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Abstract

This paper is a survey of the field of Artificial Neural Systems (ANSs). ANSs
have a large number of highly interconnected processing elements that demonstrate the
ability to leam and generalize from presented patterns. ANSs represent a possible solu-
don to previously difficult problems in areas such as speech processing and natural
language understanding. This paper presents a brief history of ANSs, examples of
ANS models and areas where the technology has been applied. Also discussed is the
connection between Artificial Intelligence (AI) and ANS, computer architectures that
are evolving from this field, and ANS algorithms.
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1. Introduction

Speech processing, image processing and robotics are all forms ot pattern match-
ing. In each area an input is received and matched to a corresponding output.
Humans are easily able to perform these pattern matching tasks, computers, however,
are not. Computers, on the other hand, are faster than humans at algerithmic computa-
tional tasks. The contrast between the processing abilities of computers and humans
arises because each processes its informauon differenty.

Most computers process information with a single complex central processing unit
(CPU). The human brain processes information using a large number of simple pro-
cessing elements called neurons. To increase the pattern matching ability of computers
requires a different approach to processing information from the current single proces-
sor architecture. Artificial neural systems (ANSs) are neurally inspired mathematical
models that use a large number of simple processing elements (PEs). ANSs approach
the pattern matching problem using the same processing style the brain uses. PEs are
organized into layers where each PE in one layer has a weighted connection to each
PE in the next layer. This organization of PEs and weighted connections creates an
ANS. An ANS learns patterns by adjusting the strengths (weights) of the connections
between PEs. Through these adjustments an ANS exhibits properties of generalization
and classification similar to humans.

This is a survey of the field of ANS. Included is an explanation of the biological
inspiratons and mathematical foundations of ANS. The history of ANS and applica-
tions using ANS are presented as well as a discussion of how ANS relates to the field
of artificial intelligence. At the end of this survey is an overview of models and archi-
tectures used in ANS.

2. The Neuron and Neural Networks

2.1. An Explanation of the Neuron

The basic building block of the nervous system is the neuron, the cell that han-
dles intercommunication of information among the various parts of the bodv. A neu-
ron consists of a cell body called a soma and an axon or nerve fiber that connects the
cells to one another (see figure !). Junctions between neurons occur either on the cell
body or on spinelike extensions of the cell body called dendrites. The junctions are
called synapses. Nerve fibers and dendntes can be treated like insulated conductors
for ransmitting electrical signals to the neuron [Lindsay77].

A threshold umt collects inputs and produces output only if the sum of the inputs
exceeds an intemal threshold value. The neuron, in its simplest form, can be con-
sidered a threshold unit. As a threshold unit, the neuron collects signals at 1ts svnapses
and sums them together using its internal swmmer. If the collected signzl strength 1s
great enough to exceed the threshold, a signal 1s sent out from the neuron to the axons.
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Figure 1: The veuron. This figure shows the neuron body (soma)
and the components of importance 10 ANS. The syrapses aré where
signals are collecied from the dendrites. The summer is where the
signals are summed. The threshold is the internal value that must be
exceeded for outpwt. The axon is where any owtpws signals are sent.

2.2. Neurally Inspired and Mathematically Supported Models

ANS are neurally inspired models of the mind {McClelland86, Myers86,
Rumelhart86a, Rumelhart86b]. ANSs are not artempts at duplicating the mechanisms
of the mind, only attempts at duplicating the functionality of the mind. Drawing upon
an analogy from D. Rumelhart, a leader in the field of ANS from the University of
California, San Diego (UCSD), the brain is the computer hardware (mechanisms) and
ANS is the computer software (functionality). Extending the analogy, learning can be
considered programming the mind. The objective behind ANS is capturing the func-
tionality of the mind.

Constantly changing systems are called dynamical systems. Dynamical systems
are described by energy functions and probability distributions. ANSs are supported
by the mathematics of such systems. /A more precise definiion of ANSs is dynamical
systems with adaptve or selectable energy functions that can carry out useful informa-
non processing by means of initial response to imtial or continuous input {Myers86].
Rephrased, ANSs are directed graphs that are able to change when provided input.

2.3. Constraints and Assumptions About How the Brain Processes Information

Neural models are based on how the mind processes nformation information
(Aman71, Hecht-Nielsen86a, McClelland86]. The performance of the mund and the
performance of the digital computer are compared in an attempt to understand how the
mund 1s so adaptable, resilient, and powerful. ANS models incorporate information
about brain processing during modelling. The information gathered has shown the
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presence of physical brain constraints and has led to assumptions about brain process-
ing. The following sections discuss these assumpuons and constraints and contrast
thern with the digital computer.

2.3.1. Brain Speed Versus Computer Speed

Cycle ume is the ume taken to process a single piece of informaton from input
to output. The cycle time of the most advanced computers is | nanosecond,
corresponding to one clock cycle for the CPU. The average cycle time for a neuron in
the brain is 2 milliseconds [Cottrell84]. The difference in speed is S X 10°, the com-
puter is five-hundred thousand times faster.

2.3.2. Parallel Order Versus Serial Order and the 100 Step Program

The most advanced computers are able to process information one million umes
faster than the brain, yet in some respects the brain is superior. The difference
between the two machines is the processing order. The brain processes its information
in paraliel, the computer processes its information in serial. There is a constraint that
can be extended from this information called the 100 step program constraint [Feld-
man82]: If the mind reacts between 1/S and 1 second to a given stimulus (i.e. answer-
ing a true-false question) and the cycle ime of a neuron averages 2 milliseconds, then
in the best case in 100 cycle times of a neuron a decision is reached. To make a pro-
gram that processes information like the brain, that program should not exceed 100
steps. In contrast to large software programs operating in serial on conventional com-
puters, the mind operates with a massive number of small programs that execute in
parallel.

