
D-A184 863 A PROTOTYPE RAY TRACER(U) NAVAL POSTGRADUATE SCHOOL 1/2

MONTEREY CA P 6 SMITH JUN 87

UNCLASSIFIED F/G 20/6 ULEhuhmmhmhEmhhE
EIhlllElllIIIIE
EhhhEEEEmnnhmhE
mhhmhmhEEEIJmnE
EIIIIIIIIIhIIE
lEElllllllllEE

LLI I N' L2. 2

I1.8
11111125 liI .4 111111.6

MICROCOPY RESOLUTION TEST CHART
NArINAL BUREAU OF STANDARDS 1961 A

- - - - - - - - - - -

Op 'v-ez

00 NAVAL POSTGRADUATE SCHOOL
wo Monterey, California

DTIC
Q7, LECTE

0071"0 2 1987

as: D I Crel~r~d'ict
t5 at1,be in bla a

* THESIS
A PROTOTYPE RAY TRACER

by

Paul Gerard Smith

June 1987

-hes:z; Advxr'sor: 'Iichael 7. Qfda

Approved for public release; distribution is unlimited.

11 " 111 lie

unclassified
JICUAmrY CLASSIFICATION O; THIS PAGE

REPORT DOCUMENTATION PAGE
la REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS

unclassified
2a SECURITY CLASSIFICATION AUTHORITY 3 OISTRIBUTION/ AVAILABILITY OF REPORT

b OWApproved for public release;. WEC-SSFICAON/DOWNGRAONG SCHEDULE distribution is unli mited.
4 PERFORMING ORGANIZATION REPORT NUMBER(S) S MONITORING ORGANIZATION REPORT NUMBER(S)

6& NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a NAME OF MONITORING ORGANIZATION

Naval Postgraduate School ((iVicable) Naval Postgraduate School

6C ADDRESS (City. Stare. and ZIPCode) 7b AOORESS(Cty. State, and ZP Code)

Monterey, California 93943-5000 Monterey, California 93943-5000

Sa NAME OF FUNOINGi SPONSORING Bb OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If a4plicable)

8c ADORESS (City. Stare. and ZiPCode) 10 SOURCE Of FUNDING NUMBERS

PROGRAM PROJECT TASK WORK JNIr
ELEMENT NO NO NO ACCESSION NO

11 T TLE (Include Security Classjicarion)

A PROTOTYPE RAY TRACER

PERSONA, AUTHOR(S) Smith, Paul Gerard

A' '~(O EP~ is 1i3b 'iME COVERED 114l?~F RIPORT Wetar Month Day) [175 PAGE COUNT

'6 S ,LP EMNTARY NOTATION

COSATI CODES I IS SUBJECT lERMS I (COnTinue On 'evefl* if necessar, and idlentfy by block ntumber)
',LD GROUP SUeBGROUP illumination models, rendering, lighting and

_____________________shading, and ray tracing

9 A-SlTR.ACT (Continue on 'everie if neceuary and ,identify by blOck number)

The ability to make computer images more realistic is becoming more impor-
tant as the hardware for producing such images is becoming less expensive
and hence more available. The key to producingrealistic images lies in
the algorithms that can take full advantage of the hardware to produce

* . te. "n >>:i study, . 'e)i~k it i r ota tv'e ?f i ruv r:c. r, . :2:,,SI-d
,: .. :n 2 . " . <a. ract ., :n ;omb-aat)n •.*Lta L *Li):i" L>a: l: ina

, ,K ,urM rv c -:"2 .nos ":a I2t image .at 2ani ?eo:et'Ion general purpose computing hardware. The prototype was successfullyI. implemented on an IBM AT clone.

i00YR3uTONAVAILABILITY OP ABSTRACT2I1 ABSTRACT SECURITY CL.ASSIFICATION
j-. X ... NCLASSFIE/iJNL'MITED 0] SAME AS RPT rCOTIC USERS !unclassified

fl ,ME OP RESPONSIBLE NOIVIDUAL JbTELEPHONE (IncludIe Area Code) 22c O~P'(E SYMBOL
"" Prof. Michael J. Zyda (408) 646-2305 Code ,52Zk

All OtMer editOns 4are Ob)tolete ucls fie

iii

. . . . " , ' , . . ' ; . - _- _ _ - , ' 1 7 . 1 . - . . - ." ' . . - ' . . , . . , . . ' . j .

Approved for public release; distribution is unlimited.

A Prototype Ray Tracer

by

Paul Gerard Smith
Captain, United States Marine Corps

B. A., The Citadel, 1978

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the
NAVAL POSTGRADUATE SCHOOL

June 1987

Author: imllQau .Sith

Approved by: I.da,_,_.__-
Micd da. hesis A !visor

C. jo as .u, Second Reader _

"Vincent Y./ um, Chairman,

Departmen f Computer Science

Knel T.Mrhl,

Dean of Information and Policy"Sciienc-e

2

I- 1W - r**.--.A--.

ABSTRACT

The ability to make computer images more realistic is becoming more

important as the hardware for producing such images is becoming less expensive

and hence more available. The key to producing realistic images lies in the

algorithms that can take full advantage of the hardware to produce them. In this

study, we look at a prototype of atray tracere as presented in [Ref. 1]. Ray tracing,

in combination with a global illumination model, currently provides the most

realistic images that can be generated on general purpose computing hardware.

The prototype was succesfully implemented on an IBM AT clone.

f]

N U 1
' ...L ' J

3 .

-7,.

.4

TABLE OF CONTENTS

INTRODUCTION 9

A. DEFINITION AND OVERVIEW 10

B. ORGANIZATION ... 14

I. DATA REQUIREMENTS... 17

A. OVERVIEW OF THE DATA REQUIREMENTS............ 17

1. Object Data ... 17

a. Polygon Data... 18

b. Bounding Volume Data 19

2. View Data ... 22

3. Light Data .. 22

B. DATA STRUCTURE FOR A RAY TRACER 23

1. Picture... 23

2. Lights .. 23

3. Objects... 25

r4. -1;ibobjects.. .25

5. Common Parts.. 27

6. Polygons... 27

7. Vertex Array .. 27

4

II. RAY TRACING INTERSECTION CONSIDERATIONS 29

A. RAY TRACING MECHANICS 29

1. The Ray Direction Problem 29

2. The Intersection Problem 32

B. THE RAY DATA STRUCTURE 35

1. Ray Type.. 36

I. Ray Origin .. 36

3. Ray Vector .. 36

4. Source Ray Type... 36

5. Intersection Flag.. 36

6. Object Index .. 37

7. Subobject Index .. 37

8. Common Part Index ... 37

9. Polygon Index... 37

10. Intersection Point ... 37

11. Distance.. 37

12. 2zansxitted 1ncensitv...................................... 7

13. Specular Intensity... 38

C. INTERSECTION METHODOLOGY........................... 38

1. Intersecting a Planar Polygon................................ 38

5

PIP; .

a. Generating the Initial Ray................................. 38

b. Intersecting the Bounding Volumes....................... 38

c. Intersecting the Polygon.................................... 40

2. Intersection of a Sphere.. 44

IV. THE INTENSITY PROBLEM 45

A. LOCAL ILLUMINATION MODEL............................. 45

1. Diffuse Reflection Model....................................... 45

2. Specular Reflection Model 46

3. Combined Model.. 48

B. GLOBAL ILLUMINATION MODEL........................... 49

V. RAY TRACING ALGORITHM 52

A. TRACING THE RAYS ... 52

B. DETERMINING THE INTENSITY 57

VI. IMPLEMENTATION.. 62

A. INPUT... 63

B. OUTPUT.. 65

ILI. kOCSIONS.. A

A. AREAS OF FUTURE RESEARCH 66

B. CONCLUSIONS.. 66

APPENDIX A - SOURCE LISTINGS....................................... 68

5

APPENDIX B -INPUT FILE ... 131

LIST OF REFERENCES ... 136

INITIAL DISTRIBUTION LIST ... 137

7

ACKNOWLEDGEMENTS

The author wishes to express his gratitude to a number of people who helped

him throughout this study. To my advisor, Dr. Michael Zyda, who provided

me with the knowledge, insight, and encouragement necessary to complete the

project. I also wish to express my appreciation for his patience and assistance in

the writing of this study.

The following people provided the insight and knowledge which were

incorporated into the project:

- LCDR John Falby, USN, for the data structure used in this study;

- Dr. Maurice D. Wier for help in understanding the fundamentals of vector
calculus.

I also want to express special thanks to LT Dale Streyle, USCG, and CAPT

Douglas Smith, USMC, for their help and support throughout my education at

the Naval Postgraduate School. I appreciate the help they rendered from the very

first project to running off the final copy of this thesis.

Last but not least I want to express my gratitude to my wife, Terri, and to

my son, Joshua for their patience and support throughout my education at the

Naval Postgraduate School. I thank them for enduring the long hours of study

* Lflmrnd m ",ife -or .vit in my writinr.

I,8

?.8

I. INTRODUCTION

From the beginning of recorded history mankind has always had the need to

create pictures. The reasons for creating these pictures ranges from the aesthetic,

pretty pictures are nice to look at, to the functional, pictures can be an excellent

way to communicate information. As mankind progressed, so did his ability to

create pictures, although the techniques used to create pictures basically stayed

the same. The advent of computers gave man yet another tool with which to

create pictures.

The rapid increase in technology has made computer graphics a rapidly

growing field. For the first time since man started drawing pictures, completely

new techniques needed to be developed. In computer graphics the brush, paint

and canvas are replaced by the mouse, algorithm and display. However even

though the tools have changed, the same problems remain: how to make the

picture look better, be it either more pleasing to the eye or to get the information

across more clearly.

-'NO of -he most. :ommon and difficuit -orobiems in -omputor rapilics are ,he

hidden surface and iighting and shading problems. A large number of solutions

exist to both of these problems. Very few solutions can be applied to both. One

*i such solution is ray tracing. Ray tracing is the process of following an imaginary

iW7
! A

; 4 ?.\9 .~fv ,1C~V~
WI >* ~

ray from a viewpoint through a pixel on a screen and into a scene to determine if

it intersects any objects in the scene and then calculating the intensity of the pixel

it went through based on the the final destination of the ray. As in most cases

where one solution is found to several problems, that solution is seldom the best

for all the problems it is applied to and so it becomes a matter of trade-offs. Such

is the case with ray tracing. Amorg the hidden surface removal techniques, ray
-5

tracing is the least efficient being referred to as a brute force technique. In

contrast, it has been labeled as one of the most elegant techniques in regards to

lighting and shading [Ref. 2: p. 137]. Because of this latter fact, ray tracing has

become an important technique in computer graphics. Ever since the idea behind

ray tracing was suggested by Appel, numerous articles, studies, and

implementations have been done on it. These in turn have spawned fruther

extensions and modifications. [Ref. 1: p. 296]

A. DEFINITION AND OVERVIEW

The idea behind ray tracing lies in the theory that the light in our

environment can be modeled as rays. After being emitted from a source, the rays

are then reflected and refracted through a scene. Some of the rays eventually find

f1ler vav -oe rier(-l scene i 7ecrealeu -- yure

are emitted from light sources, such as the sun. An infinite number of light rays

exist, but only a small percentage of them are received by us. To try and trace

these rays from the source is computationally expensive. Appel suggested that

410

.5 .5 5.

Light Source

Fiur 11

%

VPt

-4C

ViewRay

View Position

FLight Sourc

Trcn RasBakadsfo-Ve7osto

-y-.. .. p

'i.

instead of tracing the rays from the source that they should be traced backwards

from the viewer, thus dealing with only those rays that actually contribute to the

scene (Figure 1.1b). [Ref. 1: p. 2961

The basic ray tracing algorithm is a very simple one and not difficult to

implement. The basic algorithm is a hidden surface algorithm. All hidden surface

algorithms can be classified based on the coordinate system or space in which they

are implemented. These are either in object space or in image space. The ray

tracing algorithm falls under the category of image space. This category of

algorithm is implemented in the screen coordinate system in which the objects are

viewed. Unfortunately, the calculations are performed only to the precision of the

scene representation, which generally provides poor resolution. The image space

algorithms work by comparing every object in the scene with every pixel. Such an

algorithm is computationally expensive. Ray tracing algorithms have three parts:

a viewpoint, a raster screen, and a set of objects (Figure 1.2). In the algorithm,

the viewpoint is along the positive z axis. From this point, a ray is shot into the

scene through the center of every pixel on the raster. Each of these rays is then

traced and compared against every object in the scene to determine if there is an

intersection with any of them. It is in the determination of a possible intersection

')Mi -'ar L -ay -racer ipenm(s :,,nywere :romi 7,- o 95 pfercent 4 It- -Me. I

there is an intersection, then the intensity at the pixel is determined using the

intersected object's attributes and an appropriate illumination model. If there is

no intersection, then the pixel intensity is determined by the background

12

Obj ect

Pixel

Raster Screen

Rays

View Point

Figure 1.2
Layout of Ray Tracing Scene [Ref. 1: p.2 9 7]

13

intensity. This procedure is then repeated for every pixel on the raster. When

the ray tracer is used as a hidden surface algorithm, intersection testing stops

after the first intersection. Extensions to the basic ray tracing algorithm, that

showed its usefulness in implementing a global illumination model, were originally

implemented by Whitted [Ref. 4] and Kay [Ref. 5 and 61. In these extensions of

ray tracing, additional rays are calculated, specifically the reflected and refracted

rays, and then tested to see if they intersect with any objects in the scene. This

process of generating new rays and tracing them to check for possible intersections

is continued until the rays either leave the scene or stack space is exceeded. In

such a case, the remaining rays are treated as if they had left the scene. This

process, illustrated in Figure 1.3a, for a single ray with intersections is easily

represented using the tree structure shown in Figure 1.3b. Here each node of the

tree represents a ray surface intersection. At each node, at least one and

m. sometimes two subbranches are generated. One branch of each of the reflected

and refracted rays is generated from the point. [Ref. 1: pp. 190-296]

B. ORGANIZATION

This study is broken into three areas: data requirements, ray tracing

-xierHouoiogy. n(i -he nrensirv :rooietl. ersr. ecion reviews The dara :ieeied

for a lighting and shading modeler, hereafter referred to as a renderer, of which a

ray tracer is an integral part. The second section reviews the actual process of

tracing a ray through a scene to be rendered. The third section looks briefly at the

14

¢%

r5
p

Figure 1r4

ri p

r2
r3

Figure 1. 3a

Global ef Dat Tre[e.3 6 2

vp..

illumination problem and how it relates to the ray tracer. The concluding

chapters present the implementation, and known limitations of the model along

with areas of future research.

II. DATA REQUIREMENTS

A. OVERVIEW OF THE DATA REQUIREMENTS

The importance of the intersection routines in the ray tracer is apparent in

the fact that a ray tracer spends 75 to 95 percent of its time determining

intersections [Ref. 1: p. 297]. The key to determining intersections, however, lies

in large part on the data used to describe the scene that is being rendered.

Information is needed not only to describe the entire scene that is being rendered

but more importantly to describe each object in the scene. Scene data is that

information needed to completely describe a picture, i.e., the number, kind, shape,

and color of any objects in the picture along with the background intensity and

light source information. This information must be properly ordered and broken

down. Falby [Ref. 3] suggested that a scene be broken into three categories:

object, view, and light. Each of these areas is examined below in the context of a

ray tracing algorithm.

1. Object Data

The data nertaining to each object in the scene ean be qronped into t wo

categories: poiygon and bounding voiume. The reason for his breakdown .s

twofold. First, each object in the scene is composed of polygons. They are the

basic building blocks of the scene. Second, in order to reduce the number of

17

intersection checks, it is necessary to set up a boundary around each object so

that the ray tracer only performs the intersection checks in the regions that

actually contain an object. Such a boundary is called a bounding volume. We

examine the polygon data first.

a. Polygon Data

Since the main focus of the ray tracing algorithm lies in determining

the intersections between the rays shot into a scene and the objects that make up

a scene, and since each object is comprised of polygons, the problem is really one

of determining the intersection points between the rays and the polygons. From

the fundamentals of vector calculus, it is known that in order to determine the

intersection between a ray and a polygon only the vertices of the polygon are

needed as well as the direction of the ray and a point on the ray. Since the object

is to be constructed of polygons, its vertices are known. Therefore, it is only

necessary to ensure that these points are stored in some manner, such as a record,

so as to be accessible to the ray tracer. In order to determine what the intensity

of the pixel is through which the ray passes, it is essential that the characteristics

of the object whose polygon was intersected be available. Since an object is made

of polygons, they inherit the characteristics of the object. These characteristics

Aiso aed -,o ')- eaily wcessibe tili. ertor.. itedi -o -)e -torei In oine

manner. The following is a list of the basic object characteristics that need to be

available: (1) the specular, diffuse, and transmission coefficients; (2) the Phong

specular exponent; and (3) the index of refraction, see Table 2.1. [Ref. 3: p. 68]

18

TABLE 2.1: OBJECT DATA

FIELD NAME VARIABLE NAME VALUE
Polygon Vertices z, Y, z real
Diffuse Coefficient Kd.,, real 0-1)
Specular Coefficient Ksrgb real (0-1)
Transmission Coefficient Ktr ~ ~ real (0-1)

Unit Surface Normal z, Y, z real (0-1)
Phong Specular Exponent n integer (0-200)
Index of Refraction n2 real

b. Bounding Volume Data

The major disadvantage of ray tracing is that it takes so much time.

This is hard to avoid since it is so computationally expensive. It is essential,

therefore, that more efficient techniques be developed to assist in reducing the

number of calculations. Several techniques already exist with the bounding

volume being the most effective [Ref. 1: p. 298]. In the description of ray tracing

given so far, it has been stated that a ray is checked to see if it intersects with any

object. Upon dissecting this statement further, a better understanding of the

intersection problem can be realized. Unless some optimization is done, the ray

tracing algorithm is forced to do the following. Each ray must be checked for a

possible intersection with each object. Since each object is made up of polygons,

then the ray must be checked for a possible intersection with each polygon. For a

,ornplicared objecr. such aS a 7eapot. .his requires a 'arge number .f ,fnecxs and

must be done for each object. The purpose for establishing the bounding volume

lies in two facts. The first is that generally scenes are mostly background with

just a few objects, hence very few of the rays actually hit anything. Therefore,

1g

most of the intersection tests done are a waste of time. Second, a ray can only hit

one object at a time. To have it process through the entire list of objects, when

intersections with most of them can be eliminated, is needless. A bounding

volume is, therefore, a method of enclosing each object in the scene in a simple

containment vessel, which in effect creates a boundary around the object. Once

this boundary is established, the number of overall intersection tests can be

greatly reduced, as in the example of a teapot, which might easily have over a

hundred polygons. If it is surrounded by a bounding box consisting of just six

polygons, the number of intersection tests can be significantly reduced. In this

situation, instead of having to test each ray against each polygon of the object,

only those rays that penetrate the bounding volume need to be checked. Thus

the bounding volume is a way to filter out unnecessary intersection tests by

limiting the tests to those rays that are most likely to intersect an object.

Just as the use of a bounding volume greatly increases the efficiency

of the ray tracing algorithm, the use of the right kind of a bounding volume can

improve upon that even more. In Rogers [Ref. 11, the bounding volumes

suggested are a bounding box and a bounding sphere (Figure 2.1), each of which

has advantages and disadvantages. The bounding sphere is much easier to

.:rnpierneniithoug i : 's !e-s ,fficient fn -c:ing -he -arget area-han it.trhe

bounding box, see Figure 2.1. The bounding box, on the other hand, is

computationally expensive to implement. The data needed to establish a

bounding sphere is minimal. It only requires a center point for the object and a

20

/

Figure 2.la

Obiect Surrounded by Bounding Sphere rRef. 1: p.2981
Figure 2.1b

Figure 2.1b

Object Surrounded by Bounding Box [Ref. 1: p.29 8]

21

radius that encompasses every point of the object. The bounding box, on the

other hand, requires far more data in that the polygons that make up the box

must be described.

2. View Data

In rendering any scene, certain information can be applied to the scene

. as a whole. This information is grouped together to form the view data. This

data consists of the viewpoint position, a constant to prevent division by zero, a

refraction index for the global medium, the ambient light intensity, the

background color, and the scene dimensions, see Table 2.2. [Ref. 3: pp. 74-75]

3. Light Data

To support a lighting and shading model, it is necessary to include

certain information on the light source for the scene. That information must

include the position of the light source, its intensity, its type, geometry, and

dimension, see Table 2.3.

TABLE 2.2: VIEW DATA

FIELD NAME VARIABLE NAME VALUES
I Viewooint -. . real

No Zero t,onstant X0 real -
Giobai Refraction Index 1/1 reai

Ambient Light Iar,g,b real (0-1)
Background Light Ibgb real (0-1)
Scene Size z, y integers

22

TABLE 2.3: LIGHT DATA

FIELD NAME VARIABLE NAME VALUE

Light Position z, y, z real
ntensity I real (0-1)

Type type enumerated (point,distributed)
Shape shape enumerated (circular, rectangular)
Dimensions z, y real

B. DATA STRUCTURE FOR A RAY TRACER

Falby [Ref. 3] suggested a data structure for a multi-illumination model

renderer. That data structure, with minor variations, has been used in this study.

