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ture the synchronization delay in parallel branch-and-bound algorithms and to quantita-
tively predict the behavior of their speedup. A program to solve the Traveling Salesman
Problem was written on a BBN Butterfly? multiprocessor to empirically demonstrate the
credibility of this theoretical analysis. Finally, we note that similar analyses can be ap-
plied to evaluate parallel Al systems in which processes communicate through a shared
global database.
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1. Introduction

ﬁranch—and—bound is one of the most general methods of solving combina-
torial optimizatidn problems. It has wide applications in the fields of operations
research!® and artificial intelligence?!. In general, the branch-and-bound method
repeatedly partitions the solution space into smaller and smaller subspaces, and a
lower bound (assuming minimization is to be achieved) of the cost of each sub-
space is estimated. A subspace will no longer be partioned when its lower bound
exceeds the known cost upper bound of the solution space. The first found solu-
tion whose cost does not exceed any lower bound of the partioned solution sub-
spaces is an optimal solution. For a review and formal definition of the branch-

and-bound method, see references!®%.

Recently there has been wide interest in parallelizing branch;and-bound or
combinatorial search methods on multicomputers. Imai et al.!! proposed a paral-
lel searching scheme for multiprocessors. Wah et al.?® described a multicomputer
architecture for solving combinatorial search problems. The behavior of parallel
branch-and-bound algorithms has been studied by several researchers!417.19.23
Three type of anomalies for the speedup of parallel branch-and-bound algorithms
were recognized. The speedup obtained when k processors are used can be (a)
greater than k (acceleration anomalies), (b) between one and k (deceleration
anomalies) or (c) less than one (detrimental anomalies). However acceleration
and detrimental anomalies are unlikely to occur in parallel best-first branch-and-
bound algorithms unless there are a large number of subproblems having the

same lower bound; in addition, a nearly linear speedup can be achieved for a
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large number of processors when the problem size is large!?:18.23,

One of the drawback of previous analyses of parallel branch-and-bound algo-
rithmis is that the speedup is based on the amount of work done in the parallel
case and in the sequential case. Any evaluation of a parallel algorithm should
include both the execution time as well as the the synchronization delay®. In
this paper, using a finite population queuing model, we quantitatively predict the
behavior of the speedup of parallel branch-and-bound algorithms which are paral-
lelized on shared memory multiprocessors. A program to solve the Traveling
Salesman Problem was written on a BBN Butterfly? multiprocessor to empirically

demonstrate the credibility of this analysis.

In Section 2, a finite population queueing model is reviewed. Section 3
describes a general approach, that serves as the basis f<->r this paper, to paralleliz-
ing branch-and-bound algorithms on multiprocessors. Section 4 describes how
the speedup behavior of parallel branch-and-bound algorithms can be analyzed
using the finite population single server queueing model. Section 5 presents simu-
lation results on a BBN Butterfly machine. Finally, a conclusion which includes

some suggestions about avoiding early saturation in speedup is provided.

2. Finite Population Queueing Model

We now review a queueing model which has been effectively used to predict
the performance of interactive time-sharing computer syst,ems%- In Figure 2.1 we
have a closed network consisting of a single central server and a finite number of

“sources’’. This queueing model operates in the following way: When a source

makes a request at the central server, the source ‘‘goes to sleep”. The request,
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possibly after a queueing delay, then receives service at the central server. When

the request is finally served, the response is fed back to the source. At this point,

the source ‘““wakes up’’ and starts generating a new request. The time spent by

the source in generating a new request is referred to as its thinking time.

We assume that each source has an average thinking time of ! sec; or
equivalently, each source, when thinking, generates requests at an average rate of
A. The central server has, for each request, an average processing time of u~! or
an average processing rate of u. We are interested in the response time of the

central server as seen by a source.

The average response time W can be solved by equating the arrival rate of
requests to the central server to the departure rate from the central server, or by

Little’s Formula!3:

= 1

We —>"» =

. p(l-pg) X
where n is the number of sources and p, is the probability that there is no out-

(2.1)

standing request at the central server. Define p = l Equation (2.1) then can
m

be rewritten as

- 1 n 1
W= — - — 2.2
#ll-Po P (22)

Since0 < 1-pyg <1,
W>—1-[n-l] (2.3)
Im p :
When the number of sources is large, p, can become very small. Therefore Equa-

tion (2.3) can be considered as an asymptotic approximation for W.




A U S S S

-4-

Note that the distributions of the thinking time of the sources and the pro-
cessing time at the central server do not play a role in the derivation of Equation
(2.2). However, the above informal mean flow analysis is strictly true only for cer-
tain types of service and thinking time distributions, namely an exponential dis-
tribution or rational distribution with round-robin scheduling!3. Nevertheless, this
model has been found to be surprisingly robust in evaluating systems which

violate most of the strict assumptions?6.

