
~.jgIf59 NAVAL (KI AN S YSTEMS(CNTER, SAN DIECF CA 1 01:1
D A S 7.9 A SU RVEV (F ARTIFICIAL NEURAL SYSTEMS NOSC TD 1106

BY: PK SIMPSON, UNISYS UNCLASSIFIED

IIN 1987

, ' Technical Document 1106! ,Ik, , , ' "June 1987

71 z

I- -- 4 uvyofAtfca

4N UNISYS

Approved for public release, The views and conclusions contained in this

distribution is unlimited report are those of the authors and should

not be interpreted as representing the

official policies either expressed or

implied, of the Naval Ocean Systems Center
or the U S government

NAVAL OCEAN SYSTEMS CENTER
San Diego, California 92152-5000

E. G. SCHWEIZER, CAPT, USN R. M. HILLYER
Coffunomw TechncM Directo

ADMINISTRATIVE INFORMATION

The research cited in this report was compiled by the UNISYS Company of
San Diego, CA, under the direction of Stephen Luse and Christine Dean, Human
Factors and Speech Technology Branch. Code 441. Naval Ocean Systems Center,
San Diego, CA 92152-5000. Funding was provided by the Naval Ocean Systems
Center.

Released by Under authority of
C.M. Dean. Head W.T. Rasmussen, Head
Human Factors and Speecb Advanced C2 Technologies
Technology Branch IvIsion

PK

UNCLASSIFIED
SECUM M.ASIMPCATMO VP TilPAG

REPORT DOCUMENTATION PAGE
I. aWOW SEUITY E7MA5 AT~ 1k NTTIVE 1AUM

UNCLASSIFIED
2a SECLOTY CLASS~ICATIoo AUTI4Omry 3 oimun5UToNAvAA5EJT OP EP*

2b 06L5MCTON ONRD SCEOWL Approved for public release; distribution is unlimited.

4 PERWO&MNG ORGAINZATIO" REPORTl NMM S IdOUTOIG 00AATION REPORT M.AMM)

NOSC TD 1106

M AM OP 9ON 0-G ORGAllATION It OPFICE SVOAOL 7. HAM OP MONTOING OOAGMIMTMO

UNISYS I 10ni' o

ac ^OOSS (CAW $tam W.a zrco" 7k AOOAV= tCAY SWO .W Cf

San Diego Systems Enghmeeing Censer
4455 Mora Boulevard
San Diego, CA 92117

Sa KAOSE OP RANOIG. SPOINORIM ONGGMMA1Ol s OMCE SYMEOL 9 PROCUREMNT U1TmUINT 1000FICArIO. s
Id

Naval Ocean Systems Center NOSC Code 441 67WROO124

Ge ADDRESS (Cr St.m .. W Cft 0 OREOFF M1.01

San Diego, CA 92152-506
22 LSI0007 4 5

1 TITLE emko 5..'.,Cww

Survey of Artificial Neural Systems

12 PEASOMtAL AVWR3
P .K. Simpeon

3 TYPE OP REPORT 31k T"M COVERD 14 OAT!E OFPORWT (Vw M~ - Is PAG.E couNT

Final 71o FROM __ TO____ June 1967
16E SLO"JMENTARY NOTATIOO

7 COSATI COCES I & SUILICT TUEIC..Xme mw,' =r a r n# aft~ift' by Adn wb

PaELO GROUP, S4-3ROUP neuron information processing

I
neural ntwors brain speed

This paper is a survey of the field of Artificial Neural Systems (ANS). Included is a history of ANS, examples of
ANS models and areas where the technology has bean applied.

20 OgTrRIOTION, AVALA5E.ITY OF 85ETNACT 21 ANTX SLONTYCLALATION

01c2zsa JfCA8~0UfUjrruo S~AIAS R oic usas UNCLASSIFIED
228 %"AE Of 4M NOMO1PAUAL 22bk TBSJE44NE IA w Ce" 22t OFAC SYOO

Christine Den 619-225-7372 Code 441

DD FORM 1473. 84 JAN @ WREMNMYIUSD MEX^V0UNCLASSIFIED

UNWTVCLASIIONO EDARMb 8 btM

MO FOSI 143 M4JA
UNCLASSIFIED

SECuPAiV CLAGOVICATION OF rues Pasug(9b Da binOs

A Survey of Artificial Neural Systems

Patrick K. Simpson

Unisys
San Diego Systems Engineering Center

4455 Morena Boulevard
San Diego, CA 92117

619/483-0900

Contracted by
Naval Ocean Systems Center

Code 441 - Speech Technology Group

San Diego, CA 92152
619/225-7372

Abstract
This paper is a survey of the field of Artificial Neural Systems (ANSs). ANSs

have a large number of highly interconnected processing elements that demonstrate the
ability to learn and generalize from presented patterns. ANSs represent a possible solu-
tion to previously difficult problems in areas such as speech processing and natural
language understanding. This paper presents a brief history of ANSs, examples of
ANS m'odels and areas where the technology has been applied. Also discussed is the
connection between Artificial Intelligence (AI) and ANS, computer architectures that
are evolving from this field, and ANS algorithms.

Table of Contents

1. Introduction .. 1
2. The Neuron and Neural Networks .. 1
2. 1. An Explanation of the Neuron ... 1
2.2. Neurally Inspired and Mathematically Supported.. 2
2.3. Constraints/Assumptions About How Brain Process Information 2
2.3.1. Brain Speed Versus Computer Speed... 3
2.3.2. Parallel Order Versus Serial Order and the 100 Step Program 3
2.3.3. Number and Complexity of Neurons.. 3
2.3.4. Connections Hold the Knowledge.. 4
2.3.5. Fault Tolerant Brain Versus Fault Intolerant Computers 4
2.3.6. No Executive Control in the Brain .. 4
3. History ofANS ... 4
3.1. McCulloch and Pitts (1943).. 4
3.2. Hebb (1949) .. 5
3.3. Lashley (1950)... 5
3.4. Edmonds and Minsky (1951) .. 5
3.5. Rosenblatt (1957) ... 5
3.6. Minsky and Papert (1969).. 5
3.7. Grossberg (1968) ... 6
3.8. Willshaw (1969)... 6
3.9. Aniari, Anderson, and Kohonen (1971)... 6
3. 10. Rumelhart and McClelland (1977).. 6
3.11. Hecht-Nielsen (1977) 7
3.12. Hopfield (1982) .. 7
3.13. Cooper and Elbaumn (1983) ... 7
3.14. Kosko (1985) ... 7
4. The AI/ANS Connection... 8
5. ANS Applications ... 8
5. 1. Sejnowski/Rosenberg's NETtalk.. 9
5.2. Rumelhart/McCleliland's Natural Language Processing 10
5.3. Other Application Areas .. 11
6. AINS Models... 11
6. 1. The Processing Element 12
6.2. The Hebb/Hopfield Model.. 13
6.3. The Boltzmnann Machine Model 14
6.4. The Runielhart/Williams Error Propagation Model 1.... 7

Page ii Survey of Artificial Neural Systems

6.5. Other Models .. 19
7. The Neurocompurers... 19
Acknowledgements... 21
References ... 22
Appendix I......................... --... A-1
Appendix 2................................... A-6

1. Introduction

Speech processing, image processing and robotics are all forms of pattern match-
ing. In each area an input is received and matched to a corresponding output.
Humans are easily able to perform these pattern matching tasks, computers, however,
are not. Computers, on the other hand, are faster than humans at algorithmic computa-
tional tasks. The contrast between the processing abilities of computers and humans
arises because each processes its information differently.

Most computers process information with a single complex central processing unit
(CPU). The human brain processes information using a large number of simple pro-
cessing elements called neurons. To increase the pattern matching ability of computers
requires a different approach to processing information from the current single proces-
sor architecture. Artificial neural systems (ANSs) are neurally inspired mathematical
models that use a large number of simple processing elements (PEs). ANSs approach
the pattern matching problem using the same processing style the brain uses. PEs are
organized into layers where each PE in one layer has a weighted connection to each
PE in the next layer. This organization of PEs and weighted connections creates an
ANS. An ANS learns patterns by adjusting the strengths (weights) of the connections
between PEs. Through these adjustments an ANS exhibits properties of generalization
and classification similar to humans.

This is a survey of the field of ANS. Included is an explanation of the biological
inspirations and mathematical foundations of ANS. The history of ANS and applica-
tions using ANS are presented as well as a discussion of how ANS relates to the field
of artificial intelligence. At the end of this survey is an overview of models and archi-
tectures used in ANS.