In [Ref. 3] a complete derivation of the data is presented, so for the purposes of

this study only a brief description is given here. Figure 2.2 illustrates the layout

of the data structure as used in this study. This data structure essentially consists

of arrays of records layed out in a hierarchical organization. Starting from the

highest level it consists of the following: a picture record, an array of light records,

an array of objects, an array of subobjects, an array of common part records, an

array of polygons, and three arrays for the vertices. Each of these is now

examined.

1. Picture

Picture is a single record which contains the view data mentioned earlier.

. t . S

The lights array is an array of records, with one record for each light

source in the scene. Each record contains the light data mentioned above.

23

~4'. ~< -

e.) U x XU u
Z 1 4)

W) 0 M M .-

1.4. 4) 4.) 444) 4 4- 4 .

14.44 14.44 1. 14 1
o 4 0 w 0

0
z- b. 4) r4 4) X~

x6) UUZ b 00

.0 4 r. Q = : -4 -4~

N42 C,- 3 CC 0

En ~ xN
f- CH) U 1)

0. Cd

14 4)

~1 * - ~ U 4 4 4.Q) 4.) 4)
-0 u : 3 U U 14 U)

El 0 44 ~) 4)E

H .) b 4.) H) r4

~~~ 04 14 0 U

b) U)- - 4 4- 4- 0.

0 u 4.) _ 4.) r. r. -0
4) 0.0M

H x xI11Ir
1- -a > ~ >

24

..4 % N



3. Objects

The objects array is an array of records, with one record for each object

in the scene. In this study, an object is the highest order item in a scene. Just as

the scene is divided up into objects, each with its own bounding volume, so is

each object broken down into subobjects, each with its own bounding volume.

4. Subobjects

The subobjects array is an array of records, with each array belonging to

one object record. For example Figure 2.3a shows one object, a barbell, that is

divided into three subobjects which are: the left weight, the right weight, and the

bar. The record layout for this is as illustrated in Figure 2.3c. A subobject is the

. smallest item in the scene. Each object has at least one subobject. A subobject is

composed of polygons or it is a sphere. Using 'Tigure 2.3a as an example again,

the left and right weights are spheres and the bar, instead of being a perfect

4cylinder, is composed of polygons and actually has an octagonal shape, Figure

2.3b. Aside from containing a pointer to the common part record, examined next,

and data for its bounding volume, it also contains information on the subobject

type. This subobject type field indicates the geometry of the subobject, i.e., it is

either a sphere or a polygonal object, which is an object composed of polygons.

.21- ":Aor::1rv.()tL .ur,,r ":i;1$e e10A1 1 '' orl !i'f)!lr:e ,LrE Iff, :or ;Lca

object type. Currently a 1 indicates that planar intersection routines should be

used and a 0 indicates spherical intersection routines should be used.

25

.s N



I " ect

6 )i. ......,

SubobJ ects

Figure 2.3a Figure 2.3b

Subobjects [Ref. 7] Polygonal Object

SUBOBJECTSPICTURE -B.OBJECTS

"4

Figure 2.3c

Record Layout for Figure 23

26

rba

CPRT

weight



5. Common Parts

A good illustration of common parts is found in an ordinary

checkerboard. Figure 2.4a. In this figure one object exists--the checkerboard. This

4 in turn has one subobject, itself. This subobject has two common parts: the white

squares and the black squares. Table 2.1 listed the characteristics of an object

and it is in the common parts record that these characteristics are stored. Each of

these common parts records contains a pointer to an array of polygon records. It

is through this arrangement that the polygons inherit the characteristics of the

object. Therefore, the common parts array, also called the Cparts array, is an

array of records, with one array per subobject, and each common parts record

points to its own set of polygons, Figure 2.4b.

6. Polygons

The polygons array, too, is an array of records with one array for each

subobject. This is the smallest physical item in the scene and the one against

which the actual intersections are determined.

7. Vertex Array

The vertex array is an array of points that define the polygons that

compose the subobject.

This data structure as presented by Falby [Ref. 3] proved itself to be both

flexible and easy to use. An example of a data base that used this structure and

which was used in testing this ray tracer can be seen in Appendix B.

27I'



Figure 2.4a, - Example of Object with Two Common Parts

PICTURE OJCSOYOq

blac

Figure 2.4b -Record Layout of 2.4a.

28



III. RAY TRACING INTERSECTION CONSIDERATIONS

The methodology behind ray tracing is quite simple. However, it does require

an understanding of the fundamentals of vector calculus and geometric optics. A

discussion of the fundamentals is beyond the scope of this study. An overview of

some of the fundamentals is in order.

A. RAY TRACING MECHANICS

By its very definition, ray tracing is simply the tracing, or following, of a ray

from its source through space and determining any possible intersections that may

occur between it and an object. The natural way to model a ray in order to do

this tracing is by using vectors. A vector is not only a precise way to represent a

ray but the basic operations on vectors in three space, addition, subtraction, dot

product, and cross product provide the tools necessary to determine the

intersections. These tools, along with other techniques found in vector calculus

and geometric, optics provide the means to deal with the two problems

encountered in ray tracing, i.e., the ray direction determination problem ans the

.tersection orobiem.

1. The Ray Direction Problem

Solving the ray direction problem is both the first and last step

encountered in the ray tracing process. Determining the initial ray from the view

29

i)



position, usually referred to as the view ray, is the simplest to solve. Every point

in a coordinate system can be associated with a ray, and determining the direction

of a ray between two points can be solved by using vector subtraction. The last

*: step in the ray tracing process is determining what takes place when a ray

intersects an object. This requires the application of the laws of geometric optics.

Once a ray strikes an object, either one or two additional rays will be generated.

These new rays are referred to as the reflected and refracted rays, Figure 3.1. The

three basic laws of reflection and refraction are listed as [Ref. 8: pp: 32-33]

1. The incident, reflected, and transmitted rays all reside in a plane, known

as the plane of incidence, which is normal to the surface of the object.

2. The angle of incidence is equal to the angle of reflection E) = (r.

3. The incident and transmitted ray directions are related by Snells' law:

nsinE) = ntsinG t.

An illustration of these laws is shown in Figure 3.1. Rogers [Ref. 1: p. 3671

provides a method for determining the direction of the reflected and refracted

rays. The direction of r, the reflection ray, and p, the refraction ray are given as:

r = v' + 2r

where

V

~I

30

-,C r .



I /S

N

V r

Surface \

Ip

* T

Figure 3.1

* Creation of Reflected and Refracted Rays [Ref. 3: p.55)

31



-1

k = (k v - I v + iI)

r72

k1

Here k n is the ratio of refractive indices, k! is the Fresnel coefficient, v is the

normal vector in the direction of the incoming ray, v' is the unit normal vector in

the direction of the incoming ray, i is the unit surface normal, and , and 72 are

the refraction coefficients for mediums the rays pass through. This is illustrated

in Figure 3.2.

2. The Intersection Problem

As stated above the intersection computation is the most time

consuming part of the ray tracing process. It is not that the process itself is so

difficult but because several steps need to be done for each iteration. Two types

of intersection computations are required to be performed: determining the

intersection between a line and a sphere and determining the intersection between

a line and a polygon. The first type is the simplest to solve and is why the sphere

is generally used as the bounding volume. The calculation of the intersection

point between a line and a sphere involves solving the equation for the line and

-o ero - iriit alo u V. - i ro i enie )v riv - iari.oi

(x - _)2 ( - 3)2 + (Z _ 6)2 = r (3.1)

where (a, 3, 6) is the center point, r is the radius, and (x, y, z) is a point on the

sphere. The line is defined by the parametric equations

32

[' '

IA . v.J



vI + 2N

N

-4, 

e
Surface

-4 -

-N 

p

k f(v ' + N) '
T

Figure 3.2

Direction of Reflected and Refracted Rays [Ref. 3: p.57])

33



z = at + z o  y = bt + yo z = Ct + zo  (3.2)

where (z0, Y0, z0 ) is a known point on the line, and a, b, and c are coefficients

from 'he vector a- - 5- - ek which is parallel to the line. These equations must

first be solved for t. The solution to this provides two answers. First, it indicates

whether or not an intersection actually takes place. Second, if there is one, it

indicates how many intersections, either one, in the case where the line is tangent

to the sphere, or two, in the case where it actually enters the sphere. In the case

of two intersection points, a check must be done to determine which is closer to

the origin of the ray.

The intersection between a line and a polygon is more involved. This

problem is comprised of two parts: determining the intersection point between a

line and a plane, and determining whether or not the intersection point lies within

the polygon. Like the line-sphere intersection problem, this one also involves the

solving of two equations simultaneously. The first of these is the equation for a

plane which is defined as

d Ax + By + Cz = D (3.3)

where A, B, C, and D are constants and (X, y, z) is a point on the plane. The

" ec (cII .,,Iation iese(i j -), paramerric equation -hat ,ieines a line. Zu. 2.2. T]e

solution of this requires first substituting the equations for the line into the

equation of the plane. The result is an equation in t, which when solved and

substituted back into the equations for the line, provides the intersection point

34

.' ' I -I ,. .
-- "



between the line and the plane. Once this point is calculated, it is then necessary

to determine whether or not it lies within the polygon. A general way of solving

this is to simply determine the relationship between the intersection point and

each edge of the polygon. The point that lies on the inside of each edge also lies

within the polygon. If it fails the test for any edge, then it lies outside the

polygon. The drawback to this approach, is that it only works for convex

polygons. In this study we assume all polygons are convex. [Ref. 9].

B. THE RAY DATA STRUCTURE

Rogers [Ref. 1] suggests a data structure for a ray in a ray tracer. It is that

data structure which is used in this study. Table 3.1 lists the data used to model

each ray. We examine each item of this structure as adapted from Rogers [Ref. 1:

p. 373].

TABLE 3.1 -RAY DATA

FIELD NAME VARIABLE NAME VALUE

Ray Type type enumerated or coded
Ray Origin z, y, z real
Ray Vector z, y, z real
Source Ray Type Stype enumerated or coded
Intersection Flag flag boolean or coded
Object Index obj idx integer
-iibobjoet Tndex :Zubobi 'dx .nteTer

,;rnmon -ixrr 'nuex .-part :Ax nreer
Polygon index poiygon iax integer
Intersection Point z, y, z real
Distance d real
Transmitted Intensity real
Specular Intensity real

35



1. Ray Type

The ray type field identifies a ray as either a view ray, a reflected ray, or

a refracted ray. The values put in this field are generally of an enumerated type

and consist of reflected, refracted, view, and none.

2. Ray Origin

The ray origin field contains the point that identifies the position from

which the ray originated. For instance, if it is the view ray, its point of origin is

the view position. If it is a reflected or refracted ray, its origin is the intersection

point that it originated from.

3. Ray Vector

The ray vector field contains the vector heading of the ray.

4. Source Ray Type

The source ray type field contains the ray type of the source ray for this

paricular ray. For instance, a view ray does not have any source ray as it is the

starting ray for the process. Hence, none is in the type field. If the view ray

intersects an object and both a reflected and refracted ray are generated, then the

source ray for both of them is the view ray. Likewise if the reflected or refracted

ray hits an object and creates further rays then it becomes the source ray for

-as rays :r crs-ates.

5. Intersection Flag

Originally the intersection flag is set to false and it is only set to true

when there is an intersection between this ray and an object.

36

,. . G o % % ° . - ° % r. , . ,, ..,, ., . .,r , .,, . . ,, ,r- ., - a .-: ¢ , ' - "* " -€ q



6. Object Index

The object index provides an index into the array of object records

making it possible to select any object easily.

7. Subobject Index

The subobject index provides an index into the array of subobject

records and helps uniquely identify each subobject.

8. Common Part Index

The common part index provides the index into the array of common

part records uniquely identifying each common part record.

9. Polygon Index

The polygon index provides the index into the array of polygon records

and uniquely identifies each polygon.

* 10. Intersection Point

The intersection point field holds the position of the intersection point

between the current ray and an object.

11. Distance

The distance field contains the distance between the current ray's point

of origin and its point of intersection.

'2 7. Tanst-ittedi:test

The transmitted intensity field contains the red, green, and blue

intensity values, in a range between 0 and 1, of the light that is incoming along

any refracted ray that this ray produces.

, 37

A.' Ak'A - - -,- A A



, 13. Specular Intensity

The specular intensity field contains the red, green, and blue intensity

values, in a range between 0 and 1, of the light that is incoming along any

specular ray that this ray produces.

C. INTERSECTION METHODOLOGY

1. Intersecting a Planar Polygon

a. Generating the Initial Ray

The generation of the initial or view ray is shown in Figure 3.3.

This ray, p - v, is calculated using vector subtraction. The two vectors used are

the ones associated with the points for the view position, v, and the pixel through

which the ray passes, p. The ray associated with the view position is to be

subtracted from the ray associated with the pixel.

b. Intersecting the Bounding Volumes

After each ray is generated, each object in the object list is checked,

one at a time, to determine whether or not the ray strikes any of the bounding

containers of the objects in the scene. In our implementation, the bounding

container is the sphere, which is reduced to a bounding circle, C, see Figure 3.4.

- .n.-*.rci 1- :1a1iu( .s -nrlIle "I " ie rauiis ,i "i, )'unding -;piere. ,mu :t -es

on the plane, P, which c,.ntains the center point, q, of the bounding sphere. The

inverse of the incoming ray, i, is the surface normal of this plane. It is not

necessary to determine where on the bounding sphere a ray hits since at this stage

38

m.i
"Jd



-YZ

Figure 3.3- Determining the Ray View

TOP VIEW

-. :. bounding sphere
S

C -z C bounding

q circle

Pixe

/V view ra~y

:

view position

++

Figure 3.4 - The Bounding Circle

39

T% VE



we are only interested in just finding out whether or not it hits it. Because we are

not concerned with where the ray strikes the bounding sphere, a bounding circle is

used. Determining the intersection with a circle requires less work than

determining the intersection with a sphere.

The first step in tracing the ray begins by taking each object and

constructing a bounding circle. Once this circle is constructed, the intersection

point of the view ray with it is calculated. Then the distance between the

intersection point and the center point is determined and compared to the radius

of the bounding circle to see if it falls within the circle. If it does fall within the

circle, this indicates that the ray intersected the bounding volume. This process

then needs to be repeated for each object. If an object's bounding circle is hit,

this process must then be repeated for each subobject of that object.

c. Intersecting the Polygon

Once a particular subobject is identified by the bounding volume

tests, the common parts list is processed, one record at a time. Each one of these

common parts records contains a pointer to those polygons that make up the

object being rendered. This list of polygon records is then processed after the

bounding volume processing is completed. The entire list needs only to be
V;.

roce se1 linrii in esecon M jif(j Th 1processing Tnvoivedt :n his s -he

most computationally expensive part of the entire ray tracing algorithm. This

computation consists of three steps: determining the orientation of the polygon,

calculating the intersection point between the ray and the plane that contains the

40

Ai 6W -,



polygon, and determining whether or not the intersection point lies on the

polygon.

(1) Establishing the Orientation. First. each polygon needs to be

checked for a correct orientation. This is a straightforward step carried out by

calculating the angle between the surface normal of that polygon and the inverse

of the view ray. If it is 90 degrees or greater, it is facing in the wrong direction to

be intersected. If it is less than 90 degrees, the next step is to determine whether

the ray intersects the particular plane that that particular polygon lies on. The

first step in doing this is to determine the equation for the plane in which that

polygon lies.

(2) Intersecting a Plane. If the correct orientation exists for a

polygon to be intersected, the next step is to define the plane containing the

44 polygon of interest. The equation for a plane was given earlier as

Ax-, By + Cz = D

where A, B, C, and D are constants and can be calculated by the following

equation.

A = y,(z - z,) y,(z, z,) - ( - Z )

C X, I(Y' - Y3) X 2(Y3 -') - (, - Y,)

D = -z 1 (y 2z 3 - Y3 Z2 ) - X2 (Y 3z 1 - I) - X3 (IYl'Z Y,-1)

where (xi. Y Z1), (£2, y 2, z2). and (x3. Y3, z3) are points of the vertices of the

41



polygon. Once the equation for the plane is known, it must then be solved

simultaneously with the equation of the line representing the ray.

