EXPLOITING RUXILIRRV INFORNRTION ABOUT ITEHE IN THE 114

ESTIMATION OF RASCH C(U)> EDUCATIONAL TESTING SERVICE

PRINCETON NJ R J MISLEVY JUL 87 ETS-RR-87-26-0N
UNCLARSSIFIED NO@O14-85-K-8683 F/G

NL




s 0= llz
'ﬁé': ““-EEEEEE
'“.& HAR A
. i @ wt
. B= = = =p
S HHNHA

[
.

<

I A A I KR N PN G KN M X A T
s SR R A AR
gty ldant st fando b ! u'.": WEWIOR) a'oc:‘l : ¢
k }‘ IS . D .5‘.5 .,,a‘" ) Q‘?t BOS S BB ! L)

. a?
WA e



e RR-87-26-ONR

3

s

-1

AD-A184 383

EXPLOITING AUXILIARY INFORMATION
ABOUT ITEMS IN THE ESTIMATION OF
RASCH ITEM DIFFICULTY PARAMETERS

DTIC

Robert J. Mislevy CLECTE pw
SEP 1 0 19875 M

oL
D

This research was sponsored in part by the
Personnel and Training Research Programs
Psychological Sciences Division
Office of Naval Research, under

Contract No. N00014-85-K-0683

Contract Authority Identification Number
NR No. 150-539

Robert J. Mislevy, Principal Investigator

Educational Testing Service
Princeton, New Jersey

July 1987

Reproduction in whole or in part is permitted for
any purpose of the United States Government.

Approved for public release; distribution
unlimited.

, 87 9 s ¢uvy

I ——— PTEIENTN ™ 75 R o m R . ' X o .
s A O e g e e e T L O Gt O S Ot e N O RO N X O G MUK N IS




CAaLLe

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE

ADA)843LS

REPORT DOCUMENTATION PAGE OMB N 0904 0188

1a. REPORT SECURITY CLASSIFICATION

Unclassified

1b. RESTRICTIVE MARKINGS

et
2a. SECURITY CLASSIFICATION AUTHORITY

3. DISTRIBUTION /AVAILABILITY OF REPORT

2b. DECLASSIFICATION / DOWNGRADING SCHEDULE

Approved for public release;
distribution unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S)

5. MONITORING ORGANIZATION REPORT NUMBER(S)

RR-87-26-0ONR
6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL | 7a. NAME OF MONITORING ORGANIZATION p ooy ¢
Educational Testing Service (If applicable)

Training Research Programs, Office of Naval
Research (Code 11 i

6c. ADDRESS (City, State, and ZIP Code)

Princeton, NJ 08541

7b. ADDRESS (City, State, and 2IP Code)

Arlington, VA 22217-5000

8a. NAME OF FUNDING / SPONSORING 8b. OFFICE SYMBOL

ORGANIZATION

(If applicable)

9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
N00014-85-K-0683

8¢. ADDRESS (City, State, and ZIP Code)

10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. | NO. NO. ACCESSION NO
61153N RRO4204 JRR04204-01 INR 150-539

11. TITLE (Include Security Classification)
Exploiting Auxiliary Information about Items in the Estimation of Rasch Item Difficulty

Parameters (Unclassified)

12. PERSONAL AUTHOR(S)
Robert J. Mislevy

13a. TYPE OF REPORT
Technical

13b TIME COVERED
FROM TO

14. DATE OF REPORT (Year, Month, Day) 'S PAZE COUNT
June 1987 7

16 SUPPLEMENTARY NOTATION

17 COSATI CODES 18. SUPJEFT TERN.S (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP Empirical Bayes Exchangeability
05 09 Collateral information Item response theory
Hierarchical models Linear logistic test model

19 ABSTRACT (Continue on reverse if necessary and identify by block number)
Standard procedures for estimating the item parameters in IRT models make no use of
auxiliary information about test items, such as their format or content, or the skills

they require for solution.

This paper describes a framework for exploiting this

information about items' operating characteristics. The principles are illustrated in a
context for which a relatively simple approximation is available: empirical Baves
estimation of Rasch item difficulty parameters.

20 DISTRIBUTION / AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
O unciassirieounumited & same as reT O oric users | Unclassified
228 NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) [ 22¢ OFFICE SYMBOL
Dr, Charles Davis 202-696-4046 ONR 1142PT
DD Form 1473, JUN 86 Previous editions are obsolete SECURITY CLASSIFICATION OF THIS PAGE

Unclassified




- Exploiting Auxiliary Information

f‘% l
¥

e

M

R

;; EXPLOITING AUXILIARY INFORMATION ABOUT ITEMS IN THE

X

J 7

ﬁg ESTIMATION OF RASCH ITEM DIFFICULTY PARAMETERS

ot

?S Robert J. Mislevy

. l”

.‘l.

‘;i.v

X

o This research was sponsored in part by the
fﬁ Personnel and Training Research Programs
o) Psychological Sciences Division

~x Office of Naval Research, under

Contract No. N00014-85-K-0683

" Contract Authority Identification Number
W NR No. 150-539

M

.'9‘:

:b Robert J. Mislevy, Principal Investigator

. Educational Testing Service

3; Princeton, New Jersey
LY

;Q“

wh June 1987

Reproduction in whole or in part is permitted
for any purpose of the United States Government.

- Approved for public release; distribution
o unlimited.

