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EXECUTIVE SUMMARY

The DoD has the requirement that electronic devices used in many military
systems be able to function over the temperature range of -55°C to 125°C. For
selected systems, the electronic devices must also be able to function after being
exposed to specified levels of long-term (total dose) or high-intensity
(dose-rate/latch-up) ionizing radiation. Generally, however, the radiation
testing and screening is only performed at room temperature. Recently,
experiments have shown that the response of electronic devices irradiated at
extreme temperatures can be quite different from room-temperature results.

ARACOR manufactures the Model 4100 Automatic Semiconductor Irradiation System
which has come into wide-scale use for the radiation testing and screening of DoD
electronic devices, including VHSIC and SDI parts. At this time, the Model 4100,
which enables radiation testing at the wafer level, is only capable of
room-temperature irradiations.

The primary goal of this program was to develop instrumentation, compatible
with the Model 4100 design, that would enable radiation total-dose, dose-rate and
latch-up measurements to be made over the temperature range of -55°C to 125°C.
The overall Phase I technical objectives were:

1) To develop and calibrate necessary timing and dosimetry circuitry for
the pulsed-laser source to permit wafer-level measurements of radiation
dose-rate and latch-up effects for both conventional and heavily-doped
substrates.

2) To evaluate and calibrate the accuracy and stability of a
high-temperature system for the precise heating of electronic devices
over the range 25°C to 125°C during radiation tests.

3) The development, evaluation and calibration of a low-temperature system
that can provide precise temperature control over the range of 25°C to
-55°C during radiation tests.




Dose-rate dosimetry was performed using a calibrated PIN photodiode and wide-
bandwidth oscilloscope. The peak equivalent dose rate achievable at the back sur-
face of a wafer was shown to be in excess of 2 x 1012 rad/sec. A system was de-
signed to measure the integrated energy of the pulsed laser beam transmitted to
the wafer. This dosimetry system, which will allow variation and control of the
radiation dose rates, includes a Brewster window assembly and a photodiode with
associated circuitry to measure the pulse energy. Timing signals, generated by
the laser control circuitry, are used for triggering.

At the time the program was initiated, the ability to conduct latch-up tests
at high temperatures was of special interest. Latch-up testing on the Model 4100
System, however, requires the use of a transparent (glass) wafer chuck so that the
back surface of the wafer can be irradiated with the laser pulse. The use of the
glass chuck, which is a dielectric material, made it impossible to directly heat
the chuck. Thus, a precision gas-forcing system was selected which can provide
either high- or lTow-temperature streams of dry nitrogen gas. In addition to being
compatible with the glass chuck, the use of dry gas to cool the wafer greatly
reduces the problem of frost formation during low-temperature irradiations.

High-temperature wafer experiments were conducted using a heated-N2 stream
system installed in an ARACOR Model 4100 System. Measurements were made with sil-
icon wafers on both a standard metallic chuck and a glass chuck. The gas flow,
temperature range, and temperature stability of the equipment were adequate for
rapid heating of the die under test (DUT) over the required temperature range.

The temperature of the DUT was inferred from electrical measurements on a wafer of
“thermometer” IC's manufactured by Precision Monolithic, Inc. Although the accur-
acy and controllability of the gas stream temperature was very good, the die tem-

perature was found to be strongly dependent on wafer-chuck temperature. The ther-
mal properties of the metallic chuck used in the total-dose tests resulted in slow
thermal settling time when a large temperature difference between the die and the

chuck was implemented. With the glass chuck, thermal time constants were shorter,

but even in this setup, the sensitivity of the die temperature to the chuck tem-
perature made accurate chuck calibration difficult. It was concluded that it is
not practical to calibrate the temperature of the DUT by sensing the temperature
of the gas stream only, and that additional knowledge of the chuck temperature was
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required for accurate temperature calibration. Therefore, in order to provide
acceptabie temperature control, the gas stream must be implemented with direct
temperature control of the chuck.

A cooled-Np stream system was also purchased and installed and found to work
well (gas-flow rate optimization was required). A1l experiments were performed
with the glass wafer chuck and with the same temperature measurement scheme as the
high temperature work. A heated-gas stream was directed over the probe card to
prevent frosting on the microscope. No environmental chamber was implemented and
experiments were preformed at room ambient. With the dry-N2 stream used to
prevent frost formation on the wafer, temperatures to less than -40°C were
possible before probe contact was interrupted, indicating that the Np-stream
inhibits the formation of frost over the wafer and other cooled components.

