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FIGURE CAPTIONS

Figure 1.1 Geometry showing two axial slots and two circumferential
slots in a cylinder of arbitrary shape.

Figure 2.1 Cross section of original cylinder and flat cell model
used for numerical calculations.

Figure 2.2 Geometry of circular cylinder containing two axial slots.

Figure 2.3 Plot of the norm of the spectral admittance function for
an example involving axial slots in a cylinder of 1.0 1
radius and slots of dimension W - 0.5 A. The norm is taken
with respect to the circumferential variable.

Figure 2.4 Plot of the norm of the spectral admittance function for an
axial slot example involving a 0.7582 X radius cylinder with
slots of dimension W - 0.6858 X. The norm is taken with3respect to the circumferential variable.

Figure 2.5 Plot of the condition number of the system matrix representing
the MFIE for the example with cylinder radius equal to 0.7582 A.

Figure 3.1 Geometry of circular cylinder containing two
circumferential slots.

Figure 3.2 Plot of the norm of the spectral admittance function for an
example involving circumferential slots in a cylinder of
1.0 A radius and slots of dimension H - 0.2 A. The norm
is taken with respect to the circumferential variable.

Figure 3.3 Plot of the matrix condition number of the system
representing the longitudinal MFIE for a 1 A radius cylinder.

Figure 3.4 Plot of the matrix condition number of the system
representing the transverse MFIE for a I A radius cylinder.

Figure 3.5 Plot of the norm of the spectral admittance function for
an example involving circumferential slots in a cylinder
of 1.517 A radius. Slot dimension H - 0.3028 A. The norm
is taken with respect to the circumferential variable.

Figure 4.1 Plot of the three dominant eigenvalues of the TE MeFIE as
a function of kta.

Figure 4.2 Comparison of the MFIE and exact solutions for the TE
current density induced on a circular cylinder of radius
0.3833 A.
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Figure 4.3 Comparison of the MFIE and exact solutions for the TE
current density induced on a circular cylinder of radius
0.3828 X.

Figure 4.4 Comparison of the MFIE and exact solutions for the TE
current density induced on a circular cylinder of radius
0.3826 X.

3 Figure 4.5 Plot of the three dominant eigenvalues of the TE EFIE as
a function of ka.

i Figure 4.6 Plot of the three dominant eigenvalues of the TE CFIE as
a function of ka.

Figure 4.7 Comparison of the CFIE and exact solutions for the TE
current density induced on a circular cylinder of radius
0.3826 X.

Figure 4.8 Comparison of the augmented-MFIE and exact solutions for
the TE current density induced on a circular cylinder of
radius 0.3826 X.

Figure 4.9 Comparison of the EFIE and exact solutions for the TM
current density induced on a circular cylinder of radius

3 i0.82.

Figure 4.10 Comparison of the EFIE and exact results for the cylinder
of Figure 4.9 after three interior strips were added to the
40 strip cylinder model.

Figure 4.11 Plot of the determinant of the EFIE system matrix for theI examples of Figures 4.9 and 4.10, as a function of cylinder
radius.

Figure 4.12 Circular cylinder with locations of interior strips identified.

Figure 4.13 Plot of the determinant of the EFIE system matrix for the
circular cylinder of Figure 4.12, before and after the 16
interior strips were added to the 30 strip model.

Figure 6.1 Geometry of pie-shaped cylinder.

Figure A.1 Geometry used for the source-field relationships.
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ABSTRACT

A numerical procedure to estimate the mutual admittance between finite

3 slots in infinite, conducting cylinders of arbitrary cross-sectional shape is

described. The problem formulation involves a Fourier transform and the numeri-

cal solution of integral equations. Additional issues addressed include the

large amount of required computation, remedies for non-uniqueness problems asso-

ciated with the integral equations, and the overall accuracy of the procedure.

Good agreement is obtained between the numerical results and exact eigenfunction

data for slots in circular cylinders. Several other cylindrical shapes are

investigated.
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1. INTRODUCTION

Both the proper design of slot arrays and the positioning of multiple

antenna arrays on a common surface require an accurate estimate of the mutual

coupling between individual slot elements. To date, the analysis of mutual

admittance has been undertaken for slots on ground planes [1], on cones [2],

[3], on circular cylinders [4]-[8], and on spherical surfaces [9]. Limited

attempts have also been made to treat more general surface shapes [10], (11].

These approaches are based on analytical or asymptotic methods, and are not

easily generalized to more complicated geometries. In an attempt to extend this

type of analysis to arbitrary geometries, the present investigation considers a

numerical solution for the mutual coupling between individual slots in an infi-

nite, conducting cylinder of arbitrary cross-sectional shape. In general, numer-

ical solutions involving electrically large three-dimensional structures are

cumbersome and inefficient. Furthermore, trade-offs that can greatly improve

the efficiency usually do so only at the expense of accuracy in the results.

Therefore, one goal of the present study is to identify the degree of accuracy

attainable in practice from the numerical procedure and assess the overall effi-

ciency of the approach. Since extensive results have been tabulated for cir-

cular cylinders [5], these will be the initial foci for judging the accuracy of

the method.

Two cases will be considered: coupling between two circumferential slots

and coupling between two axial slots. The slots are assumed to be waveguide-fed

apertures excited with the TE1O waveguide mode, with no higher-order modes

included in the model. (A recent investigation has included the effects of

Jill
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3 higher-order modes and concluded that the true mutual coupling is generally

slightly smaller than that predicted under the above assumption [9].) Under

this assumption, the aperture field of the source slot can be expressed as

__WA___1/2WA A HA H A
2/ WA WA-); H ~)Pt (1.1)z ( HAWA) cos t 2 2 p(z 2 2

for the circumferential slot and

2 1/2 H A HA WA WA
= cos A ) p(t; - , _) P(z; ( T > (1.2)

for the axial slot, where the origin of the coordinate system is located at the

center of the slot, as depicted in Figure 1.1. The "pulse" functions appearing

j in Equations (1.1) and (1.2) explicitly truncate the support of E to the aper-

ture.

Under the above assumption, the mutual admittance for the circumferential

* case is defined

to + WB zo + HB

2 2
2 1/2 t

Y = ( H 2 12 f cos W-) Jz (z',t') dzdt' (1.3)

to - Zo T
where the integral is taken over the aperture of slot B, J is the current den-

sity induced on the cylinder when slot B is short-circuited (closed by a perfect

conductor) and slot A is excited by the assumed field of Equation (1.1). The

variables z and to specify the distance from the center of the source slot to

the center of the secondary slot. Similarly, for the axial case the mutual

admittance is defined

. w - ., . . ,
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Figure 1I. Geometry showing two axial slots and two
circumferential slots in a cylinder of
arbitrary shape.
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to + -T Zo + -

AB H BWB to -_B zo - WB W

where Jt is the transverse current density induced on the cylinder by the

3assumed field of Equation (1.2), with slot B short-circuited. The current den-

sities can be found after solving for the fields of an equivalent magnetic

source defined

K =E xi (1.5)

eq

For the circumferential slot field of Equation (1.1),

W WA H HA
K EK 2 Cos2 ift)Pt - A A Aeq e HAA cos t p(t; 2 7-) p(z 2 ' 2 

(1.6)

For the axial slot field of Equation (1.2),

2HA HA  WA  WA

K =- ( ) cos (i-) p(t; - .o A p(z; - . )
eq zA A A3 (1.7)

These equivalent magnetic currents, radiating in the presence of the infinite

cylinder, produce the same exterior fields and currents as the original slot

with aperture fields described by Equations (1.1) and (1.2). Thus, the problem

of computing the mutual coupling between slots A and B reduces to that of

finding the currents induced upon a closed, infinite conducting cylinder by a

finite impressed source Keq" Once these currents are found, the mutual admit-

tance between slot A and any other slot location can be computed using Equations

(1.3) and (1.4).

I
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To simplify the task of determining the currents induced upon an infinite

cylinder by a finite source, the problem can be posed in the Fourier transform

domain. The Fourier transform is defined

Fz {H(z)} - H(y) f R(z) e-jYz dz (1.8)

The inverse Fourier transform is

F- = H(z) -- f 9(y) eJ dy (1.9)z 2v

Applied to the unknown currents, the Fourier transform converts functions of 'z'

to functions of the transform variable 'y.' Because the cylinder is invariant

with respect to z, the unknown current density at each value of y can be found

independently. Thus, the original three-dimensional problem reduces to the

superposition of uncoupled two-dimensional problems, which are more amenable to

numerical solution.

In spite of the simplification resulting from the decoupling of the

equations mentioned above, we are still faced with the task of solving the two-

dimensional problem over the infinite continuum spanned by the variable y. In

practice, we are forced to work with a finite number of discrete values of the

spatial frequency, i.e., y0 ' y,, ... , ' YN" As is well known from signal analy-

sis [121, when a Fourier transform is combined with an evenly-spaced sampling

process, the result is equivalent to working with the Fourier transform of a

periodic extension of the original function of z. We can think of the above

approach as being equivalent to replacing the original problem (which involved a

single source slot) by one involving a periodic array of source slots. This
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3 analogy allows a better grasp of the approximations introduced by sampling in

the transform domain.

The period of the fictitious source array must be sufficiently large so

that the coupling between the fictitious slots and slot B will be insignificant

compared to the coupling from slot A to slot B. In addition, discrete values of

y must be included up to the point where truncation does not introduce numerical

inaccuracy. After solving for the transform currents over a sufficient range of

y, the inverse transform can be computed explicitly according to

N
J(t,z) - Al [3(t,o) + 2 1 T(t,n Ay) cos(n Ay z)] (1.10)

2 in-I

to produce the spatial currents at the desired locations for the admittance

calculation. In Equation (1.10), we have assumed that the original source

distribution is. centered at z-0 and is symmetric in z.

Although the current density can be computed directly according to Equation

(1.10), the admittance calculations of Equations (1.3) and (1.4) are actually

convolutions in the variable z. Therefore, the z-integrations required for the

admittance calculation can be performed by an additional multiplication in the

Fourier transform domain, prior to inverse transformation. One advantage of

this alternative procedure is that one numerical integration is eliminated from

the computation of YAB* A second advantage is that the additional multiplica-

tive factor in the transform domain helps to dampen the higher spatial frequen-

cieg and speed the convergence of the inverse Fourier transformation.

In summary, we have posed the mutual coupling problem in an arbitrarily-

shaped cylinder in such a manner as to make it amenable to numerical solution.

L
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The equivalence theorem is used to replace the source slot by magnetic currents

radiating in the presence of the closed cylinder. The desired three-dimensional

problem can be represented by the superposition of two-dimensional problems via

the Fourier transform. The equations can be discretized directly in the trans-

form domain, which introduces a fictitious periodicity in the spatial domain.

However, the formulation does require that the two-dimensional problem be solved

at a number (perhaps a large number depending on the relative location of the

source and secondary slot) of spatial frequencies. The extent of the necessary

spectrum, the period size, and other aspects concerning the modeling procedure

will be determined by numerical experimentation.

In order to implement the above procedure, it is necessary to solve the

associated two-dimensional scattering problems at each of the spatial frequen-

cies required. Initially, we consider a numerical solution of the magnetic-

field integral equation (MFIE). Chanter 2 describes the MFIE formulation for

axial slot coupling, and a similar formulation for circumferential slot coupling

is presented in Chapter 3. Unfortunately, the MFIE fails at certain spatial

frequencies throughout the range of interest, as preliminary results indicate.

Chapter 4 presents a detailed discussion of this problem and considers several

remedies. One such remedy involves the combined-field integral equation (CFIE).

