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ABSTRACT

An objective technique for predicting 24, 48 and 72 h tropical cyclone intensity is

investigated using 1216 cases in the western North Pacific from 1979 to 1983.

Potential predictors include conventional storm-related parameters, such as date,

intensity, motion and position. Additional potential predictors include empirical

orthogonal function (EOF) coefficients of the zonal and meridional components of the

environmental wind (250, 400 and 700 mb) and vertical wind-shear (250-400, 400-700,

and 250-700 mb) fields. These coefficients represent the synoptic forcing in the vicinity

of the storm. The intensity change information is filtered to eliminate data for storms

affected by landfall from the sample. The regression equations are verified against a

homogeneous sample of Joint Typhoon Warning Center (JTWC) official forecasts,

which are also demonstrated to be significantly better (95% confidence) than

persistence at all forecast intervals. Regression equations developed using EOF

coefficient predictors along with conventional predictors are comparable to the JTWC

official forecast, even at 48 and 72 h. The regression equations based on the complete

set of predictors have slightly more skill than those based only on conventional

predictors. If the regression equations are derived from a smaller sample to allow for

an independent test, the results appear to be better in the dependent set, but are

degraded in the independent sample. Nevertheless, these independent sample results

are comparable in skill to the JTWC forecasts at all intervals. Regression equations

generated from three subsets stratified by 12 h old intensity are significantly better than

the 48 and 72 h JTWC official forecast,
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I. INTRODUCTION

A. BACKGROUND
One of the most difficult problems in tropical meteorology is forecasting tropical

storm intensity. Numerous models for the prediction of tropical cyclone motion are in
operational use at various tropical cyclone centers (Jarvinen and Neumann, 1979;

U. S. Command Center,'Joint Typhoon Warning Center, 1985). In contrast, there are
very few aids for forecasting tropical storm intensity changes in operational use today.

Jarvinen and Neumann (1979) suggest this disparity is due to the difficulty in
establishing cause and effect relationships for intensity changes. George and Gray

(1976) have documented the motion response of the tropical cyclones to environmental
"steering" and significant predictorlpredictand correlations have been established.
Similar well-marked correlations have not been established in the case of intensity
changes, at least not for the forecast period beyond 24 h. However, a renewed interest
in intensity forecast techniques has recently developed as motion forecasts have
improved.

Dvorak (1975) developed an empirical technique based on visual satellite imagery
for estimating 24 h intensity changes. The technique was updated (Dvorak, 19S2) to

incorporate enhanced infrared and digitized satellite imagery, which extended the
procedures to nighttime as well as daytime applicability. Unfortunately, this technique
is plagued with several limitations and shortcomings. A 24 h forecast is of marginal

operational use in support of flight or maritime operations for which more than 24 h
leadtime is needed to effectively respond to the threat of a tropical cyclone. In
addition, this technique is somewhat subjective; a trained analyst must match current

imagery to model storm patterns. Finally, the technique does not handle explosive

intensification very well.

Statistical objective intensity forecast techniques based on conventional storm-
related data (such as present intensity, latitude, longitude, etc.) were developed by
Elsberry et al. (1975) for the western North Pacific and Jarvinen and Neumann (1979)

for the North Atlantic region. Both studies generated forecast regression equations for
periods up to 72 h, rather than the 24' h forecast period characteristic of the Dvorak
technique. These techniques basically use a historical sample of storms to develop a

9



climatology and persistence forecast of intensity similar to the widely used CLIPER

track forecast techniques. The basic shortcoming noted in both studies is the

characteristic failure of the equations to handle the abnormal case, that is, the rapidly

intensifying or decaying storm. Elsberry et al. claim that we must improve our ability

to recognize the abnormal case if intensity forecasts are to improve. Jarvinen and
Neumann suggest we must look beyond the storm-related factors (presumably to
environmental influences) to increase our ability to forecast intensity changes. Merrill

(1987). who studied tropical cyclone intensity changes in the North Atlantic basin,
supports the hypothesis that environmental conditions influence intensity changes of
tropical cyclones. However, he concludes the linear relationships are very weak and of

little use as objective forecast aids.

The purpose of this study is to demonstrate that empirical orthogonal function
(EOF) representations of the zonal and meridional wind fields and of the vertical wind-
shear fields can serve as effective predictors of future tropical storm intensity. Shaffer

(1982) used an EOF analysis to represent 500 mb geopotential height fields on a grid
cntered on a tropical cyclone. Shaffer and Elsberry (1982) demonstrated that
coefficients from EOF analysis could be used as synoptic forcing predictors in

statistical-synoptic track prediction schemes. In a similar study, Wilson (1984) used

EOF analysis to represent the 700, 400 and 250 mb wind compon.nt fields on a refined
grid centered on the cyclone. Wilson (1984) also showed that the coefficients from the
wind EOF analysis could be used as synoptic forcing predictors in a statistical track

prediction scheme. Schott (1985) used data stratified by past motion to show that the
coefficients of the wind EOF analysis could be used as synoptic forcing predictors in a

statistical adjustment technique to reduce the systematic errors of a dynamical track

prediction model. Meanor (1987) used Wilson's wind component fields to generate

EOF fields of vertical wind shear. Using Schott's stratification scheme, Meanor
demonstrated that the coefficients from the EOF analysis of wind shear also could be

used as synoptic forcing predictors in a statistical adjustment technique to reduce

systematic errors of a dynamical track prediction model.

B. OBJECTIVES AND GOALS

The primary objective of this study is to use the existing "conventional" data

base; EOF coefficients of wind fields (Wilson, 1984) and wind-shear fields (Meanor,
1987); and selected intensity information to generate useful 24, 48 and 72 h intensity

prediction equations for tropical cyclones in the western North Pacific region.

10



Admittedly, microwave satellite data, cirrus streamer information, sea-surface
temperature data, aircraft reconnaissance data and landfall data could also provide

meaningful information in intensity forecasting. The goal of this study is to take the
first step in developing improved 24, 48 and 72 h intensity prediction schemes for
tropical cyclones in the western North Pacific. The eventual goal is to provide an

expert system or decision-tree approach, similar to that investigated by Peak and

Elsberry (1987) for tropical storm motion, that could be used by the Joint Typhoon
Warning Center (JTWC) for operational intensity forecasting.
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II. DATA CASE SELECTION

A. DATA DESCRIPTION

The cases in this study are a subset of the cases Wilson (1984) and Meanor

(1987) used. These 12-hourly data are for tropical storms in the western North Pacific
region for the period from 1979 to 1983. The following restrictions apply to the

selection of these cases:
* Tropical storms must be located in the Eastern Hemisphere, east of 1000 E with

a warning position less than 34.6' N;
* Storm intensity must be at least 18 mis (35 kt); and

* Zonal and meridional wind components must be available at 700, 400 and 250
mb levels.

A total of 1357 cases meet these requirements.

1. Original Cases (Wilson/Meanor)

a. Conventional Data

The conventional data include observation datetime, storm number and

warning positions (current; forecast 24, 48 and 72 h). Additional warning-based

information is available as zonal speed, meridional speed and horizontal displacement

for three periods: (I) from 12 h prior to observation time until observation time.

