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I. INTRODUCTION

During sample preparation for mechanical properties testing, ring-like
structures were observed on the ends of multiperforated propellant grains.
This structure was revealed first in experimental M31A1 gun propellant,
produced as part of a nitroguanidine (NQ) particle size study. The structure
was found in eight experimental lots and in the reference lot of M31A1. The
same patterns were also discovered in the reference and eight experimental
lots of M30 propellant, also as part of the NQ study. These rings and the
morphology producing them seem to be common to extruded propellant containing
NQ.

The morphology of propellants can affect the combustion of these
materials in several ways. First, since the mechanical response of the
propellant can be greatly influenced by processing and the resulting
structure, the morphology and factors controlling the morphology may be very
important. For example, propellant mechanical properties and fracture
response have been shown to have a large effect on piezometric efficiincy1,
safety, 3 , and are suspected to have similar effects on the vulnerability. In
fact, all recent, low temperature overpressures in large caliber guns have
been attributed to propellant fracture occurring early in the ballistic cycle.
Also, more subtle effects are possible, such as changes in burning rate or
ignitability due to different morphologies being exposed to the flame as the
grain burns. In any case, the structure uncovered here provides an
opportunity to expand the understanding of processing variables and their
effects on propellant combustion.

II. EXPERIMENTAL METHOD AND RESULTS

A. Propellant Grain Structure

Two propellant formulations, M31A1 and M30, were undergoing fracture
response characterization when a ring structure at the grain ends was revealed

1C. W. Fong and B. K. Hoy, "Ballistic Criteria for Propellant Grain Fracture
In the GAU-8/A 30MM Gun," Technical Report AFATL-TR-82-21, Air Force Armament
Laboratory, Direct Fire Weapons Division, Eglin AFB, Florida, March 1982.

2 P. Benhaim, J. L. Paulin, B. Zeller, "Investigation on Gun Propellant Break-
Up and Its Effect in Interior Ballistics," Proceedings of the 4th
International Symposium on Ballistics, Monterey, CA, October 1978.

3 A. W. Horst, I. W. May, and E. V. Clark "The Missing Link Between Pressure
Waves and Breechblows," Ballistic Research Laboratory Report ARBRL-MR-02849,
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TABLE 1. PROPELLANT COMPOSITIONCmoetPercent

MIJAI.

Nitrocellulose 20.00 28.00
(Percent Nitration) 12.65 12.60

Nitroglycerin 19.00 22.50
Nitroguanidine 54 .00 47.70
Dibutylphthalate 4.50 -
Ethyl Centralite - 1.50
2-Nitrodiphenylamine 1.50 -
Potassium Sulfate 1.00 -
Graphite 0.15 0.10
Cryolite - 0.30
Ethyl Alcohol 0.30 0.30

as a result of the specimen preparation. The gun propellants are triple base,
consisting of a nitrocellulose binder, nitroglycerin plasticizer, and
nitroguanidine filler. The percent compositions for each propellant are
listed in Table 1. During preparation for mechanical properties testing, the
grain, which is in the form of a right circular cylinder, must have its ends
flat, parallel, and perpendicular to the cylinder axis; this was done by
machining the grains with an end mill. When this was done for the M31A1
reference Lot 070077, white ring patterns, shown in Figure 1, appeared.
Similar patterns appeared in all other M31A1 specimens. Since this structure
had never been observed before, further investigations were conducted to
explain the formation and nature of the rings.

The M31A1 specimen shown in Figure 1 was prepared for investigation using
a scanning electron microscope (SEM). Figure 2 shows the resulting SEM
photograph, and demonstrates the morphological nature of the rings. The long
sweeping arcs are the result of machining required to flatten the end surfaces
for testing. Higher magnification photos showed that each ring seemed to be a
path formed by a series of voids. Since it was difficult to determine if the
apparent porosity was intrinsic to the grain or generated by the preparation
procedure, this grain was prepared for further investigation by being cold
fractured along a line from midweb to midweb, through the middle of the ring
structure and middle perforation. Fractures, such as this one, running
through the center of opposite ring structures will subsequently be referred
to as a Type A Fracture, which is illustrated in Figure 3. Cold fracturing is
achieved by slowly cooling the grain in dry ice. A cold razor edge is then
placed along a line defining where the crack is to begin, and a hammer strike
initiates the crack propagation. The resulting crack exposes new surface that
is neither stretched nor torn and, due to the brittle nature of the low
temperature fracture, the inner structure of the material is revealed with
little disturbance.

