l o
S oponygon adx polygon cnt
~intersection flag intersection Hag
O INtersection % polygonX
L ointersecticn v poivgony
Intersec Lion & potygonl
end
end
end

end. {* FOR *)

end. { check for object intersection }

{ PA}

{
[ AR A NE LR NEEENEERNNNNNERENNEN] ('Hh('K P‘()R INTERSE(TTl()N 000000083 082¢¢000000OROSRGOTY
* CALLED FROM MAIN AND CALCULATE INTENSITY
* CALLS TO CALEQ

. FIND INTERSECTION POINT
. CHECK FOR SUBOBJECT INTERSECTION

* DESC : DETERMINES IF THERE IS AN INTERSECTION BETWEEN THE SHOOTING RAY
* AND THE BOUNDING VOLUME OF AN OBJECT.

* INPUT Direction of the shooting rav

) Jrigin of *he snooting rav

Poanter ato Che snyect werav

*OUTPUT : Flag indicating wnetner or not there was an intersection.
If there was an intersection then then the intersection poiat.

The path to the intersected polygon.

(AR R AR R R S R R R R R R R R R R R R R R R R R R R R P R R N R R R R R R R R RN R R

}

procedure check for intersection (i ray x, i ray y,i ray z: real;
i_source x, i source y, i source z:real;

]




i_picture objects object ptr:
var o _intersection x. )

o intersection y.

o _intersection 3 : real
var o object idx,

o subob) udx.

» cpart udx,

o poly idx - integer;
var o intersection flag . boolean),

var

‘lodest sbject  real

object cnt,
object idx,
subob) cnt,
cpart cnt,
polygon cnt integer.

distance from viewposition,
distance from intersection real;

{
INTERSECTION POINT BETWEEN SHOOTING RAY AND THE PLANE THE BOUNDING CIRCLE
IS INSCRIBED ON.
}

bplane intersection x,
bplane intersection y,
bplane intersection 3 real,

view bplane vector x,
view bplane vector vy,
view bplane vector 3 : real;

{
INTERSECTION POINT BETWEEN THE SHOOTING RAY AND A POLYGON.

}
polygonX, polygonY, polygonZ : real;

{
CONSTANTS FOR THE EQUATION OF A PLANE.

\
B D real
found intersection : boolean;
distance : real;

begin

o_object_idx := 0;
o_subobj idx := 0;
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o cpart dx .= 0,
o_poly dx 0,

o intersection x := 0.0

o _intersection y := 0.0,

o mtemcuon 1= 0.0

o intersection ﬂug = false:

losest hpject = = [U0UL U,

found intersection := false;

object cnt ;= 1;

{
LOOP TO CHECK EACH OBJECT IN THE OBJECT ARRAY.
}
repeat
if (((picture.objects “{object cnt|.ob)_bsphere z > i source 3) and
ii ray 2 >0 )) or
((picture.objects “|object cntj.oby_bsphere z <1 _source 3) and
(i_ray 3<0))) then begin
{
ESTABLISH PLANE ON WHICH TO DRAW BOUNDING CIRCLE.
}
caleq(picture.objects ‘[object_cnt].obj__bsphere_x,
picture.objects “[object _cnt|.obj bsphere y,
picture.objects “[object _cnt|.obj_bsphere z,
i_ray x,i_ray y,i ray z,
A‘ By Cy D)v
{
FIND INTERSECTION POINT BETWEEN THAT PLANE AND THE SHOOTING RAY.
}
find _intersection point(A,B,C,D,
i ray x,i _ray Yy, i_ray _z,
i_source x, i source y, i_source_z,
bplane intersection X,
bplane intersection y,
bplane intersection z)
; (
8 DETERMINE DISTANCE BETWEEN THE CENTER OF THE CIRCLE AND THE
Vo INTERSECTION POINT
,\*.; }

distance from intersection :

¥ sqrt(sqr(picture. object.s“'object _cnt].obj_bsphere x -

2 bplane_intersection x) +

'

+ sqr(plcture objects “|object cnt].obj_bsphere y -
bplane_intersection y) +

sqr(picture.objects * [object_cnt|.obj_bsphere z -

bplane_intersection z) );

X 90




IF INTERSECTION POINT LIES WITHIN CIRCLE THEN START CHECKING THE
SUBOBJECTS THAT MAKE UP THE OBJECT.
}
if distance from _intersection <=
picture. objects * lob]ect. cnt] obj bsphere radius then begin

check_for_subobj intersection {object cnt,
1 ray x,i_ray y,i ray s,
i_source x, i_source y, i source z,
polygonX, polygonY polygonZ,
subobj :nt.
cpart_cnt,
polygon _cnt,
found _intersection);

{
DETERMINE THE DISTANCE BETWEEN THE ORIGIN AND INTERSECTION POINT OF

OF THE RAY
if found _intersection then begin
view bplane vector x :=i_source x - bplane_intersection x;
view bplane vector y := i source y - bplane intersection y;
view _bplane vector z :=1_source z - bplane_mcersecuon_z

distance _from_viewposition := sqrt(sqr{view_bplane vector x) +
sqr(view bplane vector y) +
sqr(view bplane vector 1)),

SELECT ONE CLOSEST TO RAY’S ORIGIN.
}

if distance_from_viewposition < closest object then begin
closest object = distance_from_viewposition;
o_object idx := object cnt;
o subobj idx := subobj cnt;
o_cpart_ldx := cpart_cnt;
o_poly_idx := polygon cnt;
o_intersection x := polygonX;
o_intersection_y := polygonY;
o_intersection_z := polygonZ;
) intersection_ﬂag := found intersection

end - B

2nd
end;

end;
object_cnt := object cnt + I,

until (ob_]ect. cnt > picture.num _objs);

end; { check for_intersection }
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INTENSITY PROCEDURES

«
l':'
230800880060 00300808RCRGREORRY ST“CK EMP’r" ¢8990 0000000000 ¢0cROsBOTS

, ¢ CALLED FROM - MAIN and POP
S T CALL> TO NONE
::: * DESC  CHECKS TO SEE IF STACK EMPTY
W, * INPUT : POINTER TO TOP OF STACK

' * OUTPUT : BOOLEAN VALUE - TRUE,FALSE

250008800800 08088SEERRABEORNRAERIOSEBNIEPENIRNNENNEE0SBEIREBEREOOPNSSISOURSESTS

W :-
q:,_ function stack empty (input_ray top: ray ptr} :boolean;
XL begin
'4.:, STACK_EMPTY := input_ray top = nil
L end; { STACK EMPTY }
e
B
" .

\-
708
L -
" :: EES R LSRNV AB LSRN EBEREETR XD STACK EXCEEDED ¥EXR XXX LRSS AR AR SR NES
e * CALLED FROM : MAIN

' * CALLS TO :NONE
,w * DESC : CHECKS TO SEE IF STACK IS FULL
&' * INPUT : CURRENT SIZE OF STACK and MAXIMUM SIZE OF STACK
Dy * OUTPUT :BOOLEAN VALUE TRUE/FALSE
‘:‘ SSEEX R LR EASLLEN LR AR RS RA AL AL ARSI RS LR ER RIS L ERER LR R R R RS RSN SN2 RS
ey } function stack exceeded(input_t1,

input_t2 : integer) : boolean;
(X)
',:P:‘ begin
;" if input_t1 > input_t2 then
::: stack exceeded := true
o else
stack _exceeded := false;
V“I
.‘
::,‘, »nd: | 3TACK EXCEEDED }
o
!
KX { PA}
.‘l‘: {
:.‘.l‘ ISR RS REL S SRS 2 ¢ 8 CALCULATE REFRACTED RAY I SRS S22 2SS SR 23 ;
R * CALLED FROM : MAIN - - |
K * CALLS TO :NONE *
- * DESC : This calculates the direction of a refracted ray. !
5 92
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"he sbhiecrs ndex f rofen T on che oo nten ! mefeq iy

Y COUTPUT A Aag et ' true crfalve fejenting v weither arn 1a
* relrac em! ray was reg ad [Fone aas TNer 0 onirm e n s
¢ qiven
“ 00 02 00 0SS 22U CE ORI RETUREERNTI AT ICEOIRENEIIPNSQLEIREEeDNISECOedeEP e aRsdsssrTRocatqeo
K
st P emiure 11 UulALe TelTRL el FAY 0 TAN e 1or oy
:: | ray vector
a | ray vector i real

t ob) surface normal v

"y shi surface noarmal -

b i oby surface norma; 1 real
~; 1 oby ndx real

:: 1 global ndy real

var o refracted ray «.
o refracted ray v

' o refracted ray 1 real

Y car o cefractsd cay lag eaaean
£

' |
Pl var
D testhf,

' test K2

$., nl reai.

- Kn real;

. abs dot product  real.

., = Y,

Y length of ray real

vl x, vl y, vl 7 real,

> begin

s

S
.
M THIS PRODUCES THE ABSOLUTE VALUE OF THE DOT PRODUCT OF THE INCOMING RAY

AND THE SURFACE NORMAL OF THE INTERSECTED SURFACE
0 }

p abs dot_pr .duct := Abs((i_ob)_surface normal x *1_ray vector x) =
(i_obj surface normal y * i‘ru)_'_vector y) ~
. (i_obj surface normal 3 * i _ray vector 2));
h
if abs _dot product = 0 then begin

24 {
3 THIS 3 SUST v PRECAUTION
' .
o o_retracted _ray dag .= laise;

o_refract.ed__ray_x = 0;
" o_refracted ray y :=0;
. o_refracted ray z:=0
'3 end
& else begin

-
-

{
THIS PRODUCES THE UNIT NORMAL VECTOR IN THE DIRECTION OF THE INCOMING
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THIS GIVES THE KA TIo OF THE REFRACTIVE INDICES |}

hn boend gibal nidy

THE CALCULATION OF THE FRESNEL COEFFICIENT IS DIVIDED UP THIS WAY
INORDER TO CHECK LATER FOR AN [IMAGINARY DENOMINATOR WHICH INDICATES
TOTAL INTERNAL REFLECTION

v

testhf (sqr{Kn} * sqr(iength of ray}}
test M2 sqrisqrt{sqr{i obj surface normal x - vl x) ~
sgfi. Dy surface normac v - vl o) -

sqrii oD) surrace normai 3 - vl 2}i};

of "testRf - testhf2 <. = 0 ) then begin
L AMAGINARY DENOMINATOR - TOTAL INTERNAL REFLECTION IS OCCURING }
o refracted ray flag . = false:
o refracted ray x = 0

o refracted ray y = 0;
o: refracted ;ray 2. =0
end
else begin

o refracted ray flag := true:

Kf =1 sqrt{testKf - testKf2):

o reiracted ray x := (Kf* (1 _obj surface normal x + vl x)) -
1 _ob) surface normal x; B

o refracted ray y .= (Kf * (i _obj surface normal y + v1 y))-
1_obj surface normal y;

o _refracted ray z:= (Kf * (i_obj surface normal z + v1 z}) -

- 1_obj surface normal z
end
end.