2.3.3. Number and Complexity of Neurons

The number of neurons in the brain is approximately 10" with about 10° 0 10*
connections between each neuron. An ANS should not simulate any more than 10"
neurons. Although 10" is admittedly large, the size is finite and constrained. A neural
model will require the ability to handle large numbers of processing units. In addition
to the large numbers of neurons, studies have also found that the neuron is not a sim-
ple threshold unit [Levy82]. The neuron is actually a complex computing device.
Recent studies have shown that all the computing does not take place solely inside the
soma: computations also occur outside the neuron body in the dendrites and at the
synapses. These two pieces of information remind ANS technologists that the brain 1$
a complex and [arge device and that models will eventually have to represent such size
and complexity.
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2.3.4. Connections Hold the Knowledge

The number of connections between neurons in the brain is relatvely fixed. Very
few new pathways are formed in adult brains and these are assurned to be for long-
term memory [Feldman82]. Because of the lack of new connections and the tume it
takes for new connections to form, new knowledge is believed to be captured by
changing the strengths of the connections [Cottrell84, McClelland86]. An ANS will not
need to add and remove connections to simulate the processing of the brain, only
change the strength of the connections.

2.3.5. Fault-tolerant Brain Versus Fault-intolerant Computers

The brain is very resistant to noise and rather robust in the sense that damage
(faults) to individual neurons does not degrade the overall performance of the brain
[Cortreli84). Because of this graceful degradation, the brain can be said to be fault-
rolerant. The concept of fault-tolerance supports the theory that the brain carries a dis-
tibuted representation of the world in which no one neuron carries a specific thought
or idea. Thoughts and ideas are spread out through many neurons and interconnec-
tons. Most computers are fault-intolerant. Each location in computer memory holds a
specific piece of information. If that memory location is corrupted then the knowledge
is lost, creating a fault in the system.

2.3.6. No Executive Control in the Brain

The brain does not have any specific area with executive control [Cottrell84].
Each neuron computes an output based solely on its inputs. A neuron cannot access
information held by other neurons unless it is directly connected. A neuron cannot
look around to see what the other neurons are doing. When designing an ANS only
the 1nputs to a neuron need to be considered. There is a sharp contrast in the com-
parison of the control in a computer versus the control in the mind. A computer uses
the CPU and the mind uses distributed control throughout the brain.

3. History of ANS

ANS research began in the early 1940s. The field is young and many of the peo-
ple that were instrumental in its inception are still very active in the field today. The
following sections discuss the people and accomplishments of ANS from 1943 to
present.

3.1. McCulloch and Pitts (1943)

McCulloch and Pitts made the first mathematical model of an ANS [Hecht-
Nielsen86a, Rumelhart86a]. This model showed that an ANS could compute. a theor-
ized but previously unproven concept. Although the model was able to compute. it
could not leamn.
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3.2. Hebb (1949)

D. Hebb brought learning to ANS technology [Hecht-Nielsen86a, McClelland86,
Rumelhart86a). Hebb’s book Organization of Behavior, published in 1949, describes
a system of correlation learning at the synapses of the neuron. From Hebb’s observa-
nons of how learning occurred in the neuron, he developed a learning rule for ANS,
the Hebbian Learning Rule. The Hebb Leamning Law states "If neuron A repeatedly
contributes to the firing of neuron B, then A’s efficiency in firing B increases.” Since
the formadon of Hebb’'s Law a restatement of the law has emerged that says " the
sength of the synaptic connections are changed in proportion to the difference
between the target and actual output of a neuron.” [Jorgensen86] To explain, if the
neuron has a positive output (actual) and it is expected to be negative (target), nega-
ively reinforce the synaptic connections to the neuron. If the neuron has a negadve
actual output and a positive target output, positively reinforce the synaptic connec-
rons. If the actual and target outputs are the same, leave the synaptic connections
unchanged.

3.3. Lashley (1950)

Lashley's studies of the mind led to his insistence that the mind has a distributed
knowledge representaton {McClelland86). Lashley’s idea was that knowledge 1s not
locally stored but rather it is stored in a distbuted manner. Rephrasing this, there are
no special cells for special memories; rather, many cells carry a pornon of the
memory.

3.4. Edmonds and Minsky (1951)

D. Edmonds and M. Minsky were the first to build a physicai ANS {BernsteinX1.
McClelland86, Rumelhart86a). Their model, buiult at Harvard in the summer of [9S5]
was constructed of tubes, motors and clutches. The clutches were adjusted n accor
dance to the Hebbian Leamning Rule to store the connectnion stmengths The machine
was able to store as many as 40 patterns of 40 binary digits. but was 100 inflex.hle tor
further work.

3.5. Rosenblatt (1957)

F. Rosenblatt became a prominent ANS researcher with his creauon of a neural
model called the perceprron [Hecht-Nielsen86a, Larson86., McClelland®6.
Rumelhart86a). The perceptron showed remarkable promuse as a computing device.
being able to learn patterns and generalize from patterms leamed. Rosenblatt studied
his model with mathematncal analysis and digital computer simulatuons  The
percpetron brought many researchers to the field of ANS.
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3.6. Minsky and Papert (1969)

M. Minsky and S. Papert were responsible for the demise of the perceptron as
well as much of the ANS research during late 1960s [Hecht-Nielsen86a, Larson86,
McClelland86, Rumelhart86a). Minsky and Papert were irritated at Rosenblatt for over:
claiming the perceptron’s ability. In their book Perceptrons, published in 1969, the
two researchers showed that the perceptron was an inadequate model because it could
not represent the basic exclusive-or (XOR) functon. Minsky and Papert were so con-
vincing that most ANS research at the time was halted.

3.7. Grossberg (1968)

Despite the scorching by Minsky and Papert, ANS research did continue on a
small scale. S. Grossberg studied neurally inspired mechanisms in both perception,
memory, and later vision {Grossberg68, Hecht-Nielsen86a, M(Clelland86]. Grossberg’s
research has focused on the mind, using an ANS to model his ideas. Grossberg’s
mathemancal analysis of properties of ANS models has led to many insights rhat
include neurally inspired models of perception and memory. Grossberg’s research has
recently been focused on vision. He has just finished a study that used an ANS that
mumics human eye movements [Grossberg85).