This newly exposed surface is shown in Figure 4. Figure 4a shows the
entire fractured grain surface that resulted from a Type A crack propagated in
the grain shown in Figure 2. The left side best shows bands that arc from the
outside surface to the center perforation, at the center of the picture.
These bands were found to be characteristic of midweb fractures in grains that

8



a. The Entire Graini End

b. Detail of Figure 1la.

Figure 1. OPtioal FbotograPh of M31AI Lot 07077 Showing the Ring Structure
,between the Outer Perforations
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Figure 2. 851 Photograj& of 1 I Sboving the Ring Structure

Type A Fracture Line Type B Fracture Line

Figure 3. Illustration of Type A and Type B Fractures in Propellant Grains

showed the ring patterns. Figure 'Ib shows the bands enlarged (Figure 4e.
illustrates the spatial relationship among photos in Figure 4) The outside
of the grain is to the left, and the center perforation runs from top to
bottom just off to the right of the photo. Figures 4Ic -shows the center web at
a magnifioation of 1001 and reveals the zigzag pattern of the NQ. Near the
outside surfaoe all the NQ crystals were strongly aligned in the direction of

10
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a. Entire Fracture Surface

b. Bands of Folded NQ Arcing from Outside Surface to Center Perforation

Figure 4. SEM Photographs of the Type A Cold Fracture Surface of the Grain
Shown in Figure 2 Showing the Structure Responsible for the Rings

11

U
-v



o. Detail of Figure 4b Showing NQ Folding within the Band

d. Detail of Figure 4a Showing NQ Alignment Near the Center Perforation

Figure 4. SEM Photographs of the Type A Cold Fracture Surface of the Grain
Shown in Figure 2 Showing the Structure Responsible for the Rings

12
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Fir FFigure 4c Figure 4d

e. Schematic Diagram Showing the Relationship among the Photos
in Figure ii to the Split Grain and Each Other

Figure 4. SEM Photographs of the Type A Cold Fracture Surface of the Grain
Shown in Figure 2 Showing the Structure Responsible for the Rings

extrusion and there was no folding. This alignment occurred again to a lesser
degree, as Figure 4d shows, near the center perforation, which is running from
top to bottom on the right. In this photo the NQ is aligned parallel to the
direction of extrusion, and none of the midweb zigzag pattern is present.

The NQ morphology description above is in sharp contrast to the
morphology thought to exist based on previous observations. Ordinarily the
orientation for grain fracture had been along a row of three perforations.
This was done to produce a crack that had clean, flat surfaces that were
easily investigated. Fractures running between adjacent ring structures will
subsequently be called a Type B Fracture, which is illustrated for a
propellant grain in Figure 3. Figure 5 shows what is seen in such a fracture.
The NQ was everywhere aligned in the direction of extrusion. There were no
bands, and no zigzag patterns. This type of alignment was observed for all
Type B fractures in the propellant grains that showed ring patterns. The
conclusion drawn from observations such as these was that the NQ aligns in the
direction of extrusion, and it was assumed that the alignment continued into
the web. From Figure 1 it can be seen that along any row containing the
center perforation no ring pattern is intersected and the underlying
morphology that produces the rings is therefore not observed.

13

)(/



a. Fracture Surf aoe Showing the Web Region between Three Perforations

b. Detail of Figure 5a Showing NQ Alignment (301)

Figure 5. 554 Photographs of 1430 Propellant with Type B Fracture

141



Observations were made on one reference and eight experimental lots of
each propellant type with similar results. In every grain investigated there
were bands of folded (zigzag) NQ in the midweb regions between the outside
perforations. Near any extrusion surface (outside or perforation) and in the
regions between three oollinear perforations, the NQ crystals were aligned in
the direction of extrusion. The degree of alignment and folding varied with
web size, NQ particle size, propellant type, and processing differences, but
the overall features outlined above remained the same. It should be noted
that the bright orange stabilizer in the M31A1 propellant caused these rings
to be easily seen with the unaided eye. The ring patterns in the M30 were
much more difficult to see and were only successfully photographed using light
transmitted through the sample. This may explain why these features have gone
unnoticed.