ead: U calculate refracted ray }

A
{
I EE R ER SRR E SRS R E SRR RN CALC(TLATE REFLECTE[) RA" LR R Y R S RS E PSS TIPS ¥ 2
* CALLED FROM MAIN and CALCULATE INTENSITY
* CALLS TO - NONE -
* DESC CALCULATES THE DIRECTION OF A REFLECTED RAY
*INPUT : Direction of the source ray and surface normal of intersected
* object.
* OUTPUT : Flag indicating existance of reflected ray If one exists
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Y * then 1t’s direction is given.
1 .\; EEBEXEBE A X R A BB R AR S SR E A AR AR R XA LR TR R AR AN KRR E R R KRR R R XA XA AR KRR E R KR &
oty
LY }
B
eyt procedure calculate_reflected ray (i_ray vector x,
i_ray vector y,
Ve 1_ray vector z : real:
“:'* i_obj surface normai x,
D 1_obj “surface normal v,
ol
D\ : 1_obj ¢ “surface normal _z :real;
tyt's var o reﬂected _ray X,
. o reﬂected _ray y,
_\.’.-: o reﬂected ray z:real:
::‘:v‘. var o reﬂected ray _flag : boolean );
*
;'\n":
_f' \ var
1N abs dot _product : real;
- length of ray : real;
;:"" vl x,vl y, vl z :real
‘. Ri x, R1 y. Rl z :real:
i'f":!l, begin
._. {
_-;:-. ABSOLUTE VALUE OF THE DOT PRODUCT OF THE OBJECTS SURFACE NORMAL AND
s OF THE INCOING LIGHT RAY.
) s
IR }
.. abs_dot product := Abs((i_obj_surface_normal x *i ray vector x) +
Rale (i_obj_surface_normal y * i_ray vector y) +
o (i_obj_surface_normal z * i_ray vector z});
" [)
> vl x :=i ray vector_x / abs_dot_product;
A vl y =i _ray vector y / abs dot. _product;
:l'::f vl z :=1i ray vector z / abs_dct_product.
,) : { CALCULATE UNIT NORMAL VECTOR IN THE DIRECTION OF THE INCOMING RAY. )
5&\, R1 x :=vl x+ (2 *i_obj_surface_normal x);
K ,)-';: Rl y :=vl y+ (2*i_obj “surface normal y);
q"-\: Rl :=vlz+ (2" 1_obJ_surface_normal_z)
-
‘ length of ray := (sqrt(sqr(R1_x) + sqr(R1 y) + sqr(R1_z))};
Ll K
L { CALCULATE REFLECTED RAY }
‘%) » redected rav <= R1 ¢ length of ray;
‘,-‘:\ » redected ray v =Rl v 'eng(h or rav:
?!:h o reflected _ray z:= Rl z lengih o1 'ay,
i o reﬂect.ed _ray ﬂa.g = true;
,‘.,,',
AGAL end; { calculate reflecied ray }
oS
j.*vg
ARAY
{ PA}
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; {“‘““*“““t“‘t“‘i‘ CALCULATE INTENSITY EREEEBE RN SR EE RSBk Ek kS

' * CALLED FROM : 12 and I8 -
* CALLS TO : CHECK_FOR_INTERSECTION and CALCULATE_REFLECTED_RAY
* DESC  : Calculates the mtensxty at any given point.

) * INPUT : Color component being calculated, current ray data,

¢ * point.er to object data, and pointer to light data.

* OUTPUT : Intensity at a given point, either to be displayed or

N * set in the appropriate source ray.
' - t"it‘#‘tt#t#"ttt"tti“‘tt#!"‘l““‘#‘#‘t‘t*‘t#tt‘t*t**#t‘**t*tt

o procedure CALCULATE INTENSITY { input _color : colortype;
‘ input_ray d : real;
! input_ambient : real;
f input_ray It : real;
: input ray I s : real;
input_ray vector x,
. input_ray vector y,

input _ray vector z : real;
mnput “number _of hghcs integer;

N input ob_) K a : real;
input_obj | K s : real;
input _obj K t : real;

! input_obj K d : real;

lnput_ob_]_phong__exp : integer;
input_intersection x : real;
input_intersection y : real;
input_intersection 3z : real;

input Obj surface norma.l _x : real;
input_obj : “surface normal _y : real;
input_obj : “surface norma.l 1 : real;
input_picture object object _ptr;
mput_hght_top light _ptr;

var io_intensity : real );

var
ans : char;
I d :real;
I 1 :real
J, 1 : integer;
distance : real;

P )

' sight ray «x.

agnt ray

sgne mav g ~eal
‘. unu._snght._x,

unit_sight vy,
! unit_sight_z : real;
] light ray x,
hght_ray_y.
light ray 3 : real;
unit._light_x,
unit_light y,

- o .- T Ry
e f“""f.‘!”-“‘g."i||a’l B ¥ ‘l.‘,f : Ga" ,‘!5‘!.}.‘0’!

O TN 20 ot O,
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SOORC N : 3
"“c?n,:n‘_i‘:";l 2,“’_“‘,‘{39‘1?’3(? \:;‘ . ’»fb"( f‘!». i

unit_light_z : real;

unit reﬁect.ed X,

unit reﬂected B2

unit reﬂect.ed 3 : real;
mt.ersectlon__x,
int.ersection_y.
intersection _z : real;
reflected hght _ray x,
reflected hght _ray y,
reﬂected_hght_ray_z real;
source X,

source_y,

source g : real;

check x,

check -y,

check z :real;

obj_idx, subobj_idx, cpart_idx, polygon_idx : integer;
intersection flag : boolean;
oby light distance : real;
reflected ray : boolean;
intersected obj Kt : real;

begin

{ THIS ELIMINATES THE SAME INTERSECTION POINT FROM BEING SELECTED AGAIN.}

if input_ray d > 0.1 then begin
I1:=0.0;
io_intensity := 0.0;
reflected _ray := false;
intersection flag := false;

{ THIS SETS UP THE SIGHT RAY }

sight_ray x:= -input_ray_vector x;
sight.__ray__y = -input._—ra.y_vect.or_y;
sight_ray z:= -input_ray vector_sz;

distance := sqrt(sqr(sight_ray_x)_-i-
sqr(sight_ray y) +
sqr(sight_ray z));

unit_sight _x := sight_ray x / distance;
1nit sight v := sight ray vy / distance;
anit sight 2z 1= sight _ray _: . distance:

fori:= 1 to (input_number of lights + 1) do begin
{ THIS GENERATES THE SHADOW FEELERS }

light ray x := picture.lights "(i].light x - input_intersection x;
light ray y := picture.lights"(i].light y - input_intersection y;
light ray z := picture.lights *[i].light_z - input_intersection_z;
distance := (sqrt(sqr(light ray x) +

sqr(hght_ray_y) +
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sqr(light_ray z))):

{ CONVERTS IT TO A UNIT VECTOR }
unit_light x := light_ray x / distance;
unit hght _y := light_ray y / distance;

{ unit_light 2 := light ray s / distance:
;f‘ )
:',l source_x := picture.lights “ii].light _x;
8 source_y :== picture.lights °[i|.light _y;
source 3 := picture.lights *[i].light _z;
< {
:: CHECK TO SEE IF ANY OF THE SHADOW FEELERS INTERSECT ANYTHING.
) }
.{: . check for_intersection(-unit_light_x, -unit_light_y, -unit_light_z,
) source X,
\ source _y,
y‘!fi source z,
':: input _picture object.
: intersection x,
o intersection y,
’ intersection z,
" obj_idx, subobj idx, cpart_idx, polygon_idx,
4 intersection _flag};
n {
:5 CHECK 'O INSURE THAT THE SAME POINT IS NOT CONSIDERED AGAIN, WHICH CAN
HAPPEN. i
. }
¢ check x := intersection x - input_intersection x;
»:‘ check _Y := intersection_y - input_intersection_y;
;.: check_z := intersection_z - input_intersection z; .

PULL THE PROPER CHARACTERISTICS OF THE OBJECT OUT TO DEAL WITH THE

::f APPROPRIATE COMPONENT OF LIGHT THAT IS BEING CURRENTLY DEALT WITH
% }
:.F if color = red then

o I 1:= picture.lights *[i].I r;

intersected obj Kt := picture.

ol objects “[obj idx].

0 sub objects “'subobj idx!.
P common _parts ~'cpart _idxi.
4 K e
R . =

X if coior = green then

3 I 1:= picture.lights "[i].I_g;
::; intersected obj Kt := picture. .
o objects *[obj _idx]|.
::: sub_objects “[subobj idx].
B common_parts “(cpart_idx].
" K tg;

. if color = blue then
2.
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h‘.‘t I 1:= picture lights"[i].I_b;
::0 intersected_obj_ Kt := picture.
’, objects “[obj _idx].
" sub_objects “[subobj_idx]|.
common_parts “[cpart_idx]|.
. K tb:
o

‘ obj_light_distance := (sqrt(sqr(intersection x -

o picture.lights "[i].light_x) +

L sqr(intersection y -
picture.lights "[i].light _y) +

:1:4: sqr(intersection z -
::\;: picture.lights “(i].light z)));
i
N IF THERE HAS BEEN AN INTERSETION AND THE POINT BEING CONSIDERED IS NOT
) THE ORIGIN OF THE RAY THEN CHECK TO SEE IF THE OBJECT IS OPAQUE. IF IT IS
;‘t:k' THEN RETURN TO BEGINNING OF LOOP AND CHECK NEXT SHADOW FEELER. IF IT IS
g::! NOT OPAQUE THEN CALCULATE INTENSITY AT THAT POINT AND CONTINUE FOLLOWING
o ; THE RAY TO SEE IF IT INTERSECTS ANYTHING ELSE. CONTINUE THIS LOOP
:1‘;‘ EITHER UNTIL NO MORE OBJECTS ARE LEFT OR UNTIL AN OPAQUE ONE IS
w INTERSECTED.
}
{

THIS PART OF THE CODE HAS NEVER BEEN TESTED. I JUST CODED IT AS I
THOUGHT IT SHOULD BE FROM THE ALGORITHM IN ROGERS BOOK PP. 377.
QUITE FRANKLY I STILL DON'T FULLY UNDERSTAND WHAT IS SUPPOSE TO TAKE PLACE

. HERE.

i }
*‘.e! if intersection flag then begin
;:: while ((intersection flag) and
:o':‘: ((check_x > 0) or
~::'& (check_y > 0) or