1.8. Willshaw (1969)

As a member of the research group at Edinburgh University under Longuet-
Higgins, D. Willshaw made important contributions toward understanding memory
McClelland86]. Willshaw did mathematical analysis of distributed memory models
and found properuies associated with various modeling schemes. l.ater in collaboration
with Longuet-Higgins, Willshaw did work with holophones [Willshaw69] A holo-
phone is a man-made represeutation of memory that is useful in the analysis of
memory systems.

3.9. Amari, Anderson, and Kohonen (1971)

Three researchers who did significant work in 1971 are Amari, Anderson, and
Kohonen. Amari's work was with Booiean ANS theory, an ANS that contains only
Boolean values [Amari71]. Anderson’s work was with linear associaive memory, a
memory that is completely distributed [McClelland86]. Kohonen's research concemns
self-organizing associatve memory, studying how the mind orgamizes the informanon
1t stores [Kohonen84]

3.10. Rumeihart and McClelland {1977

Durning the late 1970s ANS technology became promunent in the field of cogniuve
psychology, using ANSs for cogniave models. Two cognitive psychologists who 1ni-
tiated this movement are D. Rumelhart of UCSD and J. McClelland of Camegie-

.,
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Mellon University (CMU). McClelland and Rumelhart were inspired by the HEAR-
SAY speech understanding system at Stanford University [Hecht-Nielsen86a, McClel-
1and86]. In their efforts toward building a cognitive model for speech understanding
they rediscovered ANSs. Rumelhart and McClelland’s models are called parallel distmi-
buted processing (PDP) models {McClelland85, Rumelhart86b]. Many ANS learning
paradigms have been studied using PDP, namely competitive learning [Rumelhart86a),
Boltzmann Machines [Hinton86b, Rumelhant86d], and most recentdy Error Propagation
(Rumelhart86c].

3.11. Hecht-Nielsen (1977)

Commercial research is also being conducted at TRW. This research was headed
by R. Hecht-Nielsen [Hecht-Nielsen86a, Hecht-Nielsen86b]. This work focused on the
application aspects rather than the research aspects of ANS technology. While work-
ing at TRW, Hecht-Nielsen developed two neurocomputers, the Mark III which is
commercially available [TRW86] and the DARPA-financed Mark IV. In 1986 Hecht-
Nielsen left TRW and started his own neurocomputer company. His company has
developed a neurocomputer called the ANZA that fits on a card and plugs into an [BM
PC AT [HNC86].

3.12. Hopfield (1982)

The recent resurgence of interest in ANS technology is mostly attributed to J.
Hopfield of the California Institute of Technology (CalTech) [Hecht-Nielsen86b].
Hopfield delivered a paper to the National Academy of Science in 1982 that proved
that an ANS of interconnected processing elements would seek an energy minima
[Hopfield82]. This paper showed that ANSs have emergent collective computational
abilities; restated, as ANSs compute emerging properties are found. The emergent col-
lective properties that are found using an ANS appealed to a2 wide range of disciplines,
most notably physics, computer science, cognitive psychology and neuroscience [Lar-
son86, Myers86]. Since publishing the paper, Hopfield has continued to study the neu-
robiological aspects of ANS [Hopfield84].

3.13. Cooper and Elbaum (1983)

Former Brown University Physicists L. Cooper, a Nobel laureate, and C. Elbaum
started their own company called Nestor Inc. in 1983 [Larson86, Nestor86). Cooper
and Elbaum, like Hecht-Nielsen, are also interested in the commercial applicauons of
ANS. Nestor’'s commercial projects include hand-written computer input systems
(Nestor86, Reilly82], speech recognition [Epstein86], and 3-dimensional graphics
[Rimey86].
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3.14. Kosko (1985)

B. Kosko of Verac Corporation has done research with fuzzy logic that has over-
lapped mnto ANS [Chester86, Kosko86]. Fuzzy logic 1s the representanon of unclear
and non-specific information (fuzzy data) Kosko has worked out a wav o integrate
ANS and fuzzy logic using a system called fuzzy cogmuve maps One applicanon
using this melding of fuzzy logic and ANS has been 1n radar image processing

4. The AL'ANS Connection

The work being done in artficial intelligence (AI) and ANS overlaps. In some
instances. Al and ANS have the same goals: in others they do not. In this section a
discussion of where the two fields overlap and diverge 1s presented as well as a discus-
sion of how the two technologies could be meided.

ANS technology is aimed at developing human-made systems that can perform
the same tvpe of informaton processing that the brain performs ANS developments
inciude real-ume performance in pattern recogn:tion (speech recognition). knowledge
processing given inexact and incomplete knowledge (image processing), and precise
control 1n mulaple constraint environments (robotics) [Hecht-Nielsen86b, Larson86).
ANS technology 1s so different from conventional computer techrologies that 1t s
necessary to create a new architecture to support it. ANS processors (neurocomputers)
are the new architectures that have been produced to accomodate ANS technoiogy.

There are areas in Al and ANS that have the same goals. Over the past 30 vears,
the Al commumty has studied the areas where ANS technology is currently being
applied. The areas of speech recogmuon, image processing, and robotics have been
assessed to be difficult areas 1 Al thar yreld siow progress [Hecht-Nielsen86b]. Areas
where Al machines and convenvonal computers are superior to ANS are algonthmuc,
logic, and symbolic processing.

ANS technology is aimed toward the difficult areas of Al. Al computers are not
well suited for adapung and generalzing, but this 1s an area where ANS performs
well. Areas such as expert systems and symbolic compuung are better suited for Al
LISP-onented machines. It is not the intent of ANS technology to replace Al technol-
ogy. These two technologies are able to profit the greatest by melding themselves into
one machine. By installing an ANS processor into an Al machine, and having the Al
machine call upon the ANS processor when needed. a mutual environment with
.mproved performance s ¢reated The ANS processor i1s used where 1t 1S best suited,
1s a <pecialized suppor subsvstern tor an AJ computing system

§ ANS Applications

ANS has been uspplied 1n a vanety of areas and many more ire vet ‘o e
discovered [Port87]. ANS 1s good at specitic tasks. One task ANS 1s able 0 pertorm
1S as an assoclatve memory An associative memory processes all possible outputs tor
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a given input simultaneously, eventually finding the proper output in constant time
[Kohonen84]. Another task ANS is able to perform is creating generalized representa-
tions of presented input [Epstein86, Larson86]. Extending this idea, ANS is able to
process information given only a portion of the input. This is a useful feature in that
ANS does not need to be supplied all the input information to get the proper output
(Larson86, McClelland86]. Similarly, if partially incorrect or unclear (fuzzy) informa-
tion is given to an ANS it will make a "best guess,” processing an output from the
given input based upon the generalized internal representation [Chester86, Kosko86].
Yet another task where ANS is competent is multiple simuitaneous constraint prob-
lems. ANS is able to process many inputs simultaneously and produce an output
based on those inputs. Because of the ability to process a large amount of information
simultaneously, robotics is an area that is well suited for ANS [Myers86, Nestor86].