Results from using a CFIE formulation for both axial and circumferential slots

are presented in Chapter 5. Use of the CFIE appears to eradicate the problems

associated with the MFIE, but at the expense of additional computational

overhead. Good agreement is obtained between the CFIE results and exact eigen-

function values for slots in circular cylinders. Chapter 6 presents additional

admittance data for slots in noncircular cylinders.
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2. COUPLING BETWEEN AXIAL SLOTS

2.1 Formulation

The framework for constructing a numerical solution for the mutual admit-

tance between slots was developed in Chapter 1. The remaining task is to find

the electric current density induced in the vicinity of the secondary slot by

the equivalent magnetic current representing the source slot. For axial slots,

only the transverse electric current density J is required for the admittance

calculation. A suitable equation for the transverse electric current density is

the magnetic field integral equation (MFIE), which enforces the boundary con-

dition that the total magnetic field at the surface of the cylinder is propor-

tional to the electric surface current density according to

axR - (2.1)

The MFIE can be expressed

Hinc 
-t.) k(t,z) = - J (t,z) - z * curl f e(t') Jt(t',z') e dt'dz'

(2.2)

where

R - ![x(t) - (,)]2 +- y(t,)]2 + (z _ z,)2 (2.3)

and where Hinc represents the i-component of the magnetic field produced by thez

equivalent magnetic current K if the magnetic current was radiating in free2

space. Equation (2.2) is a convolution in the variable z, and an application of

the Fourier transform in conjunction with the convolution theorem [121 yields

-inc
H z (ty) -3 (tY) z f Et) (,y) (p;ky) dt (-ic- * ul(2.4)

AL
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where [13] '

1 (2)P 2-2* ) 2 > 2

1 ((2.5k

1-K /y22 2 2

and

p [x(t) _ x(t,)]2 + [yet) -y(to)1
2  (2.6)

Equation (2.4) is identical in form to the conventional two-dimensional integral

equation for scattering from a conducting cylinder, with the exception that the

wavenumber k has been replaced by

12-2 2 2
VK -Y k > y

k tc (2.7)

The incident magnetic field can be computed from the expression

iH n (t,Y) -j K( t,y) G_ (p;k,y) dt' (2.8)
z jkn slotA

where ni is the intrinsic impedance of free space, p is defined in Equation

(2.6), and iz is the Fourier transform of Equation (1.7).

Izj U L9hU
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The preceding discussion introduced the idea of replacing the original

source slot by a periodic repetition of slots, in order to discretize the trans-

form domain. If the spatial period is Pz the sampling interval in the trans-

3form domain is fixed at
AY 2w (2.9)

z

3 Equation (2.4) can be solved approximately by converting it to a matrix

equation of finite order, using the method of moments [14],(151. This procedure

Iis illustrated in the following section.

2.2 Numerical Solution of the Two-Dimensional

Magnetic Field Integral Equation

Equation (2.4) can be solved approximately by converting it to a matrix

equation of finite order, using a method of moments [14],[151. The cylindrical

cross-section can be modeled by the superposition of flat strip-cells, as

illustrated in Figure 2.1. For convenience, we assume that slot A can be

modeled by a small number of the same cells. Each cell in the model can be

described by its phase center (x,y), its cross-sectional length 'w,' and an

orientation angle 'n' defining the outward normal vector according to

A - i cos Q + 9 sin Q (2.10)

If pulse basis functions are used to represent the surface current density Jt,

and Equation (2.4) is enforced at the center of each of the cells in the model,

the result is a matrix equation of the form
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z

Figure 2.1 Cross section of original cylinder and flat cell mnodel
used for numerical calculations.

I
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11 12  ii

21 ~22 j2 2

- (2.11)

z N h

jGeneral expressions for source-field relationships are derived in Appendix A,

and can be used to construct the matrix elements

W~csl (2. 12)

2

- M - o n (.5

+~~ ~ ~ (2) (R9~ 7 IX 10(>2) s n(.3
nj 1

22 2x 2,y

2w K 1 (R Ty'-k )y > k

(2.17)
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Since closed-form expressions for the integrals of the type appearing in

Equation (2.13) are not often available, some form of numerical integration is

necessary to accurately evaluate the elements of the moment-method matrix. In

this case, many of the matrix elements can be accurately determined by single-

point integration. For those elements of the matrix representing closely spaced

cells, experimentation determined that single-point evaluation does not produce

accurate enough numbers. A Romberg integration algorithm [16] was used to com-

pute the closely-spaced terms. Since the slot excitation is assumed to be

constant in the variable t, the right-hand side is given by

NA

hi  I hin (2.18)
nal

where, from Appendix A we have

"4~~( 2 -1 J2_ n(~ k l w )hk2 - 2  W i

S - j I_ tn ), y 2> k2(2.19)(.6.10482)

and, for i * n, (2) R ) 2

-) 22 2 0

0(k -Y -
in 4kn n 2 2_2 2 2

-K (R ) y > (2.20)

IL I
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is the Fourier transform of Equation 1.7) and is given by

H WA cog (_2) -!- + ]1 WA Y*
A WAY w + WAY

(y) -(2.21)

2 WA
HW 2 ,WAY ±V
AWAW

Note that Equation (2.21) is an even-symmetric function of y.

3 In order to simplify the admittance calculation as much as possible, the z-

integration in Equation (1.4) can be performed analytically in the Fourier

transform domain. This requires that we weigh the spectrum by an additional

factor 9(y). For axial slots, W(y) represents the transform of the cosine func-

tion from Equation (1.4), and is given as

WE cos (T 1 1 1 WB*±lr
cog (2') -WBT + Wr+WBTY

V(y) - (2.22)

WB WET ±

Both ; and 9 are even-symmetric functions of y, and therefore it is only

necessary to work with the positive part of the spectrum. Thus, y will range

from 0 to NAy, in intervals of Ay. The product of the two-dimensional current

density as a function of spatial frequency, the excitation W (y), and the addi-

tional weighting factor 1(y) will be named the "spectral admittance function"

7(t,y). The inverse Fourier transform of T, according to
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N
Y(t) - [V(t,y) + 2 1 f(t,nAy) cos (nAyz)] (2.23)

n-l

produces a spatial admittance function Y(t). The admittance between two slots

is then found from W
t0  -

YAB = - W 11/2 f W Y(t') dt (2.24)
B B t - 2

Equation (2.11) must be solved over the range spanned by the transform

variable y. In theory, this range extends from - - to + -, although in practice

it is truncated at some finite value. The portion of the spectrum where y
2 < k

is known as the "visible region." Throughout the visible region, Equation (2.11)

is complex-valued. However, for y2 > k2 (the "invisible" region of the spectrum),

the matrix elements of Equation (2.11) are real-valued. Thus, for y2 > k , a

significant computational savings can be obtained by treating Equation (2.11) as

a real-valued system.

2.3 Preliminary Numerical Results

There are three types of "convergence" to be evaluated by numerical experi-

mentation. The first concerns the inverse Fourier transform: How much of the

spectrum is necessary when computing Equation (2.23)? In general, this will be

a function of the axial dimension of the slots, since the weighting factors V(y)

and W(y) appearing in Equations (2.21) and (2.22) are both functions of slot

dimension. Thus, it may be necessary to include more of the spectrum when com-

puting coupling between shorter slots. The second type of convergence concerns

the fictitious periodicity introduced through sampling in the Fourier transform

domain: How large does the period have to be to accurately represent a single

af a% -M -f 0 M
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source slot? The period will be a function of slot spacing, i.e., a larger

period will be necessary when treating larger slot spacings. The third type of

convergence involves the numerical solution of the integral equation: How many

*expansion functions are needed to ensure accurate results?

In an attempt to answer these questions, we consider an example involving

axial slots in circular cylinders. Admittance data based upon eigenvalue solu-

tions (available only when the cylinder is circular in shape) have been tabu-

lated [5]. By comparing these data to numerical results, the necessary spectrum

and period size can be ascertained. The numerical solution to integral equations

has been studied for many years, and a considerable amount of experience

suggests that approximately 10 expansion functions per wavelength are required

for meaningful results. We will consider the effect of different cell densities

in this range.

The initial example involves a circular cylinder with radius equal to one

gwavelength, containing axial slots of dimensions 0.2 x 0.5 wavelength. The

cylinder geometry is shown in Figure 2.2. Table 2.1 shows values of the admit-

tance between slots of different spacings, taken from Reference [5]. These are

based upon an eigenfunction analysis, and are the values that should be produced

by the numerical approach under ideal circumstances (exact solutions to the

integral equation, infinite period, and no truncation of the spectrum). Thus,

we will use Table 2.1 as a reference for comparison.

A computer code was developed in FORTRAN to compute the mutual admittance

between axial slots, using the procedure discussed above. This program requires

that the cylinder geometry be specified in terms of discrete cells, as illustrated

-Z-



18

-W B

zN

Figure 2.2 Geometry of circular cylinder containing two axial slots.
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TABLE 2.1

Eigenfunction solution for the mutual admittance between

slots in a cylinder with radius equal to one wavelength.

The slots are axial with dimensions W - 0.5 wavelength,

H - 0.2 wavelength. The admittance is given in magnitude

(decibels) and phase angle (degrees). Taken from Reference

[5].

Az AY YAB in dB

ix 0 - 87.1 /- 1710

2X 0 - 100.0 / 1740

4X 0 - 112.4 /- 1750

8X 0 - 124.3 /- 1740

450 - 89.2 /21
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in Figure 2.1. For the cylinder of one wavelength radius, consider the use of

88 equal-sized cells to represent the model. This satisfies the 10 cells per

wavelength requirement. Although not absolutely necessary, for convenience we

represent the source and secondary slot in terms of the same model as the

cylinder. In this case, the choice of 88 equal-sized cells constrains the

height of the slots to 0.214 wavelength (three cells) instead of 0.200 wave-

length. This could be alleviated by the use of non-equal cell sizes, but the

difference here is considered slight. (In order to easily treat situations

where the source and secondary slot are separated in both the axial and circum-

ferential directions, it may be necessary to use non-equal cell sizes throughout

the model.) In this case, the choice of 88 equal-sized cells allows us to treat

a circumferential separation of 0 and 45 degrees.

Results for the mutual admittance based on the 88 cell model are tabulated

in Tables 2.2 through 2.5. Table 2.6 shows a comparison of results from a 63

cell model (equal-sized cells) with those from the 88 cell model and the eigen-

function data. The results from the 88 cell model appear to be more accurate

than those of the 63 cell model. In general, there is excellent agreement

between the numerical and eigenfunction results. For slots that are closely

spaced in z, the accuracy does not appear to improve much as the period size is

increased. For slots that are separated by several wavelengths along the

cylinder axis, the results appear to improve as the fictitious period size is

increased.

To determine the necessary spectrum for inverse Fourier transformation,

Figure 2.3 shows the spectral admittance function as a function of the transform

variable y. This figure suggests that the spectrum contains little information

C , I
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TABLE 2.2

Numerical results for the mutual admittance between axial

slots as a function of period size and spectrum truncation.

The circular cylinder has 1A radius and is modeled with 88

cells. Slot separation: Az - 1X, A - 0* (MFIE solution)

The admittance is given in magnitude (decibels) and angle

(degrees). Both slots are axial with dimensions H 0.214

and W = 0.5 wavelength.

z max =20 Ymax =30

20.5X - 86.59 /-169.0 - 86.63 /-170.3

4
40.5X - 86.93 /-168.6 - 86.97 /-170.0

80.5A - 86.90 /-168.7 - 86.94 /-170.0

I.".
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TABLE 2.33

Numerical results for the mutual admittance between axial 3
slots as a function of period size and spectrum truncation.

The circular cylinder has 11 radius and is modeled with 88 1
cells. Slot separation: Az = 2X, a* - 0* (MFIE solution)

The admittance is given in magnitude (decibels) and angle

(degrees). Both slots have H - 0.214 and W - 0.5 wave-

length.

Pz Ymax 2'2 max 3

20.5X - 100.86 /-72.6 - 100.85/-171.7

40.5X - 99.59 /-172.7 - 99.58 /-172.5

80.5X - 99.24 /-172.9 - 99.23 /-172.5
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TABLE 2.4

3Numerical results for the mutual admittance between axial

slots as a function of period size and spectrum truncation.

The circular cylinder has IX radius and is modeled with 88

cells. Slot separation: Az - 4A, A4 - 0* (MFIE solution)

The admittance is given in magnitude (decibels) and angle

(degrees). Both slots have H - 0.214 and W - 0.5X.

z Ymax 20 Ymax 30

20.5X - 111.33 /-179.9 - 111.31 /-175.7

40.5X - 109.74 /-177.9 - 109.70 /-174.2

80.5X - 110.96 /-178.8 - 110.92 /-174.3

i,. -i " ,., p .,, .%'' -,, --, %
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TABLE 2.5

Numerical results for the mutual admittance between axial

slots as a function of period size and spectrum truncation.

The circular cylinder has IX radius and is modeled with 88

cells. Slot separation: Az - IX, A# - 458 (MFIE solution).

The admittance is given in magnitude (decibels) and angle

(degrees). Both slots have H 0.214X and W 0 0.5X.

P y 2 30
P z 7max 2 20 Ymax

20.5A - 88.97 /1.7 - 88.97 / 1.7

40.5X - 88.81 / 1.8 - 88.81 / 1.8

80.5X - 88.83 / 1.8 - 88.83 / 1.8
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TABLE 2.6

A comparison of the numerical results for the mutual admittance

between axial slots for different models of the cylinder.

The circular cylinder has UX radius. The period is 40.5X

and the spectrum is truncated at y - 20. All slot separa-

tions involve A# - 0* (MFIE solution). The admittance is

Igiven in magnitude (decibels) and angle (degrees). Both

slots have H - 0.214X and W - 0.5X.