(check z > 0))) do begin

e

'::: intersection_flag := false;
h;;.!;
i:-::: if not( intersected obj Kt = 0) then begin
o if (input_color = red] then begin
fe I 1:= picture.lights *[i].1 r*
::.:‘ intersected obj Kt:
:c:.: »nd:
j.::: f linput _olor = green) “hen bhegin
Ay
- I 1:= picture.lights[i].l g *
:'.. W intersected obj Kt;
a":l. end;
::,“ if (input_color = blue) then begin
I
n
s
'y 1 1:= picture lights"[i|.1 b *

. intersected obj Kit;

k’
u“ . 29
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end;

calculate reflected ray(input_ray vector x,
input_ray vector_y,
input_ray vector z,
input obj surface normal x,
inpuc_obj “surface '1ormal Y,
input_obj : “surface normal 3,
reflected_ray x,
reflected ray vy,
reflected _ray sz,
reflected ra.y)

distance := sqrt(sqr(reflected_ray x) +
sqr(reflected ray y) +
sqr(reflected _ray z));

unit_reflected x := reflected ray x / distance;
unit _reflected y := reflected ray v / distance:
unit_reflected 2 := reﬁect.ed_rn.y_z / distance;

io_intensity := io_intensity +

((I1*input_obj K d) *

((input _obj surface _normal x * unit_light x) +
(input_obj “surface normal ¥ umt_llght._y)
(input_obj “surface normal _z * unit_light_z))) +
({I_1* input ob_) K s) *

((unit _sight_x * unit_reflected x) +
(unit_sight_y * unit reﬁect,ed y)+
(umt_snght_z umt_reﬁected_z))),

source x := intersection X;
source y := intersection y;
source z := intersection z;

check for_intersection(-unit_light_x,
-unit_light _y,
-unit_light_z,
source_X,
source y,
source _Z.
input _picture bject.
intersection _.‘(.
intersection y,
intersection _z,
obj _idx, subobj idx,
cpart_idx, polygon _idx,
intersection flag);

check x := intersection x - input_intersection x;
check y := intersection_y - input_intersection y;
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check 3 := intersection z - input_intersection z;

end {if}
' end {while}
end {if}
o else begin
f5:' calculace _redected -ay(input_ray vector x.
}:' input_ray vector y,
',: ) input_ray_vector z,
v input Obj “surface _normal x,
input_obj “surface nom‘al _y
'.: input _obj _surface _norma] 2.
: reﬂected_ra.y_x,
::f reflected _ray y,
I reflected ray z,
N reflected_ray);
i:: distance := sqri(sqr(reflected ray x) +
’:; sqr{reflected ray y) +
’,’t‘i’ sqrretiecced ray z));
e T
0 unit_reflected x := reflected ray x / distance;
- unit reﬂected _y := reflected ray y / distance;
\':; unit reﬂecned _3 := retlected_ray_z , distance;
..
Y
::l io_intensity := io_intensity +
ei‘, ((I_1*input_cbj K d)*
' ((input _obj surface _normal_x * unit_light x) +
A (input_obj “surface normal y un'lt_l.lght_y) +
A (input_obj “surface normal _z * unit_light_z))) +
v;:; ((I_1* input Obj K s) *
: ! ((umt._slght._x unit_reflected x) +
':: (unit_sight_y * unit_reflected y) +
(unit slght. 3 umt._reﬂected_z)))
KX end { ** ELSE **}
N end; { ** FOR **}
0
é" {
::: THIS IS THE STUB TO JUST HAVE EVERY OBJECT ILLVVMINATED BY AMBIENT LIGHT
e io_intensity := input_obj K a * input_ambient;
}
:‘“ "' LIRS R R R R R S R 2 R 22 R RE RS 2R E S R R RS RS E SRR RS S }
N
"‘ THIS iS WHERE THE FINAL INTENSITY IS CALCULATED
A I
~ io_intensity := ((input_obj K a * input_ambient) +
¥ io_intensity +
:,: ((input_obj K s * input ray I sj +
o (input_obj K t *input_ray 1 t)));
X {/input_ray dor /2 or /1}
e {
5
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A
: THIS IS JUST TO KEEP ALL VALUES WITHIN A RANGE WHERE THEY CAN BE DISPLAYED
: }

i if io_intensity > 1.00 then
io_intensity := 1.00;
if io_intensity < 0.00 then

; io_intensity := 0.00;

4

E’é { BEEEE XX B AXNBERE ISR EEIR RS A SR AR A B LA EERA R AR RN R XU R KK R X }

R¥ end

i else begin .
‘ {

,;; IF THE INPUT RAY DISTANCE IS LESS THEN ONE THAN YOU ARE CONSIDERING THE
a:i SAME POINT AND HENCE THE INTENSITY THERE SHOULD BE 0.
W

38 }

:;f io_intensity := 0.0

! end;

‘o: end; { CALCULATE_INTENSITY }

% {PA}

K

IR RSS2 E S22 S22 22 2 DISPLAY PleL LR R S S R R R R R R R S22 22 2 4

* CALLED FROM : MAIN

b, * CALLS TO : NONE

'; * DESC : WRITES OUTPUT TO FILE

I * INPUT : THE VALUES FOR THE RED, GREEN, AND BLUE COMPONENTS OF LIGHT.

. * OUTPUT : NONE

SR BBEEERXX AR R LSRR SRR RN RX RS A SRR R AR AR R AR R 2 E B RBRER R R gk k
" }
:' procedure DISPLAY PIXEL ( input_intensity red,
) input_intensity green,
:s input_intensity blue : real;
", input_pixel x,
™ input_pixel y,
“p input_pixel z : real });
.;‘ .
Y begin
:
i write (outfile,input_intensity red:3:2);
write (outfile,” ’,input_intensity green:3:2);

AN writeln (outfile,’ ';input_intensity blue:3:2};
.:: .nd: - DISPLAY IXEL ;
i -
K PA}
[ E R R R R S S SRR R 22 2] POP (S22 EEEE R R RS2SR 222222 RS ¥
o * CALLED FROM : MAIN, 12, 16
W * CALLS TO : NONE
KN * DESC : Removes a ray from the top of the stack.
N * INPUT : Pointer to the current top top of stack.
. * OUTPUT : The ray just popped from the stack and a pointer to the new top
N 102
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* top of stack.

~ , ERAEX R EB RN AR RNk kR bRk kg Rk kkkk kR ko kxR ko ko ok ek ks ok ko ok ko ok ok
o]
Cr procedure POP (var output_ray type : raytype;
- var output_ray origin_x : real;
e var output _ray origin y . real;
s:::0: var output_ray origin_z : real;
e,ﬁ,: var output_ray vector x : real;
Wy var output_ray vector y : real;
t var output _ray vector z : real;
o var output ray stype . raytype;
:.;.: var output_intersection flag : boolean;
5 var output_obj _idx : integer;
::g var output_subobj idx : integer;
K var output_cpart_idx : integer;
' var output_polygon_idx : integer;
8 var output_intersection x  : real;
¥ > var output intersection y  :real;
e var outpnt _intersection z  : real:
gt var output_d : real;
\::::. var output_I_tr, output I tg, output [ tb : real;
) var output I sr, output I sg, output I sb : real;
% 4 var io_top s ray ptr )
E“ begin
A5
LA,
Tt if (stack_empty (io_top)) then begin
. wnteln(’STACK UNDERFLOW ERROR’ )
e end { if }
\,:a:i' else begin
:,:::’, output_ray_type = io top .-ray _type;

n:\o: output_ray_origin_x =10 top .ray ongln X5
ey output_ray origin_y := io_top ".ray_origin_y;
; output_ray origin 2z = io_top ".ray_origin_z;
-:: output_ray vector x := io_top ".ray vector x;
'a"; output_ray vector_y := io_top ".ray _vector_y;
,:t. output_ray vector_z := io0_top “.ray_vector_z;

fai.:o output_ray_stype = io__l:op “.ray_stype;

Lt output_intersection flag := io_top ".intersection_flag;
. output_obj idx := io_top ".obj_idx;

:. output_subobj idx = io_top ".subobj idx:
F: utput _cpart idx = io rop” wpart dx:

,‘g;: Y miput poiygon idx "= 0 fop  poivgon .dx:

:.if »utpuc_intersection < =0 _:ou; ntersection «:
. output intersection_y :=10_top .intersection y;

et output_intersection z  := io_top ".intersection_z;

:5’ output d = io_top".d;

QA output I tr = io_top ".I_tr;

: o output 1 tg = io_top".I tg;

":':l, : output I tb :=io_top ".I tb;

Db output I sr = io_top "1 sr;

) output I sg = io_top".I sg;

ns
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outpuc_l_sb :=io_top .1 sb;
ray next :=io_top ".ray link;
{ remove old pointer }
dispose(io_top);
{ set top of stack pointer to new top of stack }
io top := ray next;
end; { eise }

end; { POP}

{PA} .

kb bkkR bk kb hkkkn gk ek PI:SH REBKEEKERE XA T A S SRR NS XB R R KR

* CALLED FROM: MAIN, 12, 16

* CALLS TO : NONE

* DESC : Places a ray on the top of the stack.

* INPUT: The current top of the stack, and the data for a new ray
* OUTPUT: The pointer to th new top of stack.

REXEXXRXRXAXXRAERBXXRAX KRB LR R R R A AKX AA KR ERA RS K XX A X BB EE A XD R R ARERE R

}

procedure PUSH { input_ray_type : raytype;
input_ray origin_x : real;
input_ray origin_y : real;
input_ray origin z : real;
input_ray vector x : real;
input_ray vector y : real;
input_ray vector z : real;
input_ray stype : raytype;
input_intersection flag : boolean;
input_ob) idx : integer;
input_subobj idx : integer;
input_cpart_idx : integer;
input_polygon_idx : integer;

input_intersection x : real;

input_intersection_y : real;

input_intersection z : real;

input d : real;

input I tr, input_I tg, input I tb: real;

input_I_sr, input 1 sg, input I sb : real;
var io_top : ray_ptr );

begin

qewiray urrentj:

Tay turrent’ ray vpe = input ray type:

ray current .ray origin_x = INput_ray origin_x;

ray current".ray origin_y = input_ray origin_y;

ray current”.ray origin z := input_ray origin_z; {
ray current ‘.ray_vector_x = input__ray_vector_x;

ray current’.ray vector y := input_ray vector y;
ray current .ray vector z := input_ray vector z; 4
ray current .ray_stype = input_ray ctype;

ray _current ".intersection_flag := input_intersection flag;

104



o ray current".obj idx := input_obj _idx;
X ray current ".subobj idx := input_subobj idx;
"f."' ray current “.cpart idx := input_cpart _idx;
T ray current ~.polygon_idx := input_polygon_idx;
ray _current ".intersection_x := input_intersection x;
.-ay_f:urrent‘Aintersection__v = input intersection v:
ray _currenc‘.innersecuon_z '= input_intersection
e ray—current ~d := input_d;
LN ray current”.I tr := input_I tr;

ke ray current” I _tg := input_I tg;
. ray « “current * I tb := input I tb;
X ray current .l st = input_I sr;
B ray “current *.] _sg := input_I sg;
. ray current .1 sb := inpus_I sb;
ray:current. .ray_lmk = io_top;
io_top = ray_current;

end; { PUSH }
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MAIN

PROGRAM RAYTRACER;

