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I. INTRODUCTION

As reported in Reference 1, large deviations were found between both the
pitching moment and normal force predictions and the wind tunnel data for the
aerodynamic prediction of the Copperhead guided projectile, shown in Figure
1. Two predictions were made using the fast aerodynamic design codes of the
Missile DATCOM and the NSWCAP, both of which are described in Reference 1.
This deviation was as large as 38% at M = 1 and was still quite Targe in the
transonic speed regime of 0.2 < M < 1.2 . This deviation was significantly
smaller outside that speed regime, in the wider regime between 0,5 < M < 1.8 .
This large deviation was attributed mainly to the effects of the tail fin gaps
and the open slots in the projectile bedy. These slots are used to house the
fin blades before in-flight deployment. The tail fin geometry and the
associated streamwise gaps are shown in Figure 2 ,

1t is the purpose of this paper to correct for the normal force losses of
the fins due to streamwise fin-body gaps and body slots, in the transonic
regime 0.8 < M < 1.2 . All existing data concerned with these effects has
been surveyed and utilized for establishing the present correlations.

1. GAP EFFECTS

It seems that Bleviss and Struble? in 1953 were first to present an
inviscid analysis of gqap losses for triangular fins at supersonic speeds,
M>1 . The analysis is only -valid for triangular fins and is not applicable
for small gap to diameter ratios, where viscosity etfects are dominani. The
analysis also assumes a long afterbody extending beyond the fin location.
Streamwise gap refers to the gap ex1stin% when the control surface is aligned
along the axial directicn of the body. Imost at the same time, Mirles3 pre-
sented a slender body analytic solution for the fin 1ift losses, with the same
triangular fin and long afterbody limitations. Therefore, his results, not
surprisingly, were close to those of Reference 2, Shortly after, in 1954,
Dugan ana Hikido“ also presented a slender body analysis for gap effects for
triangular fins mounted on long after bodies, The results, being based on
slender body theory, are Mach number independent, Also they are not
restricted to supersonic speeds only. Hoerner,® in a book published in 1975,
refers to some very early experiment (probably in the 1940's) at very low
subsonic speeds tTor low fin aspect ratios. The presented data is very sparse
and the test conditions are very ambiguous.

In 1964, the first wind tunnel tests for gap effects were presented by
Killough,® Data was provided for three rectangular fins of aspect ratios of
1.0, 2.0 and 3.0; in the Mach range of 0.8 to 4.5 , Similar wind tunnel data
were obtained later by Dahlke and Pettis’ in 1970 for a single trianqular fin
of AR = 1.5 and three rectangular fins of AR = 0,5, .75 and 1,0 , These fins
vere tested in the Mach range of 0.8 to 4.0, for four gap heights. In 1977,
although studying other effects, Menderson® tested a rectangular fin of AR =
1.67 for a single gap height in the Mach range 0.8 < M < 1.2 , Fellows,? in
1982, provided subsonic data tfor two sets of rectangular fins of AR = 1,67 and
2,22 for very small gap heights,

August,0 in 1982, used the inviscid supersonic analysis of Bleviss and
Struble and the manipulated results of Hoerner at subsonic speeds, to estimate
the rormal force losses for streamwise gaps. The application was made to the
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typical trfangular fin of aspect ratio 1.0 . August applied the analysis to
the Sidewinder missile geometry at M = 2.5 for the triangular canard fin with
fin deflection. The gap area was estimated and equalized by a stireamwise gap
area, This application was done during the development of a fast 2erodynamc
design code. Sun et al,!! in 1984, re-iterated the results of August and made
an application to a missile configuration at M = 1.2 and 2.0 using the same

computer code,
2. SLOT EFFECTS

Less exhaustive data or analyses have been pursued for the slot effects
than those pursued for the gap effects. In 1979, Appich and Wittmeyerl2 tested
a full scale model of the Copperhead projectile and reported the effect of
closing the sicts on the normal force and drag of the projectile in the Mach
range of 0.5 to 1,8 , However, results were presented only for M = 0.5 and
1.5 . Washington et all? analyzed the data of Appichl? and suggested a simple
model to correct for the normel forca losses due to the slots. This correc-
tion utilizes the slender tody theory and therefore is independent of the Mach
nwmber, However, applications were only made to subsonic speeds of 0.5, .8
and .95 . The same resuits were summarized later in Reference 14, The axial
forrce and drag contribution of the slots were studied and reported separately
by Appich et al in 1980.15