I
Az 63 cell model 88 cell model eigenfunction

IX - 87.67 /-167.1 - 86.93 /-168.7 - 87.1 /-171

2 - 100.27 /-171.9 - 99.59 /-172.7 - 100.0 /-174

4 - 109.61 /-178.0 - 109.74 /-177.9 112.4 /-175

8 - 120.88 /-2.8 - 125.34 /-.3 - 124.3 /-174

, ,
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I I

2x &

10 20 30

Figure 2.3 Plot of the norm of the spectral admittance function for
an example involving axial slots in a cylinder of 1.0 X
radius and slots of dimension W = 0.5 X. The norm is taken
with respect to the circumferential variable.
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beyond y - 20. In Tables 2.2 through 2.5, admittance results are presented for

the case when the spectrum is truncated at y - 20 and y - 30. For this example,

it is apparent that the additional spectrum causes virtually no change in the

*calculated admittance values.

To summarize the findings of this initial example, it appears that a

cylinder model containing a cell density of about 10 cells per wavelength yields

accurate enough solutions to the MFIE for our purpose. Furthermore, for this

example the spectrum could be truncated at y - 20 without significant error. It

also appears that for slots spaced within several wavelengths in z, the period

size need not be more than 40 wavelengths for reliable solutions. However, for

slot spacings greater than 4 wavelengths in z, we observe poor phase accuracy

(see Table 2.6). This may be a result of insufficient period size for that

separation. We also observe that the convergence in y (i.e., the convergence of

the admittance for different truncations of the spectrum) is much faster when

there is a nonzero A# separation.

Consider an example involving a circular cylinder with radius 0.7582 wave-

length. Slot dimensions are 0.3048 x 0.6858 wavelength. A cylinder model con-

sisting of 47 equal-sized cells satisfies the "10 cells per wavelength" condition

discussed above. In addition, if the slots are modeled by three adjacent cells,

the 47 cell model yields a slot dimension in the model of 0.3041 x 0.6858, which

is reasonably close to the desired size.

Data for the mutual admittance between axial slots for different slot

b separations are presented in Tables 2.7 to 2.9. Eigenfunction results are only

available for one of these cases, that displayed in Table 2.9. The accuracy of
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TABLE 2.7

Numerical results for the mutual admittance between axial

slots as a function of period size and spectrum truncation.

The circular cylinder has radius equal to 0.7582 wavelength

and is modeled with 47 cells. The slots have H = 0.3041k

and W - 0.6858X. Slot separation: A# = 0, Az - 1.524X. The

admittance is given in magnitude (decibels) and angle

(degrees). (MFIE solution)

Ymax Y20 max -30

20.5X - 93.02 / 14.5 - 93.17 / 9.9

40.5X - 95.75/ 14.6 - 95.96 / 7.6

80.5A - 90.85 / 11.3 - 90.95 / 7.6
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TABLE 2.8

Numerical results for the mutual admittance between axial

slots as a function of period size and spectrum truncation.

The circular cylinder has radius equal to 0.7582 wavelength

and is modeled with 47 cells. The slots have H = 0.3041X

Iand W - 0.6858X. Slot separation: A# - 0, &z - 3.048X. The

aadmittance is given in magnitude (decibels) and angle

(degrees). (MFIE solution)

k

P z Ymax 20 Ymax

20.5X - 107.02 /163.2 - 107.35 /173.7

I
40.5x - 102.33 /176.8 - 102.34 /-178.3

80.5X - 114.25 /142.8 - 115.88 /163.8

.,.V"
.o
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TABLE 2.9

Numerical results for the mutual admittance between axial

slots as a function of period size and spectrum truncation.

The circular cylinder has radius equal to 0.7582 wavelength

and is modeled with 47 cells. The slots have H 0.3041A

and W - 0.6858A. Slot separation: A# - 0, Az - 6.096X. The

admittance is given in magnitude (decibels) and angle

(degrees). (MFIE solution) The eigenfunction value of

admittance for this slot separation is -118.1 /150L.

P ' 220 30 30
z Ymax Ymax 3

20.5x - 109.92 /_15.5 - 109.84 / 17.3

40.5X - 102.02 / 14.7 - 101.91 / 17.1

80.5A - 111.74 /165.6 - 111.57 /161.7t _ __ _ _ _ _ _ _ _ _ _ _ _
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the numerical results displayed in Table 2.9 is not good. In addition, for all

of these slot separations the admittance values do not seem to stabilize as the

period size is increased, although trucating the spectrum at y - 20 seems to be

adequate. The spectral admittance function is shown in Figure 2.4, and also

suggests that truncation at y - 20 is sufficient.

In an attempt to explain the instability of the admittance values with

increasing period P , the condition number of the matrix equation solved at each

of the spatial frequencies is displayed in Figure 2.5. Near two spatial fre-

quencies in the range of interest, the matrix equation becomes very ill-

conditioned. This behavior is characteristic of a problem with the integral

.1V equation formulation for this example. It is known that unique solutions exist

to the MFIE except at spatial frequencies where cavity resonances can occur

(171, (18], and at those frequencies the moment-method matrix will fail to

represent the desired scattering problem. For a circular cylinder geometry,

these frequencies are related to the resonance frequencies of circular cavities.

In fact, for this particular example, the theoretical resonance frequencies

occur when y - 3.73 and y - 5.42. Thus, ill-conditioning is observed in the

matrix at exactly the spatial frequencies where cavity resonances are theoreti-

cally predicted to occur.

It is interesting that the first example appeared to produce accurate,

stable results, in spite of the fact that it theoretically suffers from similar

"internal resonance" problems. It seems that the uniqueness problem will not

arise unless the sample points in y coincide almost exactly with the "resonant"

spatial frequencies. Apparently, only some examples will be affected by this

problem.

ioNS
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Figure 2.4 Plot of the norm of the spectral admittance function for an
axial slot example involving a 0.7582 X radius cylinder with
slots of dimension W - 0.6858 X. The norm is taken with
respect to the circumferential variable. j
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Figure 2.5 Plot of the condition number of the system matrix representing
the MFIE for the example with cylinder radius equal to 0.7582 X.
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Since the type of numerical formulation employed to solve the coupling

problem requires the solution of the integral equations over a fairly wide range

of spatial frequencies, it is likely that resonant frequencies will be encoun-

tered in most of the cylinder geometries of interest. Thus, it is essential

that the uniqueness problem be remediated if the numerical procedure is to be

practical. Chapter 4 will address this issue in detail, and discuss several

possible remedies to the uniqueness problem. In Chapter 5, one of these reme-

dies is implemented and tested for the previous examples.

2.4 Summary

A numerical formulation is presented for the calculation of mutual admit-

tance between axial slots in arbitrarily-shaped cylinders. Most of this chapter

dealt with the numerical solution of the magnetic-field integral equation

(MFIE). Examples were used to illustrate the stability and accuracy of the pro-

cedure, as well as to evaluate the convergence of the results as different para-

meters (number of cells in the model, spatial period, and truncation of the

spectrum) were varied. Agreement between eigenfunction and numerical results

for the first example indicates that the procedure is basically accurate and

practical to apply. However, the second example showed that there is a unique-

ness problem associated with the MFIE that sometimes affects the results. This

problem will be the focus of Chapter 4, where remedies will be evaluated.
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U 3. COUPLING BETWEEN CIRCUMFERENTIAL SLOTS

3.1 Formulation

The treatment of coupling between circumferential slots is similar to that

of the axial case. A two-dimensional scattering problem must be solved at each

spatial frequency needed in the Fourier transform domain. However, the circum-

ferential case is slightly more complicated because the process requires the

solution of both £ and i components of electric current on the cylinder.

Although only the z component is used in the admittance calculation, both cor-

ponents of electric current density appear in the coupled magnetic field

integral equations

Hinc (t,y) = - 3' (t,Y) - * curl f (t') Yt(t',y) 6(p;k,y) dt' (3.1)z tt

Hinc (t,y) = jz (t,y) - f(t) • curl f i Yz(t',y) 6(p;k,y) dt't ~ z

- C(t) * curl f 6(t') Yt (t',y) 6(p;k,y) dt" (3.2)

The "incident" fields on the left-hand side of the equation are given by

ffinc (,Y a IH (t,y) (ty)} (p;k,y) dt(3.3)" ,z k n l o

z k K t (ty)} 6(p;k,y) dt

slot A

and Hin (t y) f K (t',y) G(p;k,y) dt"
jkn slot A

+ Vat f K (t)} a(p;k,y) dt (3.4)
jkn slot A
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where G is defined in Equation (2.5), and Kt is the Fourier transform of

Equation (1.6) (taken with respect to the the variable z).

The equation for the transverse component of the current is decoupled from

the other, and this suggests that we first solve Equation (3.1) for J . Subse-

quently, the axial component can be found from Equation (3.2). Because the

treatment of the circumferential case requires the solution of two integral

equations, which translates into the solution of two matrix equations for each

value of y, the process is less efficient than the procedure described in

Chapter 2 for axial slots.

3.2 Numerical Solution of the Coupled Integral Equations

As explained in Chapter 2, the cylinder under consideration can be modeled

by a superposition of N flat cells, as illustrated in Figure 2.1. Again we con-

sider replacing the unknown current density by an expansion in piecewise constant

basis functions and enforcing the equations at the center of each cell in the

model.

In addition, suppose that the source slot is represented by the same cells

that comprise the model, and the aperture field (the equivalent magnetic source

K ) is considered to be piecewise constant in the variable t. Then the equation

to be solved for the transverse component of the electric current density reduces

to the matrix form of Equation (2.11) with the exception that

NA
hi= n Vn kn [G(p 1 ;k,y) - G(P2 ;k,y)] (3.5)

n1l

where

1= x -Wa sin fn ) + ( + W cos n (3.6)

1 n1

1,1 1 1 ''.10 1
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2 2 (3.7)

and V denotes the coefficients of a pulse expansion of the equivalent magneticn

current density representing slot 'A.' Since the Fourier transform of Equation

~(1.6) is

(1.t)y) 
1 2 cos W -) -1 sin - y ) 

(3.8)
AWA A

it follows that

(Y)sin Cs(3.9)

nHAWA 22A

where tn is the location of cell n in the source coordinates. Equation (3.5) is

derived in Appendix A.

Thus, an NxN matrix equation must be solved to yield the approximate solu-

tion for the transverse component of the current density. Once this is

accomplished (at some value of the spatial frequency y), Equation (3.2) can be

solved numerically for the z-component of the current density. If a piecewise

constant expansion is used to represent Jz, and Equation (3.2) is enforced at

the center of each cell in the model, the result is a second NxN matrix equation

of the form

zII h

z12 Jz t

2  h

N (3.10)
z N z t
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The right-hand side of Equation (3.10) includes the contribution from the

equivalent magnetic current density and the contribution from the transverse

current density found from the solution of the first NxN matrix. In this case,

ht is given by

i N N A (2)

h ni h( ) +t n1t in n- n in

where

in - j  sin (a - ) Wn PinkY) i n (3.12)

h(I). 0 (3.13)nil

h-(2) k Cos (ai - fn) f (p;k,y) dt'+ k-
in an cell

sin ci _ + Cos (Rky) - - sin os a (R;k,y)

1 '] 'ky si a co-!!-2 2 k~)

(3.14)

A X M _ n (3.15)

w
Al= Yi + - cos (3. 16)

w
Ax = x + - sin a (3.17)

W

AY2 ' Yi -2-cos an (3.18)

2 (3.19)
R 2 /Ax2 + Ay2

R = 22 + y2 (3.20)



i
39

The integration appearing in Equation (3.14) can be performed approximately

U using the approach in Appendix A. G'(R;k,,) is defined in Equation (2.17).

The diagonal matrix elements of Equation (3.10) are given by

1 
(3.21)

The off-diagonal elements are

z (sin aAl + cos 1A-) Z'(R;k,,) ds (3.22)

where Ax, Ay, and R are defined in Equations (2.17) to (2.19).

Once the transverse currents are determined over the necessary range, the

inverse transform can be computed according to Equation (1.10). However, as

U discussed previously, it is more efficient to perform the z-integration in the

transform domain. Thus, the additional weighting factor

2 sin H11
-(2)sin 2 (3.23)

S should be included in order to account for the convolution with the piecewise-

M constant from Equation (1.3).

3.3 Preliminary Numerical Results

A computer code similar to that described in Chapter 2 was developed to

implement the above formulation for circumferential slot coupling. The program&

-h-r
V 1.11
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requires that the cylinder be modeled by a superposition of flat cells and also

that the source slot be represented by several of the same cells that comprise

the model. To verify the accuracy of the procedure, results from this program

for coupling between slots in circular cylinders can be compared to published

eigenfunction solutions [5].