-

A by AL AN A LY )
,'t‘ smg't.t‘h '?':a!“‘“;\,"‘&"tbi




. et

o T e T

Exploiting Auxiliary Information
2

o Abstract

-

Standard procedures for estimating the item parameters in IRT
models make no use of auxiliary information about test items, such
as their format or content, or the skills they réquire for
solution. This paper describes a framework for exploiting this
information, thereby enhancing the precision and stability of item
parameter estimates and providing diagnostic information about
items’ operating characteristics. The principles are illustrated
in a context for which a relatively simple approximation is

available: empirical Bayes estimation of Rasch item difficulty

parameters.
AN
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3
Exploiting Auxiliary Information about Items in the
Estimation of Rasch Item Difficulty Parameters
Two active lines of research item in response theory (IRT)
incorporate additional information into the process of parameter
estimation, augmenting that conveyed by item responses alone. One
line, motivated by statistical considerations, uses Bayesian
procedures to obtain more accurate estimates of item and examinee
parameters. Enhanced stability and lower mean squared errors can
be achieved by assuming exchangeability over item parameters of a
given type (e.g., difficulty parameters), effectively shrinking
estimates toward their mean in inverse proportion to the degree of
information available directly about them (Mislevy, 1986;
Swaminathan & Gifford, 1982, 1985). A second line, motivated by
psychological considerations, incorporates theories about specific
skills or subtasks required to answer an item correctly.
Scheiblechner (1972) and Fischer’s (1973) Linear Logistic Test
Model (LLTM) is a prime example; Rasch-model item difficulty
parameters are cast as linear combinations of more basic
parameters that reflect the contributions of psychologically
salient features of each item.
The purpose of this paper is to bring out a confluence of

these two lines of research. The idea is to embed the LLTM in a
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Bayesian framework, maintaining the notion that item features may
indeed tell us something about item parameters, but admitting they
may not tell us everything. Final item parameter estimates are a
compromise between LLTM estimates, where items with identical
features would have identical estimates, and unrestricted maximum
likelihood estimates.

In order to focus on concepts rather than numerical
procedures, we concentrate on a context for which a relatively
simple approximation is available. The Rasch IRT model for
dichotomous items is assumed; a linear regression model with
normal, homoscedastic residuals is posited for item parameters
given their salient features; and, with what is commonly called an
empirical Bayes approximation, final item parameter estimates are
calculated with maximum likelihood estimates of the regression
model treated as known. The result is a simplified version of
Smith's (1973) linear model with response-surface prior
distributions.

The procedures are illustrated with data from a fractions
test for junior high school students. Precision gains and

diagnostic uses of the approach are discussed.
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5
Background
This section briefly reviews the three components of an IRT
model that incorporates auxiliary information about items. First
is the item response model--specifically, in this presentation,
the Rasch model. Following that are overviews of Bayesian
estimation of item parameters and of the linear logistic test
model.
The Rasch Model
let xij denote the response of examinee i to item j, taking
the value 1 if correct and O if not. The Rasch model (Rasch,

1960/1980) gives the probability of a correct response as

Py(0,) = PGxys = 116,,6,)

- exp(6, - ﬂj)/[l + exp(f; - ﬂj)] v (D

where ﬂj characterizes the difficulty of item j and 01
characterizes the ability of examinee i. Under the usual

assumption of local independence, the probability of a

vector pattern X, = (xil,...,xin)' of responses to n items is

A ., -
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P(x,(0.,8) =1 P.(8 )xij (6 )l-xij 2
X;105.8 ; i0d Qs ’ 2)

where Qj(e) =1 - Pj(o) and g - (ﬂl,...,ﬂn)'. Assuming the
independence of responses over examinees, the probability of the

data matrix 3 - (§1,...,§N)' of N examinees is the product of

expressions like Equation 2:

P(XI6.8) = I P(x,10,.8) . (3)
i

Once X has been observed, Equation 3 is interpreted as a
likelihood function, and provides a basis for estimating
parameters. The literature offers a number of alternative
procedures for doing so, including
o joint maximum likelihood (JML), which finds values of B

and each § that, taken together, maximize Equation 3 (Wright

& Panchapakesan, 1969);

o) conditional maximum likelihood (CML), which finds the
maximizing value of B given examinees’ total scores

(Andersen, 1973); and

3.1, 1873 088,973, 8 B VORI
ettt ‘i‘z’t’:?sii % ;iqu‘civ‘g_yﬂq "35'ei¥3t WY i
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7
o marginal maximum likelihood (MML), which finds the maximizing
value of f after integrating over a distribution of
examinee parameters (Bock & Aitkin, 1981; Thissen, 1982).
These solutions provide similar estimates of B when neither the
number of items or examinees is small; under appropriate
assumptions they are asymptotically equivalent, consistent, and
multivariate normal (for details see Haberman, 1977, on CML and
JML, and De Leeuw & Verhelst, 1986, on CML and MML.)
We will have use for the normal approximation to MML in a
subsequent section. The MML likelihood function is obtained from

Equation 3 by marginalizing over the examinee distribution:

Ly(BIX) = I [ P(x,16,8) p(d) d6 (4)
i

where p(#), the density function for examinee parameters, may be
specified a priori (as in Bock and Aitkin, 1981, and Thissen,
1982) or estimated from the data (as in Cressie and Holland,
1983). When both the numbers of items and examinees are large,

the likelihood function is approximately a product over items of

independent normal distributions:
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2

j] , (5)

Ly(BI%) & T expl-(B; - B)%/20
J

A

where 8 are MML estimates ana &j are their estimated standard
errors. (Large N is sufficient for multivariate normality, but
. large n is also necessary for independence.)

