D-R184 699

UNCLASSIFIED

TROPICAL CYCLONE INTENSITY PREDICTION BASED ON
EMPIRICAL ORTHOGONAL FUNCT (U) NAVAL POSTGRADUATE
SCHOOL MONTEREY CA E L WENIGER JUN 87 F/6

/G 472




'!‘a‘

v
. ) )
W ".‘m W "':‘" !

KON
0#:3"1

s L
l‘l'.‘o j

an "l

§ gl i
N ‘i‘;‘!
l

\

o

N
E |||||

|Il|l

L p28 B25
ks 2
L] j22
b e
£ ks 20

E

o

= |

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU 0OF STANDARDS-1963-A




v

NAVAL POSTGRADUATE SCHOOL &

Monterey, California ane FILE copy

AD-A184 699

THESIS

R TROPICAL CYCLONE INTENSITY PREDICTION % A
e BASED ON EMPIRICAL ORTHOGONAL FUNCTION
Ko REPRESENTATION

Sz OF WIND AND SHEAR FIELDS

. a:‘.' by

et Edward L. Weniger

June 1987

?; Thesis Advisor Russell L. Elsberry

iy S Approved for public release; distribution is unlimited.

= &¢ S B

b ; OO { R L PO ONEORIOL OO
' ':*f":’f'&e,‘-‘z‘ et Sty ""0“’i,§‘«.’ GG IR :" &

RN OO N 0NN k4 buy

)



UNCLASSIFIED

umiTy CLASSIFICATION MY A

D

/6?29»/¢3/;5<%/r 4

RLPORT DOCUMENTATION PAGE

Ta REPORT SECURITY CLASSIFICATION
UNCLASSIFIED

16 RESTRICTIVE MARKINGS

2a SECURITY CLASSIFICATION AUTHORITY

20 DECLASSIFICATION / DOWNGRADING SCHEDULE

1 DISTRIBUTION/ AVAILARILITY OF REPORT
Approved for public release;
distribution is unlimited.

4 PERFORMING QRGANIZATION REPORT NUMBER(S)

S MONITORING ORGANIZATION REPORT NUMBER(S)

6a NAME OF PERFORMING ORGANIZATION 60 OFFICE SYMBOL
(1t applicabie)
Naval Postgraduate Schooﬂ Code 63

74 NAME OF MONITORING ORGANIZATION

Naval Postgraduate School

6c ADORESS (City. State. and 2i1P Code)
Monterey, California 93943-5000

b ADORESS (City. State, and ZiP Code)
Monterey, California 93943-5000

82 NAME OF FUNDING / SPONSORING 8b OFFICE SYMBOL
ORGANIZATION (it appircabie)

9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

8c ADDRESS (City. State. and 2iP Code)

10 SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT ras« WORK JNiT
ELEMENT NO NO NO ACCESSION NO

V1OLYLE (incluce Secunty Classification)

Tropical Cyclone Intensity Prediction Based on Empirical Orthogonal
| _Function Representation of Wind and Shear Fields.

10 PERSONAL AUTHOR(S)
Weniger, Edward L.

“3a TvPi OF REPORT 130 T'ME COVERED
Master's Thesis FROM _ 1O
_ _

14 DATE OF REPORT (Year Month Ddy) 'S PAGE COUN!?
56

1987 June

‘6 SLPALENENTARY NOTATION

COSAT CODES 18 SUBIECT TERMS (Continue ON reverte if necessary and identify By diock number)
15 GROULP SUB-GROUS Tropical Meteorology, Tropical Cyclones,
Tropical Cyclone Intensity, Empirical Orthogonal

Functionsg

"9 ABSTRACT (Continue on reverse if necesssry and rgentify by biock number)

An objective technique for predicting 24, 48 and 72 h tropical
cyclone intensity is investigated using 1216 cases in the western North
Pacific from 1979 to 1983. Potential predictors include conventional
storm-related parameters, such as date, intensity, motion and position.
Additional potential predictors include empirical orthogonal function
(EOF) coefficients of the 2zonal and meridional components of the
environmental wind (250, 400 and 700 mb) and vertical wind-shear
(250-400, 400-700, and 250-700 mb) fields. These coefficients represent
the synoptic forcing in the vicinity of the storm. The intensity change
information is filtered to eliminate data for storms affected by
landfall from the sample. The regression equations are verified against
a homogeneous sample of Joint Typhoon Warning Center (JTWC) official
forecasts, which are also demonstrated to be significantly better (95%

0 DS RIUTION AVAILABILITY OF ABSTRALT 2V ABSTRACT SECURITY CLASSIFICATION
& oncassisiepunumiteo O same as wer O oric usens UNCLASSIFIED
220 NaME OF RESPONSIOLE 'NDIVIDUAL 220 TELEPHONE (inciude Ares Code) | 22¢ OFFILE SYMBOL
‘ Russell L. Elsberry 408-646-2373 63Es
0D FORM 1‘73, sS4 MAR 8) APR ea't:0n may be used unti exhausted SECURITY CLASSIFICATION OF Twt§ PAGE
All other editions 3¢ ObIOIete UNCLAS S IFIED

1

LSS PR I TR RN
R\’ g i‘ ,\** S \*‘f

A AT AR IEN

""" s R R LR T SU S PR LSRR SR NG CR T £, o1 ANt ¥
1. NV NN BRI IS RN 924 TN

Fpta®arat
-"." : ."‘.‘f

.
ROPRN,
S AN OB GGRAD




UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE ("hen Dare Bntered

19. (continued)

confidence) than persistence at all forecast intervals.
Regression equations developed using EOF coefficient predictors
along with conventional predictors are comparable to the JTWC
official forecast, even at 48 and 72 h. The regression
equations based on the complete set of predictors have slightly
more skill than those based only on conventional predictors.
If the regression equations are derived from a smaller sample
to allow for an independent test, the results appear to be
better in the dependent set, but are degraded in the
independent sample. Nevertheless, these independent sample
results are comparable in skill to the JTWC forecasts at all
intervals. Regression equations generated from three subsets
stratified by 12 h old intensity are significantly better than
the 48 and 72 h JIWC official forecast.

2 UNCLASSIFIED

SECURITY CLASSIPICATION OF TiIS PAGEWhen Dote Bntered)




Approved for public release; distribution is unlimited.

Tropical Cyclone Intensity Prediction
Based on Empirical Orthogonal Function Representation
of Wind and Shear Fields

by

Edward L. Weniger
Captain, United States Air Force
B.S,, Villanova University, 1978

Submitted in partial fulfillment of the
requirements for the degree of

Acse=ale~ For

RIIE Wil
Dart s

MASTER OF SCIENCE IN METEOROLOGYY» - - 7= £
s LT
a
from the i - - -*
P ; A
NAVAL POSTGRADUATE SCIIOOL —

June 1987

/((Z/JMC /JA»M% ) R /

Edward L

Author:

Approved by:

/

orrest R,

/v WW //fﬂzzﬂz

Robert J. Reaard, Chairman,
Department of Meteorology

L L

Gordon E. Schacher,
Dean of Science and Engineering

3

‘.‘ Al ‘i“~,t‘ ’.t-;;_i"’.‘3.0,&4‘-_‘.&‘»4?‘73“ ), l" ‘g t ) Q‘L. él'g

. T .
SO0 LU T r
W, u..‘m‘ UGUI TR AL SN T

‘4 i




N P 1 - b
L AZEAM et ) , NEe g N N E e
Kot Tk e N O D D S S e Syt

‘. . ABSTRACT
::: An objective technique for predicting 24, 48 and 72 h tropical cyclone intensity is
::: investigated using 1216 cases in the western North Pacific from 1979 to 1983.
e Potential predictors include conventional storm-related parameters, such as date,
o intensity, motion and position. Additional potential predictors include empirical
‘:‘:3 orthogonal function (EOF) coefficients of the zonal and meridional components of the
K environmental wind (250, 400 and 700 mb) and vertical wind-shear (250-400, 400-700,
o and 250-700 mb) fields. These coefficients represent the synoptic forcing in the vicinity
el of the storm. The intensity change information is filtered to eliminate data for storms
:::: affected by landfall from the sample. The regression equations are verified against a
.EZ:. homogeneous sample of Joint Typhoon Warning Center (JTWC) official forecasts,
ki which are also demonstrated to be significantly better (95% confidence) than
N persistence at all forecast intervals. Regression equations developed using EOF
:,. coeflicient predictors along with conventional predictors are comparable to the JTWC
K official forecast, even at 48 and 72 h. The regression equations based on the complete
0 set of predictors have slightly more skill than those based only on conventional
:3";, predictors. If the regression equations are derived from a smaller sample to allow for
:&: an independent test, the results appear to be better in the dependent set, but are
:?:: degraded in the independent sample. Nevertheless, these independent sample results
| are comparable in skill to the JTWC forecasts at all intervals. Regression equations
i,;;; : generated from three subsets stratified by 12 h old intensity are significantly better than
";:;;: | the 48 and 72 h JTWC official forecast,
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I. INTRODUCTION

A. BACKGROUND

One of the most difficult problems in tropical meteorology is forecasting tropical
storm intensity. Numerous models for the prediction of tropical cyclone motion are in
operational use at various tropical cyclone centers (Jarvinen and Neumann, 1979;
L. S. Command Center/Joint Typhoon Warning Center, 1985). In contrast, there are
very few aids for forecasting tropical storm intensity changes in operational use today.
Jarvinen and Neumann (1979) suggest this disparity is due to the difficuity in
establishing cause and effect relationships for intensity changes. George and Gray
(1576) have documented the motion response of the tropical cyclones to environmental
“steering” and significant predictor/predictand correlations have been established.
Similar well-marked correlations have not been established in the case of intensity
changes, at least not for the forecast period beyond 24 h. However, a renewed interest
in intensity forecast techniques has recently developed as motion forecasts have
improved.