Consider a circular cylinder having radius of one wavelength and containing

circumferential slots of size 0.2 x 0.5 wavelength. The cylinder geometry is

shown in Figure 3.1. Eigenfunction solutions for several different slot separa-

tions are given in Table 3.1, from reference [5]. The data in Table 3.1 are the

values that should be produced by the numerical procedure under ideal con-

ditions, and thus will be used to judge the accuracy of the numerical results.

Suppose that the cylinder cross-section is modeled with 88 equal-sized cells, of

which seven are used to model the source and secondary slots. The actual slot

dimensions used within the numerical procedure are 0.2 x 0.4998 wavelength, and

thus the slot size in the model is an accurate representation of the desired

slot.

In order to determine the extent of the spectrum necessary for inclusion in

the inverse Fourier transform, consider the spectral admittance function pro-

duced in the course of numerical calculation. This function is displayed in

Figure 3.2. It appears from this figure that the spectrum decays to a negli-

gible value once the spatial frequency reaches y - 20. To verify this conclu-

sion, Table 3.2 shows the admittance between several slots produced with the

spectrum truncated at y - 20 and y - 30, for a fixed period size. In this case,

truncation at y - 20 seems appropriate.
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Figure 3.1 Geometry of circular cylinder containing two
circumferential slots.
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TABLE 3.1

Eigenfunction data for the mutual admittance between circum-

ferential slots in a one-wavelength radius circular cylinder.

The slots have H - 0.2X and W - 0.5X. The admittance is

given in magnitude (decibels) and angle (degrees).

Az YAB in dB /degrees

0.5X 00 - 67.87 111

1.0 0 - 72.54 / 67

2.0 0 - 77.46 /_68

4.0 0 - 82.22 / 6

8.0 0 - 86.65 / 62

1.0 45 - 82.30 /-26
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*Figure 3.2 Plot of the norm of the spectral admittance function for an

example involving circumferential slots i a cylinder of

1.0 X radius and slots of dimension H - 0.2 X. The norm
is taken with respect to the circumferential variable.
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TABLE 3.2

Numerical results for the mutual admittance between circum-

ferential slots as a function of spectrum truncation. The

circular cylinder has radius of one wavelength and is

modeled with 88 cells. The slots have H - 0.2X and W - 0.4998X.

The period size is Pz - 18.5 wavelengths. The admittance is

given in magnitude (decibels) and angle (degrees). (MFIE

solution)

Az Ymax 20 Ymax m 30

0.5X 00 - 68.80 /-117.0 - 68.80 /-117.0

1.0 0 - 73.79 / 68.7 - 73.84 / 68.6

2.0 0 - 80.08 / 71.2 - 80.15 / 71.0

4.0 0 - 88.25 / 74.1 - 88.17 /. 74.3

8.0 0- 100.12 / 81.9 - 100.38 / 81.7

1.0 45 - 83.21 /,-48.2 - 83.21 /-48.2

I*N LOP* . . ,
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Table 3.3 shows the admittance between slots for three different period

sizes. For the range of slot sizes shown in Table 3.3, it appears that a period

%I of about 40 wavelengths is necessary for reasonably "converged" values. For

slots separated by four or more wavelengths, the admittance values appear to

improve with increasing period, but not tremendously.

The MFIE uniqueness problem discussed in Chapter 2 may also affect the

results of the circumferential slot procedure. Here, the process requires the

solution of two matrix equations, each of which could be corrupted by the

problem. Figures 3.3 and 3.4 show plots of the matrix condition number as a

function of y. Theoretical resonance frequencies are given in Tables 3.4 and

3.5, and these correlate with the values of y where the condition number degrades.

a However, apparently the problem is not severe enough in this example to signi-

ficantly affect the accuracy of the numerical results.

Table 3.6 shows eigenfunction admittance data for circumferential slots of

dimension 0.3048 x 0.6858 wavelength in a circular cylinder of radius 1.517

wavelengths. An 83 cell model comprised of equal-sized cells requires that the

actual modeled slot dimensions be 0.3048 x 0.6891 wavelength. Results from the

numerical procedure are displayed in Tables 3.7 and 3.8. The agreement is

reasonable between the numerical and eigenfunction results. The spectral admit-

* tance function is displayed in Figure 3.5, and it appears that the spectrum can

be adequately truncated at y - 20.

To test the uniqueness problem for this example, the matrix condition number

for each of the two systems arising here was compared to that for theoretical
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TABLE 3.3

Numerical results for the mutual admittance between circum-

ferential slots as a function of period size. The circular

cylinder has radius of one wavelength and is modeled with 88

cells. The slots have H - 0.2X and W - 0.4998X. The

spectrum is truncated at y - 20. The admittance is given in

magnitude (decibels) and angle (degrees). (MFIE solution)

Az A# P - 18.5X P - 40.5 P - 60.5z z z

0.5X 0' - 68.80 /-117.0 - 68.51 /-116.5 - 68.53 /-116.5

1.0 0 - 73.79 / 68.7 - 73.47 / 68.2 - 73.25 / 67.7

2.0 0 - 80.08 / 71.2 - 79.27 / 70.6 - 78.83 / 71.0

4.0 0 - 88.25 / 74.1 - 84.72 / 74.6 - 84.62 / 74.5

8.0 0 - 100.12 / 81.9 - 90.79 / 73.5 - 90.40 /. 78.9

1.0 45 - 83.21 / -48.2 - 82.97 / -38.9 - 82.95 / -34.2

II.
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TABLE 3.4

Theoretical resonance frequencies of the longitudinal MFIE

applied to a circular cylinder with IA radius.

n

1 3.00

2 3.62

3 4.98

4 5.81

.

.5 4

-4'

'S,

.4.955
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TABLE 3.5

Theoretical resonance frequencies of the transverse MFIE

applied to a circular cylinder with radius equal to one

wavelength.

n y

1 3.33

2 3.35

3 4.67

4 4.98

5 5.49

6 6.01
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TABLE 3.6

Eigenfunction data for the mutual admittance between circum-

ferential slots in a 1.517 wavelength radius circular

cylinder. The slots have H - 0.3048X and W 0.6858X. The

separation A* is zero. The admittance is given in magnitude

(decibels) and angle (degrees).

Az YAB

0.38X, - 62.62 /.-72

0.76 - 66.82 / 155

1.52 - 71.78 /117

2.29 - 74.78 / -31

3.05 - 76.89 /. 54

8.38 - 84.06/.-70

9.14 - 84.61 / 15

9.91 - 85.12 / 100

10.67 - 85.63 /-175

11.43 - 86.09 / -90

9.'

fr
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TABLE 3.7

Numerical results for the mutual admittance between circum-

ferential slots as a function of period size. The circular

cylinder has radius of one wavelength and is modeled with 83

cells. The slots have H = 0.3048X and W - 0.6891X. The

spectrum is truncated at -= 20. The admittance is given in

magnitude (decibels) and angle (degrees). (MFIE solution)

Az P z 30.5X P = 60.5 P - 90.5
z z z

0.38X - 62.93 /.-70.2 - 62.84 / -70.9 - 62.85 / -70.9

0.76 - 66.81 / 155.1 - 66.74 / 154.0 - 66.97 / 154.4

1.52 - 73.37 /-117.6 - 72.47 /-116.3 - 72.54 /-116.8

2.29 - 74.57 / -26.0 - 74.57 /-26.9 - 74.79 / -29.0

3.05 - 79.26 / 51.3 - 78.37 / 54.5 - 77.74 / 51.8
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TABLE 3.8

Numerical results for the mutual admittance between circum-

ferential slots as a function of period size. The circular

cylinder has radius of one wavelength and is modeled with 83

cells. The slots have H - 0.3048X and W - 0.6891X. The

spectrum is truncated at y - 20. The admittance is given in

magnitude (decibels) and angle (degrees). (MFIE solution)

,, Az P - 30.5X P = 60.5 P - 90.5z z z

8.38X - 84.19 / -52.3 - 84.26 / -56.5 - 84.62 / -60.2

9.14 - 86.13 /--14.7 - 85.74 / -4.1 - 86.55 / 0.8

9.91 - 87.08 / 126.5 - 84.77 / 121.0 - 85.38 / 108.9

10.67 - 85.56 / 159.6 - 87.60 / 170.5 - 85.68 / 117.7

11.43 - 93.04 / -43.7 - 87.89 / -77.8 - 87.83 / -68.4

ri
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Figure 3.5 Plot of the norm of the spectral admittance function for

an example involving circumferential slots in a cylinder

of 1.517 X radius. Slot dimension H - 0.3028 X. The norm

is taken with respect to the circumferential variable.
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5resonance frequencies. These are listed in Tables 3.9 and 3.10. Good correla-

tion is obtained between the theoretical values of y and spatial frequencies

where the condition number degrades. Because of the large number of resonance

frequencies arising in this case, it is rather surprising that good agreement is

obtained between numerical and eigenfunction results. Since the uniqueness

problem will undoubtedly prove to be problematic for many examples of interest,

Chapter 4 includes a discussion of the problem and presents several remedies.

. ~ Chapter 5 discusses the implementation of one remedy, the use of the combined-

field integral equation (CFIE) as an alternative to the MFIE. It will be shown

that admittance results based upon the CFIE for the above cylinder geometries

. are in better agreement with eigenfunction results than those obtained from the

MFIE.

4' .-
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TABLE 3.9

Theoretical resonance frequencies of the longitudinal MFIE

applied to a circular cylinder with radius equal to 1.517

wavelengths, in terms of the spatial frequency y.

n Y

1 2.46

2 2.63

3 2.95

4 3.80

5 4.25

6 4.67

7 5.12

8 5.29

9 5.75

10 6.08

"KA
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I TABLE 3.10

Theoretical resonance frequencies of the transverse MFIE

applied to a circular cylinder with radius equal to 1.517

wavelengths, in terms of the spatial frequency y.

n

S -1 1.43

P2 2.74

3 2.80

4 3.40

5 3.88

6 4.25

7 4.47

8 4.65

9 5.21

10 5.21

.*11 5.64

12 5.75

13 5.95

14 6.17

'.
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4. REMEDIATION OF THE UNIQUENESS PROBLEM
ASSOCIATED WITH CERTAIN INTEGRAL EQUATIONS

4.1 The Interior Resonance Problem

Integral equation formulations have distinctive advantages over other

approaches for the analysis of electromagnetic scattering problems. They also

suffer certain disadvantages, one of which concerns the uniqueness of their

solutions. Generally, a surface integral equation can be used to represent both

the interior and exterior electromagnetic problems. In other words, the model

used with the equation can represent the interior boundary of a cavity or the

exterior surface of a solid scatterer. In contrast to the exterior scattering

problem, which involves finding the fields due to an applied source, the cavity

problem requires the identification of source-free "cavity modes." Because the

cavity problem involves homogeneous equations, the task requires the iden-

tification of eigenfrequencies where source-free cavity "resonances" can occur.

Thus, at discrete eigenfrequencies of certain integral equations, the solution

to an exterior scattering problem is not unique. It is important to note that

not all integral equations suffer from this uniqueness problem; in fact, one

remedy to the problem is to employ a different integral equation formulation.

However, the common equations used for electromagnetic scattering problems (the

electric-field and magnetic-field equations, denoted EFIE and MFIE) can be

corrupted by the presence of homogeneous solutions corresponding to interior

cavity modes. Previous chapters have identified this problem in connection with

the solution to the MFIE for two-dimensional scattering.

-~ .-p 'p,,,f9 ~ a
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The nature of what is commonly called "the interior resonance problem" was

encountered in connection with integral equations of electromagnetic scattering
-1
*j ~.by Mei and Van Bladel in 1963 [19], (20]. However, several years passed before

a clear identification of the uniqueness problem was set fourth by Mitzner [21],

who recommended the use of a linear combination of the EFT F and MFIE as a

-& remedy. The resulting equation is now denoted as the "combined-field integral

equation" (CFIE), and has been discussed in detail by Mautz and Harrington [18].

An alternate integral equation formulation was presented by Bolomey and Tabbara

[221, and an extension of their approach was developed by Mautz and Harrington

and named the "combined-source" formulation [231. The basic cause of the EFIE

. and MFIE uniqueness problems is the lack of an explicit boundary condition that

forces the interior fields to vanish. Mittra and Klein discuss the problem in

detail and investigate the direct overspecification of the boundary conditions

throughout the interior region [17]. An alternate procedure is to augment the

- original EFIE or MFIE (which involve only the tangential field components) with

appropriate constraints on the normal fields. The resulting "augmented-field

integral equations" are discussed by Yaghjian [241. Finally, Sarkar and Rao

have discussed the idea of finding the "minimum norm" solution to the original

EFIE and MIFIE [251.