1. GAP EFFECTS

An analytic correlation for the fin-body gap effects was established,
taking into account all existing data for fin gaps. This correlation is
intended for the transonic Mach range of 0,8 < M < 1.2 . However, existing
data showed its applicability in the wider range of 0.7 < ® < 1.8 without any
loss in accuracy.

a, Details of the experimental data and test conditions The four wind
tunnel data sets of ReferencCes [6-U) were used, The exact body configuration
for each test is giver in Figures 3 and 4. Ti

ine corresponding Tin shape and
dimensions are given in detail in Figures § and 6. The test conditions,

including Mach and Reynolds numbers, gap height, gap area to fin area ratio,
for each case are given in Figure 7,

b. The correlation relation Based on the familiar work of Pitts,
Nielsen and Kattari, ® the norma. force coefficient of a combined missile body
and fins is usvally written as

Crgr = Cng + (7eoy + Kp(m))Cng (1)

where: the subscripts B, T and BT stand {or body alone, tail alone and body-
tail combination, respectively;
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KT(B) is the interference factor representing the increase of tail
fin 1ift due to the existence of a nearby body, and is usually
referred to as the “oody up-wash" effect; and

KB(T) is the interference factor representing the increase of body

1ift due to the existence of a near-by tail fin, and 1is usually
referred to as the “"carry-over factor.,” It is represented as a small
fraction of the fin-alone lift.

In the present work “CNf will be used to denote the fin normal force plus the
two mentioned interference effects, i.e. Equation (1) can be written as
C = (Cy +C 2
Ngr = "Ng = "N¢ (@)

For a gap of any size, the 1ift (and therefore the normal force) produced by a
fin would always be less than that produced without a gap. Ther~efore a normai
Jorce loss factor, FNF, is introduced and is defined as

c C

N N
FNF = —13 5 078 (3)
C. C..
Ne Naf

where CNf is the normal force of tne fin (including interference effects) in

the presegce of a gap. The second equality sign in Equation 3 is valid only
for small angles of attack, usually less than +6°. For a case witn gap, one
could easily model the effect of a gap if the 1¢ss factor FNF was known, This
modeling is achieved through the equation

C.n ‘C| +FNF. K +K C 4
Ng7 = “Ng (Ky(g) *+ Kg(r))Cy- (4)

One approach considered for modeling was to correct the analysis of
Bleviss and Struble of triangular fins to account for viscosity anc the shape
of fin planform. The baseline case would be the triangular fin data of Dahlke
and Pettis. However, this approach was not chosen in favor of a different
approach, The new approach is to make all corrections and/or correlations
based on the same trianguiar fin shape for which an inviscid analysis is
valid, and to base all the correlation relations on experimental data, There-
fore, the FNF factor was computed for all the test cases of References 6-9 and
their wind tunnel test conditions were determined. The intent was to corre-
late a known FNF for a known fin planform of certain gap height mounted on a
particular body diameter in a tlow of particular Reynolds number, to the FNF
of a totally different fin with all different parameters. Figure 8 shows fin
configurations 1 and 2 where subscript 1 will always refer to tie known case

3




and 2 to the unknown case, The ?1anform of fin 2 is split intu two parts: a
basic triangular configuration of are2 Ay, and second part is the remainder of
the planform area, with area of Ajq. Examples of the area LYY designation for

several fin planforms are given in Figure 9,

The FNF factor is thought to be function of several parameters:

FNF = FNF (fin area, fin shape, fin gap height, qap to diameter
ratio, Reynolds number at the leadina edge of fin, fin
aspect ratio, Mach number).