Bayesian Estimation

The simultaneous estimation of many parameters can often be

v

improved when it is reasonable to consider subsets of parameters

e

as exchangeable members of corresponding populations (Efron &

Morris, 1975; Lindley & Smith, 1972). The subjective notion that

parameters are "in some sense similar" implies a correlational

structure on prior beliefs, which can be formalized by modeling

e e S0 et e

the parameters as if they were a random sample from a population
whose parameters are themselves imperfectly known. Data related

directly to each individual parameter also conveys information

R K Tl

about the higher-level population parameters; the population

structure in turn provides information about the individual

~ o~

parameters.

o e

In typical applications, resulting estimates of individual
parameters are drawn toward the center of their distribution in

inverse proportion to the amount of information available about

(RATNAA NSRS, BRI ‘
RS D A K e R A !8.'5\:""-
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9
them directly. An intuitive justification of shrinkage is that
unrestricted ML estimates contain sampling errors, so we would

e

%ﬁg expect that the more extreme estimates reflect in part large

Tk
fﬁg} sampling errors in that direction. This reasoning is consistent
[N

) with the fact that the expected variance of ML estimates in such
.%a: cases generally exceeds the variance of the true parameters.

o
,g;: Swaminathan and Gifford (1982) applied this idea to the Rasch
R
:"g model by assuming exchangeability over examinees and over items.
frl In a Bayesian extension of JML, they provide estimation equations
20
"“f for the joint mode of B and § in the posterior distribution

&

*

Lo
e p(8,81X) « B(X|0,8) p(8) p(B) (6)
e
3::::.*

c':?l'

.ﬁ% where p(g) and p(g) are marginalizations over respective normal
N
%?;' distributions, the parameters of which are estimated in part from
Yl
iié the data. As expected, Swaminathan and Gifford’s simulations
P

T showed the Bayesian estimates to be closer to their overall mean

E;:; than unrestricted maximum likelihood estimates, and to have
‘S smaller mean squared error.

‘,‘ A similar extension of MML is described in Mislevy (1986).
X
k;&. Marginalizing over § but not over the mean p and standard
ol
:::.t
I:'?i‘
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deviation ¢ of identical normal priors for the B’'s, he gives
estimation equations for the joint mode of é, s, and ¢2 in the

posterior distribution

P(B.u,4%) & L(BIX) x T JCAPR DRI S BN
j

As with Swaminathan and Gifford’s procedure, this approach also
yields estimates of B's that are closer to their estimated mean
than those of the corresponding maximum likelihood procedure.
The Linear Logistic Test Model

In addition to positing a Rasch model for item responses, as
in Equations 1 through 3, the LLTM assumes a linear model for the

item parameters:

K
, = = X
ﬂJ o 57
=-q! , 8
aj1 (8)

or, in matrix notation,

g WA WIS
GG I WOl S

CIn )
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qﬁn ,

00 B=~Q'n

K

“;i'

ity The basic parameters of the LLTM are M k=1,...,K. They

-’. 4

&%. reflect the additive contributions to item difficulty of selected

item features. The vector qj contains coefficients relating i“em

:ﬁk j to basic parameters. In Fischer’s (1973) calculus example, q
iﬁ? indicated the number and the type of operations a pupil must carry
1:2 out in order to solve a differentiation item. In Mitchell's

¢

#:: (1983) analysis of Paragraph Comprehension subtests from the Armed
: § Services Vocational Aptitude Battery, q conveyed semantic and

¢

A lexicographic features of a question and an associated reading

e

E'EE passage. The reader is referred to Fischer and Formann (1982) for
gh: additional applications of the LTTM.

:; Estimates of LLTM basic parameters can be obtained by

$§§ suitable modification of JML, CML, and MML algorithms for the

§§$ unconstrained Rasch model. Differences in -2 log likelihood

¢%§ between the two models can be compared with the chi-square

g%g distribution on n - K degrees of freedom, to test the significance
~£$' of the constraints of the LLTM under the assumption that the

ok

ﬁff unrestricted Rasch model is true.

;gi. Fischer and Formann (1982) note that the initial hope of

;.f explaining all reliable variation of item difficulties in terms of
;:,ife

s

o

s

B
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,.* Y, 0) TN ?” Tl ! )
RN #ﬂ,*L.f¢.1ﬂ%dvgﬂﬁﬂhltﬂ{ﬂ,



L T

o a

ol ’

‘.“‘”

Exploiting Auxiliary Information
12
basic parameters has not been fulfilled; rigorous tests of fit
almost always reject the LLTM. This finding is consistent with
what test developers have known for decades: two items written to
test the same skill will differ in difficulty as a function of
idiosyncratic features such as visual format and word choice.
Typically, however, a meaningful amount of variation can be
explained. The proportion of variance of unconstrained estimates
accounted for was 76 percent in Fischer’s calculus test, and
ranged from 66 to 96 percent in Mitchell’s Paragraph

A

Comprehension tests. Even though LLTM estimates é =~ Q'n are not
wholly acceptable as estimates of g, then, their ability to

relate item performance to cognitive theory has proven useful in
applications such as assessing treatment effects and modeling item
bias. To the extent that LLTM does fit, it aids an understanding
of just what makes items difficult. To the extent that it does
not fit, departures indicate items that are unexpectedly hard or

easy given the features that usually determine difficulty. Poor

item construction or alternative response strategies can be

detected in this way.
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q: A Combined Model
' Rationale
+ R
,?
2 The assumption of exchangeability in the Bayesian estimation
h'|
it
§ : s : : .
el procedures described in a preceding section typically leads to
1
item parameter estimates that are more stable and have lower mean
3
@: squared errors. Strictly speaking, however, assuming
'
;g exchangeability over all parameters of a given type, and
\-_‘I
. consequently shrinking them all to the same center, is justified
3
f only if we have no prior information to distinguish among them.
X
3\ This is rarely the case in item parameter estimation. In
A
vocabulary tests, for example, we know which words are frequently
n
;ﬁ used and which ones are not; we expect the familiar words to be
e
‘h easier. 1In Fischer’s calculus test, we would expect an item
L1
)
. demanding several differentiation rules to be more difficult than
RS
ﬁ:a one demanding only a subset of the same rules.
[
i& As Fischer and Formann (1982) point out, we cannot generally
b
(1
L expect a few salient features to explain item parameters in toto.
7 We can, however, express many of our prior beliefs in terms of
i
‘) I
y such features. In particular, a model combining key aspects of
s“‘
Ry,
by, the LLTM and the exchangeability concept of Bayesian estimation
W0 might consider as exchangeable only parameters of items with the
+
o’
a: same pedagogically or psychologically relevant features.
"0’
w3
|
- i
*
&
! |
o 1
W
(8N
)
i |
: |
N “
& |
s .