(3) Location of a point with respect to a polygon. Once the

intersection point is determined, it needs to be checked to see whether or not it

lies within the polygon. This is the most computationally expensive part of the

process. This process, see Figure 3.5, requires that a plane, P, called the bounding

plane, containing two vertices, for example A and B, of an edge and another

arbitrary point, K, not on the polygon or its plane, be constructed. This must be

done for each edge. Once the bounding plane is constructed, the point in question

must then be checked to see whether or not it lies to the polygon's side of the

plane that now contains the edge of the polygon. This is done by plugging in
'.4.

A' another vertex of the polygon into the equation for the plane that was just

constructed, and then plugging in the intersection point. If the results from these
-a

two equations have the same relationship, i.e. if the sign is the same, then the

intersection point lies on the polygon side of the bounding plane. This check

must then be repeated for each edge of the polygon. In order for the intersection

point to lie on the face itself, it must be found to lie on the polygon's side of each

ed. A, this noint. it is determined whether or not the ray strikes the object. If

S:':v ' -' , :,t, . r. "he ")O1 tnr " UiS polygon l ust oe stored 'n .he

ray structure along with the intersection point. This information is needed later

a ".on when determining the direction of reflected and refracted rays as well as the

intensity of the light that is reflected from this position.

', 42

441

In



P

Backside of the bounding plane

D

UE

9-1

Polygonside of the bounding plane

Figure 3.5

Location of a point with Respect to a Polygon [Ref. 9]

43



2. Intersection of a Sphere

The sphere is the easiest object to work with in a ray tracer. Since the

sphere can act as its own bounding volume, the center point and radius are

already available in the subobject record. This eliminates the need for the polygon

array. The center point and radius are the only information necessary to model a

sphere for a ray tracer. Determining the intersection of a line and a sphere is

nothing more than the simultaneous solving of their equations for the variable t .

The solution to this gives a quadratic equation in t which can then easily be

solved.

1

_ oj.,44

4.



IV. THE INTENSITY PROBLEM

One of the strong points of the ray tracing algorithm is that a global

illumination model can easily be integrated into it. In fact, ray tracing and global

illumintion models seem to naturally complement each other. A global

illumination model takes into account all of the light sources in the scene in

calculating the intensity at each point. This means taking into account *he

ambient light that exists in a scene, light that comes directly from a particular

light source(s), and light that is reflected off an object(s). It also includes the

coefficients necessary to model the way an object reacts with light. A great deal

of work has been done in this area. The most notable model is the Whitted

illumination model, and it is the one that has been implemented here [Ref. 1: pp.

365-3661. The Whitted algorithm is based on the three models shown in Figures

?. .4.1, 4.2, and 4.3. These models will now be examined more closely.*

A. LOCAL ILLUMINATION MODELS

1. Diffuse Reflection Model

,ie first ot these rnodeis :s a 9er-ect diffuser. --;ca : ::odei .6 ,oxvrrwu

by Lambert's cosine law. This law states that the intensity of light reflected from

a perfect diffuser is proportional to the cosine of the angle between the light

*The contents of this chapter are close adaptations from Rogers [Ref. ii and Falby [Ref. 31.

45

- ---. - ..................................................... - ~ IN...-n-



direction and the normal to the surface. This can be expressed mathematically as

II
I = 11kdcosE 0 < 0 <-

~2

where ,s the rerlected intensity, i l ,s the Incident nensity from a point .igit

source, kd is the diffuse reflection constant, unique to each object, and E is the

angle between the light direction and the surface normal, see Figure 4.1. Since the

diffuse reflection coefficient kd varies from material to material and is also a

function of the wavelength of the light, it is often easier to just assume it a

constant for simple illumination models. rRef. 2: p. 312!

2. Specular Reflection Model

The second model illustrates the characteristics of specular reflection

which is directional, unlike diffuse reflection. This means that the greatest

intensity of the specularly reflected light can only be seen if the view angle

coincides with the reflection angle, Figure 4.2. The further off the viewing angle is

from the reflection angle, the dimmer the intensity becomes. Because of the

complex physical characteristics of specularly reflected light, an empirical model

due to Bui-Tuong Phong is usually used for simple illumination models [Ref. 10].

This is expressed mathematically as

where w(O, A). the reflection curve, gives the ratio of the specularly reflected

light to the incident light as a function of the incidence angle EO and the

wavelength A. Because w(6, A) is such a complex function, it is frequently

46

AOL

.1



Light Source Light Source

0 0

nn

-ni 
-nT t

Figure 4.1 Figure 4.2

Diffuse Reflection Specular Reflection
Ref. 1: p.3121 rRef. 1: p.3141

Light Source

0
View position

-n 
e

Figure 4.3

Global Illumination Model

47



replaced by an aesthetically or experimentally determined constant k. which then

yields

i'L~l  = r~kCos

Also, n is a power that approximates the spatial distribution of the specularly

reflected light. Typically a value of 200 for n is used to model a very shiny

surface and a value of 10 is used for a dull surface [Ref. 3: p. 72]. [Ref. 1: pp. 313-

315)

,:! 3. Combined Model

If just point sources are assumed, as in the two models just discussed,

any object not receiving light directly from the source appears black. In order to

properly render a scene, it is also necessary to take into account ambient light, the

light that is reflected off other surfaces. Including a model for ambient light into

the intensity calculations is not feasible. Ambient light represents a distributed

light source and as such is a very complex function. Therefore it is treated as a

constant diffuse term and linearly combined with the other terms. Also not

included in the above model is the effect that distance has on light. It is well

known that the farther away an object or light source is, the dimmer it gets. The

:tc .Ia :ormuia -o produce that propler attenuation is - wriere rne intensitv )f

light decreases as the square of the distance from the source increases. However it

has been shown that linear attenuation can actually produce more realistic results.

With these two additions the complete model now looks like:

48



I = I.k. + I (kcos + kcosna)

d +K

where 1 is the incident ambient light intensity, ka is the ambient diffuse

reflection constant and K is an arbitrary constant that can be used to adjust the

results. [Ref. 1: p. 313]

The complete model just presented can now be modified to better fit in

with a ray tracer. Recalling the formula for the dot product of two vectors allows

writing the cosE as ri'L and writing cosa as RiS which gives us:

I = Ik, + [kd(r.)+ k (ig)l
d+K

So far we have only examined the case where just one light source is present. If

there are several light sources, the effects are added linearly, and the equation now

becomes:

m L

I= I,,k + [kd(ri'- L,) + k, (R;S) n1
• , .j=1 d + K

This then is the complete local illumination model. [Ref. 1: pp. 312-316]

B. GLOBAL ILLUMINATION MODEL

_Iie oripiete 'ocai !ilumination -nodei Jist Dresented "orms -ie basis -or -die

algorithm that was implemented for this study [Ref. 1: pp. 363-378] see Figure

4.3.

49

".",4 * ," " ," "4 't r ,' ¢'i '' "'q ,



I

I1= k, I +1 JA- L,)n + k, I4S A) + kI 5 + k, I,
3 3

In the above equation ka, kd, ks, and kt are the ambient, diffuse, specular

reflection, and transmission coefficients, all of which have values between 0 and 1.

,, I, It, and Ii are the intensities of the ambient light, the specularly reflected

light, the transmitted light, and the light directly from a light source. These also

hold values between 0 and 1. The remaining variables i, Lj, S, and R i are the

surface normal at the intersection point, the direction of the jth light source, the

local sight vector, and the local reflection vector from the jth light source. A

careful comparison between this model and the complete local illumination model

reveals that the only new terms are the Iand I, terms. These are the terms used

to account for the light that comes in along the reflected and refracted rays that

J, originated at this point. I holds the intensity for the reflected ray and It holds

the intensity for the refracted ray. These two values in turn are calculated using

the exact same model. For the last intersection point in the scene, the one whose

reflected and refracted rays do not intersect anything, Is and I, are set to 0. The

k. and k, terms are coefficients included to better model the way this object reacts

" with the light incoming along the reflected and refracted rays.

-his then Is -he cornpie-, gio)ai illumination model used in this 6tudv. it Is

the simplicity of this algorithm that makes it so easy to understand and

implement. In essence, it is saying that the output intensity is nothing more than

50

% . *



a sum of all possible light sources with the coefficients determining the intensity of

light that comes from a particular object.

,

tt )

51

?. --A



V. RAY TRACING ALGORITHM

Rogers suggested an algorithm for ray tracing [Ref. 1: pp. 374-377]. It is that

algorithm that has been the basis for this study. The following is a description of

that algorithm as it has been implemented here.

A. TRACING THE RAYS

To begin the ray tracing process, the first thing done is the determination of

the direction of the view ray.* The ray data, mentioned in chapter III, is then

initialized. After the view ray is generated and the ray data initialized, the ray,

which is represented by this ray data, is pushed onto the stack, which is used to

implement the ray tracing tree. The process then moves into the actual ray

tracing loop.

Once in the loop, the stack is checked to see if it is empty. If it is not empty,

the stack is then popped to access the ray information. The first thing checked is

whether or not the intersection flag is set. If it is, that indicates that that

particular ray has already been terminated (by hitting an object), and the process

4)" ieterminin "he itensities -),-is.

*Each ray, is modeled as a vector, and is converted to a unit vector immediately after its

determination.

52,'S.
'p

S *-----*% .* l



If the intersection flag is not set, a new ray has been generated, either a new

view ray or a new reflected or refracted ray. All of these rays are grouped under

the more general title of a shooting ray. At this stage, the ray must be sent

through the intersection procedures to determine whether or not it intersects any

object. The intersection routines start at the highest level of the picture and step

through the linked list of objects, subobjects, and common parts to the actual

polygons.

At the top level of the intersection routines, each one of the objects is

checked. First, they are checked to see if there is an intersection with the object's

bounding circle. If there is an intersection, the distance between the intersection

point and the origin of the ray is calculated and placed in the ray data. Second, a

check is done to insure that the objects lie in front of the ray's origin. In front

refers to those objects that lie in the direction of the shooting ray from its point of

origin. Since the ray is being modeled by a vector, which only indicates direction,

every object along the line described by the vector and the origin of the ray is

considered, see Figure 5.1. The way to test for this is to generate a test vector

between the origin of the ray and any intersection points of the shooting ray,

eliminating the intersection noints that lie in the orm)osite direction f:om the

As each object is processed, the objects whose bounding volumes are

intersected by the shooting ray are processed further to see if any of their

subobjects are also intersected. The same basic procedure for finding an

53

-) ' .", ", " ", ' 1,." ." , '- -,. , .. ... . . -,* -.- . . S " .. A .-. P . ... -..... . .



-'I

-Z .7 .i

Origin

of v 3

~Origin

of v
2

/BShooting

/ %% A

-X +X

'Back of v 3  Back of v3 N

/

+Z

SView Position
Origin
of v

Figure 5.1 - Object Locations

54

.,. , . . , ,.,. .,. .../ .. , .-.. ., ..,.,.., ....... ,...,.,. ,,,, v. ,,%



intersection is used here as is used for finding an intersection for the objects. If the

object and the subobject are one and the same, this check need not be done.

For each subobject whose bounding volume is intersected, the next step is to

check the type of geometric object, i.e., a sphere or a polygonal object. This needs

to be done in order to determine which intersection routines are needed. In the

case of a sphere, it becomes just a matter of solving two simultaneous equations,

discussed earlier--one for a line, the other for the sphere. When dealing with a

*. polygonal object, it becomes more complicated because each face of the polygon

must be checked. The first thing that needs to be done is to check the orientation

of the face in question. When the polygon does have the right orientation, the

intersection process continues. The first step is to determine the equation of the

plane that contains the polygon. This plane is calculated from any three vertices

of the face in question. Once the plane has been established, the intersection point

between it and the shooting ray is calculated. With the intersection point thus

established, the next step is to determine whether or not the point lies on the face

of the polygon. If the intersection point is found to lie on the face of the polygon.

then this point is saved and placed in the ray data.

If no intersection is found and the shooting ray is either a reflecting or

5'

the shooting ray is a view ray, then the intensity is set to the background

intensity which is then displayed and the next ray is generated

,5 55

'U,,.1. :-. . :; : " : . ..- . .-.- , . : . . . : . ./ . . . ... : . . . . . ... . . . . ..



When there is an intersection, the first thing to be checked is whether or not

there is enough room on the stack. Since the stack holds only part of the ray tree

at any one time, it need only be long enough to contain the longest anticipated

branch. A particular branch of the ray tree is terminated when both the reflected

and refracted rays at an object intersection leave the scene or when the available

stack length is exceeded. When both rays leave the scene, their contribution to

the illumination at the source ray is zero. When the available stack length is

exceeded, the algorithm calculates the illumination at the source ray using only

the ambient, diffuse, and specular reflection components at the source ray

intersection. An extension algorithm is given in Rogers whereby the algorithm can

be extended one additional depth in the tree without exceeding the maximum

stack depth. However, the implementation of that was not necessary here. When

the stack does get full, it becomes a matter of calculating the intensity at that

intersection point and setting the appropriate value It or I in the source ray.

'Ref, 1: p. 372]

When the stack is not full. then the distance between the source point of the

shooting ray and the intersection point is determined and placed in the ray data.

The ray is then placed back on the stack. Once that is done. any reflecting and/or

- " .'':,;I;I;t 7 ' " Tl.

,taia initialized, and then placed on the stack as new rays with the reflecting ray

being placed1 ,)n first. It is irnportant to keep this, order of rays in mind because it

ii, nercPsarv to know the nuirnher of rays to pop when etting the intensities of the

56



source rays. With these new rays in place on the stack, the program returns to

the beginning of the ray tracing cycle. In the absence of reflecting or refracting

rays. then the first ray popped is the view ray. Now since this ray already has its

intersection flag set, the intensity at the point of its intersection is calculated and

displayed. If the ray popped is a reflective or refractive ray, then it becomes the

new shooting ray. This cycle continues until either no more reflecting or

refracting rays are produced or until the stack becomes full. This process is

summarized by the pseudocode description in Figure 5.2.

B. DETERMINING THE INTENSITY

If a ray's intersection flag is found set at the beginning of the ray tracing

.process, that ray is sent into the intensity processing part of the ray tracer. The

first step in this process is to take the ray data and to determine the intensity at

that ray's intersection point. This intensity is then divided by the distance

between the ray's point of origin and its intersection point in order to properly

attenuate it. This process is done for each of the primary colors -- red, green, and

is blue. If a view ray is being considered, that means that it was the last ray on the

stack. Therefore, it is the final intensity to be calculated and hence is the actual

)ne jjfri. f :t ,-fracr':ei -ay. ,IelI -he intensity 'ist ,aicultate,, becoines

the It intensity in the source ray for the ray currently being examined. If it is a

reflected ray, then the intensity just calculated becomes the / intensity in the

source ray for the ray currently being examined. The stack is set up so that the

57

NN



READ IN DATA FILE

.or Y:= I to MAX ROWS do

for X:= 1 to MAX COLUMNS do
INITIALIZE VIEW RAY
PUSH RAY ONTO STACK

.repeat
POP RAY FROM STACK

if INTERSECTION FLAG SET then
CALCULATE INTENSITY

else
CHECK FOR INTERSECTION
if INTERSECTION FLAG SET then

if STACK EXCEEDED then
CALCULATE INTENSITY

else
PUSH RAY BACK ON STACK
CALCULATE REFLECTED RAY
CALCULATE REFRACTED RAY
if REFLECTED RAY EXISTS then

INITIALIZE REFLECTED RAY
PUSH REFLECTED RAY ON STACK

end if
if REFRACTED RAY EXISTS then

INITIALIZE REFRACTED RAY
PUSH REFRACTED RAY ON STACK