Dvorak (1975) developed an empirical technique based on visual satellite imagery
for estimating 24 h intensity changes. The technique was updated (Dvorak, 1982) to
incorporate enhanced infrared and digitized satellite imagery, which extended the
procedures to nighttime as well as daytime applicability. Unfortunately, this technique
1s plagued with several limitations and shortcomings. A 24 h forecast is of marginal
operational use in support of flight or maritime operations for which more than 24 h
leadtime is needed to effectively respond to the threat of a tropical cvclone. In
addition, this technique is somewhat subjective; a trained analyst must match current
imagery to model storm patterns. Finally, the technique does not handle explosive
intensification very well.

Statistical objective intensity forecast techniques based on conventional storm-
related data (such as present intensity, latitude, longitude, etc.) were developed by
Elsberry et al. (1975) for the western North Pacific and Jarvinen and Neumann (1979)
for the North Atlantic region. Both studies generated forecast regression equations for
periods up to 72 h, rather than the 24 h forecast period characteristic of the Dvorak

technique. These techniques basicallv use a historical sample of storms to develop a
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climatology and persistence forecast of intensity similar to the widely used CLIPER
track forecast techniques. The basic shortcoming noted in both studies is the
characteristic failure of the equations to handle the abnormal case, that is, the rapidly
intensifying or decaying storm. Elsberry er al. claim that we must improve our ability
10 recognize the abnormal case if intensity forecasts are to improve. Jarvinen and
Neumann suggest we must look bevond the storm-related factors (presumably to
environmental influences) to increase our ability to forecast intensity changes. Merrill
(1987), who studied tropical cyclone intensity changes in the North Atlantic basin,
supports the hypothesis that environmental conditions influence intensity changes of
tropical cyclones. However, he concludes the linear relationships are very weak and of
little use as objective forecast aids.

The purpose of this study is to demonstrate that empirical orthogonal function
(EOF) representations of the zonal and meridional wind fields and of the vertical wind-
shear fields can serve as effective predictors of future tropical storm intensity. Shaffer
(1982) used an EOF analysis to represent 500 mb geopotential height fields on a grid
cantered on a tropical cyclone. Shaffer and Elsberry (1982) demonstrated that
coefficients from EOF analysis could be used as synoptic forcing predictors in
statistical-synoptic track prediction schemes. In a similar study, Wilson (1984) used
EOF analysis to represent the 700, 400 and 250 mb wind compon.nt fields on a refined
grid centered on the cyclone. Wilson (1984) also showed that the coefficients from the
wind EOF analysis could be used as synoptic forcing predictors in a statistical track
prediction scheme. Schott (1985) used data stratified by past motion to show that the
coeflicients of the wind EOF analysis could be used as synoptic forcing predictors in a
statistical adjustment technique to reduce the systematic errors of a dynamical track
prediction model. Meanor (1987) used Wilson's wind component fields to generate
EOF fields of vertical wind shear. Using Schott's stratification scheme, Meanor
demonstrated that the coefficients from the EOF analysis of wind shear also could be
used as synoptic forcing predictors in a statistical adjustment technique to reduce
systematic errors of a dvnamical track prediction model.

B. OBJECTIVES AND GOALS

The primary objective of this study is to use the existing “conventional” data
base; EOF coeflicients of wind fields (Wilson, 1984) and wind-shear fields (Meanor,
1987);, and selected intensity information to generate useful 24, 48 and 72 h intensity

prediction equations for tropical cyclones in the western North Pacific region.

10




Admittedly, microwave satellite data, cirrus streamer information, sea-surface
temperature data, aircraft reconnaissance data and landfall data could also provide
meaningful information in intensity forecasting. The goal of this study is to take the
first step in developing improved 24, 48 and 72 h intensity prediction schemes for
tropical cyclones in the western North Pacific. The eventual goal is to provide an
expert system or decision-tree approach, similar to that investigated by Peak and
Elsberry (1987) for tropical storm motion, that could be used by the Joint Typhoon
Warning Center (JTWC) for operational intensity forecasting.
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0 II. DATA CASE SELECTION

il

.\} A. DATA DESCRIPTION

I\i | The cases in this study are a subset of the cases Wilson (1984) and Meanor
KA (1987) used. These 12-hourly data are for tropical storms in the western North Pacific
A region for the period from 1979 to 1983. The following restrictions apply to the
:.‘:::' selection of these cases:

.
:,'\‘:“ * Tropical storms must be located in the Eastern Hemisphere, east of 100° E with
et a warning position less than 34.6° N;

iy ¢ Storm intensity must be at least 18 m/s (35 kt); and
Ay e Zonal and meridional wind components must be available at 700, 400 and 250
"'}; mb levels.

1,88

tigeh A total of 1357 cases meet these requirements.

P )

]

1. Original Cases (Wilson/Meanor)

l:;‘

;2. a. Conventional Data

b " . . . .

b The conventional data include observation date/time, storm number and
19

:"'; ¥ warning positions (current; forecast 24, 48 and 72 h). Additional warning-based

information is available as zonal speed, meridional speed and horizontal displacement
for three periods: (1) from 12 h prior to observation time until observation time.
(2) from 24 h prior to observation time until observation time, and (3) from 24 h prior

t B

AR

>

e to observation time until 12 h prior to observation time. Best track positions (current;
A past 12 and 24 h; and future 24, 48 and 72 h) are also available.

;".. b. Empirical Orthogonal Function Coefficients of Wind and Vertical Wind Shear
i‘ The data set for each 12 h case also includes the empirical orthogonal
2::,::: function coefficients of the zonal and meridional wind fields at three levels (Wilson,
o i 1984) and the zonal and meridional shear fields across three layers (Meanor, 1987).
;‘:"::.' ! The wind information used by Wilson (1984) and Meanor (1987) is from the Global
:"" ' Band Analysis (GBA) operationally generated by the U.S. Navy at the Fleet
::E:'o Numerical Oceanography Center (FNOC). The GBA fields are plotted on a Mercator
v grid girding the globe from 41° S to 59.8° N, with a grid spacing of 2.5° lat by 2.5° long
;.'" : j‘ at 22.5° N and S. The zonal and meridional fields are available from 00 GMT and

:,::‘:: | 12 GMT at the surface, 700. 400, 250 and 200 mb. Surface analyses are based on land
:y:::g: observations and ship reports, while upper-air analyses are based on rawinsonde
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observations, aircraft reports and satellite-derived cloud motion vectors. Temperature
analysis at the intermediate levels are used to couple the winds at adjacent vertical
levels via the thermal wind relationship. The 12 h old analysis plus 5% climatology is
used as the first-guess field for the current analysis. If no observations are available in
a region, the final analysis becomes the previous analysis adjusted towards climatology.

Wilson (1984) defined a relocatable, geographicallv-oriented grid of
527 points with a fixed zonal and meridional separation of 277.8 km (150 n mi). There
are 31 points west to east and 17 points north to south. Thus, the domain is 8334 km
(4500 n mi) by 4445 km (2400 n mi). The grid center (row 9, column 16) is coincident
with the tropical cyclone center in each case. Wilson used a bi-linear interpolation
scheme to extract the zonal and meridional component winds at 700, 400 and 250 mb
from the GBA.

Lorenz (1956) first applied empirical orthogonal function analysis to
geophysical fields. It has been used regularly to efficiently describe the variability in
atmospheric fields. With EOF representations, a large percentage of the variance in a
data field can be described by the summation of relatively few orthogonal eigenvectors
and their associated coefficients (eigenvalues). This results in a significant reduction in
the computer storage space needed to describe synoptic fields, which are ordinarily
defined by numerous grid point values.

Wilson generated EOF representations of the zonal and meridional wind
fields at three levels (700, 400 and 250 mb) and applied a Monte Carlo approach to
select those small sets of rank-ordered eigenvectors and their associated coefficients
that describe the signal in the original fields. For this study, the first 35 coeflicients of
the zonal and the meridional wind fields at each level are available for the 1357 cases.
Wilson showed no less than 90% of the variance in ail of the zonal wind fields and
82% of the variance in all the meridional wind fields to be explained by the first 35
eigenmodes. The first 25 coefficients of the zonal and meridional wind fields are used
as potential predictors in this study.