In summary, for both heating and cooling wafers for radiation tests, a
knowledge of both the chuck temperature and the air stream temperature was found
to be necessary for calibrating the die temperature. For Model 4100 Systems used
only for total-dose measurements, a system combining a commercially-available
temperature-controlled (metallic) chuck combined with an air stream system is
proposed as the best solution for covering the entire -55°to +125° range. If
tests are only to be conducted at elevated temperatures, the air stream is not
required. To prevent frosting at low temperatures, the chuck temperature would be
controlled to perkaps 0° to -20°C and the air stream would be used to lower die
temperature to -55°C. A simple coaxial heated-gas stream combined with a
semi-sealed environmental chamber should be sufficient to alleviate frosting at
the lowest temperature. For low-temperature latch-up/dose-rate measurements,
which require the glass chuck, accurate temperature control requires the addition
of temperature sensors on the wafer. As an alternative, latch-up experiments over
an extended temperature could be implemented by direct electrical measurements of
test transistors/diodes on the wafer.
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SECTION 1 :Ee

U

1

INTRCDUCTION i,

Wy

Advanced Research and Applications Corporation (ARACOR) was awarded a Phase I ﬁ:
contract by DNA under the 1985 DoD Small Business Innovation Research program. '$:

The focus of this contract was on evaluating the feasibility of and developing a N
breadboard apparatus for providing controlled temperatures over the range of -55°C X
to 125°C during the radiation testing of electronic devices at the wafer stage of K}
production. The program also resulted in the development of timing and dosimetry
circuitry for the pulsed-laser testing of devices for latch-up and dose-rate
effects. The circuitry and temperature-control breadboards were designed for

integration into the ARACOR Model 4100 Automatic Semiconductor Irradiation System. L;
%
Until the development of the Model 4100 System, which is described in the E*
Appendix, radiation-hardness testing required the use of fixed-site facilities, G
such as linear accelerators (LINACS), flash x-ray sources, and Cobalt-60 sources. ut
These sources are expensive to procure, maintain, and calibrate, and are also
usually remote to the device fabrication and testing areas, since they involve the f
possibility of radiation hazard. In addition, LINACS and suitable flash x-ray %{
sources are only available at a limited number of sites. Thus, radiation testing 5}
often imposes considerable inconvenience and cost for travel and set-up at a '
remote location. The complexity and expense associated with such sources is :
magnified if testing at precisely-controlled low and high temperatures are ;5;
required. ::::e
.
The Model 4100 System provides unique advantages for the radiation testing of ;z
DoD electronic parts. Total-dose radiation tests are performed at the wafer level ;Q
during the die probing sequence, using a collimated x-ray source in an interlocked ?
system. A technique for non-destructive dose-rate and latch-up tests is being ﬁ‘

integrated into the system. This technique employs a pulsed infrared (IR) laser K
to irradiate the die under test from the backside to create a concentration of

<
Y
electron-hole pairs similar to those produced during LINAC or flash x-ray &
. o . . . '
irradiations. Unlike tests using LINACS and flash x-ray machines, tests with the J
laser are non-destructive and, thus, 100% of the microcircuits on the wafer can be s;
tested and then still be used. ;
N
t
\
=
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The development of methods for controlling the wafer temperature during the
radiation tests and circuitry to enable transient testing would provide a
comprehensive radiation test capability for DoD laboratories and contractors.
Since the Model 4100 provides for total-dose tests at high dose rates at the wafer
stage of production, this radiation testing approach should have special value for
testing VHSI circuits and for SDI-related radiation tests.

Latch-up models and experimental data show that both the susceptibility to
latch-up and the latch-up/dose-rate characteristic of devices are influenced by
temperature. The wafer chuck used for dose-rate and latch-up measurements must be
transparent to IR radiation, therefore must be made of a dielectric material
(quartz in the Model 4100) which is a poor thermal conductor. For this reason,
direct heating and cooling of the chuck is not practical. After evaluating
alternatives, a precision heated-gas stream, temperature-forcing system was
selected for this program.