B. Solid Strand MIO Pronellant Structure

In another investigation concerned with the effects of normal vs
specially ground NQ in M30, solid strands containing either normal or ball-
milled NQ were extruded. The extrusion press, as it is assembled for seven
perforated propellant strand production, is illustrated in Figure 6. It is
the usual practice, even when extruding solid propellant strands, that the pin
plate be kept within the die. So, in this solid strand extrusion, the pin
plate, which normally contains feed holes and pins was used in the die with
the pins removed. Because of flow problems during the extrusion of these
lots, remixes (resolvation of the nitrocellulose binder) were made. To reduce
the probability of flow problems reoccurring during the second extrusion, the
pin plate was removed from die for both the normal and ground NQ remixes.
What resulted from the procedure outlined above was four different propellant
strands. Normal NQ and ground NQ strands produced with the pin plate in
position, and normal NQ and ground NQ strands that were produced without the
pin plate. In Figure Ta the cross section of the normal-NQ M30 propellant
strand from the first extrusion shows ring patterns similar to those observed
in the perforated grains. In Figure 7b, the ground NQ propellant strand shows
no ring structure, but only darkened regions which correspond to the usual
ring locations. The corresponding remixed lots, produced without the pin
plate, are shown in Figure 8, and show no structure. In the photographs in
Figures 7 and 8, the image was formed from light traveling through the sample,
since the patterns could not be recorded using reflected light.

The SEM investigation of the solid strand specimens that showed ring-like
structures revealed that the same morphology responsible for the rings in the
perforated grains also produced the structure in the solid strands. Figure 9a
shows a section of M30 strand from the same lot shown in Figure 7a. The
section was cold fractured with a Type A Fracture revealing bands which are
most prominent in the upper left-hand part of the surface. As in the
perforated grains, strong NQ alignment occurred near the outside surface (at
the top) and in the center region of the strand. NQ folding occurred within
the bands and is shown in Figure 9b. The cold fracture surface resulting from
a Type B Fracture is shown in Figure 9c. Here, there are no bands and the NQ
was aligned in the direction of extrusion across the entire diameter. Two
specimens from the ground NQ lot (shown in Figure 7b) were cold fractured in
the same way. Figure 10a shows the bands on the surface of the Type A

15
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Feed
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Feed
Holes

Pins

Figure 6. Schematic Diagram Illustrating the Extrusion Process

Fracture on the left (the direction of extrusion in these photos is down).
The NQ folding within the bands is much less distinct, due to the shorter NQ
crystals. However, parallel alignment is observed in the central and outside
surface regions as found for other Type A Fractures. The fracture surface in
Figure 10b is Type B and shows uniform alignment of the NQ across the specimen
diameter. One significant difference between these and the perforated lots is
the shape of the rings. In the propellant grains the rings are altered by the
presence of perforation pins. NQ alignment due to drag seems to cause the
rings to curve away from the perforations, which results in a squeezed

appearance of the rings as compared to the rings formed in the unperforated
strand.

16



a. M30 with Normal NQ

b. M30 with Ground NQ

Figure 7. Photographs of M30 Solid Strand Extruded with Pin Plate

17



b. M30 with Ground NQ

Figurt8 Photographs of 330 Solid Strand Extruded after Remixing
and Pin Plate Removed

18



a. Type A Fracture Showing Bands

b. Detail of 9a Shoving EQ Folding from Midband Region

Figure 9. 1430 Strand Fracture Surface From Strand Shown in Figure 7a
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a. Type B Fracture with No Bands