Following Wilson's methods, Meanor (1987) generated the EOF
representations for the zonal and meridional wind-shear fields across three lavers:
upper (250-400 mb), lower (400-700 mb) and deep (250-700 mb). Meanor also applied
a Monte Carlo approach to select those small sets of rank-ordered eigenvectors with
their associated coefficients that describe the variance in the wind-shear fields. The
first 35 coefficients for the zonal and meridional shear fields across the three lavers are
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available for the 1357 cases. Meanor showed no less than 80% of the variance in the
zonal wind-shear fields and 79% of the variance in the meridional wind-shear fields to
be explained by the first 25 and 35 eigenmodes, respectively. The first 25 coefficients of
the zonal and meridional wind-shear fields are used as potential predictors in this
study.
2. Combined-data cases

In this study intensity data are added to the data set used by Wilson and
Meanor. These intensity data are extracted from the Annual Tropical Cyclone Reports
for 1979 through 1983 published by the Joint Typhoon Warning Center (JTWC)
and include:

® Best track intensity (current, past 12 h, past 24 h, and subsequent 24, 48 and
72 h);

¢  Warning intensity (current and past 12 h); and

¢ JTWC official forecast intensity (24, 48 and 72 h).
From these values, best track (past 12 h; and future 24, 48 and 72 h) and JTWC
forecast (24, 48 and 72 h) intensity change data are computed. There are 1216 cases in
the combined-data cases (Wilson/Meanor data plus intensity data) for use in this study.

B. LAND-OCEAN SORTING

Only storms over the ocean and within the region bounded by the equator,
100° E, 34.6° N and 180° are used in this study. The combined data set is subjected to
the following simple land-sea sorting process to separate cases for storms positioned
over ocean from cases for storms affected by land.

The bounded region is subdivided into one degree latitude by one degree
longitude grid squares, as in Fig. 2.1. If the current or 12 h old position is within a
land square or outside the bounded region, the associated 24, 48 and 72 h intensity
data are eliminated from the sample. If the current and 12 h old positions are within
ocean squares, the positions of the storm at the subsequent forecast times (24, 48 and
72 h) are evaluated. If the position at any of these times is within a land square or
outside the bounded region, the intensity change data at that time and all subsequent
times are considered unrepresentative and eliminated from the sample.

An example is illustrated in Figure 2.1 based on Typhoon Nelson from March
1982. The current (24/00 GMT), 12 hour old (23/12 GMT) and t+24 h (2500 GMT)
positions of the storm are within ocean grid squares. Because the t+48 h position is
located within a land square, the t+48 h and t+72h intensity change data are
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removed {rom the sample that is used to derive the regression equations and verify the
intensity forecasts.
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o III. REGRESSION APPROACH
i
;gs The approach in this study is to use regression analysis techniques to investigate
;:E: the predictive skill of EOF coeflicients of wind and vertical wind shear in forecasting
Ry | 24, 48 and 72 h changes in tropical storm intensity. The UCLA Biomedical Computer
QZ;Q Program (Dixon and Brown, 1985), entitled BMDP2R, is used to select the predictors
;s:; and to develop the regression model. Tables 1, 2 and 3 are lists of the potential
'}:E: predictors considered for use in the regression equations.
A. POTENTIAL PREDICTORS
:n’: The potential conventional predictors are listed in Table 1. The first three
‘?: predictors (1-3) are the current Julian date and the JTWC warning position (latitude
::; and longitude). The next nine predictors (4-12) describe the storm translation during
- the past 24 h in terms of the zonal velocity, the meridional velocity and the total
:s; displacement. Additional predictors (13-22) in this group include warning intensity
:' ) data (current, 12 h old and past 12 h change); best track intensity data (current, 12 h
‘i::,f old and past 12 h change); and best track position data (current and 12 h old, latitude
and longitude).
The second set of potential predictors (23-172), which are listed in Table 2, are
the wind-based EOF coeflicients generated by Wilson (1984). These represent the
external forcing on the cyclone by the environmental winds at three levels (700, 400

and 250 mb). The format used to identify these predictors is CLWNN; where

:‘l } C indicates a wind-based coefficient, L indicates the level (2 for upper, 250 mb; 4 for

}E g middle, 400 mb; and 7 for lower, 700 mb), W indicates the zonal or the meridional

'::!;' l component wind field (U for meridional, V for zonal wind), and NN is a coefficient
N number from 1 to 25.

-,’; | The third set of potential predictors (173-383), which are listed in Table 3, are the

bh wind-shear EOF coefficients generated by Meanor (1987). These represent svnoptic

:::: forcing upon the storm by vertical differences in the environmental wind through three
‘ layers. The format used to identify these potential predictors is SLLWNYN; where

::‘: ’ S indicates a wind-shear coefficient, LL indicates the layer (47 for the lower laver,

::é:;a which is 400 minus 700 mb; 24 for the upper layer, which is 250 minus 400 mb; and

;;:: . 27 for the deep layer, which is 250 minus 700 mb) and N\ is a coefficient number from

- 1 to 25.

N

.;'. 17

s‘:,u

o

r .,-t'. (F " “‘ .'
" .v l.tl (‘.‘a 3 r ¢ Q.‘ Re X i i 2 - Lo ,‘5 I ], 'S: i‘ NS ‘g‘ 9, i,"\lq,l. X "l‘“‘ Q %‘..0 ..0 MO ht'.('l':‘l',' My, 'qtl 4 -fii._ﬁ‘?i,“:;“jdﬁ& ).‘ ‘Q‘ ‘5 g‘l




Jo;-'-"
%"

ol

Y5

et

B. REGRESSION ANALYSIS

To predict changes in tropical storm intensity over 24, 48 and 72 h, a stepwise
regression analysis is used. The BMDP2R program computes estimates of the
parameter through a multiple linear regression in a stepwise manner by entering or
removing variables one at a time from a list of potential predictors. At each step in the
BMDP2R regression analysis routine, the predictor that has the highest partial
correlation with the predictand (given the previous selection of predictors) is selected
from the remaining set. Consequently, the predictand is the result of a sum of
uncorrelated independent variables (Dixon and Brown, 1985).

The F-to-enter value is a function of the number of variables available for
selection, their correlation structure and the sample size. In this study, the selection
continues until the new predictor does not meet a minimum F-to-enter value of 4.0.

The coefficient of multiple determination (R?) is a measure of the relationship
between the independent and the dependent variables in the regression model and
represents the amount of total variance in the predictand that is explained by the
independent variables,

R? = SSR/SSTO = 1 - (SSE/ SSTO), (3.1)
where SSR is the regression sum of the squares, SSTO is the total sum of the squares

and SSE is the residual sum of the squares. To further restrict the number of
predictors in the equations, only those predictors that increase R? by at least 0.01 are

retained. Finally, an arbitrary limit of ten predictors is set.




i TABLE 1

' Potential conventional predictors
o available for the regression analysis.

Number Name Description
" 1 DAYJUL Julian date
W 2 LAT Warning position (latitude)
% 3 LON Warning position (longitude)
P, 4 VX0012 Zonal storm speed from =12 h
" to 00 h (km/h)

5 VY0012 Meridional storm speed from

() =12 h to 00 h (km/h)
& 6 V0012 Total storm movement from
‘¢ x -12 h to 00 h (km)

', 7 VX0024 Zonal storm speed from -24 h
to 00 h (km/h)

;ﬁ 8 VY0024 Meridional storm speed from
m‘ =24 h to 00 h (km/h)
ﬁ' ] 9 V0024 Total storm movement from

\ =24 h to 00 h (km)
10 VX1224 Z2onal storm speed from -24 h
+ R to =12 h (km/h)

o 11 VY1224 Meridional storm speed from
.»§:; -24 h to -12 h (km/h)
i: 12 V1224 Total storm movement from
I =24 h to =12 h (km)
| 13 WIOO Warning 00 h intensity
D 14 WIM12 Warning 12 h old intensity
?ﬂ 15 DWIM1O Warning =12 h to 00 h change in
am intensity
o 16 BIOO Best track 00 h intensity
B 17 BIM12 Best track 12 h old intensity
3 18 DBIM1O Best track -12 h to 00 h change in
d intensity
> 19 BLAT Best track 00 h position (latitude)
b 20 BLON Best track 00 h position (longitude)

21 BLTM12 Best track -12 h position (latitude)
22 BLMM12 Best track =12 h position (longitude)

A%'B
74 -

o 19
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TABLE 2

Potential wind EOF coefficient predictors

Number
23-47

48-72

73-97

98-122

123-147

148-172

Name
C2Ul-25

C2V1-25

C4Ul-25

C4vl1-25

C7Ul1-25

C7v1-25

available for the regression analysis.

Description

250 mb wind coefficients derived
for zonal modes 1 - 25

250 mb wind coefficients derived
for meridional modes 1 - 25

400 mb wind coefficients derived
for zonal modes 1 - 25

400 mb wind coefficients derived
for meridional modes 1 - 25

700 mb wind coefficients derived
for zonal modes 1 - 25

700 mb wind coefficients derived
for meridional modes 1 - 25
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Potential wind-shear EOF coefficient predictors
available for the regression analysis.