end if
end else

else
if (CURRENT RAY TYPE = VIEW RAY) then

SET INTENSITY TO BACKGROUND COLOR
end else

intil - NTACK ZMPTY
D[SPLAY TIEL

end FOR-X
end FOR-Y

Figure 5.2 - Pseudocode Description of the Ray Tracing Process

58



source ray is on the bottom of the ray tuple with the reflected ray above it and

the refracted ray above that. In order to set these values, it is necessary to pop

the stack to gain access to the source ray. Once these values are set in the source

ray, the program returns to the beginning of the loop and pops the next ray off

the stack discarding the last ray as it is no longer needed. [Ref. 1: p. 377]

The intensity algorithm [Ref. 1: p. 377] although very simple in design,

depending on the number of light sources in the picture, can also become a time

intensive part of the ray tracing program. The entire ray data set, listed in Table

3.1, is sent into this routine as well as the pointers to the object and light source

list. As in the intersection routine, rays are generated here. In Rogers, they are

referred to as shadow feelers and the same term is used in this study. These

shadow feelers are those rays represented as the vectors from the point of

intersection to the light source, see Figure 5.3. They are used to determine the

intensity contributed to that point from that light source. Once these rays are

generated, they also pass through the intersection routines in order to determine

which objects, if any, the light rays pass through en route to the intersection

point. The first test that must be done is to determine if any of the objects passed

through are opaque. If any are opaque. then no light reaches the intersection

DOui :ron -hat 'ighIt -ioorce. T .ai : :- fleti .s !11urPi ( )-, ., in .leep

shadow with respect to that light source. If none of the objects intersected by the

light ray is opaque, then the light intensity needs to be attenuated accordingly for

each of them. This attenuation entails multiplying the intensity at each point by

V5g
V.



-Shadow-Feelers

_1

, I 3

r1 13

Shadow Feelers

~F igure 5.3

~Shadow Feelers [Ref. 3: p64]

60



the transmission coefficient of the object. This process then needs to be repeated

for each light source. A running total of the intensities is maintained to be

included in the final calculation. The calculation takes into account the ambient

light and the light that comes in along the reflection and refraction rays. This

process then produces the final intensity. If the input ray type is a view ray then

it is displayed. If it is a reflected ray, it becomes the I. value in the source ray. If

it is a refracted ray, it becomes the I, value in the source ray. [Ref. 1: pp. 376-377]

IP0

611

D6



VI. IMPLEMENTATION

The prototype was written in BORLAND's Turbo Pascal and implemented

on an IBM AT clone. The program is 2500 lines long and takes two hours to

generate a scene of 200x200 pixels. The scenes generated on the AT were then

displayed using the RGB monitor of a Silicon Graphics IRIS 2400 graphics

workstation.

The main focus of this study was to develop a prototype ray tracer, which by

itself is just a hidden surface removal technique. The secondary consideration was

to integrate an illumination model into the ray tracer. Because of this focus,

more time was spent examining the ray tracing algorithm than any of the global

illumination models that could have been integrated along with it.

The top three scenes in Figure 6.1 tested the ability of the prototype to

perform as a hidden surface remover. The program proved successful in this area.

For these scenes, a stub was used in place of the illumination model and each

scene was lit using only ambient light. From left to right the scenes show: An

unobstructed -.iew of the "hree objects. described In a !ater ection: the cube and

sphere zuspended above Lhe dour Out with zhe cuoe partiaily blocking the sphere;

the cube and the sphere sunk part way into the floor with the cube still in front.*

*These were the only scenes generated to test for hidden surface removal. The remainder of
the tests were done trying to integrate a global illumination model.

62
'5-



The testing of the global illumination model integrated into the ray tracer

unveiled some problems. The two bottom scenes in Figure 6.1 are representative

of the successful results. The first problem discovered was that attenuating the

intensity by the full distance between the origin of the view ray and its

intersection point produced totally blackened objects. The results shown in

Figure 6.1, the bottom row, were obtained by either dividing the intensity by two,

see the scene on the left, or by not dividing it at all, see the scene on the bottom

right of the object. The second problem can be clearly seen by the black line that

runs up the center of the floor on the bottom right scene. This result along with

those test that generated shadows, not shown, indicated that the intensities for

the floor were reversed. The black line, clearly seen in color Figure 5 and just

vaguely visible in color Figure 4, is actually specular reflection and should be

much brighter than the rest of the floor. In those scenes where shadows were

generated the shadows were also brighter than the rest of the floor--just the

reverse of what it should have been.

A. INPUT

The test data used in this study produced the scenes shown in Figure 6.1.

_is "est tatLa was ;n :he 'orm of a iequentiai -ile with -,he iaa rricTure ourfineq

in Figure 2.2. The data had in it one picture record, one light in the lights array,

and three objects in the objects array. The first object is a cube which contains

'one subobject. This subobject has one common part. The common parts record

.;..-,63
I .-



- - - - - -. - -.. . - . .

I,

'4,

I.,

S

cfl

cfl

I-

*1~*, . -I

*1'

-4

I

4~

4'.

U



then points to the six polygon records that where used to construct the cube.

Each one of these records has its own vertex arrays. The second object is a

sphere. This object has one subobject, and the subobject has one common part.

Since a sphere can be its own bounding volume and since it is not constructed of

polygons, then the object chain for the sphere need go no further than the

common parts array. The third object is the floor.* This consists of one

subobject, one common part and one polygon. All objects in the scene are opaque

and have a highly reflective surface.

B. OUTPUT

The output generated by the ray tracer is in the form of a bitmap, with

Ivalues for each of the red, green, and blue components. These values range from

0 to 1. To display these on the RGB monitor of the IRIS, each red, green, and

blue component is then multiplied by 255 and assigned an index in the color

table.

h° '*The floor is at a 10 degree angle to the screen to provide a better perspective.

65



VII. CONCLUSIONS

A. AREAS OF FUTURE RESEARCH

The ray tracer is a powerful tool in computer graphics. In its original design,

it produced the finest rendered pictures at that time. Since then there have been

numerous extensions, among the most widely known are the ones by Phong, Blinn

and Newell. Kay, and Whitted each of which have further enhanced the

performance of the ray tracer (Ref. 2: pp. 343-344. There are two main areas for

future research: global illumination models, and intersection algorithms. Both of

the areas are of great interest in the graphics world. Since ray tracers and global

illumination models can be integrated so easily, working on either problem would

undoubtedly lead to insight into the other. This would also be very easy to do

*because ray tracing naturally lends itself to a modular design making it easy to

establish hooks for the testing of a large number of algorithms, both illumination

and intersection.

B. CONCLUSIONS

iave -xamirie(i tie -nre :naor ireas ) t r'cinl: ::' -cenl 't ra

needed, the intersection problem, and the intensity problem. The data structure

used was adapted from [Ref. 3[ and proved to be useful. The intersection

problem, although involved, is not complex. The algorithms used in this

s - -66

0



implementation are simple. The inclusion of a simple global illumination model,

was easy to integrate and provided fair results. The ray tracer provides an

excellent test bed program and implemented can provide a useful tool to study

numerous problems, not only in lighting and shading but also in intersection

determination.

41

;..'..

.,

4d.'

UN::

g::67

• s



APPENDIX A - SOURCE LISTINGS

DECLARATIONS

const
{ THIS IS THE CONSTANTS DECLARATION SECTION }

maximum size of stack = 100;
initial pixelz _= 0-;

,ype
{ TYPES DECLARATION AREA }

vertices-array = array [1..41 of real;

polygonrec = record
num vertices : integer;
vertice x, verticey, vertice z verticesarray;
surfacenormalx, surfacenormal-y, surface normal z : real

end;

polygonptr = -polygon array;

polygon-array = array [1-6[ of polygon-rec;

common part rec = record
K ar, Kag, K ab: real; { AMBIENT DIFFUSE COEFFICIENT }
K dr, K dg, K-db: real; { DIRECT DIFFUSE COEFFICIENT }
K_sr, Ksg, K sb: real; { SPECULAR COEFFICIENT }
K_tr, K tg, K-tb: real; { TRANSMISSION COEFFICIENT }
objrefraction-index: real; { OBJECTS REFRACTION COEFFICIENT
obj phong exp : integer; { PHONG'S SPECULAR EXPONENT }
num._polygons : integer;
polygons : polygonptr

end;

common.partptr = ^commonpartarray;
common part array = array [..31 of common _part _rec;

sub object rec = record
,ur "ommon carts .nte,-r:
'ommon )arts :lomnun )art 4r:

3,,0 b:phere radius: r[ ,-aiI B( :H.- " 7 )I RA)D' SH1 -: ;
subbsphere_x real: { CENTER OF BOUNDING SPHERE
subbspherey real;
subbsphere z real;
subobj type integer; 0 SPHERE. I PLANAR-POLYGON

end;

sub objectptr ^subobject _array;

68



sub _object array = array 1 3 of sub object rec.

object rec = record
num subobjects integer
sub objects sub object ptr;
obi bsoherp radiu' real I RADIUS OF OHJE('TK ROt NING SPHERE
iuj .)spnere_, r-,at. E"E:FR I"/ ' ", l\ -iH- ._
obj _bsphere y real.

obj _bspherez real,
opcode integer { CURRENTLY NOT USED

end;

object _ptr = ^object _array.
objectarray = array 1 4 of object rec.

light _rec = record
I _r. I , Ib real, INTENSITY OF THE LIGHT
light x. light y, light z real LIGHT POSITION
limerrnn llmensoi,',2 -.X, )T E7

end,

light ptr = -light _array.
ight array = array 1 3 of light rec.

picture rec = record
num objs integer
objects object ptr.
num _lights integer

lights light ptr.
global _ refraction index real

no zero real.
ambient r real.
ambient _g real,
ambient b real.
background color r real
background coor g real.
background c-olor b real

ivew position x real
'iIPw position y real
"I ew psition z real

screen max x integer

{ .. . ...........................................

ray t) pp fn,rip ipw re,,fli,, r-fr ,'1-1I

,l,,r ) pe (rod green bluei

RAY DATA RF.((Rl)
ray ptr ray r,-

a.

'

":6¢f-,i,',,,.% ' ,,o. ;' . -, . ;.. / " -'-": . -...-" •. ""-"- - •- .. -"-"'6-9



ray re - record

ray type ray t v p-.

ray origin i real { )RIGIN OF RAY
ray origin ) real.

ra) origin i real,

ra-, vowtor x epal. DIRECTION (F R AY

raN v.ort,jr z real
ra) it)pe rayt) pe TYPE OF S(l R(E RAN
interection flag ..jlean
,)bj idx integer I PATH DECSRIBIN(; OBJECT INTERSECTED

,-part idx integer

pai vg,,n idx integer

,ntersltiin x real INTERSECTION POINT
inter -et,n ) real
iflte'mect'i)n I real

I)iTlA\,(', BVI E.N RA)i S ORIGIN AND INTERSECTION POINT

ITEI' , 4 LI(;HT ((MING IN ALONG THE REFRACTED RAY GENERATED BY THIS

' r ; tg I :: r-aj

I\'lI'lT (!- LIGHT gMING IN ALONG THE REFLECTED RAY GENERATED BY THIS
R N~

I r .ig I 0 real

ra ink ra- ptr

-nd 1 ra, pir

.......... 0 .. . .... ... % li .....

~at
* . If I tP'L t#I ~ l0 10 S * $ * I * * $

) b I1 N 1'0\ LRI ING; AILL RA NS VL(TtRS To I NIT VECTORS
a I real

FI) k - -i0PH 1rll.\l) HF.( k' 1. 'Tl.t. THIIOBJECT -GET LONG
part pa h a -I ri part pir

qt,,,r. pal t, , t r, I t pir

70



{ USED TO IMPLEMENT THE STACK }
ray _top,
ray _current,
ray _next rayptr;

intensity red,
inLensity _green,
intensityblue : real:

pixel_x,
pixel_y,
pixelz -integer:

ray _generation _number: integer;

intersection _point x,
intersection pointy,
intersection _point _z : real;

old intersection point x,
old intersection point _y,
old intersection _pointz : real;

tempintegeri,
temp _integer2.
tempintegerS : integer;

reflected _ray _x,
reflected ray _y,
reflectedrayz : real;

refracted _ray _x,
refracted _ray _y,
refractedray_& real;

surface normal x.
surface -normal y,
surface normal z : real;

USED TO INITIALIZE RAYS
initial ray _type : raytype;
,nitial rav origin x. initial ray origin v. initial rav origin z real:

ir i v Plr v. nr ngitat ",'r n ht)- i a V" . t',r '-at:

initial iniersectionriag . oouiean,

initial obj idx integer

initial subobj idx integer;
initial _cpart idx :integer:
initial _polygon _idx integer;
initial intersection _x,
initial intersection y,
initial intersection y real;

7'

initial5,p -itescto 2 e l



initial d : real;
initial I tr, initialI tg, initialI _tb real;
initialla2r, initialI1ag, initialI-ab real;

{HOLDS CURRENT RAY WHILE IN ACTUAL RAY TRACING LOOP
current _ray _type :raytype:
current ray-origti-x, current ray origin y, current ra)y )rlgin £ real;
current-ray-vector-x, current -ray _vector-y, current -ray -vector a z real;
current-ray -stype raytype;
current intersection -flag :boolean;
current obj-idx integer;
current subobj idx !integer:
current _cpart -idi integer;
current-polygon -idx integer;
current intersection x,
current intersect ion -yl
current intersection s real;
current Ad real;

*current -I - r. current -1 _tg, current 1 itb real:
current _I-ar, current I _sg, current I sb real;

reflected ray boolean;
refracted ray boolean;

source ray _num integer;
source ray-type: raytype;

{POINTER TO PICTURE RECORD ]
picture : picture-rec;

USED TO ESTABLISH LINKED LIST OF OBJ, SUBOBJ, LIGHTS, CPARTS, AND
POLYGONS.

light _cntr : integer;
light-current : light ptr;,

obj _cntr :integer;
obj _curr: object _ptr;

s ubobj _cntr :integer;
iubobj cr sub -object -ttr:

,"part fltr fljp-ger:

cpart _curr : common -part -ptr;

poly _cntr ;integer;

poly _next,
poly _curr polygon _ptr;

vertice cntr integer;

72

'p%
- 7 ..- .... ... .-.. .-. *-N



(USED WHEN READING IN DATA
poiy loop_ cut integer;
ligkt loop-cnt: integer;
c pat_loop_ cut integer;
subobj _lo)op -cut integer;
object _loup _cnt integer;
vertice .ouo cnt inmeger;

intersectionX intersection Y, intersection Z :real-,

{USED TO IDENTIFY INTERSECTED OBJECTS)
object idx.
subobi idx,
cpart-idax,
polygon _idx integer;

intersection _-Rag: boolean;-

73



INTERSECTION PROCEDURES

* * *eSg ii Si~iC505INTPRCS6. PAS " 'Ge *sS***,i**isiggg

*Thewe are the intem-ction procedures used in the ray tracer protram

....... ....... ....... ........ . . . . . .

* ~ ccc..OSPHERE INTERSECTION

" CALLELD FORM C7HECK-FOR SUBOBJ- INTERSECTION
" rkLL. To N\F
" DESC CALCULATES THE INTERSECTION POINT BETWEEN A RAY/VECTOR AND A
" SPHERE
" INPUT The centerpoint of the sphere and it's radius. The direction of

* the ray and a known p()int on the ray -- %ii ch would be it's
origin

*OUTPUT A flat indicating whether or not there was an intersection anid
: 'ner- * as I h tc tu a jn trersow I nw n i n t * if

.. .... ............................ *5 ...........

pr...cdtaro %phere intersection (Px Pv, Ps reai,
\ v Vsx reali.

8x'. I real,
r real

war intersection 6ag bou~lan
'.ar S;phere %. 'Aphere Sphere t real

'at

a b r tl t2 real
Xi YI Zl real
X2 N7. 12 real
1,tanrel fi%(anre2 real
radical re-al

fif' fiffv itre

'W11111~

S *4r T*'' 'i

* *I'.%



c (sqr(Cx) 4- sqr(Cy) + sqr(Cs) +
sqr(Px) + sqr(Py) + sqr(Ps) -

(2 * Cx * Px) - (2 * Cy * Py) - (2 * Cs * Pz) - sqr(r));

radical - (sqrt ( sqr(b) - (4 * a * c)));

START COMPUTATIONS ON QUADRATIC EQUATION I
if (radical < 0) then begin

writeln('WARNING - imagionary number possible in SPHERE INTERSECTION');
o intersection fl-ag := false

end
else begin

N if (radical = 0) then begin

IF 0 THEN JUST ONE INTERSECTION POINT(THE LINE IS TANGENT TO THE SPHERE)
}

ti := (-b / 2 * a); ( SOLVE FOR t }
Sphere_x:= Px + (Vx * tl); ( CALCULATE POINT USING t}
Sphere Y = Pv - (.v till
Spheres := Ps + tVs ti);

o intersection flag .= true
end-

else begin

THERE WERE TWO INTERSECTION POINTS - ONE ENTERANCE POINT AND ONE EXIT
POINT SOLVE FOR BOTH tis'

tI = (-b - (sqrt ( sqr(b) - (4 a a c)))) / 2 *;
t2= (-b- (sqrt (sqr(b) - (4 a c)))) '2 * a;

Xi =Px (Vx tli).
YI = Py - (Vy * tl;

ZI = Pa + (Vs tLi);

CALCULATE DISTANCE FOR BOTH INTERSECTION POINTS FROM THE POINT OF ORIGIN

distancel (sqrt (sqr(XI - Px) + sqr(YI - Py) sqr(Z1 - Pa)));

X2 - Px - (Vx a t2),
N2 = Py - (Vy " t2),
72 P z - 'V% 2)

it.t;in- 2 ,irt .r \*-' i'x) - .qr N '' -' r,

COMPARE DISTANCES AND SELECT THE INTERSECTION POINT THAT IS CLOSER
if dtstancel distance2 then begin

Sphere x Xi,
Sphere y : YI,
Sphere - ZI,

end
else begin

7S



Spherex X2;
Spherey Y2;
Spheres: Z2;

end;

o intersection _flag := true
end: , ELSE I

diffx : Px - Spherex;
diffy : Py - Spherey;
diffs Ps - Sphere s;

{
A CHECK TO INSURE THAT THE POINT SELECTED ISN'T THE RAYS POINT OF ORIGIN
}

if ((diffx <= 0.0000) and (diffy <= 0.0000) and (diffs <= 0.0000)) then
o intersection _flag := false;

end:, ELSE I
end; (' SPHERE iNTERSECTIONS "}

I PA}

................. CALCULATE PLANE EQUATION *
:-CALLED FROM: FIND INTERSECTED POLY'GON
• CALLS TO: NONE
* DESC ' Calculates the constants of the equation of a plane when given
* three point on the plane.

INPUT Three vertices of a planar polygon.
OUTPUT: The A, B, C, and D constants for the equation of a plane

• •O*••.******•* ••s*s••*e*o••°seee*~aseaooa°*eeeoeao*o00• •o*o.**°•°•.

procedure calculate plane _equation(Xl, YI, ZI real;
X2, Y2, Z2 - real.
X3, Y3, Z3 real,

var A,B,C,D real),

begin

A NA f Z2 3- Y2 " 1Z3 - I I Y3 (Z I Z2).

,' Al ~V.- V,.-

(X3 ((Y I Z 2)- (Y2 Z 71))),

end. { calculate plane equation

76



aaaaaaaa~aaaa*FIND INTERSECTION POINT a a a *

*CALLED FROM: FIND INTERSECTED POLYGON,
*CHECK FOR SUBOBJ INTERSECTION

CHECK FOR INTERSIECTION
CALLS TO : NON E -

*DESC :Calculates the intersection point between a ray/vector and
a plane.

aINPUT : Ray direction and a known point on the ray, i.e., it's
point of origin. The constants (A,B,C,D) of the equation

* of a plane.
*OUTPUT: The intersection point.

procedur- find -intersection_point (iA, iB, iC, iD :real;
_-ray-x, i-ray_y, i -ray - : real;
i-source -x, i -source_y, i source 3: real;