Figure 9. K30 Strand Fracture Surface From Strand Shown in Figure 7a

The remled lots which showed no structure were cold fractured and also
examined with the SIt. The normal NQ lot showed strong EQ alignment across
the entire diameter. To ensure that this EQ alignment observation was not due
to an inadvertent Type B Fracture, the half grain was -tain xrlit in half. If
a Type B Fracture was made and if the folded EQ stretu owed the six-
fold symmetry found In other spoimens, the now fractw a ace should be
Type A and reveal the folded NQ structure. The sooon ature surface
appeared no different than the initial surface, which sugge ',hat the lack
of observed rings indicates a lack of bands of folded EQ. Figure . shows the
center section of the initial surface of the remixed strand, and reveals a
mild folding of the EQ crystals. The *tightness" of the folding is such less,
i.e. the distance between repeating forms Is longer, and the folding amplitude
is much smaller, but the folding found in the center ot this propellant strand
seems the same in nature as the folding appearing in the centers of the six
ring structures, although on quite a different scale. The remixed ground
propellant lot showed a reduced NQ alignment in the direction of extrusion due
to the shorter NQ length, and no NQ folding near the center of the grain.

C.oli d m a Meah4nll PrMnnrtiea

Mechanical properties tests were performed on these strands for
comparison between the propellant with and without the ring struoture, and for
comparison with the mechanical properties measurements made previously on
perforated lots. Since a very limited supply of solid strand propellant was
available, the tests were performed nondestruotively with the DuPont 982

20



a. Type A Fraoture 3bl Dams

b. Type B Fracture with no Bands

Figure 10. M30 Strand Fracture Surface From Strand Shown in Figure 7b

21



a. Cold Fracture Surface with No Band Structure

b. Detail of Figure Ila fros Midatrand Showing Very Mild NQ Folding

Figure 11. 3430 Strand Fracture Surface From Strand Shown in Figue 8a
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Dynamic Mechanical Analyzer (DMA). Much literature is available on this
tester4. Briefly, the mechanical properties are calculated from the
measurement of the resonance frequency of the Sample/instrument system and the
damping signal required to maintain constant oscillation amplitude.

Measurements were made from -60 to 100 0 C, and the resulting modulus
values are presented in Figure 12. The plot indioates that no outstanding
differences exists among the propellant curves, and that the DMA results agree
fairly well with the high rate measurements made with the Drop Weight

67878 19&20 21&22 19&20 REMIX 21&22 REMIX
DROP WEIGHT NORMAL NO GROUND NQ NORMAL NO GROUND NO

MODULUS (GPa)

10

2

0 II I I I

-80 -60 -40 -20 0 20 40 60 80 100 120
TEMPERATUIRE (DEG C)

Figure 12. Dynamic Mechanical Analysis Results Showing Modulus vs Temperature
for M30. Solid Line is Drop Weight Results of a Reference Lot

4L L Hassel, "Evaluating Polymers by Dynamic Mechanical Analysis," Plastics

Engineering, Vol. 33, No. 10, October 1977.
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Mechanical Properties Tester (DWMPT) 5 . The DWMPT results were gathered at
ambient pressures and at a rate of about 225 s"-. The difference in modulus
between the DMA and DWMPT above room temperature is attributed to thermal lag
of the specimen, due to the relatively high heating rate of 50 C/min used for
all DMA runs.

Figure 13 shows the results of an isothermal run which was used to
indicate the degree of thermal lag at higher temperatures. In this run the

Oso Amp 0 0.20

52 4.8
S

48- 0 -

U z'S g0
---- 4.03.5

- 40-

38- -3.2

32-- 2.8

28- 2. 4

20.0 24.0 28.8 32.8 36.0 4.0 44. 0 48.0 52.0 58.0 60.0 84.0
Time (min) DuPont 1090

Figure 13. Dynamic Mechanical Analysis Results Showing Temperature and
Modulus vs Time for an M30 Strand Showing the Thermal Lag of the Specimen

5 R. J. Lieb, and J. J. Roochio, "Standardization of a Drop Weight Mechanical
Properties Tester for Gun Propellants," Technical Report ARBRL-TR-02516, USA
ARRADCOM Ballistic Research Laboratory, Aberdeen Proving Ground, Maryland,
July 1983.
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temperature was increased from -6 0 °C at 50 C/min to 4 0 C and then held at 400C
for 30 minutes while the mechanical properties were monitored. As the
temperature was held near constant the modulus continued to decrease for the
entire 30 minute period. Although the modulus is approaching a constant
value, a significant thermal gradient is indicated. Measurements at room
temperature taken while the sample was known to be in thermal equilibrium gave
modulus values o about 3.5 OPa, much closer to and lower than the DWMPT
values, which puts the effective thermal lag for these specimens at about
200C. The strands of M30 tested all had about the same diameter, so thermal
lag should be nearly the same for each specimen. If differences in mechanical
properties existed among the strands, the thermal lag problem should not
hinder that measurement.