Number
173=197

198-222

223-247

248-272

273-297

298-322

TABLE 3

Name Description
S47Ul-25 400 minus 700

derived for zonal modes
S47V1-25 400 minus 700

derived for
$24Ul-25 250 minus 400

derived for zonal modes 1 - 25
S24V1-25 250 minus 400

derived for
S27Ul1-25 250 minus 700

derived for zonal modes
S27V1-25 250 minus 700

derived for

mb shear coefficients

mb shear coefficients
meridional modes 1 - 25
mb shear coefficients

mb shear coefficients
meridional modes 1 - 25
mb shear coefficients

mb shear coefficients
meridional modes 1 - 25

1«25

1 - 25
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1V. STUDY METHODS AND VERIFICATION OF RESULTS

s

nin g A.  BASIC METHODOLOGY

‘2?,:’,\:‘: The purpose of this study is to investigate the usefulness of empirical orthogonal
e function coefficients as predictors in an objective forecast scheme of the 24, 48 and
REEN 72 h western North Pacific tropical storm intensity. The basic four-part approach is
':‘:' illustrated in Fig. 4.1 and discussed in the following four subsections.
% 1. Select Data Cases
e This study involves the application of regression analysis techniques (Chapter
ve III) to various groupings of the 1216 data cases in the combined-data set (Chapter II).
;:'t?’f,' Several groupings of the data are investigated in this study:

::fr; » ¢ A complete dependent data set (all 1216 cases);

::‘»‘:'3 ¢ Dependent-case; Independent-case subsets; and

i‘é‘i"k' e  Subsets stratified by previous 12 h intensity.

:\é, -i The application of the basic study approach to these data groupings is addressed in
“: . Section B of this chapter.

Reliad 2. Screen Potential Predictors

o Because the number of cases in any of the data groupings is small relative to
*‘a.::: the number of the potential predictors, the potential predictors are screened to
::'.. determine which are dominant. The predictors are divided into three categories:

RO ¢ CONYV Category - The conventional data listed in Table I;

,'.f.‘. . WIND Category - The first 25 EOF coefﬁciem§ of the zonal and meridional
:.::::, wind fields at three levels (700, 400 and 250 mb) listed in Table 2; and

‘;;:}‘.-;" ¢ SHEAR Category - The first 25 EOF coefTicients of the zonal and meridional
:::3:.. xfertica}l wind-shear fields across three layers (400-700, 250-400, and 250-700 mb)
Al listed in Table 3.

i For each predictand (24, 48 or 72 h intensity change) in each data set/subset, a series
E:'::! of three 10-step regression analyses is performed based on each of the three categories
:'k: of predictors.

i 3. Generate Regression Equations

oy The predictors selected during the screening procedure (a maximum of 30
; predictors: up to 10 from each of the three regression analyses) are consolidated. A
:elj.:’ final 10-step regression is performed using these screened predictors to gencrate the
e final equation for the predictand in question.
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' 4. Verify Regression Equations

=;. The regression-derived equations for intensity changes are used to compute

R forecast intensities at time tt:
‘
B RItt = WIO0 + DIzt (4.1

B,

5

o where WI00 is the warning intensity at observation time, DItt is the regression-derived

“ change in intensity over the forecast interval, and RItt is the regression-derived forecast

'}:: intensity at verification time tt. The performance of the final regression equations is
:E:" verified relative to the performance of:

e e The JTWC official forecast; and

* A persistence forecast.

,:;a The means and standard deviations of the absolute value of the intensity error in the

b regression, the JTWC and the persistence forecasts are computed and compared. A

A Student-T test is applied to determine which schemes provide significant improvement

y at the 95% confidence level.

’g B. APPLICATION OF THE METHODOLOGY ]
o5 1. Complete dependent data set

The approach outlined above is first applied to the complete (dependent) data
B set, i.e., all 1216 cases. Various combinations of best track and or warning predictors

are considered for use as the conventional predictors (CONV). The following

:.;g combination of eight predictors is chosen: date, best track position (current and 12 h
| old: lat and long), best track intensity (current and 12 h old) and best track past 12 h
My change in intensity. This combination explains the greatest variance in the intensity
3. ‘ change at the three forecast periods and it has the smallest number of missing values.
:tt,» ‘ The predictors selected during the screening process for each of the forecast
I periods are listed in Tables 4, 5 and 6 for the CONV, WIND and SHEAR category
i predictors, respectively. The number of potential screened (SCRN\) predictors available
:; for each final regression equation is reduced to a maximum of 28 for ecach
;:“ } predictand: eight conventional predictors, ten wind and ten wind-shear EOF
. f coefficients.
o Only three of the eight potential conventional predictors are selected for any
.’E‘[ one of the three equations (Table 4). The number of predictors selected is limited by
'
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ey | TABLE 4
A ) : |
:\Qf - l CONV predictors selected after screening regression
:ﬁ f ! on 24, 48 and 72 h best track intensity change (kt)
\fﬁ 5 with the complete dependent data set (1216 cases).
VeV The numbers indicate the order in which predictors
. are selected for each egquation. The coefficients
N I of multiple determination (R**2) are shown

!
|
SeS E i for each equation.
1
|
!

l Forecast Interval

i
|
Predictor 24 h 48 h 72 h ;
ot DAYJUL 3 |
s BLAT 3 |
SN BLTM12 3 |
594 BLNM12 2
2 BIM12 1 1 1
o DBIM10 2 2
N
o0 R**2 0.33 0.41 0. 49
O :
A
| the minimum F-to-enter and change in R? requirements applied to the subsequent

_\:::: predictors. The 12 h old intensity, rather than the current intensitv, is the first
NN predictor selected at all three forecast periods. At 24 and 48 h, the past 12 h change in
Yo intensity is the second predictor selected. This combination of predictors corresponds
J to a two predictor equation for the extrapolation of the intensity trend. There is no
> .. . .
¥ consensus on the additional conventional predictors that are chosen for the three
g forecast intervals.

2 Of 150 potential wind EOF coeflicient predictors, seven are selected for the
. ,_; 24 h equation and ten are selected for the 48 and the 72 h equations (Table §). The
-’: coeflicient of the tirst eigenmode of the zonal wind at 400 mb (C4U 1) 1s the first
',:‘ predictor selected in all three equations. while the coefficient of the second eigenmode
o
',';; of the zonal wind at 400 mb (C4U 2) is selected second in the equations at 24 and 72 h

(and fourth at 48 h). Wilson (1984) suggests the patterns of modes | and 2, which
—
; :‘* account for the largest variance in the zonal and meridional wind fields, can be
D)
X \q interpreted separately as representing particular atmospheric flow patterns. e states
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Ky TABLE 5

‘“QG: WIND predictors selected after screening regression

Ky - on 24, 48 and 72 h best track intensity change (kt)

“j;J with the complete dependent data set (1216 cases).

{ The numbers indicate the order in which predictors

are selected for each equation. The coefficients

of multiple determination (R**2) are shown

iﬁ for each equation.

S

"ﬁj Forecast Interval

e Predictor 24 h 48 h 72 h

s C2U1l4 7

c‘

i c2V25 6

) i
u cau 1 1 1 1
i C4u 2 2 4 2

L C4U16 9 10
C4U20 7
- & C4v12 6 4

r,_("

R £} C7U 7 4 3 6

a0 C7U17 8 8

- C7U24 9

‘0’?‘

it C7V1l 5
o] c7v13 5

e C7v14 5 3

= C7V16 10

PAN4
4% R¥*2 0.26 0.32 0.36
B
k)

ot

- that the complexity of the eigenvalues makes it difficult to associate higher order
Z::‘:‘ modes for any of the fields with any observable atmospheric patterns. If the 400 mb
|/
:‘:.‘:':, conditions can be assumed to represent the mean flow through the depth of the
Y
::::" troposphere, the first coefficient of the zonal wind is indicative of the mean zonal
" U b . .

e environmental flow. A positive value (related to easterly flow) generally may be
e
Wi associated with storm development, while a negative value (related to westerly flow)
0 . . .
' would imply recurvature and associated weakening.
o
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! TABLE 6

. 5 SHEAR predictors selected after screening regression
on 24, 48 and 72 h best track intensity change (kt)
with the complete dependent data set (1216 cases).
The numbers indicate the order in which predictors
are selected for each equation. The coefficients of
of multiple determination (R**2) are shown
for each equation.