The last two parameters were later deleted due to the following reasons, The
aspect ratio was substituted by boch the fin area and fin shape parameters,
The fin shape not only 1is represented by a description factor (e.g., tri-
angular or rectangular) but also by the root chord and the semi span height.
The Mach number dependency in the FNF function was dropped when the data of
Dahlke et al was analyzed in the transonic region of 0.8 <M< 1.2 , This
data, an example of which is given in Figure 10, showed no variation of the
FNF with Mach number. This behavior was noticed in all data. Thus, although
both CNf and cNfg do change, their ratio is always constant in that transonic

speed range, Furthermore, by computing the ENF factor for another Tin plan-
form of Dahlke et al, one can note, that the Mach number irndependence extends
further between M = .7 and 1.8 . This observation is depicted in Figure 11,
One also can note the surprising change in FNF in the subsonic region M <
0.7 . For that reason, i.e. the rapid change in FNF in the subsonic region,
the results of Hoerner should be used with caution,

The basic correlation formula relates the unknown case 2 to the known
case 1 through the overall correlation factor, CF, as:

c c
Matg| | cp . Nafs
c c
N N

i.e.,

FNF, = CF « FNF,

Thics overall correlation factor itself is split into a multiple of several
factors, They are: the fin shape factor, SF; the fin area factor, AF; the

fin gap factor, GF; the fin chord/span factor, CSF; and the boundary layer
factor, BF, Therefore one can write:




c

N
—afg . FNF, = CF « FNF,
c
Naf P
) (6)
Cx
= [SF + Af + GF « CSF « BF] » —29
Cn
af 1
i) The shape factor, SF, was originally formulated as:
A, A A + A A, + A
SF uf_2_ 1\./"22* R0 1t Moy 7)
A2z A Y] A

This gives a value of:

™~

for gqeneral correlation from a triangular to a rectangular fin shape
and
1 for general correlation from a rectangular to recangular fin,

However, from the data of Dahlke et al, it was found that SF should be 1.76
for a triangular to rectangular shape correlation with Ay, = Ay and with all

other conditions fixed., This was finally achieved by modeling relation (7)
into a slightly more complex form.

[/ .76A20+A22\\ , / 28850 (Ayp-A) ;) ]
22 2%2 2279014
I\ /) \ /]
SF » (8a)
1

Ay (45byc; ) (+5bycy=u5by¢y)

-

One can therefore easily track the origin for the split-up factors of .76 and
.24, Also one can note that the second term in each bracket will drop out if
Azy = Ayy, for which case the bracket ('5b2c2"5b1°1)' in the denominator will

also be zero.

i1) The surface area correlation factor, AF, is simply the ratio of
the fin areas,




AF = 2 (8b)

The reverse order of Az to Ay 1s logical since if A, ts larger than Ay s one

would expect the lift Vosses to be smaller, This would be due to the contri-
buticn of 11ft produced by A;g, which should be affected very little by the

gap which dominates the lTower area of Aj,.

iii) The gap height correlation factor, GF, was found to be:

o -((9/0)1>[1.6 {%) ' (W)]

——— v——

(8¢)
(s/), )

where if (g/D), = 0,04, GF will be simply
6F = {{a/D),/(a/n),}}/1+6

One should note that the correlation employs the gap to diameter ratio rather
than the absolute gap height only.

1v) The chord/span factor, CSF, was found to be in the form:

o O
by/\eq/

where b, and b; are not, 1in general, equal to the semi-.span heights, but
rather the top apex heights for the triangular areas A22 and Ayq respectively.

This can be shown if Figure 8 is considered and the concept is applied to the
many planforms of Figure 9., For many fin planforms however, by and by can be
the same as the fin semi-spans,

v) The boundary layer factor, Br, was based on the boundary layer
thickness at the leading edge of the fin at the fin root section., It was
found appropriate to write:

. .88
BF = \CLEZNLEI) (8e)
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where the boundary 1layer thickness, GLE' was estimated by the familiar
forml7 for turbulent boundary Tayers in axisymmetric tubes:

\.2

8
€xLry

Ler = <37 X g/ (R

Finally, one summarizes the fin normal force loss correlation factor as

na-é?a{.”F23%39°Gnr3%¥¥§ﬁg_g

/01 VL4,
(9/0)1 (
' 2

=" o™ (
*
t LT BT

= CF - FaFy

(9)

which can be used to predict the losses for a new fin, 2, based on the known
losses of another totally different fin ,1, under tota]ly different flow

conditions,

For the direct prediction ot losses for any fin, it was decided that
the triangular fin of Dahike & Pettis would be used at g/b = .06, as the
reference known case. This choice was made in order that future corrections
to the analysis of Bleviss and Struble would be applicable to that configur-
ation. Knowing tha geometric data of that reference fin and its normal fim
loss factor, the prediction of CN /CN \ for any fin shouid be mace using

the equation afj Qf, 2

{IEL i ) ) [ ETT77§_%£_::_)l. e N
AT e e /T -
(10a)

where the lengths Bry €5, GLEZ are in inches and the areas AZO' Azz, Az are in
(inch)?, For SI units, the same reiation can be easily re-written as

). oy }<m>r—‘”m(g/(mmm>;] o

[ e

[ ﬁmmuu mn(uu.-n m)

(10b)
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?hegg the lengths by, ¢p, GLEZ are in mm and the areas Ayg, Ajp, Ay are in
mm) <,

2. SLOT EFFECTS

Only effects on the fin normal force are considered., The effects on
axial forces were discussed in Reference 15 but they are not considered in
this work., The approach used here is that of Washington et ai'3’1* and which
is briefly summarized. The carry over 1ift factor, KB(T)- of Equation 1 which

represents the increase in body 1ift due to the presence of the fin, is elimi-
nated, That is to say, with the exictence of a slot at or near the fin root
chord, the contribution of the fin to the body 1ift is negligible. Washington
et al,l3 showed that this approach yielded the observed normal force loss
measured in the wind tunnel, The results were shown to be good for small «
(¢ + 6°) but were shown only for subsonic speeds (M = 0.5-.95)., Because the
analysis was based on slender body theory (independent of Mach number), that
approach was applied here up to Mach number 1.2 . Based on physical consider-
ations one should expect a lesser effect of slots at higher supersonic speeds.
Therefore, that approach might not be anplicable in the high supersonic¢ speed
ragime, Another point to be made is that this approach does not account for

slot location, shape, area, or depth, It would have been helpful if experi-
mental data were available for those specific areas of interest.

Iil. RESULTS
1, GAP EFFECTS

a. Validation of the gap model Fifteen cases of validation of Egquation
(9) were'ﬁEHE'iETﬁﬁ'TEE'TBEFaﬂifE'Eéts for g9aps.®”? Cross correlations were
made for every shape, aspect ratio, gap height, body diameter and Reynolds
number. All the case designation numbers are given in Figure 12, The base-
1ine case, as referred to warlier, 1s the triangular fin shape of Dahlke et al
with g/ = ,06 . The results using that correlation, with reference to
Killough's two cases of AR = 1,0 and 3.0 are given in Figures 13a and 13b,
The prediction is shown to be very good. The results of the appiication of
Equation (9) Lo another two fin cases of Dahlke et al, of AR = 0,5 and 1.0,
are shown in Figure 14 where the agreement is excellent, The results of ap-
plying Equation (9) to the single fin shape of Henderson is given in Figure 15
and the predicted value is shown, It should be mentioned that the single cace
of Henderson showed large disagreement with those of Danlke et al, which are
more uniform and more trust-worthy, as indicated in Henderson's report,8
Application of Equation (9) to the case of Fellows at M = .8 for a fin of AR =
2.22 g¢giyve good result as shown in Figure 16, The data point at M = .6 is
teyond the intended Mach range, and it shows a value c¢lose to .977. Hoawever,
this single data point cannot be used to establish a modei which is for the
subsonic regime of M ¢ ,7 . The trend of this result at M = ,6 agrees with
the trend postulated and shown in Figure 11 where a sudden rise in the value
of FNF is expected towards M = 0. The remainder of the tifteen cases are not
shown plotted. However, the results are all given in Table 1, along with
comparisons with the deduced wind tunnel results. The case designation
numbars appearing in Table 1 were given earlier in Figure 12,
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TABLE 1. Results of the Present Analysis for Fifteen Test Cases,