The tasks that are performed well using ANS technology are being applied in
many areas. In the following three sections, examples of ANS applications are
presented. The first section discusses the NETtalk text-to-speech convertor built by
Sejnowski and Rosenberg, the second presents a cognitive psychology experiment in
natural language processing performed by Rumelhart and McClelland, and the final
section briefly mentions other areas where ANS has been applied.

5.1. Sejnowski/Rosenberg’s NETtalk

T. Sejnowski of Johns Hopkins University (JHU) and C. Rosenberg of Princeton
University (PU) constructed an ANS application that did text-to-speech conversion
[Sejnowski86] A phoneme is a symbolic representation of a single syllable sound
utterance. Sejnowski’s ANS maps text (input) to phonemes (output). The phonemes
that are output from the ANS are in turn passed to a phoneme-to-speech synthesizing
device called the DECtalk. The ANS learned to read text aloud by successively being
presented a window of seven letters from a text (corpus) and using the middle letter as
the target that the single phoneme output would represent. By mapping seven letters to
a single phoneme, the ANS was incorporating context into the conversion process.
The middle letter of the seven is the letter that the phoneme represents and the three
preceding and three following letters are context for the letter being represented. After
the seven letters are presented, a one-letter shift of the text is done and the process is
repeated. This process is continued for the whole corpus being presented. The ANS
model used the Rumelhart/Williams Error Propagation algorithm (discussed in detail
later) for doing the mapping from input to output.

The ANS begins in an untrained state with random connection strengths. After a
short training period, the output from the DECtalk begins to make a continuous and
cery babbling. At this stage of the training, all speech is connected and only one ver-
bal sound 1s heard. Separation of sounds occurs and more than one verbal sound is
heard as the ANS continues to learn. At this stage, the output begins to sound like an




Page 10 A Survey of Artificial Neural Systems

infant. As the maining continues further, the output from the DECtalk begins to sound
like a young child talking and words are clearly distinguishable.

The NETtalk ANS has captured a large number of the rules necessary for speech
synthesis, for example, properly pronouncing the "a" in both "say" and "ran " The
same results are possible from commercial text-to-speech systems, but it has taken
years of development and study to learn the same rules that the NETtalk ANS learned
autonomously overnight. The development time for the NETtalk ANS was only three
months, significantly less time than its commercial counterparts.

5.2. Rumelhart/McCleiland’s Natural Language Processing

Two noted cognitive scientists, D. Rumelhart of UCSD and J. McClelland of
CMU, have created an ANS that learns the past tense of English verbs
[Rumelhart86d]. The objective of the study was to determine if an ANS model
acquired the rules for forming the pasi tense of verbs the same as children. An ANS
was designed that took as input a phonemic representation of a root verb and gave as
output a phonemic representation of the past tense of that root verb. The ANS operated
as follows: (1) The root form of the verb was presented as input, (2) the past tense of
the root form was the targeted output, and (3) errors between the root and past tense of
the verb were corrected using the Boltzmann Machine Learning Rule (discussed in
detail later).

A child progresses through three stages when acquiring the rules for forming the
past tense of English verbs [Brown73, Ervin64]: In stage one there is no evidence of
any rules being formed by the child. Stage two shows an implicit knowledge of
linguistic rules; an ability to apply the rules to both nonsense and real words is noticed
as well as over-regularization of verbs, for example, regularizing the verb "come” to
“comed.” In the final stage both the regular and irregular forms of the verbs exist; the
child has learned both the rules and the excepdons.

Tests were conducted at various stages throughout the training of the ANS. With
a limited amount of training, the ANS exhibited stage one results, showing no rule for-
mations. As the training continued, stage two results were seen. At this point in the
training, the ANS exhibited the same mistakes that children exhibited, regularizing all
forms of the root verb. Finally after an abundance of training, stage three results were
achieved. The ANS had leamed both the rules for forming the past tense of root verbs
and it had learned the excepuons to the ruje.

Another result of the traiming was that the ANS was able to respond to verbs 1t
had never seen before. This result showed that an ANS was able 1o abstract from what
it had learned, applying its knowledge to unknown root verb forms and formung the
proper past tense. In summary, this study has shown that an ANS is able to learn and
generalize from information given, as well as apply iself to informauon previously
unknown. This study shows promise in real-world situations that involve inexact data
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and where a "best guess” is sufficient. Current computer software does not handle
inexact data well; it is fault-intolerant and requires specific input. Alternatvely, ANS
has the intrinsic property of being fault-tolerant and able to handle unspecific data
gracefully.

5.3. Other Application Areas

Natural language processing (NLP) as an ANS application has been explored by
G. Cottrell of UCSD and S. Small of the University of Rochester (UR) [Cottrell84].
Cotrrell and Small built an ANS that did word sense discrimination, teaching an ANS
to determine which sense of a word is correct from the context. An example is that the
ANS can understand the difference in meaning that the word "threw" conveys in the
sentences "Bob threw a fight" and "Bob threw a ball." Other work in NLP that
involves ANS has been done by M. Fanty at UR [Fanty85]. Fanty developed an algo-
rithm that constructs an ANS for a context-free grammar and uses the created ANS as
a parser.