¥
it },‘l'
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Shrinkage would then be observed toward the center of the subset
to which an item belongs--as estimated from items of that type and
possibly from other items as well, if they shared some features
with it. This shrinkage could quite possibly be in the opposite
direction from the center of the item set as a whole.
The General Form of the Model

Let the known (possibly vector-valued) quantity gj represent
auxiliary information about item j; let p(B|q) be the density
function representing the distribution of B parameters for items
with the same (generic) value of q. (The possibility that p(ﬂ[g)
may depend on unknown parameters is introduced below.) The
posterior distribution of B, given the data X and the auxiliary

information 9 - (31""'Sn)’ is obtained as

P(BIX,Q) = L (BIX) p(AIQ)

-1 [ P(x;18,8) p(8) df x T P(Bylg (9)
i

3 X

An implementation of Equation 9 inspired by the LTTM is to assume

a linear regression model for p(B8|q)--a response-surface prior, as

introduced by Smith (1973) in the context of linear models. With
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;QQ Q and n defined exactly as in the LLTM, we can approximate prior '
&y = )
. beliefs about item parameters as MVN(Q’n,¢zI). Considering
Joo - -
IV
":' n and ¢2 as additional unknown parameters, the marginal
Ey -
A ‘
f; posterior is obtained as 1
. |
i
o 2 2, 2 2
W -m
& P(B.n. 7 1X,Q) « Ly x ¢ I exp(-(8; - aim) /24" p(n.4) . (10)
P j
Y
N
e As in the LLTM, a linear model based on salient features gives the
central tendency of items with the same features q., namely
i -
Qu Bj = Sjg. Unlike the LLTM, however, variation of true parameters
o around these central values is anticipated.
L]
)
i)
ﬂ y Computational procedures for computing the posterior mode of
‘il
oy
oyt B, or of B, u, and 42 jointly, are readily obtained by
(; generalizing the algorithms given in Mislevy (1986). The
ol
p &
g resulting solutions can be applied in the 2- and 3-parameter
-
"S
agh logistic models as well as for the Rasch model. The technical
w“ details of this solution are not central to the present paper,
W
uy however; in order to focus upon concepts and applications, we now
) P P
)Y
v
'? ' turn to a relatively simple computing approximation for the Rasch
.
. model .
=
o
‘ L)
s
'.,."‘
.l“.
N
o
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e
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A Computing Approximation for the Rasch Model

This section describes empirical Bayes (EB) estimation of
Rasch item parameters, assuming normal linear regression on
salient item features. Two simplifications are applied to the
exact posterior distribution given in Equation 10. First, the
marginal likelihood function of B is replaced by the normal
approximation given in Equation 5. Second, MLE’s of the
population parameters n and ¢2 are treated as known, after they
have been estimated from MLE's ;j with their standard errors ;j
treated as known. (It is this use of point estimates of
population parameters that is commonly associated with the term
"empirical Bayes.") The resulting approximation takes the

following form:

P(BIX,Q) « L(BIX) x p(BlQ)
2 2 2
« Ly(BIX) x [f T p(B.1q,,n,4")p(n,4") dn d¢
j J' =3
B, - B)? B, - aim?
o IT exp( “—175—‘1‘— ] x 1T exp( ‘——J—ﬁif;t:—‘ )
j 20 3 2¢

16
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v From this combination of a likelihood and prior that are both
proportional to independent normal densities, independent normal

A posteriors follow (Box & Tiao, 1973, p. 74):

4 where the means and variances are given by well-known formulas:

2 2

L B, - (;° ajn/o}% + 67 (11)

J j’gj“’S

-

and

..r

%

-

o 2

;(_

o, = (0.” + ; ) . (12)

N
g e
L e

(SN

(=

>
-

Computation thus proceeds in three steps:
-t
ii 1. Unrestricted maximum likelihood estimates of item parameters
) 2. Point estimates of the regression parameters
¥

3. Final estimates of item parameters

,'. - WA - " 2T AW . \ -, 9 LY --r\l\-a'.q'- LY "A‘,(.'
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Step 1: Unrestricted maximum likelihood estimates of item
parameters
Rasch item parameter estimates ;j and corresponding standard
errors ;j can be obtained with any of a number of widely-available
computer programs. Numerical values and small-sample properties
of JML, CML, and MML estimates certainly differ, but any suffice
for our illustrative purposes. For long tests and many examinees,
all support the approximation of the marginal likelihood as a
product of independent normal distributions, with means given by
maximum likelihood estimates and standard deviations given by the
associated standard errors.
Step 2: Point estimates of the regression parameters
The regression structure for item parameters and the normal

approximation for the marginal likelihood lead to the following

system of regression equations:

~

. = - y
ﬂJ ﬂJ J
where ( ) ~ MVN[O,dia (02 2)] and
e (e, ....e. 0,diag(oy,...,0 )],
. = qin + £, ,
By = gjn
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where (fl,...,fn) -~ MVN(9,¢23). Taken together, they imply
= q’'n + h ,
By =gty
. 2 2 2 2
where (hl,...,hn) - MVN[Q,dlag(a1 + ¢ e O + ¢67)].

MLE's for n and ¢2 can be obtained simultaneously by
applying Dempster, Laird, and Rubin’s (1977) EM algorithm. A
special case of Braun and Jones’ (1985) implementation was
employed for the examples that appear in the following section.