var o intersection -point -x,
*o-intersection -point _y.I
* _intersection -point -z real);

v sr
t : real;-

begin

{SET UP FOR FINDING t FROM THE EQUATION FOR A LINE AND A PLANE)
t := (i-D - ((iA * isource-x) +(iB *i-source-y) +(iC i source-s)))!

((i _A ai -ray _x) +.
(iB13 i-ray-y) +
(i-C ai-rzy _a));

SUBSTITUTE t BACK INTO THE EQUATION FOR A LINE TO GET THE INTERSECTION
POINT.

o -intersection _ point -x := (i _ ray _ x at) + i -source -x;
ointersection _point-y := (i-ray _y *t) + i _source-y;
o intersection _point _s := (i _ray _a t) + i source a;

end;, { find -intersection -point
PVl

................... "ALEQ ...............................

*CALLED FROM: FIND INTERSECTED PCIL GON
* CHECK -FOR -SUBOBJ -INTERSECTION

CHECK FOR INTERSECTION
*CALLS TO: NON4E -

DESC :This calculates the constants A,B,C,D of the equation of a plane
* given only a point on the plane and the surface normal of the
* plane.

*INPUT A point and the surface normal of the plane whose equation you

77

111 11 Jil .% . .. .& .



are trying to figure out.

OUTPUT: The constants A,B,C,D of the equation of a plane.

procedure caleq(bspherex, bspherey, bspheres,
vector x, vector y, vector s : real;

va - , B. C. D :real);

begin

A := vector x;
B vector y:
C : vector s;
D (vectorx * bspherex) -

(vectory * bapherey) +
(vectors a bspheres);

end; { caleq }

•** .... *** *...a~aaaaaa POLYGON ORIENTATION ***s***************s********

* CALLED FORM: FIND INTERSECTED POLYGON
. CALLS TO NONE
* DESC : This checks to see if the incoming ray will hit the front face of
* this polygon It does this by comparing the angle between the
* surface normal of the polygon and the inverse of the incoming ray
* If the angle is greater than 90 degrees then the ray is
• approaching the back of the polygon
* INPUT The direction of the incoming ray The surface normal of hte
* object
" OUTPUT A boolean value TRUE FALSE depending on whether or not the
* polygon is facing the right direction
**.**..*.**.o**..**** oe***t***e****t**tS*o*oeS*e**e*te*t**u**t*e *******

procedure polygon orentation (view vector x view vector v view vector a rea
surface normal %, qurface normal y. qurface normal s real,

var o good orientation boolean)

v ar

wiNine ihota real

t t rI 'i -

... ,f '1 ir** rm itg*D

TAI. I l),)T P'O)PI )(T 01i l\l.RSI• t. IHIF \i.VA \I iuH k\l) THF ! IF k, IF
NORM~tl.OF T HI. ['()I N;()% IN W VSxrIO\

7L%



dot-product (-view vector-x) *surface -normal -x
(view vector y) *surface normal y +~
(view-vector-S) surface -normalI -;

{CALCULATE THE MAGNITUDE OF THE VECTORS}
length _view -vector :=sqrt (sqr(. view -vector -x) +

sqrt- view _vector-y) -

sqr(- view -vec tor-z));

length -surface -normal :=sqrt(sqr( surface _normalIx) +
sqr( surface -normal -y) +
sqr( surface normal _z)):

{CALCULATE THE COSINE OF THE ANGLE BETWEEN THE RAYS
cosine-theta :=dot-_product / (length -view -vector *length _surface -norms]).

if (cosine-theta > 0) then
o -good _orient at ion true

eise
o_good -orientation false;

end, ( polygon _orientation

N {PAJ

~ FIND INTERSECTED POLYGON .............*

:*CA*LLED FROM CHECK FOR St'BOBJ INTERSFCTION
*CALLS TO POLYGON ORIENT 4T10N

CCALEQ

* FIND INTERSECTION POINT
* CALCULATE PLANE EQt ATIC14

D DES C This determines if there is an intersection between a line ra,,
* and a polygon If there is it calculates what it is

*INPt*T The dire.ction of the shooting ray. a known point on that -ik%
it 4 origin, and the object path identifyintg the outkbbr t ,
examine

*OUTPI'T A flail indicating whether or not a pihgon was hit If .,no. w a-
* hit the path identifing which mne it wca, and the actual

intereert ion poitnt itqff
.................................... *.....

0%.'~1 integer

% ,~ ar n nto~rjowti-

N 1 ar 1-l'

* '.,J e.Pje~~ ntot. ee

JR.



type

THIS IS SET UP TO HANDLE 8 SIDE[D POL'NGONS AS EACH SIDE OF THE POL'i(I)\
IS TESTED TO SEE V% HETHER THE INTERSECTIO\ POINT LIES INSIDE (-R QI. TilD 44
IT THE CORRESPONDING ELEMENT IN THE ARRAY IS SET EITHER TRUE OR FA4LSE A&N
ARRAY OF ALL TRUE MEANS THAT THE INTERSECTION\ POINT ILIES WITHIN THE

intersction arrav - £tT&) 6 4I

point outside~ p<,Ie~n ho.Apokn
intersections intersction l &rrs

-part cnt
p..'hgon -nt
'.pr~ir, -nt inep

1,t r'a e, n . rni pat

-a r , n S - ,

S. "49 4 ..

w-,d



-paJrt _cnt
polygon cnt = 1
vertice cnt =1;
intersection found := false;
good orientation := false;
cpart path := picture.objects^ i obj idxl.sub -objects' isubobj idxl.

omflln : arts.
polygon path := cpart_path "[cpart _cnt, polygons;

THIS CHECKS EACH COMMON PART FOR AN INTERSECTION WITH ONE OF IT'S
POLYGONS

repeat

THIS LOOP CHECKS EACH POLYGON OF A COMMON PART FOR INTERSECTION }
repeat

point _outside polygon := false;
-ivgn orientationji ray x. i ray y, i ray z,

polygon path ipolygoncntj.surface normalx,
polygon _path ^[polygon c nt ].surface normal_y,
polygon _path ^[polygon cnt].surface normalz,

good _orientation);

f good orientation then begin

caleq(polygon _path "[polygoncnti.vertice_xt1],
polygon_path "polygoncntJ.vertice y 1j,
polygonpath ^Ipolygon _cnt.vertice zlll,
polygonpath ^I polygon cnt ].surfacenormal x,

S polygon path'[polygon cnt].surface normal y,
-. polygon _path ILpolygon cnt].surface normal z,

A. B,C, D);

find intersection _point(A, B, C, D,
i -ray x,
i-rayy,
Liray z,
i source x, i sourcey, i sourcez,
polygonX, polygonY, polygonZ);

5.

!F ( 'K  \.AKE SIRE YOF %RE NOT CONSIDERING THE SOURCE POINT(ORIGIN) )F
i'HtE A.k'l

,liffx i source x - polygonX;
diffy i - source-y - polygonY;
diffz i source z - polygonZ;

THIS SETS A FLAG IF YOU DO CONSIDER THE SAME POINT, THE CHECKS IN THE
OTHER PROCEDURE SHOULD PREVENT THIS BUT JUST IN CASE.

4&g

[.':;.::81

I..



if ((diffx <= 0.000) and (diffy < = 0.000) and (d iff: < = 0 000))
then begin

{ writeln(sysout,'set trip-wire');}
intersections I I false

end
else begin

THIS LOOP CHECKS EACH EDGE OF THE POLYGON TO SEE IF THE INTERSECTION
POINT LIES INSIDE OR OUTSIDE OF IT.

repeat
* { THIS SELECTS THE FIRST VERTEX OF A POLYGON)

xI polygon path ^[polygon, cnt}.vertice -xlvertice -cntl;
yl polygon -path ^ [polygon -cnti.vertice -ylvertice -cnt];
51 polygon-Path ^I polygon _cnt1. vert ice _Zlvertice-cnt1;

* if (vertice _cn (polygon _path 'polygon _cnt';.num -vertices-

WHEN YOU PICK THE NEXT TO LAST VERTEX YOU CAN SELECT THE NEXT
CONSECUTIVE VERTEX TO ESTABLISH THE EDGE THROUGH WHICH YOU WANT THE
BOUNDING PLANE TO PASS. YOU THEN MUST PICK ONE OF THE OTHER VERTICES (AND
IT DOES NOT MAKE ANY DIFFERENCE WHICH ONE. I PICK THE FIRST ONE.) TO BE
USED TO PUT INTO THE EQUATION OF THE PLANE THE RESULT OF WHICH IS COMPARED
AGAINST THE RESULT THAT COMES FROM PLUGGING THE INTERSECTION POINT INTO
THE EQUATION OF THE BOUNDING PLANE.

then begin
x2 :=polygon path jpolygon cnt}.

vertice -xFVertice cnt +~ IT,
y:=polygon_path ^polygon-cnti.

vertice -y[vertice-cnt + 1];
z2 :=polygon path^jpolygon cnt].

vertice-z~vertice-cnt +~ I;

x3 polygon _'path ^ Ipolygon -cntl.vertice -x[ 'I;
y3 polygon -path ) polygon -cnti.vertice y[ 11;

z3 polygon-Path ^1polygon-cnt.vertice-z1l
end
,!lse begin

1F Yol: Do NOT HAETHE NEXT TO LAST EDGE THENI~S SELECT THE NEXT
CONSECUTIVE VERTICE TO ESTABLISH THE EDGE FOR THE BOUNDING PLANE A ND
THE ONE AFTER THAT TO PLUG INTO THE EQUATON OF THE PLANE.

x2 :=polygon _path i polygon _cntl.
vertice -x~verticecnt + 11;

y2 :=polygon_path [polygon-cntl.
vertice -ylvertice-cnt + 11;

z2 :=polygon_pathlpolygon-cnt).

82



vertice £a vertice cnt *

x3 = polygon _path polygon nt
verticex vertice cnt - 2

y$ = polygon _path" polygon _-nt

verice yler kc cu *

z. - p ioyg,)n..paLn pulq. , n nt
vertice s vertice cnt - 2

end;

if (vertice cnt = polygon _path -,polygon cnt num vertices )
{

IF THE VERTICE SELECTED IS THE LAST ONE THEN JUST PICK THE FIRST VERTICE
TO ESTABLISH YOUR BOUNDING EDGE AND THE SECOND ',ERTICE TO PLUG INTO THE
EQUATION OF THE PLANE.
I

then begin
x2 := polygon _path ^'polygon cnt vertice x I
y2 poiygon path' pvjion .-nt ertic, s

z2 polygon path "kpolygon cnL vertices I

x3 polygon _path -polygon _cnt..vertice x 2
y3 polygon _path' polygon _cnt vertice y 2

z3 polygonpath 'poiygn _cnt vertice z,2
end;

~{

ESTABLISH THE ARBITRARY POLNT THROUGH WHICH THE PLANE WILL PASS

anchor x ((x2 xl) / 2) + 10;
*., anchor-y := ((y2 - yl)/ 2) + 10;

anchor : ((s2 + z1) /2) +1 0;

calculate _plane _equation( xi, yl, ll,
x2, y2, z2,

anchor x, anchory, anchor a,
" A, B, C, D);

THE RESULT OF PLUGGING IN THE VERTICE OF THE POLYGON INTO THE EQUATION
OF THE PLANE.

Sn;rkerL) A\"l B A ' - C * :J

THE RESULT OF PLLGGING IN 'HE iNTERSECII., POINT iNTO HE L 41A [rION Uk
THE PLANE.
I

check pointD := (A * polygonX) +
(B * polygonY) +
(C * polygonZ);

if ((markerD <= -D) and (checkpoint_D <= -D)) then

83

................................................



IF THE RESULTS HAVE THE SAME SIGN THEN THEY BOTH LIE ON THE SAME SIDE OF
THE B0VNDING PLANE HENCE THE INTERSECTION POINT LIES WITHIN THE POLYGON
'AITH RESPECT To rHAT EDGE

intemr~t ions vertice ent =trute

IF THE RESULTS DON'T HAVE THE SAME SIGN TqEN THEY LIE ON OPPOSITE SIDES
OF THE BOUNDING PLANE AT THIS POINT THE INTERSECTION POINT HAS BEEN
PROVEN TO LIE OUTSIDE THE POLYGON.

if ((markerD >= -Dj and (check point D >= -D)) then
intersections verticecnt .= true

else
intersectionsivertice cnt := false;

vertice cnt = vertice cat - I

i n' i .'rt it, ni puklgon path polygon (rnt .nim vertices'l.

end
end

CHECK THE POLYGON INTERSECTION ARRAY TO SEE IF THE INTERSECTION POINT
FAILED THE INSIDE TEST FOR ANY OF THE EDGES.

for loop _cnt = I to polygon path "polygon _cnt,.num vertices do
d not(intersections loop cnt:) then

point _outside _polygon:= true;

if point _outside polygon then
intersection found false

else
intersection found true;

polygon cnt = polygoncnt + 1;
' until ((polygon _cnt > cpartpath -,cpartcntl.num _polygons) or

(intersection -found)),

cpart cnt := cpart cnt-i- 1;
until ((cpart cnt > picture.objectsliobjidx].subobjectsjli subobjidxi .

., nura ')mmon parts) or (intersection found)):

-ET QP F )JTP1T FOR THE PROCEDI'RE
o_cpartidx := (cpart _cnt - 1);

opolygonidx := (polygon cnt- 1);
opolygon _intersection _x := polygonX;
o -polygon _intersection _y polygonY;
o_polygon _intersectionz := polygonZ;

S_intersectionflag intersection _found;

84

U%



end, { find -intersected -polygon

{.PA}

*e*66Cae* ~S ~CHECK FOR SUBOBJ INTERSECTION**5 ******5**S

CALLED FROM: CHECK FOR_-INTERS ETIO N
6CALLS TO: CALEQ

FIND INTERSECTION POINT
* SPHERE INTERSECT16N POINT
* FINDN4TERSECTIONPOINT

*DESC :(Check to find out if the shooting ray intersects this
* subobject's bounding volume.

*INPUT : The object whose bounding volume has been hit.
* The direction of the shooting ray.
* The origin of the shooting ray.

*OUTPUT : A flag indicating whether or not there has been an intersection.
6The intersection point -- if there is one.
* The path t~o the intersected object.

procedure check -for _subobj -intersection (i _object _idx : integer;
iray _x, i _ray _y, _-rays: real;
isource-x,
s ource-y,

isource z : real;
va~r o intersection x,

o-intersection-y,
o intersection z : real;

var o subobj idx,
N o-cpart-idx,

o_.polygon -idx : integer;
var a-intersection-flag : boolean);

var
closest-_object: real;

{VECTOR BETWEEN THE RAYS ORIGIN AND INTERSECTION POINT}
view polygon -vector -x,
view _polygon-vector-y,
view -nolygon -vector zi real:

iistanct 'rom _ncerseciion.
d istance-from _v iew-posit ion :real;

subobj _path : sub object _ptr;
obj _path : object _ptr;

cpart _cnt,
polygon-cnt,
subobj cnt : integer; {USED TO GO INTO RESPECTIVE ARRAYS}

85



A, B, C, D : real; {CONSTANTS FOR EQUATION OF A PLANE

INTERSECTION POINT BETWEEN THE RAY AND PLANE THE BOUNDING CIRCLE IS
INSCRIBED ON.

bplane-intersection x,
bplane -intersection y,
bplane-intersection z: real;

INTERSECTION POINT BETWEEN THE RAY AND A POLYGON.

polygonX, polygonY, polygonZ :real;

intersection -flag : boolean;

begin

o-subobj-idx := 0;
o-cpart-idx := 0;
o_polygon idx := 0;
o -intersection -flag := false;
o -intersection _x := 0.0;
o-intersection-y: 0.0;
o -intersection _z := 0.0;

ESTABLISH A DEFAULT DISTANCE WITH WHICH THE ACTUAL DISTANCES WIL BE
COMPARED.

closest object := 10000.0;
subobj _path := picture. objects^ I i object -idx I.sub -objects;
objpath := picture. objects,

( THIS LOOP CHECKS EACH SUBOBJECT OF AN OBJECT)
for subobj cnt :=I to obj-path ^ti object idxl. nun -sub -objects do begin

* { FIRST ESTABLISH THE PLANE ON WHICH TO DRAW THE BOUNDING CIRCLE)
caleq(subobj _path ^'subobj rnt .sub _bsphere _x.

Miubobi path -subobi _rmntib bsphiere v.
subobJ -path -subobj -rnt .sub _bsphere -Z.

iray-x, i-ray-y, i-ray_5,
A, B, C, D)-?

{FIND THE INTERSECTION POINT ON THAT PLANE)

find -intersection -point (A,B,C,D,
_-ray -x, i -ray -y, i -ray -z,
_ source x, i source-y, isource-z,

b;plane_intersection_x,



bplane internp.-f
bplane intersertionirl

DETERMINE THE DISTANCE HE-T%4EEN THr E INTEKSECTION PIiANI)THE CE'%'T+H
POINT OF' THE BOI*NDIN%(; SPHEH ('I('I

distance from intersect ion
sqrt(sqr(subobj _path 'subobj cnt sub baphere x

bplane ikntersetion x) -

sqr(subobj _path - subobj cnt sub baphere y

sqr(subobj path - subKobj cnt sub baphere a-
bplaae intersection 2) )

IF THE DISTANCE IS LESS THAN OR EQUAL TO THEN YOU HAVE AN INTERSECTION
if (distance -from -intersection <=
subobj path -subobj cnt sub bspheri. radius) then begin

af (subobj -path -subobj _cnt subobj -type = U) then begin

IF SUBOBJECT TYPE IS A SPHERE THEN YOU NEED TO USE THIS INTERSECTION

PROCEDURE.

sphere -intersection (i -source_ x, a source _y, i source a,
a _ray _x, a _ray _y, a _ray a,
subobj _path *!subobj _cnt'.sub bsphere _x,
subobj _path ':subobj cnt'.sub -baphere _ y,
subobj _path ^'subobj _cnt:,sub _baphere _a,
subobj _path ' suboibj _cnt !.sub _baphere -radius,
in tersec tio n _8lag,
polygonX, polygonY, polygonZ);

CPart _cnt := 1
polygon _cnt :=0;

end
IFelse begin

FIT ISN'T A SPHERE THEN USE THESE)
find -intersected -polygon (i -ray _x, i_ray_y, i_ray _a,

isource _x, i _source-y, a source _z,
iobject _idx,

subobi -nt.
ii, )oiYi~oflX, poivqon ' poivgonZ.

oart *nt.
polygon cnt,
intersec tion _flag);

end; {ELSE *

if intersection -flag thei. begin

IF THERE HAS BEEN AN INTERSECTION THE ESTABLISH THE VECTOR BETWEEN THE
ORIGIN OF THE RAY AND THE INTERSECTION POINT.

87



14t a ji [fg..m Ie. $-r I I'' sqr p~ *f rrlv iew v ~iv

iet V. d p .l on vec I , r il

if1 .(a11 r IT~ Ir If I i 1"11 , *sest b. v, t t he i w g n

\( 1 Ai'HF i -1 I1 1, ~H E [H11F I I lA E N'I IN VI IT [III-11. (', JI.I V~

I, let bjrf I fist anc, fr",rn % .r 'A P, 01t 1,1

4116a'tj 1,1 % ut-ftj nt

,,Rr I % ' r

intersctw~n xla Irtit,. gf X.t l

* ntIe tiwtn '~) 'a

end

endJ

enki{ FOR *

end, check for obhject lflter~ect ion

PA~

.....(HECK FOR INTERSECTION ....
CA4LLED) FROM MAIN ANI) CALCVLATE INTENSITY

*CALLS TO CALEQ
FIND INTERSECTION POINT

* CHECK FOR SUBOBJECT INTERSECTION
*DESC: DETERMINES IF THERE IS AN INTERSECTION BETWEEN THE SHOOTING RAY

* AND THE BOUNDING VOLUME OF AN OBJECT.
INPU"T Direction of the ihootin rav

*)rIrII )I- he nlom inig rav

Iter~Z flu, he mfert IrtIv

OUTPUT : flag indicating wnetner or not, Ltlere was an Intersection.
* If there was an intersection then then the intersection point.

The path to the intersected polygon.

procedure check -for-intersection (i _ ray _ x,i _ ray _ y, i _ray _z :real;
isource x, i source _y, i source z :real;

88



i -picture objects o)bject ptri
vat o intersect ion x.

o-intersection y,
o intersection a . real;

var o _object _idx,

o subobj idx,

) ,p&rt idx,
o _poly _idx integer;

var o intersection -la boolean),

vat

object cnt,
object idx,

subobj cnt,
cpart cnt,

po)lygon cnt integer.

distance from viewposition,
distance from intersection real

INTERSECTION POINT BETWEEN SHOOTING RAY AND THE PLANE HE BOUNDING CIRCLE

IS INSCRIBED ON.

bplane intersection x,
bplane intersection _y,
bplane intersection a real;

view bplane vector x,
view bplane vector y.
view _bplane vector az real;

5. INTERSECTION POINT BETWEEN THE SHOOTING RAY AND A POLYGON.
}

polygonX, polygonY, polygonZ :real;

{
CONSTANTS FOR THE EQUATION OF A PLANE.

found intersection boolean;

distance : real;

begin

o_object idx 0;
o subobjidx 0;

89



0 cpart idx .=O;,

o-poly idx =0;
o-intersection M : 0.0,
o interec~ioa _y 0.0;
o-intersect ion a 0.0;
o -intersection -Hlg= false:

found -intersection :=false;,

object _cnt :=1;

LOOP TO CHECK EACH OBJECT IN THE OBJECT ARRAY.

repeat

if (((picture. objec ts objectcnt.obj _bsphere-z > i-source-s) and
I -ray -z 0 )) or

((picture.objects 1 object cnL1.obj bsphere_a < _-source-zj and
(ijay _a < 0 ))) then begin

ESTABLISH PLANE ON WHICH TO DRAW BOUNDING CIRCLE.

c aleq ( pic ture.objects 1object -cntj .obj _bsphere-x,
picture.objects ^object -cntl.obj bsphere-y,
picture. objects -I object cnt'.obj bpeea

_-ray _x, i-ray _y, i-ray _a,
A, B, C, D);

FIND INTERSECTION POINT BETWEEN THAT PLANE AND THE SHOOTING RAY.

find -intersection _point (A, B, C,D,
iray _x, i-ray_y, i -ray - ,
isource x, i-source-y, i-source-z,

bplane intersection-x,
bplane intersect ion J,
bplane-intersection _a);

flETERMENE DISTANCE BETWEEN THE CENTER OF THE CIRCLE AND THE
INTERSECTION POINT

d ist ance -from -intersection
sqrt (sqr(pict ure. objects - object cnt1.obj _bsphere x -

bplane -intersectionAx +
sqr(picture.objects j1object-cnt1.obj _bsphere-y -

bplane intersection y) +
sqr (picture. objects ^[object _cntl.obj _bsphere a -

bplane-intersection-z) )

90



IF INTERSECTION POINT LIES WITHIN CIRCLE THEN START CHECKING THE
SUBOBJECTS THAT MAKE UP THE OBJECT.

if distance from intersection <=
picture.objectslTobject _cnthobj _bsphere -radius then begin

check for subobj -intersection (object _ cnt.
iray _x, i-ray _y, i-ray _ax,
isource-x, _-source-y, i-source-z,

polygonX, polygonY, polygonZ,
subobj _ tnt.
cpart cnit,
polygon _cnt,
found _intersection);

DETERMINE THE DISTANCE BETWEEN THE ORIGIN AND INTERSECTION POINT OF
OF THE RANX

if found intersection then begin
view -bplane -vector -x: isource x - bplane -intersection _x;
view _bplane -vector _y i-source _y - bplane -intersection _y;
view-bplane vectorz i source z - bplane intersection z;,

d istance -from -view position :=sqrt(sqr(view-bplane-vector-x) +
sqr (view _bplane -vec tor-y) +
sqr (view _bplane-vector-z));

SELECT ONE CLOSEST TO RAY'S ORIGIN.

if distance from viewposition < closest-object then begin
closest -object_: distance from -viewposition;
o -object-idx object-cnit;
o-subobj idx subobj-cnt;
o-cpart idx cpart-cnt;