Forecast Interval

Predictor 24 h 48 h 72 h
S47U 1 1 1
S47U 2 2 6
S47U 3 5
S47U 4 4
S47U 8 3
S47V 3 3
S47V15 2
S24U 1 1 7
S24U 2 4
S24Vv20 6
S27v 1 2 6 !
S27V 4 5 !
S27V 9 4
S27V11 5
S27V17 8
S27V19 9 ‘
S27v22 3 l
R**2 0.16 0.16 0.22 |
| .
o
1‘5-\’ Of the 150 potential wind-shear coefficients, six are sclected for the 24 and
WS
o 48 h equations and nine for the 72 h equation (Table 6). In contrast to the sclected

conventional and wind EOF coeflicient predictors, the wind-shear EOF coeflicients are
less consistent in time. None of the wind-shear coefficients are selected for all three
equations (24, 48 and 72 h). Only four wind-shear predictors (S47U 1, S47U 2, S24U 1
and S27V 1) are selected for two of the three equations.

ekt teey



Notice that the explained variance increases with increasing forecast interval
for all three categories of potential predictors. The conventional predictor equations
account for the most explained variance, while the wind-shear EOF predictor equations
account for the least explained variance. Of the nine equations, the conventional
predictor equation for the 72 h forecast intensity explains the most variance.

Before combining the screened predictors and doing a final regression using
these selected screened predictors, the performance of the equations derived from the
three separate categories of predictors is investigated (Table 7). Analysis of Table 7
shows that the mean intensity forecast error and the standard deviation of the intensity
forecast error increase as the forecast interval increases for all schemes (JTWC;, CONV,
WIND and SHEAR predictor). For all forecast intervals, the equations generated
using only the best track conventional predictors perform better (have smaller average
absolute errors) and are more consistent (have smaller standard deviations in the
average absolute error) than the equations generated using only wind EOF coeflicient
predictors. which perform better and are more consistent than the equations generated
using only wind-shear EOF coefficient predictors. Although the official JTWC
intensity forecast errors are smaller than all the regression-derived equations at 24 h,
the best track conventional predictor equations perform better and are more consistent
than JTWC at 48 and 72 h. Recall that these results are for a dependent sample.
Presumably, even more accurate predictions are possible if all three categories of
screened predictors are included.

The three screened-predictor regression-derived equations for the 24, 43 and
72 h intensity change and the coefficient of multiple determination (R?) for each
predictor are indicated in Table 8. For all forecast intervals, the regression process
terminates before ten predictors are selected, because the F-to-enter values or the
amount of variance explained by the subsequent predictors are too small for further
stepping. Only 4, 6 and 5 predictors are selected at 24, 48 and 72 h, respectively. As
suggested by Table 4, the 12 h old best track intensity is the first predictor chosen for
all three forecast intervals (24, 48 and 72 h). This observation prompted a later
stratification of the data (to be discussed in Section B.3 below) based upon 12 h old
best track intensity. Several wind EOF coeflicient predictors appear in the screened
pradictor equations. In fact, C4U | and C4U 2 are among the top four predictors in
all three equations. No EOF coeflicients of wind shear are chosen. As Meanor (1987)
suggests, perhaps this is due to the close relationships between the wind and wind-
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2
2 TABLE 7
Va..‘l( .
oy - Verification of JTWC and regression-derived
Al (CONV-, WIND- and SHEAR-predictor) forecasts
3}3}3 of 24, 48 and 72 h tropical storm intensity (kt)
s - for the complete dependent data set (1216 cases)
based on land-filtered and homogeneous samples.
A
e
‘yg, JTIWC Forecast Intensity
R Avg Abs std
R Cases Error Dev
4 24 h 886 13.1 11.3
:g;:"‘ 48 h 651 21.3 16. 6
;Qi 72 h 462 24.5 19.0
R0
nANS .
;*fi}t\,‘ Best Track Conventional Predictors (CONV)
Avg Abs std
55, Cases Error Dev
z-(-} 24 h 886 13.5 11.5
s'" :‘ . 48 h 651 20.9 15.6
v 72 h 462 22.6 17.2
‘:9,59 Wind EOF Coefficient Predictors (WIND)
"'s ] Avg Abs std
j'\!,:‘:‘ Cases Error Dev
hode 24 h 886 14. 6 12.3
j" 48 h 651 22.5 16.9
o 72 h 462 25.6 19.5
A
R Shear EOF Coefficient Predictors (SHEAR)
i
s Avg Abs Std
o Cases Error Dev
:."’é 24 h 886 15. 4 12. 8
,:;"1: 48 h 651 24.5 18.7
:s:':: 72 h 462 28.2 20.6
oad
gk
}: 1 shear synoptic forcings. Atter a wind EOF coefficient predictor is selected, the wind-
"' shear EOF coeflicients that are highly correlated with it will not be selected.
Ky
Bl
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R
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TABLE 8

Regression equations for the change in intensity
(kt) at 24, 48 and 72 h using the complete depen-
dent data set (1216 cases). Parenthetical values
indicate the order in which the screened predictors
are selected for each equation. The coefficients
of multiple determination (R**2) are shown.

Forecast Interval

24 h 48 h 72 h
Y-Intercept 15. 64 -0.97 48.71
Predictor
BLNM12 - 0.28 (6) -
BIM12 -2.24 (1) ~0.57 (1) -0.78 (1)
DBIM1O 0.46 (2) - -
C2Ul1l4 - -1.95 (5) -
C4U 1 0.54 (3) 1.03 (2) 1.32 (2)
C4U 2 0.38 (4) 0.71 (3) 1.11 (4)
Cc4v12 - - 1.31 (5)
c7u 7 - ~1.36 (4) =1.71 (3)
Cases 886 684 512
R**2 0. 39 0.51 0. 56

Interestingly, the regression-derived equations explain a larger percentage of
variance in the predictand with increasing forecast interval. This is a favorable result
because the objective is to provide forecast guidance at 48 and 72 h. However, notice
that the maximum value of explained variance (at 72 h) is only 56%,; i.e., 44% 1is still
unexplained.

The performance of the SCRN predictor equations relative to the performance
of homogeneous samples of persistence, JTWC and CONV predictor forecasts 1s
illustrated in Table 9. At all forecast hours, the smallest mean absolute errors are
associated with the regression-derived intensity forecasts generated using the SCRN
predictor equations. In addition, the standard deviations of mean absolute errors
associated with these equations are the smallest, which indicates more consistent

forecasts.
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i TABLE 9
;15::': : Verification of persistence, JIWC and regression-
::: derived (CONV- and SCRN-predictor) forecasts for
‘:9‘, 24, 48 and 72 h tropical storm intensity (kt) for
Ry | the complete dependent data set (1216 cases) based
v on land-filtered and homogeneous samples.
:::: Persistence Forecast
G0y
‘i:';l Avg Abs std
e Cases Error Dev
G 24 h 886 17.2 13.7
48 h 651 28.1 19.8
Wkl 72 h 462 33.7 23.9
i
L)
“:E:‘ JIWC Forecast
e Avg Abs Std
g Cases Error Dev
2 24 h 886 13.1 11.3
p > 48 h 651 21.3 16.6
X 3 72 h 462 24.5 19.0
A Regression-Derived Forecast
,‘,:;,‘ Best Track Conventional Predictors (CONV)
N
;f:"?- Avg Abs Std
prX) Cases Error Dev
el 24 h 886 13.5 11.5
i . 48 h 651 20.9 15.6
N 72 h 462 22.6 17. 2
4y
8 .
:s': Regression-Derived Forecast
}:,:a. | Selected Screened Predictors ( SCRN)
_: ’ Avg Abs Std
Aha ! Cases Error Dev
L 24 n 886 13.0 11.2
R3X | 48 h 651 19.5 14.8
.:,‘t‘ { 72 h 462 21.3 16.1
A
)
PNy |
o P
QS ’ Notice that the JTWC forecast performs better than persistence, particularly
s | p
oy | at 72 h. Student-T significance tests indicate that the JTWC forecast is better than
::::* 31
e
L)
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; persistence (95% confidence level) at all forecast hours. Because the intensity
e i observations and forecasts are rounded to the nearest 5 kt value at each end of the
By change interval, discretization errors result. Therefore, no scheme is likely to perform
with a minimum error of less than 10 kt. Although the 13 kt mean absolute error of

5 the JTWC official forecast at 24 h is relatively good, this error approximately doubles
- R4 %0
A by 72 h.

SN The results of the CONV predictor equations (the basis for existing intensity
o forecast schemes) are repeated from Table 7 for comparison with the SCRN predictor
;::3:: equations. Notice that the additional contribution of synoptic predictors (wind and
‘;t.::: wind-shear EOF coefficients) in reducing the mean absolute error is small (0.5 kt at
f‘_ff'g 24 h, 1.4 kt at 48 h and 1.3 kt at 72 h). Comparison of Table 7 with Table 9 suggests
. ' that much of the variance explained by the WIND (or SHEAR) predictors is already
*:;':::: contained in the selected CONV predictors. Nevertheless, the synoptic forcing
‘.:.:"Z’ represented by the EOF coefficients does lead to significant intensity forecast
:v{::! improvements at 48 and 72 h in this dependent data sample.