(2) from 24 h prior to observation time until observation time, and (3) from 24 h prior

to observation time until 12 h prior to observation time. Best track positions (current;

past 12 and 24 h; and future 24, 48 and 72 h) are also available.

b. Empirical Orthogonal Function Coefficients of Wind and Vertical Wind Shear

The data set for each 12 h case also includes the empirical orthogonal

function coefficients of the zonal and meridional wind fields at three levels (Wilson,

1984) and the zonal and meridional shear fields across three layers (Meanor, 1987).
The wind information used by Wilson (1984) and Meanor (1987) is from the Global

Band Analysis (GBA) operationally generated by the U. S. Navy at the Fleet

Numerical Oceanography Center (FNOC). The GBA fields are plotted on a Mercator

grid girding the globe from 410 S to 59.8' N, with a grid spacing of 2.5' lat by 2.50 long

at 22.50 N and S. The zonal and meridional fields are available from 00 GMT and
12 GMT at the surface, 700. 400, 250 and 200 mb. Surface analyses are based on land

observations and ship reports, while upper-air analyses are based on rawinsonde

12



observations, aircraft reports and satellite-derived cloud motion vectors. Temperature

analysis at the intermediate levels are used to couple the winds at adjacent vertical

levels via the thermal ind relationship. The 12 h old analysis plus 5% climatology is

used as the first-guess field for the current analysis. If no observations are available in

a region, the final analysis becomes the previous analysis adjusted towards climatology.

Wilson (1984) defined a relocatable, geographically-oriented grid of

527 points with a fixed zonal and meridional separation of 277.8 km (150 n mi). There

are 31 points west to east and 17 points north to south. Thus, the domain is 8334 km

(4500 n mi) by 4445 km (2400 n mi). The grid center (row 9, column 16) is coincident

with the tropical cyclone center in each case. Wilson used a bi-linear interpolation

scheme to extract the zonal and meridional component winds at 700, 400 and 250 mb

from the GBA.

Lorenz (1956) first applied empirical orthogonal function analysis to

geophysical fields. It has been used regularly to efficiently describe the variability in

atmospheric fields. With EOF representations, a large percentage of the variance in a

data field can be described by the summation of relatively few orthogonal eigenvectors

and their associated coefficients (eigenvalues). This results in a significant reduction in

the computer storage space needed to describe synoptic fields, which are ordinarily

defined by numerous grid point values.

Wilson generated EOF representations of the zonal and meridional wind

fields at three levels (700, 400 and 250 mb) and applied a Monte Carlo approach to

Sselect those small sets of rank-ordered eigenvectors and their associated coefficients

that describe the signal in the original fields. For this study, the first 35 coefficients of

the zonal and the meridional wind fields at each level are available for the 1357 cases.

Wilson showed no less than 90% of the variance in all of the zonal wind fields and

82% of the variance in all the meridional wind fields to be explained by the first 35

eigenmodes. The first 25 coefficients of the zonal and meridional wind fields are used

as potential predictors in this study.

Following Wilson's methods, Meanor (1987) generated the EOF

representations for the zonal and meridional wind-shear fields across three layers:

upper (250-400 mb), lower (400-700 mb) and deep (250-700 mb). Meanor also applied

a Monte Carlo approach to select those small sets of rank-ordered eigenvectors with

their associated coefficients that describe the variance in the wind-shear fields. The

first 35 coefficients for the zonal and meridional shear fields across the three layers are

13



available for the 1357 cases. Meanor showed no less than 80% of the variance in the

zonal wind-shear fields and 79% of the variance in the meridional wind-shear fields to

be explained by the first 25 and 35 eigenmodes, respectively. The first 25 coefficients of

the zonal and meridional Arind-shear fields are used as potential predictors in this

study.

2. Combined-data cases

In this study intensity data are added to the data set used by Wilson and

Meanor. These intensity data are extracted from the Annual Tropical Cyclone Reports

for 1979 through 1983 published by the Joint Typhoon Warning Center (JTWC)

and include:

* Best track intensity (current, past 12 h, past 24 h, and subsequent 24, 48 and
72 h);

* Warning intensity (current and past 12 h); and

* JTWC official forecast intensity (24, 48 and 72 h).

From these values, best track (past 12 h; and future 24, 48 and 72 h) and JTWC

forecast (24, 48 and 72 h) intensity change data are computed. There are 1216 cases in

the combined-data cases (Wilson/Meanor data plus intensity data) for use in this study.

B. LAND-OCEAN SORTING

Only storms over the ocean and within the region bounded by the equator,

100 ° E, 34.60 N and 1800 are used in this study. The combined data set is subjected to

*the following simple land-sea sorting process to separate cases for storms positioned

over ocean from cases for storms affected by land.

The bounded region is subdivided into one degree latitude by one degree

longitude grid squares, as in Fig. 2.1. If the current or 12 h old position is within a

land square or outside the bounded region, the associated 24, 48 and 72 h intensity

data are eliminated from the sample. If the current and 12 h old positions are within

ocean squares, the positions of the storm at the subsequent forecast times (24, 48 and

72 h) are evaluated. If the position at any of these times is within a land square or

outside the bounded region, the intensity change data at that time and all subsequent

times are considered unrepresentative and eliminated from the sample.

An example is illustrated in Figure 2.1 based on Typhoon Nelson from March

1982. The current (24/00 GMT), 12 hour old (23,112 GMT) and t+24 h (25,,00 GMT)

positions of the storm are within ocean grid squares. Because the t+48 h position is

located within a land square, the t +48 h and t + 72 h intensity change data are

14
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removed from the sample that is used to derive the regression equations and verif. the
intensity forecasts.
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III. REGRESSION APPROACH

The approach in this study is to use regression analysis techniques to investigate
the predictive skill of EOF coefficients of wind and vertical wind shear in forecasting

24, 48 and 72 h changes in tropical storm intensity. The UCLA Biomedical Computer
Program (Dixon and Brown, 1985), entitled BMDP2R, is used to select the predictors
and to develop the regression model. Tables 1, 2 and 3 are lists of the potential
predictors considered for use in the regression equations.

A. POTENTIAL PREDICTORS

The potential conventional predictors are listed in Table 1. The first three
predictors (1-3) are the current Julian date and the JTWC warning position (latitude
and longitude). The next nine predictors (4-12) describe the storm translation during
the past 24 h in terms of the zonal velocity, the meridional velocity and the total
displacement. Additional predictors (13-22) in this group include warning intensity

data (current, 12 h old and past 12 h change); best track intensity data (current, 12 h
old and past 12 h change); and best track position data (current and 12 h old, latitude

and longitude).

The second set of potential predictors (23-172), which are listed in Table 2, are
the wind-based EOF coefficients generated by Wilson (1984). These represent the
external forcing on the cyclone by the environmental winds at three levels (700, 400
and 250 mb). The format used to identify these predictors is CLWNN; where

C indicates a wind-based coefficient, L indicates the level (2 for upper, 250 mb; 4 for
middle, 400 mb; and 7 for lower, 700 mb), W indicates the zonal or the meridional
component wind field (U for meridional, V for zonal wind), and NN is a coefficient

number from I to 25.
The third set of potential predictors (173-383), which are listed in Table 3, are the

wind-shear EOF coefficients generated by Meanor (1987). These represent synoptic

forcing upon the storm by vertical differences in the environmental wind through three

layers. The format used to identify these potential predictors is SLLWNN; where
S indicates a wind-shear coefficient, LL indicates the layer (47 for the lower layer,
which is 400 minus 700 mb; 24 for the upper layer, which is 250 minus 400 mb; and

27 for the deep layer, which is 250 minus 700 mb) and NN is a coefficient number from

I to 25.