o -poly -idx polygon-cnt;
o -intersection x =polygonX;

o -intersection-y= polygonY;
o -intersection a polygonZ;
,) intersection -flag :=found -intersection

-nd
end;

end;
object cnt :=object cnit + 1;

until (object _cnt > picture.num _obis);

end; { check -for in tersect ion}



INTENSITY PROCEDURES

.............. STACK EMIPTY **
*CALLED FROM MAIN an4I POP
CALLi 7G \t)NE

*DESC CHECKS TO SEE IF STACK EMPTY
INPUT :POINTER TO TOP OF STACK

*OUTPUT BOOLEAN VALUE - TRUE, FALSE
00*0*00~*.ges..s0*000e000ses000es0*s0n0s...*00e0...se.....ee....se...

function stack-_emnpty (input _ray _top .ray _ptr) :boolean;
begin

STACK-EMPTY :=input ray top = nil;

end; [ STACK-EMPTY

* ***88 **** 88****488*STACK EXCEEDED 8*8* 8*4*88*88*88*

*CALLED FROM: MAIN
8 CALLS TO : NONE
8DESC CHECKS TO SEE IF STACK IS FULL
INPUT :CURRENT SIZE OF STACK and MAXIMUM SIZE OF STACK

oOUTPUT : BOOLEAN VALUE TRUE/FALSE

}function stack -exceeded (input _t1,
input t2 : integer) :boolean;

begin
if inputl > input t2 then

stack-exceeded true
else

stack-exceeded :=false;

-n , ':TACK EXCEEDED

{.PA}

4**48************CALCULATE REFRACTED RAY

" CALLED FROM: MAIN
" CALLS TO : NONE
" DESC :This calculates the direction of a refracted ray.

92



*ho t~p- ni.. 4 -- (a ' -i IN 4,0a -

1111~ T A 4%g %*t -,e ti'r false -. r .' '( '

I ra% Vecto.r N

L bj surface normai

i .)bj surface normas al

i *bj ridit real
iglobai ridA real

ar 0 refracted ra~ N
* refracted raN
* -refracted ra) s real

ir , 1 ra I- --t a. IA

N, ar
test Kf,

test Kf.
Kf rea,.
Kn real,

abs -dot _prod uc t real.
length _of ray real.
vit _x, vJ,vlI _z. real.

begin

THIS PRODUCES THE ABSOLUTE VALUE OF THE DOT PRODUCT OF THE INCOMING RAY
AND THE SURFACE NORMAL OF THE INTERSECTED SURFACE

abs dotpt duct := Abs((i _obj _surface normal x *iray _vector _x)-
(i _obj _surface _normal-y i _ray _vector y

I'(i _obj -surface -norm al z i -ray -vector _ z));

if abs dot _product =0 then begin

~HIS :SJS 11 ' REk' %1\l:TIN

o reiractea _ ray _ndag .= faise;
o -refracted _ray _x 0;
o refracted _ray _y 0;
o -refracted _ray _z 0

end
else begin

THIS PRODUCES THE UNIT NORMAL VECTOR IN THE DIRECTION OF THE INCOMING

93



T" ill'-,;%I, If I k rHEt,) F H E K R ACRtLTI\ E I)DIC -S

,, 17HE t ki.('1 1 iTlO\ o++l FH1. FRE'SNEL ('0EFFICIENT IS DIVIDED UP THIS WAY
i 1\0111.4 Ht T'kCHECK 1, .TFR F')R %N IMAGINARY* DENOMINATOR WHICH INDICATES

[rST.. INT.RNAL REFLECTIO)N

(est(Kf sqr(Kn) * sqr(length of ra)),
i. teit Kf" sqr(!%qrttsqr(i obi surface -normal _x .I-lx)

-,lr,: ,[+j ur;, ace n,,rT& ) r M' A,' %

,' sqrtk ooi surface norma z - v1 zJ)J,

f ltetKf - testKf2• --,r ) then gin

1N RINR -,Ri L*HEN I1.NTr FR- T0T.-\L INTERNAL REFLECTION IS OCCURINGA

0 refracted ra% flag .- false,

o refracted ray _x mOr

o refracted_ ray _Y - n
o refracted ra) u n= 0

end

elIse begin
o_ refracted ray flag : true,
Kf r sqrt(testKf- testKf);

o refracted ray _x :- = Kf * (i0obj;surface-normal-x - vl-x)) -

i obj _surfac e-norm al-x;
o refracted _ray_y .= (Kf (I obj surfacenormal J vly)) -

io obj surface normal J

o refracted ray x := (Kf * (i _obj _surface normal x -z- vl_z)) -

i-objsurface normal z
end

end.

1,n1. I ralrulate refracted ray

CALCULATE REFLECTED RAY " ''*''"'""

" CALLED FROM MAIN and CALCULATEINTENSI-TY
" CALLS TO NONE

" DESC CALCULATES THE DIRECTION OF A REFLECTED RAY
" INPUT : Direction of the source ray and surface normal of intersected
* object.
" OUTPUT ' Flag indicating existance of reflected ray If one exists

94

.4



* then it's direction is given.

procedure calculate-reflected-ray (i-ray-vector-x,
iray-vector-y,
i ray -vector _z real:
iobj surt .ace aormai K.

i o bj -surface -normal yv,
i-obj -surface -normal z :real;

var a reflected -ray _x,
o reflected ray y,
o reflected ray z-real:

var o -reflected -ray -flag :boolean )

var
abs -dot-product :real;
length-of-ray :real;
vi _x, vi _y, vi z :real;
Ri _x, RIJ_. RI _z : real:

begin

ABSOLUTE VALUE OF THE DOT PRODUCT OF THE OBJECTS SURFACE NORMIAL AND
OF THE INCOING LIGHT RAY.

abs-dot -product :=Abs((i-obj-surface normal x * i ray vector-x) +~
(i-obj-surface-normal-y i-ray-vector-y) +
(i -obj -surface -normal _z *i-ray _vector-z));

vi x :=i-ray-vector x /abs-dot -product;
v1l-y =i-ray-vector y /abs-dot -product;
vi_z :=i ray vector-z /abs-dot -product;

{CALCULATE UNIT NORMAL VECTOR IN THE DIRECTION OF THE INCOMING RAY.)
Ri_x :vl_ +-s (2 *i-obj-surface-normal-x);

Ri _ y vi_y + (2 *i-obj-surface-normal-y);

RI_z vi z + (2 *i-obj-surface-normal-z);

length-of-ray := (sqrt(sqr(R1 _x) + sqr(Ri _y) + sqr(RI z)));

f CALCULATE REFLECTED RN YI

_redectreu -ray I'll R x length t ay;
-edeered -ray 13. 1 Y enihot7av:

o -reliectedj-ray-z =R12 i / length oi .ay;
a-reflected-ray-flag := true;

end; ( calculate-reflected-ray}

{.PA)

95



-A184 863 A PROTOTYPE RAY TRACER(U) NAVAL POSTGRADUATE SCHOOL 212
I MONTEREY CA P G SMITH JUN 87

I UNCL AS 7 FG
2 8

16 N

EDEhhh~h



Ii1.0 atoLIM,3

(liI I 2.8

11'.25 11111 li 6

MICROCOPY RESOLUTION TEST CHART
NATIONAL BLJR[A(. Of STANE AR(l 1 9b, A



{
** ********* CALCULATE INTENSITY *
* CALLED FROM : 12 and 16
* CALLS TO : CHECK FOR INTERSECTION and CALCULATE REFLECTED RAY
* DESC Calculates the intensity at any given point.

* INPUT Color component being calculated, current ray data.
pointer to object data, and pointer to [ight data.

* OUTPUT : Intensity at a given point, either to be displayed or
* set in the appropriate source ray.

}
procedure C ALCULATE_-INTENSITY (inputcolor colortype;

input-ray d real;
input_ambient : real;
input rayI t :real;
input rayI s :real;
input ray vector x,
input-rayvectory,
input _ray vector z : real;
inputnumber of-lights : integer;
inputobj_K a : real;
input obj_Ks : real;
input _obj _K t real;
input-objK d real;
input objphong-exp : integer;
input intersection x real;
input-intersection-y : real;
inputintersection a : real;
input obj surface-normal x real;
input obj surface normal-y : real;
input obj surface normal s :real;
input _picture-object : object ptr;
inputlight top : lightptr;

var io intensity :real );

V.&r

ans char;
I d real;
I -1 :real;
j, i integer;
distance : real;
sight ray x.
.ignt r*.V
ignt a_.v ! 7pai:

unit sight x,
unit sighty,
unit sightz real;
light ray x,
light _ray _y,
lightray -z real;
unitlight x,
unit lighty,

96



unitlight z : real;
unit reflected.x,
unit reflectedy,
unit reflectedz : real;
intersectionx,
intersection _y.
intersection z : real;
reflectedlight ray x,
reflected light ray y,
reflectedlight rayz : real;

source x,
source y,
source s real;
check x,
check .y,
check z real;
obj_idx, subobj-idx, cpartidx, polygon-idx : integer;
intersection flag : boolean;
obj -light _distance : real;
reflected ray : boolean;
intersectedobj_Kt : real;

begin

{ THIS ELIMINATES THE SAME INTERSECTION POINT FROM BEING SELECTED AGAIN.)
if input ray d > 0.1 then begin

I l := 0.0;
iointensity := 0.0;
reflected-ray := false;
intersection flag := false;

THIS SETS UP THE SIGHT RAY }
sight ray x :=-input ray vectorx;
sightray_y :=-input-ray vector y;
sight ray z : -input ray vectorz;
distance := sqrt(sqr(sight ray_x) +

sqr(sight-ray y) +

sqr(sight rayz));

unitsight x sight rayx / distance;
!init sight y : sight ray y distance,
nit _ightz : ight ray-z distance:

for i := I to (input number of lights + 1) do begin
{ THIS GENERATES THE SHADOW FEELERS}

lightrayx picture.lights [ii.lightx - input intersectionx;
lightfray y picture.lights^Ii].light-y - input-intersectiony;
lightfray z picture.lights ^[i.light z - input _intersection _z;

distance := (sqrt(sqr(light ray _x) +
sqr(light-ray_y) +

97



sqr(light ray _zl));

- CONVERTS IT TO A UNIT VECTOR }
unit light x:= light ray x / distance;
unit light_y := light-rayy / distance;
unit light _z light _ray_ / distance;

source x:= picture.lights"ii.light x;
sourcey picture.lights [iJ.lighty;
sourcez picture.lights^[i].light_z;

{
CHECK TO SEE IF ANY OF THE SHADOW FEELERS INTERSECT ANYTHING.

}
check for intersection(-unit, light_x, -unit light_y, -unit lightz,

sourcex,
source_y,
sourcez,
input _pictureobject.
intersectionx,
intersectiony,
intersectionz,
objidx, subobjidx, cpart idx, polygon-idx,
in tersection-flag);

{
CHECK flO INSURE THAT THE SAME POINT IS NOT CONSIDERED AGAIN, WHICH CAN
HAPPEN.

check x intersectionx - input intersectionx;
check x= intersection y - input intersectiony;

checkz intersection_- - inputintersection_z;

{
PULL THE PROPER CHARACTERISTICS OF THE OBJECT OUT TO DEAL WITH THE

APPROPRIATE COMPONENT OF LIGHT THAT IS BEING CURRENTLY DEALT WITH

if color = red then
II := picture.lights lil.Ir;
intersected _obj Kt := picture.

objects 'Iobjiidx].
sub objects 'isubobj idxl.
:ommon parts "',:part _Idxi.
K -rr:

if color = green then
I I:= picture.lights'[i.I__g;
intersected _obj _Kt := picture.

objects "[obj idx].
sub-objects Isubobj idxj.
commonparts "{cpart-idxJ.
K_tg;

if color blue then

98



II := picture.lights[il.I_b;
intersectedobjKt := picture.

objects ^[obj idxl.
sub-objects lsubobjidx.
common parts ^(cprtidxl.
K _tb:

obj _light distance := (sqrt(sqr(intersection.x -
picture.lights [i].light x) +

sqr(intersectiony -
picture.lights ^[i].light y) +

sqr(intersection _z -
picture, lights [i]. light-z)));

{
IF THERE HAS BEEN AN INTERSETION AND THE POINT BEING CONSIDERED IS NOT

THE ORIGIN OF THE RAY THEN CHECK TO SEE IF THE OBJECT IS OPAQUE. IF IT IS
THEN RETURN TO BEGINNING OF LOOP AND CHECK NEXT SHADOW FEELER. IF IT IS
NOT OPAQUE THEN CALCULA4TE INTENSITY AT THAT POINT AND CONTINUE FOLLOWING
THE RAY TO SEE IF IT INTERSECTS ANYTHING ELSE. CONTINUE THIS LOOP
EITHER UNTIL NO MORE OBJECTS ARE LEFT OR UNTIL AN OPAQUE ONE IS
INTERSECTED.
I
{

THIS PART OF THE CODE HAS NEVER BEEN TESTED. I JUST CODED IT AS I
THOUGHT IT SHOULD BE FROM THE ALGORITHM IN ROGERS BOOK PP. 377.
QUITE FRANKLY I STILL DON'T FULLY UNDERSTAND WHAT IS SUPPOSE TO TAKE PLACE
HERE.

if intersection flag then begin
while ((intersectionflag) and

((check x > 0) or
(check_y > 0) or
(check z > 0))) do begin

intersectionflag:= false;

if not( intersected _obj _Kt = 0) then begin
if (inputcolor = red) then begin

I_I := picture.lights [i.Ir *
intersected obi Kt:

-f 'input _:o)or = grPen) hln ergin

I 1 := picture.lights [i].I_g
intersected _obj _Kt;

end;
if (input-color = blue) then begin

I_I := picture.lights [i.lIb *

intersected objKt;

99

Un



end;

calculate reflected _ray (input -ray _vector_x,
input rayvectory,
input rayvectorz,
input _obj -surface normal x,
input _obj surface-rormai
input-obj-surface-_normal-_z,
reflected ray x,
reflected ray y,
reflected ray s,
reflected -ray);

distance := sqrt(sqr(reflected ray x) +
sqr(reflected-ray_y) +
sqr(reflected ray z));

unit reflected x :- reflected ray x / distance;
unit -reflected _y reflected rayy / distance:
unit reflected z reflected ray z / distance;

io-intensity := io intensity -
((I_1 * inputobj_K_d)
((input obj -surface normal x * unitlightx) +
(inputobjsurface_-normal-y * unitlighty) +
(input obj surfacenormal z * unitlightz))) +

((II * inputobj Ks) *

((unit sight x * unit reflected x) +
(unitsight-y * unit-reflected-y) +
(unit sight z * unit reflected z)));

source x : intersectionx;
source-y intersectiony;
source z intersectionz;

check for intersection(-unit-light _x,
-unit light-y,
-unit lightz,
sourcex,
source y,
3ource z.
input _-icture _ bject.
intersection _x,

intersectiony,
intersection _z,
obj idx, subobjidx,
cpart__idx, polygon-idx,
intersectionflag);

check x intersection x - input-intersection x;
check-y := intersectiony - input _intersection _y;

100

IL. ~* --- , ~ $~ 'p



check z :=intersection z - input intersection z;

end {if}
end {while)

end (if)
else begin

caic uiae -rerected _-ayv(input -ray -vector _x.
input-ray-vector-y,
input ray-vector-z,
input-obj_surface-normal-x,
input-obj-surface-norn'al-y,
input _ obj _ surface -normal _z,
reflected ray x,
reflected ray y,
reflected ray_2,
reflected ray);,

distance sqrL (sqr (reflected -ray _x) +
iqrfreflected -ray _y)
sqr(retiected ray_z)),

unit -reflected x reflected-ray-x /distance;
unit -reflected-y reflected _ray-y /distance;
unit -reflected _z redected _ray-z /distance;

io intensity :=jo-intensity +
((I_1 * input_cbjK_d)
((input-obj-surface-normal-x * unit-light-x) +
(input -obj-surface-normaliy * unit-light_y) +
(input -obj -surface -normal _z * unit light:z))) +i

((I- I' input-objK s)*
((unit-sight-x *unit reflected x) +
(unit-sight-y unit reflected-y) +
(unit -sights - unit _reaected _z)));

end { *ELSE ~
end;, * FOR }

THIS IS THE STUB TO JUST HAVE EVERY OBJECT ILLUTMINATED BY AMBIENT LIGHT
io-intensity :=input-objK-a *input-ambient;

'HIS iS WHERE '7HE INAL [NTENSlT't IS CAkLC1_L.\TED

io-intensity :=((input-objK a * input-ambient) +
io-intensity +
((input -obj K -s * input -rayI I s) +
(input _obj-Kt * input _ray _J-_))

{/input _ray _d or /2 or /1)

101



THIS IS JUST TO KEEP ALL VALUES WITHIN A RANGE WHERE THEY CAN BE DISPLAYED

if io intensity > 1.00 then
io-intensity := 1.00;

if io-intensity < 0.00 then
io-intensity :=0.00;

end
else begin

IF THE INPUT RAY DISTANCE IS LESS THEN ONE THAN YOU ARE CONSIDERING THE
SAME POINT AND HENCE THE INTENSITY THERE SHOULD BE 0.

io_Jitensity: 0.0
end;

end; I CAL CUL ATE_-INTENSITY)

a***Sa************DISPLAY-PIXEL

*CALLED FROM: MAIN
CALLS TO : NONE

*DESC : WRITES OUTPUT TO FILE

INPUT: THE VALUES FOR THE RED, GREEN, AND BLUE COMPONENTS OF LIGHT.
OUTPUT:NONE

procedure DISPLAY_-PIXEL ( input -intensity-red,
input -intensity -green,
input intensity _blue : real;
input-pixel-x,
input pixel y,
input-pixel-z :real )

begin

write (outfile,input -intensity _ red:3:2);
write (outfile,' ',input -intensity _green:3:2);
writeln (outfle,' '',input -intensity -blue -3:2);

'l:DlSPLA'I' ,)IXEL

a * CALLED FROM : MAIN, 12, 16
CALLS TO : NONE

SDESC : Removes a ray from the top of the stack.
aINPUT : Pointer to the current top top of stack.
aOUTPUT :The ray just popped from the stack and a pointer to the new top

102



top of stack.

procedure POP (var output-ray_type : raytype;
var output ray origin x :real;
var output _ray _originy rel
var output -ray -origin-z :real;
var output -ray -vector x real;
var output -ray -vector-y real;
var output -ray -vector z real;
var output raystype raytype;
var output -intersect ion_-Rag boolean;
var output obj idx integer;
var output -subobj _idx integer;
var output -cpart-idx integer;
var output-polygon idx :integer;
var output-intersection x real;
var output _intersection _y :real;
var output intersection -7 real:
var output d real;
var output_-I -tr, output _I-tg, outputI-tb :real;
var output -I -sr, outputI-sg, output _ I -sb real;
vario top :ray ptr )

begin

if (stack empiy (io top)) then begin
writeln('STACK UNDERFLOW ERROR')

end ( if )
else begin

output-ray-type io-top ^.ray-type;
output -ray -origin _x io-top ^ray-origin-x;
output -ray -origin J io-top ^.ray origin-y;
output-ray-origin-z io-top ^.ray-origin_2;
output -ray -vector x io top^.ray vector x;
output -ray -vector-y io top ^.ray-vector-y;
output -ray _v ector 2 io top ^.ray-vector-z;
output -ray -stype io top^.ray-stype;,
output-intersection -flag io top ^intersection -flag;
output-obj-idx :=io top ^obj idx;
output -subobj -idx :io top^.subobj-idx;
)IutU -,:Part idx - o -too --oart -idx:

,atput _poiygon idx io op .oivg0l _Ax:

uAtpuL -intersection _x iou .ntersevtion_ :

output _intersection _y io-top^ intersection _y;
output intersection z :=io-top. .intersection _z;
output-d :io-top ^d;
output _I tr :=io-top ^.I-tr;
outputI_tg io-top^.I-tg;
outputI-tb io-top ^.I-tb;
outputI-sr :=io-top ^.I-sr;
outputI-sg jo-top~.~g

* 103



output_I_sb := io_-top ._sb;
raynext := 10 top-.ray link;

{ remove old pointer }
dispose(iotop);

{ set top of stack pointer to new top of stack )
io top := ray next;

end; eise
end; { POP }

{.PA)
{

*************************** PUSH *
* CALLED FROM: MAIN, 12, 16

* CALLS TO: NONE
* DESC : Places a ray on the top of the stack.
* INPUT: The current top of the stack, and the data for a new ray

* OUTPUT: The pointer to th new top of stack.

}
procedure PUSH ( input ray type : raytype;

input ray origin x :real;
input-rayorigin _y real;
input _ray _origin _z :real;
input-ray _vector x reai;
input ray vectory :real;
input ray vectorz :real;

Ninput ray stype : raytype;
input-intersection flag : boolean;
input obj idx : integer;
input-subobj idx :integer;
input-cpart idx : integer;
input polygonidx : integer;
input intersection x :real;
input-intersectiony : real;
input-intersection _z : real;
inputd : real;
input_Itr, input_Itg, input_I tb : real;
inputI-sr, inputIsg, inputI sb : real;

var iotop :ray ptr );

begin

-ewlrav :urr-nti:
7av ,-urrenE ray ,yV :- input rziy tvyDe:
raycurrent .rayoriginx := inputray_origin_x;
raycurrent .ray. originy := input-rayoriginy;
raycurrent .rayorigin_z := input-ray origin_z;
ray _current .ray_vector x := input ray vector x;
ray-current .ray_vector_y := input ray vectory;
ray current ^.rayvectorz := input ray vector z;
ray._current ^.ray stype := input ray -type;
ray current ^.intersection flag := input intersection _flag;

104



rav current ^.obj idx input obi idx;
ray-current ^.subobj idx input _subobj _idx;
ray -current ^.cpart _idx input-c part _idx;
ray-current ^.polygon-idx input -polygon _idx;
ray -current ^.intersection _x input -intersection _x;
ray currpnt ^.intersection Yv input _intersection _v:
ray -current intersection z input -intersection
ray -current -.d input-d;
ray -current ^.1_tr input I tr;
ray _current ^.I _tg inputI tg;
ray-Current ^.I-tb inputI-tb;
ray ',urrent '.T sr input _I sr:
ray -current ^.I -sg inputI1sg;
ray _ current ^.1 sb inputI1sb;
ray-current ^.ray-link := o top;
Jo-top ray-current,

end; {PUSH}

105



MAIN

PROGRAM RAYTRACER;
{

.**. * . ..***. * . .*** . *** ..*..*.** .** ..... *.*.......

PROG RAY.PAS
** AUTHOR : Paul G. Smith

* DATE :11 May 1987
** DESC A ray tracing prototype with a global illumination model

integrated into it.
** INPUT : A sequential scene file under PICTURE.PAS.
** OUTPUT : A bitmap file containing the red, green, and blue color

color components. Their values range from 0-1 and need to
** be converted for display on an RGB color monitor.

{ * INCLUDE FILES * }

{$I declare6.pasl - { DECLARATION SECTION }
{.PA}
{$1 intprcso.pas} - { INTERSECTION PROCEDURES }
{.PA}
{I procs6.pas} _ { INTENSITY and UTILITY PROCEDURES }

{.PA}
.J. {

*********************************** 12 ********************************

* CALLED FROM: MAIN
* CALLS TO: PUSH, POP, CALCULATE INTENSITY