The development of a Jow-temperature capability (25°C to -55°C) is made
complex by the necessity of preventing the development of frost or moisture on the
die being tested. To achieve low temperatures, a cooled nitrogen-stream approach
was implemented that is similar to that described for elevated temperatures. A
reservoir of liquid nitrogen (LN2) served as the source of gas for cooling the die

being tested.
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SECTION 2 s
DOSIMETRY AND TIMING CIRCUITRY ?jf
il
BY
This task had two parts. The first part was to find a method for measuring :.:1
»
the dose rate equivalent of the optical intensity at the backside of the wafer. hﬂﬁ
\)
The second part involved designing the circuitry which would allow automated E;ﬁ
LN
control of the laser intensity at the backside of the wafer. The few timing f';
(Y
signals produced by the laser control system were found adequate for .ﬁ;;
synchronization needs. :éﬂ
l.g'l
iy
2.1 DOSIMETRY.
Sy
¥ st
7o
The dose rate from Nd:YAG laser exposures in wafers was determined by :k
|
| measurements using calibrated PIN diodes. These diodes were previously calibrated X
i
} for x-ray dosimeters as outlined in IEEE Transactions on Nuclear Science (Palkuti,
A
Le Page, Vol. N5-29, No. 6, December 1982). By utilizing a 6-mil diode aperture Ei
and the circuit shown in Figure 1, peak photo currents ranging from 0.1 to 100 mA, 3§:
o
’ could be measured above instrument noise and before diode saturation occurred. {;
St
} The diode sensitivity factor, F, determined from x-ray calibration exposures is o
N
} jt |
. %y
F=2 = _ 1 ___ - 2.5x108 rad(si)/s per mA . (1) 0
. Id q Kg Vol l.'
where q is the electron charge, Kq is the generation rate, Vol is the sensitive Bﬁ
. »
volume of the diode and D/I4 is the dose rate absorbed at the diode front surface s
! divided by the diode current. »,
’ N
The dose absorbed at the diode front surface, 14, as a ratio of the incident !
' laser flux density, lg, can be determined based on reflections at the two diode :t
[ surfaces and absorption in the diode bulk as follows: 6::
|
‘ e
RS
Ry
\.‘.‘
&) '
N
Ny
o)
h;‘
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FIGURE 1. Diode dosimetry circuit.

Ig _ (1-R) (1 + A42R)

= 2

where
Agq = exp(-24tq)

and ¢ is the absorption coefficient of the diode material, t4q is the diode
thickness and R is the reflection coefficient at the diode surfaces. The dose

| rate at the front surface of a wafer can be determined by a measurement of the
incident, I,, and transmitted flux, I, as measured by the calibrated diode. The
ratio of the incident-to-transmitted flux measured on an un-oxidized silicon test
wafer can be utilized to determine the absorption coefficient of the wafer as
follows:

Iy _ (1-R2) exp(-oyt,) ~ ) 4
1. TR exp2(-agta) = 0.5 exp (-0yty) (4)

Then, the ratio of front-surface dose rate to the diode dose rate can be
determined from

It = 1.25 exp(-a,ty,) (5)

-, o~
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where R = 0.3 has been utilized for silicon at the Nd:YAG wavelength. Thus,
measurement of the incident and transmitted flux with the diode yields the
front-surface dose rate as follows:

D¢ = 2.5(_‘}.) 14-F (6)

Since the absorption in the wafer depends on the type of wafer doping type,
doping density and wafer thickness, it is necessary to determine the ratio (Iy/1,)
as the factor A, for each type of wafer normally encountered in applications.

Some typical values for this factor are listed in Table I for some common wafer
types. Since the front surface absorption (proportional to @, exp-%,ty) is not a
strong function of @y, the variations in doping for similar wafers will not
necessitate individual wafer calibrations.

Table I. Values of A, for some typical silicon wafers
used in device fabrication.

Aw = expl-Cyty)

——- e

n p nn* pp*
Wafer Size bulk bulk epitaxial | epitaxial

3-inch 0.47 0.33 0.33 0.13
100 mm 0.3 0.20 0.20 0.06
125 mm 0.29 0.15 0.15 0.03
150 mm 0.26 0.13 0.13 0.02

S 4 ———m I
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2.2 CONTROL CIRCUITRY.

Control of the laser intensity of the Model 4100 occurs in two stages
(Figure 2). First, a remotely-controlled rotatable polarizer assembly, called a
Beam Attenuator Module (BAM), allows continuous variation of the intensity over
two orders of magnitude. On the output side of the BAM, a transparent window set
very near the Brewster angle reflects a small portion of the laser beam to a
photodiode detector. Additional attenuation of up to four orders of magnitude is
provided by a remotely controlled set of calibrated attenuators. Under this
program, circuitry was designed to measure the photocharge produced in the
photodiode at the output of the BAM, which allows the internal control system of
the Model 4100 to set and control the intensity in a closed-loop fashion. Thus,
variations in laser output due to time-dependent effects are essentially
eliminated and a constant intensity is obtained.