EEXEXEAX XX AR R BB R AR RR B R R E AR R R R R A C AR R R AR R AR AR KRR KRRk k&
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** PROG : RAY.PAS

** AUTHOR : Paul G. Smith

** DATE : 11 May 1987

** DESC : A ray tracing prototype with a global illumination model
= integrated into it.

** INPUT : A sequential scene file under PICTURE.PAS.

** OUTPUT : A bitmap file containing the red, green, and blue color
h color components. Their values range from 0-1 and need to

be converted for display on an RGB color monitor.
REEKERF R LSRR R AR R AR XA R R AR IR R R R R R KRR R RN R kAR kR

»¥

AKX REEER R R B A B R AR R R AR R R R E AR R R R R AR KRR KRR AR kKRR AR Rk Rk k&

\

'

{ * INCLUDE FILES *}

{$1 declare6.pas} - { DECLARATION SECTION }
{PA}

{81 intpres6.pas} - { INTERSECTION PROCEDURES }

{PA}

{81 procs6.pas} _ { INTENSITY and UTILITY PROCEDURES }

{PA)}

ttt*‘******tttt#tttt#t‘tttt#tttttt#12 EEEERAR XA AERERFRE R AR TR SRR ER R R KA

* CALLED FROM: MAIN

* CALLS TO: PUSH, POP, CALCULATE INTENSITY

* DESC : Calculates the light intensity at a given intersection point
* INPUT : A complete ray data record, the pointer to the light array
* and the pointer to the object array

* OUTPUT : The intensity at a given intersection point. If the input
* was a view ray then this intensity will be the intensity
displayed. If the input ray is a reflected ray then this
intensity is assigned to the I s field in the source ray.

If the input ray is a refracted ray then this intensity is
assighed to the | + Geld in the source ray.

LR KA XA X AR AN KL AR R C X I A A AR A I R A AL R A X R AR XA AT XA X R A R AT T XA MR L ERT XN N XXX X

[ IR S 3

procedure I2 (i d  : real;
i ltr,iltg,ilth :real
il sr,ilsg ilsb :real

5 i__number_of_light_sources : integer;,
1_ambient_r,i_ambient g, i _ambient b : real:
i K ari K ag,i K ab :real;
i Ksr,i K sg i Ksb :real
¥
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)

‘_"‘w

) i K tr,i K tg,i K tb :real
;": i Kdr,i K dg,i Kdb :real
g&, l_ray_type raytype,

A i_ray top :ray ptr;

) i_light_top : light ptr;

"n:* i_obj ptr :object ptr:

KX 1_ob) phong exp : integer:

:E W i_ray vector_x,

oo i_ray vector y,

W i_ray_vector_z : real;

, i_intersection x,

s i_intersection y.

el i_intersection z : real;

M) i surface normal X,

!‘. \ 1 surface normal v,

i l_surface_normal_z : real;

v var io_ray generation_number : integer;
W var o_intensity red,

‘a0 o_intensity green.

fu“ o_intensity blue : real };

' e

W,

var
g { SET UP TEMPORARY AREA TO HOLD RAYS POPPED FROM STACK }
» templ ray type :raytype;
- [ templ ray origin x,
J- templ ray origin y,

fv templ ray origin z : real;

templ ray vector_x,
" templ ray vector y,

:l‘.: templ ray vector z:real;

' templ ray stype : raytype;

:}, templ intersection flag : boolean;
J!Q::! templ ob_) _idx,

)t templ_subobj idx,

R templ cpart _idx, _

'. : templ_polygon idx : integer;

2, templ intersection x,

W templ _intersection y,

.‘, templ _intersection z : real;

) templ d : real;

=2 templ_I__t,r, templ I tg, templ I tb: real;
oy templ 1 sr.templ [ sg, templ 1 5b: real:
g *:3 - - - - - -
R N femp2 Tay 'ype o raytvpe:
n temp2 ray origin_x,

temp2 ray origin y,

temp2 ray origin z : real;

o, _ray _

" t.emp2_ray_vect,or_x,
t.emp2_ra.y_vector_y,
temp2 ray vector z : real;
temp2 ray stype :raytype;
temp2_intersection flag : boolean;




temp2 obj idx,
temp2 subob) idx,

temp2 cpart 1dx,

temp2 polygon idx : integer;
temp2_mtersocuon__x,

temp2 intersection v.

temp2 intersection _z : real;

temp2_« “d  :real;

temp2_I_t.r, temp2 I tg, temp2 I tb: real;
temp2 I sr, temp2 I sg, temp2 I sb : real,

begin

{ CALCULATE INTENSITY OF THE RED COMPONENT OF LIGHT }
calculate_intensity({ red,

id,
i_ambient r,
i1 tr
i—[—sr
1 _ray vector _X, i _ray vect.or y,l _ray vector 2
i number of llght sources,
1—K_a.r
i_K__sr,
1 K tr,
i K dr,
i Ob_] _phong_exp,
x_mtersectlon_x,
i_intersection_y,
i_intersection g,
i surface normal X,
i surfa.ce normal Y,
i_surface_normal z,
i_obj_ptr,
i_light_top,
o_intensity red };

{ CALCULATE INTENSITY OF THE GREEN COMPONENT OF LIGHT }
calculate_intensity( green,
id,
i_ambient g,
il tg,
11 sgq,
i:ray _VeCtOr X, i ray Vector v, 1 rav vector Z.
i _aumber :n"Iig‘n; jol_lrces. o 7
1 K ag,
i K_sg,
i K_tg,
i K dg,
i_obj_phong_exp,
i_intersection x,
i_intersection y,
i_intersection z,




) i_surface normal x.
: i_surface_normal y,
i_surface normal 3.
i_obj ptr,

i_light _top,

o intensity green };

- -

{ CALCULATE INTENSITY OF THE BLUE COMPONENT OF LIGHT }
' calculate _intensity( blue,
i d,
i_ambient b,
i T tb,
i I sb,
i_ray vector x,i ray vector_y, i _ray vector gz,
i_number_of light_sources,
i_K ab,
i K sb,
i K tb,
1 K A4b,
1_ob) phong_exp,
i_intersection x,
1 _intersection y,
! Tmnersect.ion z.
1_surface normal x,
' i:surface_normal:y,
4 i_surface_normal 3,
i_obj ptr,
. i_light_top,
o _intensity blue );

if (i_ray type = view) then begin

THE VIEW RAY IS ALWAYS THE LAST RAY ON THE STACK WHEN IT IS POPPED THE
INTENSITY DETERMINED FOR IT IS PASSED BACK INTO MAIN FOR DISPLAY.
. }

{ nothing }
) end
else begin

) if (i ray type = reflected) then begin
f
i SINCC THIS (S THE REFLECTED RAY THEN JUST ONE RAY NEEDS TO BE POPPED TO
GGA{N ACTESS TO THE SOURCE RAY
}

pop (templ ray type,
templ ray origin_x, templ ray origin_y, templ ray origin z,
templ _ray vector x, templ ray vector_y,templ ray vector_z,
templ ray stype,
templ _intersection flag,
templ obj idx,
templ subobj idx,
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templ cpart_idx,

templ polygon_idx,

templ intersection x, templ intersection y. templ intersection z,
templ d,

templ I tr, templ I tg, templ 1 tb,

; templ I sr. templ 1 sq, templ 1 sb.

P R
: o -

()
D ray top b
b
aq { SET INTENSITY IN SOURCE RAY }
' templ I sr:= o_intensity red;
. templ I sg := o_intensity green; .
:: templ [ sb := o _intensity blue;
1
y { RESTORE STACK }
" . push( templ ray type,
i templ ray origin_x, templ_ray_origin_y, templ_ray origin_z,
. templ ray vector x, templ ray vector_y, templ ray vector z,
W templ ray stype,
\: templ intersection flag,
N templ_obj idx,
"j: templ_subobj idx,
templ cpart_idx,
templ polygon_idx,
: templ _intersection_x, templ_intersection y, templ_intersection z,
: templ d,
< templ I tr, templ I tg, templ I tb,
"‘ templ I sr, templ I sg, templ I sb,
ray_top ) _
0 end H
:i { else begin
! :
" SINCE THIS IS THE REFRACTED RAY TWO RAYS MUST BE POPPED TO GAIN ACCESS
TO THE SOURCE RAY.
x' }
" pop (templ_ray_type, N N
N templ ray origin_x, templ ray origin_y, templ ray origin_z,
‘:‘ templ ray vector_x, templ ray vector_y, templ ray vector_z,
& templ ray stype,
templ_intersection_flag,
. templ obj idx,
' templ subobj idx.
‘ rempl rpart 1dx,
‘:. rempl polygon idx.
Vf templ 1ntersection x, tempi_intersection_y, templ intersection z,
N templ d,
templ I tr, templ I tg, templ I tb, .
iJ] templ I sr, templ I sg, templ [ sb,
s roy_top )
'y
’ pop (temp2_ray_type,
, temp2 ray origin_x, temp2 _ray origin_y, temp2 ray origin_z,
f
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temp2_ray vector_x, temp2 rav_ vector y.temp2 ray vector_z,

M temp2 ray stype,

W temp2_intersection flag,

I temp2_obj_idx,

- temp2_subobj _idx,

3 temp2 cpart idx,

:e temp2 poiygon_idx,

:' temp2_intersection_x, temp2_intersection y, temp2 intersection sz,
q: t.emp2_d,

¢ ' temp2 1 tr, temp2 I tg, temp2_I tb,

A temp2_I sr, temp2_I sg, temp2_I sb,

¢ ray top );
!“

':c { SET INTENSITY IN THE SOURCE RAY. }

K temp2_I tr := o_intensity red;

K temp2_I tg := o_intensity green;

temp2 I tb := o_intensity blue;

X

% { RESTORE STACK. }

i': push( temp2 ray type,

N temp2 ray origin_x, temp2 _ray origin_y, temp2_ray origin_z,

temp2 ray vector x, temp2_ray vector_y, temp2 ray vector_z,
. temp2 ray stype,

% temp2_intersection_flag,

b temp2_obj_idx,

‘ temp2 subobJ _idx,

; temp2 _cpart_idx,

temp2_polygon_idx,

% temp2_intersection x, temp2_intersection y, temp2_intersection z,
k) temp2 d, B B
3: temp2 I ‘tr, temp2 I tg, temp2 I tb,
A temp?2 | 1 _sr, temp2 | 1 _sg, temp2 | 1 sb
ny ray top );
. push( templ_ray type,
4; templ ray origin_x, templ_ray origin_y, templ ray origin_z,
¢ templ ray vector x, templ ray vector y, templ ray vector_z,
i templ ray stype,

templ_intersection flag,
templ obj_idx,

" templ subobj idx,

';: templ cpart _idx.