The ANS approach has been well received in the area of image processing. One
example is the Mingolla/Grossberg Vision Processing Network, which has demon-
strated that template-driven image segmentation and shift/scale/rotation invariant image
pattern recognition are possible using an ANS [Hecht-Nielsen86b].

In another image processing applicaton using ANS, N. Farhat of the University
of Pennsylvania (UPenn) has trained an ANS to discern radar images of various air-
craft [Larson86]. Results of the applicaton have shown recognition of a bomber with
only 20 percent of the image supplied.

Nestor Inc. has developed an application of ANS that accepts writing on a digi-
tized pad as computer input [Nestor86). The ANS learns the idiosyncracies of
anyone’s handwriting, allowing a more direct input to the computer. The company’s
focus is on an ANS that takes kanji (Japanese lettering) as input and converting it to a
computer character form, thus eliminating the difficult task of computer entry.

Current applications of ANS in speech research has been toward discovering a
method for speaker-independent recognition. J. Elman and D. Zipser have used ANS
in an attempt to discover the hidden features in speech that allows humans to distin-
guish words (EIman87]. Another speech-related project is to use spatotemporal pat-
tern matching to achieve speaker-independent recognition [Hecht-Nielsen86c].

6. ANS Models

There are many different ANS models. This paper will present three of the pre-
valent models in ANS technology. The first model is the Hebb/Hopfield model
[Hopfield82, Jorgensen86], the second is the Boltzmmann Machine model [Hinton86b.
Rumelhart86d], and the last is the Emor Propagation model [Hecht-Nielsen86a,
Rumelhart86c]. Each model is successively more complex and more successful. Each




Page 12 A Survey of Artificial Neural Systems

model has processing elements (PEs) with adjustable strength connections from other
PEs. Each successive model varies in how the connection strengths are adjusted and
how the connections and PEs are arranged into an ANS.

The following secton explains the PE and its similarities to the neuron. Follow-

ing the explanation of the PE are three sections dedicated to explaining each of the
forementoned ANS models.

6.1. The Processing Element

The PE (see figure 2) consists of weighted input connections (wg,...,wy), a2 Summa-
ton function, a threshold function, and an output value [Hecht-Nielsen86a, McClel-
land86, Rumelhart86b).

ouT

!

Figure 2: An ANS PE. The inpus are the weighted connections
from the N elements (w,...wy) of the layer below to the j* PE.
The weights are added together using a summation functon that pro-
duces the value NET,. The owpw of the summation function s
passed through a threshold function f(NET,) The outpui of the
threshold function is the net value of the PE OUT,.

Each of the components of this PE corresponds to a component of the neuron dis-
cussed in section 2 [Jorgensen86]. The correspondence is summanzed 1n table 1.
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Table 1: Comparison of components of a PE and a neuron.

Correspondence Between Neuron and PE
Neuron PE
Synapses Weights
Summer Summation Function
Threshold Threshold Function
Axon Net QOutput

By combining many of these PEs, we form an ANS. The ANS is constructed in
layers. The inputs from the environment (external to the ANS) enter the input layer of
the ANS. The outputs enter the environment from the output layer of the ANS. Any
layers that exist between the input and output layers are called hidden layers. Hidden
layers are not accessible from the environment; they are only accessible by the ANS.
The connections are made from input toward output, but not from output to input.
Using this definition, an ANS can be considered a hierarchical directed graph that only
allows the flow of informaton from parent (input) to child (output). Connections in an
ANS are made from every PE on the parent level to every PE on its child level, creat-
ing a completely interconnected ANS. Information is stored (leamning) by adjusting
the weights (connections strengths) between PEs. Figure 3 shows a completely inter-
connected ANS that has 5 PEs on the input layer (in,....in,) and 5 PEs on the output
layer (outq,...,outy).

6.2. The Hebb/Hopfield Model

ANSs are dynamical (constantly changing) systems. Energy functions and proba-
bility relatonships are used to mathematically describe and model ANSs because of
their dynamic nature. An ANS is a mathematical model in an N-dimension energy
space, where N is the number of connections in the most interconnected PE. The
Hebb and Hopfield models describe an energy space that seeks a local energy munima
from the point of entry [Hopfield82, Jorgensen86]. Once the system is given a specific
input pattern (entry point into the energy space), the system will compute the output
pattern (seek its local minima).

An ANS must be able to adjust itself to seek the proper energy minima upon
entry. The adjustments of the weights (connection strengths) in an ANS create the
proper energy minima for a given input. The Hebb and Hopfield models are different
in respect to the methodology used to adjust the weights., The Hebb model uses an
algonthm that increases the strength of connections between PEs that are both posiave.
decreases the strength of PEs that are both negative, and leaves the connections
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Figure 3: A two layer ANS. A wo-layer ANS with 5 PEs on the
input layer (iny,...unq) and 5 PEs on the ouwtpwt layer (out,. .ol o).
Each PE on the inpust layer is connected 10 a PE from the ouwpw
layer, creating a completely interconnected ANS.

between positive/negative PEs unchanged. The Hopfield model uses an algorithm tha
assigns a positive value to connections between two PEs that are either both positive
or negative, and assigns a negative value to PEs that have mismatched
(positve/negative) values. With the exception of how the weights are adjusted. the
Hebb and Hopfield models are the same.

One use of the Hebb/Hopfield models is as an associative memory (discussed in
section 3). An associative memory is able to reconstruct a complete pattern from only
a portion [Kohonen84). An example of the actions of such an ANS is to store (adjust
the weights in the ANS) binary value "101." When the ANS is presented with the
incomplete input “1?1" (where the ? means unknown) it will reconstruct the missing
informanon and output "101." The Hebb and Hopfield models that accomplish this are
described in appendix 1.
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6.3. The Boltzmann Machine Model

The Boltzmann Machine model is an ANS that uses the Boltzmann probability
dismbution function to adjust connection strengths. The Boltzmann disaibution func-
tion 1s a ratio of probabilites:

where P is the probability of being in energy state a, Py is the probability of being in
energy state B, £, is the energy of state a, Ep is the energy of state 8, and T 1s the tem-
perature of the energy system [Jorgensen86, Rumelhart86d].