A simplified schematic is shown in Figure 3. The photodiode is reverse
biased to prevent photocurrent saturation. A simple RC network stores the charge
for several microseconds before a sample and hold circuit, controlied by a signal
syrichronized to the laser Q-switch, acquires a voltage proportional to the
charge. This voltage is sent to an A/D converter in the Model 4100 control
system. A one-shot provides a 25 mS signal pulse to the control system processor
as an indication that the signal is available for digitization.
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SECTION 3
HIGH-TEMPERATURE TESTING

A Thermonics Model T-2100H precision temperature-forcing system (PTFS),
combined with a probe-card-mounted thermal-control adaptor, was used to conduct
high-temperature tests. This system produces a heated-gas (Np) stream, which was
used to control the temperature of the die under test. To achieve temperature and

5 flow control of the gas stream, the N2 enters the back of the PTFS and passes
through a pressure regulator which controls the flow of gas to the desired level,
as set by an appropriate flow knob. After the N2 exits the pressure regulator, it
passes through a venturi which is used to measure the flow of N2. The pressure
differential created across the venturi is sensed by a solid-state pressure
transducer and converted to flow and be displayed on a flow meter.

o After the N2 exits the venturi, it enters the air heater which changes the
temperature of the gas to the level specified on the temperature controller. The
gas, upon exiting the air heater, is directed to the entrance of the
thermal-control adaptor through a flexible hose. The hot gas passes through the
; thermal-control adaptor and is directed to the die by a series of gas ports

:5 located about 3 mm above the wafer surface. At the exit of the gas ports, a

B series of solid-state temperature transducers sense the gas temperature. If the
; temperature is below the set level, the temperature controller will turn the
ot heater until the desired temperature is reached. Once the desired temperatur.
R established, the temperature controller will pulse the heater, as required, to
maintain the gas temperature to t1°C of the set value.

) The thermal-control adaptor was attached above the transparent chuck assembly

' as shown schematically in Figure 4. To heat or cool the device being tested, a

o stream of dry gas (i.e., nitrogen) generated by the PTFS was directed through
ports in the thermal-control adaptor downward through the radiation collimator

;Sj onto the portion of the wafer containing the die being tested.

i After reviewing methods for measuring the stability and uniformity of the
A}
temperature at the location of the die being irradiated, a PMI Ref-02 Precision
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Voltage Reference/Temperature Transducer was selected. Typically, the Ref-02
transducer is purchased as a packaged part. However, for these experiments,
ARACOR obtained a four-inch wafer containing many of these reference/temperature
transducers. A probe card was used to apply bias to the circuits and to readout
the temperature-proportional voltage. The Ref-02 has principal application as a
precision voltage reference providing a stable +5V output. However, in a proper
circuit, the Ref-02 can be used as an electronic thermometer providing a voltage
output that is a direct measurement of temperature. This application uses the
predictable 2.1 mV/°C output voltage temperature coefficient, which is a byproduct
of a bandgap voltage reference design.

The PTFS, the thermal-control adaptor and the PMI Ref-02 unit were integrated
with an ARACOR Model 4100 Automatic Semiconductor Irradiation System and
experiments to insure operation over the full temperature range and to evaluate
stability and reproducibility were initiated.

The experiments were designed to evaluate the thermal time response and
stability of the wafer/chuck/PTFS combination. Measurements were made on a quartz
chuck system. The die temperature response showed two components: a fast
component attributed to wafer heating, and a slow component attributed to chuck
heating. Figures 5 and 6 show the overall time response for a 400-cubic-foot-
per-hour (CFH) gas flow at set temperatures of 120°C and 80°C, respectively. The
first steep rise of the die temperature indicates that the die reaches an
approximate equilibrium between the gas stream and chuck temperature in about 5-6
minutes. After this, the chuck temperature continues to rise at a much slower
rate, raising the die temperature approximately 3-to-4°C after 40 minutes.

In order to reach the desired die temperature more quickly, a procedure was
developed to "overdrive"” the temperature and bring the die/chuck combination to
the desired equilibrium temperature. The approximate overdrive temperature for a
given equilibrium die temperature was determined empirically by heating
experiments. Utilizing this approach, the gas stream is used to quickly heat the
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die beyond the set temperature and then to allow the die to cool to the selected
equilibrium temperature. In this manner, stable temperature operation was
achieved without requiring the long stabilization time for the wafer chuck.