If we assume that the thinking time and the processing time are both
exponentially distributed, then the probability p, can be determined analytically
and is given by!?

-1
Ll n! k
Po = vl /4 2.4
0 [Eo n - E) ] (24
In Figure 2.2, W as a function of n with p~! having a value of 40 is plotted.

Kleinrock!® defined the saturation number, which we denote by n*, as

n‘=l+% (2.5)

Indeed, n* is the maximum number of sources for which requests can be
q

scheduled without interference.

3. Parallel Best-First Branch-and-Bound Algorithms with a Global

OPEN list

In this paper, we assume that the best-first branch-and-bound algorithms are

parallelized on a tightly-coupled multiprocessor. A global OPEN list, which con-

tains the nodes that have been generated but not yet examined in the search tree,

is shared by all the processors. Each node in the OPEN list is a representation of

A S5 T AT U Y
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the root of a subproblem. Initially the OPEN list contains only a representation
of the entire solution space. Each processor then repeatedly removes the best cost
node from the OPEN list, solves the node if it is a solution or decomposes the
node into one or more child nodes, estimates their cost (and possibly eliminates
some of them by applying the dominance relation), and then inserts them into
the global OPEN list in the appropriate positions. The basic task of each proces-
sor is regular iterations of deletion-decomposition or decomposition-insertion. We
will refer to an entire operation of deletion-decomposition or decomposition-

insertion as one tteration.

The time spent to insert/delete a node into/from the OPEN list depends on
the length of the OPEN list and the discipline used. The length of the OPEN
list can become véry large and hence the time taken to delete from and insert
into the OPEN list will not be negligible when compared to the time spent in
decomposition. A processor trying to insert/delete a node into/fromv the OPEN
list cannot proceed when any other processor is holding the OPEN list. This
introduces a synchronization delay which is ubiquitous in realization of paralle
algorithms. Multiprocessor sﬁtem usually provide some locking mechanisms,
e.g. spin lock and semaphores®, for users to implement mutually exclusive codes.
Spin lock or busy-waiting is efficient for infrequent and short locking. However,
for frequent lockings which take nonnegligible time, spin lock can result in serious
lose of memory bandwidth and network gandwidth. Moreover if the accessing
order cannot be preserved, programs may execute for arbitrary times since the

performance of heuristic search strongly depends on the order of node examina-

tion. On the other hand, semaphores are recommended for synchronization of the
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OPEN list, in spite of the possible inefficiency due to frequent context switching.

The termination of parallel branch-and-bound algorithms must be handled
carefully. To ensure correctness, a current best solution (sometimes referred to as
the tncumbent in the literature) is kept in a globally shared memory. The paral-
lel branch-and-bound algorithm is terminated when either one of the following
conditions is satisfied: (a) There are no active processes and the OPEN list is
empty. (b) There are no active processes and no nodes in the OPEN list have
better cost than the current best solution. In either case the current best solutio.n
(if any) is the global solution. Note that the order of the evaluation of the argu-
ments to the Boolean operator and above is also important. Here we assume the
arguments of and are evaluated from left to right. In condition (a), if the

evaluation order of and is from right to left then it is possible that the OPEN

list is tested true before some active process inserts nodes into the OPEN list and

terminates. Similar arguments hold for condition (b).

The parallelizing scheme we assume here was first proposed by Imei et alll.

20,24

Similar methods were later used by others in implementing best-first branch-

and-bound algorithms on shared memory multiprocessors.

4. A Tight Upper Bound for the Speedup of Parallel Best-First

Branch-and-Bound Algorithms

In this section, we show how the finite population queueing model can be

used to predict the speedup of parallel best-first branch-and-bound algorithms.

Recall that in the above parallel branch-and-bound algorithm, each processor

repeatedly decomposes a node and performs OPEN insertion or deletion. The



OPEN list can at most be accessed by one processor; the other conflicting proces-
sors must be blocked. It is not difficult to recognize the analogy between the
parallel branch-and-bound algorithm and the finite population queueing model
discussed in Section 2. The processors are the finite sources of this queueing
model. Each processor spends some time (thinking time) decomposing a node
and then sends a request (insertion/deletion) to the OPEN list. A FCFS queue
can be used to handle the requests at the OPEN list. The time spent- in
insertion/deletion can be considered as the central server’s processing time. Note

that there is no processor dedicated to be the central server.

Let us again assume that the average time spent for a processor to decom-

pose a node is A\7! sec. and the time taken to insert/delete a node into/from the

OPEN list, when it is free, has an average of u~! sec. The node decomposition
time will not be affected by other processes running concurrently, while the
insertion/deletion time could be del'a‘yed by other- processes trying to access the
OPEN list at the same time. Therefore, the average time spent during an itera-
tion (decomposition-insertion/decomposition-deletion) is ™! + u~! in the sequen-
tial case and \™! + W in the parallel case, where W is the average response time

predicted by Equation (2.1).