17
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B. REGRESSION ANALYSIS

To predict changes in tropical storm intensity over 24, 48 and 72 h, a stepwise
regression analysis is used. The BMDP2R program computes estimates of the

parameter through a multiple linear regression in a stepwise manner by entering or

removing variables one at a time from a list of potential predictors. At each step in the

BMDP2R regression analysis routine, the predictor that has the highest partial
correlation with the predictand (given the previous selection of predictors) is selected

from the remaining set. Consequently, the predictand is the result of a sum of

uncorrelated independent variables (Dixon and Brown, 1985).

The F-to-enter value is a function of the number of variables available for

selection, their correlation structure and the sample size. In this study, the selection

continues until the new predictor does not meet a minimum F-to-enter value of 4.0.

The coefficient of multiple determination (R2) is a measure of the relationship
between the independent and the dependent variables in the regression model and

represents the amount of total variance in the predictand that is explained by the

independent variables,

R2 = SSR / SSTO = I - (SSE/ SSTO), (3.1)

where SSR is the regression sum of the squares, SSTO is the total sum of the squares

and SSE is the residual sum of the squares. To further restrict the number of

predictors in the equations, only those predictors that increase R2 by at least 0.01 are

retained. Finally, an arbitrary limit of ten predictors is set.

iiI
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TABLE 1

Potential conventional predictors
available for the regression analysis.

Number Name Description

1 DAYJUL Julian date
2 LAT Warning position (latitude)
3 LON Warning position (longitude)
4 VX0012 Zonal storm speed from -12 h

to 00 h (km/'h)
5 VY0012 Meridional storm speed from

-12 h to 00 h (km/h)
6 V0012 Total storm movement from

-12 h to 00 h (km)
7 VX0024 Zonal storm speed from -24 h

to 00 h (km/h)

8 VY0024 Meridional storm speed from
-24 h to 00 h (km/h)

9 V0024 Total storm movement from
-24 h to 00 h (km)

10 VX1224 Zonal storm speed from -24 h
to -12 h (km/h)

11 VY1224 Meridional storm speed from
-24 h to -12 h (km/h)

12 V1224 Total storm movement from
-24 h to -12 h (km)

13 WIO0 Warning 00 h intensity
14 WIM12 Warning 12 h old intensity
15 DWIM10 Warning -12 h to 00 h change in

intensity
16 BIO0 Best track 00 h intensity
17 BIM12 Best track 12 h old intensity
18 DBIM1O Best track -12 h to 00 h change in

intensity
19 BLAT Best track 00 h position (latitude)
20 BLON Best track 00 h position (longitude)
21 BLTM12 Best track -12 h position (latitude)
22 BLMM12 Best track -12 h position (longitude)

19
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TABLE 2

Potential wind EOF coefficient predictors
available for the regression analysis.

Number Name Description

23-47 C2U1-25 250 mb wind coefficients derived
for zonal modes 1 - 25

48-72 C2VI-25 250 mb wind coefficients derived
for meridional modes 1 - 25

73-97 C4U1-25 400 mb wind coefficients derived
for zonal modes 1 - 25

98-122 C4V1-25 400 mb wind coefficients derived
for meridional modes 1 - 25

123-147 C7U1-25 700 mb wind coefficients derived
for zonal modes 1 - 25

148-172 C7V1-25 700 mb wind coefficients derived
for meridional modes 1 - 25
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TABLE 3

Potential wind-shear EOF coefficient predictors
available for the regression analysis.

Number Name Description

173-197 S47U1-25 400 minus 700 mb shear coefficients
derived for zonal modes 1 - 25

198-222 S47V1-25 400 minus 700 mb shear coefficients
derived for meridional modes 1 - 25

223-247 S24U1-25 250 minus 400 mb shear coefficients
derived for zonal modes 1 - 25

248-272 S24V1-25 250 minus 400 mb shear coefficients
derived for meridional modes 1 - 25

273-297 S27U1-25 250 minus 700 mb shear coefficients
derived for zonal modes I - 25

298-322 S27V1-25 250 minus 700 mb shear coefficients
derived for meridional modes 1 - 25
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IV. STUDY METHODS AND VERIFICATION OF RESULTS

A. BASIC METHODOLOGY
The purpose of this study is to investigate the usefulness of empirical orthogonal

function coefficients as predictors in an objective forecast scheme of the 24, 48 and
72 h western North Pacific tropical storm intensity. The basic four-part approach is
illustrated in Fig. 4.1 and discussed in the following four subsections.

1. Select Data Cases

This study involves the application of regression analysis techniques (Chapter
III) to various groupings of the 1216 data cases in the combined-data set (Chapter II).

Several groupings of the data are investigated in this study:
* A complete dependent data set (all 1216 cases);
* Dependent-case, Independent-case subsets; and
* Subsets stratified by previous 12 h intensity.

The application of the basic study approach to these data groupings is addressed in
Section B of this chapter.

2. Screen Potential Predictors

Because the number of cases in any of the data groupings is small relative to
the number of the potential predictors, the potential predictors are screened to

4 determine which are dominant. The predictors are divided into three categories:
" CONV Category - The conventional data listed in Table I;
" WIND Category - The first 25 EOF coefficients of the zonal and meridional

wind fields at three levels (700, 400 and 250 mb) listed in Table 2; and
" SHEAR Category - The first 25 EOF coefficients of the zonal and meridional

vertical wind-shear fields across three layers (400-700, 250-400, and 250-700 mb)
listed in Table 3.

For each predictand (24, 48 or 72 h intensity change) in each data set/subset, a series
of three 10-step regression analyses is performed based on each of the three categories

of predictors.

3. Generate Regression Equations

The predictors selected during the screening procedure (a maximum of 30
predictors: up to 10 from each of the three regression analyses) are consolidated. A
final 10-step regression is performed using these screened predictors to generate the
final equation for the predictand in question.

-
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4. Verify Regression Equations

The regression-derived equations for intensity changes are used to compute

forecast intensities at time tt:

RItt = WIO + DItt, (4.1)

where WI00 is the warning intensity at observation time, DItt is the regression-derived

change in intensity over the forecast interval, and RItt is the regression-derived forecast

intensity at verification time tt. The performance of the final regression equations is

verified relative to the performance of

* The JTWC official forecast; and

* A persistence forecast.

The means and standard deviations of the absolute value of the intensity error in the

regression, the JTWC and the persistence forecasts are computed and compared. A

Student-T test is applied to determine which schemes provide significant improvement

at the 95% confidence level.

B. APPLICATION OF THE METHODOLOGY

1. Complete dependent data set

The approach outlined above is first applied to the complete (dependent) data

set, i.e., all 1216 cases. Various combinations of best track and or warning predictors

are considered for use as the conventional predictors (CONV). The following

combination of eight predictors is chosen: date. best track position (current and 12 h

old: lat and long), best track intensity (current and 12 h old) and best track past 12 h

change in intensity. This combination explains the greatest variance in the intensity

change at the three forecast periods and it has the smallest number of missing values.