2. The Neuron and Neural Networks

2.1. An Explanation of the Neuron

The basic building block of the nervous system is the neuron, the cell that han-
dles intercommunication of information among the various parts of the body. A neu-
ron consists of a cell body called a soma and an axon or nerve fiber that connects the
cells to one another (see figure '). Junctions between neurons occur either on the cell
body or on spinelike extensions of the cell body called dendrites. The junctions are
called synapses. Nerve fibers and dendrites can be treated like insulated conductor,
for transmitting electrical signals to the neuron [Lindsay77j.

A threshold unit collects inputs and produces output only if the sum of the inputs
exceeds an internal threshold value. The neuron, in its simplest form, can bhe con-
sidered a threshold unit. As a threshold unit, the neuron collects signals at its Synapses
and sums them together using its inte-nal summier. If the collected signal strength is
great enough to exceed the threshold, a signal is sent out from the neuron to~ the axons.

Page 2 A Survey of Artificial Neural Systems

Soma

Summer Threshold Axons

Denidri tes (Output)
(I nput) Synapses

Figure 1: The neuron. This figure shows the neuron body (soma)
and the components of importance to ANS. The synapses are where
signals are collected from the dendrites. The summer is where the
signals are summed. The threshold is the internal value that must be
exceeded for output. The axon is where any output signals are sent.

2.2. Neurally Inspired and Mathematically Supported Models

ANS are neurally inspired models of the mind (McClefland86, Myers86,
Rumethart86a, Rumelhart86b]. ANSs are not attempts at duplicating the mechanisms
of the mind, only attempts at duplicating the functionality of the mind. Drawing upon
an analogy from D. Rumelhart, a leader in the field of ANS from the University of

California, San Diego (UCSD), the brain is the computer hardware (mechanisms) and
ANS is the computer software (functionality). Extending the analogy, learning can be
considered programming the mind. The objective behind ANS is capturing the func-
tionality of the mind.

Constantly changing systems are called dynamical systems. Dynamical systems
are described by energy functions and probability distributions. ANSs are supported
by the mathematics of such systems. A more precise definition of ANSs is dynamical
systems with adaptive or selectable energy functions that can carry out useful informa-
non processing by means of initial response to initial or continuous input [Myers861.
Rephrased, ANSs are directed graphs that are able to change when provided input.

2.3. Constraints and Assumptions About How the Brain Processes Information

Neural models are based on how the mind processes information infomration
[Amari71, Hecht-Nielsen86a, McClelland86]. The performance of the mind and the
performance of the digital computer are compared in an attempt to understand how the
mind is so adaptable, resilient, and powerful. ANS models incorporate inforrnaton
about brain processing during modelling. The information gathered has shown the

Patrick K. Simpson Page 3

presence of physical brain constraints and has led to assumptions about brain process-
ing. The following sections discuss these assumptions and constraints and contrast
them with the digital computer.

2.3.1. Brain Speed Versus Computer Speed

Cycle time is the time taken to process a single piece of information from input
to output. The cycle time of the most advanced computers is 1 nanosecond,
corresponding to one clock cycle for the CPU. The average cycle time for a neuron in
the brain is 2 milliseconds [Cottrel1841. The difference in speed is 5 X 10 , the com-
puter is five-hundred thousand times faster.

2.3.2. Parallel Order Versus Serial Order and the 100 Step Program

The most advanced computers are able to process information one million times
faster than the brain, yet in some respects the brain is superior. The difference
between the two machines is the processing order. The brain processes its information
in parallel, the computer processes its information in serial. There is a constraint that
can be extended from this information called the 100 step program constraint [Feld-
man82]: If the mind reacts between 1/5 and 1 second to a given stimulus (i.e. answer-
ing a true-false question) and the cycle time of a neuron averages 2 milliseconds, then
in the best case in 100 cycle times of a neuron a decision is reached. To make a pro-

gram that processes information like the brain, that program should not exceed 100
steps. In contrast to large software programs operating in serial on conventional com-
puters, the mind operates with a massive number of small programs that execute in
parallel.

2.3.3. Number and Complexity of Neurons

The number of neurons in the brain is approximately 1011 with about 101 to io
connections between each neuron, An ANS should not simulate any more than i0"
neurons. Although 10ll is admittedly large, the size is finite and constrained. A neural
model will require the ability to handle large numbers of processing units. In addition
to the large numbers of neurons, studies have also found that the neuron is not a sim-
ple threshold unit [Levy821. The neuron is actually a complex computing device.
Recent studies have shown that all the computing does not take place solely inside the
soma: computations also occur outside the neuron body in the dendrites and at the
synapses. These two pieces of information remind ANS technologists that the brain is
a complex and large device and that models will eventually have to represent such size
and :omplexity.

Page 4 A Survey of Artificial Neural Systems

2.3.4. Connections Hold the Knowledge

The number of connections between neurons in the brain is relatively fixed. Very
few new pathways are formed in adult brains and these are assumed to be for long-
term memory [Feldman82]. Because of the lack of new connections and the time it
takes for new connections to form, new knowledge is believed to be captured by
changing the strengths of the connections [Cottrell84, McCleand86]. An ANS will not
need to add and remove connections to simulate the processing of the brain, only
change the strength of the connections.

2.3.5. Fault-tolerant Brain Versus Fault-intolerant Computers

The brain is very resistant to noise and rather robust in the sense that damage
Ifaults) to individual neurons does not degrade the overall performance of the brain
[Corrrel184). Because of this graceful degradation, the brain can be said to be fault-
tolerant. The concept of fault-tolerance supports the theory that the brain carries a dis-
trnbuted representation of the world in which no one neuron carries a specific thought
or idea. Thoughts and ideas are spread out through many neurons and interconnec-
tions. Most computers are fault-intolerant. Each location in computer memory holds a
specific piece of information. If that memory location is corrupted then the knowledge
is lost, creating a fault in the system.

2.3.6. No Executive Control in the Brain

The brain does not have any specific area with executive control [Cottrel]841.
Each neuron computes an output based solely on its inputs. A neuron cannot access
information held by other neurons unless it is directly connected. A neuron cannot
look around to see what the other neurons are doing. When designing an ANS only
the inputs to a neuron need to be considered. There is a sharp contrast in the com-
parison of the control in a computer versus the control in the mind. A computer uses
the CPU and the mind uses distributed control throughout the brain.

3. History of ANS

ANS research began in the early 1940s. The field is young and many of the peo-
ple that were instrumental in its inception are still very active in the field today. The
following sections discuss the people and accomplishments of ANS from 1943 to
present.

3.1, McCulloch and Pitts (1943)

McCulloch and Pitts made the tirst mathematical model of an ANS [Hecht-
Nielsen86a, Rumelhart86a]. This model showed that an ANS could compute, a theor-
ized but previously unproven concept. Although the model was able to compute. it

could not learn.

Patrick K. Simpson Page 5

3.2. Hebb (1949)

D. Hebb brought learning to ANS technology [Hecht-Nielsen86a, McClelland86,
Rumelhart86a]. Hebb's book Organization of Behavior, published in 1949, describes
a system of correlation learning at the synapses of the neuron. From Hebb's observa-
tions of how learning occurred in the neuron, he developed a learning rule for ANS,
the Hebbian Learning Rule. The Hebb Learning Law states "If neuron A repeatedly
contributes to the firing of neuron B, then A's efficiency in firing B increases." Since
the formation of Hebb's Law a restatement of the law has emerged that says " the
strength of the synaptic connections are changed in proportion to the difference
between the target and actual output of a neuron." [Jorgensen86] To explain, if the
neuron has a positive output (actual) and it is expected to be negative (target), nega-
tively reinforce the synaptic connections to the neuron. If the neuron has a negative
actual output and a positive target output, positively reinforce the synaptic connec-
tions. If the actual and target outputs are the same, leave the synaptic connections
unchanged.

3.3. Lashley (1950)

Lashley's studies of the mind led to his insistence that the mind has a distributed
knowledge representation [McClelland86]. Lashley's idea was that knowledge is not
locally stored but rather it is stored in a distributed manner. Rephrasing this, there are
no special cells for special memories; rather, many cells carry a portion of the
memory.

3.4. Edmonds and Minsky (1951)

D. Edmonds and M. Minsky were the first to build a physical ..',S BernstenS l.
McCletland86, Runielhart86aj. Their model, built at Harvard in the 'surmer of i51
was constructed of tubes, motors and clutches. The clutches were adlusted m ac)r
dance to the Hebbian Learnng Rule to store the connection strengths The machlne
was able to store as many as 40 patterns of 40 binary digits, but was tcx, intlex,he :r

further work.