The probability of being in energy state a or energy state B is equal to 1 (i.e. P, +
Ps = 1). In the ANS form of the distribution equation, the associated energy of state 8
is assigned to the variable 8. Solving for the probability of being in state a results in
the following:

The ANS equivalent for the probability of being in state a of the above equation
is the output value desired of the j* PE, where j is one of the N output PEs in the
output layer of a two-layer ANS. This value is mathematically referred to as ow,, the
;* element of the desired output vector ow. The ANS equivalent of the energy state
of a for the above equation is net;, the computed output for the j* PE of the output
layer. This value can be computed by multiplying each connection (i) into the ;* PE
bv the corresponding output value from in;, the i* PE of the input layer. The equation
for computing ner, 1s as follows:

net, = Tin,w,
)

In this equation w,, is the connection strength (weight) of the connection from input PE
¢ to output PE ;. Using the ANS equivalence, the ANS form of the Boitzmann distni-
bution function is as follows:

The value of 8, is a bias that is associated with each PE. The values this func-
uon produces are between O and 1. Plotting the output of this function against the
probability that it is on (p(on)) produces the plot shown 1n figure 4. Because the curve
has a "S" (sigmoid) shape and i1s bounded between O and 1, the function can be con-
sidered a threshold function. A threshold function has an output of | when it i1s hnng
and 0 when it is not.
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Figure 4: The threshoild functiom curve. The threshold function
used to caiculate the probability of firing. The x-axis shows values
of net, - ®,/T and the y-axs indicates the corresponding probabili-
ty of the PE being on (p{on)).

The Boltzmann Machine ANS also uses a different process for learning, applying
the concepts of simulated annealing to the learning process. By using the Boltzmann
Machine equation above as a threshold evaluation function for each PE, and by regu-
lating the temperature value T, the ANS can learn more effectively. Creating an ANS
creates an ecnergy terrain. By adjusting the weights, the ANS energy terrain 1s
changed. The best energy terrain is one that will have a deep energy well for each
entry point. Sometimes the entry point into the ANS is not at a good location; thus
the energy minima that is needed is not available. By adding energy to the ANS,
called adding noise, the energy well has a better chance of being found from the entry
point. Restated, when an ANS is started at an entry point in the energy terrain, the
local minima will be sought. What 1s wanted is not the local energy minima but the
global energy mimima. By adding noise to the energy terrain, it is possible to bounce
out of the the local minimas and eventually find the giobal minima. Noise is added to
the system by increasing the temperature 7, and by slowly dropping the temperature
(reducing the amount of noise) the ANS is simulating annealing,

In contrast to the Boltzmmann Machine model, the Hebb/Hopfield models are
confined to there point of enoy and are easily trapped in a local minima. The
Boltzmann Machine model is able to overcome that problem and find the global
minima. Appendix 2 gives an algorithm for mapping patterns of input vectors to
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output vectors using this model.

6.4. The Rumelhart/Williams Error Propagation Model

The models presented up to this point, the Hebb/Hopfield and Boltzmann
Machine models, are two-layer ANSs. There are many problems in the real world that
cannot be represented in a two layer system. One is the exclusive-or (XOR) function
(Rumelhart86c]. Because there exist no values that the connection strengths can
assume that will give the appropriate output for all inputs, the two-layer ANS is inade-
quate. Table 2 describes the XOR function, showing the input values in, and in, and
the corresponding output value out,.

Table 2: The XOR function. The input values ing and in, and
corresponding owtput values cuty can not be represented in a two
layer ANS. Using a three layer ANS this mapping is possible.

ing im outy
0 0 0
0 1 1

1 0 1

1 1 0

Using the two-layer ANS shown in figure 5, no weight assignments can be made to

wo and wq that will give a proper output for each of the four XOR inputs patterns
shown in table 2.

The solution to this problem is to introduce a third layer, called the hidden layer,
between the input and output layers. The hidden layer creates the ability to incorporate
an internal representation that facilitates difficult mappings between input and output
patterns. By adding the middle layer shown in figure 6 to the ANS shown in figure 5,
the XOR function is now representable {[Rumelhart86c¢].

R. Hecht-Nielsen has taken this idea a step further by applying a mathematical
existence theorem to ANS. Hecht-Nielsen, using the Kolmogorov Existence Theorem
which states that any continuous mapping can be done in a three-layer system, has
shown that a three-layer ANS exists for any continuous mapping. If there is a con-
tinuous mapping from input to output, there exist a three-layer ANS that can represent
that mapping [Hecht-Nielsen86a].

D. Rumelhart and R. Williams of UCSD discovered an algorithm that could do
the mapping. The Rumelhart/Williams Error Propagation algorithm can do the map-
ping for a three-layer (or more) ANS. In the three-layer system, the weights are

adjusted for the output layer according to an error function that calculates a weight
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Figure 5: A two-layer ANS for the XOR function. The weights
woo and wgq cannot assume values that will produce the proper out-
put for all four input patterns of the XOR function.

adjustment based upon the difference between the target output and the computed out-
put of each output PE. Each error value for each output PE is then propagated back-
ward to the hidden-layer and used to adjust the values of the weights to the hidden
PEs. The error adjustments for the weights to the hidden layer PEs is calculated using
the derivatdve of the error function used to adjust the weights for the output-layer PEs.
By using the derivatve, the hidden-layer PEs’ values are properly adjusted.

6.5. Summary

These models represent an adequate cross-section of ANS technology for the pur-
poses of this survey. In summary, each model is successively more complex and 1s
more able at storing representations. The Hebb/Hopfield models are the least complex
and the Error Propagation model is the most complex. The Error Propaganon model 1s
the best at storing representations and the Hebb/Hopfield models are the most limuted.
The Boltzmann Machine falls between the the Hebb/Hopfield and the Error Propaga-
uon mode) in both representation ability and complexity.