orrelation The Correlation Factor (CF) Figagggﬁa}FggSFe Reduction
Case No. Prediction Wind Prediction Hind
Eq. (8) Tunnel Eq. (9) Tunnel
1 1.045 1,04 831 .826
2 1.114 1.07 886 851
3 1,069 1.03. .883 851
4 0.99 0.956 .787 .760
5 1.225* 1,132* .97 4% 90%
6 1.213* 1,184* 922% 90*
1 1.05 1.09 .800 .826
8 0,91* 0.945* «B319* .851%
9 1.153+ 1.09* .952* L90*
10 1.093 1.12 831 .851
11 1.053 0.986 837 .784
12 1.007 1.03 765 .784
13 0.86 0.871 J74 .784
14 1,131 1,198 .900 »953
15 1.16% 1,226 929 2975
*These cases involved a very Tow aspect ratio fin where the estimated
boundary layer thickness was 55% of the fin height,

b. Application to the Copperhead projectile The configuration
consisting of body and tail fins was considered, The Copperhead tail fin gap
is .02 inch (5 mm) as shown in Figure 2, The g/D ratio is .G33. However, the
existance of the slot ahead of the tail fin, as can be seen in Figure 1, and
the siot flow intc the body as seen in Figure 9, might cause the "effective"
gap height to be quite different than the physical one, Therefore the
application of the present gap model c¢an be considered to provide only an
estimate rather than an actual value. One might either increase or decrease
the "g" height to account for this diffusion; but this variation vould be

. highly arbitrary and cannot be used formally without gcod Jjustification.
Therefore, in the present application, only the true physical vaiue of ,02

LAY R W v _x e



inch %5 mm) was used, Of course, the larger the effective gap, the larger the
normal force loss would be, One other peculiarity to be considered in the
case of the Copperhead is the gap blockage or "fin stem interference", As can
be seepn from Figure 19a, the tail fin stem is quite bulky and is twice the
width of the maximum fin root thickness. This added blockage is certain to
reduce the estimated gap losses, All the data used to formulate the present
correlation includes a small fin stem interference effect, but not for such an
unusual blockage, Therefore, it 1is expected that the present model will
predict larger gap losses than those actually incurred for the case of the
Copperhead projectile,

The normal force slope coefficient with gap effects s given 1in
Figure 17, The Missile Datcom Code was used to provide the no-gap case and
the modification for the gaps were made using Equations (4) and (9). The
modification was made over the extended Mach range of 0,8 < M < 1,6,

The pitching moment slope coefficient with gap effects is shown in
Figure 18, and was obtained by the same method. However, there were no cor-

rections for the location of center of pressure for the fin load with gaps.
This correction should and will be considered in future efforts.

2, SLOT EFFECTS: APPLICATION TO THE COPPERHEAD PROJECTILE

The same configuration of body and tail fins was considered. The slots
of Figure 1%a were modeled ucing Wachinaton's approach,!3 The corrected
normal force slope coefficient is given in Figure 20. As mentioned earlier,

that approach is Mach number independent, therefore the application here was

made over the Mach range 0,5 < M < 1.8 . As in previous predictions, the
DATCOM code results were modified accordingly to provide the new results. The

corresponding pitching moment sliope coefficient is given in Figure 21, and was
obtained by the same method outlined before.
3. COMSINED GAP AND SLOT EFFECTS

The normal force losses due to gaps and slots were combined and the
computed normal force slope coefficient is given in Figure 20 over the extend-
ed range 0.8 < M < 1,6, The reduction of Ty was about 2i% near Mach 1,05 .

a
The corresponding pitching moment slope ccefficient, Cyq » ts shown 1in
a
Figure 23 for the combined effects of gaps and slots, The reduction of CM
Q
was 38% near M = 1,05 . It is felt that with proper consideration of the
movement of the location of the center of pressure of the tail fin due to gaps
and slots, Cy would be better predicted.
a

in the free flight firing tests, the projectile is spinning at a moderate
rate where the slot and gap effects may differ significantly from those
observed in the wind tunnel, This explanation may be used to interpret the
large differences noticed between wind tunnel and firing test data. One
should therefore expect that the present predictions to be, in general, closer