Define I, as the total number of iterations executed in a best-first branch-
and-bound algorithm when a single processor is used and 7, the total number of

iterations executed when n processors are used. If detrimental or acceleration

anomalies do not exist, I, is at least as large as /| and they are very close when

the problem size is large!7 182,

i .1 TR SIS
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The speedup S(n) for n processors is the ratio between the execution times

when using one processor and using n processors. Hence,

I X (N4 )
I, X (\!+ V_V(n ))

-1 -1
<n X -—)L—i=”—
AL+ W(n)
where W(n) is the average response time of the requests at the OPEN list when

S(n) =

(4.1)

n processors are used. Using Equation (2.3) as an asymptotic approximation for

W in Equation (4.1) and letting p = ->$, we obtain
u

S(r)<n X 1+p1
14+ (n -=)p
( p)
or
1
S(n) <1+ (4.2)

In Figure 4.1, speedﬁp S asa fun-ction of n is plotted with a p~! value of 40.
Note that the speedup saturates very quickly when the number of processors
exceeds the saturation number defined in Equation (2.5) though we have a nearly
linear speedup before that many processors are used. Here, the saturation
number = 41.

Equation (4.1) is obtained with the following assumptions:

a) Equal work between lsequential algorithm and parallel algorithm, i.e. :

b) Decomposable computation is fully parallelized among available processors.

Lt A R QO A A LA I S OO, N W 8 T O A S
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¢) No process scheduling overhead. b
d) No overhead cf locking primitives. v
e) No hardware level contention, e.g.‘memory contention or switch contention.

These assumptions will not be true in practice but can be achieved quite closely

. when not many processors are used. Hence the result of Equation (4.1) can be v
| considered as a tight upper bound. ,'
5. A Simulation Result :

!

To empirically demonstrate this analysis, a parallel branch-and-bound algo- '

rithm was implemented on the BBN Butterfly? using Butterfly Lisp?” to solve the ‘
Traveling Salesman Problem. Given a set of cities and the distances between each "f

pair of cities, the TSP is to find a complete shortest tour which visits every city '

once and only once. Mohan?® solved the TSP on the Cm' multiprocessor. :
Although the speedup he obtained was less than 8 when 16 processors were used, é

he estimated that an almost linear speedup could be achieved fdr up to 12 proces- ::

sors if a hardware contention problem (referred to as cluster contention in Cm") ;

\J

could be factored out. Rao et al.?* recently reported an encouraging result in :'*

which they obtained a speedup of 7 on 8 processors when solving the TSP on a ~

i Sequent Balance 8000. The parallelizing strategy that Mohan and Rao et al. used ;‘
was basically the same as that illustrated in Section 2. :

We did not use Little et al.’s algorithm!? as both Mohan and Rao et al. did. ‘ ‘:‘i

We used an algorithm based on the assignment problem?2. Let c; be the dis- ?:

tance between city ¢ and city . Then the m-city TSP can be stated as: .:

\

- -
T
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minimize

-~
i
3
I
3

Py Cij Tij
J=1 i=1
subject to
g;=00rl] 1<i<ml1<j<m (5.1)
f=m
Y =1, 1<7<m (5.2)
1=1
- j=m .
e Y oz =1, 1<i<m (5.3)

=1

If z;; = 1, the route from city ¢ to city j is chosen in the tour. Constraints (5.2)
and (5.3) state that there can be only one chosen route which departs from or
comes into each city. However, constraints (5.1), (5.2) and (5.3) do not fully
characterize the solution of the TSP yet, since the solution so obtained may con-
tain several disjoint cycles. Another constraint must be added to exclude those

solutions which contain disjoint cycles.
Figure 5.1 shows an example of a 4-city TSP with cost matrix

oo 20 30 10
5 0o 7 14
8 12 o0 3
15 6 11 oo

The algorithm starts by considering the alternative routes departing from city 1,
then city 2, and so forth. The state of a node in the search tree is represented as
a tuple (z,,,%9i,---+%;,)- The cost of the node is the sum of g and h, where

g =c¢y,+¢Co,t " +c,, and h = the sum of the minimum of each

column of the (m-k)X(m-k) matrix obtained by deleting rows 1 through & and

columns i, through #; of the cost matrix.