:1 rempl poiygon idx,

!!: rempl ntersection x. rempl intersection y, templ intersection 4.
" templ d, B )
R templ I tr, templ I tg, templ 1 tb,

K templ I sr, templ I sg, templ I sb,

j:; ray_top );

5
W end;

i
. SINCE THE RAY SENT INTO THIS PROCEDURE IS NO LONGER NEEDED IT 1S
&
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DISCARDED, HENCE THE RAY COUNT NEEDS TO BE DECREMENTED.
}
io_ray generation number := io ray generation number - 1;
end;
end;

{.PA}

ﬁ**t*t#**#tt**ttti*tt#**t**t#i**#16 RAKXREERREERRER KR XX LR SN ERRE AKX RS S

* CALLED FROM : MAIN

* CALLS TO :PUSH, POP, CALCULATE _INTENSITY

* DESC : Used to calculate intensity at node of stack storage is

* exceeded.

* INPUT : Incomplete ray data record, this ray can not be continued
* because there is no room on the stack for it. Also pointers

to the light array and object array.

* OUTPUT : Intensity, I t or 1 s, is set in source ray.

t#*t*##**tt*tt*t*#t*t**t#‘*tt#‘ttttt**i##tt#tt##t**##it#ttt*tttttt‘t*‘t

}

*

procedure 16 (i_d : real;
iltr,iltg,iltb :real
1_I_sr, l_l_sg, 1__I_sb : real:
i_number_of light_sources : integer;
i_ambient r, i_ambient g, i_ambient_b : real;
i K _ar,i K ag,i K _ab :real;
i K _sr, i | K _8g, 1 K sb : real;
i K _tr, i K _tg, i | K tb : real;
i K dr,1 K dg,l K _db  :real;
i_ray_type :raytype;
i_ray top : ray_ptr;
i_light top : light ptr;
i_obj ptr : object ptr;
i_obj_phong_exp : integer;
1_ray_vector_x,
i_ray vector y,
i_ray vector z : real;
i_intersection_x,
i_intersection y,
i_intersection z :real;
i surface normal X,
i surface normal v,
t_surface _'wrma.i z :reai

var o _ntensity red.

©O_intensity green,
o_intensity blue : real );

var

{ STORAGE FOR POPPED RAYS }
templ ray type :raytype;
templ ray origin_x,
templ ray origin y,
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templ _ray origin_z : real
templ ray vector X,

templ ray vector y,

templ ray vector 3 : real;

templ ray stype : raytype;

templ intersection flag - boolean:
tempi_ob) idx,

templ subobj_idx,

templ _cpart | idx,

templ polygon idx : integer;
templ__mtersectxon_x,

templ _intersection y,

templ _intersection z : real;

templ d : real;

templ [ tr, templ I tg, templ I tb: real;
templ I sr, templ I sg, templ I sb: real;

temp2 ray type :raytype;

temp2 ray origin X,

temp2 ray origin_y,

temp2 ray origin_z : real;

temp2 ray vector X,

temp2 ray vector v,

temp2_ray vector 3 : real;

temp2 ray stype :raytype;
temp2_intersection flag : boolean;

temp2 Obj _idx,

temp2_subobj idx,

t.emp2__cpa.rt.__1dx,

temp2 polygon_idx : integer;
temp2_intersection x,
temp2_intersection y,
temp?_intersection z  : real;

temp2 d : real;

temp2 | 1 _tr, temp2 1 tg, temp2 [ tb : real;
temp2 | 1 _sr, temp2 | 1 _sg, temp2 | 1 sb real;

begin
{*** COULD INSERT TREE EXTENSION PROCEDURE ***}

CALCULATE RED COMPONENT OF LIGHT !
calcuiate intensicy( red.

il

i_ambient T,

il tr,

il sr,

i_ray vector_x, i_ray vector_y,i ray vector z,

i number of _light_sources,

i K _ar,

i K _sr,

i K _tr,
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N i K_dr.
B i_obj phong_exp,
et i_intersection x,
."1 i_intersection y,
i_intersection _z,
R i _surface normal x,
LA i_surface normai_v.
73 i_surface_normal z.
& i_obj ptr,
N i_light_top, .
. o_intensity red );
;. { CALCULATE GREEN COMPONENT OF LIGHT }
N calculate_intensity( green,
o id,
B i_ambient g,
. il tg,
) i1 sg,
% i___ra.y _vector X.i ray vector y,i ray vector z.
‘.: 1_number of light_sources,
W i K ag,
) i K sg,
“ i K g,
;.4 ; i_K_dgy
o i_obj phong_exp,
: i_intersection x,
i_intersection y,
i_intersection_z,
"y i_surface_normal x, :
:: i_surface_normal y,
i_surface_normal sz,
N i_obj ptr,
" i_light_top,
o_intensity green);
‘b
': { CALCULATE BLUE COMPONENT OF LIGHT }
A calculate_intensity( blue,
R i_d
B i_ambient b,
i I tb,
”.: i I sb,
‘,,:; i ray vector X.i ray vector v.i ray vector z,
,': ¢ _aumoer of light sources. '
M W ab.
0 7
. 1_K sb,
B i K tb,
::‘ i K db,
i_obj_phong_exp,
:. i_intersection x,

5 i intersection vy,
i intersection z,
i_surface _normal x,

W,

)
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i_surface_normal y,
i_surface_normal 3,
i_obj ptr,
i_light_top,
o_intensity blue);

if (i_ray_type = reflected) then begin

IF INPUT RAY IS A REFLECTED RAY THEN ONE RAY MUST BE POPPED TO GAIN
ACCESS TO IT'S SOURCE RAY.
} .
pop (templ_ray_type,
templ ray origin_x, templ ray_origin_y, templ ray origin 3z,
templ ray vector x, templ _ray vector y, templ ray vector gz,
templ ray stype,
templ_intersection flag,
templ cobj _idx,
templ subobj idx.
templ cpart_idx,
templ polygon_idx,
templ intersection x, templ_intersection y, templ_intersection z,
templ d,
templ _ 1 _tr, templ 1 tg, templ [ tb,
templ | 1 _sr, templ | 1 _sg, templ | 1 sb
i_ray top i

{ SET I _s IN SOURCE RAY }
templ 1 sr:= o_intensity_red;
templ I sg := o_intensity green;
templ I sb := o_intensity blue;

{ RETORE STACK. }
push( templ ray type,

templ ray origin_x, templ_ray origin_y, templ ray origin_z,
templ ray vector_x, templ ray vector y, templ _ray vector g,
templ ray stype,
templ_intersection_flag,
templ obj_idx,
templ_subobj_idx,
templ cpart_idx,
templtoolygon _idx,
;empl :ntersection ¥, templ !ntersection y. templ intersection z,
rempl . - N
templ I tr, templ I tg, templ I tb,
templ | 1 _sr, templ | 1 _sg, templ | 1 sb
ray_top );

end
else begin

{
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:: IF INPUT RAY IS A REFRACTED RAY THEN TWO RAYS MUST BE POPPED FROM THE
by STACK TO GAIN ACCESS TO IT’S SOURCE RAY.

4 }

: pop (templ _ray type,

templ _ray_origin_x, templ _ray origin_y, templ ray origin gz,

: templ ray vector X. templ ray vector y. templ _ray _vect,u.f_z.
3 temi_ray_stype.
“ templ _intersection_fiag,
s templ _obj_idx,
templ_subobj_idx,
templ cpart_idx,

K templ polygon idx.

o templ _intersection_x, templ_intersection y, templ intersection_z,
2 templ d,

i templ [ tr, templ I tg, templ I tb,

- templ I sr, templ I sg, templ I sb,

. ray top  );

¥

) pop [temp2 ray tyvpe.

'is temp2 ray origin_x, temp2 ray origin_y, temp2 _ray origin_z,

o temp2 ray vector X, temp2 ray vector_y, tem p2_ray vector z,

temp2 ray stype,
temp2_intersection flag,

& temp2 obj idx,
A4 temp2 subobj idx,
: : temp2 cpart_idx,
:: temp2 polygon_idx,
temp2_intersection_x, temp2_intersection_y, temp2_intersection z, N
5 t.emp2_d,
" temp2 I tr, temp2 I tg, temp2 [ tb,
J temp2 I sr, temp2 1 sg, temp2 I sb,
3 rey _top )
Pt |
{ SET THE I t FIELD IN THE SOURCE RAY }
N temp2 I tr := o_intensity red;
. temp2 I tg := o_intensity green;
N temp2 I tb := o _intensity blue;
Y
K { RESTORE THE STACK }

push( temp2 ray type,

1Y temp2 ray origin_x, temp2_ray origin_y, temp2 ray origin z,
: ‘emp2 -av vector x. templ rav vector v ~emp2 ray* vector :.
o emps Cay stvpe. ) i i 7
A0 emn2 ntersecrion Jav.
" Lemp2;obj_xdx,
_ temp2 subobj idx,
Hid temp2 cpart_idx,
:' temp2 polygon idx,
‘N temp2 intersection x, temp2 intersection y, temp2 intersection z,
" temp2 d, ) ) -
at temp2 I tr, temp2 | tg temp2 I tb, 1
. temp2 [ sr, temp2 [ sg. temp2 | sb, 1‘
I |
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ray top );

push( templ ray type.
templ ray origin_x, templ ray origin_y, templ ray origin_z,
templ ray origin_x, templ_ray origin y, templ ray origin z,
templ ray stype.
rempl intersection ‘ag,
templ _obj idx,
templ subobj idx,
templ cpart_idx,
templ polygon idx,
templ ‘ntersection X, templ _intersection y, templ_intersection z.
templ d,
templ I tr, templ I tg, templ I tb,
templ | 1 _sr, templ _. 1 _sg, templ _ 1 sb
ray tOp )s

end;

end:

{PA}

{ A EFR VA B XX ESRETE TR T T AT ALK X RXRAB XL LR SR AR EXETREEF R RS RN A R R KX KR KR Kk &k Xk ok k k% }
j TERAEAXREAXZEXAAX LA IR EAEE XX XX VIAIV KEEXXXFAEEAEIX X AKX XL LA TX R XXX XX AKX XK
{ EZEXXEBXBXRERXLX A AR ER SR ES R AR KA R AR AR EE TR R AR KR E XXX KRR AR R KRR K EX SRR AR R R KRk Rk }
begin
{ INPUT FILE }

assign (sysin, ’picture5.pas’};

reset (sysin);

{ OUTPUT FILE }

assign (outfile, 'pic0.dta’);
rewrite (outfile);