3.5. Rosenblatt (1957)

F. Rosenblatt became a prominent ANS researcher with his creation of a neural
model called the perceptron [Hecht-Nielsen86a, Larson 86, %cC~eland86.
Rumelhart86a]. The perceptron showed remarkable promise as a computing device.
being able to learn patterns and generalize from patterns learned. Rosenblatt stud'ed
his model with mathematical analysis and digital computer simulations The

percpetron brought many researchers to the field of ANS.

Page 4 A Survey of Artificial Neural Systems

3.6. Minsky and Papert (1969)

M. Minsky and S. Papert were responsible for the demise of the perceptron as
well as much of the ANS research during late 1960s [Hecht-Nielsen86a, Larson86,
McClelland86, Rumelhart86a]. Minsky and Papert were irritated at Rosenblatt for over
claiming the perceptron's ability, In their book Perceptrons, published in 1969, the
two researchers showed that the perceptron was an inadequate model because it could
not represent the basic exclusive-or (XOR) function. Minsky and Papert were so con-
vincing that most ANS research at the time was halted.

3.7. Grossberg (1968)

Despite the scorching by Minsky and Papert, ANS research did continue on a
small scale. S. Grossberg studied neurally inspired mechanisms in both perception,
memory, and later vision [Grossberg68, Hecht-Nielsen86a, McClelland86), Grossberg's
research has focused on the mind., using an A'4S to mode) his ideas. Grossberg's
mathematical analysis of properties of ANS models has led to many insights that
include neurally inspired models of perception and memory. Grossberg's research has
recently been focused on vision. He has just finished a study that used an ANS that
mimics human eye movements [Grossberg85).

3.8. Willshaw (1969)

As a member of the research group at Edinburgh University under Longuet-
Higgins, D. Willshaw made important contributions toward understanding memory
fMcClelland86]. Willshaw did mathematical analysis of distributed memory models
and found properties associated with various modeling schemes. Later in coJaboration
with Longuet-Hfiggins, Willshaw did work with holophones [Willshaw691 A holo-
p.one is a man-made representation of memory that is useful in the analysis of
memory systems.

3.9. Aman, Anderson, and Kohonen (1971)

Three researchers who did significant work in 1971 are Amari, Anderson, and
Kohonen. Amari's work was with Boolean ANS theory, an ANS that contains only
Boolean values [Amari7l]. Anderson's work was with linear associative memory, a
memory that is completely distributed [McClelland86]. Kohonen's research concerns
self-organizing asocianve memory, studying how the mind organizes the informarion
it stores [Kohonen84

3.10. Rumelhart and McClelland ,19'77)

Dunng the late 1970s ANS technology became prormnent in the field of cognitive
psychology, using ANSs for cognitive models. Two cognitive psychologists who ini-
tiated this movement are D. Rumelhart of UCSD and J. McClelland of Carnegie-

Patrick K. Simpson Page 7

Mellon University (CMU). McClelland and Rumelhart were inspired by the HEAR-
SAY speech understanding system at Stanford University [Hecht-Nielsen86a, McClel-
land86]. In their efforts toward building a cognitive model for speech understanding
they rediscovered ANSs. Rumelhart and McClelland's models are called parallel distri-
buted processing (PDP) models [McClelland85, Rurnelhart86b]. Many ANS learning
paradigms have been studied using PDP, namely competitive learning [Rumelhart86a],
Boltzmann Machines [Hinton86b, Rumelhart86d], and most recently Error Propagation
[Rumelhart86c].

3.11. Hecht-Nielsen (1977)

Commercial research is also being conducted at TRW. This research was headed
by R. Hecht-Nielsen [Hecht-Nielsen86a, Hecht-Nielsen86b]. This work focused on the
application aspects rather than the research aspects of ANS technology. While work-
ing at TRW, Hecht-Nielsen developed two neurocomputers, the Mark IlI which is
commercially available [TRW86] and the DARPA-financed Mark IV. In 1986 Hecht-
Nielsen left TRW and started his own neurocomputer company. His company has
developed a neurocomputer called the ANZA that fits on a card and plugs into an IBM
PC AT [HNC86].

3.12. Hopfield (192)

The recent resurgence of interest in ANS technology is mostly attributed to J.
Hopfield of the California Institute of Technology (CalTech) [Hecht-Nielsen86bl.
Hopfield delivered a paper to the National Academy of Science in 1982 that proved
that an ANS of interconnected processing elements would seek an energy minima
[Hopfield82]. This paper showed that ANSs have emergent collective computational
abilities; restated, as ANSs compute emerging properties are found. The emergent col-
lective properties that are found using an ANS appealed to a wide range of disciplines,
most notably physics, computer science, cognitive psychology and neuroscience [Lar-
son86, Myers86]. Since publishing the paper, Hopfield has continued to study the neu-
robiological aspects of ANS [Hopfield84].

3.13. Cooper and Elbaum (1983)

Former Brown University Physicists L. Cooper, a Nobel laureate, and C. Elbaum
started their own company called Nestor Inc. in 1983 [Larson86, Nestor86]. Cooper
and Elbaum, like Hecht-Nielsen, are also interested in the commercial applicauons of
ANS. Nestor's commercial projects include hand-written computer input systems
[Nestor86, Reilly82], speech recognition [Epstein86], and 3-dimensional graphics
[Rimey86].

Page 8 A Survey of Artificial Neural Systems

3.14. Kosko (1985)

B. Kosko of Verac Corporation has done research with fuzzy logic that has over-
lapped into ANS [Chester86, Kosko86]. Fuzzy logic is the representation of unclear

and non-specific information (fuzzy data) Kosko has worked out a way Lo integrate
ANS and fuzzy logic using a system called fuzzy cognivt maps One application
using this melding of fuzzy logic and ANS has been in radar image processing

4. The ALANS Connection

The work being done in artificial intelligence (AI) and ANS overlaps. In some
instances. Al and ANS have the same goals; tn others they do not. In this section a
discussion of where the two helds overlap and diverge is presented as well as a discus-
sion of how the two technologies could he melded.

ANS technology is aimed at developing haman-made systems that can perform
the same type of information pi:essing that the brain performs ANS developmci-is
ntiude real-time performance in pattern iecognition (speech recogntion. kipowledge

processing given inexact and incomplete knowledge (image processing), and precise
control in multiple constraint environments (robotics) [Hecht-Nielsen86b, Larson86].
ANS technology is so different from conventional computer technologies that it is
necessa-y to create a new architecture to support it. ANS processors (neurocomputers)
are the new architectures that have been produced to accomodate ANS technology.

There are areas in Al and ANS that have the same goals. Over the past 30 years,
the Al t.ommunity has studied the areas where ANS technology is currently being
applied. The areas of speech recognition, image processing, and robotics have been
assessed to be difficult areas n Al that y)eld slow progTess [Hecht-Nielsen86bj Areas
where Al machmes and conventional computers are superior to ANS are algonthmac,
logic, and symbolic processing.

ANS technology is aimed toward the difficult areas of Al. Al computers are not
well suited for adapting and generalizing, but this is an area where ANS performs
well. Areas such as expert systems and symbolic computing are better suited for Al
LISP-oriented machines. It is not the intent of ANS technology to replace Al technol-
ogy. These two technologies are able to profit the greatest by melding themselves into
one machine. By installing an ANS processor into an Al machine, and having the Al
machine call upon the ANS processor when needed, a mutual environment with
.rproved performance is cieated The ANS pir(xessor i% used where it is best ',. eti.
as a *p, ecialized suppor subsys terr, for w A) corriputirig system

5 ANS Applications

ANS has been jpplied in a vanetv of areas and many more ire vet !o I-,e

discovered [PortX7]. ANS is good at specific tasks. One task ANS is ahle to perlorm
is as an associative memory An associative memory processes all possible outputs tor

Patrick K. Simpson Page 9

a given input simultaneously, eventually finding the proper output in constant time
[Kohonen84]. Another task ANS is able to perform is creating generalized representa-
tions of presented input [Epstein86, Larson86]. Extending this idea, ANS is able to
process information given only a portion of the input. This is a useful feature in that
ANS does not need to be supplied all the input information to get the proper output
[Larson86, McClelland86]. Similarly, if partially incorrect or unclear (fuzzy) informa-
tion is given to an ANS it will make a "best guess," processing an output from the
given input based upon the generalized internal representation [Chester86, Kosko86].
Yet another task where ANS is competent is multiple simultaneous constraint prob-
lems. ANS is able to process many inputs simultaneously and produce an output
based on those inputs. Because of the ability to process a large amount of information
simultaneously, robotics is an area that is well suited for ANS [Myers86, Nestor86].