Although a plethora of remedies has been proposed, all require additional

a complexity and computational effort over the use of the original EFIE or MFIE

formulations. The combined field and source formulations usually produce a

matrix equation of the same order as the original (see discussion to follow for

wa counterexample), but always require more complicated matrix elements than the

original formulation. The direct overspecification of the original equation or

U'-L
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the use of the augmented-field formulation requires the solution of an overspec-

ified (not square) matrix equation. The minimum norm procedure also requires a

least-square type of solution, and does not yield the true currents on the

scatterer.

Although the cause of the "internal resonance" problem has been fairly

well-understood for some time in electromagnetics and has also been discussed in

the context of integral equations of acoustic scattering [261, [27], the problem

does not arise unless the scatterers under consideration are large enough to

support cavity resonant fields. Over the past twenty-five years, much of the

development work involving integral equations has concentrated on the treatment

of electrically small or moderately-sized scatterers. However, advances in com-

puters (including the widespread availability of supercomputers) coupled with

improvements in specialized algorithms for the treatment of electrically large

structures [281, (291 have made it possible to treat scatterers exceeding

several wavelengths in size. Thus, it is likely that the problem will be

observed more frequently in the future.

Chapters 2 and 3 presented a procedure for the calculation of currents

induced upon an infinite cylinder by a finite source. The formulation involved

the Fourier transform and required the solution of two-dimensional integral

equations over the entire plane-wave spectrum excited by the source. Thus, the

integral equations were to be solved over a continuous range of the transverse

dimension. If the scatterer geometry represents resonant cavities at certain
JN

locations throughout this range, there is a strong probability that the solution

will be corrupted by homogeneous solutions to the integral equations. In fact,

P1-' ~ ~*
- - ~ ~ ~~ ,-'~-r* ~ '. .
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erratic behavior observed in the preliminary results presented in Chapters 2 and

3 has been attributed to the uniqueness problem.

It is apparent that some remedy to the uniqueness problem associated with

the MFIE must be found if the procedures described in Chapters 1, 2 and 3 are to

be useful for the analysis of coupling between slots in large cylinders.

Several remedies have been mentioned above. In order to judge the overall

* effectiveness and required computational overhead associated with these reme-

dies, this chapter presents a comparison for the type of equations employed in

S Chapters 2 and 3. Based upon this comparison, the combined-field formulation is

judged to be the best candidate of those considered. The CFIE is incorporated

into the slot coupling formulation in Chapter 5.

4.2 The Nature of the Uniqueness Problem

To explain the "interior resonance" problem in detail, consider the MFIE

formulation for the scattering of a transverse-electric (TE) plane wave from a

perfectly conducting cylinder (a two-dimensional problem). The wave is incident

on the cylinder from some oblique angle, so that the z-dependence is of the form

e jyz 2 + k  .k 2  (4.1)

Chapter 2 presented the integral equation

-H inc(t) = Jt(t) + • curl f E(t') J (t') G(p) dt' (4.2)
a.z t t

4' where1 (2
G(p) Ho (k P) 

(4.3)

S and

r4T
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P / [x(t) - x(t')]2 + [y(t) - y(t')]2 (4.4)

(Cavity resonances only occur throughout the "visible region" of the spectrum,

2 2
and thus we consider only the case k > 2.)

In order tc otudy the uniqueness problem, consider the special case of a

circular cylinder. Since this special case involves a separable geometry, exact

solutions for plane-wave scattering can be found using the separation-of-

variables procedure [30]. In addition, analytical expressions for the eigen-

values of the MFIE as a function of the cylinder radius "a" are available and

given as

An = 2 n t n t

n F E J . 2j 1 Jn (kta) H (2) (kta) 
(4.5) 4

where k /k 2  2(
k= -k y (4.6)

t

A plot of the eigenvalues of orders 0, 1, and 2 is presented in Figure 4.1 as a

function of kt. For small values of kta (low frequency excitation), the eigen-

values lie at 0.5 or 1.0 in the right-half plane. However, as k ta increases,tI
they move in a circularlike path that passes through the origin. From Equation

(4.5), it is clear that eigenvalues vanish at the zeroes of the Bessel function

J n(k ta). These values k ta also correspond to the discrete frequencies where

source-free solutions exist for the interior problem. The interior problem

represented by this MFIE is the circular cavity having walls that are perfect

magnetic conductors [17]. In any case, no unique solution exists to the MFIE if

one of its eigenvalues is zero.

In practice, numerical techniques are employed to solve integral equations ON

for geometries that are not separable, i.e., geometries that cannot be treated
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analytically. Typically, the method of moments is used to convert the original i

equation to a matrix equation of finite order [141. At the discrete values of

k where an eigenvalue of the original integral equation vanishes, an eigenvalue
t

of the corresponding matrix equation will also vanish, or at least become very

small. This is a consequence of the manner in which eigenvalues are projected

from an original continuous operator onto a matrix operator [311. The numerical

solutions obtained from the integral equation will usually degrade in the vicin-

ity of a resonance, as illustrated in Figures 4.2 through 4.4. These figures

depict the current density induced upon three circular cylinders of slightly

different radius by a plane wave. Exact solutions are shown for comparison. In "

Figure 4.2, good agreement is observed between the exact and numerical results. e

In Figure 4.3, the agreement has deteriorated due to the fact that the cylinder

is nearly resonant. In Figure 4.4, which represents a cylinder that is inter- I

nally resonant, large errors are observed in the numerical result.

Since an eigenvalue of the matrix equation will approach the origin near an

internal resonance, Mittra and Klein have recommended using the matrix condition

number as a flag to indicate potential resonance problems [17]. Several figures

have been presented in Chapter 2 and Chapter 3 depicting plots of the matrix

condition number as function of the axial wavenumber. Sharp spikes in Figures

2.5, 3.3 and 3.4 indicate the locations of cavity resonances. Since these

matrices represent scattering from circular cylinders, it is possible to predict

the locations analytically. The spikes in Figures 2.5 and 3.4 represent

eigenfrequencies of the MFIE discussed above, and these occur at the zeroes of

the Bessel function J (k a). The spikes in Figure 3.3 represent eigenfrequen-n t

cies of the MFIE presented in Equation (3.2), and these occur at the zeroes of

J n'(k ta).
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The EFIE also suffers from the internal resonance problem. As an illustra- j
tion, consider the EFIE representing the scattering of a TE wave normally inci-

dent on a perfectly conducting cylinder. The equation is

Einc(t) (grad div + k 2 )  j(t') G(p) dt' (4.7)
t jk n f t

where G is defined in Equation (4.3) and p in Equation (4.4). If applied to

circular cylinders having radius a, the eigenvalues of the integral operator are

available and given as

XEFIE,TE . nnka n (ka) H (2), (ka) (4.8)

A plot of the eigenvalues of orders 0, 1 and 2 is presented in Figure 4.5, as a

function of kt a. The character of the EFIE operator is different from that of

the MFIE operator, and the EFIE eigenvalues lie along the negative imaginary

axis for small k a. The eigenvalues pass through the origin at zeros of the
t

Bessel function J n'(k ta), and at these eigenfrequencies the EFIE has no unique

solution. In this case, these values of k ta correspond to the loctions of

source-free transverse-electric modes in a cavity having perfectly conducting

walls.

4.3 The Combined-Field Formulation

Not all integral equations suffer from the uniqueness problem described

above. A formulation known as the combined-field integral equation (CFIE)

involves the linear combination of the EFIE and MFIE discussed above. For

normally incident TE wave scattering from perfectly conducting cylinders, the

CFIE takes the form



69

100 

c

C 100 5001 

Re(X)/

t 

/

-100

E

A: k =

B: ka:2
C: ka=3

0 X2

-500

Figure 4.5 Plot of the three dominant eigenvalues of the TE EFIE as
a function of ka.

L ill



70

E nc(t) (- ) Hinc(t) - (1-a) n J

+ (1-a) Z^ • curl f Jt(t') G(p) dt'

-a (grad div 2) f jt(t') G(p) dt' (4.9)

where a is a parameter used to weigh the electric-field and magnetic-field

contributions to the CFIE, and G has been defined in Equations (4.3) and (4.4).

If applied to a circular cylinder of radius a, the eigenvalues of the CFIE are

given as

XCFIE,TE . nIka H (2), (ka) [aJn (ka) + j (1-a) Jn(ka)] (4.10)
n 2 n a (

A plot of the three dominant eigenvalues as a function of ka is presented in

Figure 4.6. Assuming that a is not equal i.o zero or one, these eigenvalues U
never vanish, and thus unique solutions to the CFIE exist at all values of ka.

Although the CFIE has unique solutions, the computational effort required

to construct a matrix equation representing the CFIE is roughly double that

required for the EFIE or MFIE alone. In most cases, the CFIE matrix equation is

of the same order as that of the EFIE or MFIE, and thus no additional effort is

required to solve the matrix over that of the original formulations. But this

is not always the case. For instance, the MFIE presented in Equation (4.2) for

the scattering of obliquely incident waves from a two-dimensional cylinder only

involved the z-component of the H-field and the t-component of the electric

current density. There is also a z-component of the current density present in

the problem, but it is decoupled from the z-component of the H-field and does

not appear in the MFIE. The EFIE and CFIE presented in Equations (4.7) and

(4.9) are specialized to the case of normally incident waves. For obliquely
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incident waves, additional components of the fields and current density appear

in the equation, doubling its order over that of the original MFIE. In order to

implement the procedure of Chapter 2 with the CFIE, it is necessary to double

the original order of the matrix equation to be solved at each value of the

transform variable -f.

To illustrate the performance of the CFIE, Figure 4.7 presents the CFIE

solution for the problem originally presented in Figure 4.4, involving scat-

tering from a circular cylinder at a zero eigenvalue of the original MFIE.

Excellent agreement is obtained between the CFIE result and the analytical

* "solution.

4 6 The Augmented-Field Formulation

,* The EFIE, MFIE, and CFIE formulations discussed above involve boundary con-

Jitions imposed on the tangential components of the fields. Other integral

equations involving both the tangential and normal field components have been

proposed [24]. These equations explicitly enforce the complete set of boundary

conditions for a given type of field (E or H) and thus guarantee unique solu-

*i tions except in a few exceptional situations [24]. T'iese "augmented-field

integral equations" deal with either the E-field or the H-field, and have the

advantage over the CFIE formulation that the matrix elements are only as compli-

cated as the original EFIE or MFIE formulation. However, when reduced to a

matrix frm using the method of moments, the system of equations is ovprdeter-

mined by a factor of 32. Thus, they require a special solution algorithm and

idditional computational time and storage over the original EFIE or 4FIE.

A %-.
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For example, consider the augmented-magnetic-field equation formulation for

TE-wave scattering by perfectly conducting cylinders. For an obliquely incident

wave, all three components of the H-field are involved, and both components of

electric current density couple to the equations. Thc system has the form

H inc (t) - - J (t) - z • curl f tt) (t') G(p) dt' (4.11)
z t t

H (t) J (t) - E curl f {(t) J (t') + 2 J(t')} G(p) dt' (4.12)
t z t

H inc(t) - - R • curl f {t(t') J (t') + 1 J (t')} G(p) dt' (4.13)
n t z

where G is given in Equation (4.3). When discretized using the method of

moments, these equations produce a 3N x 2N matrix equation, where N is the

number of cells in the cylinder model (see Chapter 2). Expressions for the

matrix elements are tabulated in the Appendix. In order to show the accuracy of

the procedure, Figure 4.8 presents the augmented-MFIE solution for the previous

example of Figures 4.4 and 4.7, involving a circular cylinder excited at a zero

eigenvalue of the original MFIE. Excellent agreement is obtained between the

exact and numerical results.

In comparison with the CFIE formulation, additional storage is required to

. implement the augmented-field procedure. The augmented-field approach requires

less computational effort than the CFIE, but still considerably more than the

original (tangential-field) MFIE. In addition, extra computation is required to

process the overspecified system.

4.5 The Combined-Source Formulation

In the formulation of an integral equation, three factors are brought

together: an equivalent mathematical source (electric or magnetic current

I'.
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density), a source-field relationship (expression for the field at some point in U
space in terms of an integral over electric or magnetic sources), and a boundary

condition on the surface of the scatterer under consideration (such as forcing

the tangential E-field at a perfect conductor to vanish). The EFIE, MFIE, CFIE,

and augmented-field equations discussed above are formulated in terms of equiva-

lent sources

J fl x H (4.14)

X (4.15)

where E and H are the fields external to the perfectly conducting scatterer, and

J and K are the equivalent mathematical electric and magnetic current densities.

These equivalent sources are such that the correct fields are produced external

to the scatterer, and null fields are produced within the scatterer.