7. The Neurocomputers

One inexorable problem associated with umplemenung ANS is the mass:ve
amount of compuung that is necessary. As the models get larger and more complex.
the computing ume becomes exponentally larger. One solunon to the problem 1s to
build a computer that is architecturally suited to handle ANS. Because ANS s
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Figure 6: The three-layer ANS for the XOR function. Thus ANS
allows the representation of the XOR funcaon. The additior of the
hidden units between the input and owspwt layer creates an internal
represeniation that makes the difficuit XOR mapping possible.

massively parallel in nature, a computer built with thousands of processors, where each
processor takes the place of one PE, would solve the problem.

Many attempts are being made at building ANS computers. The computers being
designed for ANS modeling are called neurocomputers and are currently being imple-
mented in two frameworks: electro-optical and electronic [Hecht-Nielsen86b].

Electro-optical computers are designed to use light for the connectons between
PEs. Because light is able to overlap without interfering, it is a good mec:um for
implementing the high number of connections needed between PEs. Leaders in 1! -
research include C. Guest of UCSD and B. Kosko [Kosko87], D. Psaltis and Y. ...u-
Mostafa CalTech with N. Farhat of the University of Pennsylvania {Abu-Mostafa¥ /.
Brown86a], and Szu of Naval Research Laboratories {Brown86b]

The other method used to implement neurocomputers is electronically. Such neu-
rocomputers have all the interconnections hard-wired and use available transistors and
hardware in their implementaton. Size and cost are no longer the inhibiung factors
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hev had been 10 vears ago because of the dramatic advancements in electronic circui-
trv. One leader in this area is R. Hecht-Nielsen, who has started his own company
thai produces neurocomputers, the Hecit-Nielsen Neurocomputer Corporation (HNC).
HNC wil) market a board that fits into an IBM PC/AT card slot and can be used ro
implement many different neural models, including those presented in this paper
[Brown87, HNC86]. This neurocomputer has a capacity for 30,000 PEs with 300,000
interconnections.

Other leaders in electronic neurocomputers include Nestor and TRW. Nestor i3
the only company that has marketed an ANS applicaton. Nestor has a patented
hardware system that allows handwritten input to & computer via a digized pad [Nes-
tor86]. TRW has entered the ANS market place with its Mark III neurocomputer
[TRWS861, designed by Hecht-Nielsen before he left TRW in late 1986 and formed his
owDn cormpany.

Neurocomputers will noi replace the exisung compuier. The neurocompuiers
being designed are subservient members of a Von Neumann computer. Programs that
use neurocomputers make a subroutine call to the neurocomputer to do its specialized
work. Neurocomputers will have their own software which will be able to integrate
with existing software to create a machine with added capability and potential.
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Appendix 1

1. The Hebb/Hopfield Algorithms

The following are leaming and recall algorithms for the Hebb and Hopfield ANS
models. These algorithms are designed to store a single pattern. A pattern is a map-
ping of an input vector in to an output vector ou. If the input and output vectors are
the same, as they are in these models, the model is acting as an associative memory.
Although these models are designed to store one binary valued vector, they can easily
be extended to store several binary vectors. These models can also be expanded to
store mappings between vectors differing in length, value, or both.

1.1. The Hebb Model Learning Algorithm
The Hebb model learning algorithm is as follows:

. Given an input vector of length N called ix with binary values from ing to iny_,.

2. Construct a duplicate vector to the input vector, call this vector our; it is also
indexed from O to N-1.

fori=0to (N-1)do

enddo

3. Construct a weight matrix N x N that is initalized to all zeroes called W.

for i =0to (N-1)do
for j =01t (N-1) do
W, =0
enddo
enddo

4. Generate appropriate values for each position in the matix W, where 1, accord-
ing to their similarity as follows:

e If in;, and ow, are both equal to 1, add strength to the connectuion between
them (via an increase in the value stored for this connecuon in the weight
matrix).
e If in; and ow, are both equal to 0, subtract strength from the connection
between them (via a decrease in the value stored for this connection in the
weight matrix).
e Otherwise, continue.

The algorithmic form is as follows:
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fori =0to (N-1)do
for j = 01to (N-1) do

if i#) then
if in, =ow, =1 then
W, =W, +1
elseif in, = owt; = 0 then
W, =w, -1
endif
endif
enddo

enddo

The following example illustrates how this algonthm works:
. Consider the five-clement input vector in = 01110.
2. Creating a duplicate vector gives the output vector owr = 01110.

3. Creating a weight matrix W of dimensions 5 x 5 with each slot in the vector 1ni-
tialized to zero yields the following matrix:

OO0
QOOCOO
OCOOOO
OOOOC
[=X=YoYo X

4. Generatng the values for W according to the Hebb Learning Rule results in the
following computations:

ing =0 and owt, = 1, SO Wy, 1s unchanged
ing = 0 and owt, = 1, SO Wq, is unchanged
ing =0 and outy = 1, SO Wy, is unchanged
ing =0 and outy = 0, SO Wy, = -1

Conunuing with this for ia,, i, and iny will yield the adjusted matrx:
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1.2. The Hebb Model Recall Algorithm
The weight matrix should now hold the vector 01110. To recall this vector from
the marmrix, the following algorithm is used:

1.  Given a weight matrix W that has dimensions ¥ x N that is storing a vector of

length N.

Sum over cach row of W (the equivalent of summing up all the connection
strengths entering output element ;); store each sum in a vector ner at the ;*

index.

for j =01to (N-1)do
sum = 0
fori =01 (N-1) do
sum = sum + W,
enddo
net, = sum
enddo

Test each element of the vector ner and reset its value as follows:

forj=0t(N-1)do
if net, > 0 then

net, = |
elseif net, < 0 then

net, = 0
else

net, = 1 or net, = 0 with a probability of 05
endif

enddo

Using the W computed for the vector ia = 01110, we get the following:

neto=0+0+0+0+(-1)=-1
net, =0+0+1+1+0=2
net;=0+1+0+1+0=2
nety=0+1+1+0+0=2
net,=(-1)+0+0+0+0=-1

From the values computed above, we reset each value of the vector net as fol-

lows:
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nety <0, so nety =0
nety >0, so nety =1
nety >0, so nety; =1
nety > 0, so nety =1
netyg <0, so nety=0

and the vector recalled from the matrix is the vector 01110, the same vector the
ANS was taught.