Using provisional estimates 5 and ¢2, the E-step computes

conditional expectations of the unknown item parameters:

where éj - 332 is the (provisional) modeled mean for all items

with same features as item j. The M-step uses these results to

produce improved estimates:
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1S >>
]
~~
10
Vo]
N
QO
™

and

22 N N -
ng” = B! - n'QQ’
¢ = BiB; - 1'Q'n

Cycles of this type are repeated until convergence is attained.
Because the distribution of the hypothetical "complete data"
(é,g), with parameters ¢2 and n, belongs to the exponential
family if o is assumed known, convergence to a unique maximum
is assured (Dempster, Laird, & Rubin, 1977).
Step 3: Final estimates of item parameters

The posterior means and variances for the f's that follow
from our simplifying assumptions can be calculated as in Equations
11 and 12. The EB estimate Bj is thus a weighted average of the
ML estimated ;j and the regression estimate Bj' The relative
weights are the precisions of the two estimates being combined,
implying that
1. poorly-estimated ;'s shrink toward their predicted means

A

more strongly then well-estimated 8's;

B -~
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(X
ifq‘l'
‘“,ﬂ': N
E?} 2. 1if all B's are well-estimated in comparison with the estimated
R variation around their modeled means, little shrinkage occurs
AN
I ) ~
Wy -~
iQﬁ. and B approaches f; and
Tae = ~
i' ¥ A
[}
{kﬁ 3. 1if all B’'s are poorly-estimated in comparison with the
ek
expected variation around their modeled means, much
*d.s _ A
1b€ shrinkage occurs and B approaches 8.
DO - -~
e . . ~-2 "2~
'34, Posterior precision, or 0," = ¢, + ¢ ©, is the sum of
?!E‘g! J J
. precision about ﬁj conveyed directly through the likelihood
-
; \
po L function and that conveyed indirectly through knowledge about item
! features. By exploiting auxiliary information, then, the
precision of item parameter estimates can be increased without to
N
-éﬁ3 testing additional examinees.
fﬁs,
‘“@ Empirical Bayes estimates are distinguished most
‘!.g“ P Yy g
",o_’:.
P significantly from "true" Bayes estimates by their failure to
5 . X 2
ﬂns account for uncertainty associated with n and ¢~. The nature
é'g!
v .
hﬁb of the consequent differences is to overstate the apparent
!‘p"
i ]
g precision of the final EB item parameter estimates, while
!""
s affecting their values only minimally. The posterior variances
1yp 24 y y P
.F' 5
:'l:: tend to be too small, and the distributions should be more
ol . s
- latykurtic, like a t-distribution rather than the normal. The
platy
s . . 2
:z‘ magnitude of these effects diminishes as n and ¢~ are better
‘ determined by the data. Larger N generally leads to greater
..0.‘
Wy
m‘:i;
\
mz:?
it
g8
b
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a precision, but test length n and the matrix of cross-products

Q’'Q are also important. These influences affect the precision of
:k regression parameters and residual variance in much the same
manner as in standard regression analyses.

A Numerical Example

k’ This section applies EB estimation procedures to the 20-item
A
Q: Fractions subtest of the California Achievement Test (CAT), Level

3, Form A (Tiegs & Clark, 1970). The data are Rasch item

rz difficulty estimates and standard errors, estimated from the

‘; responses of 150 sixth-grade students with the JML routine in

lz Wright, Mead, and Bell's (1980) BICAL computer program. These

ﬁ‘ values appear in Table 1, along with a specification of salient
g; features of each item. These features, based on the CAT table of
:& item specifications, are as follows:

sé 1. Addition (ADD). The student must solve an addition problem
&: involving one or more fractions and/or mixed numbers.

E 2. Subtraction (SUB). The student must solve a multiplication
:g problem involving one or more fractions and/or mixed numbers.
;ﬁ 3. Multiplication (MUL). The student must solve a multiplication
ﬁ. problem involving one or more fractions and/or mixed numbers.

4. Division (DIV). The student must solve a division problem

involving one ore more fractions and/or mixed number.

I ey
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S. Common denominators (CD). The student must find a common

denominator for two fractions with unlike denominators.

6. Reduction (RED). The student must reduce a fraction or mixed

number to lowest terms.
A sequence of three models was fit to these data:

Model 1: EB item parameter estimates were obtained under an
assumption of global exchangeability. That is, all items
were shrunk toward their common mean. The resulting
estimates approximate the results of Swaminathan and
Gifford’'s (1982) procedures.

Model 2: EB estimates were obtained under the assumption of
exchangeability among items with the same features, based on
Table 1.

Model 3: EB estimates were again obtained, after modifying the
model along lines suggested by an examination of the

estimates and residuals from Model 2.

Model 1: Twenty items, global exchangeability
Most applications of EB estimation involve shrinkage to the

common center of the parameter set. This is accomplished in our
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)
Q. framework by using a vector of ones for Q. The results of such an
v analysis for the CAT Fractions test are presented in Table 2 and
|
)
t
e, Figure 1. The grand mean toward which all estimates are shrunk is
'
v
4
c$ 0.00 (the result of the scaling convention used in BICAL); the
L)

estimated standard deviation ¢ of the B8’'s with o treated as o, is
- - -
[
o 1.71. This compares with a standard deviation of 1.74 for the
' A
Iy B’'s, reflecting the expectation that a set of maximum likelihood
L) &
:".
x estimates will be more dispersed than the set of parameters they
7: estimate. Accordingly, under the assumption of exchangeability
"% over all items, the EB estimates shrink toward their common mean.
! " 1]
:; Insert Table 1 and Figure 1 about here
e
0: """""""""""""""""""""""
Af"