Since we desire to model a perfectly conducting cylinder, it is natural to :1

choose equivalent sources as suggested in Equations (4.14) and (4.15), since the

true fields within such a scatterer are zero. However, we could equally repre-

sent the true fields external to a scatterer by a different choice of equivalent

sources, provided that the field representation within the cylinder did not

vanish. Since only the external fields are of interest, the interior fields can

be arbitrarily chosen. This arbitrary choice allows a degree of freedom in the

selection of equivalent sources, which may be taken to satisfy the constraint j

z K = 3 (tx J) (4.16)

for some nonzero value of B. Mautz and Harrington have shown that this par-

ticular choice of equivalent sources may be used with the EFIE for perfectly

%
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conducting scatterers in order to remove the uniqueness problem from the origi-

nal EFIE [231. This is possible because no eigencurrents associated with the

interior cavity modes satisfy the additional constraint imposed by Equation

(4.16).

A drawback to the combined-source approach is that the electric current

density J used within this procedure is not the true electric current density

induced upon the scatterer surface. The true electric current density can be

found from a secondary calculation once the mathematical sources J and K are

identified [23]. However, it is not clear as to how such a choice of equivalent

sources might be used in connection with an MFIE, which explicitly requires the

* true electric current density within the boundary condition built into the

integral equation. The matrix equation resulting from a method-of-moments

S discretization of the combined-source EFIE is of the same order as the original

EFIE, but involves more complicated expressions because of additional terms

involving equivalent magnetic current density.

4.6 Overspecification at :nterior Points

Since the basic "interior resonance" problem is the presence of fields

interior to the scatterer geometry at discrete eigenfrequencies, a straightfor-

, -ward solution to the problem is the direct enforcement of a boundary condition

throughout the interior region. One such approach has been proposel by Mittra

and Klein, who suggest enforcing the condition that the E-field or H-field

3nisn at a variety of points within the scatterer geometry [17]. Although

r original approach requires the overspecification of the boundary con-

i-A 'he consequential solution of an overspecified matrix equation, an



--- wm nwfX

78

alternate procedure has been studied involving the addition of unknowns to

balance the additional points [321. This latter idea has the potential advan-

tage that no special solution algorithm need be incorporated to solve the over-

determined system and that feedback concerning the interior current density

(which should vanish if a "good" solution is obtained) is readily available.

The idea of incorporating additional boundary conditions will be explained

in the context of the EFIE for transverse-magnetic (TM) scattering from per-

fectly conducting cylinders. The equation

E inc (t) = iktn f Jz(t') G(P) dt' (4.17)

involves the z-component of the electric current density and the z-component of

the E-field, and is valid for an arbitrary oblique angle of incidence. G has

been defined in Equation (4.3). This surface integral equation suffers from

uniqueness problems associated with the TM modes of a perfectly conducting cir-

cular cavity. The problem stems from the fact that the internal cavity fields

satisfy the boundary condition imposed on the E-field at the scatterer surface,

and thus are undesired homogeneous solutions to the EFIE. One possibility for

suppressing these cavity fields is to augment the scatterer model (which con-

sists of strips along the desired surface) with the additional perfectly con-

* -ducting strips throughout the interior. The idea is simply to "short out" any

interior fields that might be present.

In practice, this method has the potential advantage that an existing com-

puter program need not be modified in order to remedy the uniqueness problem;

only the scatterer model (typically generated external to the computer code that

iperforms the matrix fill and solve) need be changed. The method can also be
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used with the MFIE, provided that the interior strips are perfect magnetic

conductors instead of perfect electric conductors.

To illustrate the performance of this approach, consider a wave normallyA
incident on a circular cylinder having a circumference of 5.15 wavelengths (near

a theoretical cavity resonance). The result due to a straightforward solution

of Equation (4.17) in terms of a 40 x 40 matrix is displayed in Figure 4.9 [32].

Clearly, appreciable error is present in the solution due to the cavity reso-

nance. Figure 4.10 displays the result after the cylinder model was augmented

with three additional strips [32]. The additional strips have completely elimi-

nated the interior fields from the problem, without a large increase in com-

putational effort.

In order to get a better idea of the actual effect of the additional

strips, we could plot the matrix condition number as a function of cylinder

size. In practice, it is easier to compute the determinant of the matrix than

the true condition number. In most cases, the determinant provides similar

information concerning the location of cavity resonances. Figure 4.11 shows a

plot of the determinant of the matrix for the examples of Figures 4.9 and 4.10,

as the radius of the circular cylinder is varied. There is a sharp null in the

determinant in the vicinity of the observed resonance problem, indicative that

an eigenvalue of the matrix passes near the origin for that radius. However,

- Y the determinant plot for the second matrix (after the model was augmented with

three interior strips) also has a sharp null. In fact, aside from a slight

shift in the location of the null, the determinant plot looks similar to that

A *for the original matrix. It appears that the additional three strips did not in

fact eliminate the resonance, although they did move the location of the reso-

.N nance enough to eliminate the problem from the example used in Figure 4.10.

i-I
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An additional study was carried out to attempt to determine the number of

interior strips required to truly eliminate the internal fields. Figure 4.12

depicts a circular cylinder, showing the locations of 16 interior strips. The

cylinder surface is modeled with 30 strips. Figure 4.13 shows a plot of the

-, .~ determinant of the matrix before and after the 16 interior strips were added.

In this case, the interior strips seem to eliminate the four resonances

-- occurring at the lower frequencies. Unfortunately, it appears that a large den-

sity of interior strips is required to actually eliminate cavity resonances in

this manner. In practice, the volume of the interior region will increase

faster than the surface area, which suggests that a prohibitive number of addi-

tional unknowns will be introduced into the problem. Thus, although this proce-

dure can be used to eliminate resonance problems, it will prove to be less

efficient for large cylinders than some of the other alternatives outlined

above.

4.7 Other Proposed Remedies

Sarkar and Rao have proposed treating the original EFIE and MFIE at

eigenfrequencies where they have no unique solutions by a different algorithm

op that produces the so-called "minimum norm" solution (251. In theory, this pro-

cess removes the troublesome eigencurrents from the solution and thus can pro-

duce a unique result. Of course, the desired current density might have some

.~. contribution from the eigencurrent, and may be incorrect if the resonant eigen-

current is entirely suppressed. For scattering problems, the far-zone fields

can be produced (in theory) without the eigencurrent component present; thus,

the "minimum norm" proce 1Jre can be used for problems where the only desired

quantities are the far-zone fields. Unfortunately, the objective under study in

A U'



84

xx x

x x x

4.2 Crua yidrwt oaioso neirsrp dniid



85

ZA- 0

z 0 j

0 x. 0

CA CL

900

S4

'T 0

0=w

c DW
-4

c C6

cc 0 0G

U((

AC 0-1

4,AI



86

this report involves the computation of the current density on the scatterer.

Thus, the "minimum norm" procedure is not satisfactory for the purpose of this

investigation.

4.8 Summary

Several remedies to the "interior resonance" problem have been outlined

above. From the standpoint of computational efficiency, none of these remedies

are as efficient as the original MFIE formulations discussed in Chapters 2 and 3.

However, the combined source formulation is not directly compatible with an

MFIE, the interior strip approach appears to require too many additional

unknowns, and the "minimum norm" procedure yields the incorrect currents on the

scatterer. The remaining methods are the CFIE formulation and the augmented-

field formulation. The augmented-field formulation will require additional

storage over the CFIE and limit the treatment to smaller cylinders. Thus, it

appears that the CFIE formulation is the better choice for treating the slots-

in-cylinder problem discussed in Chapters 2 and 3. Chapter 5 presents the CFIE

implementation for the slot coupling problem.

S * R
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5. COMBINED-FIELD FORMULATION FOR COUPLING
BETWEEN AXIAL AND CIRCUMFERENTIAL SLOTS

1k6 5.1 Combined-Field Formulation for Axial Slot Coupling

An alternate formulation to that presented in Chapter 2 is based on the use

of the combined-field integral equation [181, [21] discussed in Chapter 4.

Although this procedure requires more computational effort than the MFIE for-

mulation of Chapter 2, it does not suffer from the uniqueness problems that

%plague the MFIE.

The axial slot coupling problem requires the electric current density

induced on a cylinder by a TE excitation. Following the procedure used in

Chapter 2, the combined-field equations have the form

c g7(ty) + (,-a) . Hnc(ty)-- (,-a) n y (t y)
Nt z t

22
-n {(1-a) c + a (t) grad div + kk (t)p;ky) dt' (

jk z

jk z

J(1-a) ) curl f t(t') tt' (t',)y) d(kky) dt'

(1-a) f(t) curl f i I 3 (t', ') G7(p;k,y) dt' (5.2)

" where ( -ky) is defined in Equations (2.5) and (2.6), and a is a parameter

/4 usually taken equal to 0.2. If the cylinder is modeled by a superposition of
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flat strips, as depicted in Figure 2.1, and if both components of the current

density J are approximated by a piecewise constant representation over each cell
,in the model, the CFIE formulation yields the 2N x 2N matrix equation1.

A(t) A(Z)
_ A! J C

(z)1

B(t) B J D (5.3)

having elements

A(t) = - (l-) n - (1-a) n H • J (0,0) - a Et J (0,0) (5.4)
mm z t

*1 A(t) -- (1-a) n~ Hz * J A'y

- aEt * i (Ax'eAy) (5.5)

A(z) . - a Et J (AxAy) (5.6)mn t z

B(t) = - (1-a) n H t • J (AxAy) (5.7)
mn tt

B(z) = (1-a) n - (1-a) n Ht • J (0,0) (5.8)
mm z z

B(z) W- (1-a) E t • * (AxAy) (5.9)
mn z

NS

Cm M VW Io aEt .K (Ax,Ay) + (1-a) Hz K K(AxAy) (5.10)
n-i

-Ns

D0 = IW ( (I-a) r Ht * K Z(AXAy) (5.11)
m ~ n1 z
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where the expressions H • K Et  Kz, etc. are tabulated in the Appendix, and

Ax - x - x (5.12)

=AY -YM Yn (5.13)

The subscripts m and n denote the observation and source cells. For con-

venience, the equivalent magnetic current in the source slot is decomposed into

piecewise-constant expansion functions. These source functions are superimposed

in Equations (5.10) and (5.11). V and W are the weighting factors given in

Equations (2.21) and (2.22). Note that the matrix equation must be solved at

& each value of the transform variable y, before the admittance can be computed as

. indicated in Equations (2.23) and (2.24).

d 5.2 Numerical Results for Axial Slot Admittance

.,. The examples for axial slot coupling presented in Section 2.3 will be

repeated using the combined-field formulation described above. Note that it is

only necessary to use the CFIE formulation over the "visible" portions of the

2 2
spectrum, i.e. y < k . The MFIE formulation of Chapter 2 will produce unique

results for all other values of y. The first example consisted of a circular

cylinder with I X radius, containing slots with dimensions 0.2 X x 0.5 X.
'V

. Eigenfunction data are presented in Table 2.1. An 88 equal-sze cell odel is

used to represent the cylinder and slot geometries. A plot of the spectral

admittance function appears in Figure 2.3. This figure and the experimentation

performed in Chapter 2 suggest that the spectrum can be truncated at y = 20

without incurring significant errors.

p~rx
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Table 5.1 shows the CFIE admittance values for two values of the fictitious

spatial period. From a comparison with the data presented in Chapter 2, the

CFIE results are clearly more accurate than the MFIE values for slot spacings of

4 X and 8 X.

A second example involving a circular cylinder with 0.7582 X radius was

examined in Chapter 2 using a 47 cell model to represent the geometry. Slots of

dimensions 0.3048 X by 0.6858 X are considered. Tables 2.7 through 2.9 pre-

sented MFIE data for admittance, and Table 5.2 presents CFIE data for com-AI
parison. Note that the CFIE results change only slightly as the spatial period

is varied, in contrast to the large fluctuations in the MFIE data of Chapter 2.

Unfortunately, for the slot spacing of 6 X, neither the CFIE or MFIE result for

admittance agrees with the eigenfunction value.

5.3 Combined-Field Formulation for Circumferential Slot Coupling

The circumferential slot coupling problem requires the solution for the

electric current density induced on a cylinder by a transverse magnetic current

density. The combined-field equations for this problem as a function of the

transform variable y are

-icinc

Zinc (t,y) + (1-a) n f (t,y) (1-a) n T (ty)
t z t

el k2
-grad div + kn {(-a) curl + a Q(t) Jk _(t)

a n E(t) grad div + k- f tY)
jk (
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TABLE 5.1

A comparison of the numerical results for the mutual admittance

3 between axial slots for different spatial periods. The circular

cylinder has 1 X radius and is modeled with 88 cells. The

spectrum is truncated at y - 20. Both slots have H - 0.214 X

and W - 0.5 X. All slot separations have A+ 0* (CFIE solution).