The procedure for achieving a target die temperature in roughly 6 minutes is
illustrated by the graphs in Figures 7 through 11. The gas stream temperature is
initially set to a high temperature to preheat the chuck quickly; after a preset
time interval, the gas stream temperature is lowered and the die stabilizes at the
desired temperature.

This procedure was exercised enough to indicate its usefulness for a
prototype die temperature controller. However, the initial system temperatures
(ambient, chuck, die) affect the end temperature and system drift. This is
especially true in going up or down from one elevated temperature to another.
Chuck temperature control and/or sensing would be required to accurately set the
die temperature.
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SECTION 4

LOW TEMPERATURE TESTING

A Thermonics Model T-2050 PTFS was procured and used for the low temperature
testing. This system is designed to provide both high and low gas stream
temperatures. For high temperatures, the system operates like the Model T2100H
described above. For low temperatures, a liquid nitrogen (LN2) source is
required. LN2 enters the system through a pressure relief and shutoff valve and
enters a heated vaporizer. Nitrogen exits the vaporizer at a very low temperature
(-90°C) and enters a heater where it is brought up to the desired temperature.

The experimental setup was similar to that for the high-temperature testing.
The cold nitrogen was directed to the die through the thermal-control adaptor. A
stream of room-temperature nitrogen was passed through a heater and directed
across the microscope viewing window and probe-card components to prevent
frosting. All experiments were conducted in room ambient without the use of
environmental chambers or a “dry box". The wafer of PMI Ref-02s and probe card
were used to determine the die temperature.

The setup provided a sufficient gas flow at low temperatures to drive the die
temperature well below the required -55°C. However, the back pressure of the
adaptor gas plenum restricted the flow sufficiently to prevent good regulation of
temperature. The result was that the die temperature was always driven below the
desired temperature.

Experiments were conducted to evaluate sensitivity to frosting. To achieve
frost-free operation with a cooled chuck at a temperature of -55°C requires
control of the ambient relative humidity to less than .1%. With the gas-stream,
we achieved temperatures of less than -45°C without frosting and with no attempt
to control ambient humidity. Data from the experiments are illustrated in
Figures 12 and 13. Since the gas stream developed from 1iquid nitrogen is very
dry, the immediate volume around the cooled die is very low in humidity. Some
mixing with ambient air still occurs, however, causing frosting at the lowest
range of temperatures.
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SECTION 5 ::i:
s,
SUMMARY 3
Dosimetry was designed to monitor the laser-pulse energy of the Nd:YAG laser ::“
used for dose-rate applications and prototype was built and tested. The design is SE
now incorporated into the Model 4100 dose-rate testing system. 3
Experiments were conducted to evaluate the use of a heated-gas stream system S‘i
for heating and controlling die temperature for dose rate and total dose systems. '
The ability to heat the die to sufficient temperatures (125°C) was demonstrated, dﬁﬁ
using a gas-stream system for a quartz chuck. Experiments with a quartz chuck Y
indicated a strong dependence of die temperature on chuck temperature. For f;:
accurate die temperature stabilization, the control of both the chuck- and :$4
gas-stream temperatures was required. Therefore, for accurate temperature :;”
stabilization, temperature-sensing structures on the die could be used as ~ 3
feedback elements in a temperature-control system. In systems with a metallic ;;?
chuck, such as a Model 4100 used for total-dose testing, a temperature controlled 5’
chuck is a better method for temperature testing. 3
Experiments were conducted to evaluate the use of a cooled-gas stream system x_
for cooling and controlling die temperature for Model 4100 dose rate :y‘
applications. The ability to cool a die temperature below the -55°C limit was v
demonstrated. Good immunity to frosting resulting from the use of the dry gas 5;-
stream was demonstrated. Since the die temperature is influenced by the chuck ?
temperature, requires the chuck temperature must be controlled to achieve stable ::’
die temperatures. g’.
For temperature-stabilized radiation tests involving transient and total-dose ér.
irradiations, different methods may be necessary for die temperature control. For v
dose-rate applications which require a transparent quartz chuck, a hot/cold gas-
stream system could be used, using feedback from a temperature-sensing structure
on the device under test (DUT) to control the die temperature. For total-dose
testing, a combination system using a cooled-gas-sctream system and a hot/cold
chuck is proposed. For elevated temperatures, the heated chuck is sufficient.
27




For low temperatures, the chuck would be stabilized at a moderately low
temperature (perhaps between 0 and -20°C), and the dry gas stream would be used to

decrease the die temperature to the desired temperature. A chamber around the o
wafer chuck area would be required to decrease mixing of the cold gas stream with

ambient air near the DUT.