:.: 2. Dependent-case/Independent-case subsets

.-.";- ! The above results based on the dependent sample may be overly optimistic,
:-::_E because the verification cases were used to derive the regression equations. Thus, the
": data cases were subdivided into dependent-case and independent-case subsets:

. ¢ To investigate the effect reducing the sample size would have on the regression-
e : derived equations for 24, 48 and 72 h intensity change, and

:S : e To investigate the predictive skill of the dependent-case regression-derived
e : equations when applied to an independent-case data subset.

")' ! The independent-case subset of 405 cases is constructed by selecting every third case in
;. -' the comiplete data sample. The dependent-case subset is the remaining 811 cases.

. ﬂ-’;‘_ The basic approach in Fig. 4.1 (Section A above) is applied to the dependent
.:-::.-'. sample. The resulting equations are listed in Table 10 for the 24, 48 and 72 h intensity
e change. For each forecast interval, the predictors selected first and explaining the
.:1‘ | largest percentage of the variance in the predictands in Table 10 are common to the
:‘ : equations derived using the complete dependent set (Table 8). In the 24, 48 and 72 h
il regression equations, the selection sequence is common between the two data scts for
i | the first 3,4 and 3 predictors, respectively. More predictors are selected for the
...:é dependent-case subset equations than the complete dependent set (6, 7 and 6 versus the
'SE::;T 4, 6and 5 at 24, 48 and 72 h). The dependent-case subset equations explain slightly
" "::'fi more variance (0.42, 0.52 and 0.59 compared to 0.39, 0.51 and 0.56) than the complecte
Lo
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dependent set equations. This is expected, since the sample sizes are smaller; i.e., they
S contain less of the natural variability of the ensemble of possible cases. However,
’ adding more predictors may not lead to better predictions in an independent test.

v.‘..'

A

o
n":n
0 TABLE 10

v et

SN Regression equations for the change in intensity

gsj (kt) at 24, 48 and 72 h using the dependent-case

‘.-.;'-,.; data subset. Parenthetical values indicate the

L order in which the SCRN predictors were selected.

v ‘ Asterisks indicate common predictors with the

el corresponding equations for the complete dependent

s'“ ! set in Table 8. The coefficients of multiple

:::Q i determination (R*¥*2) are shown.

L

AN

o | Forecast Interval

- l 24 h 48 h 72 h
Kot | Y-Intercept  26.27 35.61 46. 44
R | Predictor

BLAT -0.40 (6) - -

BIM12 -0.25 (1)* =0.53 (1)* -0.77 (1)*
- : DBIM10 0.40 (2)* - -

H00] | C4U 1 0.39 (3)* 1.45 (2)* 1.83 (2)*
ol c4au 2 - 0.72 (3)* 0.82 (5)
R c4U20 1.27 (5) - -

J c4vil2 - 1.03 (7) 1.34 (86)
o C4v1s 1.04 (4) - -

* c7U 7 - -1.32 (4)* -1.98 (3)*
"ﬁ: S27U24 - 1.88 (6) -

e s277 1 - -0.78 (5) -0.98 (4)

)

. i Cases 588 457 346

,, | R¥*%2 0. 42 0.52 0.59

oy

2
*\

Y The verification of the SCRN predictor equations derived from the smaller
) dependent-case subset (applied to both the dependent-case and independent-case
'--,:» subsets) is summarized relative to homogeneous samples of persistence and JTWC
2' 3.-}’ forecasts in Table 1. For ease of comparison, the verification results of the SCRN
b"s‘.'_
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Verification of persistence,
regression-derived (SCRN) 24, 48 and 72 h
forecasts of western North Pacific tropical storm
intensity (kt) using land-filter and homogeneous
data from the complete dependent data set (CDS),
the dependent-case subset (DCS),

independent-case subset.

Persistence

Av Abs Std

Cases Error Dev

24 h 886 17.2 13.7
48 h 651 28.1 18.8
72 h 462 33.7 23.9

Persistence

Av Abs 8Std

Cases Error Dev

24 h 587 17.0 13.3
48 h 439 28.1 19.3
72 h 312 33.0 24.5

Persistence

Av Abs Std

Cases Error Dev

i 24 h 299 17.7 14.3
48 h 212 28.2 21.2

72 h 150 35.1 22.5

TABLE 11

JTWC
Av Abs Std
Error Dev

13.1 11.3
21.3 16.6
24.5 19.0

JTWC
Av Abs Std
Error Dev

13.0 11.3
21.3 16.9
24.3 19.1

JTWC
Av Abs Std
Error Dev

13.2 11. 4
21.2 15.9
24.8 18.7

JTWC and

and the

Complete Dependent Data Set « CDS SCRN Predictor Egns

Regression
Av Abs Std
Error Dev

13.0 11.2
19.5 14.8
21.3 16.1

Dependent-Case Subset - DCS SCRN Predictor Egns

Regression
Av Abs Std
Error Dev

12. 4 10.8
18.9 14.6
20.6 l6.5

Independent-Case Subset = DCS SCRN Predictor Egns

Regression
Av Abs Std
Error Dev

14.5 11.8
20.2 14.9
22.1 16.8

|

J

predictor equations derived from the complete dependent set are also repeated from
Table 9. The similar characteristics (mean absolute errors and standard deviations)
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between the homogeneous samples of persistence and JTWC forecasts associated with
the complete dependent set and the dependent-case subset implies the dependent-case
subset is a representative sample of the complete dependent set. As expected,
regression equations derived from the smaller dependent-case subset perform better
than the equations derived from the complete dependent sample (average absolute
errors of 12.4, 18.9 and 20.6 kt versus 13.0, 19.5 and 21.3 kt for 24,48 and 72 h,
respectively). This fictitious improvement is attributed to either a dependent-case
sample size that is too small for proper development of the regression equations, or F-
to-enter and R? criteria that are too lenient for properly restricting the predictor
selection. However, when the dependent-case equations are applied to the
independent-case subset, the good performance suggested by the dependent-case results
is not sustained. Nevertheless the performance is better (smaller average absolute
errors) and is more consistent (smaller standard deviations) than JTWC official
forecasts at 48 and 72 h. For example, the mean absolute errors in this independent
sample are 20.2 and 22.1 kt versus 21.2 and 24.8 kt for JTWC.
3. Subsets stratified by previous 12 h intensity

Recall that the 12 h old best track intensity is the first predictor chosen in the
SCRNXN predictor intensity-change equaticns for the complete dependent set at all three
forecast periods (Table 4). Therefore, the 1216 data cases are subdivided into terciles
based upon the 12 h old best track intensity. This is a common practice in that
conventional-predictor forecast schemes currently in use at the operational forecast
centers are stratified by intensity. The f{requency distribution of 12 h old best track
intensity values and the tercile cut-points are illustrated in Fig. 4.2. The stratification
scheme used to subdivide the data cases into weak, moderate and strong subsets based
on 12 h old intensity is illustrated in Table 12. An exact division into three equal-size
categories 1s not possible because intensity values are recorded to the nearest 3 kt.

The basic approach in Fig. 4.1 (Section A above) is applied to each of the
three tercile subsets. The results of the screening process on each category of potential
predictors (CONV, WIND and SHEAR) selected for each tercile subset and each
forecast interval are indicated in Tables 13, 14 and 15. The values in the nine columns
on each table indicate the order in which the screened predictors were selected as the
next dominant predictor for the associated data subset and forecast interval. As with
the smaller dependent-case sample (Section B.2 above), more predictors generally are

selected for each equation when the data are stratified into terciles (smaller sample
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Figure 4.2 [listogram of 12 h old best track intensity (kt)
with tercile cut-points between weak-moderate and moderate-strong storms.
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oI TABLE 12

o }

O
Y. % .

| Stratification scheme for the tercile subsets with

| data stratified according to previous 12 h

* } best track intensity %kt).

0
B |
&& f Class Cases Intensity

Sl

X Weak 399 I < 45 kt
N Moderate 422 45 Rkt < I < 70 kt
%2 Strong 391 70 kt < I
)
;':’ ]
13

& . . . o .
» sizes) than are selected using the complete dependent set. This may be misleading, as it
‘; - was with the smaller dependent-case subset. when independent cases are examined.
i
N r

e

TABLE 13

ay | Conventional predictors (CONV) selected after

screening regression on 24, 48 and 72 h best track
intensity change (kt). Stratified data sets are
based on 12 h old best track intensity (kt). The
numbers indicate the order in which the predictors
were selected.
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R | WEAK MODERATE STRONG
PREDICTORS  24h 48h 72h  24h 48h 72h  24h 48h 72h
e | DAYJUL 2 1 4 2 ‘
o BLAT 5 4 3 3 3 1
R DBIM10 11 11 1 2 |
\ BLTM12 2 2 3 3 4 s |
' BLNM12 2 3 1 5 4 2 %
BIOO 2 2 1 1 i
)
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The screening on CONV predictors illustrates several points (Table 13).
Selection of past 12 h intensity change as either the first or second 24 and 48 h
conventional predictor for all three tercile subsets implies extrapolation of the intensity
trend is useful as a technique for the shorter range intensity forecast, but not the 72 h
forecast. The current intensity is the first (48 and 72 h) or second (24 h) predictor
selected for all forecast periods using the strong tercile. This suggests persistence is a
useful parameter in the forecast of stronger storms.