III. ANALYSIS AND DISCUSSION

A. Pronellant Morphologv

The ring patterns on the grain ends are the result of a combination of
the NQ folding, shown in Figure 4b and 4c, the curved bands stretching from
the outside surface to the inner perforation, as shown in Figure 4a , and the
preferential cutting caused by the surface preparation tool. A surface cut
perpendicular to the axis of the grain would expose parts of several bands.
Since each band has one or more changes in the orientation of the NQ, a ring
pattern appears corresponding to that changing NQ orientation and the
different cutting resistance offered by the m.arocrystal orientation. Other
surface preparation techniques (fine grit sandpaper, diamond saw) produce less
distinct ring patterns on specimens from the same lots. This indicates that
the surface preparation plays a role in the appearance of the grain ends. The
actual shape of the rings is understood realizing that the bands are actually
a two dimensional intersections of a three dimensional dome structure that
contains these folded NQ regions. A ring forms (in the case of the end mill
preparation) as an outline of the region containing similar cutting
conditions, By examining Figure 1 and the corresponding orthogonal view in
Figure 4a, it can be seen that this relationship is demonstrated.

Examination of various experimental lots which contained different
combinations of web and NQ particle sizes indicated that less regular patterns
seem to result from larger webs and larger NQ particle sizes. The rings
within the patterns were separated by greater distances and the patterns
themselves varied quite a bit from region to region. To explain why this is
so may be a topic for future investigations, but this difference indicates
that control over the morphology may be possible.

The lack of ring structure formation in the lots that were remixed is
strong evidence that the pin plate feed holes are a critical element in the
resulting morphology. Figure 14, as in Figure 6, shows the various stages
propellant encounters during the extrusion process, and illustrates the pin
plate and feed hole orientation used for the propellant grains and strands
examined in this study. The following is offered as a possible mechanism for
the ring structure formation. The propellant billet, with an NQ crystal

25



Piston

Propellant Billet Pin

Plate
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Figure 14. Schematic Diagram Illustrating the Extrusion Process and a

Possible Method for the Formation of Bands of Folded NQ within the Grain

orientation determined by mixing and assumed to be random or in randomly

oriented "domains" (similar to ferromagnetic domains in a nonmagnetic piece of

iron), is loaded into the press. The piston forces the putty-like material
through the six feed holes in the pin plate causing the long NQ crystals to be

oriented in the direction of flow due to differential flow across the feed

hole. As the material is forced into the section with decreasing cross-

sectional area, the constriction causes NQ folding in each of the six

"columns" under the holes. The greater the constriction during this part of

the process results in tighter folding of the NQ. The propellant then enters

the region containing the perforation pins. The propellant containing folded

NQ that is near any surface becomes unfolded due to the velocity gradient

26
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caused by surface friction. In areas farther removed from the surfaces the
propellant flows more freely, leaving this portion folded and moving more
quickly. The result is a curved band of folded material that gradually
becomes completely aligned with the direction of extrusion near the die or pin
surface - the condition discovered in all of the propellant lots.

In the case of the solid strands, the pinplate acted in a similar
fashion, except the removal of the pins permitted the ring pattern to spread
because no pin surface friction was available to align the NQ in the interior
of the die. NQ alignment in the center of the strand, which was strong but
not as strong as that near an extrusion surface, could be the result of
differential, viscous flow. The center of each ring structure corresponds to
the region of highest mass flow during extrusion. Surface friction or flow
restriction, due to lower pressure regions created in "dead spaces" under the
pin plate and away from the feed holes, cause gradual alignment of the NQ away
from the ring centers. The remixed strands extruded without the pinplate have
the NQ aligned by the velocity gradient across the entire strand diameter.
The observed gentle folding at the center of the strand reflects the relative
ease with which the propellant was extruded, and may indicate that the entire
die is acting as a single large feed hole. Thus, the pin plate seems to be
the key element responsible for the formation and structure of the observed
ring patterns.