24

w, i Y W g TN Wy o L o, W X (N W A AP A AW A A T AT e
W N N A Y W N AR G A Ay w2 o s NN "

'




APPENDIX

Model 4100

" AUTOMATIC SEMICONDUCTOR IRRADIATION SYSTEM
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Transparent
chuck

Model 4100
Automatic Semiconductor
Irradiation System

Now for the first time, conduct total-dose tests,
dose-rate tests, or study /atchup phenomena of
devices or compiex ICs at the wafer level in your
laboratory or testing area. No other radiation
sources are required. You can determine If

a wafer meets space and DoD total-dose.
dose-rate, and latchup criteria in minutes

Think of the economy and convenience
associated with fast, accurate wafer-levet

tests that correlate directly with other
approaches to radiation testing.
Because the dose-rate and
latchup measurements

impart no damage. you can
test 100% ot the die on the
wafer

Comprehensive Radiation Testing.
Transient tests are perfiymed with 3
LNGsten x ray fube 1he [rmgry Jose
Aot from the KOV L e s rdy
[iose 1ate and ialchul tests 46 myage
with 4 NG YAG e pulse ihough the
Lark of the water Resaita correngte
weth CoDait B0 3 wnear g el r@ine
LG L0

Coflimator and
temperature control

Dosimeter

Easy Interface with Modem ATE.

All Model 4100 Systems are designed 1o interface with either
tunctional or parametric test systems for production-site testing of
VLSI gdevices Both low-current and high-speed test capabiities are
provided by a controlied impedance tester intertace

Evaluate internsl Latchup Margins. Saves Time and Reduces Expenses.

Faer oyt aier ot ntnee et o On-site. water stage testing eliminates the lost production time
required ior device packaging and the high cost ot off-site testing

It also permits the rejechon of unsatisfactory walers. rather than the
rejection of completely fabricated production lots
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ATTN: H WICKLEIN
ATTN: W DOHERTY
ATTN: O MULKEY
ATTN: C DIXON

CALIFORNIA INSTITUTE OF TECHNOLOGY
ATTN: W PRICE

CALSPAN CORP
ATTN: R THOMPSON

CHARLES STARK DRAPER LAB, INC
ATTN: J BOYLE
ATTN: N TIBBETTS
ATTN: P GREIFF
ATTN: W D CALLENDER

CINCINNATI ELECTRONICS CORP
ATTN: L HAMMOND

CLARKSON COLLEGE OF TECHNOLOGY
ATTN: PJMCNULTY

COMPUTER SCIENCES CORP
ATTN: A SCHIFF

DAVID SARNOFF RESEARCH CENTER, INC
ATTN: R SMELTZER

DENVER COLORADO SEMINARY UNIVERSITY OF
ATTN: SEC OFFICER FOR F VENDITTI

E-SYSTEMS, INC
ATTN: KREIS

E-SYSTEMS, INC
ATTN: DIVISION LIBRARY CBN-38

EATON CORP
ATTN: R BRYANT

ELECTRONIC INDUSTRIES ASSOCIATION
ATTN: J KINN

FORD AEROSPACE & COMMUNICATIONS CORP
ATTN: TECHNICAL INFORMATION SERVICES

GENERAL ELECTRIC CO
ATTN: DOCUMENTS LIBRARY
ATTN: H ODONNELL
ATTN: J ANDREWS
ATTN: R BENEDICT
ATTN: R CASEY

GENERAL ELECTRIC CO
ATTN: B FLAHERTY
ATTN: G BENDER
ATTN: L HAUGE

GENERAL ELECTRIC CO
ATTN: G GATIMD
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GENERAL ELECTRIC CO
ATTN: C HEWISON
ATTN: D COLE