The results of screening with WIND predictors using the tercile subsets (Table
14) and the complete dependent set (Table 5) may be compared. A total of 57 WIND
predictors are selected for the nine equations using tercile subsets, as opposed to only
15 predictors selected for the three complete dependent set equations. Six of the
WIND predictors (C2U 14, C2V2S, C4U 2, C4U16, C7VI3 and C7V14) selected using
the complete dependent set are not selected using the intensity-stratified subsets. This
observation is surprising because C4U 2 was the second predictor selected in the 24
and 72 h equations (fourth in the 48 h equation) for the WIND predictor screening
using the complete dependent set (Table 5). Furthermore, C4U 2 entered all three
SCRN predictor equations using the complete dependent set (Table 8).

The results of the screening with SHEAR predictors using the tercile subsets
(Table 15) may be compared with the complete dependent set (Table 6). A total of 58
SHEAR predictors are selected in the nine equations for tercile subsets as opposed to
17 SHEAR predictors selected in the three equations for the complete dependent set.
Five of the SHEAR predictors (S47U 4, $24U 2, S27V 4, S27V19 and $27V22) selected
using the complete dependent set are not selected using the intensity-stratified subsets.

The SCRN predictor equations for the 24, 48 and 72 h intensity are illustrated

in Tables 16, 17 and 18, which correspond to the weak, moderate and strong subsets,
respectively. Analysis of the equations selected for the weak tercile (Table 16) indicates
that lower layer wind-shear EOF coefTicients are selected first (S47U11) in the 72 h
forecast equation and second (S47U 1) in the 24 h forecast equation. Selection of past
12 h change in intensity as a predictor in the 24 and 48 h (but not 72 h) equation
suggests the usefulness of extrapolation in the short-term forecast with weak tercile
storms.
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ool TABLE 14
l.‘.'l ’I
|
ol Wind EOF coefficient predictors (WIND) selected
: . after screening regression on 24, 48 and 72 h best
: ! track intensity change (kt). Stratified data sets
Ria | are based on 12 h old best track intensity (kt).
; ! The numbers indicate the order in which the
.tj; predictors were selected.
;§ : | WEAK MODERATE STRONG
i | 24h 48h 72h  24h 48h 72h  24h 48h 72h
- PREDICTORS
e | c2U 1 1 1
y@ ! c2U 6 8
~ | Cc2U 8 7
o | c2U 9 10
" C2U13 8
Cc2U19 4 7 5
gti Cc2U20 2
N c2v 1 5 4 5 1
W c2vis 7
c2v23 4 3
Y c2V24 9 \
3* C4U 1 11 1 1 2 ]
Y C4U 5 8
& C4U10 9
“y C4U14 6 f
:;y , C4U20 3 4 |
o | c4U22 4 |
iy | C4U25 6 ;
B , Cc4v 2 6 5
B ‘ cav 7 3 2
| cav 8 10
g ] C4v1l 9
o | C4v12 1 |
T . C4V15 4 2 g
b | C4V16 10 5
‘ C4v19 3 3 8 |
g | C4v20 8
7 i c4av23 6 |
o | cav2a 3 |
s | ;
Y L ]
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TABLE 14
(cont'd.)

! c7U
c7U
c7U
c7U
c7U
c7U
C7U
C7U10 5
c7U11l 2

C7U12 9
C7U13 10
C7U14 5 10
C7UL17

C7U20 5
C7U24 9

c7V 1

C7V 3 3
C7V 5 4
c7V 8 7

C7vV 9 6 8 2

C7v1l 9

C7V15 9 9

c7vV1e 7 6

| c7vis 10
C7V20 10

c7v21 10

L c7v22 8

2
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b TABLE 15

wﬁ . Vertical wind-shear EOF coefficient predictors

K ' ( SHEAR) selected after screening regression on

%4 24, 48 and 72 h best track intensity change (kt).

KR | Stratified data sets are based on 12 h old best

track intensity (kt). The numbers indicate the

%?;l order in which the predictors were selected.

0o |

ﬁS*? WEAK MODERATE STRONG

atty PREDICTORS  24h 48h 72h  24h 48h 72h  24h 48h 72h

- S47U 1 1 2 1 3 3

. 547U 2 2 2 |

o S47U 3 7 8

S9N S47U 8 9

R S47U10 9

Sl S47U11 6 1 1 6

- S47U12 8

o S47U14 2

vy S47U15 10

b - S47U16 g8 4 2

o S47U17 g 1 10

| S47U22 2 |

] S47U24 2 9

s S47V 3 3 4

X J— S47v 6 4

K S47vV 7 10

s S47V12 5

o : S47V15 9

Wiy S47V16 5 5

- S47v18 8

gg $47V19 7

R $47v21 7 |
] S47V25 8 (

o ’ S24U 1 7 1 1 !

R ! 524U 3 2 |
142 ' S24U 4 5 ;
i ‘ $24U17 8 |
‘ ; $24U20 10 10

@r; \ S24U21 3 ]

o | $24U22 1

:‘ .J' j l

I
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: TABLE 15
(cont'd.)

g L
', S24U23 5

o S24U24 9

o 524V 2 7 1
o S24V 3 2 7

, S24V 4 4
: ; S24V 8 7 9 5

B S24V 9 6

"y S24V14 3

-“ S24V15 3

S24V18 6

R $24V20 6

" S24v24 9 3 8 6
i S24V25 4 4

KX S27U 1 5

i S27U 4 5
- S27U 7 3 3

g S27U 9 6
o S27U10 8 .
g S27U18 6 9

N S27U23 5

: S27U24 6 .
B S27V 1 4

r S27V 9 v

i $27V11 4

kk ! S27V16 4

| 527V17 2

¢ : S27V20 10 7

e i S27V24 10
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B TABLE 16
ﬁﬂ; : Regression equations for the change in intensity
:?2 (kt) at 24, 48 and 72 h using data stratified by
x@ 12 h old best track intensity (WEAK tercile).
N | - Values in parentheses indicate the order in which
SCRN predictors were selected. The coefficients

ﬁﬁ : of multiple determination (R**2) are shown.
‘§$ : Forecast Interval
el 24 h 48 h 72 h
Yo Y-Intercept 9. 00 22.22 15. 58

» Predictor
;35 DAYJUL - - 0.07 (10)
.gg DBIM10 0.54 (1) 1.06 (1) -
S c2U 8 - -1.38 (10) -
KRS C2U19 - 2.66 (2) -

g Cc2U20 2.41 (3) - -
P c2v 1 - -1.34 (6) -

255 CcC4U 1 - -1.36 (2) -
SO c4Ul4 -0.94 (5) - -
g0 cau22 4.92 (5)
R cav 7 0.61 (6) 2.33 (4) -
o C4vi2 - - 2.79 (2)
N C4V15 0.78 (7) - -
N ! C4av19 - 2.34 (3) 2.76 (4)
e c7U 3 - - 0.83 (9)
e C7U 7 - - -2.10 (7)
2 C7U 9 - -2.14 (7) -
o C7U1l - - -1.74 (3)
b C7U14 -0. 47 - -

K C7V 8 - - 1.66 (6)
LR c7V 9 - -1.45 (9) -

- Cc7vV1s5 - 1.39 (8) -

S S47U 1 0.46 (2) - -
$$ S47U11 - - 1.83 (1)
??w S47U14 - - -2.29 (8)
o S24V 8 -0.41 (9) - -

2 $24V15 -0.96 (4) - -

e $24V24 -0.68 (10) - -
1y Cases 249 202 167
b3 R**2 0. 42 0. 48 0. 43
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TABLE 17
Regression equations for the change in intensity
(kt) at 24, 48 and 72 h using data stratified by
12 h old best track intensity (MODERATE tercile).
Values in parentheses indicate the order in which
SCRN predictors were selected. The coefficients
of multiple determination (R**2) are shown.
Forecast Interval
24 h 48 h 72 h
Y-Intercept 4.12 6. 56 -45.63
Predictor
BLTM12 - - 0.37 (10)
DBIM1O 0.58 (1) - -
Cc2U19 1.33 (9) - -
c2v 1 -0.64 (4) -1.54 (5) -
C4U 1 0.83 (2) 1.84 (1) 1.16 (2)
C4uU20 2.02 (5) 3.25 (4) -
c4uU25 1.79 (7) - -
C4V 8 - 1.23 (8) -
C7U 2 0.39 (3) - -
C7U 5 - 0.81 (6) -
C7U 6 - - -1.35 (7)
c7U0 7 -0.73 (6) =2.17 (2) =2.74 (1)
C7U1l4 - -1.43 (10) -3.15 (4)
Cc7U17 - 2.19 (9) -
C7U20 - - -3.45 (5)
C7v 1 - - 1.24 (6)
C7v 3 - =-1.23 (3) =0.62 (3)
sS47U17 0.94 (10) 2.13 (7) -
S24U22 - - -2.61 (9)
S24U23 -1.26 (8) - -
S24V25 - - 2.66 (8)
Cases 320 249 185
L R**2 0. 43 0. 47 0. 49

44




TABLE 18

Regression equations for the change in intensity
(kt) at 24, 48 and 72 h using data stratified by

12 h old best track intensity (STRONG tercile).
Values in parentheses indicate the order in which
SCRN predictors were selected.
of multiple determination (R**2) are shown.