The predictors selected during the screening process for each of the forecast

periods are listed in Tables 4, 5 and 6 for the CONV, WIND and SHEAR category

* predictors, respectively. The number of potential screened (SCRN) predictors available

for each final regression equation is reduced to a maximum of 28 for each

predictand: eight conventional predictors, ten wind and ten wind-shear EOF

coefficients.

Only three of the eight potential conventional predictors are selected for any

one of the three equations (Table 4). The number of predictors selected is limited by

24
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TABLE 4

I CONV predictors selected after screening regression
on 24, 48 and 72 h best track intensity change (kt)
with the complete dependent data set (1216 cases).
The numbers indicate the order in which predictors
are selected for each equation. The coefficients

of multiple determination (R**2) are shown
for each equation.

Forecast Interval

Predictor 24 h 48 h 72 h

DAYJUL 3

BLAT 3
BLTM12 3
BLNM12 2
BIM12 1 1 1

DBIM10 2 2

R**2 0.33 0.41 0.49

the minimum F-to-enter and change in R2 requirements applied to the subsequent

predictors. The 12 h old intensity, rather than the current intensity, is the first

predictor selected at all three forecast periods. At 24 and 48 h, the past 12 h change in

intensity is the second predictor selected. This combination of predictors corresponds

to a two predictor equation for the extrapolation of the intensity trend. There is no

consensus on the additional conventional predictors that are chosen for the three

forecast intervals.

Of 150 potential wind EOF coefficient predictors, seven are selected for the

24 h equation and ten are selected for the 48 and the 72 h equations (Table 5). The

coefficient of the first eigenmode of the zonal wind at 400 mb (C4U 1) is the first

predictor selected in all three equations. while the coefficient of the second eigenmode

of the zonal wind at 400 mb (C-4U 2) is selected second in the equations at 24 and 72 h

(and fourth at 48 h). Wilson (1984) suggests the patterns of modes I and 2, which

account for the largest variance in the zonal and meridional wind fields, can be

interpreted separately as representing particular atmospheric flow patterns, lie states

25
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TABLE 5

WIND predictors selected after screening regression
on 24, 48 and 72 h best track intensity change (kt)
with the complete dependent data set (1216 cases).
The numbers indicate the order in which predictors
are selected for each equation. The coefficients

of multiple determination (R**2) are shown
for each equation.

Forecast Interval

Predictor 24 h 48 h 72 h

C2U14 7

C2V25 6

C4U 1 1 1 1
C4U 2 2 4 2
C4U16 9 10
C4U20 7

C4V12 6 4

C7U 7 4 3 6
C7U17 8 8
C7U24 9

C7V 3 3 2 7
C7Vll 5
C7V13 5
C7v14 5 3
C7V16 10

R**2 0.26 0.32 0.36

that the complexity of the eigenvalues makes it difficult to associate higher order

modes for any of the fields with any observable atmospheric patterns. If the 400 mb
conditions can be assumed to represent the mean flow through the depth of the

troposphere, the first coefficient of the zonal wind is indicative of the mean zonal
environmental flow. A positive value (related to easterly flow) generally may be

associated with storm development, while a negative value (related to westerly flow)

would imply recurvature and associated weakening.
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TABLE 6

SHEAR predictors selected after screening regression
on 24, 48 and 72 h best track intensity change (kt)
with the complete dependent data set (1216 cases).
The numbers indicate the order in which predictors
are selected for each equation. The coefficients of

I of multiple determination (R**2) are shown
for each equation.

Forecast Interval

Predictor 24 h 48 h 72 h

S47U 1 1 1
S47U 2 2 6
S47U 3 5
S47U 4 4
S47U 8 3

S47V 33
SS47V15 2

S24U 1 1 7
S24U 2 4

S24V20 6

S27V 1 2 6
S27V 4 5
S27V 9 4
S27V1I 5

I S27V17 8
S27V19 9
S27V22 3

R**2 0.16 0.16 0.22

Of the 150 potential wind-shear coefficients, six are selected for the 24 and

48 h equations and nine for the 72 h equation (Table 6). In contrast to the selected

conventional and wind EOF coefficient predictors, the wind-shear EOF coefficients are

less consistent in time. None of the wind-shear coefficients are selected for all three

equations (24, 48 and 72 h). Only four wind-shear predictors (S-4U 1, S47U 2. S24L I

v-. and S27V 1) are selected for two of the three equations.
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Notice that the explained variance increases with increasing forecast interval

for all three categories of potential predictors. The conventional predictor equations

account for the most explained variance, while the wind-shear EOF predictor equations

account for the least explained variance. Of the nine equations, the conventional

predictor equation for the 72 h forecast intensity explains the most variance.

Before combining the screened predictors and doing a final regression using

these selected screened predictors, the performance of the equations derived from the

three separate categories of predictors is investigated (Table 7). Analysis of Table 7

shows that the mean intensity forecast error and the standard deviation of the intensity

forecast error increase as the forecast interval increases for all schemes (JTWC; CONV,
WIND and SHEAR predictor). For all forecast intervals, the equations generated

using only the best track conventional predictors perform better (have smaller average

absolute errors) and are more consistent (have smaller standard deviations in the

average absolute error) than the equations generated using only wind EOF coefficient

predictors. which perform better and are more consistent than the equations generated

using only wind-shear EOF coefficient predictors. Although the official JTWC

intensity forecast errors are smaller than all the regression-derived equations at 24 h,

the best track conventional predictor equations perform better and are more consistent

than JTWC at 48 and 72 h. Recall that these results are for a dependent sample.

Presumably, even more accurate predictions are possible if all three categories of

screened predictors are included.

The three screened-predictor regression-derived equations for the 24, 48 and
72 h intensity change and the coefficient of multiple determination (R2) for each

predictor are indicated in Table 8. For all forecast intervals, the regression process
terminates before ten predictors are selected, because the F-to-enter values or the

amount of variance explained by the subsequent predictors are too small for further

stepping. Only 4, 6 and 5 predictors are selected at 24, 48 and 72 h, respectively. As

suggested by Table 4, the 12 h old best track intensity is the first predictor chosen for

all three forecast intervals (24, 48 and 72 h). This observation prompted a later

stratification of the data (to be discussed in Section B.3 below) based upon 12 h old

best track intensity. Several wind EOF coefficient predictors appear in the screened

predictor equations. In fact, C4U I and C4U 2 are among the top four predictors in

all three equations. No EOF coefficients of wind shear are chosen. As Meanor (1987)
suggests, perhaps this is due to the close relationships between the wind and wind-
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TABLE 7

Verification of JTWC and regression-derived
(CONV-, WIND- and SHEAR-predictor) forecasts

of 24, 48 and 72 h tropical storm intensity (kt)
for the complete dependent data set (1216 cases)
based on land-filtered and homogeneous samples.