GENERAL ELECTRIC CO
ATTN: J MILLER

GENERAL RESEARCH CORP
ATTN: A HUNT

GEORGE WASHINGTON UNIVERSITY
ATTN: A FRIEDMAN

GRUMMAN AEROSPACE CORP
ATTN: J ROGERS

GTE GOVERNMENT SYSTEMS CORPORATION
ATTN: J A WALDRON

HARRIS CORP
ATTN: E YOST
ATTN: W ABARE

HARRIS CORP

ATTN: J W SWONGER
HONEYWELL, INC

ATTN: D HEROLD

ATTN: D LAMB

ATTN: D NIELSEN

ATTN: RBELT

ATTN: R GUMM

HONEYWELL, INC
ATTN: MS 725-5
ATTN: MS 830-4A

HUGHES AIRCRAFT CO
ATTN: W SCHENET

HUGHES AIRCRAFT CO
ATTN: JHALL

HUGHES AIRCRAFT COMPANY
ATTN: A NAREVSKY
ATTN: E KUBO
ATTN: L DARDA

IBM CORP
ATTN: H MATHERS

IBM CORP
ATTN: J ZIEGLER

IBM CORP

g ATTN: A EDENFELD
ATTN: N HADDAD

1 HT RESEARCH INSTITUTE
ATTN: AKBUTI
ATTN: | MINDEL
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ILLINOIS COMPUTER RESEARCH, INC
ATTN: E S DAVIDSON '

INSTITUTE FOR DEFENSE ANALYSES
ATTN: TECH INFO SERVICES

IRT CORP
ATTN: J AZAREWICZ
ATTN: J HARRITY
ATTN: M ROSE
ATTN: MDC
ATTN: R MERTZ

JAYCOR
ATTN: M TREADAWAY
ATTN: RSTAHL
ATTN: T FLANAGAN

JAYCOR
ATTN: RSULLIVAN

JAYCOR
ATTN: C ROGERS
ATTN: RPOLL

JOHNS HOPKINS UNIVERSITY
ATTN: P PARTRIDGE
ATTN: R MAURER

JOHNS HOPKINS UNIVERSITY
ATTN: G MASSON/DEPT OF ELEC ENGR

KAMAN SCIENCES CORP
ATTN: KS-HLEE

KAMAN SCIENCES CORP
ATTN: C BAKER
ATTN: DIR SCIENCE & TECHNOLOGY DIV
ATTN: J ERSKINE
ATTN: N BEAUCHAMP
ATTN: WRICH

KAMAN SCIENCES CORP
ATTN: E CONRAD

KAMAN SCIENCES CORPORATION
ATTN: D PIRIO

KAMAN TEMPO
ATTN: DASIAC
ATTN: R RUTHERFORD
ATTN: W MCNAMARA

KAMAN TEMPO
ATTN: DASIAC

LITTON SYSTEMS INC
ATTN: E L ZIMMERMAN
ATTN: F MOTTER
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LOCKHEED MISSILES & SPACE CO, INC
ATTN: FJUNGA
ATTN: REPORTS LIBRARY

LOCKHEED MISSILES & SPACE CO, INC

ATTN: B KIMURA

ATTN: E HESSEE

ATTN: JCLEE

ATTN: J CAYOT

ATTN: L ROSSI

ATTN: PBENE

ATTN: S TAIMUTY

LTV AEROSPACE & DEFENSE COMPANY
ATTN: A.R. TOMME
ATTN: LIBRARY
ATTN: TECHNICAL DATA CENTER

MAGNAVOX ADVANCED PRODUCTS & SYS CO
ATTN: W HAGEMEIER

MARTIN MARIETTA CORP
ATTN: J TANKE
ATTN: J WARD
ATTN: W BRUCE
ATTN: R GAYNOR
ATTN: TIC/MP-30

MARTIN MARIETTA CORP
ATTN: T DAVIS

MARTIN MARIETTA DENVER AEROSPACE
ATTN: R ANDERSON
ATTN: R KASE
ATTN: RESEARCH LIBRARY

MARYLAND, UNIVERSITY OF
ATTN: HCLIN

MCDONNELL DOUGLAS CORP
ATTN: AP MUNIE
ATTN. DL DOHM
ATTN: M STITCH
ATTN: RL KLOSTER

MCDONNELL DOUGLAS CORP
ATTN: P ALBRECHT

MCDONNELL DOUGLAS CORP
ATTN: TECHNICAL LIBRARY

MISSION RESEARCH CORP
ATTN: C LONGMIRE

MISSION RESEARCH CORP
ATTN: R PEASE

MISSION RESEARCH CORP
ATTN: JLUBELL
ATTN: R CURRY
ATTN: W WARE
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MISSION RESEARCH CORP, SAN DIEGO
ATTN: J RAYMOND