{ BRREERREERRRA AL R ERR AR LR B R R R R B R R KRR AR R kAR kR R B R KRR LRk Kk k ® }

{ SET UP COUNTERS }

obj catr = 1;
subobj cntr :=1;
light cntr = 1;
~part ~ntr = L:
J0iv ontr =1
emce “ner = L

——

CREATE POINTERS TO RECORDS }
new(obj curr);

new(subobj curr);

new(cpart curr);

new(light current);

new(poly curr};
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%
1
o { *** READ IN DATA FILE *** }
“ { READ IN PICTURE RECORD }
. readln {sysin, picture.view position x);

readln (sysin, picture.view position y);
1: readln (sysin. picture.view position )
N readln svsin. picture.packground -oior ri;
*, readln (sysin, picture.background color a)
4:': readln (sysin, picture. background_color_b)
K readln (sysin, picture.screen_max x);

readln (sysin, picture.screen_max _y);
‘.' readln sysin. picture ambient r):
: readln (sysin, picture.ambient g);
" readln (sysin, picture.ambient b);
i readln (sysin, picture.no_zero};
‘ readln (sysin, picture.global refraction index);

readin (sysin, picture.num_lights);
“:‘ picture.lights := light _current;
K
::' while picture.num_lights > U do begin
S
o { READ IN LIGHT DATA }
v readin (sysin light current *{light cneri] r); *
L readln sysin light_current "{light cntr.i gj;
» readln (sysin,light ¢ _current [hght entr.I b);
J‘ readln (sysin,light_current [hght _cntrj. hght _x);
AL readln (sysin, hght current *[light _cntr|.light y);

readln (sysin, hght. current “{light _cntr].light _z);
. readln (sysin,light _current *[light cntr1 dimensionl}); -
. readin (sysm hght, current “{light cntr] dimension2);

-, light _cntr : hght cntr + 1;
,: picture. num_ughts = picture.num lights - 1;
" end;

readln (sysin, picture.num_objs);
v object loop_cnt := picture.num_objs;
.:: picture.objects := obj curr;
¥
-
:‘ while object_loop_cnt > 0 do begin

{ READ IN OBJECT DATA }
\ readln (sysin, obj _curr “{obj _cntr|.opcode);
e readln ‘svsin. obj curr*'obj cntr’.obj bsphere radius):
:: ~eaaln ‘svsin, by :.turr Tooy _entri.ob) hsphere <}
-:p readln svsin. ooy curr Topj cner ooy osohere vy
Ry readin (sysin, ooy curr’ lo'oj_cnt.r‘.ooj_bspnere_z);
readln (sysin, obj curr “[obj cntr] num_sub objects);

‘,: subobj loop cnt := obj curr *|obj cntr] num_sub objects;
:: picture ob_)ects [obj cnt,r] sub objects := subobj _curr,
i
::: while subobj loop cnt > 0 do begin

RN { READ IN SUBOBJECT DATA }
readln (sysin, subobj_curr “[subobj_cntr|.subobj type);
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readin (sysin, subobj curr “{subobj_cntr{.sub_bsphere radiusj;
@ readln (sysin, subobj curr [subobJ cntr] sub bsphere x)
+ readln (sysin, subob_,_curr [subobj cntr]. sub_bsphere_y)
' readin (sysin, subobj curr “{subobj_cntrj.sub_bsphere_z};
readln (sysin, subobj_curr “[subobj_cntr].num_common_parts);

S cpart loop cnt : subobj _curr “{subobj entr|.num common _parts;

4 - .=

\ plcture.objects * ‘obj cntr;. )ub_)b]e(,ts :UDODJ TILL.COMMON DAarts @ =
. cpart_curr;

1

while cpart_loop_cnt > 0 do begin
{ READ IN COMMON PART DATA }
readIn(sysin, cpart_curr “icpart_cntrl.K arl;
readln(sysin, cpart_curr “(cpart_cntr|.K _ag);
readln(sysin, cpart_curr “[cpart_cntr|. K_ab);
readin(sysin, cpart_curr “[cpart_cntr|.K_dr);
readIn(sysin, cpart _curr “[cpart_cntr|.K _dg);
readln(sysin, cpart _curr “{cpart_cntr|.K_db);

R readln(sysin, cpart_curr “[cpart_cntr].K_sr);
4 readin(sysin, cpart _curr “'cpart cntri K sgj;
‘: readin(sysin, cpart_curr “jcpart_cntr].K_sb);
¥ readIn(sysin, cpart_curr “[cpart_cntr].K_tr);

readin(sysin, cpart_curr *[cpart_cntr].K_tg);
readln(sysin, cpart curr "icpart cntr] K tb);
readIn(sysin, cpart_curr "|cpart_cntri.obj refraction indexj;

: readin(sysin, cpart_curr “{cpart cnt,r] obj phong _exp);
K)
{ CHECK TO SEE IF SUBOBIJECT IS A SPHERE OR A POLYGONAL OBJECT }
if (subobj_curr “[subobj _cntr].subobj_type = 1) then begin

K readln(sysin, cpart_curr *[cpart_cntr|.num_polygons);
% poly loop cnt := cpart_curr “[cpart_cntr|.num_polygons;
'; picture.objects “|obj cntr] sub_objects “[subobj cntr].
:,; common_parts [cpa.rt_cnt.r] polygons := poly_curr,
- while poly loop cnt > 0 do begin
o: { READ IN POLYGON DATA }
K readln(sysin, poly_curr “[poly_cntr|.num_vertices);
? vertice_loop_cnt := poly_curr“[poly_cntr].num_vertices;
Ky

while vertice_loop_cnt > 0 do begin

{ READ IN VERTICE DATA }

,1, readin(svsin, poly curr“'poly cntrl.vertice <'vertice cntri);
(- readlnfsysin. poiv jf'urr “poly :nirivertice ij."vernce :"nm);

readlnisysin, doly ~urr “'poty -atr.vertice g vertice entr:);
‘3 vertice Cntr ;= vertice_cntr + L,

vertice_loop_cnt := vertice_loop_cnt - 1;

. end;
3 vertice_cntr =1,
) readln(sysin, poly curr“{poly cntr|.surface _normal x);
n readln(sysin, poly curr(poly cntr|.surface normal y)
0 readIn(sysin, poly curr “[poly cntr|.surface normal _2);

poly cntr := poly_cnt,r + 1
:
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e poly loop cnt := poly loop cnt -1
ER ) - -_ - -
-;Q:.:'

;:n:,: end;

NN poly _cntr:= 1;

new(poly curr);

i

"G" end; { IF ;

, cpart cntr := cpart_cntr -+ 1;

:ﬁ cpart_loop cnt := cpart_loop cnt - 1
' gt end;

“ »

i cpart_cntr -= 1

ey new(cpart_curr);

' g subobj_cntr := subobj _cntr + 1;

('.:’0.’ subobj _loop_cnt := subobj loop cnt -1
o end;
'c'l new(subobj curr);

N subobj cntr := 1.
.,‘-; obj cntr := ob} cntr + 1;

ot | object loop cnt := object loop cnt -1
.ty - - - -

W end;
£ '
a0 {.PA}

IR R 2 R SR 22 R 22 22 2 R RS 22 2 R R R R R R e R R R 2RSSR ) }

{ SET RAY STACK POINTER }

-

2

) ray top = nil;
o -
-: pixel z := initial pixel z;
A' ")
e { RASTER SCAN LOOP }
J for pixel y := 1 to picture.screen_max_y do begin
o
'::" for pixel x := 1 to picture.screen_max x do begin
)
:’:" $‘ { DETERMINE VIEW RAY DIRECTION }
:f.:g. X := pixel x - picture.view position x;
y .= pixel y - picture.view position y;
aﬁ:;r 2 := pixel z - picture.view position z;
i;. Y dist := sart{sar{x} - sar(y} - sariz}};
ig:' " ONVERT T TO A UNIT VECTOR
’:!l‘ miex = x st
unny =y ; dist;
_— unitz := z / dist;
(S
ﬁ};w, { INITIALIZE VIEW RAY }
,)Q; initial ray type := view;
"tq,: initial ray origin_x := pixel x;
b initial ray origin y := pixel y; !

initial ray origin 1z := pixel z; (
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tnitial ray vector x := unitx;
initial ray vector y := unity:
initial ray vector z := unitz;

initial_ray stype := none;
initial intersection ﬁag := false;
initial obl _idx = 0:
initiai suooby .dx c= )
initial_cpart | idx 1= 0
mmal_polygon_xdx = 0;

initial intersection x  := 0.0;
initial intersection y  := 0.0;
initial intersection oz = 0.0;
initial d := 0.0;
mmal_I_tr = 0.0;
initial I tg :=.0.0;
initial T tb := 0.0;
initial I sr:= 0.0;
initial I sg := 0.0;
mtial [ sb = 0.0

ray generation number := 0;

push{ initial ray type,
initiai_ray omgin_x,initlai_ray origin_y,iniual ray origin z.
initial ray vector x,initial_ray vector y,initial ray vector z,
initial ray stype, - - -
initial intersection flag,
initial ObJ idx,
1mt1al_subob_|_idx,
initial cpart_idx,
initial polygon idx,
initial intersection x,
initial _intersection y,
initial _intersection_z,
initial d,
initial I _tr, initial I tg, initial 1 tb,
initial I _sr, initial I _sg, initial I sb

ra.y_top );

{ BEGIN RAY TRACING LOOP }

“ebeat

20D tCUTTRND "ay vpe,
current _ray origin_x,Current ray Origin_y.current ray origin_z,
current ray vector x,current_ray_vect,or_ y,current ra.y‘ vectoxT z,
current_ray:stype,— - - T -
current _intersection flag,
current_obj idx,
current_subgbj_idx,
current _cpart_idx,
current_polygon_idx,
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2
i o
N current intersection X.
“ current_intersection y.
o current intersection z.
) current d,
current—l_t.r, current [ tg, current I tb,

:-‘. f'.urrentjl_sr. current _I _sg, current _Ivsb.
K ray _top B )
& : , : ,
,':l‘ if (current_intersection flag) then begin
29 IF THIS FLAG IS SET THEN THIS RAY HAS ALREADY BEEN THROUGH THE RAY
) TRACING PROCESS AND HAS HIT AN OBJECT.
,A }
3 cpart_path := picture.
t objects “[current_obj idx].