JTWC Forecast Intensity

Avg Abs Std
Cases Error Dev

24 h 886 13.1 11.3
48 h 651 21.3 16.6
72 h 462 24.5 19.0

Best Track Conventional Predictors (CONV)

Avg Abs Std
Cases Error Dev

24 h 886 13.5 11.5
48 h 651 20.9 15.6
72 h 462 22.6 17.2

Wind EOF Coefficient Predictors (WIND)

Avg Abs Std
Cases Error Dev

24 h 886 14.6 12.3
48 h 651 22.5 16.9
72 h 462 25.6 19.5

Shear EOE Coefficient Predictors (SHEAR)

Avg Abs Std
Cases Error Dev

24 h 886 15.4 12.8
48 h 651 24.5 18.7
72 h 462 28.2 20.6

shear synoptic forcings. After a wind EOF coefficient predictor is selected, the wind-
shear EOF coefficients that are highly correlated with it will not be selected.
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TABLE 8

Regression equations for the change in intensity
(kt) at 24, 48 and 72 h using the complete depen-
dent data set (1216 cases). Parenthetical values
indicate the order in which the screened predictors
are selected for each equation. The coefficients

of multiple determination (R**2) are shown.

Forecast Interval
24 h 48 h 72 h

Y-Intercept 15.64 -0.97 48.71

Predictor
BLNM12 - 0.28 (6) -

BIM12 -2.24 (1) -0.57 (1) -0.78 (1)
DBIM1O 0.46 (2) - -

C2U14 - -1.95 (5) -

C4U 1 0.54 (3) 1.03 (2) 1.32 (2)
C4U 2 0.38 (4) 0.71 (3) 1.11 (4)
C4V12 - - 1.31 (5)
C7U 7 - -1.36 (4) -1.71 (3)

Cases 886 684 512
R**2 0.39 0.51 0.56

Interestingly, the regression-derived equations explain a larger percentage of
variance in the predictand with increasing forecast interval. This is a favorable result

because the objective is to provide forecast guidance at 48 and 72 h. However, notice

that the maximum value of explained variance (at 72 h) is only 56%; i.e., 44% is still

unexplained.

The performance of the SCRN predictor equations relative to the performance

of homogeneous samples of persistence, JTWC and CONV predictor forecasts is

illustrated in Table 9. At all forecast hours, the smallest mean absolute errors are

associated with the regression-derived intensity forecasts generated using the SCRN

predictor equations. In addition, the standard deviations of mean absolute errors

associated with these equations are the smallest, which indicates more consistent

forecasts.
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TABLE 9

Verification of persistence, JTWC and regression-
derived (CONV- and SCRN-predictor) forecasts for
24, 48 and 72 h tropical storm intensity (kt) for
the complete dependent data set (1216 cases) based

on land-filtered and homogeneous samples.

Persistence Forecast

Avg Abs Std
Cases Error Dev

24 h 886 17.2 13.7
48 h 651 28.1 19.8
72 h 462 33.7 23.9

JTWC Forecast

Avg Abs Std
Cases Error Dev

24 h 886 13.1 11.3
48 h 651 21.3 16.6

iJ72 h 462 24.5 19.0

Regression-Derived Forecast
Best Track Conventional Predictors (CONV)

Avg Abs Std
Cases Error Dev

24 h 886 13.5 11.5

48 h 651 20.9 15.6
72 h 462 22.6 17.2

Regression-Derived Forecast
Selected Screened Predictors (SCRN)

Avg Abs Std
Cases Error Dev

24 h 886 13.0 11.2
48 h 651 19.5 14.8
72 h 462 21.3 16.1

Notice that the JTWC forecast performs better than pers Istence, particularly
at 72 h. Student-T significance tests indicate that the JTWC forecast is better than
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persistence (95°0 confidence level) at all forecast hours. Because the intensity

observations and forecasts are rounded to the nearest 5 kt value at each end of the

change interval, discretization errors result. Therefore, no scheme is likely to perform

with a minimum error of less than 10 kt. Although the 13 kt mean absolute error of

the JTWC official forecast at 24 h is relatively good, this error approximately doubles

by 72 h.

The results of the CONV predictor equations (the basis for existing intensity

forecast schemes) are repeated from Table 7 for comparison with the SCRN predictor

equations. Notice that the additional contribution of synoptic predictors (wind and

wind-shear EOF coefficients) in reducing the mean absolute error is small (0.5 kt at

24 h, 1.4 kt at 48 h and 1.3 kt at 72 h). Comparison of Table 7 with Table 9 suggests

that much of the variance explained by the WIND (or SHEAR) predictors is already

contained in the selected CONV predictors. Nevertheless, the synoptic forcing

represented by the EOF coefficients does lead to significant intensity forecast

improvements at 48 and 72 h in this dependent data sample.

2. Dependent-case/Independent-case subsets

The above results based on the dependent sample may be overly optimistic,

because the verification cases were used to derive the regression equations. Thus, the
data cases were subdivided into dependent-case and independent-case subsets:

To investigate the effect reducing the sample size would have on the regression-
derived equations for 24, 48 and 72 h intensity change, and

* To investigate the predictive skill of the dependent-case regression-derived
* equations when applied to an independent-case data subset.

The independent-case subset of 405 cases is constructed by selecting every third case in

the complete data sample. The dependent-case subset is the remaining 811 cases.

The basic approach in Fig. 4.1 (Section A above) is applied to the dependent

sample. The resulting equations are listed in Table 10 for the 24, 48 and 72 h intensity

change. For each forecast interval, the predictors selected first and explaining the

largest percentage of the variance in the predictands in Table 10 are common to the

equations derived using the complete dependent set (Table 8). In the 24, 48 and 72 h

regression equations, the selection sequence is common between the two data sets for

the first 3, 4 and 3 predictors, respectively. More predictors are selected for the

dependent-case subset equations than the complete dependent set (6, 7 and 6 versus the

4, 6 and 5 at 24, 48 and 72 h). The depcndent-case subset equations explain slightly

more variance (0.42, 0.52 and 0.59 compared to 0.39, 0.51 and 0.56) than the complete

d 32

i- - - - -



dependent set equations. This is expected, since the sample sizes are smaller; i.e., they

contain less of the natural variability of the ensemble of possible cases. However,

adding more predictors may not lead to better predictions in an independent test.

TABLE 10

Regression equations for the change in intensity
(kt) at 24, 48 and 72 h using the dependent-case
data subset. Parenthetical values indicate the

order in which the SCRN predictors were selected.
Asterisks indicate common predictors with the

corresponding equations for the complete dependent
set in Table 8. The coefficients of multiple

determination (R**2) are shown.

Forecast Interval

24 h 48 h 72 h

Y-Intercept 26.27 35.61 46.44

Predictor
BLAT -0.40 (6) - -

BIM12 -0.25 (l)* -0.53 (i)* -0.77 (l)*
DBIM10 0.40 (2)* - -

C4U 1 0.39 (3)* 1.45 (2)* 1.83 (2)*
C4U 2 - 0.72 (3)* 0.82 (5)
C4U20 1.27 (5) - -
C4V12 - 1.03 (7) 1.34 (6)
C4V15 1.04 (4) - -
C7U 7 - -1.32 (4)* -1.98 (3)*

S27U24 - 1.88 (6) -
S27V 1 - -0.78 (5) -0.98 (4)

Cases 588 457 346
R**2 0.42 0.52 0.59

The verification of the SCRN predictor equations derived from the smaller

dependent-case subset (applied to both the dependent-case and independent-case

subsets) is summarized relative to homogeneous samples of persistence and JTWC

forecasts in Table !1. For ease of comparison, the verification results of the SCRN
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TABLE II

Verification of persistence, JTWC and
regression-derived (SCRN) 24, 48 and 72 h

forecasts of western North Pacific tropical storm
intensity (kt) using land-filter and homogeneous
data from the complete dependent data set (CDS),

the dependent-case subset (DCS), and the
independent-case subset.