* DESC : Calculates the light intensity at a given intersection point
* INPUT : A complete ray data record, the pointer to the light array
* and the pointer to the object array
* OUTPUT : The intensity at a given intersection point. If the input
* was a view ray then this intensity will be the intensity
* displayed. If the input ray is a reflected ray then this

intensity is assigned to the I s field in the source ray.
If the input ray is a refracted ray then this intensity is
assigned to the I t 9eld in the source ray.

procedure 12 (id : real;
I _tr, i_I tg, i _I _tb real;

iIsr, iI sg,i _I sb real;
i number of light _sources : integer;
i-ambient r, i ambient g, i ambient b reaL
i-K ar,i K ag, iKab real;
i K sr,i _K sg,i _K sb :real;

106



iK tr, i K _tg, iK tb : real;
i-Kdr, I_dg, ik- db -.real-,
i-ray-type raytype;
iray-top :ray-ptr;
_-light-top light-ptr;
i obj _ptr object _ptr:
iobjphong-exp : nceger:

i-ray-vector-x,
_-ray-vector-y,
i-ray-vector z real;
Sintersection x,
iintersection _y.
iintersection z :real;
s~urface -normal -x,

i~raenormal z real;

varic - ay-gnoraion -number : integer-,

vro-intensity-red,
Ao -intensity -green.

o-intensity-blue :real )

SE PTEMPORARY AREA TO HOLD RAYS POPPED FROM STACK
tep rytp raytype;

tempi ray _origin x,
tempt _ray origin _y,
tempt _ ray _ origin z : real;
tempt-ray-vector-x,
tempi _ ray -vector-y,
tempi _ ray _ vector z : real;
tempi _ray stype : raytype;
temp 1 _intersection -flag : boolean;
tempi obj idx,
tempi -subobj-idx,
tempt _ cpart-idx,
temp I polygon -idx : integer;
tempi _ intersection _x,
tempi intersection y,
tempi Iintersection _Z : real;
tempt _d : real;
tempt _I -tr, tempi _ I -tg, tempI_I_tb :real;
temol I sr. tempi _I _sg, tempi I :,b real:

eMD2 'ay pe av"Wtvpe:
temp2 ray-origin -x,
temp2_-ray _origin -y,
temp2 _ ray _ origin _z : real;
temp2_ray _vector-x,
temp2_-ray _ vector-y,
temp2_-ray _ vector z : real;
temp2_ray stype : raytype;
temp2_in tersection -flag : boolean;

107



temp2_obj idx,
temp2_-subobj. idx,
temp2_c partjidx,
temp2_-polygon idx integer;
temp2_intersection x,
temp2 intersection _Y.

cemp2_incerseccion z real;
temp2_d :real;
temp2_I -tr, temp2_I_tg, temp2_1_tb real;
temp2__sr, temp2_I_sg, temp2 I sb real;

begin

{CALCULATE INTENSITY OF THE RED COMPONENT OF LIGHT)}
calculate-in tensity( red,

iambient _r,
iI tr,
i -1-r.
_-ray _vector-x, i _ray _vector_y, i-ray vector z,
inumber of -light sources,
iK -ar,
i K sr,
i Ktr,

u.i-K-dr,

i ob _phong exp,
_ -intersection-x,
i_intersection -y,
_ intersection _2,
isurface-normal-x,

i surface -normal-y,
isurface-normal-z,

i-obj-ptr,
i-light-top,
o intensity-red )

{CALCULATE INTENSITY OF THE GREEN COMPONENT OF LIGHT
c alc ulate in tensity( green,

_ d,
i-ambient_g,
S-I -tg,
I Tg

_ray _vec.tor _x. ray -vector , -rav -vpctor

i umoer r ijght Jokirres.

i-K ag,
i K sg,
i-Ktg,
iK dgp

i -obj-phong-exp,
i-intersection x,
i-intersection _y,
iintersection _z,

108



i surface -normal _x.
isurface-normal-y,
i surface -normal _z.
iobj _ptr,

ihlght-top,
n -intensity -green 1;

CALCULATE INTENSITY OF THE BLUE COM1PONENT OF LIGHT}
calculate -ntensity( blue,

i d,
i ambient b,

I Ttb,
I lsb,

i ray-vector-x, i-ray _vector-y, i-ray vector z,
i-number -of -light-sources,

i K ab,
i K -sb,
i K _tb,

iobj-phong-exp,
iintersection _x,
i intersection _J,

i !ntersection Z.
isurface normal x,
isurface-normal-y,

i -surface -norma & z,
iobj-ptr,

a-light-top,
o -intensity -blue )

if (i ray _type = view) then begin

THE VIEW RAY IS ALWAYS THE LAST RAY ON THE STACK WHEN IT IS POPPED THE
INTENSITY DETERMINED FOR IT IS PASSED BACK INTO MAIN FOR DISPLAY.

{nothing}
end

else begin

df (i _ray _type = reflected) then begin

-'NaTHIS !S TH-E REFLECT7ED) RA'Y THEN ]UST ).NE RAky' \EEDS TO BE POPPED T0
kl% rNX2 o) TH1E SOURCE RAY0

POP (tempi _ray _ type,
tempi Iray _origin _x, tempi _ray _origin _y, tempt _ray _origin _z,
tempi _ ray _VectorX, tempi ray _vector _y, tempt _ray _vector _z,
tempi _ray-stype,
templ -intersection -flag,
tempt _obj _idx,
tempt _subobj _idx,

109

* -. . *-I -'-,



tempI _cpart idx,
temptpolygonidx,
temp 1 intersection x, tempt -intersection y. tempt -intersection _z,
tempi-d,
templ._I_tr, templI_tg, templl tb,
tempi _sr. tempt _ sg, tempt_I _sb.
-ay _op );

{ SET INTENSITY IN SOURCE RAY }
tempiI sr o intensity-red;
tempt I_sg ointensitygreen;
tempiI_sb o intensity blue;

RESTORE STACK )
push( tempi ray type,

tempi _rayoriginx, tempirayoriginy, templray_origin z,
tempi _rayvectorx, tempi -ray vector y, tempi ray vectorz,
tempi ray _stype,
tempt intersection _flag,
tempt-obj idx,
tempt_subobj-idx,
templ_cpartidx,
tempi _poLygon idx,
tempIintersection _x, tempi _intersection _y, tempi_intersection z,
temptld,
templ_I_tr, templ_I tg, templ_I_tb,
tempt _Isr, tempt_I sg, tempiI Isb,
ray_top

end
else begin0 {

SINCE THIS IS THE REFRACTED RAY TWO RAYS MUST BE POPPED TO GAIN ACCESS
TO THE SOURCE RAY.

pop (tempiraytype,

tempirayorigin__x, tempi ray origin_y, tempt ray origin z,
temptlrayvectorx, templ ray vector y, templrayvectorz,
templraystype,
tempt-intersection flag,
tempi obj idx,
temp I _subobj _idx.
rempt 7part _dx,
rempt _polygon dx.

tempi _intersectionx, tempi _intersection _y, templintersection z,
tempi d,
templ_Itr, templ_I_tg, temptlI_tb,
templ_I_sr, templI_sg, tempt _Isb,
ray-top );

pop (temp2 ray type,
temp2 ray origin _x, temp2 ray _origin y, temp2 ray origin _z,

110



temp2_ray-vector-x, temp2 ral' vector y. temp2_ray-vector z,
temp2_ray-stype,
temp2_intersection-flag,
temp2_obj_idx,
temp2_subobj_idx,
temp2 _cpart _idx,
temp2_poiygon-idx,
temp2_-intersection _x, temp2_intersection-y, tem p2 intersect ion 2.
temp2_d,
temp2_I-tr, temp2_1_tg, temp2_I tb,
temp2_-I -sr, temp2_I_sg, temp2_I sb,
ray-top )

{SET INTENSITY IN THE SOURCE RAY.
temp2 I tr a-intensity-red;
temp2_I-tg o-intensity -green;
9emp2_I_tb o-intensity-blue;

RESTORE STACK. }
push( temp2_ray-type,

temp2_ray-origin-x, temp2_-ray -origin y, temp2_-ray -origin _z,
temp2_ray-vector-x, temp2_ray_vector-y, temp2_ray vector-z,
temp2_ray stype,
temp2 intersection -flag,
temp2_obj-idx,
temp2-subobj-idx,
temp2_-cpart-idx,
temp2 polygon-idx,
temp2 -intersection _x, temp2_-intersection _y, temp2 intersection z,
temp2_d,
temnp2_I 'tr, temp2_I_tg, temp2_I_tb,
temp2_I-sr, temp2_I_sg, temp2_I-sb,
ray-top

push( templ 1_ray-type,
tempi -ray -origin -x, tempi _ ray -origin-y, tempi -ray -origin _z,
tempi-ray-vector-x, tempi _ray-vector-y, tempi-ray-vector-z,
ternpl-ray-stype,
tempI -intersection -flag,
tempi-obj-idx,
tempi -subobj-idx,
teMDi - part -idx.
.'empi __,ohygon _ Idx,

empi nmtersecron _x. ,empl ;ntersection J, trempi Jntersection .

tempi-d,
tempi _I -tr, tempi _I tg, temp _I _tb,
ternpl _I-r, tempi _I2g, tempiI-sb,
ray -top

end;

SINCE THE RAY SENT INTO THIS PROCEDURE IS NO LONGER NEEDED IT IS



DISCARDED, HENCE THE RAY COUNT NEEDS TO BE DECREMENTED.

io ray -generation -number :=io -ray -generation -number - 1;
end;

end;

{.PAJ

*CALLED FROM: MAIN
*CALLS TO : PUSH, POP, CALCULATEINTENSITY
*DESC : Used to calculate intensity at node of stack storage is

* exceeded.
*INPUT : Incomplete ray data record, this ray can not be continued

* because there is no room on the stack for it. Also pointers
* to the fight array and object array.

*OUTPUT : Intensity, I t or I s, is set in source ray.

procedure 16 (i d :real;
i I tr, i I _tg, iI tb :real;
ilIsr, i I sg, i _I _sb :real:
_ -num ber-of-light -sources : integer;

i ambient-r, i-ambient _g, i _ambient b :real;
iK-ar, iK-ag, iK-ab :real;
iK-sr, iK-sg, iK-sb :real;
iK-tr, iK-tg, i_K_tb :real;
iK-dr, iK-dg, iK-db : real;
iray-type :raytype;
_ ray_t op :ray-ptr;
_-light-top :light_ptr;
iobj ptr :object_ptr;

i-objphong-exp :integer;
iray-vector x,
iray-vector-y,
_ -ray _vector z :real;
S-intersection-x,
Sintersection y,
Sintersection z :real;
_surface -normal -x,
i surface -normal Y,
i _uri ace iormai z el

var, - ntensitv -red.
o -intensity-green,
o intensity -blue : real )

v ax
STORAGE FOR POPPED RAYS}

'Ntempi _ray type : raytype;
tempi _ray _origin -x,
tempi Iray -origin y,

112



temnpi _ray _o-rigin _z :real:
tempi _ ray -vector-x,
tempi _ ray -vector-y,
tempi -ray -vector z : real;
tempi _ray -stype :raytype;
temil intersection flag -boolean:
tempi _ bj idx.
tempi -subobj-idx,
tempi _cpart -idx,
temp I_plygon idx : integer;
tempi -intersection_x,
Lemp I -intersection _y,
tempi1 intersection z :real;
tempi _d :real;
tempi_-I -tr, tempiI-tg, tempi _I-tb :real;
templi Isr, tempi _I2g, tempiI _sb :real;

temp2 _ray _type : raytype;
emp2 _ ray _')rigin _x.

temp2_ray origin y,
temp2_ray -origin _z : real;
temp2_-ray _ vector-x,
temp2 _ ray _ vector v,
temp2_-ray -vector z : real;
temp2_ray -stype : raytype;
temp2_-intersection-flag :boolean;
temp2_obj idx,
temp2_-subobj-idx,
temp2_-cpart-idx,
temp2_-polygon-idx :integer;
temp2_-intersection _x,
temp2_intersection-y,
temp2_intersection z :real;
temp2_d :real;
temp2 _ I tr, temp2_I-tg, temp2_I_tb :real;
temp2_I-sr, temp2_I_sg, temp2_I_sb real;

begin

{~COULD INSERT TREE EXTENSION PROCEDURE ~

CALCULATE RED COMPONENT OF LIGHT k
A caiculiate Jnterlsicv( red.

iambient-r,
I-1tr,

1i1-sr,
iray-vector-xi-ray _vector-y, i-ray _vector-z,
inumber-of-light _sources,

i-Kar,
i-K-sr,

113

.- 'L



i K dr.
i -obj-phong-exp,
i intersection _x,

i - ntersection-y,
_intersection-z,
i surface -normal1_x.
isurf ace normai v.

i-surface -norml & z.
i-obj-ptr,
i light-top,
o-intensity-red )

{CALCULATE GREEN COMPONENT OF LIGHT}
calc ulate-in tensity( green,

id,
iambientjg,

i I tg,
ilIsg,
i ray -vector _x. i -ray -vector Y, i -ray -vector _z.
inumber -of -light -sources,

i K ag,

i -K tg,
i Kdg,
i -obj-phong-exp,
iintersection-x,
i-intersection-Y,
_-intersection-z,
isurface normal x,
isurface-normal-y,
isurface normal-a,

i-obj_ptr,
i-light-top,
o -intensity green);

CALCULATE BLUE COMPONENT OF LIGHT)
calculate-intensity( blue,

i-d,
iambient b,

i I tb,
ils2b,
iray vector x. i av vector v,. ray vector z,
t iumoer d light _,ources.

r\ ib.

i K sb,
i K tb,
i-Kdb,
i -obj-phong-exp,
i-intersection _x,
i-intersection-y,
i intersection _z,
i surface -norma & x,

114



isurface-normal-y,
s-urface-normal-z,

i-obj _ptr,
i-light-top,
o intensity -blue);

if (i-ray-type = reflected) then begin

IF INPUT RAY IS A REFLECTED RAY THEN ONE RAY MUST BE POPPED TO GAIN
ACCESS TO IT'S SOURCE RAY.

pop (tempI -ray _type,
tempi _ray_origin-x, tempi -ray _origin -y, tempi _ray-origin-z,
tempi _ray_vector-x, tempi-ray-vector y, tempi-ray-vector-z,
tempi-ray~stype,
tempi -intersection -flag,
tempi obj _idx,
tempi _subobj idx.
tempi-cpart-idx,
tempi _polygon -idx,
tempI -intersection -x, tempi -intersection _y, tempi Iintersection -z,
tempi _d,
tempi _I-tr, tempi _I-tg, tempi _I-tb,
tempiI-sr, tempi _I-sg, tempi _I2b,
iray-top )

(SET Is IN SOURCE RAY}
tempi _I-sr := o-intensity-red;
tempi _ I - g o -intensity -green;
tempi _I-sb a-intensity -blue;

{RETORE STACK. I
push( tempi -ray Wtype,

tempi _ ray -origin x, tempi ray-origin-y, tem pi-ray -origin 2,
tempi _ ray -vector x, tempi-ray-vector-y, tempi-ray-vector-z,
tempi ray~stype,
tempt-intersection-flag,
tempi-obj-idx,
tempi -subobj-idx,
tempi _cpart _idx,
tempt nolvgon _idx.
:emD i ntersertion _v, tempt I fltersection z, .eMDL tersection J.

temnpi d.
tempt _ I -tr, tempi _I-tg, tempi _I-tb,
tempt _I-sr, tempi _I-sg, tempt _I-sb,
ray-top

end
else begin

115



IF INPUT RAY IS A REFRACTED RAY THEN TWO RAYS MUST BE POPPED FROM THE
STACK TO GAIN ACCESS TO IT'S SOURCE RAY.

POP (tempi -ray -type,
tempi ray -origin -x, tempi _ ray _ origin _ y, tempi _ray _origin z,
tempi -ray _vector x. tempi -ray _vector _y. tempi -ray _vectu. _z.
CeM~ji._raystype,
tempi -intersection -flag,
tempi obj idx,
tempil-subobj-idx,
templ-cpart-idx,
tempt-polygon -idx.
tempi _ntersection x, tempi _intersection y, tempi intersection z,
tempi-d,
tempi _I-tr, tempt _I-tg, tempt _I-tb,
tempt _ I -ar, tempt _I-sg, tempt _I-sb,
ray-top )

pop I temD2 _ray -type.
texnp2_-ray -origin-x, temp2_-ray _origin J, tem p2_-ray -origin _z,
temp2_-ray -vector-x, ternp2_ray-vector_y, temp2_ray_vector-z,
temp2_ray-stype,
temp2_-intersection _flag,
temp2 obj idx,
temp2 -subobj-idx,
temp2_cpart_idx,
temp2_-polygon -idx,
temp2_intersection-x, temp2_intersection-y, temp2 intersection _z,
temp2_d,
temp2_I-tr, temp2_I_tg, temp2_I_tb,
temp2_I_sr, temp2 _I_sg, temp2_I_sb,
rvy _top )

{SET THE It FIELD IN THE SOURCE RAY}
temp2_I tr o intensity _red;
temp2_I tg o intensity _green;
temp2_I _tb o-in tensity -blue;

RESTORE THE STACK}
push( temp2_ray-type,

temp2_-ray -origin -x, temp2_-ray -origin _y, temp2_-ray _ origin _ z,
emp2 -av v.ector x. ternt)2 avvecror .''eMD2 7&V Vector

* pemr)2 nrterserion .Iav.

temp2 obj idx,
temp2_subobj idx,
temp2_cpart _idx
temp2 _polygon _idx,
temp2 _intersection x, tem p2 -intersection y, temp2 -intersection _z,
temp2_d,
temp2 _I_tr, temp2 _I tig, temp2 1 tb,
temp2 _I sr, temp2_ I sg, temp2 I -sb,

V1

*-e wr ee d e e*~*j4~,~ ~ "oc! Z ' &%4



ray-_Lop

push( tempi _ray type,
tempi-ray-origin-x, templ-ray-origin-y, temp1 Iray _origin _z,
tempi _ray-origin-x, tempi Iray -origin y, tempi 1_ray _origin _z,
tempi _ray -stype.
rempi fitersection _lag,
tempilobj _idx,
temipi subobj -idx,
temp I-epart-idx,
tempi polygon -idx,
tempi :ntersection Xc, tempi intersection v, cempi _intersection z.
tempi-d,
tenpil Itr, tempiI-tg, tempi _I-tb,
temipl Isr, tempiI-sg, ternpl _I sb,
ray-top

end;

And:

(.PA)

.. .. WSSS MAIN Sfl**S4*S4tEs*z.*}

begin
{INPUT FILE)}

assign (sysin, 'picture5.pas');
reset (sysin);

{OUTPUT FILE}
assign (outfile, 'picO.dta');
rewrite (outfile);

SET UP COUNTERS
obj cntr 1
subobj cntr 1
light _cntr 1;
'Dart, _ ntr t:
-)oiv -ntr = I

{CREATE POINTERS TO RECORDS}
new(obj curr);
new(subobj -curr);
new(cpart -curr);
new (light -current);
new (poly-curr);

117

dip~



.. READ IN DATA FILE..

{READ IN PICTURE RECORD}
readin (sysin, picture.view position _x);
readin (sysin, picture.view _position _y);
readin (sysin. picture.view -Position _z):
7eadin sysin, Picture. .oackgrouna -oiorr!
readln (sysin. Dict ure. background _color Y);
readin (sysin, picture. background -color-b);
readIn (sysin, picture.screen max -X);
readin (sysin, picture.screen-rnax-y);
readln Isvsin. picture.ambient _r'):
readIn (sysin, picture. am bient-g);
readIn (sysin, picture.ambient b);
readin (sysin, pictureno zero);
readIn (sysin, picture. global-refraction _index);
readin (sysin, picture.num -lights);
picture.lights :=light-current;

while picture.n um-lights > 0 do begin

{READ IN LIGHT DATA)}
readin (sysin~light _current ^Ihight _cntr '.I _r);
readir i sysin, light -current "ilighL _cntr;.Ig;
readln (sysin,light current ^[light _cntr!.1_b);
readin (sysin,light current ^[light _cntrj.li:gh t _x);
readin (sysin,light -current ^[light -cntrj. light _y);
readin (sysin,light current '[light_cntrl.light_z);
readin (sysin,light -current ^[light _cntrl dimension 1);
readin (sysin,light -current Ilight -cntr] .dimension2);
light _ cntr :=- light _cntr + 1)

picture.num-lights := picture.num -lights - 1;
end;,
readin (sysin, picturenum _objs);
object _ loop -cnit := picture. num _objs;
pictureobjects := obj _curr;

while object loop cnt > 0 do begin
{READ IN OBJECT DATA )

readin (sysin, obj-curr^[obj cntrJ.opcode);
roadln (svsin. cobj _curr ^obj crntr'.obj _bsphere -radius):
-pauln 'zvsin. )61 tjrr )n itr:_ubj 6spn*ere 'c):

-,fl vsin. orj :irr )j -ntr' )rj -)sDhere v!
readin (sysin, opojcurr oo[o I cntr,.ooj Ospniere_z);
readln (sysin, obj -curr '[obj -cntrl. num -sub -objects);
subobj _ loop -cnit := obj _ curr'J[obj cntri.numn-sub-objects;
picture Objects ^[obj entri-sub-objects :=subobj curr;

while -subobj _loop cnt > 0 do begin
{READ IN SUBOBJECT DATA )

readln (sysin, subobj-curr^ [subobj _cntrJ .subobj -type);

118

. . . . ...... .... k



readin (sysin, subobj curr -subobj _cntrI.sub bsphere -radius);
readin (sysin, subobj -curr-Isubobj cntrj -sub bsphere x);
readln (sysin, subobj -curr -[subobj -cntrl .sub _bsphere _y);
readin (sysin, subobj Curr- subobj c ntrj .su b osphere2z);
readin (sysin, subobj curr-[subobj cntrl .nurn common parts);
cpart _loop-cnt :=sbobj _currifsbobj _cntrj.-numco onprs
picrureobjeccs - obj _cntr,.sub _ bjects s uobj -,,ntr'. common -:arcs

cpart-curr;

while-cpart loop cnt > 0 do begin
( READ IN COMON ~fPART DATA I

readln(sysin, cpart _ curr - cpart cntrl.K an,;
readln(sysin, cpart -curr - cpart cntri.K ag);
readln(sysin, cpart _ curr - cpart -cntrl.K -ab);
readln(sysin, cpart-curr -cprt-cntrJ.K-dr);
readln(sysin, cpart -curr 1cpart -cntr].K -dg);
readln(sysin, cpa~rt _curr -cpart-cntr.K-db);
readln(sysin, cpa~rt-curr [cpart-cntrJ.K-sr);
readln(sysin, cpart _curr I cpart _cntr>.K sg);
readlntsysin, cpart -curr 'jcpart -cncrj.K -sb);
readln (sysin, cpart -curr ^ Icpart -cntrj .K-tr);
readln(sysin, cpart-curr fecpart cntr1.K-tg);
readln(sysin, cpart _curr ^'cpart-cntr.K _tb);
readln(sysin, cpart -curr ̂  cpart cntri.obj -refraction -index);
readln(sysin, epart-curr -cpart cntrf .obj _phong-exp);

{CHECK TO SEE IF SUBOBJECT IS A SPHERE OR A POLYGONAL OBJECT}
if (subobj-c urr ^[subobj -cntrl.subobj -type = 1) then begin

readln(sysin, cpart -curr ^[cpart -cntr] n um _polygons);
poly-loop-cnt :=cpart-cu" -[cpart-cnitri -num -polygons;
picture.objects ^ obi cntrj sub -objects -[subobj -cntr].

common parts -[cpart cntri. polygons := poly-curr;

while poly loop cnt > 0 do begin
{READ IN POLYGON DATA }

readin (sysin, poly -curr ^[poly cntr]. n urn -vertices);
vertice-loop-cnt :=poly -curr ^Ipoly-cntr. num -vertices;

while vertice loop cnt > 0 do begin
{READ IN VERTICE DATA -)

readln(sysin. poly -curr ̂ polv ':ntr1.vPrtice Xcvertice -cntri);
7eaulnisvsin. Doiy p-urr poly _:fltr!.vertlce y ertice -r)
-eadinisysin. -)oiv .2lirr poty - nir,.vortice jverticc -cntr-;
verice cntr :=vercice cntr -r- 1;
vertice-loop-cnt := vertice loop cnit - 1;9

end;
vertice cntr :=1;
readln(sysin, poly _ curr [poly -cntr] .surface -normal _ x);
readln(sysin, poly _curr ^poly -cntrj .surface -normal _ y);
readln(sysin, poly _ curr ^[poly -cntrj .surface-normal-z);
poly _cntr poly-cntr + 1;



polyloop cnt := polyloop cnt - I

end;
polycntr 1;
new(polycurr);

end;IFI
,. cpart-cntr := cpart cntr - ;

cpart-loop-cnt := cpartloopcnt - I

end;
cpartcntr 7= 1:
new(cpartcurr);
subobj-cntr := subobjcntr + 1;
subobj-loop-cnt := subobjloopcnt - I

end;
new(subobj-curr);
subobj _cntr = :
obj _cntr := obj cntr -r 1;
objectloopcnt := objectloopcnt - 1

end;

{.PA}

{ SET RAY STACK POINTER }
ray top := nil;

pixel z := initial pixel z;

{ RASTER SCAN LOOP }