’ sub_objects “[current_subobj idx].
¢ common_parts;
A“
;}‘ subobj path '= picture.
B objects “|current_obj idxj.
" sub_objects;
. if subobj path “‘current subobj idx/.subobj type = 0 then begin
1

‘ {

: IF THE SUBOBJECT TYPE IS A SPHERE THEN THE SURFACE NORMAL AT THE POINT

. OF INTERSECTION MUST BE CALCULATED SINCE IT CAN NOT BE STORED. THE SURFACE
NORMAL IS DETERMINED FOR THE PLANE TANGENT TO THE SPHERE AT THE
INTERSECTION POINT.

v }

}; surface normal A := current intersection x -

o subobj _path” [current subobJ _idx].
G: sub bsphere x;

i -

) surface_normal y := current_intersection y -

: subobj path " {current _subobj_idx].
o sub_bsphere_y,

24

!

o surface_normal z := current_intersection z -

B subobj _path” Teurrent subobJ _idx].
sub_bsphere z;

M

) {ist -= ! sart{ sar{surface normal x} -
h ) sgr{surface _normai vj -
\‘- sarisurface normal z1j):

{ THIS RAY IS THEN CONVERTED INTO A UNIT VECTOR }
surface_normal x := surface_normal x / dist;

e surface normal _y := surface norma.l _y / dist;
'_*Fw surface_normal z := surface_normal_z / dist;
o end
3 else begin
. {
“
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K
ko
5‘:'(
"':ti IF THE SUBOBJECT IS A POLYGONAL OBJECT THEN THE SURFACE NORMALS FOR EACH
) OF THE POLYGONS OF WHICH IT IS COMPOSED IS RETRIEVED FROM IT'S RECORD.
)
50 }
A surface_normal x := cpart_path “jcurrent_cpart_idx,.
polygons " [current. _polygon_idx|.
. surface normal x;
o emel-
_ surface_normal y := cpart_path “|current cpart idx .
\} polygons [current polygon idx|.
. surface_normal y;
!;.: ¥ surface_normal z := cpart_path “lcurrent _cpart_idxi.
Ko polygons [current polygon _idx|.

surface normal z;

¥
;‘f.p end;

{

X e ) PROCEDURE FOR DETERMINING THE INTENSITY OF LIGHT AT EACH INTERSECTION
v POINT.

\_-12 }

',"" 12 (current _d,

v current l _tr, current_I_tg, current_I tb,

. current I _sr, current I _sg, current I t.b

t.- p}cture num._hght.s . ‘ . .
SN picture.ambient r, picture.ambient_g, picture.ambient b,
E',::ﬂ cpart_path *[current_cpart idx].K_ar,

o cpart_path *[current cpart_idx|.K ag,

" . cpart_path “[current_cpart 1dx] K ab,

::';‘: cpart_path “[current _cpart 1dx] K dr,

'l.' cpart_path “[current _cpart 1dx} K dg,

.|.: cpart_path “{current_cpart_idx|.K_db,
Y, cpart_path “[current cpart _idx].K sr,
e',‘_i,. cpart_path “[current_cpart idx|.K sg,

3 cpart_path “(current_cpart_idx|.K sb,

iy cpart_path” [current_cpart_xdx] K_t.r

e cpart_path “[current_cpart idx].K tg,

¥ ... cpart_path “[current cpart_idx|.K _tb,

-: 4 current_ray type,

W ray_top,

N picture.lights,

(*o' picture.objefrts, S

X cpart path “'current cpart idx .obj ohong exp.
«!".l' ‘urrent _-av vector <.

:0, My TUrrent ray vector .

0 current_ray_vector z,

- current_intersection x,

0.:' N current_intersection y,

::a current _intersection_z,

surface_normal _x, surface_normal y, surface_normal 3,
ray generation_number,

intensity red,

intensity green,

P 4
A

X
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intensity blue);

end
else begin

{ CHECK FOR POSSIBLE INTERSECTIONS OF CURRENT RAY WITH OBJECTS IN SCENE }

check for intersection{current _ray vector x,
B current_ray vector y, N

current_ray vector_gz,
current_ray_origin_x,
current_ray_origin _y,
current ray origin z,
picture.objects,
current_intersection x,
current_intersection y,
current_intersection z,
current_obj _idx,
current subobj _idx,
current cpart ‘.dx
current_polygon_idx,
current_intersection flag);

{ SET UP PATHNAMES TO USE AS SHORTHAND }
subobj path := picture.
objects “[current_obj idx]|.
sub_objects;

cpart_path := picture.
objects “[current_obj_idx]|.
sub_objects *[current_subobj_idx|.
common_parts;

if subobj path “[current_subobj idx|.subobj type = O then begin
surface_normal x := current_intersection x -
subobj _path” {current subobJ _idx].
sub_bsphere x;
surface_normal_y := current_intersection y -
subobj path*” [current _subobj _idx].
sub_bsphere y;
surface normal 2 := current_intersection z -
subobJ _path “'current :ubobj idxl.
sub bsphere
tist = . sartl sar(surtace normal ) ~
sqrisurface _. normal y) -
sqr(surface | “normal _2)));

surface_normal_x := surface_normal x / dist;
surface normal y := surface_normal y / dist;
surface normal z := surface_normal z / dist;
end N
else begin
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surface_normal x := cpart_path “'current cpart idx!.
polygons “current_polygon idx|.
surface normal x:

surface_normal _y := cpart path “[current _cpart_idx]|.
polygons “lcurrent polygon idxl.
surface_normal y:;

surface_normal_z := cpart_path “[current_cpart 1dx].
polygons " [current polygon idx]|.
surface_normal z;
end:

if (current intersection flag) then begin

{ IF THERE HAS BEEN AN INTERSECTION THEN CONTINUE TRACING THE RAY }

if (stack_exceeded( ray_generation number,

maximum_size of stack)) then begin
{ {F THE STACK IS ALREADY FULL THEN CALCULATE INTENSITY AT LAST NODE }

16 (current _d,
current l _tr, current I tg, current I tb,
current I _sr, current I _sg, current I tb
picture.num_lights,
picture.ambient r,
picture.ambient g,
picture.ambient b,
cpart_path “[current _cpart_idx|.K ar,
cpart_path” [current _cpart_idx]. K _ag,
cpart_path “[current_cpart _idx|.K ab,
cpart_path “[current_cpart_idx].K dr
cpart_path “{current_cpart idx].K dg,
cpart_path ~[current_cpart_idx|.K_db,
cpart path“[current _cpart_idx].K sr,
cpart path lcurrent. _cpart 1dx] K _Sg,
cpart_path “[current _cpart _idx|.K sb,
cpart_path “[current_cpart_idx|.K_tr,
cpart_path “[current_cpart _idx].K_tg,
cpart_path “[current_cpart_idx].K tb,
current_ray type,
ray top,
picture.lights.
victure.onjects,
‘part path  current -part :dx.obj phong =xp.
current_ray vector X,
current_ray vector_y,
current_ray vector z,
current_intersection x,
current _intersection y,
current intersect.ion_z,
surface_normal x,
surface normul y,
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3 surface normal z.
intensity red,
intensity green,
intensity blue)

end

else begin

1

IF THERE WAS AN INTERSECTION AND THE STACK WAS NOT FULL THEN CALCULATE
THE DISTANCE BETWEEN THE RAY’S ORIGIN AND POINT OF INTERSECTION AND PLACE
THE RAY BACK ON THE STACK.

}

current_d := (sqrt(sqr(current_intersection x -
current_ray_origin_x)) +
1 (sqr(current_intersection x -
current_ray _origin_x}) +
(sqr(current _intersection x -
current_ray origin x}));

push( current_ray type,
current_ray_origin_x,
current_ray origin y,
current ray origin 3.
current_ray vector X,
current_ray vector y,
current_ray vector z,
current_ray stype,
current_intersection flag,
W, current _obj idx,
current_subobj idx,
current_cpart_idx,
current _polygon_idx,
current_intersection x,
_ current_intersection y,
R current_intersection z,
current_d,
) current I tr,
i, current [ tg,
current I tb,
current I sr,
current I tg,
current [ tb.

-

oy e A

-ay top R

i -

{ DETERMINE {F A REFLECTED RAY WAS CREATED AND IF 5O CALCULATE IT }
. calculate reflected ray (current_ray vector x,

R current_ray vector y, -

current_ray vector z,

surface_normal x, -

* surface_normal:y,

surface_normal z,

reﬂect.ed_ra.y_x,_

oK,
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e
¢?;;v reflected ray v,
:,‘.:o: reflected ray 3z,
::9:: reflected ray ;
. '((-
::\. { DETERMINE IF A REFRACTED RAY WAS CREATED AND IF SO CALCULATE IT }
.:t::: calculate refracted ray {current ray vector x.
N:g current_ray vector_y,
:::: _ current_ray_vector_z,
N surface normal X,
surface norma] 7
\o; surface norma] z,
.a: : cpart pa.th [current. _cpart_idx]|.
,:.‘:‘ \ obj _refracuon_mdex,
f}-‘a,; picture.global refraction_index,
Ta AR -—
s refracted ray x,
- refracted ray y,
(;::l“ refracted ray z,
A 1 refracted ray i:
o
A . .
.::::‘ ray_generation_number := ray _generation_number + 1;
,';" 4 if reflected ray then begin
i
0w | .
‘g:: IF A REFLECTED RAY WAS CREATED THEN INITIALIZE IT AND PUSH IT ON THE
g STACK.
» & . }
) source_ray type := current ray type;
Sl -
3:: dist := ( sqrt(sqr(reflected ray x) +
: A sqr(reflected ray y) +
"Ry sqr(reflected _ray 2)));
)
ey { CONVERT REFLECTED RAY TO A UNIT VECTOR }
iy unitx := reflected ray x / dist;
INAT .
ad unity := reflected _ray y / dist;
X unitz := reﬁected_ray_z / dist;
Ul
initial ray type := reflected;
initial ray origin_x := current_intersection x;
initial ray origin v := current _intersection v:
nitial _ray origin 0= -urrent .ntersection
initial ray vector ¢ := amitx:
initial ray_vector_ y := unity;
- initial_ray_vector_z 1= unitz;
,:c:q: initial ray stype := source ray type;
R itial_intersect ﬂ = false;
i initial intersection flag := false;
d,::l, initial ObJ idx 1= 0;
,:.::: initial subobj idx =0
RN initial cpart | idx = 0;
i initial polygon idx = 0
B " -
X,
Uiyl 127
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&3
o!
::. initial intersection x = 0.0:
ie‘ initial int.ersection y = 0.0;
ey initial | _intersection z = 0.0;
W initial d = 0.0
initial I _tr = 0.0;
:;!" initial I tg =00
g mivai [ tb 1= 0.0
‘:I' ‘ mmal__l_sr = 0.0;
":::‘ initial I sg :=0.0;
K initial 1 sb  := 0.0;
‘:‘;: push( initial ray type,
9’}: initial ray origin x,
:,»'“ initial ray origin _y,
.:,: initial_ray origin 3,
. initial_ray vector_x,
vy initial ray vector y,
N initial ray vector 1z,
:::!l initial ray stype.
::t: initial_intersection flag,
,~:: initial ObJ _idx,
- initial_subobj idx,
"o mma.l_cpa.n_ldx
: ,; initial_polygon_idx,
/ initial intersection x,
o initial_intersection y,
"y initial _intersection z,
"' initial d,
. initial I_tr, initial I tg, initial I tb,
N’ initial I sr, initial 1_sg, initial I sb,

,‘ Q ray_top )

Wi end;
3
e
_|: if refracted ray then begin
o =
N {
jl:. IF A REFRACTED RAY WAS CREATED THEN INITIALIZE IT AND PUSH IT ON THE
g STACK.
, }
X3
: 3:4 SOurce ray type := current ray fvpe:
o . :
‘: dist 1= ! sqrtisarirefracted ray xj -

N sqr(refracted _ray yj +
sqr(refracted ray z)));

: { CONVERT IT TO A UNIT VECTOR }

>, unitx := refracted ray x / dist;
I unity := refracted ray y / dist;
unitz := refracted ray z / dist;
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“"

l";', initial ray type = refracted;

‘»:-:' initial ray origin_x := current intersection Xx;

::-: initial_ray origin_y := current_intersection y;

o initial_ray_origin_z := current_intersection_z;
initial ray vector x := unitx;

i ) initial ray vector y := unity;

;‘:' initiai_ray vector i := unitz:

initiai ray stype = source ray type:

initial_intersection _flag := false;

Ko initial ob_| idx =0,
uutml_subob.)_ldx = 0;

‘,l" initial cpart idx = 0;

;:' initial _polygon idx = 0

;.. initial intersection x  := 0.0;

" initial intersection y  := 0.0;

" initial | _intersection z  := 0.0;
initial d = 0.0;

o mltml_I_t.r = 0.0;

3 initial I tg = 0.