Complete Dependent Data Set - CDS SCRN Predictor Eqns

Persistence JTWC Regression
Av Abs Std Av Abs Std Av Abs Std

Cases Error Dev Error Dev Error Dev

24 h 886 17.2 13.7 13.1 11.3 13.0 11.2
48 h 651 28.1 18.8 21.3 16.6 19.5 14.8
72 h 462 33.7 23.9 24.5 19.0 21.3 16.1

Dependent-Case Subset - DCS SCRN Predictor Eqns

Persistence JTWC Regression
Av Abs Std Av Abs Std Av Abs Std

Cases Error Dev Error Dev Error Dev

24 h 587 17.0 13.3 13.0 11.3 12.4 10.8
48 h 439 28.1 19.3 21.3 16.9 18.9 14.6
72 h 312 33.0 24.5 24.3 19.1 20.6 16.5

Independent-Case Subset - DCS SCRN Predictor Eqns

Persistence JTWC Regression
Av Abs Std Av Abs Std Av Abs Std

Cases Error Dev Error Dev Error Dev

24 h 299 17.7 14.3 13.2 11.4 14.5 11.8
48 h 212 28.2 21.2 21.2 15.9 20.2 14.9
72 h 150 35.1 22.5 24.8 18.7 22.1 16.8

predictor equations derived from the complete dependent set are also repeated firom

Table 9. The similar characteristics (mean absolute errors and standard deviations)
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between the homogeneous samples of persistence and JTWC forecasts associated with

the complete dependent set and the dependent-case subset implies the dependent-case

subset is a representative sample of the complete dependent set. As expected,

regression equations derived from the smaller dependent-case subset perform better

than the equations derived from the complete dependent sample (average absolute

errors of 12.4, 18.9 and 20.6 kt versus 13.0, 19.5 and 21.3 kt for 24, 48 and 72 h,

respectively). This fictitious improvement is attributed to either a dependent-case

sample size that is too small for proper development of the regression equations, or F-

to-enter and R2 criteria that are too lenient for properly restricting the predictor

selection. However, when the dependent-case equations are applied to the

independent-case subset, the good performance suggested by the dependent-case results

is not sustained. Nevertheless the performance is better (smaller average absolute

errors) and is more consistent (smaller standard deviations) than JTWC official

forecasts at 48 and 72 h. For example, the mean absolute errors in this independent

sample are 20.2 and 22.1 kt versus 21.2 and 24.8 kt for JTWC.

3. Subsets stratified by previous 12 h intensity

Recall that the 12 h old best track intensity is the first predictor chosen in the
% SCRN predictor intensity-change equations for the complete dependent set at all three

forecast periods (Table 4). Therefore, the 1216 data cases are subdivided into terciles

based upon the 12 h old best track intensity. This is a common practice in that

conventional-predictor forecast schemes currently in use at the operational forecast
centers are stratified by intensity. The frequency distribution of 12 h old best track

intensity values and the tercile cut-points are illustrated in Fig. 4.2. The stratification

scheme used to subdivide the data cases into weak, moderate and strong subsets based

on 12 h old intensity is illustrated in Table 12. An exact division into three equal-size

._ categories is not possible because intensity values are recorded to the nearest 5 kt.

The basic approach in Fig. 4.1 (Section A above) is applied to each of the

three tercile subsets. The results of the screening process on each category of potential

predictors (CONN, WIND and SHEAR) selected for each tercile subset and each

forecast interval are indicated in Tables 13, 14 and 15. The values in the nine columns

,, on each table indicate the order in which the screened predictors were selected as the

next dominant predictor for the associated data subset and forecast interval. As with

:he smaller dependent-case sample (Section B.2 above), more predictors generally are
selected for each equation when the data are stratified into terciles (smaller sample
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I. TABLE 12

Stratification scheme for the tercile subsets with
data stratified according to previous 12 h

best track intensity (kt).

Class Cases Intensity

Weak 399 I < 45 kt
Moderate 422 45 kt < I < 70 kt
Strong 391 70 kt < I

sizes) than are selected using the complete dependent set. This may be misleading, as it
was with the smaller dependent-case subset, when independent cases are examined.

TABLE 13

Conventional predictors (CONV) selected after
screening regression on 24, 48 and 72 h best track
intensity change (kt). Stratified data sets are
based on 12 h old best track intensity (kt). The
numbers indicate the order in which the predictors

were selected.

WEAK MODERATE STRONG
PREDICTORS 24h 48h 72h 24h 48h 72h 24h 48h 72h

DAYJUL 2 1 4 2
BLAT 5 4 3 3 3

DBIM1O 1 1 1 1 1 2
BLTM12 2 2 3 3 4 5
BLNM12 2 3 1 5 4 2

BI0O 2 2 1 1
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The screening on CONV predictors illustrates several points (Table 13).

Selection of past 12 h intensity change as either the first or second 24 and 48 h

conventional predictor for all three tercile subsets implies extrapolation of the intensity

trend is useful as a technique for the shorter range intensity forecast, but not the 72 h

forecast. The current intensity is the first (48 and 72 h) or seconC (24 h) predictor
selected for all forecast periods using the strong tercile. This suggests persistence is a

useful parameter in the forecast of stronger storms.

The results of screening with WIND predictors using the tercile subsets (Table

14) and the complete dependent set (Table 5) may be compared. A total of 57 WIND

predictors are selected for the nine equations using tercile subsets, as opposed to only

15 predictors selected for the three complete dependent set equations. Six of the

WIND predictors (C2U14, C2V25, C4U 2, C4U16. C7V13 and C7V14) selected using

the complete dependent set are not selected using the intensity-stratified subsets. This

observation is surprising because C4U 2 was the second predictor selected in the 24

and 72 h equations (fourth in the 48 h equation) for the WIND predictor screening

S."-~. using the complete dependent set (Table 5). Furthermore, C4U 2 entered all three

SCRN predictor equations using the complete dependent set (Table 8).

The results of the screening with SHEAR predictors using the tercile subsets

(Table 15) may be compared with the complete dependent set (Table 6). A total of 58

SHEAR predictors are selected in the nine equations for tercile subsets as opposed to

17 SHEAR predictors selected in the three equations for the complete dependent set.

Five of the SHEAR predictors ($47U 4, S24U 2, S27V 4, $27V19 and $27V22) selected

using the complete dependent set are not selected using the intensity-stratified subsets.

The SCRN predictor equations for the 24, 48 and 72 h intensity are illustrated

in Tables 16, 17 and 18, which correspond to the weak, moderate and strong subsets,

respectively. Analysis of the equations selected for the weak tercile (Table 16) indicates

that lower layer wind-shear EOF coefficients are selected first ($47U1 1) in the 72 h

forecast equation and second ($47U 1) in the 24 h forecast equation. Selection of past

12 h change in intensity as a predictor in the 24 and 48 h (but not 72 h) equation

suggests the usefulness of extrapolation in the short-term forecast with weak tercile

storms.
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TABLE 14

Wind EOF coefficient predictors (WIND) selected
after screening regression on 24, 48 and 72 h best
track intensity change (kt). Stratified data sets
are based on 12 h old best track intensity (kt).