The admittance is given in magnitude (decibels) and angle (degrees.)

Nz P zP - 20.5 x Pz M 40.5 A eigenfunction

lAX 00 -86.24 /-168.6 -86.22 Z-168.6 -87.1 -171

2 0 -99.16 Z-174.8 -99.13 Z-174.3 -100.0 Z-174

4 0 -111.96 /-176.2 -111.66 1-174.9 -112.4 Z-175

8 0 -128.61 /-159.4 -124.32 /-151.0 -124.3 1-174

1 45 -88.31 4-0.4 -88.32 /-0.3 -89.2 /
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TABLE 5.2

A comparison of the numerical results for the mutual admittance

between axial slots for different models of the cylinder. The

circular cylinder has 0.7582 A radius and is modeled with 47 cells.

The spectrum is truncated at y - 20. All slot separations involve

0 - 0* (CFIE solution). The admittance is given in magnitude

(decibels) and angle (degrees). Both slots have H - 0.3041 X

and W 0.6858 X.

Az P = 40.5 X P - 80.5 X eigenfunction

1.524 X -91.49 /19.2 -91.50 /19.0 N/A

3.048 A -105.99 /158.9 -105.93 /159.2 N/A

6.096 X -109.72 /177.7 -109.72 /174.5 -118.1 4150

iI
iI
!U
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a~~~~ ~ jict. ,a ic(ty) . (1-a) ni j t,Y)z 2 t

a grad div + k2 + (1-a) t(t) - curl f tUt') I (t,y) -G(p;k,y)dt'

zjk 
t

a (1 c 2 'k+ 1-a) tt) -curl} f I 3 (t',y) 'G(p;k,y)dt' ( .5

S where G-(P;k,y) is defined in Equations (2.5) and (2.6), and aL is a parameter

usually taken equal to 0.2. If the cylinder is modeled by a superposition of

S flat strips, as depicted in Figure 2.1, and If both components of the current

S density j are approximated by a piecewise constant representation over each cell

in the model, the CFIE formulation yields the 2N x 2N matrix equation

EWt EWz) G
- - (5.16)

UF(t) FW (z H

having elements

EW . - (1-a) n -(1-a) n~ Hz * J (0,0) -a Et a J~ (0,0) (5.17)

E3t) . - (1-a) n Hz 0 J~ (,&x,,y) - a Et J J(&x,A&Y) (5.18)

EW - a Et * J(AxAy) (5.19)

F~).-(1-a) ni Ht 0 a~y - a Ez * A'Y (5.20)

F(z) . (1-a) ni (1-a) n Ht 0 3 (0,0) - a Ez * J (0,0) (5.21)mm t z z z

F(Z) .- (1-a) Ht 0 JAx,ay) - a E2  J J(AxAy) (5.22)

-Ns

G w , W n[aEt .K (Ax,Ay) +(1-a) nHz a K t(ax,ay)] (5.23)
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m Vn [a Ez - Kt(AxAy) + (1-a) n Ht * Kt(Ax,Ay)] (5.24)

where the expressions H z  K Et  Kt, etc. are tabulated in the Appendix, and

Ax - x - x (5.25)
m n

hy - Ym - Yn (5.26)

V and W are the weighting factors given in Equations (3.9) and (3.23). As wasn

the case with axial slot coupling, the matrix equation must be solved at each

value of the transform variable y.

5.4 Numerical Results for Circumferential Slot Admittance

A circular cylinder having 1 X radius and slots of dimensions 0.2 A x 0.5 X

was considered in Chapter 3. Eigenfunction solutions for admittance are pre-

sented in Table 3.1, and data based on the MFIE were presented in Tables 3.2 and

3.3. Table 5.3 presents CFIE data for admittance, using the 88 cell model

employed in Chapter 3. Note that the CFIE formulation is only employed over the

2 2
"visible" portion of the spectrum, i.e., y < k . The HFIE formulation of

Chapter 3 will produce unique results for all other values of y. The effect of

truncating the spectrum at y - 20 is also depicted in Table 5.3. The spectrum

for this example is displayed in Figure 3.2.

Chapter 3 considered a second example involving slots in a 1.517 A radius

cylinder. The slots were of dimension 0.3048 A x 0.6858 X, and the cylinder was

modeled with 83 cells. Table 3.6 presented eigenfunction data for admittance.
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TABLE 5.3

Numerical results for the mutual admittance between circum-

I ferential slots as a function of spectrum truncation. The

circular cylinder has radius of one wavelength and is modeled

with 88 cells. The slots have H - 0.2 A and W - 0.4998 A.

The spatial period fixed at Pz W 40.5 A. The admittance is

given in magnitude (decibels) and angle (degrees). (CFIE

I solution)

3 AZ Amax rz 20 Ymax a 30

3 0.5X 0* -68.42 /-118.2 -68.41 /-118.2

i 1.0 0 -73.30 / 67.8 -73.35 / 67.7

1 2.0 0 -78.90 / 70.4 -78.96 / 70.3

4.0 0 -85.17 / 71.6 -85.11 / 71.7

8.0 0 -92.01 / 70.0 -92.06 / 69.9

1.0 45 -82.76 /-38.1 -82.76 /-38.1

U
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Tables 3.7 and 3.8 presented admittance data based on the MFIE formulation.

CFIE data for comparison are presented in Tables 5.4 and 5.5.

CFIE data from these examples agree well with both MFIE and eigenfunction

results from Chapter 3. (Neither of the examples of Chapter 3 appears to be

affected by the uniqueness problems that the CFIE is intended to remedy; there-

fore, a significant change in accuracy was not expected.)

5.5 Remarks on Execution Time

Although the programs used to generate the admittance data presented above

were tested on several different computers, most of the data was obtained using

an AT&T 6300 desktop personal computer with the IBM Professional FORTRAN com-

piler. The program execution times vary with the period size, the spectrum

truncation, and the number of cells in the cylinder model.

The CFIE data presented for axial slot coupling using an 88-cell model,

spatial period of 40.5 X, and spectrum truncated at y - 20 required 15 hours of

computation. A similar run for circumferential slots required 20 hours. The

axial slot data involving a 47-cell model, spatial period of 40.5 X, and ymax

20 only required about 3 hours of computer time. The circumferential data

involving the 83-cell model and spatial period of 90.5 X required about 38 hours

of computer time.

5.6 Summary i

In an attempt to remediate the uniqueness problems associated with the MFIE

formulations of Chapters 2 and 3, a CFIE formulation has been incorporated into
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TABLE 5.4

Numerical results for the mutual admittance between circum-

ferential slots as a function of period size. The circular

I cylinder has radius of one wavelength and is modeled with

83 cells. The slots have H - 0.3048 X and W - 0.6891 X.

3 The spectrum is truncated at y - 20. The admittance is

given in magnitude (decibels) and angle (degrees).

I(CFIE solution)

1 AZ P - 30.5 X P - 60.5 P - 90.5z z z

0.38 X -62.95 1-70.7 -62.86 /-71.1 -62.85 1-71.2

0.76 -66.68 /155.4 -66.68 /155.3 -66.69 /155.2

1.52 -72.80 1-117.7 -72.36 1-116.9 -72.23 /-117.1

3 2.29 -74.45 /-27.4 -74.46 1-28.2 -74.47 /-28.6

3 3.05 -78.80 /51.5 -78.02 /54.6 -77.76 /54.6

I
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TABLE 5.5

Numerical results for the mutual admittance between circum-

ferential slots as a function of period size. The circular

cylinder has radius of one wavelength and is modeled with

83 cells. The slots have H = 0.3048 X and W - 0.6891 X.

The spectrum is truncated at y - 20. The admittance is given

in magnitude (decibels) and angle (degrees). (CFIE solution)

AZ P - 30.5 X P - 60.5 P = 90.5
Z z z

8.38 X -85.11 /-44.2 -84.77 /-54.6 -84.63 /-57.8

9.14 -85.03 /-5.7 -85.76 /5.3 -85.55

9.91 -87.24 /133.0 -86.53 /117.8 -86.29 /113.9

10.67 -84.97 /168.2 -86.21 /177.2 -86.16 /179.4

11.43 -90.20 /-45.5 -88.66 /-69.0 -88.26 1-74.0

sun. I'



99

the slot coupling problem. Data have been presented for four cylinder

geometries in order to judge the accuracy of the numerical admittance results.

In general, the CFIE admittance data appear to be significantly more reliable

than the MFIE data presented in Chapters 2 and 3. Use of the CFIE formulation

eliminates the large fluctuations in admittance as the spatial period is varied.

For axial slot coupling, the CFIE results are in excellent agreement with

the eigenfunction values for slots spaced within 4 wavelengths along the

cylinder axis. For slots spaced 6 and 8 wavelengths apart, errors in magnitude

3or phase are observed in both the MFIE and CFIE solutions. For circumferential

slots, excellent agreement was obtained for all the slot separations considered.

Because only a limited number of eigenfunction values were available for

comparison [5], we did not attempt an extensive investigation to determine the

regions of validity of the slot coupling formulation. The values in error seem

to involve coupling below the -115 dB level. For the examples considered here,

S the coupling only fell below -115 dB for axial slots. Additional study is

needed in order to determine whether this represents a fundamental resolution

limit or some other problem.

The purpose of comparing the numerical results to eigenfunction data was to

validate the computer programs and investigate how large the spatial period and

spectrum must be to ensure accurate results. Good agreement for closely-spaced

slots suggests that the computer programs are debugged. The extent of the

spectrum and spatial period can be determined from the data presented in

Chapters 2 and 3. When using cylinder geometries different from those pre-

viously studied, these parameters may require additional investigation.

I.Unw.m C IO
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6. ADMITTANCE BETWEEN SLOTS IN NONCIRCULAR CYLINDERS

Previous chapters have presented a formulation for the analysis of the

mutual coupling between slots in arbitrarily shaped cylinders. Data have been

generated for slots in circular cylinders, which facilitated a comparison between

numerical data and eigenfunction results for admittance. These comparisons

appear to validate the theory and the computer programs, at least for slots that

are relatively closely spaced in the z-dimension. This chapter presents admit-

tance data from the numerical procedure for two cases: slots in square cylin-

ders and slots in pie-shaped cylinders. These examples have been selected to

illustrate the flexibility of the procedure. In addition, as these cylinder and

slot geometries are simple to describe, these examples permit future comparisons

between the numerical data and other data, i.e., that obtained by measurement or

other analytical, asymptotic, or numerical methods.

Consider a square cylinder containing axial slots located along the center

line of a common face. The cylinder has a side dimension of 1.5 wavelengths,

and the slots are of dimension 0.3 x 0.5 wavelength. Sixty equal-sized cells

were used to represent the cylinder for numerical analysis. Data for admittance

are presented in Table 6.1 for several slot separations. Data for the admit-

tance between circumferential slots in the same square cylinder are presented in

Table 6.2. The circumferential slots are of dimension 0.3 x 0.5 wavelength, and

are located along the centerline of a common face of the square cylinder. Both

Table 6.1 and Table 6.2 illustrate the effect of the fictitious period size on

the numerical data, as the results for large slot separations are clearly not

accurate for small period sizes.

U R
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TABLE 6.1

Numerical results for the mutual admittance between axial

slots as a function of period size. The square cylinder

has side dimension of 1.5 wavelengths and is modeled with

60 cells. The slots have H - 0.3 A and W- 0.5 A. The

spectrum is truncated at y 20. Slot separation At = 0.

jThe admittance is given in magnitude (decibels) and angle

(degrees). (CFIE solution)

Az P = 40.5 P - 80.5
Z z

I A -83.80 /-i50.9 -83.77 /-150.9

2 -96.79 / 144.6 -96.66/ 145.0

4 -103.87 / 166.0 -103.56 / 166.2

8 -114.29 /-71.8 -113.682-176.7

16 -123.73 /-119.4 -124.60 /-111.6

I
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TABLE 6.2

Numerical results for the mutual admittance between circum-

ferential slots as a function of period size. The square

cylinder has side dimension of 1.5 wavelengths and Is modeled

with 60 cells. The slots have H - 0.3 X and W - 0.5 X. The

spectrum is truncated at y = 20. Slot separation At - 0.