for pixel y := I to picture.screen max._y do begin

for pixel x := I to picture.screen max _x do begin

{ DETERMINE VIEW RAY DIRECTION }
x pixel_x - picture.view _position _x;
y pixely - picture.view-position _y;
z pixel _z - picture.view _position _z;
dist := sort(sor(x - sqr(y) - or z) :

N)'3NVERT I T TO \ 'NI 'ECTOR
inltx X x ist:

unity y / dist;
unitz z / dist;

{INITIALIZE VIEW RAY}
initialraytype := view;

initialrayorigin _x pixel x;
initialray-originy pixely;

initialray _origin _z pixel z;

120

46 ks *%C ~~*
/N-



initial ray vector x unitx:
initial -ray vector v := unity:
initial _ray _vector z unitz;
initialray _stype := none;
initial intersection _flag := false;
initial -obi idx := 0:
initiai _uoobj dx =):

initial 2:part idx 0;
initial polygonidx := 0;
initial intersection x 0.0;
initial -intersection-_y := 0.0;
:nitial ntersection z 0.0:

initial-d 0.0;
initial-I tr 0.0;
initialI tg =0.0;
initial I tb = 0.0;
initial I sr 0.0;
initial I sg = 0.0;
nttiaij _i = 0.0:

ray generation number := 0;

pusht initial ray type,
inuaitilray _origin _x,initiai -ray _origin _y,inital ray _origin _z,
initial ray vector x,initial ray vector y,initial ray vector z,
initial ray _stype,

initial intersection flag,
initial obj _idx,
initial subobj _idx,
initial cpart idx,
initial polygon _idx,
initial intersection x,
initial intersection _y,
initial in tersect ion _Z,
initial-d,
initialI tr, initial_Itg, initial_Itb,
initial I sr, initial I sg, initial _Isb,
ray-top

{ BEGIN RAY TRACING LOOP }
9 n)eat

-op ,urrenr :xy *ype.

current _ray _origin _x,current _ray _origin _y,current ray _origin.z,
current _ray _vector x,current ray vector y,current -ray _vector z,

currentraystype,
current intersection -flag,
current obj idx,
current-subobj idx,
current cpaxt_idx,
current _polygonidx,

121

n" ,_ran



current intersection X.
current intersection _y.
current intersection Z,
current-d,
current _tr, current I tg, current I tb,
'urrent 1 sr. current I -9, current I sb.

V -top

if (current._intersection-flag) then begin
{

IF THIS FLAG IS SET THEN THIS RAY HAS ALREADY BEEN THROUGH THE RAY
TRACING PROCESS AND HAS HIT AN OBJECT.

cprtpath := picture.
objects I[current obj idx].
subobjects ^[current subobj _idx[.
common_parts;

subobj path - picture.
objects ^[current _obj _idxj.
sub-objects;

if subobj _path " current _subobj _idxi.subobj _type = 0 then begin
{

IF THE SUBOBJECT TYPE IS A SPHERE THEN THE SURFACE NORMAL AT THE POINT
OF INTERSECTION MUST BE CALCULATED SINCE IT CAN NOT BE STORED. THE SURFACE
NORMAL IS DETERMINED FOR THE PLANE TANGENT TO THE SPHERE AT THE
INTERSECTION POINT.
I

surface normal x := current intersection x-
subobj path [currentsubobj idx[.
sub-bspherex;

surface normal y := current intersection y-
subobjpath "[currentsubobj idx].
sub-bspherey;

surface normal z := current intersection z-
subobj path "[current_subobj idx.
sub-bsphere z;

list - crtf sor(surface normal xl -

-qrl surface format :i -

icmr surface _normal _ i)):

{ THIS RAY IS THEN CONVERTED INTO A UNIT VECTOR }
surface normal x surface normal x / dist;
surface-normal-y surfacenormaly / dist;
surface normal z := surface normal _z / dist;

end
else begin

122

• ., ,, . .. . . . ,,, •,. . . - , , :,, . . -,:-, -. ,. .. - ,, . ,....-... -,. .. . ., .- %



IF THE SUBOBJECT IS A POLYGONAL OBJECT THEN THE SURFACE NORMALS FOR EACH
OF THE POLYGONS OF WHICH IT IS COMPOSED IS RETRIEVED FROM IT'S RECORD.

surface -norma & x :=cpart pach jcurrent _cpart _idx,
polygons ^ [current -polygon idx).
surface -normal _x:

surface-normal-y :=cpart _path^jcurrent _c part _idx
polygons ^[current -polygon idxi.
surface-normal-y;

surface normal z :=cpart path ^Icurrent _cpart _idx,.

polygons -[current -polygon idx[.
surface normal z;

end;

PROCEDURE FOR DETERMINING THE INTENSITY OF LIGHT AT EACH INTERSECTION
POINT.

12 (current -d,
current- _I tr, currentI -tg, current _ I -tb,
current-I _ sr, current I _g, current I tb,
picture.num -lights,
picture.ambient r, picture.ambient _g, picture.ambient b,

N-..' cpart path^[current cpart _idx].K &r,
cpart path [ current cpart _idxj. K-ag,
cpart path ^[current -cpart _idx.K_ab,
cpart -path ^[current -cpart -idx] .K -dr,
cpart path ^[current_cpart_idx[.K_dg,
cpart path '[current -cpart -idx.K-db,
cpart -path ^[current -cpart -idxl.K sr,
cpart-path ^1current-cpart_idx[.K-sg,
cpart -path ^[current - part -idx].K -sb,

cpa pahIcurrent-cpart-idx[.Ktr,
cpart -path ^[current _ cpart -idx[.K -tg,

cpr pat Icurrent -cpart-idx[.~ b
current -ray-type,
ray top,
picture.lights,
picture.objects,
cpart _ path ^ current _ecpart -idx'.obj Dhong -,xro.

urrenc _-av -,ecior <

*urrent. -av -,P~-ror
current-ray-vector-z,
current -intersection _x,
current -intersection _y,
current -in tersec tion _z,
surface -normal _x, surface -normal _y, surface normal z,
ray generation number,
intensity-_red,
intensity _green,

123



intensity -blue),

end
else begin

{CHECK FOR POSSIBLE INTERSECTIONS OF CURRENT RAY WITH OBJECTS IN SCENE}
*check -for Linterseccion(currenc -ray _veccor,,

current -ray _vector _y,
* current -ray -vector-z,

current -ray -origin -x,
current-ray-origin-y,
current _ray _origin _z,
picture.objects,
current intersection x,
current _intersect ion-y ,
current intersection z,
current~obj-idx,
current subobj idx,
current CDart .;dx,
currenE-polygon -idx,
current -intersection flag);

SET UP PATHNAMES TO USE AS SHORTHAND
subobj-path :=picture.

objects ^[current-obj _idxj.
sub-objects;

cpart-path :=picture.
objects ^[current -obj _ idxj.

* sub-objects^[current subobj -idx[.
common-parts;

if subobj _path^ [current - ubobj-idxl.subobj -type =0 then begin
surface -normal -x :=current -intersection x X

subobj path [Icurrent -subobj -idx[.
Ssub bsphere x;

*surface -normal-y :=current -intersection -

subobj -path ^[current -subobj -idxj.
sub -bsphere-y;

*surface -normal -z :=current -intersection -z-
subobj _ path '-current _subobj -idxl,

116 -sDhere ,

list = r i "Irtl qrsurt .ace riormai <) -

sqrtsurface normaily)
sqr (surface -normal Az));

surface normal x :=surface normal x /dist;
surface normal y surface normnal y /dist;
surface -norm al Z surface normal z /dist;

end
else begin

124



iurface -normal -x :=cpart _path 'current _c part _idx!.
polygons - fcurrent -polygon _idxl.
surface -normal -x.

surface -normal -y :=cpart-path ^[current -cpart -idx}.
polygons Mfcurrent -polygon -idxl.
:surface -norm ai -y;

surface normal z :=cpart_path ^[current-cpart-idxl.
polygons ^[current _polygon -idxj.
surface-normal-z;

if (current intersection flag) then begin
IF THERE HAS BEEN AN INTERSECTION THEN CONTINUE TRACING THE RAY)}

if (stack-exceeded( ray -generation _number,
maximum -size _of -stack)) then begin

[F THE STACK IS ALREADY FULL THEN C ALCULATE INTENSITY AT LAST NODE

16 (current -d,
current _I tr, current _I tg, current I _tb,
current I sr, current I _sg, current I tb.
picture. n um -lights,
picture.ambient r,
picture. ambient g,
picture. ambient -b,
cpart path ^[current-cpart-idxj.K-ar,
cpart__path -[current -cpart idxl .K -ag,
cpart path ^[current-cpart-idx].K-ab,
cpart path ^Icurrent -cpart-idx].K -dr,
cpart pah*cren~pr~dx].K dg,

_prtpath ^[current -Cprtidx1 Kdb
cpart path ^[current -cpart -idxl.Ksr d,
cpart path ^[current-cpart-idxj.K-sr,
cpart-path ^1current-cpart-idxl.K-sb,
cpart path ^[current-cpart-idxl.K-tr,

cpart-path ^current-cpart-idx].K-tg,
cpart path ^[current-cpart-idxl.K-tb,
current -ray _type,
ray _top,
oicture. lights.

-Dart -)a~n ourrent p-Tarr Ax,.o u :j ng -xp.

current -ray _vector-x,
current _ray _vector-y,
current _ray _vector-z,
current -intersection -x,
curn -itreciny

current intersection _y,

surface normal x,
surface -normal -y,

125

9%



surface normal z.
intensity red,
intensity _green,
intensityblue)

end
else begin

IF THERE WAS AN INTERSECTION AND THE STACK WAS NOT FULL THEN CALCULATE
THE DISTANCE BETWEEN THE RAY'S ORIGIN AND POINT OF INTERSECTION AND PLACE
THE RAY BACK ON THE STACK.}

current d := (sqrt(sqr(current _intersection x -
current ray originx)) -r

(sqr(current intersection x -
current rayoriginx)) +

(sqr(current _intersection x -

current _ray _origin _x));

push( current ray-type,
current ray origin-x,
current ray origin-y,
current _ray _origin _z.

current _ray _vectorx,
current _ray vector, y,
current _ray vectorz,
current ray stype,
current intersection flag,

current obj idx,
currentsubobj idx,
current cpart-idx,
currentpolygon idx,
current intersection x,
current -intersection-y,

current intersectionz,
currentd,
currentI tr,
currentI tg,
current I tb,
current I sr,
current _Itg,
current I 2b.
-ay r~oo

{ DETERMINE IF A REFLECTED RAY WAS CREATED AND IF SO CALCULATE IT }
calculate reflected ray (current _rayvector x,

current _ray _vector y,
current ray vector_z,
surface normal x,
surface-normal-y,

surface normal z,
reflectedrayx-

126

• • ' *, , " S ,' , • '' S ' " . . . . ' • " *" " - -" "



reflectedrayy,
reflected -ray z,

reflected-ray );

{ DETERMINE IF A REFRACTED RAY W kS CREATED AND IF SO CALCULATE IT }
calcuiate refrac ted ray (current ray vector _x.

current ray vectory,
current ray vector z,
surfacenormal x,

surface-normal-y,
surface normal z,
cpart_path"[current-cpart_idx].
objrefraction index,

picture.global refraction index,
refracted -ray -x,
refracted _ray y,
refracted _ray z,
refracted ray

raygeneration number := ray generation number + 1;

if reflectedray then begin

{
IF A REFLECTED RAY WAS CREATED THEN INITIALIZE IT AND PUSH IT ON THE

STACK.
)

sourceray._type := current ray -type;

dist ( sqrt(sqr(reflected _ray _x) +
sqr(reflected ray.y) +
sqr(reflected ray z)));

{ CONVERT REFLECTED RAY TO A UNIT VECTOR }
unitx reflected ray x / dist;

unity reflected ray y / dist;
unitz reflected_ray_z / dist;

initial ay _type := reflected;
initial ray origin x current intersection _x;
initial ray -origin v- current intersection

initial ray origin :urrenc .nrersection
- initial ray ¢ector'< inhit:

initial ray vector y unity;
initial ray _vector z unitz;
initial raystype source -ray _type;
initial._intersection -flag := false;
initial-objidx 0;
initial subobj idx 0;
initialcpartidx := 0;
initialpolygon idx : 0;

127

a. 1-I"



initial -intersection x O.0:
initial intersection y 0.0;
initial _intersection z 0.0;
initial d 0.0;
initialI tr 0.0;
initial _I _tg :~0.0:
ifliciai I tb J.0

initial I sr :~0.0;
initialI sg :~0.0;
initialI-sb 0.0;

push( initial ray-ty pe,
initial-ray -origin _x,
initial -ray-ori gin y,
initial-ray -origin _z,
initial-ray-vector-x,
init ial -ray _vector J,
initial -ray _ vector _z,
initial -ray i3tvpe.
initial -intersection -flag,
initial obj idx,
initial -subobj -idx,
initial-cpart _idx,
initial -polygon -idx,
initial -intersection _x,
initial intersection-y,
initial -intersection _z,
initial-d,
initial I tr, initial I tg, initial _I-tb,
initiall1sr, initial-lsg, initialI1sb,
ray-top

end;

if refracted-ray then begin

IF A REFRACTED RAY WAS CREATED THEN INITIALIZE IT AND PUSH IT ON THE
STACK.

souirce rav type :=current rav tvTe:

iisL ;qIrt~swrrpfracred -ray -x!

sqr(refracted _ray y) +i
sqr(rerracted _ray _z)));

{CONVERT IT TO A UNIT VECTOR )
unitx refracted ray _x /dist;
unity :~refracted -ray_y /dist;
unit: : refracted _ray _z /dist;

128



initial _ray type refracted;
initial -ray _origin _x current -intersection x;
initial -ray -origin _ y current -intersection _y;
iflitial _ray _origin z current intersection-z;
initial -ray -vector x unitx;
initial _ray _vector Y unity;
initiai rav vector == initz
initial _ ray _sitype source -ray _type;
initial -intersection -flag :=false;
initial obj idx .0;

initial-Subobj-idx 0;
initial -cpart -idx 0:
initial polygon idx 0;
initial -intersection x 0.0;
initial -intersection -y 0.0;
initial intersection Z 0.0;
initial d 0.0;
initialI _tr 0.0;
initial _I tg 0. 0;
initiaii-Lb J.O;
initialI_-sr 0.0;
initialI -s g 0.0;
initial I -S' 0.0;

push( initial-ray _type,
init ial ray -origin _x,
init ial-ray -origin y,
initia &-ray -origin _z,
initial ray-vector-x,
initied -ray -vector J,
initial ray-vector-z,

'Vinitial ray _stype,
initial -intersection -flag,
initial obj-idx,
initial subobj _idx,
initial -cpa~rt idx,
initial polygon idx,

initil intrsecton x
initial -intersection _y,
initial intersection y,

initial d,
initial I _r. initial 1 _tg, initial -1 _tb.
nitiat . r. nital -i i nitiat i i.

-av 'or)

end;

erd;
end

else begin

129

- - -- .A



if (c urre n t '' '2. vo ie% f h n ,Pli

IF THERE WAS NO INTf;RSECTIo\ kN1) V'HF CI H RENT V AN IS THE %VIEWk RAY, THEN SET
THE OUTPUT INTENSITY TO EIlE BACK.RUI \D) INTENSIT\i

intensity r-d ,icturo- beick~rrnlr )Ir r
.nt sirl N vre )wfrurp -4, Kgzr'inli ''' wr

intensivy blue picture bacKground -oior b

end;
end;

end;

until (stack empty (ray _top));
{OUTPUT THE FINAL INTENSITY)}

display _pixel( intensity-_red,
intensity _green,
.intensity -blue.

pixel-x,
pixel y,
pixel _z

end
end:

close (sysin);,
close (output);

end. { MAIN}

130 *'



APPENDIX B - INPUT FILE

100 ,.xi view position PICTURE
100 /y/
1000 /z/
0.0 /red/ background light
0.0 /green/
1.0 /blue/
200 /x/ screen
200 /y/
1.0 /red/ ambient intensity
1.0 /green/
1.0 /blue/
1.0 /global refraction index/
1 num lights/
1.0 /red/ intensity of light source
1.0 /green/
1.0 /blue/
0.0 /x/ position of light source
20.0 /y/

0.0 /z/
0.0 /dimension1/
0.0 /dimension2/
3 /num objects/
9999 /opcode/ { OBJECT 1 }
35.0 /radius of object's bounding sphere/
110.0 /x/ center of bounding sphere
0.0 /y/
-50.0 /z/
1 /number of subobjects/
1 /subobject type/ {SUBOBJECT 1}
35.0 /radius of subobjects bounding sphere/
110.0 /x/ center of bounding sphere
0.0 /y/
-50.0 /z/
1 /num-common-parts/ ( COMMON PART 1 }
0.8 /Ka-red/ ambient coefficient

' 0.0 /Ka-green/
). (. Ka-oiie
JA Kdi-re(i iiffuse 'oefficient

J.0 , Kd-green,
0.0 /Kd-blue/
0.8 /Ks-red/ specular coefficient
0.8 /Ks-green/
0.8 /Ks-blue/
0.0 /Kt-red/ transmission coefficient
0.0 /Kt-green/
0.0 /Kt-blue/

131



0.0 /obj-refracItilon- index/
200 /obj-phong-spec uhIr-exponent,'
6 /nurn-polygons/
4 /num-vertices/ {POLYGON I}
90.0 /polyl ptl/
20.0
-3.
90.0 /polyl pt2/
-20.0
-30.0
130.0 /polyl pt3/
-20.0
-30.0
130.0 /polyl pt4/
20.0
-30.0
0.0 /polyl surface normal/
0.0
1.0
4 /num-vertices/ {POLYOGN 2
90.0 /poly2 ptl/
-20.0
-30.0
90.0 /poly2 pt2/
-20.0
-70.0
130.0 /poly2 pt3/
-20.0
-70.0
130.0 /poly2 pt4/
-20.0
-70.0
0.0 /poly2 surface normal/
-1.0
0.0
4 /num-vertices/ {POLYGON 3)
130.0 /poly3 ptl/
20.0
-70.0
130.0 /polyS pt2/
-20.0
-70.0
)0.U poly:; pt3

-70.0
90.0 /poly 3 pt4/
20.0
-70.0
0.0 /poly3 surface normal/
0.0
-1.0
4 /num-vertices/ {POLYGON 4}

132



130.0 polv4 ptL'
20.0

-30.0
130.0 , poiy4 pt2/
20.0
-70 0
)0.0 poiy4 pG3.

20.0
-70.0
90.0 /poly4 pt4/
20.0
-30.0
0.0 i'poly 4 surface normal/
1.0
0.0
4 /num-vertices/ { POLYGON 5 }
130.0 /poly5 ptl/
20.0
-:10. 0

130.0 /poiy5 pL2,
-20.0
-30.0
130.0 ,poiy5 pL3J
-20.0

-70.0
130.0 /poly5 pt4/

20.0
-70.0
1.0 /poly5 surface normal/
0.0
0.0
4 /num-vertices/ { POLYGON 6 }
90.0 /poly6 ptl/
20.0
-70.0

90.0 /poly6 pt2/
-20.0
-70.0
90.0 /poly6 ptS/
-20.0
-30.0
90.0 poly6 Ot4

-1.0 /poiyo surface normail
0.0
0.0
9999 /opcode/ * OBJECT 2 *
175 /radius of the objects bounding sphere/

100.0 /x/ center point of the bounding sphere
-100.0 /y/
-100.0 /z/

133



I num-subobjects
j I I subobject-type! { SUBOBJECT I }

175 radius of subobjects bounding sphere'
100.0 /x, center of bounding sphere
-100.0 /y!
-100.0 'z'

numoer .ommon parts, I ,,)MM(O N ? kR ' r  -
0. 0 red, Ka ambient coefficient
0.7 /green/
0.0 /blue/
0.0 /red/ Kd diffuse coefficient

S% !." '- reen
% 0.0 /blue

0.8 / red/ Ks specular coefficient
0.8 /green./
0.8 /blue/
0.0 /'red/ Kt transmission coefficient
0.0 /green/
1).0 blue,

0.0 /objects refraction index/

200 /Phong's specular exponent/
1 /number of polygons/
4 number of vertices' POLYGON I
0.0 poiyl ptL,
20.0
-200.0
0.0 /polyI pt2/
0.0
0.0
200.0 /polyl pt3/
0.0
0.0
200.0 /polyl pt4/
20.0
-200.0
0.0 /polyl surface normal/
0.99
0.1
9999 /opcode/ * OBJECT 3 *
40 ,radius of objects bounding sphere/
140 /x/ center of bounding sphere

- i.51j

iimOer )f tiOoo!pies,

0 /subobject type/
40 /'radius of subobjects bounding sphere/

140 /x/ center of boundint. sphere

30 /y/
-150 /z/
I /number of common parts/ { COMMON PART 1 }
0.5 /red/ Ka ambient coefficient
0.0 /green/

134

- - '.0



0.5 /blue/
0.5 'red'/ Kd diffuse coefficient
0.0 /green,/
0.5 /blue/
0.8 /red/ Ks specular coefficient
0.8 /green

0.8 , blue
0.0 /red/ Kt transmission coefficient
0.0 /green/
0.0 /blue/
0.0 /refraction index for object/
200 'Phong's specular exponent'

M

.°

.

135

L AS

- 4 4-



LIST OF REFERENCES

1. Rogers, David F., Procedural Elements for Computer Graphics, McGraw-Hill,
1985.

2. Cook, Robert L., Porter, Thomas, and Carpenter, Loren, "Distributed Ray
Tracing," Computer Graphics, v. 18, no. 3, pp. 137-145, July 1984.

3. Falby, John S., A Data Structure for a Multi-Illumination Model Renderer,
Master's Thesis, Naval Postgraduate School, Monterey, California, December
1986.

4. Whitted, Turner, "An Illumination Model for Shaded Display,"
Communi,'ations of the AC.'vf. v. 23. no.6. pp. 343-349. June 1980.

5. Kay, Douglas S., Transparency, Refraction and Ray Tracing for Computer
Synthesized Images. Master's Thesis. Cornell University, Ithaca. New York.
January 1979.

6. Kay, Douglas S., "Transparency for Computer Synthesized Images,"
Computer Graphics, v. 13, pp. 158-164, July 1979.

7. Falby, John S., Personal Communication, 1-30 November 1986.

8. Hecht, Eugene, Schaum's Outline Series Theory and Problems of Optics
McGraw-Hill, 1975.

9. Wier Maurice D., Personal Communication, 10 April - 8 May 1987.

10. Bui-Tuong, Phong, Illumination for Computer Generated Images, Doctoral
Thesis. University of TUtah. Salt Lake City. 1973.

~136



INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center
Cameron Station
Alexandria, Virginia 22304-6145

2. Chief of Naval Operations 2
Director, Information Systems (OP-945)
Navy Department
Washington, DC 20350-2000

. S Superintendent 2
Attn: Library (Code 0142)
Naval Postgraduate School
.Monterey, California 93943-5002

4. Chairman (Code 52)
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943

5. Computer Technology Curricular Officer (Code 37)
Naval Postgraduate School
Monterey, California 93943

6. Michael J. Zyda (Code 52Zk) 2
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943

7. Paul G. Smith
2i R. 3. =--

3irier. ?nnsvivania ,6001

137

- -|~~ V



~a~asnaraa.~. fl Sfl .tran ar. T 1 Wi warn. -'

a~I

~ ~ 9 W~ ~W' ~W - - ~ W~ *. W" ~?
~: ~..