MITRE CORPORATION
ATTN: M FITZGERALD

MOTOROLA, INC
ATTN: A CHRISTENSEN

MOTOROLA, INC
ATTN: CLUND
ATTN: L CLARK
ATTN: O EDWARDS

NATIONAL SEMICONDUCTOR CORP
ATTN: F C JONES

NORDEN SYSTEMS, INC
ATTN: N RIEDERMAN
ATTN: TECHNICAL LIBRARY

NORTHROP CORP
ATTN: A BAHRAMAN
ATTN: J SROUR
ATTN: Z SHANFIELD

NORTHROP CORP
ATTN: E KING
ATTN: S STEWART

PACIFIC-SIERRA RESEARCH CORP
ATTN: H BRODE, CHAIRMAN SAGE

PHYSICS INTERNATIONAL CO
ATTN: J SHEA

R & D ASSOCIATES
ATTN: B LAMB
ATTN: M GROVER
ATTN: W KARZAS

RAND CORP
ATTN: C CRAIN
ATTN: P DAVIS

RAND CORP
ATTN: B BENNETT

RAYTHEON CO
ATTN: G JOSHI
ATTN: J CICCIO

RAYTHEON CO
ATTN: A VAN DOREN
ATTN: H FLESCHER

RCA CORP
ATTN: G BRUCKER
ATTN: V MANCINO
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RCA CORP, MICROELECTRONICS CENTER
ATTN: E SCHMITT
ATTN: WALLEN

RENSSELAER POLYTECHNIC INSTITUTE
ATTN: R GUTMANN

RESEARCH TRIANGLE INSTITUTE
ATTN: M SIMONS

ROCKWELL INTERNATIONAL CORP
ATTN: A ROVELL
ATTN: GAS0 TIC/L G GREEN
ATTN: JBELL
ATTN: J BURSON

"ROCKWELL INTERNATIONAL CORP
ATTN: TIC 124-203

ROCKWELL INTERNATIONAL CORP
ATTN: TYATES
ATTN: TIC BAOS

SCIENCE APPLICATIONS INTL CORP
ATTN: D LONG
ATTN: D MILLWARD
ATTN: D STROBEL
ATTN: R JBEYSTER
ATTN: VORPHAN
ATTN: V VERBINSKI

SCIENCE APPLICATIONS INTL CORP
ATTN: J SPRATT

SCIENCE APPLICATIONS INTL CORP
ATTN: W CHADSEY

SCIENCE APPLICATIONS INTL CORP
ATTN: P A ZIELIE

SINGER CO
ATTN:
ATTN:

R SPIENGEL
TECHNICAL INFORMATION CENTER

SPERRY CORP

ATTN: JINDA

SPERRY CORP

ATTN: P MARROFFINO

SUNDSTRAND CORP
ATTN: C WHITE

SYSTEM DEVELOPMENT CORP
ATTN: PRODUCT EVALUATION LABORATORY

SYSTRON-DONNER CORP
ATTN: J RAY

TELEDYNE BROWN ENGINEERING
ATTN: G REZELL

Dist-7
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TELEDYNE SYSTEMS CO
ATTN: R SUHRKE

TEXAS INSTRUMENTS, INC
ATTN: E JEFFREY
ATTN: F POBLENZ
ATTN: T CHEEK

TRW ELECTRONICS & DEFENSE SECTOR
ATTN: A WITTELES

ATTN: D CLEMENT

ATTN: F FRIEDT

ATTN: H HOLLOWAY

ATTN: M S ASH

ATTN: O ADAMS

ATTN: P GUILFOYLE

ATTN: PRREID

ATTN: R PLEBUCH

ATTN: R VON HATTEN

ATTN: TECH INFO CTR, DOC ACQ
ATTN: W ROWAN

ATTN: W WILLIS

2Cys

2CYsS

TRW ELECTRONICS & DEFENSE SECTOR
ATTN: C BLASNEK
ATTN: F FAY
ATTN: J GORMAN

VISIDYNE, INC
ATTN: C H HUMPHREY
ATTN: W P REIDY

WESTINGHOUSE ELECTRIC CORP
ATTN: D GRIMES
ATTN: H KALAPACA
ATN: R CRICCHI

WESTINGHOUSE ELECTRIC CORP
ATTN: SWOO0D

UERTS RARRPETR

AT A SR A A2 AT T R SRR X
h m;&?i‘.“:‘m\)ﬁ‘;\ ‘.\f\{\{\t\ - s‘;\{\{&'..\‘.‘l Ca A N



m«cmmﬁmmm LSRR R T




: ®
LA

T
iy ¥

’

AL L R RN