They do not shrink very much, though. If we define shrinkage

W A - A
N for item j as (ﬂj - ﬁj)/(ﬂj - sz), then it is only about 2-

percent on the average. The reason is that the estimated variance

of B, about 2.92, is very large compared to the estimation error

s variance of the individual item parameters, about .06 on the

Yo

\. : s r3 -

z“ average. Information from the likelihood function from a sample

size of 150 is sufficient to overwhelm the information about
interitem similarities, when the items are as dissimilar in

difficulty as those in the Fractions test.
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B~
N Model 2: Twenty items, exchangeability given salient features
A second model posits exchangeability for items with the same
{
: CAT specifications. The Q matrix in this case consisted of the
h :\
3 columns of feature indicators given in Table 1. Estimates of 7
)
and ¢ are given in Table 3; item-level results are listed in Table
A
K+, 4 and illustrated in Figure 2.
e
5 .............................................
%j Insert Tables 3 and 4 and Figure 2 about here
Y
+qf RN
b
s
i The values of the regression parameters n shown in Table 3
X 4
& . . .
- are reasonably consistent with expectations. The values for
7 addition, subtraction, multiplication, and addition can be
LI
0
2 interpreted as values to which items exhibiting that feature only
)
£ will be shrunk. Addition and subtraction show lower (easier)
3 values than multiplication and division. The values for common
14
»
iﬁ denominators and fraction reduction are both positive, indicating
"
P additional difficulty for an item if this subskill is demanded in
M order to carry out the basic operation. The modeled mean for
;5 straight addition items, for example, is -2.75; the mean for
addition items that also require reduction is -2.75 + 1.90, or
7 -.85. Such addition items are nearly as hard as straight division
..
< items.
o
i
P
*t
N
"
.
‘

s P xS et et A" A
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A

The residual standard deviation ¢ under Model 2 is .58, much
lower than the comparable value of 1.71 in Model 1 and closer to
the typical standard error of about .3. EB item parameter
estimates in Table 4 thus exhibit greater shrinkage--9 to 30
percent. Now that items within the smaller subsets over which
exchangeability is assumed are in fact more similar, the structure
contributes more information with which to improve item parameter
estimates. Average posterior precision increases by roughly 25
percent, an amount equivalent to that attainable to testing about
40 more examinees.

Note that estimates now shrink toward the appropriate one of
several predicted means rather than to a single overall mean. One
item whose EB estimate moves away from the overall mean is item 8,
the hardest of three straight subtraction items. Even though it
was easier than average to begin with, the imposed exchangeability
structure indicates that we would expect it to be easy based on
the tasks it presents; in this particular data set, it may have
been a bit harder than we might expect.

The last column in Table 4, labeled "standardized
difference," gives the distance of an ML estimate from its

predicted center, in standard deviation units:
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B. - B.

(¢2 . a§)1/2

standardized difference =

By highlighting items that are unexpectedly far from their
predicted means, these values can be useful for model
modification. In conjunction with plots like Figure 2, they can
reveal systematic departures from our expectations, which, upon
reflection, lead us to modify the model.

Consider as an example the three straight subtraction items,
6, 7, and 8. As mentioned above, Item 8 is more difficult than
modeled, to an extent that ranks it among the largest residuals in
absolute value. The largest absolute residual, and in
opposite direction, is the item in the same subset, namely item 7.
This item is considerably easier than modeled. An inspection of
item content offers an explanation: Item 7 asks for the solution
of "1/6 - 1/6," which can be obtained without any knowledge of
fractions at all. Despite its usefulness in ranking examinees,

this item may not be tapping the skills the test is ostensibly

attempting to measure. Further investigation reveals a similar
phenomenon among straight division items, where Item 16 asks for

-
v
'; the solution of "4/5 + 4/5." An atypically large negative
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residual (easier than expected) for this item is balanced by an
atypically large positive residual for another item (17) with the
same features.

Further examination of items with large residuals reveals two
items that are noticeably easier than expected for the same
reason: while formally fractions items, both Item 1 (straight
addition) and 6 (straight subtraction) require only a whole number
operations with a fraction carried along. Failing to distinguish
these items from straight addition or subtraction items that
combine two actual fractions, Model 2 overpredicts the difficulty
of Items 1 and 6.

A final anomaly appears in Figure 2, for Item 5. Item 5 is
one of the harder items to begin with, but the regression model
yields a higher-yet prediction, much higher than even the highest
ML estimate observed. This is the only item requiring both the
common denominator and reduction skills, and the higher prediction
follows from the additivity of the model. The unappealing result
suggests an interaction of sorts; while two additional subskills
are required, it appears likely that examinees who possess the CD

skill (the harder of the two) also possess the RED skill. Thus,

incremental difficulty over straight addition when both are
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ﬂ: present is not much over that expected from the common denominator
. subskill alone.

*“

‘{. Model 3: Eighteen times, exchangeability given salient features
0
0

ﬁ: The final model illustrated here modified Model 2 in three

2
st

ways:

&

A 1. Items 7 and 16, which could be solved by means of properties
)

¥ of operations alone, are eliminated from further

E‘Q

R consideration.

o
™ 2. A column is added to the Q matrix reflecting a new salient

‘o0
%; feature: WN, or whole numbers only, applying to Items 1 and 6
4

B which require just operations on whole numbers while a

’

\ fraction is carried along.
Ny

lj 3. To reflect the interaction of CD and RED observed for Item 5,

its q value for RED has been changed from a 1 to a zero. That

‘

3 is, the difficulty parameters of addition items requiring CD
K2

0

:i and RED are now considered exchangeable with those of items
2
e
A requiring CD, the more difficult skill, alone.

.

': The data for Model 3 are shown in Table 5. The results of

‘

‘2 the analysis are shown in Table 6 (regression parameter

-
s estimates), Table 7 (item-level results), and Figure 3 (a plot of
;f ML, EB, and regression estimates). The revisions from model 2

0

~ reduced the residual standard deviation substantially, from .58 to
G
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B .23. This is about the same degree of precision as is available

from the likelihood, so that EB estimates are roughly a 50-50

by compromise between ML and regression estimates. Taking the
approximate posterior variances at face value--recall that they
are probably underestimated--we would conclude that the use of
ﬁg’ auxiliary information about items yields an increase in precision

i equivalent to doubling the size of the sample of examinees.

A Insert Table 5, 6, and 7 about here

iéﬁ The average magnitude of standardized residuals is about the
r same as that from Model 2 because the denominator with which thev
"f are calculated decreased when the estimate of ¢2 decreased.