The OPEN list is organized as a heap® in our implementation. Figure 5.2

e

GASBAAGOAGOG0UT o8 000 s 3 n
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shows the speedup curve we obtained to solve a 12-city TSP. The speedup is
almost linear up to 8 processors but only reaches a peak of 12 when 20 processors
are used. In general, the number of iterations executed is slightly higher when
- more processors are used. In Figure 5.3 the speedup curve is adjusted by the
number of iterations. That is, if S(n) is the measured speedup for n processors

then the adjusted speedup S(n)* is given by

I,
I

The decomposition time and the OPEN insertion/deletion time were sampled

S(n)* =S(n) X

during execution when 8 processors were used. Figure 5.4 and Figure 5.5 show

the histograms of the OPEN insertion/deletion time and the decomposition time

distributions’. According to the mean decomposition time and mean

insertion/deletion time, the p~! value is 14.8. The speedup should saturate at 15.6

by our analysis. However, readers should not take the figures we obtained too

seriously. Some of the decomposition time measured actually includes the time

spent by the incremental garbage collector! in the Blisp system' , and hence the

mean decomposition time measured will be slightly higher than it should be. In

addition, the semaphores we used® contain an internal critical region which also

introduces non-negligible synchronization delay.

Note that higher speedup can be expected when solving a TSP with larger

number of cities. This is because the decomposition time is proportional to the

t The BBN Blisp we used was a beta release from BBN. No compiler was available
when this paper was prepared. The interpreter was very slow in absolute terms.

t This can be seen from the extremely high time occurrences in Figure 5.5.

§ The semaphores we used was implemented using futures in Blisp. Futures are very
expensive in the current Blisp version.
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problem size and larger mean decomposition time will increase the value of p71.

8. Discussion and Conclusion

We have ‘demonstrated that the finite populition queueing model can be
used to accurately analyze the speedup of parallel branch-and-bound algorithms.
The accuracy is obtained because the synchronization delay is taken into con-
sideration. Certainly, more accurate analysis should includé architectural
inefficiency, e.g. memory contention, bus contention, switch contention, etc., and
system overhead, e.g. scheduling overhead. overhead of synchronization primi-
tives, etc. However, this kind of analysis is machine-dependent and its long-term
significance on the design of parallel algorithms is unclear. There is hope that
new technology will reduce the architectural inefficiency and system overhead to

an insignificant amount?,

The results we obtained from theoretical analysis and simulation show that
because gf the synchron?zation delay, the speedup of parallél algorithms can
saturate very quickly after a nearly linear speedup up to a certain number of pro-
cessors. This apparently pessimistic result can be used to design more efficient
parallel algorithms. The saturation number defined in Equation (2.5) can be con-
sidered as the maximum number of processors to be used before speedup
saturates. Beyond that parallelism does not help. Extending the saturation
point is equivalent to enlarging the value of p™!. This can be achieved by increas-
ing X\~! or decreasing u~!. We could raise \™! by magnifying the granularity of
the node decomposition. One possible way is to execute more iterations before a

process communicates with the global OPEN list. For heuristic search, this must

f;A“:ﬁ"\\ , A~ + " .‘h. R (] , ‘(...'.‘."..a l‘ \.\ e . = & -( .f f ) " L ] * ..I...l.‘! . .f ..O -' -( ' [} l-‘.l “. - l' v
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be done carefully since larger granularity means less heuristic-guidance. u~! can
be lowered by better insertion and deletion disciplines for the global OPEN list.
For example, heap insertion and deletion is superior to linear insertion and dele-

- tion.

Other optimizing methods are also possible. The OPEN list can be parti-
tioned into several disjoint regions according to different ranges of cost estimation
values. An extreme case is that each region corresponds to a single cost estima-

tion value so that insertion and deletion can be done in O(1) time. This method

was actually used by Rao et al.?* to solve a 15-puzzle problem. They took
advantage of the fact that the cost estimation function has a small range and can
be predetermined. Since now each region is locked separately the OPEN list
bottleneck could be potentially relieved by a degree of a multiple. The perfor-
mance of the algorithms based on a multiple-region OPEN list can be formally

analyzed by a more general finite source multiple server queueing model.

If the range of the the cost estimation function is not small or cannot be
predetermined, a possible way to alleviate the bottleneck is to organize the global
OPEN list as a concurrent B-tree'!® so that insertions and deletions performed

in different subtrees can be possibly executed in parallel.

Finally we note that a similar analysis can be applied to parallel Al systems
whose main communication medium is through a global shared database, e.g. a

blackboard®.
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Figure 2.1. Finite source queuing structure
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Figure 2.2 Average response time curve obtained from Equations (2.1) and
(2.3) with 1/p = 40.
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Figure 4.1 Speedup curve obtained from Equation (4.1) with 1/p = 40.
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Figure 5.1 An example of a 4-city TSP.
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Figure 5.2 Actual speedup curve for a TSP with 12 cities
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Figure 5.3 Adjusted speedup curve from Figure 5.2 by the number of iterations.
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