B. Effects of Propellant Morphology

The propellant mechanical properties do not seem significantly affected
by the morphological differences between the lots. As reported above, the
modulus values were very similar. In addition, transitions indicated by tan
delta (the ratio of the loss to the tensile modulus) which can be used to gage
fracture response are also very similar. Figure 15 shows the modulus and tan
delta plotted as a function of temperature for the normal NQ strand extruded
with the pin plate in position. The low temperature transition, indicating
embrittlement, and the onset of the high temperature transition, occur at
these same temperatures in each of the lots. If the fracture response of two
lots were significantly different, the tan delta curve would be expected to
show a difference as well. So it seems that the mechanical response is not
strongly affected by the change in morphology. Therefore, no significant
performance differences due to mechanical response differences are indicated.

Another possible mechanism which could affect the gun performance is a
change of burning characteristics with morphology. For example, it is well
known that porosity in propellant causes a more rapid mass generation than in
a lower porosity propellant of the same formulation. This is due to the
increased area provided to the flame front and, perhaps, to an increase in the
propellant grain fracture susceptibility. So it is not unreasonable to
suspect that a change in morphology might cause a change in the burning rate.

During ignition of propellant that contains the NQ morphology observed
here, the flame is initiated on the same outside surface that helped to cause
the alignment of NQ crystals. The NQ structure exposed to the flame,
therefore, changes as the grain burns, and an effect similar to a change in
porosity may take place. Initially the flame front proceeds in a direction
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Figure 15. Representative Dynamic Mechanical Analysis Results
* Showing Modulus and Tan Delta vs Temperature for M430

perpendicular to the NQ alignment on all surfaces except the grain ends. As
burning progresses,, the regions in which there is NQ folding become exposed.
If the ends of NQ crystals have different ignitability, or intrinsic burning
rate than sides of the crystals, the rate of mass generation may change.
While there is no direct evidence for this conjecture, burning rate curves
calculated from M430 closed bomb pressure-time data show breaks that indicate a
change in burning character.

Figure 16 shows one of six burning rate vs pressure plots examined for
M430 Lot 67878, which showed ring structure. The break in this and all the
other curves occurs at about 10 kpsi. The average distance burned, calculated
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Figure 16. Closed Bomb Burning Rate vs Pressure for M30 Showing
a Slope Break at about 10 kpsi (69 M4Pa)

from the closed bomb data analysis program CBRED26 , corresponding to this
pressure is 0.171 am. The average distance from the perforation surface to
the first ring in this lot of 130, which should be a measure of when folded NQ
crystals are becoming exposed to the flame front, is 0.185 mm. The closeness
of these two distances suggest the possibility of a causal relationship
between the onset of the morphology change and the slope break.

As a follow-up study, a series of closed bomb experiments was performed
to investigate the relationship suggested above. In closed bomb testing, a
measured mass of the propellant to be investigated is placed into the known
volume of the bomb. This mass to volume ratio is called the loading density.
The propellant is uniformly ignited and the pressure-time data is recorded for
the fixed bomb volume. Since the pressure at any time depends on the amount
of gas generated, its temperature, the heat loss of the bomb, and a host of

6C. Price and A. Juhasz, *A Versatile User-Oriented Closed Bomb Data Reduction

Program (CBRBD),* BRL Report 2018, USA ARRADCOM, Ballistic Research
Laboratory, Aberdeen Proving Ground, Maryland, September 1977.
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other known thermodynamic parameters, the rate of gas generation can be
determined. From this the burning rate of the propellant is easily determined
since the total surface area can be calculated from grain geometry. This
finally allows the Burning Rate vs Pressure to be plotted.