The tasks that are performed well using ANS technology are being applied in
many areas. In the following three sections, examples of ANS applications are
presented. The first section discusses the NETtalk text-to-speech convertor built by
Sejnowski and Rosenberg, the second presents a cognitive psychology experiment in
natural language processing performed by Rumelhart and McClelland, and the final
section briefly mentions other areas where ANS has been applied.

5.1. Sejnowski/Rosenberg's NETtalk

T. Sejnowski of Johns Hopkins University (JHU) and C. Rosenberg of Princeton
University (PU) constructed an ANS application that did text-to-speech conversion
[Sejnowski86] A phoneme is a symbolic representation of a single syllable sound
utterance. Sejnowski's ANS maps text (input) to phonemes (output). The phonemes
that are output from the ANS are in turn passed to a phoneme-to-speech synthesizing
device called the DECtalk. The ANS learned to read text aloud by successively being
presented a window of seven letters from a text (corpus) and using the middle letter as
the target that the single phoneme output would represent. By mapping seven letters to
a single phoneme, the ANS was incorporating context into the conversion process.
The middle letter of the seven is the letter that the phoneme represents and the three
preceding and three following letters are context for the letter being represented. After
the seven letters are presented, a one-letter shift of the text is done and the process is
repeated. This process is continued for the whole corpus being presented. The ANS
model used the Rumelhart/Williams Error Propagation algorithm (discussed in detail
later) for doing the mapping from input to output.

The ANS begins in an untrained state with random connection strengths. After a
short training period, the output from the DECtalk begins to make a continuous and
eery babbling. At this stage of the training, all speech is connected and only one ver-
bal sound is heard. Separation of sounds occurs and more than one verbal sound is
heard as the ANS continues to learn. At this stage, the output begins to sound like an

Page 10 A Survey of Artificial Neural Systems

infant. As the training continues further, the output from the DECtalk begins to sound
like a young child talking and words are clearly distinguishable.

The NETtalk ANS has captured a large number of the rules necessary for speech
synthesis, for example, properly pronouncing the "a" in both "say" and "ran " The
same results are possible from commercial text-to-speech systems, but it has taken
years of development and study to learn the same rules that the NETtalk ANS learned
autonomously overnight. The development time for the NETtalk ANS was only three
months, significantly less time than its commercial counterparts.

5.2. Rumelhart/McClelland's Natural Language Processing

Two noted cognitive scientists, D. Rumelhart of UCSD and J. McClelland of
CMU, have created an ANS that learns the past tense of English verbs
[Rumelhart86d], The objective of the study was to determine if an ANS model
acquired the rules for forming the past tense of verbs the same as children, An ANS
was designed that took as input a phonemic representation of a root verb and gave as
output a phonemic representation of the past tense of that root verb. The ANS operated
as follows: (1) The root form of the verb was presented as input, (2) the past tense of
the root form was the targeted output, and (3) errors between the root and past tense of
the verb were corrected using the Boltzmann Machine Learning Rule (discussed in
detail later).

A child progresses through three stages when acquiring the rules for forming the
past tense of English verbs [Brown73, Ervin64]: In stage one there is no evidence of
any rules being formed by the child. Stage two shows an implicit knowledge of
linguistic rules; an ability to apply the rules to both nonsense and real words is noticed
as well as over-regularization of verbs, for example, regularizing the verb "come" to
"corned." In the final stage both the regular and irregular forms of the verbs exist; the

child has learned both the rules and the exceptions.

Tests were conducted at various stages throughout the training of the ANS. With
a limited amount of training, the ANS exhibited stage one results, showing no rule for-
mations. As the training continued, stage two results were seen. At this point in the
training, the ANS exhibited the same mistakes that children exhibited, regularizing all
forms of the root verb. Finally after an abundance of training, stage three results were
achieved. The ANS had learned both the rules for forming the past tense of root verbs
and it had learned the exceptions to the ruie.

Another result of the tiaming was that the ANS was able to respond to verbs it
had never seen before. This result showed that an ANS was able to abstract from what
it had learned, applying its knowledge to unknown root verb forms and forming the
proper past tense. In summary, this study has shown that an ANS is able to learn and
generalize from information given, as well as apply itself to information previously
unknown. This study shows promise in real-world situations that involve inexact data

Patrick K. Simpson Page 11

and where a "best guess" is sufficient. Current computer software does not handle
inexact data well; it is fault-intolerant and requires specific input. Alternatively, ANS
has the intrinsic property of being fault-tolerant and able to handle unspecific data
gracefully.

5.3. Other Application Areas
Natural language processing (NLP) as an ANS application has been explored by

G. Cottrell of UCSD and S. Small of the University of Rochester (UR) (CottrelI84l.
Cottrell and Small built an ANS that did word sense discrimination, teaching an ANS
to determine which sense of a word is correct from the context. An example is that the
ANS can understand the difference in meaning that the word "threw" conveys in the
sentences "Bob threw a fight" and "Bob threw a ball." Other work in NLP that
involves ANS has been done by M. Fanty at UR [Fanty85]. Fanty developed an algo-
rithm that constructs an ANS for a context-free grammar and uses the created ANS as
a parser.

The ANS approach has been well received in the area of image processing. One
example is the Mingolla/Grossberg Vision Processing Network, which has demon-
strated that template-driven image segmentation and shift/scale/rotation invariant image
pattern recognition are possible using an ANS [Hecht-Nielsen86b].

In another image processing application using ANS, N. Farhat of the University
of Pennsylvania (UPenn) has trained an ANS to discern radar images of various air-
craft [Larson86]. Results of the application have shown recognition of a bomber with
only 20 percent of the image supplied.

Nestor Inc. has developed an application1 of ANS that accepts writing on a digi-
tized pad as computer input [Nestor86]. The ANS learns the idiosyncracies of
anyone's handwriting, allowing a more direct input to the computer. The company's
focus is on an ANS that takes kanji (Japanese lettering) as input and converting it to a
computer character form, th'as eliminating the difficult task of computer entry.

Current applications of ANS in speech research has been toward discovering a
method for speaker-independent recognition. J. Elman and D. Zipser have used ANS
in an attempt to discover the hidden features in speech that allows humans to distin-
guish words [Elman87]. Another speech-related project is to use spatiotemporal pat-
tern matching to achieve speaker-independent recognition [Hecht-Nielsen86c.

6. ANS Models

There are many different ANS models. This paper will present three of the pre-
valent models in ANS technology. The first model is the Hebb/Hopfield model
[Hopfield82, Jorgensen86], the second is the Boltzmann Machine model [Hinton86b,
Rumelhart86d], and the last is the Error Propagation model [Hecht-Nielsen86a.
Rumelhart86c]. Each model is successively more complex and more successful. Each

Page 12 A Survey of Artificial Neural Systems

model has processing elements (PEs) with adjustable strength connections from other

PEs. Each successive model varies in how the connection strengths are adjusted and
how the connections and PEs are arranged into an ANS.

The following section explains the PE and its similarities to the neuron. Follow-

ing the explanation of the PE are three sections dedicated to explaining each of the

forementioned ANS models.

6.1. The Processing Element

The PE (see figure 2) consists of weighted input connections (wo,....w,), a summa-

tion function, a threshold function, and an output value [Hecht-Nielsen86a, McClel-

land86, Rumelhart86b].

OUTj

/L,,f (NET)

NT

0 1

Figure 2: An ANS PE. The inputs are the weighted connections
from the N elements (wo.... w) of the layer below to the jA PE.
The weights are added together using a summation function that pro-
duces the value NETI, The oapa of the summanon function is
passed through a threshold function f(NET,) The output of the
thresold function is the net value of the PE OUT,.

Each of the components of this PE corresponds to a component of the neuron dis-

cussed in section 2 [Jorgensen86]. The correspondence is summarized in table 1.

Patrick K. Simpson Page 13

Table 1: Comparison of components of a PE and a neuron.