1.3. The Hopfield Model Learning Algorithm
In the Hopfield model, step 4 of the Hebb leamning algorithm is changed to the
following:
4. Generate appropriate values for each position in the matrix W,, where :#) using
the following equation:

W, = (n;, - 1)(20“‘,‘ -1
This equation does the following:
e If in, and ow; are both equal to 1 or both are equal to zero, store a } at the
matrix position W;;.
o Otherwise, store a -1 at matrix posiuon W;;.
The algorithm for this step is as follows:

for i =0 to (N-1) do
for j = 0to (N-1) do
if i#j then
W, = (2n; - 1) 20ut, - 1)
endif
enddo
enddo

1.4. The Hopfield Model Recall Algorithm

In the Hopfield model, step 3 of the Hebb recall algonthm is changed. When con-
structing the recall vector ner, use the following:

3. Test each element of the vector ner and reset its value as follows:
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forj=0to(N-1)do
if net, >= 0 then

else

endif
enddo

Using the same example given before, given the vector ia = 01110, we get the fol-
lowing adjusted matrix W:

0 -1-1-11

; ) -10 11 -1
; W=1-1101 -1
i -1 110 -1
1 -1-1-10

et e S & At - v s o
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Appendix 2

1. The Boltzmann Machine Model Algorithms

The following are the learning and recall algorithms for the Boltzmann Machine
ANS model. In the learning stage this ANS model associates an input vector with a
different output vector. In the recall stage this ANS model is given an input vector
and the associated output vector is recalled. This type of model is considered a pattern
association model.

1.1. The Boltzmann Machine Learning Algorithm

The Boltzmann Machine Learning Algorithm is implemented in this model using
a tolerance value to test when the model has satisfactorily learned all the patterns it
has been presented. This mode! will continue to learn untl all the differences between
the computed output value ner, and the target value ow, are within the specified toler-
ance This model will start with a wolerance of 0.1 and as the annealing process
progresses the tolerance value will decrease.

This model assigns a base temperature (T) of 25 and a base leaming rate (n) of
0.1 ai the start. These two values are related to each other as follows: The higher the
ternperature the lower the learning rate needs to be and vice-versa. In this model the
learning rate (n) increases by 0.1 each time the temperature (T) decreases by 5. The
changes in 7 and n occur each tme the tolerance 1s satisfied, and each tme the toler-
ance 1s sansfied it is decreased by 0.02.

A new notation js also introduced to show the pattern number being leamed. In
the algorithm that follows, in, represents the p* nput vector’s :* elemeni. The nota-
tion ow,, represents the p* output vector’s ;* element. The threshold is set to be zero
throughout this model. The weight matrix W is imitialized to random values between 0
and 0.3 to prevent any oscillations that mignt occur from a weight matrix of all zeroes.
An epoch is a complete cycle through all weight adjustments for all patterns the ANS
is being presented. The learning algorithm is as follows:

1. SetT =25 n=01,tol =03, epoch =0 and 8 = 0.

2. Initialize the weight matrix to hold random values between O and 0.3. The length
of the nput vectors is ¥ and the length of the output vectors is M, so the weight
mamx 1s an N x¥M matnx.
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fori =010 (N-1) do
for j =010 (M-1) do
w;, = random value from 0 to 0.3
enddo
enddo

3. Get the input and output vectors. The input vector is of length N, the output vec-
tor is of length M, and there are P of these associations (patterns).

/* Get input vectors */
forp =010 (P-1)do
fori =01t (N-1)do
in, = binary value
enddo
enddo
/* Get output vectors */
forp =01t (P-1)do
for j =010 (M-1)do
in,, = binary value
enddo
enddo

4. Now that the weight matrix W is initialized and the patterns are stored, the leamn-
ing can now begin. To anneal the ANS, two flags are used. The first is the
‘earn_flag that will tell when the whole ANS is done learning. The other flag is
tol_flag which tells when the ANS has learned within the specified tolerance and
1s ready to have T, wl, and n adjusted for the next step in annealing.




Page A-8 A Survey of Artificial Neural Svstems

set learn_flag = TRUE
while learn flag » TRUE do
set tol_flag = FALSE
while tol_flag = FALSE do
set tol_flag = TRUE
forp =010 (P-1)do
forj =010 (M-1)do

net, = ZW./"';-

enddo
net, = furen(net,)
fori1 =01t (N-1)do
8 =" n* (0w, - net;)* in,
w, = w, + 8
if toi_flag = TRUE
and low,, - net;| > tol then
tol_flag = FALSE
endif
enddo
enddo
endwhile
T=T-1
n=n+01
tol = tol - 0.05
if tol = then
learn_flag = TRUE
endif
endwhile

This fourth step of the learning algorithm continues learning each partern at each
tolerance unnl all the tolerances are satisfied. This ANS follows an annealing schedule
that starts at a T = 25, n = 0.1, and o/ = 0.3, finishing with T = 5, n = (0.5, and w0l =
0.1

1.2. The Boitzmann Machine Recali Algorithm

The recall algonthm 1s much simpler than the leaming algonithm. This algonthm
is given an input vector rest and computes an output vector recall from the res: and the
connecuon strengths stored in W.

1. Get the input vector rest.
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for i =0 to (N-1) do
test; = some binary value
enddo

2. From the given input vector calculate an output vector recall by doing the follow-
ing:

forj =0t (M-1)do

net, = 3w, test;

enddo

recall, =fm(nel,,

The output vector recall should resemble the output vector originally associated
with the given input vector test. An example of this ANS is as follows. If you train
the ANS with the three patterns

100015901110

1110000111

10101501010
the ANS takes approximately 1700 epochs to satisfy all the specified tolerances. The
final weight matrix W is:

-1188 275 2652 11.80 -2.87
3

-3.42 -18.54 3353 357 18.72
W= |-645 423 —1004 625 424
030 0.10 030 0.10 0.20
-8.16 2150 -6.50 8.23 -21.39

This is the same model used by Rumelhart and McClelland in their study in
which the past tense of English verbs was learned. Their model was much larger
(more input and output PEs), but it computes the same way.
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