The numbers indicate the order in which the
predictors were selected.

WEAK MODERATE STRONG
24h 48h 72h 24h 48h 72h 24h 48h 72h

PREDICTORS
C2U 1 1 1C2U 6 8
C2U 8 7

C2U 9 10
C2U13 8
C2U17 2
C2U19 4 7 5
C2U20 2
C2V 1 5 4 5 1
C2V18 7
C2V23 4 3
C2V24 9
C4U 1 1 1 1 1 2
C4U 5 8
C4U1O 9
C4U14 6

C4U20 3 4
C4U22 4
C4U25 6
C4V 2 6
C4V 7 3 2
C4V 8 10
C4V11 9
C4V12 1
C4V15 4 2
C4V16 10 5

C4V19 3 3 8
C4V20 8
C4V23 6
C4V2 4 3
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TABLE 14

(cont'd.

C7U 2 2
C7U 3 7 5

C7U 5 6 8 4
C7U 6 7
C7U 7 6 5 2 1
C7U 98
C7U10
C7U11 2
C7TJ12 9
C7U13 10
C7U14 5 10 7 4
C7U17 8 7
C7U20 5
C7U24 9
C7V 1 6
C7V 3 3 3
C7V 5 4
C7V 8 7
C7V 9 6 8 2
C7V1. 9
C7V15 9 9
C7V16 7 6
C7V18 10
C7V20 10
C7V21 10
C 7V2 2 8
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*1 TABLE 15

Vertical wind-shear EOF coefficient predictors
(SHEAR) selected after screening regression on

24, 48 and 72 h best track intensity change (kt).
Stratified data sets are based on 12 h old best
track intensity (kt). The numbers indicate the
order in which the predictors were selected.

WEAK MODERATE STRONG
PREDICTORS 24h 48h 72h 24h 48h 72h 24h 48h 72h

S47U 1 1 2 1 3 3
S47U 2 2 2
S47U 3 7 8
S47U 8 9
S47UI0 9
S47UII 6 1 1 6
S47U12 8
S47U14 2
S47U15 10
547U16 8 4 2
S47U17 8 1 10
S47U22 2
s47u24 2 9
S47V 3 3 4
S47V 6 4
S47V 7 10
S47V12 5
S47V15 9
S47VI6 5 5
S47V18 8
S47V19 7
S47V21 7
S47V25 8
S24U 1 7 1 1
S24U 3 2
S24U 4 5
$24U17 8
S24U20 10 10
S24U21 3
$24U22 1



TABLE 15

(cont'd.

S24U23 5
S24U24 9
S24V 2 7
S24V 3 2 7
S24V 4 4
S24V 8 7 9 5
S24V 9 6
S24V14 3
S24V15 3
S24V18 6
S24V20 6
S24v24 9 3 8 6
S24V25 4 4
S27U 1 5
S27U 4 5
S2 7U 7 3 3
S27U 9 6
S27U10 8
S27U18 6 9
S27U23 5
S27U24 6
S27V 1 4
S27V 9 7
S27M11 4
S27VI6 4
S27VI7
S27V20 10 7

S27V24 10
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TABLE 16

Regression equations for the change in intensity
(kt) at 24, 48 and 72 h using data stratified by
12 h old best track intensity (WEAK tercile).

Values in parentheses indicate the order in which
SCRN predictors were selected. The coefficients

of multiple determination (R**2) are shown.

Forecast Interval
24 h 48 h 72 h

Y-Intercept 9.00 22.22 15.58
Predictor

DAYJUL - 0.07 (10)
DBIM10 0.54 (1) 1.06 (1) -
C2U 8 - -1.38 (10) -

C2U19 - 2.66 (2) -

C2U20 2.41 (3) -
C2V 1 - -1.34 (6) -

C4U 1 - -1.36 (2) -

C4U14 -0.94 (5) -

C4U22 4.92 (5)
C4V 7 0.61 (6) 2.33 (4) -
C4V12 - - 2.79 (2)
C4V15 0.78 (7) - -
C4V19 - 2.34 (3) 2.76 (4)
C7U 3 - - 0.83 (9)
C7U 7 - - -2.10 (7)
C7U 9 - -2.14 (7) -
C7UII - - -1.74 (3)
C7U14 -0.47 -
C7V 8 - - 1.66 (6)
C7V 9 -1.45 (9) -
C7V15 - 1.39 (8) -

S47U 1 0.46 (2) - -
S47UII - - 1.83 (1)
S47U14 - - -2.29 (8)
S24V 8 -0.41 (9) - -
S24V15 -0.96 (4) -

S24V24 -0.68 (10) - -

Cases 249 202 167
R**2 0.42 0.48 0.43
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TABLE 17

Regression equations for the change in intensity
(kt) at 24, 48 and 72 h using data stratified by
12 h old best track intensity (MODERATE tercile).
Values in parentheses indicate the order in which
SCRN predictors were selected. The coefficients

of multiple determination (R**2) are shown.

Forecast Interval
24 h 48 h 72 h

Y-Intercept 4.12 6.56 -45.63

Predictor
BLTM12 - - 0.37 (10)
DBIM1O 0.58 (1) --

C2U19 1.33 (9) -
C2V 1 -0.64 (4) -1.54 (5) -
C4U 1 0.83 (2) 1.84 (1) 1.16 (2)
C4U20 2.02 (5) 3.25 (4) -
C4U25 1.79 (7) -
C4V 8 - 1.23 (8)
C7U 2 0.39 (3) - (
C7U 5 - 0.81 (6) -
C7U 6 - - -1.35 (7)
C7U 7 -0.73 (6) -2.17 (2) -2.74 (1)
C7U14 - -1.43 (10) -3.15 (4)
C7U17 - 2.19 (9) -
C7U20 - - -3.45 (5)
C7V 1 - - 1.24 (6)
C7V 3 - -1.23 (3) -0.62 (3)

S47U17 0.94 (10) 2.13 (7)
S24U22 - - -2.61 (9)
S24U23 -1.26 (8) --

S24V25 - - 2.66 (8)

Cases 320 249 185
R**2 0.43 0.47 0.49
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TABLE 18

Regression equations for the change in intensity
(kt) at 24, 48 and 72 h using data stratified by
12 h old best track intensity (STRONG tercile).

Values in parentheses indicate the order in which
SCRN predictors were selected. The coefficients

of multiple determination (R**2) are shown.

Forecast Interval

24 h 48 h 72 h

Y-Intercept -29.99 -7.27 -84.56

Predictor

BLAT - -1.12 (7) -1.16 (4)
BLNM12 0.38 (6) 0.43 (10) 1.06 (2)

BIOO -0.29 (3) -0.50 (1) -0.63 (1)
DBIM10 0.35 (2) 0.27 (6) -

C2U 1 0.61 (1) 0.75 (2) -
K C2U 6 - - 1.87 (7)

C2V 1 - - 1.83 (3)
C4UIO - 1.77 (8) -
C4V 2 - - -1.50 (8)
C4V15 - 1.63 (4) -
C4V20 - -2.46 (5) -

C4V23 0.98 (10) -

C4V24 1.34 (5) - -
C7U17 - - 3.94 (6)
C7V 5 - - -1.50 (5)
C7V 9 0.75 (4) - -
C7V16 0.90 (9) -
C7V18 - -1.76 (3) -

S47U 2 -0.35 (8) -

S24V 4 - 1.30 (9)
S27U 4 1.16 (10)
S24U 7 0.62 (7) 1.28 (8) -

Cases 318 233 160
R**2 0.36 0.51 0.61
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SHEAR predictors are not among the first six predictors chosen for any of the

moderate or strong tercile equations (Tables 17 and 18). This might be physically
relevant in that a weak storm will not develop with large environmental shear, but if

the storm develops to more than 45 kt (moderate or strong tercile case), vertical wind
shear is not a significant factor in deciding further intensity changes.