10
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to the wind tunnel data than to those of the firing range data. This is due
to the controlled environment of the wind tunnel, and 1its nonspinning

conditions.
IV. CONCLUSIONS

A1l existing data covering fin-body gap and body slot effects have been
surveyed, analyzed and utilized, A correlation relation was established to
provide the magnitude of the normal force losses of fins due to streanwise
fin-body gap for any fin shape and gap size, in the transonic speed regime of
0.8 < M<1,2 . Existing data alsc supports the validity of the correlation
in the wider range of 0.7 < M < 1.8 without noticeable loss in accuracy. The
established correlation is based on all the experimental data surveyed and nas
been validated over 15 different cases with accuracy of +5%, This correlation
takes into account the variations in fin shape, fin area, fin span and chord
lengths, gap height, body diameter, and Reynolds number. The correlation is
highly useful for including viscosity and fin support effects which are
included in the correlation. This approach has advantages over existing
inviscid analyses which cannot be used for small gaps where viscosity effects
dominate, nor do they account for the fin support iaterference, The
correlation is in algebraic form and uses direct, measurable fin geometry and
flight condition inputs. it 1s simple, and can be used in any of the fast
aerodynamic predictior codes for practical fin design purposes,

Body slot effects on reducing the fin normal force losses were modeled
using a previously suggested wodel.!3 That model was validated in the
subsonic speed regime only, although the theory behind it allows it to be used
also in supersonic speeds for slender bodies, This mode}, however, does not
account for the slot shape, area, depth or location relative to the fin, The
model is simple and can be directly used in the fast design codes as well,
Both models are valid for small angles of attack, usually considered to be in

the range a ¢ +6°,

An application was made of these two models to the geometry of the
Copperhead Guided Projectile, That configuration, with very large fin stem and
deep slot flow is not a typical configuration Tor appiication of both models.
However, the results obtained using those models have shown a reduction of the
total normal force and pitching moment Dy vaiues as large as 21% and 38%.,
respectively., Comparison with wind tunnel and range results showed improved

agreement,

Although all the data used in the present analysis was based on a body
with four cruciform fins, the analysis should be useful for any set of fins

with arbitrary number of blades (< 8), for small angles of attack.

Future improvements should include: 1) the correction to the location of
the center of pressure of the fin with gaps or slots, This correcticn will
not affect the ncrmal force, but rather the pitching moment; 2) representing
an equivalent streamwise gap height (or gap area) to account for nonstreamwise
gaps which occur when the control surface is deflected at an angle relative to
the body axis, This latter effect is very important for ail missiles and
projectiles with controllable 1ifting surfaces, A study for this suggested
latter improvement has started and will be reported, after validation, in the

future.
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Killough's Data (1964) & = )

D= 1.0" (25.4) [i]-——-] 'f
K= .8 to 4.5 fy

6 AR = 1.0 AR = 2.0 AR = 3.0 "

Re = -4 x10 per inch Af = .3663 | Af = .3364 | Af = .3358 31
(.157 x 10" per cm) g/D-(Ag/Af) | g/D~(Ag/Af) | q/D~-(Ag/Af) W

- - (0.0) ]0.0 - (0.0} {c.0 - (0.0) -~
.08-(.187) 10.08-(.138) {0.08-(.113) |

[0.16-(.374) | 0.16-(.276 Ll

0.25-(.584) | 0.25-(.430 e

O

.

e —— e | =" e==="J | Dahlke § Pettis’' Data (1970)

D= 1.1" (27.94)

t
] M1 Il M= .8 to 4.5
A

AR = 1.5 AR = 0.5 R=0.75 |AR = 1.0 - 6

—— 6 \
a/0~(Ag/Af) | Yg/d-(Ag/Af) | g/D-(Ag/At] 9/D-(Ag/Af) (.163 x 107 per cm)

0.00-(0.0) 0.00-(0.0) | 0.00~(0.9}| 0.00-(0.0)
0.06-( 251) 0.06-(.188) 1 0.06~(.126) 0.08-(.187
! 0.12-(.502) 0.12-(.377){ 0.12-(.251) 0.16~{.374
f 0.20-(.837) 0.20-(.638) | 0.20-(.419} 0.25-(.584)

e g

)