Correspondence Between Neuron and PE

Neuron PE

Synapses Weights
Summer Summation Function

Threshold Threshold Function
Axon Net Output

By combining many of these PEs, we form an ANS. The ANS is constructed in
layers. The inputs from the environment (external to the ANS) enter the input layer of
the ANS. The outputs enter the environment from the output layer of the ANS. Any
layers that exist between the input and output layers are called hidden layers. Hidden
layers are not accessible from the environment; they are only accessible by the ANS.
The connections are made from input toward output, but not from output to input.
Using this definition, an ANS can be considered a hierarchical directed graph that only
allows the flow of information from parent (input) to child (output). Connections in an
ANS are made from every PE on the parent level to every PE on its child level, creat-
ing a completely interconnected ANS. Information is stored (learning) by adjusting
the weights (connections strengths) between PEs. Figure 3 shows a completely inter-
connected ANS that has 5 PEs on the input layer (ino,...,in4) and 5 PEs on the output
layer (ow O,.... oa4).

6.2. The Hebb/Hopfleld Model

ANSs are dynamical (constantly changing) systems. Energy functions and proba-
bility relationships are used to mathematically describe and model ANSs because of
their dynamic nature. An ANS is a mathematical model in an N-dimension energy
space, where N is the number of connections in the most interconnected PE. The
Hebb and Hopfield models describe an energy space that seeks a local energy minima
from the point of entry [Hopfield82, Jorgcnsen86]. Once the system is given a specific
input pattern (entry point into the energy space), the system will compute the output
pattern (seek its local minima).

An ANS must be able to adjust itself to seek the proper energy minima upon
entry. The adjustments of the weights (connection strengths) in an ANS create the
proper energy minima for a given input. The Hebb and Hopfield models are different
in respect to the methodology used to adjust the weights. The Hebb model uses an
algorithm that increases the strength of connections between PEs that are both posinve.
decreases the strength of PEs that are both negative, and leaves the connections

Page 14 A Survey of Artificial Neural Systems

out 0out out 2out 3out4

In In InI no2 O2 4

Fipre 3: A two layer ANS. A two-layer ANS with 5 PEs on the
input layer (wo.-..n 4) and 5 PEs on the output layer (outo.... outj.
Each PE on the input layer is cowcted to a PE from the output
layer, creating a completely interconnected ANS.

between positive/negative PEs unchanged. The Hopfield model uses an algorithm tha
assigns a positive value to connections between two PEs that are either both positivt

or negative, and assigns a negative value to PEs that have mismatched

(positive/negative) values. With the exception of how the weights are adjusted, the
Hebb and Hopfield models are the same.

One use of the Hebb/Hopfield models is as an associative memory (discussed in
section 3). An associative memory is able to reconstruct a complete pattern from only

a portion [Kohonen84]. An example of the actions of such an ANS is to store (adjust
the weights in the ANS) binary value "101." When the ANS is presented with the

incomplete input "1?1" (where the ? means unknown) it will reconsouct the mising
informanon and output "101." The Hebb and Hopfield models that accomplish this are

described in appendix 1.

Patrick K. Simpson Page 15

6.3. The Boltzmann Machine Model

The Boltzmann Machine model is an ANS that uses the Boltzmann probability
distribution function to adjust connection strengths. The Boltzmann distribution func-
tion is a ratio of probabilities:

P -<E. - EO
e T

where P, is the probability of being in energy state a, P5 is the probability of being in
energy state 5, E. is the energy of state a, ED is the energy of state 1, and T is the tem-
perature of the energy system [Jorgensen86, Rumelhart86d].

The probability of being in energy state a or energy state 03 is equal to I (i.e. Pa +
P' = 1). In the ANS form of the distribution equation, the associated energy of state 3
is assigned to the variable 0. Solving for the probability of being in state a results in
the following:

1
Pa = -(E, - 0)

1+e T

The ANS equivalent for the probability of being in state a of the above equation
is the output value desired of the j' PE, where j is one of the N output PEs in the
output layer of a two-layer ANS. This value is mathematically referred to as out,, the
i element of the desired output vector out. The ANS equivalent of the energy state
of a for the above equation is netj, the computed output for the j PE of the output
layer. This value can be computed by multiplying each connection (i) into the j' PE
by the corresponding output value from iNf, the il PE of the input layer. The equation
for computing nt, is as follows:

nt, = D'n wi,

In this equation w,, is the connection strength (weight) of the connection from input PE
to output PE j. Using the ANS equivalence, the ANS form of the Boltzmann distri-

bution function is as follows:
I

I+e r

The value of 01 is a bias that is associated with each PE. The values this func-
tion produces are between 0 and 1. Plotting the output of this function against the
probability that it is on (p(on)) produces the plot shown in figure 4. Because the curve
has a "S" (sigmoid) shape and is bounded between 0 and 1, the function can be con-
sidered a threshold function. A threshold function has an output of I when it is tinng
and 0 when it is not.

Page 16 A Survey of Artificial Neural Systems

1.0

0%-1 0.5

0.0
-5 -4 -3 -2 -1 0 1 2 3 4 5

net, -q,/ T

Figure 4: The threshold fuctiom curve. The threshold fwton
used to calcdate the probabiliy of fting. The x-axs shows vades
of net, - O,T and the y-am uindicates the corresponding probabiti-
ty of the PE being on (p (on)).

The Boltzmann Machine ANS also uses a different process for learning, applying
the concepts of simulated annealing to the learning process. By using the Boltzmann
Machine equation above as a threshold evaluation function for each PE, and by regu-
lating the temperature value T, the ANS can learn more effectively. Creating an ANS
creates an energy terrain. By adjusting the weights, the ANS energy terrain is
changed. The best energy terrain is one that will have a deep energy well for each
entry point. Sometimes the entry point into the ANS is not at a good location, thus
the energy minima that is needed is not available. By adding energy to the ANS,
called adding noise, the energy well has a better chance of being found from the entry
point. Restated, when an ANS is started at an entry point in the energy terrain, the
local minima will be sought. What is wanted is not the local energy minima but the
global energy minma. By adding noise to the energy terrain, it is possible to bounce
out of the the local minimas and eventually find the global minima Noise is added to
the system by increasing the temperature T, and by slowly dropping die temperature
(reducing the amount of noise) the ANS is simulating annealing,

In contrast to the Boltzmann Machine model, the Hebb/Hopfield models are
confined to there point of entry and are easily trapped in a local minima. The
Boltzmann Machine model is able to overcome that problem and find the global
minima. Appendix 2 gives an algorithm for mapping patterns of input vectors to

Patrick K. Simpson Page 17

output vectors using this model.

6.4. The Rumeihart/Williams Error Propagation Model

The models presented up to this point, the Hebb/Hopfield and Boltzmann
Machine models, are two-layer ANSs. There are many problems in the real world that
cannot be represented in a two layer system. One is the exclusive-or (XOR) function
[Rumelhart86c]. Because there exist no values that the connection strengths can
assume that will give the appropriate output for all inputs, the two-layer ANS is inade-
quate. Table 2 describes the XOR function, showing the input values ino and in, and
the corresponding output value out0 .

Table 2: The XOR function. The input values in0 and in 1 and
corresponding output values outo can not be represented in a two
layer ANS. Using a three layer ANS this mapping Ls possible.

ino ian outo

0 0 0
0 1 1
1 0 1

1 1 0

Using the two-layer ANS shown in figure 5, no weight assignments can be made to
woo and w01 that will give a proper output for each of the four XOR inputs patterns
shown in table 2.

The solution to this problem is to introduce a third layer, called the hidden layer,
between the input and output layers. The hidden layer creates the ability to incorporate
an internal representation that facilitates difficult mappings between input and output
patterns. By adding the middle layer shown in figure 6 to the ANS shown in figure 5,
the XOR function is now representable [Rumelhart86cl.

R. Hecht-Nielsen has taken this idea a step further by applying a mathematical
existence theorem to ANS. Hecht-Nielsen, using the Kolmogorov Existence Theorem
which states that any continuous mapping can be done in a three-layer system, has
shown that a three-layer ANS exists for any continuous mapping. If there is a con-
tinuous mapping from input to output, there exist a three-layer ANS that can represent
that mapping [Hecht-Nielsen86a1.