These closed bomb burning rates were measured for M30 Lot 67878 at
loading densities of 0.20, 0.25, 0.30, and 0.35 g/co. Three firings were made
at each loading density. If a change in NQ morphology causes a change in the
rate of mass generation, as the loading density is increased, the slope break
in the Burning Rate vs Pressure Curve should occur at increased pressure.
This is due to the greater mass generation occurring before the change in
morphology is encountered at the higher loading density firings. However, if
the break is a result of chemical changes dependent on pressure and
independent of the morphology, the break should occur at the same pressure
regardless of loading density. The results, shown in Figure 17, show that the
pressure at the break in slope increases almost linearly as the loading
density is increased. In addition, the distance burned at the pressure
corresponding to the slope break, listed in Table 2, is nearly constant at
every loading density. The average value of the distance burned at slope
break is 0.213 am. A direct comparison of this value and the distance to ring
onset (0.185 mm) is not particularly meaningful since the distance burned
values can shift appreciably depending on initial values chosen in the
reduction program (CBRED2). What is significant is that the physically
measured distance and the calculated distance burned values are reasonably
close, that the slope break increases with increasing loading density, and
that using the same reduction program variables the distance burned was nearly
constant at each slope break. It seems as if the burning rate is affected by
the NQ morphology. This implies that a measure of control can be had on the
burning rate of NQ based propellants by controlling the NQ morphology within
the grain.

TABLE 2. DISTANCE BURNED AT SLOPE BREAK

Pressure at Slope Break Distance Burned Loading Density

55.2 MPa 0.222 m 0.200 g/cc
71.1 0.212 0.254
84.9 0.211 0.297

97.3 0.208 0.34 -4

IV. CONCLUSIONS

The ring structure observed for the M31A1 and M30 propellants studied
here has been explained by the discovery of underlying bands of folded NQ
within the propellant. Strong evidence suggests that the pin plate feed holes
control the formation of these structures during extrusion. Perforation pins

30 r-v



16 OIL

75-

79.

/ '

65 - /t

63..

*/

S.

I.

76 /
15 /

Fiur 17. Prsuea lp rakv odn est

l /

from C d Bb Bis
Loading .nutw (g/oa)

Figw're 17. Pressure at Slope Break vs Loading Density
fr'om Closed Bomb Burning Rate Studies

cause surface friction which locally aligns the NQ crystals and alters the
shape of the ring structure, but the pins are not essential to the band or the
NQ folding formation. The ring structure is also affected by the propellant
physical dimensions and by NQ particle size. Smaller webs and smaller
particle sizes produce more well defined and higher density ring structures.
Propellant extruded without the pin plate in place showed no band or ring
structure. NQ alignment in these samples was in the direction of extrusion
due to viscous flow and only a slight crystal folding resulting from reduced
resistance to flow was observed. Since pin plates are required for the
production of perforated grains, the ring structure should be a common feature
in NQ-based propellants.

There is no indication that the mechanical response of the propellant is
affected by the morphological differences observed here. Both the mechanical
properties and the phase transitions measured using dynamic mechanical
analysis produced almost identical results for propellant strands with and
without the ring structure. The length of the NQ crystals also produced no
mechanical response differences.

Closed bomb results and analysis show that the break in the burning rate

curve observed for 30 corresponds to the flame front encountering a changing
morphological structure. As predicted, the pressure at which the slope break
occurs, from the Burning Rate vs Pressure Curve, increases as propellant
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loading density increases. In addition, the propellant distance burned at the
slope break point remains constant at all loading densities and compares
fairly well with the physical distance between the outer perforation surface
and the first observed ring. This implies that the burning rate of NQ based
propellants can be controlled to some degree if the NQ morphology within the
grain can be controlled.

For a more complete understanding of the role that this newly discovered
NQ morphology plays in propellant combustion, several research areas need to
be continued. The NQ orientation should be determined at each stage of the
extrusion process so that factors controlling the NQ morphology may be
understood and exploited. Low pressure strand burning rates should be
established using propellant strands with known, orthogonal NQ orientation to
establish burning rate differences at known orientations. Propellants with
pin plate feed hole patterns with other symmetries should be examined to
determine the effect of different feed hole design of the resulting
morphology.

If these processes can be understood and controlled, improvements in the
mechanical properties and burning characteristics may be possible. This would
lead to safer, less vulnerable propellants with better performance.
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