5é Neither these residuals nor Figure 3 exhibit readilv interpretable

NG patterns of departures from the model.

Wy As with any model-fitting procedure, the analysis that led to
Model 3 capitalizes to some degree upon idiosvneratic features of

the data at hand. Resulting estimates of precision are overly
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o
0y optimistic for this reason in addition to the expedients employed
L)
te
. by the estimation procedure. Any serious attempt to model item
'
7 ; difficulties in the fractions domain would obviously require more
A " L
fd&: data and more thought than were needed simply to illustrate
'ld 1
computational procedures.
i
wh Discussion
b .9
1" r3 I3 r 2 3 )
,&ﬁ The potential benefits of using auxiliary information about
Ko
N items in item parameter estimation are increased precision and
"y
N diagnostic capabilities. In the numerical example in the
LN
oy preceding section, auxiliary information contributed as much
W3¢
! ity s : : : : . .
information about item parameters as the likelihood function did.
0.. \/
:g“ Conditional on the veracity of the assumed exchangeability
-
:“.J structure, then, precision was increased by an amount equal to
.’.!h < . . . .
that attainable by doubling the number of examinees. Diagnostic
o J
;‘i‘ checks revealed two items that might not be measuring the skills
k y
Je R intended, by offering items that contained fractions but could be
b o
o . . .
. solved without manipulating them.
;:'\ The plausibility of the exchangeability structure can also be
A8
*:?f verified with diagnostic checks. Two additional safeguards also
nlu
G mitigate the effects of specification errors at this stage.
Lt First, if the structure is badly in error and items assumed
~
N exchangeable turn out not be verv similar, shrinkage will be
L \‘:‘-
LSS
!f.q [
s

)

A
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minimal (as in Model 1 of the example). Of course, minimal

¢
A
"
shrinkage does not necessarily signal misspecification or lack of
"
R
:$v exchangeability; all other things being equal, shrinkage decreases
L)
[ 3)
2} as N increases. Second, increasing the sample size of examinees
!
s
leads to consistent item parameter estimates even if the
N
o exchangeability structure is flawed.
:2 The simplified computing approximation used in this paper
e
9 co s
works best for the Rasch model, where it is needed least:; even
:{‘ fairly small sizes give reasonably good item parameter estimates
'S
5 there. The same ideas can be applied more profitably to IRT
‘ ]
Wy . .
" models with more parameters, each less well-determined by data
,
é& (e.g., the 3-parameter logistic model, and models for multiple-
N X .
y category item responses). The computational procedures for the
!
' . : . :
e general model are then required, since it may not be possible to
.?' obtain finite unrestricted ML estimates and their standard errors.
i
'
+ by . . . .
’?t No explicit averaging of ML and regression estimates can be
Ly
4 accomplished in those cases, and Bayesian estimates must be
- obtained directly from item responses.
("
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gl' Table 1
'-!%:
Item Data and Salient Features: All Items
iy 3
NS R R 1 2 3 4 5 6
N Item b i ADD SUB MUL DIV CD  RED
#
R 1 -3.73 31 1 0 0 0 0 0
- 2 -2.02 .20 1 0 0 0 0 0
P 3 1.45 .28 1 0 0 0 1 0
. 4 1.16 .26 1 0 0 0 1 0
%aa 5 1.63 .31 1 0 0 0 1 1
I
wh& 6 -2.42 .21 0 1 0 0 0 0
. 7 -3.23 .27 0 1 0 0 0 0
ey 8 -1.05 .18 0 1 0 0 0 0
Ko 9 1.28 .27 0 1 0 0 1 0
20 10 .30 21 0 1 0 0 0 1
e 11 .41 .18 0 0 1 0 0 0
12 -.80 .18 0 0 1 0 ) 0
: 13 2.22 .38 0 0 1 0 0 1
A% 14 1.72 .31 0 0 1 0 0 1
rey 15 1.41 .28 0 0 1 0 0 1
R
5 16 -1.35 .18 0 0 0 1 0 0
) 17 .26 .21 0 0 0 1 0 0
o 18 1.28 .27 0 0 0 1 0 1
, 19 1.41 .28 0 0 0 1 0 1
K 20 1.05 25 0 0 0 1 0 1
RO
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Table 2
Item-Level Results from Model 1
Standard-
ized
A ~ ~ Shrink- differ-
Items 8 ol B ¢ B g age ence
1 -3.73 0.31 0.00 1.71 -3.61 0.31 0.03 -2.14
2 -2.02 0.20 0.00 1.71 -1.99 0.20 0.01 -1.17
3 1.45 0.28 0.00 1.71 1.41 0.28 0.03 0.84
4 1.16 0.26 0.00 1.71 1.13 0.26 0.02 0.67
5 1.63 0.31 0.00 1.71 1.58 0.31 0.03 0.9
6 -2.42 0.21 0.00 1.71 -2.38 0.21 0.01 -1.40
7 -3.23 0.27 0.00 1.71 -3.15 0.27 0.02 -1.86
8 -1.05 0.18 0.00 1.71 -1.04 0.18 0.01 -0.61
9 1.28 0.27 0.00 1.71 1.25 0.27 0.02 0.74
10 0.30 0.21 0.00 1.71 0.30 0.21 0.01 0.17
11 -0 al 0.18 0.00 1.71 -0.41 0.18 0.01 -0.24
12 -0.80 0.18 0.00 1.71 -0.79 0.18 0.01 -0.46
13 2.22 0.38 0.00 1.71 2.12 0.37 0.05 1.27
14 1.72 0.31 0.00 1.71 1.67 0.31 0.03 0.99
15 1.4l 0.28 0.00 1.71 1.37 0.28 0.03 0.81
16 -1.35 0.18 0.00 1.71 -1.34 0.18 0.01 -0.78
17 0.2 0.21 0.00 1.71 0.26 0.21 0.01 0.15
1 1.2 0.27 0.00 1.71 1.25 0.27 0.02 0.74
19 1.41 0.28 0.00 1.71 1.37 0.28 0.03 0.81
20 1.05 0.25 0.00 1.71 1.03 0.25 0.02 0.61
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Table 3
Estimates of Regression Parameters under Model 2
A :
R Effect () Estimate
1. Addition -2.75
r 2. Subtraction -2.08
[ 3. Multiplication -.34
Yy 4. Division -.61
' 5. Common denominators 3.50
¥ .
i 6. Reduction 1.90
; Standard deviation (¢) .58
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Table 4
Item-Level Results from Model 2
Standard-
ized
a N ~ Shrink- differ-
Items 8 Jos B ) B g age ence
1 -3.73 0.31 -2.75 0.58 -3.61 0.27 0.22 -1.49
2 -2.02 0.20 -2.75 0.58 -2.10 0.19 0.11 1.19
3 1.45 0.28 0.75 0.58 1.32 0.25 0.19 1.09
4 1.16 0.26 0.75 0.58 1.09 0.24 0.17 0.64
5 1.63 0.31 2.65 0.58 1.86 0.27 0.22 -1.55
6 -2.42 0.21 -2.08 0.58 -2.38 0.20 0.12 -0.55
7 -3.23 0.27 -2.08 0.58 -3.02 0.24 0.18 -1.80
8 -1.05 0.18 -2.08 0.58 -1.14 0.17 0.09 1.69
9 1.28 0.27 1.42 0.58 1.30 0.24 0.18 -0.22
10 0.30 0.21 -0.18 0.58 0.24 0.20 0.12 0.77
11 -0.41 0.18 -0.34 0.58 -0.40 0.17 0.09 -0.11
12 -0.80 0.18 -0.34 0.58 -0.76 0.17 0.09 -0.75
13 2.22 0.38 1.56 0.58 2.02 0.32 0.30 0.96
14 1.72 0.31 1.56 0.58 1.68 0.27 0.22 0.25
15 1.41 0.28 1.56 0.58 1.44 0.25 0.19 -0.23
16 -1.35 0.18 -0.61 0.58 -1.29 0.17 0.09 -1.21
17 0.26 0.21 -0.61 0.58 0.16 0.20 0.12 1.42
18 1.28 0.27 1.29 0.58 1.28 0.24 0.18 -0.01
19 1.41 0.28 1.29 0.58 1.39 0.25 0.19 0.19
20 1.05 0.25 1.29 0.58 1.09 0.23 0.16 -0.37
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Table 5
Item Data and Salient Features: Reduced Set
A A 1 2 3 4 5 6 7
Item b a ADD SUB MUL DIV CD RED WN
1 -3.73 .31 1 0 0 0 0 0 1
2 -2.02 .20 1 0 0 0 0 0 0
3 1.45 .28 1 0 0 0 1 0 0
4 1.16 .26 1 0 0 0 1 0 0
5 1.63 .31 1 0 0 0 1 0 0
6 -2.42 .21 0 1 0 0 0 0 1
(7
8 -1.05 .18 0 1 0 0 0 0 0
9 1.28 .27 0 1 0 0 1 0 0
10 .30 .21 0 1 0 0 0 1 0
11 -.41 .18 0 0 1 0 0 0 0
12 -.80 .18 0 0 1 0 0 0 0
13 2.22 .38 0 0 1 0 0 1 0
14 1.72 .31 0 0 1 0 0 1 0
15 1.41 .28 0 0 1 0 0 1 0
(16)
17 .26 .21 0 0 0 1 0 0 0
18 1.28 .27 0 0 0 1 0 1 0
19 1.41 .28 0 0 0 1 0 1 0
20 1.05 .25 0 0 0 1 0 1 0
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Table 6