D. Rumelhart and R. Williams of UCSD discovered an algorithm that could do
the mapping. The Rumelhart/Williams Error Propagation algorithm can do the map-
ping for a three-layer (or more) ANS. In the tnree-layer system, the weights are
adjusted for the output layer according to an error function that calculates a weight

Page 18 A Survey of Artificial Neural Systems

OUT
0

w w
00 01

IN0 INI

Figure 5: A two-layer ANS for the XOR function. The weights
woo and w01 cannot assume values that will produce the proper out-
put for all four input patterns of the XOR function

adjustment based upon the difference between the target output and the computed out-
put of each output PE. Each error value for each output PE is then propagated back-
ward to the hidden-layer and used to adjust the values of the weights to the hidden
PEs. The error adjustments for the weights to the hidden layer PEs is calculated using
the derivative of the error function used to adjust the weights for the output-layer PEs.
By using the derivative, the hidden-layer PEs' values are properly adjusted.

6.5. Summary

These models represent an adequate cross-section of ANS technology for the pur-
poses of this survey. In summary, each model is successively more complex and is
more able at storing representations. The Hebb/Hopfield models are the least complex
and the Error Propagation model is the most complex. The Error Propagation model is
the best at storing representations and the Hebb/Hopfield models are the most limited.
The Boltzmann Machine falls between the the Hebb/Hopfield and the Error Propaga-
tion model in both representation ability and complexity.

7. The Neurocomputers

One inexorable problem associated with implementing ANS is the massive
amount of computing that is necessary. As the models get larger and more complex.
the computing time becomes exponentially larger. One solution to the problem is to
build a computer that is architecturally suited to handle ANS. Because ANS is

Patrick K. Simpson Page 19

OUT
U

W2 00 W201

W10) 13 10 W1011 W11

IN 0 IN

Figure 6: The three-layer ANS for the XOR function. Thi ANS
allows the representatwn of the XOR funcaon. The addioo of the
hudden anus between the input and ouput layer creates an internal
representanon that makes the difficit XOR mapping possible.

massively parallel in nature, a computer built with thousands of processors, where each
processor takes the place of one PE, would solve the problem.

Many attempts are being made at building ANS computers. The computers being
designed for ANS modeling are called neurocomputers and are currently being imple-
mented in two frameworks: electro-optical and electronic [Hecht-Nielsen86b].

Electro-optical computers are designed to use light for the connections between
PEs. Because light is able to overlap without interfering, it is a good med:um for

implementing the high number of connections needed between PEs. Leaders in t
research include C. Guest of UCSD and B Kosko [Kosko87], D. Psaltis and Y..
Mostafa CalTech with N. Farhat of the University of Pennsylvania (Abu-Mostafa6;,
Brown86a], and Szu of Naval Research Laboratories [Brown86b]

The other method used to implement neurocomputers is electronically. Such neu-

rocomputers have all the interconnections hard-wired and use available transistors and
hardware in their implementation. Size and cost are no longer the inhibiting factors

Page 20 A Survey of Artificial Neural Systems

:hev had been 10 years ago because of the dramatic advancements in electronic circui-

try. One leader in this area is R. Hecht-Nielsen, who has started his own company

that produces neurocomputers, the Hecht-Nielsen Neurocomputer Corporation (HNC).
E-NC will market a board that fits into an IBM PC/AT card slot and can be used to
implement many different neural models, including those presented in this paper

(Brown87, HNC861. This neurocomputer has a capacity for 30,000 PEs with 300,000
interconnections.

Other leaders in electronic neurocomputers include Nestor and TRW. Nestor is
the only company that has marketed an ANS application. Nestor has a patented
hardware system that allows handwritten input to a computer via a digitized pad [Nes-

tor86]. TRW has entered the ANS market place with its Mark IH neurocomputer
[TRW861, designed by Hectit-Nielsen before he left TRW in late 1986 and formed his

own 0ompany.

Neurocomputers will not replace the. existing computer. rhe neurocomp.ters

being designed are subservient members of a Von Neumann computer. Programs that
use neurocomputers make a subroutine call to the neurocomputer to do its specialized
work. Neurocomputers will have their own software which will be able to integrate

with exisung software to create a machine with added capability and potential.

Patrick K. Simpson Page 21

Acknowledgements

I would like to thank Stephen Luse, Stephen Nunn, and Dennis Kocher of Naval
Ocean Systems Center's Speech Technology Group (Code 441) as well as Dave Voldal
and Dale Larson of Unisys's San Diego Systems Engineering Center for their technical
advice, comments, and criticisms. Sharon Walker of Arizona State University also
deserves thanks for helping me to get this paper into its final form. Most importantly I
would like to thank my wife Christalyn for her patience, support, and comments while
writing this paper.

Page 22 A Survey of Artificial Neural Systems

References

[Abu-Mostafa87]
Abu-Mostafa, Y., "Optical Neural Computers", Scientific American. Pgs. 88-95
(March 1987)

[Amari7l]
Amari, S., "Characteristics of Randomly Connected Threshold-Element Networks
and Network Systems", Proceedings of the IEEE. Vol. 59, No. 1, Pgs 35-47
(January 1971)

[Bernstein8 11
Bernstein, J., "Profiles: Marvin Minsky", The New Yorker. Pgs. 50-126
(December 14, 1981)

[Brown73]
Brown, R., A First Language. Cambridge, MA: Harvard University Press (1973)

[Brown86a]
Brown, C., "Parallel Optics: Solution to Von Neumann Bottleneck?", Electronic
Engineering Times. Pg. 35 (November 24, 1986)

[Brown86b]
Brown, C., "Parallel Optics Computer Solves Mulitvariable Problems in Real-

time", Electronic Engineering Times. Pgs. 31-32 (December 1986)

[Brown87]
Brown, C., "Neural Network Startups Backed by Venture Capital", Electronic
Engineering Times. Pgs. 23-24 (January 1987)

[Chester86]
Chester, M. "Fuzzy Logic's Soft Start Belies a Cuttng Edge", Electronic Pro-
ducts. Pgs. 19-20 (June 1986)

[CottreIl84]
Cottrell, G. and Small, S., "Viewing Parsing as Word Sense Disnmmnaticn .-\

Connectionist Approach", Computational Models of Natural Language Pro-
cessing. Bara, B. and Guida, G. (Eds.), Elsevier Science Pubhlishers, 13 V
North-Holland (1984)

[Cnck791
Crick, F., "Thinking About the Brain", Scientific American. Vol. 241, Pgs. 2.Q

232 (1979)

Patrick K. Simpson Page 23

[Elman87]
Elman, J. and Zipser, D., "Learning the Hidden Structure of Speech", University
of California, San Diego Technical Report. Department of Linguistics and Insti-
tute for Cognitive Science, University of California: San Diego (1987)

[Epstein86l
Epstein, G., "Nestor Learning System Applied to a Speaker Independent Voice
Application", Nestor Inc. One Richmond Square, Providence, RI 02906
(November 1986)

(Ervin64]
Ervin, S., "Imitation and Structural Change in Children's Language", New Direc-
tions in the Study of Language. Lenneberg, E. (Ed.), Cambridge, MA: MIT
Press (1964)

[Fanty851
Fanty, M., "Context-Free Parsing in Connectiomst Networks", University of
Rochester Technical Report,. Computer Science Department, University of
Rochester. New York (1985)

[Feldman82]
Feldman, J., "Dynamic Connections in Neural Networks", Biological Cybernetics.
Vol. 46 (1982)

[Froelich86]
Froelich, W., "Dawn Glimmers for Day of the Man-made Brain", The San Diego
Union. San Diego, CA: Pgs. A9-A 11 (July 6, 1986)

[Gold86]
Gold, B., "Hopfield Model Applied to Vowel and Consonant Discrimination",
Lincoln Laboratory Technical Report 747. Massachusetts Institute of Technol-
ogy, Lexington, MA: (June 1986)

[Grossberg681
Grossberg, S., "Some Nonlinear Networks Capable of Learning a Spatial Pattern
of Arbitrary Complexity", Proceedings National Academy of Sciences. Vol. 59.
Pgs. 368-372 (1968)

[Grossberg85]
Grossberg, S. and Kuperstein, M., Neural Dynamics of Adaptive Sensory-
Motor Control: Ballistic Eye Movements. Elsevier/North Holland: Amsterdam
(1985)

-1NC861
Hecht-Nielsen Neurocomputer Corporation, "Advanced Neurocomputer Applica-
tions Course", Hecht-Nielsen Neurocomputer Corporation, 5893 Oberlin Drive,
San Diego, CA 92121 (1986)

Page 24 A Survey of Artificial Neural Systems

[Hecht- Nielsen86a]
Hecht-Nielsen, R., "Artificial Neural System Design", UCSD Extension Class
Notes. Visiting Professor: TRW Rancho Carmel Artificial Intelligence Center,
One Rancho Carmel, San Diego, CA 92128 (1986)