A imuai_1 b = 0.0;

’é: initial I sr  := 0.0,

WYy initial T sg  := 0.0;

O initial T so = 0.0; *

L

o push( initial _ray type,

e initial ray origin_x,

:.' 1 initial ray origin y,

" initial ray origin_z,

- initial ray vector x,

) initial ray vector y,
initial ray vector_z,
initial ray stype,

n:t: initial intersection flag,
o initial obj idx,
~ initial subobj idx,
1
» xnmal_cpa.rt_ldx,
‘:'.0 initial polygon idx,
b | el . -
o initial intersection x,
‘f', initial intersection y,
i initial _intersection z,
I mmal_d,
';:,: initial T rr.initial 1 tg, initial 1 tb
‘_'é.' muar §osroonival ose, il i o
. I -
JS -ay _'\)D
T end;
,,-.“
-} erd;
I;v' end
A else begin
.
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if fcurrent -ay tvpe  view then hegin

{

IF THERE WAS NO INTERSECTION AND THE U RRENT RAY IS THE VIEW RAY THEN SET
THE OUTPUT INTENSITY TO THE BACRGROUND INTENSITY

}

NS AN

LIROOOGALIICAGAMNN A T e T L N T S
e ,,c‘ ,,i.. MADN ununi o u.g,.‘n‘u,a .i"‘!, X ,q“. W, _.Q:{M, h‘!h‘?',., X “‘.geg.-‘g ~\!*c{.§|.,_.‘,. tpteNide

intensitv red = nicture backeground rolor r
ntensity green  — ocrure Sackgroanmd cotor o
intensity blue = picture background coior b
end;
end;
end;

until (stack_empty(ray top));
{ OUTPUT THE FINAL INTENSITY }
display pixel( intensity red,
intensity green,
intensity biue.

pixel x,
pixel y,
pixel z };
end '
end:

close (sysin);
close (output);

end. { MAIN }
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oy
i:. APPENDIX B - INPUT FILE
U
b
e ¢
.l;k.! . -
0';::' 100 X/ view position { PICTURE }
R 100 /y/
D ) 1000 [z/
) 0.0 /red/ background light
0.0 /green/
,Ii" 1.0 /blue/
1 i) 200 /x/ screen
g 200 /y/
o 1.0 /red/ ambient intensity
KO0 1.0 /green/
1.0 /blue/
DSy 1.0 /global refraction index/
0 . . /
1:’:‘ 1 ; num‘__hghts/
A:"a‘ 1.0 /red, intensity of light source
:‘::'\ 1.0 /green/
e 1.0 /blue/
‘ 0.0 /x/ position of light source
:?:.:5 20.0 /y/
:’ ‘..' 0.0 /Z/
f’." 0.0 /dimensionl/
5% 0.0 /dimension2/
ot 3  /num_objects/

v ; 9999 /opcode/ { OBJECT 1}

:(:;‘:i 35.0 /radius of object’s bounding sphere/
ot 110.0 /x/ center of bounding sphere

e 0.0 /y/

s -50.0 /z/

R 1 /number of subobjects/

- 1 /subobject type/ {SUBOBJECT 1}
"" 35.0 /radius of subobjects bounding sphere/
B 110.0 /x/ center of bounding sphere
i 0"

7.:: -50.0 /z/

I 1  /num-common-parts/ { COMMON PART 1}
ot 0.8 /Ka-red/ ambient coefficient

K 0.0 /Ka-green/

: :.' 1.0 Na-nlue

"-I‘.‘: .8 Kd-red iiffuse coetficient

“51:‘ J.0 , Kd-green,

= 0.0 /Kd-blue/

i 0.8 /Ks-red/ specular coefficient
L 0.8 /Ks-green/
:. ) 0.8 /Ks-blue/
‘.:? 0.0 /Kt-red/ transmission coefficient
::',: 0.0 /Kt-green/

0.0 /Kt-blue/
e
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0.0 /obj-refraction-index/

200 /obj-phong-specular-exponent/
6 /num-polygons/

4 /num-vertices/ { POLYGON 1}
90.0 /polyl ptl/

20.0

-30.0

90.0 /polyl pt2/

-20.0

-30.0

130.0 /polyl pt3/

-20.0

-30.0

130.0 /polyl pt4/

20.0

-30.0

0.0 /polyl surface normal/

0.0

1.0

4  /num-vertices/ { POLYOGN 2 }
90.0 /poly2 ptl/

-20.0

-30.0

90.0 /poly2 pt2/

-20.0

-70.0

130.0 /poly2 pt3/

-20.0

-70.0

130.0 /poly2 pt4/

-20.0

-70.0

0.0 /poly2 surface normal/

-1.0

0.0

4  /num-vertices/ {POLYGON 3}
130.0 /poly3 pt1/

20.0
-70.0
130.0 /poly3 pt2/
-20.0
-70.0
30.0  polys ptd,
. -20.0
- -70.0
-— 80.0 /poly3 pt4/
ot 20.0
ool -70.0
:.:' . 0.0 /poly3 surface normal/
e 0.0
Wy -1.0
ot 4  /num-vertices/ { POLYGON 4 }
i
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harly
?:‘;:l
L) 120.0  polv4 ptl’
% 4 20.0
Vgt -30.0
Bt 130.0 ; poiy4 pt2/
‘ 20.0
|'.'. ) -70.0
a0 .0 poivd ped
A ) 20.0
o -70.0
th 90.0 /poly4 pt4/
20.0
;::: -30.0
Gy 0.0 /poly4 surface normal/
:%. 1.0
h :i. 0.0 .
BAS 4 /num-vertices/ { POLYGON 5 }
. 130.0 /poly5 ptl/
pn 20.0
YA -30.0
N 130.0 ,poiy5 pt2,
B -20.0
L
e -30.0
e 130.0 . poiy5 ptd/
Y -20.0 |
a":l -
|i.‘ -70.0 ‘
li:g 30.0 /poly5 pt4/
’:p;.: 20.0
) -70.0
Aty ) 1.0  /poly5 surface normal/
SN 0.0
; :.'j. 0.0
A0 14 /num-vertices/ { POLYGON 6 }
o, X 90.0 /poly6 ptl1/
‘) 20.0
BT, -70.0
ot - 90.0 /poly8 pt2/
_‘:, -20.0
o -70.0
::{. Y 90.0 /poly6 pt3/
-20.0
A -30.0
j:}. 90.0  polyé pt4.
A 20.0
:..‘ -30.0
KX -1.0  /poly®6 surrace normal,
0.0
F 0.0
& 9999 /opcode/ *** OBJECT 2 ***
:ﬁ: 175  /radius of the objects bounding sphere/
K o 100.0 /x/ center point of the bounding sphere
L -100.0 /y/
. -100.0 /z/
B
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(e Tl b
Bl

Fal Sl Y o =

ey g ‘;n
Dlas 2at b g% J M A

o

L

b & (3
N A

Py

Y
&

. n &

S,

1 num-subobjects

1 'subobject-type’ { SUBOBJECT 1}
175 /radius of subobjects bounding sphere
100.0 /x, center of bounding sphere

-100.0 /y/

-100.0 /2’

1 aumoer ~ommon parts. ; COMMON 2ART | ;
0.0 red. Ka ambient coefficient

0.7 /green/

0.0 /blue/

0.0 /red/ Kd diffuse coefficient

0.7 ‘green

0.0  /blue

0.8 ,red, Ks specular coefficient

0.8  /green/

0.8  /blue/

0.0 /red/ Kt transmission coefficient

0.0  /green/

1.0 blue-

0.0  /objects refraction index,

200 /Phong’s specular exponent/

1 /number of polygons/

4 ‘number of vertices’ { POLYGON 1}
.0 /poiyl ptl,

20.0

-200.0

0.0 /polyl pt2/

0.0

0.0

200.0 /polyl pt3/

0.0

0.0

200.0 /polyl pt4/

20.0

-200.0

0.0  /polyl surface normal/

0.99

0.1

9999 /opcode/ **¢* OBJECT 3 ****
40  /radius of objects bounding sphere/
140  /x/ center of bounding sphere

0 v

s

: numoer >f suboDiects,

U /subobject type,

40  /radius of subobjects bounding sphere/
140 /x/ center of bounding sphere

30 Jy/

-150 /z/

1 /number of common parts/ { COMMON PART 1}
0.5 /red/ Ka ambient coefficient

0.0 /green/

134

. " R

t By 0y Vo) % V¥ ) e AN Y ) N W Y. T A S A A
@ Py " N
“s.'.‘a?‘":"h. ‘a.v’i?l.:’*"lb'nfl‘l?“n.i.'nl ' l'\. AR .:?"I, ’!.i‘,u."' " .‘. On? ‘. A

APy S
e




N - » e - o A - o J vy o 0 = - A Rl R Al A A s Ak gl dat A8 B 4 2.0 & 5 4 '111

~ 0.5 /blue/

'sj 0.5 /red/ Kd diffuse coefficient
| 0.0 /green/

0.5 /blue/

0.8 /red/ Ks specular coefficient
ot _ 0.8 /green/

":p 0.8 ; blue -

A 0.0 /red/ Kt transmission coefficient
0.0 /green/

0.0 /blue/

. 0.0 /refraction index for object/
W 200 'Phong’s specular exponent’
*

YA SN

.’
2
» e

e

-
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