Notice that the explained variance values are largest at 48 h (0.51), and
especially at 72 h (0.61), in the strong tercile equations. By contrast, the explained
variance is lowest (0.36) at 24 h in the strong category.

The verifications of the equations for the three terciled subsets are illustrated

in Table 19. The verification of the complete dependent data set is repeated from
Table 9 for comparison. The average absolute error for the 24 h forecast is smallest

(9.3 kt) for the weak tercile and largest (13.2 kt) with the strong tercile equations. The

average absolute errors for the 48 h equations are comparable for all three terciles
(16.4, 17.6 and 15.4 kt). The average absolute error for the 72 h equation is smallest
for the strong tercile equation (14.7 kt) and largest for the weak tercile (18.7 kt).

The weighted-average absolute error of the regression-derived intensity is

computed for each forecast period as

(Nw'AAEw +\NAAE m +NsA)

AAEmean = m M N5 AAE5 ) (4.2)
Ntotal

where AAE indicates the average absolute error and N is the sample size. The
subscripts refer to the particular data set; i.e., the complete dependent set (total) or a

subset of the complete set statified by 12 old best track intensity ('w" indicates the
weak, 'in indicates the moderate, and 's' indicates the strong tercile).
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TABLE 19

Verification of 24, 48 and 72 h
tropical storm intensity forecasts (kt)
for WEAK, MODERATE and STRONG terciles

(stratified by 12 h old intensity)
using SCRN predictor equations.

Complete dependent set - SCRN predictors

Avg Abs Std
Cases Error Dev

24 h 886 13.0 11.2
48 h 651 19.5 14.8
72 h 462 21.3 16.1

WEAK tercile subset - SCRN predictors

Avg Abs Std
Cases Error Dev

24 h 249 9.3 7.2
48 h 190 16.4 11.7
72 h 148 18.7 15.5

MODERATE tercile subset - SCRN predictors

Avg Abs Std
Cases Error Dev

24 h 319 11.7 10.7
48 h 233 17.6 13.6
72 h 163 17.9 13.7

STRONG tercile subset - SCRN predictors

Avg Abs Std
Cases Error Dev

24 h 318 13.2 10.5
48 h 228 15.4 12.6
72 h 151 14.7 11.8
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The verifications of the intensity-stratified equations are outlined in Table 20.
Verifications of the homogeneous persistence, JTWC and complete dependent set

forecasts are repeated from Table 9 for comparison. The weighted-average absolute
errors indicate that the intensity-stratified equations based on dependent cases perform

better than all other forecast schemes over all forecast intervals. Student-T tests
confirm that the tercile subsets are significantly better (95% confidence level) than the

JTWC official forecast at 48 and 72 h.

U
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TABLE 20

Verification of 24, 48 and 72 h tropical storm
intensity forecasts (kt): (1) persistence,
(2) JTWC, (3) regression (complete set) and
(4) regression (stratified subsets, based on

12 old best track intensity).

Persistence Forecast

Avg Abs Std
Cases Error Dev

24 h 886 17.2 13.7
48 h 651 28.1 19.8
72 h 462 33.7 23.9

JTWC Forecast
Avg Abs Std

Cases Error Dev
24 h 886 13.1 11.3
48 h 651 21.3 16.6
72 h 462 24.5 19.0

Regression-Derived Forecast
Screened predictors, Unstatified Data

Avg Abs Std
Cases Error Dev

24 h 886 13.0 11.2
48 h 651 19.5 14.8
72 h 462 21.3 16.1

Regression-Derived Forecast
Screened Predictors, Stratified Data

WT Avg Std
Cases Abs Error Dev

24 h 886 11.6 ---
48 h 651 16.5 ---
72 h 462 17.1 ---
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V. SUMMARY AND RECOMMENDATIONS

This study is the first step in the development of an enhanced objective technique
for predicting 24, 48 and 72 h intensity of tropical cyclones in the western North
Pacific region. The eventual goal is to develop an effective aid for the Joint Typhoon
Warning Center (JTWC) to forecast tropical storm intensity, particularly at 48 and
72 h.

The EOF coefficients of zonal and meridional components of the environmental
wind at 250, 400 and 700 mb (Wilson, 1984) and wind shear from 250 to 400, from 400
to 700, and from 250 to 700 mb (Meanor, 1987) are considered as potential predictors.
Additional predictors include conventional storm-related parameters, such as date,
intensity, motion and position. The 1216 cases in this study are 12 h data for western
North Pacific tropical cyclones from 1979 to 1983. The basic methodology involves

the following four steps:
* Select a data set, i.e., complete dependent set; independent-case dependent-case

subsets; or subsets stratified by 12 h old intensity;
* Screen predictors using stepwise regression analysis to select the dominant

predictors;
* Generate regression equations using stepwise regression analysis and the

screened predictors to generate regression equations; and
0 Verify the equations relative to the performance of the Joint Typhoon Warning

Center official forecast.
When the basic methodology is applied to a complete set (1216 cases), the

regression equations using only conventional predictors are slightly improved by
inclusion of synoptic forcing fields represented by the EOF coefficients. Furthermore.

the regression equations perform slightly better than the JTWC official forecasts.
When the equations generated using a smaller dependent-case subset (811 cases)

are applied to the dependent-case subset, similar results are observed. Relative to a
homogeneous sample of JTWC official forecasts, the regression equations developed
using the dependent-case subset show progressively improved performance with
increasing forecast interval. Despite a slight increase in the average absolute error at
all forecast intervals when the dependent-case equations are applied to the
independent-case subset, the performance of these equations is still comparabie to a
homogeneous sample of JTWC official forecasts.
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When the basic method is applied to subsets stratified by 12 h old intensity, the
regression equations perform better than the JTWC official forecast at all forecast
intervals. These equations are significantly better (95'% confidence) than the JTWC
official forecast at 48 and 72 h.

These results suggest that the official JTWC tropical storm intensity forecasts can
be enhanced by application of statistical regression analysis techniques. The
performance of the existing techniques based on conventional storm-related predictors
can be progressively improved by using:

* regression equations based on selected screened predictors drawn from EOF
coefficient predictors of wind and vertical wind shear; and
regression equations developed from tercile subsets (the cases are statified by
12 h old intensity) and selected screened predictors.

The preliminary success of the screened regression equations, particularly those
developed using the stratified case subsets, suggests EOF coefficients of the wind and
the vertical wind-shear fields should be computed routinely using current data. With
the EOF coefficient predictors routinely available, these objective techniques could be
tested in an operational environment using independent cases. To further enhance
these objective techniques, the predictive ability of other synoptic or remotely sensed
parameters should be investigated.
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