[Hecht-Nielsen86b)
Hecht-Nielsen, R., "Performance of Optical, Electro-Optical, and Electronic Neu-
rocomputers", TRW Rancho Carmel Artificial Intelligence Center Technical
Report. One Rancho Carmel, San Diego, CA 92128 (1986)

[Hecht-Nielsen86c]
Hecht-Nielsen, R., "Nearest Matched-Filter Classification of Spariotemporal Pat-
terns", HNC Technical Report. Hecht-Nielsen Neurocomputer Corporation: San
Diego (1986)

[Hinton86a]
Hinton, G., McClelland, J., and Rumelhart, D., "Distributed Representations",
Parallel Distributed Processing: Explorations in the Microstructure of Cogni-
tion, Volume One: Foundations. Pgs. 45-76, Cambridge, MA: Bradford
Books/MIT Press (1986)

[Hinton86b]
Hinton, G., and Sejnowski, T., "Learning and Relearning in Boltzmann
Machines", Parallel Distributed Processing: Explorations in the Microstruc-
ture of Cognition, Volume One: Foundations. Pgs. 282-317, Cambridge, MA:
Bradford Books/MIT Press (1986)

[Hopfield82]
Hopfield, J., "Neural Networks and Physical Systems With Emergent Collective
Computational Abilities", Proceedings of the National Academy of Science USA.
Vol. 79, Pgs. 2554-2558 (April 1982)

[Hopfield84]
Hopfield, J., "Neurons with Graded Response have Collective Computational Pro-
perties Like Those of Two-State Neurons", Proceedings of the National Academy
of Science USA. Vol. 81, Pgs. 3088-3092 (May 1984)

[Johnson871
Johnson, R_ "Neural Systems Make a Comeback After 50-Year Gestation", Elec-
tronic Engineering Times. Pg. 23 (January , 1987)

[Jorgensen86]
Jorgensen, C. and Matheus, C., "Catching Knowledge in Neural Nets", Al Expert
Vol. 1, No. 4, Pgs.30-41 (December 1986)

[Kohonen841
Kohonen, T., Self-Organization and Associative Memory. Springer-Verlag,
Berlin. (1984)

Patrick K. Simpson Page 25

[Kosko86]

Kosko, B., "Fuzzy Entropy and Conditioning", Information Sciences. (1986)

[Kosko87]

Kosko, B and Guest, C., "Optical Bidirectional Associative Memories", Society

for Photo-optical and Instrumentation Engineers (SPIE) Proceedings: Image

Understanding. Vol. 75 (January 1987)

[Larson86]

Larson, E., "Neural Chips", Omni. Pgs. 113-116, 168-169 (December 1986)

[Levy82]
Levy, W., "Associative Encoding at the Synapses", Proceedings of the 4th Annual

Conference of the Cognitive Science Society. Ann Arbor, MI (1982)

[Lindsay77]

Lindsay, P. and Norman, D., Human Information Processing: An Introduction
to Psychology Orlando, FL: Academic Press, Inc. (1977)

[McClelland86a]

McClelland, J., Rumelhart, D., and Hinton, G., "'The Appeal of Parallel Distri-

buted Processing", Parallel Distributed Processing: Explorations in the

Microstructure of Cognition, Volume One: Foundations. Pgs. 3-44, Cam-

bridge, MA: Bradford Books/MIT Press (1986)

[McClelland86b]

McClelland, J., and Rumelhart, D., "Distributed Memory and the Representation

of General and Specific Information", Journal of Experimental Psychology: Gen-

eral, Vol. 114, No. 2, Pgs. 159-188 (1985)

[Myers86]
Myers, M, "Some Speculations on Artificial Neural System Technology",

Proceedings of the IEEE National Aerospace and Electronics Conference - NAE-

CON. Pgs. 1298-1302 (May 1986)

[Nestor86]

Nestor Inc., "Background: Nestor and the Nestor System", Nestor Inc. One Rich-
mond Square, Providence, RI 02906 (1986)

[Port87]
Port, 0., "They're Here: Computers that 'Think"', Business Week. Pgs. 94,98,

(January 26, 1987)

[Reilly82]

Reilly, D., Cooper, L. and Elbaum, C., "A Neural Model for Category Learning",
Biological Cybernetics. Vol. 45, Pgs. 35-41, Springer-Verlag: (1982)

[Rimey861

Rimey, R., Gouin, P., Scofield, C. and Reilly, D. "Real Time 3-D Classification

Using a Learning System", Proceedings of the SPIE Cambridge Symposium on

Page 26 A Survey of Artificial Neural Systems

Intelligent Robots and Computer 'ision. Cambridge, MA: (October 1986)

L Rumeihart86aj

Rumelhart, D. and Zipser, D., "Featwue Discovery by Competitive Learning",
Parallel Distributed Processing: Explorations in the Microstructure of Cogni-
tion, Volume One: Foundations. Pgs. 151-193, Cambridge, MA: Bradford

Books/MIT Press (1986)

[Rumelhart86b]
Rumelhart, D., Hinton, G., and McClelland, J., "A General Framework for Paral-
lel Distributed Processing", Parallel Distributed Processing: Explorations in
the Microstructure of Cognition, Volume One: Foundations. Pgs. 45-76,
Cambridge, MA: Bradford Books/MIT Press (1986)

[Rumelharn86c]
Rumelhart, D, Hinton, G, and Williams, R_ 'Learning Internal Representations
by Error Propaganon", Parallel Distributed Processing: Explorations in the
Microstructure of Cognition, Volume One: Foundations. Pgs. 318-362, Cam-
bridge, MA: Bradford Books/MIT Press (1986)

[Rumeilhart86d]
Rumelhart, D and McClelland, J, "On Learning the Past Tense of Verbs", Paral-
lel Distributed Processing: Explorations in the Microstructure of Cognition,
Volume Two: Psychological and Biological Models. Pgs. 216-271, Cambridge,
MA: Bradford Books/MIT Press (1986)

[Sejnowski86]
Sejnowski, T and Rosenberg, C., ''NTtalk: A Parallel Nerwork that Learns to

Read Aloud", Johns Hopkins University Electrical Engineering and Computer
Science Technical Report JHU/EECS-86/OI. Johns Hopkins University, Bal-
umore, MD 21218 (1986)

[TRW861
TRW Rancho Carmel Artificial Intelligence Center, "Mark III: Arutficial Neural
System Processor", TRW Rancho Carmel Artificial Intelligence Center. One Ran-
cho Carmel, San Diego, CA 92128 (1986)

[Willshaw69]

Willshaw,D. and Longuet Higgins, H., "The Holophone - Recent Developments

Cognitive Processes: Methods and Models. Pgs. 349-357, University ot Edin-
burgh 11969)

Appendix 1

1. The Hebb/Hopfield Algorithms

The following are learning and recall algorithms for the Hebb and Hopfield ANS
models. These algorithms are designed to store a single pattern. A pattern is a map-
ping of an input vector in' to an output vector ott. If the input and output vectors are
the same, as they are in these models, the model is acting as an associative memory.
Although these models are designed to store one binary valued vector, they can easily
be extended to store several binary vectors. These models can also be expanded to
store mappings between vectors differing in length, value, or both.

1.1. The Hebb Model Learning Algorithm

The Hebb model learning algorithm is as follows:

1. Given an input vector of length N called i' with binary values from in0 to in.-_.

2. Construct a duplicate vector to the input vector, call this vector o't; it is also

indexed from 0 to N-I.

for i = 0 to (N-I) do

OUtl, = in,

enddo

3. Construct a weight matrix N x N that is initialized to all zeroes called W.

for i = 0 to (N-1) do

for j = 0 to (N-1) do
W, = 0

enddo
enddo

4. Generate appropriate values for each position in the matrix w,, where ,*j accord-
ing to their similarity as follows:

* If in, and ow, are both equal to 1, add strength to the connection between

them (via an increase in the value stored for this connection in the weight
matrix).
* If in, and out, are both equal to 0, subtract strength from the connection
between them (via a decrease in the value stored for this connection in the
weight matrix).

* Otherwise, continue.
The algorithmic form is as follows:

Page A-2 A Survey of Artificial Neural Systems

for i = 0 to (N-I) do
for j = 0 to (N-I) do

if i * then
if in, = ow, = i then

W'J = W., +I

elseif in, = out, = 0 then
w," = w,l

endif
endif

enddo
enddo

The following example illustrates how this algorithm works:

i. Consider the five-element input vector £ = 01110.