The admittance is given in magnitude (decibels) and angle

(degrees). (CFIE solution)

Az P f 40.5 P = 80.5
z z

I A -73.47 / 82.8 -72.97 / 80.0

2 -82.77 / 98.0 -81.63/ 88.5

4 -94.43 / 25.3 -89.06/ 32.3

8 -96.09/ 13.1 -89.90/ 26.1

16 -103.13 / 4.2 -92.51 / 25.3

5I
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I
The cross section of a pie-shaped cylinder is depicted in Figure 6.1. Data

for the admittance between axial slots and circumferential slots in such a

cylinder are presented in Tables 6.3 and 6.4, respectively. In these examples,

the cylinder radius a is equal to 2 wavelengths, and the angle 8 defining the

Sarclength of the pie shape is 21.827 degrees (refer to Figure 6.1 for the defi-

nitions of these parameters). A total of 50 equal-sized cells were used to

represent the cylinder for the purpose of numerical analysis. The slots were

located along the center line of one of the flat faces of the cylinder, and the

dimensions of the slots were 0.2857 x 0.5 wavelength for the axial case, and 0.3

. x 0.4762 wavelength for the circumferential case.

g

"O
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a

Figure 6.1 Geometry of pie-shaped cylinder.
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I
TABLE 6.3

3 Numerical results for the mutual admittance between axial

slots as a function of period size. The pie-shaped cylinder

has 2 X radius and an arc length of 21.830. It is modeled

with 50 equal-sized cells. Slot separation: at - 0* (CFIE

solution). The admittance is given in magnitude (decibels)

and angle (degrees). Both slots have H - 0.2857 and W - 0.5

wavelength.

I &z P - 40.5 X P - 80.5 A
z z

1 X -82.20 / 174.9 -82.201 174.9

I
2 -93.92 /-135.8 -93.93 /-135.9

4 -112.35 / 104.9 -112.32 / 105.4

8 -118.30/ 164.2 -117.79/ 161.0

16 -147.23 / 72.3 -140.83 /-166.4
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TABLE 6.4

Numerical results for the mutual admittance between circum-

ferential slots as a function of period size. The pie-shaped

cylinder has radius equal to 2.0 wavelengths and an arc length

of 21.83%. It is modeled with 50 equal-sized cells. The slots

have H - 0.3 X and W - 0.4762 X. The slot separation is At - 00.

The admittance is given in magnitude (decibels) and angle (degrees).

(CFIE solution)

Az P - 40.5 X P - 80.5 Xz z

I x -73.51Z 80.1 -73.39/ 79.8

2 - 7 8 6 0 L86. -78.41 Z 85.6

4 -87.08 / 108.9 -86.69 ! 106.0

8 -95.08 / 71.2 -93.57 / 69.0 1

16 -125.22 /-178.6 -108.34 55.8

I

i
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7. CONCLUSIONS AND SUGGESTED FUTURE WORK

3This report describes an investigation of a numerical procedure to estimate

mutual admittance between slots in cylinders having arbitrary shape. Since this

study was of a preliminary nature, one initial goal addressed the feasibility of

formulating the problem in this fashion. The accuracy of the approach has been

confirmed by comparisons between numerical data and previously published results.

The method does require a large amount of computational effort relative to siml-

lar methods that have been proposed for treating restricted geometries.

However, none of these alternative approaches can easily treat the arbitrary

cylindrical shapes of interest. Therefore, the computational effort is reason-

able, at least for cylinders of moderate size. In summary, it appears feasible

to treat the slot coupling problem in the manner proposed above.

Initially, the formulation involved the numerical solution of a magnetic-

field integral equation (MFIE). However, erratic results were observed and

attributed to uniqueness problems with the MTIE. A variety of alternative

approaches were investigated, and a combined-field integral equation (CFIE) was

selected as a suitable replacement for the MFIE. Although this choice required

an increase in computational effort, results based on the CFIE formulation

appear stable and accurate.

Because published data for slot admittance were only available for cases

involving closely spaced slots, questions remain concerning the validity of this
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numerical formulation for the admittance between widely spaced slots. Future

work should address this issue, perhaps by generating additional eigenfunction

data for circular cylinders with which to validate the procedure over a wide

range of parameters. In addition, it is desirable to investigate slots in non-

circular cylinders for validation purposes, perhaps by comparing numerical data

to measured results. Data for slots in noncircular cylinders have been provided

to facilitate such a comparison.

I
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APPENDIX: SOURCE-FIELD RELATIONSHIPS FOR CYLINDERS ILLUMINATED BY
AN OBLIQUELY INCIDENT FIELD

The following is a compilation of formulas for the various field components

produced by a single strip-cell of constant current density radiating in space.

These expressions are used when calculating the moment-method matrix elements

for cylindrical scattering problems, under the condition that the z-dependence

of the excitation is

e j yz (A.1)

Thus, the incident field may be a plane wave impinging on the scatterer from an

oblique angle (not perpendicular to the cylinder axis). This particular z-

dependence also arises if a Fourier transformation in z is used to replace a

three-dimensional problem involving an infinite cylinder by the superposition of

two-dimensional problems.

Figure A.1 illustrates the geometry under consideration. The strip-cell of

unit current density is centered at the origin, is of cross-sectional length

'W,' and is orieuted so that its outward normal vector makes a polar angle '*'

with the axis (outward must be defined in the context of a closed cylinder

with an inside and outside; our strip is considered to be one of a number

modeling such a cylinder). The field components of Interest are the z and

components of the electric (E) and magnetic (H) fields at some observation point

(x,y), where T is the tangent vector to a similar strip with outward normal vec-

tor given by the polar angle '*.' The source may be the 1 or t component of

magnetic or electric current density. We consider only the case In which the

current density is constant on the strip.
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The notation employed will identify both the source component and the field

component. For example, Hz • Jt denotes the i-component of the H-field produced

by the E-component of electric current density. Appropriate expressions for the

fields produced by sources are found in terms of the vector potentials A and F

= curl A + grad div + k 2 (A.2)
jkn

n grad div + k2  _curl (A.3)jk

where the vector potentials are defined

W/2
A(x, y) - f [i Jz(S) + e J (s)] a(R;k,y) ds (A.4)

s- - W/2

W/2
F~,y) - f [i K z(s) + f K t(s) ] a(R;k,y) ds (A.5)

s- -W/2

and

1 H (2) (R !k2 - y2) k2 > 2T o 0 R - ,k

T(R;k,y) = (A.6)
°  2 2 2

7-K 0(R /y -k),y >

R = I (x + s sin 0)2 + (y _ s cos 0)2 (A.7)

In Equation (A.6), H refers to the Hankel function and K the modified Bessel

function of the second kind.

Because of the assumed eli z dependence, any derivatives with respect to z

in the 'curl,' 'grad,' and 'div' operations are replaced by multiplications with

'Jy.' In some cases, derivatives will be transferred to the Green's function in
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Equation (A.6), and we note that

k Y (--2 2 2
4j H1 ( k

U'Rky (A. 8)

2w K 1 (R/y' k) >k

For explicit calculations, the vectors E and T are defined

e - sin~ +9 Cos *(A.9)

f2 - sin + 9cos~ (A.10)

The i-component of the H-field produced at (x,y) by a i-component of magne-

tic current density on the strip of Figure A.1 is given by

k2 2 W/2
Hz0Kz(X,y) Gk (R;k,y) ds (A.11)

zs- - W/2

where G is defined in Equation (A.6). A closed-form expression for Equation

(A.11) is not available, and in general it must be evaluated numerically.

However, in many cases it can be approximated by

H K (x,y) -(k 2  2 W (p;k,y), p *0 (A.12)

where K W k

an p x2 +-y2  (A.13)

W 6.10482

H *K (0,0) (k Y--~ W (A.14)
z z 4kn

-L W Y k 21 > k2
n 6.10482 -

LE
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Equation (A.14) is obtained by integrating a small-argument form of the Hankel

or modified Bessel function of Equation (A.6). The type of approximation

employed here is accurate within a few percent as long as the strip size does

not exceed about a tenth of a wavelength.

The i-component of the H-field produced by a E-component of unit magnetic

current density on the strip of Figure A.1 may be obtained from the expression

•Kt(x,y) 1fkn z " grad div Ft (A.15)

which reduces to

W/2

H K (x,y) s-f (R;k,y) ds (A.16)z tkn t s= - W/2

and finally, to the closed-form expression

Hz •Kt(x,y) 2L [ (Rl;k,y) - G(R2 ;k,y)] (A.17)

where

R /(x - sin *)2 + (y +4 cos *)2 (A. 18)

R (x + f sin 0)2 + (y -1  cos *)2 (A.19)

No 2-component of the H-field is generated by a i-component of electric current

density; thus,

H • J z(x,y) 0 (A.20)

z z
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A E-component of j does produce a i-component of H, according to

W/2

H • Jt(x,y) M (cos + sin 0-L) f a(R;k,y) ds (A.21)

s- - W/2

For a point (x,y) away from the strip, this expression becomes

W/2 s(

H z J(x,y) f [COS + sin R L (~,y ds (A.22)

where

Ax x + s sin 

(A.23)

Ay y - s cos * (A.24)

and

R " A2 +Ay 2  (A.25)

G is defined in Equation (A.8). In general, Equation (A.22) must be evaluated

numerically.

As the observation point (x,y) approaches the strip from the outward side

(as defined by '0'), a limiting procedure can be used to compute

1H J (0,0) (A.26)-'z " - 2

outside

If (x,y) approached the strip from the inside, a similar procedure produces

H " J (0,0) (A.27)z t2

inside

The transverse component of the H-field produced by a i-component of a

magnetic current density may be obtained from the expression



118

Ht . K (x,y) =jn-T - grad F z (A. 28)

This reduces to

Ht .K (xy) W/ Ax r- sin 4'+ 1z cos*] (Rky s A.9
zk s-fW/2 RR 4]GRky s (.9

where Ax Ay, and R are defined in Eq~uations (A.23) to (A.25), and ilis defined

in Equation (A.8). En general, Equation (A.29) must be evaluated numerically.

For the special case when the observation point (x,y) happens to lie on the

source strip, the field vanishes and

Ht 0 K z(0,0) = 0 (A. 30)

The transverse H-field produced by a transverse magnetic current is given

by the expression

H . K (x,y) .(grad div +k2) Ft (A.31)
t t jt

which can be expanded to produce

Ht 0 K =xy 1 j{(- sin 4'---f +Cos 4'0 -&Y ( 1 k, y)
t t (x j kr, RI 1 1

--sin R -+ Cos R A2y2 y~

k csW/2
Jn s- fo (- W/ *) f (R;k,y) ds (A.32)

where

I - sinO (A.33)

A7 - fCos *(A.34)
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p R2 2 (A.35)

Ax2 "x + sin (A.36)

Ay2 n y-H cos * (A.37)

R 2 + Ay22 (A.38)L 2 2 Ay2

Although the remaining integral in Equation (A.32) cannot be reduced to a

closed-form expression, the approximation employed previously to convert

Equation (A.11) to Equations (A.12) and (A.13) may be used for computational

purposes.

The transverse H-field produced by a i-component of electric current den-

sity is given by

9aA 3A! z  2)

H J(x,y) - - (A.39)

which reduces to

W/2

Ht 0 1z ~(xYs= s- [i W/2 [sin * R R

where Ax, Ay, and R are defined in Equations (A.23) and (A.25). Again, numeri-

cal integration must be used to accurately evaluate Equation (A.40). When the

observation point lies on the strip, a limiting argument similar to that

employed in Equations (A.26) and (A.27) can be used to show that the transverse

H-field an infinitesimal distance outside the strip is given by

1
Ht " J  (0,0) 1 (A.41)zI 2

* outside

E
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The transverse H-field an infinitesimal distance inside the strip is

Ht • J (0,0) 1 (A.42)
z 2

inside

The transverse H-field produced by a E-component of electric current density can

be found from the expression

Ht * Jt (x,y) - - jy T • ( cos * + sin ) At  (A.43)

which reduces to

W/2
Ht " Jt (x,y) -jy sin ( - *) f a(R;k,y) ds (A.44)

s= - W/2

The integral can also be approximated according to the procedure outlined in

Equations (A.12) and (A.13), if desired. When the observation point approaches

the strip, the expression vanishes. Therefore,

Ht " Jt (0,0) = 0 (A.45)

The above equations describe the magnetic field produced by a constant

electric or magnetic current density. Expressions for the electric field pro-

duced by the same sources can be found directly from the above expressions using

the principle of duality. These formulas are given as follows:

E J (x,y) = n2 H • K (x,y) (A.46)

~2
E -J (xy)n2 Hz Kt (x,y) (A.47)

E • K (x,y) - 0 (A.48)z z

Ez • Kt (x,y) - - Hz a Jt (x,y) (A.49)

Et " Jz (x,y) - n2 Ht • Kz (x,y) (A.50)
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E E * J3 (x,y) -n 2 Ht* K t(,)(.1

Et 0K z(x,y)-Ht .3 (X,y) (A.52)

IEt aK t(xy) -- Ht .3 (x,y) (.3
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