Effect (n) Estimate

1. Addition -1.90
2. Subtraction -1.28
3. Multiplication -.32
4. Division -.25
5. Common denominators 3.10
6. Reduction 1.71
7. Whole numbers only -1.41
Standard deviation (¢) .23
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e
L Table 7
)
Item-Level Results from Model 3
N
',«.:a
ﬁw Standard-
" ized
T - ~ _ - _ Shrink- Differ-
' Items 8 g 8 ¢ B ag age ence
3o 1 -3.73 0.31 -3.30 0.23 -3.45 0.18 0.65 -1.11
Q& 2 -2.02 0.20 -1.89 0.23 -1.96 0.15 0.44 -0.43
? 3 1.45 0.28 1.21 0.23 1.30 0.18 0.61 0.67
f\ 4 1.16 0.26 1.21 0.23 1.19 0.17 0.57 -0.14
I ) 1.63 0.31 1.21 0.23 1.35 0.18 0.65 1.10
6 -2.42 0.21 -2.70 0.23 -2.55 0.15 0.47 0.89
v, (7)
_;‘ 8 -1.05 0.18 -1.28 0.23 -1.14 0.14 0.39 0.80
:): 9 1.28 0.27 1.82 0.23 1.60 0.17 0.59 -1.53
:i& 10 0.30 0.21 -0.32 0.23 0.36 0.15 0.47 -0.42
e 11 -0.41 0.18 -0.32 0.23 -0.38 0.14 0.39 -0.30
12 -0.80 0.18 1.39 0.23 -0.61 0.14 0.39 -1.65
ﬁ: 13 2.22 0.38 1.39 0.23 1.60 0.19 0.74 1.89
Y 14 1.72 0.31 1.39 0.23 1.50 0.18 0.65 0.87
as 15 1.41 0.28 1.39 0.23 1.39 0.18 0.61 0.07
(16)
3& 17 0.26 0.21 -0.25 0.23 0.02 0.15 0.47 1.66
; 18 1.28 0.27 1.46 0.23 1.38 0.17 0.59 -0.50
43 19 1.41 0.28 1.46 0.23 1.44 0.18 0.61 -0.13
3 20 1.05 0.25 1.46 0.23 1.27 0.17 0.55 -1.21
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