2. Creating a duplicate vector gives the output vector out = 0i 10.

3. Creating a weight matrix W of dimensions 5 x 5 with each slot in the vector mi-

nalized to zero yields the following matrix:b o o o o
000001W = 0000
~oooo.

W=00000
0000

4. Generating the values for W according to the Hebb Learning Rule results in the

following computations:

ino = 0 and out, = 1, so W(), is unchanged
ino = 0 and owt2 = 1, so W02 is unchanged
InO = 0 and Ow3 = 1, so W. is unchanged

in =0 and ot 4 = 0, so Wo4 = -I

Continuing with this for In,, in2, and in3 will yield the adjusted matrix:

000 -1
011 0

W= 101 0
1100

Patrick K. Simpson Page A-3

1.2. The Hebb Model Recall Algorithm

The weight matrix should now hold the vector 01110. To recall this vector from
the matrix, the following algorithm is used:

1. Given a weight matrix W that has dimensions N x N that is storing a vector of
length N.

2. Sum over each row of W (the equivalent of summing up all the connection
strengths entering output element j); store each sum in a vector nt at the j,
index.

for j = 0 to (N-1) do
sum =0

for i = 0 to (N-1) do
sum = sum + Wi,

enddo
net, = sum

enddo

3. Test each element of the vector n~t and reset its value as follows:

forj = 0 to (N - I) do
if net, > 0 then

net, = I
elseif net, < 0 then

net, = 0
else

net, = I or net, = 0 with a probability of 0-5
endfi

enddo

Using the W computed for the vector in" = 01110, we get the following:

net0 = 0 * 0 + 0 + 0 + (-1) = -1

net, = 04 0 + I + 1 + 0 = 2
net 2 = 0 + 1 +0 + 1 0 = 2
net 3 = 0 1 + 1 + 0 + 0 = 2
n0t 4 = (-1) + 0 + 0 + 0 + 0 = -1

3. From the values computed above, we reset each value of the vector net as fol-
lows:

Page A-4 A Survey of Artificial Neural Systems

net o < 0, so net0 = 0

net 1 > 0 , so nett=

net 0 > 0, so net 2 = 1

niet 0 > 0, so net 3 = 1

net 0 < 0. so net 4 = 0

and the vector recalled from the matrix is the vector 01110, the same vector the

ANS was taught.

1.3. The Hopfleld Model Learning Algorithm

In the Hopfield model, step 4 of the Hebb learning algorithm is changed to the

following:

4. Generate appropriate values for each position in the matrix w,, where s) using

the following equation:

W, = (2in, - I X2out, - 1)

This equation does the following:

e If in, and ow, are both equal to I or both are equal to zero, store a j at the

matrix position Wi.

* Otherwise, store a -1 at matrix position w11.

The algorithm for this step is as follows:

for i = 0 to (N-I) do

for j = 0 to (N-I) do
if i *j then

Wi = (2in, - 1)(2out, - 1)

endif
enddo

enddo

1.4. The Hopfield Model Recall Algorithm

In the Hopfield model, step 3 of the Hebb recall algorithm is changed. When con-

structing the recall vector net, use the following:

3. Test each element of the vector net and reset its value as follows:

Patrick K. Simpson Page A-5

forJ = 0 to (N - 1) do
if net, >= 0 then

net, = I
else

net, = 0
endif

enddo

Using the same example given before, given the vector in= 01110, we get the fol-
lowing adjusted matrix W:

-1 0 1 1 -1
W W 1 1 0 1 -1

1 -1 0-1i -1-1-1 0

//

/

Page A-6 A Survey of Artificial Neural Systems

Appendix 2

1. The Boltzmann Machine Model Algorithms

The following are the learning and recall algorithms for the Boltzmann Machine

ANS model. In the learning stage this ANS model associates an input vector with a
different output vector. In the recall stage this ANS model is given an input vector
and the associated output vector is recalled. This type of model is considered a pattern

association model.

1.1. The Boltzmann Machine Learning Algorithm

The Boltzmann Machine Learning Algorithm is implemented in this model using
a tolerance value to test when the model has satisfactorily learned all the patterns it
has been presented. This model will continue to learn until all the differences between

the computed output value net, and the target value ou, are within the specified toler-
ance This model will start with a tolerance of 0.1 and as the annealing process

progresses the tolerance value will decrease.

This model assigns a base temperature (T) of 25 and a base learning rate (TI) of

0 i at the start. These two values are related to each othe as follows: The higher the
temperature the lower the learning rate needs to be and vice-versa. In this model the
learning rate (I) increases by 0.1 each time the temperature (T) decreases by 5 The

changes in T and rl occur each time the tolerance is satisfied, and each time the toler-
ance is satisfied it is decreased by 0,02.

A new notation is also introduced to show the pattern number being learned. In
the algorithm that follows, in, represents the p"* input vector's t' element. The nota-
tion ow,, represents the p1" output vector's j1 element. The threshold is set to be zero
throughout this model. The weight matrix W is initialized to random values between 0
and 0.3 to prevent any oscillations that mignt occur from a weight matrix of all zeroes.
An epoch is a complete cycle through all weight adjustments for all patterns the ANS

is being presented. The learning algorithm is as follows:

1. Set T = 25, n = 0. 1, tol = 0.3, epoch = 0 and 0 = 0.

2. Initialize the weight matrix to hold random values between 0 and 0.3. The length

of the input vectors is N and the length of the output vectors is M, so the weight
rmjatix is an N xM matrix.

Patrick K. Simpson Page A-7

for i = 0 to (N-1) do

for j = 0 to (M-1) do
W, = random value from 0 to 0.3

enddo

enddo

3. Get the input and output vectors. The input vector is of length N, the output vec-
tor is of length M, and there are P of these associations (patterns).

/* Get input vectors */
forp = 0 to (P-i) do

for i = 0 to (N-I) do
in,, = binary value

enddo
enddo
/* Get output vectors */
for p = 0 to (P-i) do

for j = 0 to (M-1) do
inp = binary value

enddo
enddo

4. Now that the weight matrix W is initialized and the patterns are stored, the learn-
ing can now begin. To anneal the ANS, two flags are used. The first is the
tearnflag that will tell when the whole ANS is done learning. The other flag is
rol-flag which tells when the ANS has learned within the specified tolerance and
is ready to have T, toi, and I adjusted for the next step in annealing.

Page A-8 A Survey of Artificial Neural Systems

set learn flag = TRUE

while learn-flag * TRUE do

set tolflag = FALSE
while to! flag = FALSE do

set tolJflag = TRUE

for p = 0 to (P-I) do
forj = 0 to (M-l) do

net) =

enddo
net, = f Ao,A (net,)

for i = 0 to (N-I) do
= * (otpj - net,) *Inp

W= + 6
if toi flag = TRUE

and iout,,, - net, i > tot then
totflag = FALSE

endif

end do

enddo
endwhile

T= T- I
rn = .o1

toi = tot - 0.05

if tot = : then

learn flag = TRUE
endif

endwhile

This fourth step of the learning algorithm continues learning each pattern at each
tolerance until all the tolerances are satisfied. This ANS follows an annealing schedule
that starts at a T = 25, 1 = 0.1, and toi = 0.3, finishing with T = 5, n = 0.5, and ro=

01

1.2. The Boltzmann Machine Recal; Algorithm

The recall algorithm is much simpler than the learning algorithm. This algonthm
is given an input vector tiet and computes an output vector reali from the es't and the
connection strengths stored in W.

1. Get the input vector test.

Patrick K. Simpson Page A-9

for i = 0 to (N-I) do

test = some binarl value

enddo

2. From the given input vector calculate an output vector recall by doing the follow-
ing:

forj = 0 to (M-1) do

net, = lwil testi

enddo
recall, = f (net1)

The output vector reall should resemble the output vector originally associated
with the given input vector test. An example of this ANS is as follows. If you train
the ANS with the three patterns

10001-401110

I I 100--"0I Il

10101--01010

the AINS takes approximately 1700 epochs to satisfy all the specified tolerances. The
final weight matrix W is:

-11.88 2.75 26.52 11.80 -2.87
-3.42 -18.54 33.53 3.57 18.72

W = --6.45 -4.23 -40.04 6.25 4.24
10.30 0.10 0.30 0.10 0.20L.-816 21.50 -6.50 8.23 -21.391

This is the same model used by Rumelhart and McCleUand in their study in
which the past tense of English verbs was learned. Their model was much larger
(more input and output PEs), but it computes the same way.

F:7 I=1 I7

