Final Report - Electronic System Reliability & Effectiveness

Author(s): Richard E. Barlow

Performing Organization Name and Address:
Engineering Systems Research Ctr. (OSR)
3115 Etcheverry Hall, U.C. Berkeley
Berkeley, CA 94720

Controlling Office Name and Address:
Office of Naval Research
900 N. Quincy St.
Arlington, VA 22217-5000

Report Date: 8-3-87

Number of Pages: 4

Distribution Statement: Unlimited

Security Classification: Unclassified

Distribution Statement (of the abstract entered in Block 20, if different from Report): Unlimited

Supplementary Notes:

Key Words: (Continue on reverse side if necessary and identify by block number)

Abstract: (Continue on reverse side if necessary and identify by block number)
August 3, 1987

FINAL REPORT

ELECTRONIC SYSTEM RELIABILITY AND EFFECTIVENESS

CONTRACT: N00014-85-K-0384

April 10, 1985--April 9, 1987

Principal Investigator: Richard E. Barlow

U. C. Berkeley

Reports:

Resende, L. "Extensions to Polychain: Nonseparability Testing and Factoring Algorithm", ORC 85-14, 1985. Operations Research Center, University of California, Berkeley, CA (Also a project with the same title but with extensive applications to the ARPA network.)

RESEARCH SUMMARY

This research contract was motivated by the Naval Air System Center's desire to obtain efficient computational methods for evaluating the reliability of avionics systems with built-in-test (BIT). The methodology in use in 1985 was based on Markov modelling. Unfortunately this methodology involves an unacceptably large number of states and the attendant computations require exponential running time in the number of states. Network reliability research at Berkeley had shown that efficient algorithms are available for special classes of network problems. Under this contract, Lucia P. Resende developed a computer program called Polychain for the reliability of undirected networks as part of her Ph.D. thesis research. This program was made available to Dr. Randall Fleming of Systems Control Technology, Inc.
Palo Alto, CA (a Navy contractor) and has been submitted to the IEEE Transactions on Reliability for publication.

Also in conjunction with this contract, an Advanced Study Institute on System Reliability and Computational Complexity was held at Berkeley from June 24-July 3, 1985. The featured speaker was Professor A. Satyanarayana from the Stevens Institute of Technology in New Jersey. I also gave a lecture on "Computational Complexity of Coherent Systems and the Reliability Polynomial." The purpose of this lecture was to tie network reliability research with that of fault tree research. BIT reliability can also be computed using fault tree diagrams. This was pointed out at an ONR sponsored workshop in Palo Alto October 30, 1985.

Fault trees are special cases of so-called influence diagrams. Since this was a related, emerging research field, considerable research was done on influence diagrams. An Encyclopedia article by myself on influence diagrams made the subject more accessible to statisticians. Work with Ross Shachter on influence diagram operations applied to fault trees resulted in the paper on "Efficient Inference on Generalized Fault Diagrams."
STUDENTS AND FACULTY SUPPORTED BY THIS CONTRACT

Richard E. Barlow, P. I.

Professor A. Satyanarayana. Computer Science Department, Stevens Institute of Technology. Travel expenses for lectures in the Advanced Study Institute on System Reliability and Computational Complexity.

Professor Ross Shachter. Department of Engineering Economic Systems, Stanford University. (I worked with Professor Shachter during the summer of 1985 on influence diagram applications to fault trees.)
END

10-87

DTIC