Forecast Interval

The coefficients

24 h 48 h 72 h
Y-Intercept =29.99 -7.27 -84. 56
Predictor
BLAT - =1.12 (7) -1.16 (4)
BLNM12 0.38 (6) 0.43 (10) 1.06 (2)
BIOO -0.29 (3) -0.50 (1) -0.63 (1)
DBIM10O 0.35 (2) 0.27 (6) -
c2U 1 0.61 (1) 0.75 (2) -
C2U 6 - - 1.87 (7)
c2v 1 - - 1.83 (3)
C4U10 - 1.77 (8) -
C4v 2 - - -1.50 (8)
C4v1s - 1.63 (4) -
C4v20 - -2.46 (5) -
C4va3 0.98 (10) - -
Cc4avasa 1.34 (5) - -
C7U17 - - 3.94 (6)
C7vV 5 - - -1.50 (5)
C7V 9 0.75 (4) - -
C7V1e 0.90 (9) - -
c7v1s - =1.76 (3) -
S47U 2 -0.35 (8) - -
S24V 4 - - 1.30 (9)
s27U 4 - - 1.16 (10)
S24U 7 0.62 (7) 1.28 (8) -
Cases 318 233 160 |
R#*%*2 0. 36 0.51 0.61
45
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y &‘ SHEAR predictors are not among the first six predictors chosen for any of the
T moderate or strong tercile equations (Tables 17 and 18). This might be phvsically
s relevant in that a weak storm will not develop with large environmental shear, but if
0w the storm develops to more than 45 kt (moderate or strong tercile case), vertical wind
:: - shear is not a significant factor in deciding further intensity changes.
;‘i Notice that the explained variance values are largest at 48 h (0.51), and
¥

especially at 72 h (0.61), in the strong tercile equations. By contrast, the explained
variance is lowest (0.36) at 24 h in the strong category.

]

5:‘::' The verifications of the equations for the three terciled subsets are illustrated
,::‘:', in Table 19. The verification of the complete dependent data set is repeated from
Ot Table 9 for comparison. The average absolute error for the 24 h forecast is smallest
o (9.3 kt) for the weak tercile and largest (13.2 kt) with the strong tercile equations. The
; average absolute errors for the 48 h equations are comparable for all three terciles
:‘ (16.4, 17.6 and 15.4 kt). The average absolute error for the 72 h equation is smallest

oy for the strong tercile equation (14.7 kt) and largest for the weak tercile (18.7 kt).
The weighted-average absolute error of the regression-derived intensity is
computed for cach forecast period as

(NGAAE,, + N _AAE_. + N.AAE))
A'\AEmean = W W nl- m S S , (42)
2 Ntotal

where AAE indicates the average absolute error and N is the sample size. The
) subscripts refer to the particular data set; i.e., the complete dependent set (total) or a
subset of the complete set statified by 12 old best track intensity (‘'w’ indicates the
i weak, ‘m’ indicates the moderate, and s’ indicates the strong tercile).
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Cases
24 h 886
48 h 651
72 h 462

Cases
24 h 249
48 h 180
72 h 148

Cases
24 h 319
48 h 233
72 h 163

Cases
24 h 318
48 h 228
72 h 151

WEAK tercile subset

TABLE 19

Verification of 24, 48 and 72 h
tropical storm intensity forecasts {kt)
for WEAK, MODERATE and STRONG terciles

(stratified by 12 h old intensity)
using SCRN predictor equations.

Complete dependent set - SCRN predictors

Avg Abs Std
Error Dev
13.0 11.2
19.5 14.8
21.3 16.1

- SCRN predictors

Avg Abs sStd
Error Dev
9.3 7.2
16. 4 11.7
18.7 15.5

MODERATE tercile subset - SCRN predictors

Avg Abs Std
Error Dev
11. 7 10.7
17.6 13.86
17.9 13.7

STRONG tercile subset - SCRN predictors

Avg Abs Std
Error Dev
13.2 10.5
15.4 12. 6
14.7 11.8
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The verifications of the intensity-stratified equations are outlined in Table 20.
) Verifications of the homogeneous persistence, JTWC and complete dependent set
el forecasts are repeated from Table 9 for comparison. The weighted-average absolute
' errors indicate that the intensity-stratified equations based on dependent cases perform
'a: o better than all other forecast schemes over all forecast intervals. Student-T tests
S confirm that the tercile subsets are significantly better (95% confidence level) than the
e JTWC official forecast at 48 and 72 h.
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Y )
S Verification of 24, 48 and 72 h tropical storm
%ﬁ intensity forecasts (kt): (1) persistence,
%& (2) JIWC, (3) regression (complete set) and
e | . (4) regression (stratified subsets, based on
12 old best track intensity).
gyﬂ ; Persistence Forecast
54 Avg Abs std
W Cases Error Dev
24 h 886 17.2 13.7
i 48 h 651 28.1 19.8
,ﬁﬁz 72 h 462 33.7 23.9
n
g& JTWC Forecast
ﬁfg Avg Abs std
Lagd Cases Error Dev
% 24 h 886 13.1 11.3
S 48 h 651 21.3 16.6
[ ' 72 h 462 24.5 19.0
b , Regression-Derived Forecast
ﬁ% Screened predictors, Unstatified Data
g; Avg Abs Std
s Cases Error Dev
B 24 h 886 13.0 11.2
2 48 h 651 19.5 14.8
wul 72 h 462 21.3 16. 1
R
et Regression-Derived Forecast
W ! Screened Predictors, Stratified Data
oy | WT Avg std
we Cases Abs Error Dev
b 24 h 886 11.6 -—-
! 48 h 651 16.5 -
‘mk 72 h 462 17.1 -—-
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V. SUMMARY AND RECOMMENDATIONS

This study is the first step in the development of an enhanced objective technique
for predicting 24, 48 and 72 h intensity of tropical cyclones in the western North
Pacific region. The eventual goal is to develop an effective aid for the Joint Typhoon
Warning Center (JTWC) to forecast tropical storm intensity, particularly at 48 and
72 h.

The EOF coefficients of zonal and meridional components of the environmental
wind at 250, 400 and 700 mb (Wilson, 1984) and wind shear from 250 to 400, from 400
to 700, and from 250 to 700 mb (Meanor, 1987) are considered as potential predictors.
Additional predictors include conventional storm-related parameters, such as date,
intensity, motion and position. The 1216 cases in this study are 12 h data for western
North Pacific tropical cyclones from 1979 to 1983. The basic methodology involves
the following four steps:

® Select a data set, i.e., complete dependent set; independent-case;dependent-case
subsets; or subsets stratified by 12 h old intensity;

® Screen predictors using stepwise regression analysis to select the dominant
predictors;

® Generate regression equations using stepwise regression analysis and the
screened predictors to generate regression equations; and

®  Verify the equations relative to the performance of the Joint Typhoon Warning
Center official forecast.

When the basic methodology is applied to a complete set (1216 cases), the
regression equations using only conventional predictors are slightly improved by
inclusion of synoptic forcing fields represented by the EOF coefficients. Furthermore,
the regression equations perform slightly better than the JTWC official forecasts.

When the equations generated using a smaller dependent-case subset (811 cases)
are applied to the dependent-case subset, similar results are observed. Relative to a
homogeneous sample of JTWC official forecasts, the regression equations developed
using the dependent-case subset show progressively improved performance with
increasing forecast interval. Despite a slight increase in the average absolute error at
all forecast intervals when the dependent-case equations are applied to the
independent-case subset, the performance of these equations is still comparabic to a
homogeneous sample of JTWC official forecasts.
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When the basic method is applied to subsets stratified by 12 h old intensity, the
regression equations perform better than the JTWC official forecast at all forecast
intervals. These equations are significantly better (95% confidence) than the JTWC
official forecast at 48 and 72 h.

These results suggest that the official JTWC tropical storm intensity forecasts can
be enhanced by application of statistical regression anaiysis techniques. The
performance of the existing techniques based on conventional storm-related predictors
can be progressively improved by using:

¢ regression equations based on selected screened predictors drawn from EOF
coefficient predictors of wind and vertical wind shear; and

¢ regression equations developed from tercile subsets (the cases are statified by
12 h old intensity) and selected screened predictors.

The preliminary success of the screened regression equations, particularly those
developed using the stratified case subsets, suggests EOF coefficients of the wind and
the vertical wind-shear fields should be computed routinely using current data. With
the EOF coefficient predictors routinely available, these objective techniques could be
tested in an operational environment using independent cases. To further enhance
these objective techniques, the predictive ability of other synoptic or remotely sensed
parameters should be investigated.
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