-

" e,
- .-_,’L B

Henderson's Data (1877) P
D =5.0" (127.) {
M= .7 to 1.2
6 _ AR = 1.67
Re = 316 x 107 per inch LAf = 7,500
(.124 x 10° per cm) g/0-(Ag/AF)
1 - = b ] e
0.5-(010)
Fellows' Data (1982) < 3 < 1

D = 5.205" (150.)
M =0.6 and .85

Ry = -287 x 10° per inch (¥ = .6) AR=TE~ |AR= 72753
(1113 x 106 per cm) : Af = 3.767 | Af = 5.022
.30 x 10% per inch (M = .85) 9/D-{Ag/Af) | g/D-~(Ag/Af)
(.13 % 105 per cm) 0.0-(0.0) ]0.0-(0.0)

0.02-(0.66) | .02-(.050)
DIMENSIONS IN INCHES & AREAS ARE IN (INCH)Z .
1 INCH = 25.4 mm 1 (IN)€ = 645,16 (mm)2

Figure 7. Test conditions for alil known data utilized,
18
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Wing Cross-Section Area at Body Line

J2 0.50

(18.29)] [Tz.n) %) |

QL s ‘{ Q )
7 ~ t T

Dimensions in Inches
Wing Slot Tail Cross-Secticn Area and (mn)

at Body Line

Tail Slot

—_ ¢

(e J’ P )
-} &
' 0.40 §
(10.16) 0.88 l

(22.35)
a) Wing and Tail Slot Configurations
mMS ' , (3
28.6%0 : FITCH vaw 52010
MS MS MS MS A'S
29.960 32.950 a,§32 50,133 54,000
l— [ Fin
ROLL / OBTURATOR
SET PIN Slot Flow
D —

BALANCE "STING SEAL
WING MTG BLOCK SLEEVE '

Dimensions in Inches
§ BaLANcE FORCE | gre"(IN) = 25.4 (mm)

b) Wind Tunnel Model (REF ) With Schematic of the Slot Flow

Figure 19. Slot configurations for the Copperhead projectile
(from Reference 12),
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LIST OF SYMBOLS

fin total surface area (one side onily)
fin partial surface area {one side only)
fin aspect ratio, (2b)2/S

fin surface area (one side only of one fin panel)
streamwise gap area for one fin panel
fin area correlation factor

fin semi span (without a gap)

a prescribed fin height (without a gap)
boundary layer correiation factor

fin root chord length

overall fin correlation factor

normal force coefficient (based on the body reference
area) = normal force/qs, ¢

fin (and its interference) normal force coefficient
based on the body reference area

fin (and its interference} normal force coefficient in
presence of a fin gap "g"

normal force slope coefficient (per radian), 3Cy/3a
fin {and its interference) normal force slope
coefficient (per radian)

fin {(and its interference) normal forces slope
coefficient, in presence of a fin gap "g" (per radian)

pitching moment coefficient about the C.G. of the
configuration, (pitching moment)/qs .qo¢ D

pitching moment slope coefficient (per radian), aCy/da

pitching moment shape coefficient (per radian) in the
presence of a fin gap "q"

fin chord and span correlation factor

body diameter
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Greek Symbols
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LIST OF SYMBOLS (Continued)

fin normal force loss factor, due to presence of a
TFin gap "g*

gap height between fin root chord and body surface .
fin gap correlation factor

Mach number of projectile

dynamic pressure of the flow (0.5 p U2)

Reynolds number per unit length, o U,/u,

Local Reynocids number of the projectile flow, p U_X/u,

fin surface area (one side) of two fin panels connected
without gaps

body reference area, wD%/4
fin shape correlation factor
distance, along the body axis, from the nose tip

distance, along the body axis, from the nose tip to

. the leading edge of a fin panel, at the fin root

section

angle of attack

total aaqle of attaék a /a2 + g2
(for smail a and p)

side slip angle
boundary layer thickness

boundary layer thickness at the leading edge of the fin
root section

indicates the presence of a gap between fin root chord
and body surface

indicates the presence of open slot(s) on the
projectile body near the fin panel .
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