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TOPOLOGICAL ASPECTS OF INFINITE METAL CLUSTERS AND SUPERCONDUCTORS

R.B. KING
Department of Chemistry, University of Georgia, Athens, Georgia 30602 (U.S.A.)

ABSTRACT

This paper summarizes the chemical bonding topology of infinite metal
clusters as well as superconductors constructed from metal octahedra or metai
tetrahedra. The chemical bonding topologies of discrete octahedral metal
clusters can be either edge-localized (e.g., MogXglgd* derivatives),
face-localized (e.g., NbgXjoLgc™ derivatives), or globally delocalized (e.g.,
Zrg(uz-C1)12EC1q.12 derivatives where E = Be, B, C, N). Infinite fusion
of metal octahedra in one, two, and three dimensions leads to metal cluster
chains (e.g., Gd2Cl3), metal cluster sheets (e.g., ZrCl), and bulk metals,
respectively. Superconductors exhibiting relatively high critical temperatures
and magnetic fields are constructed from edge-localized metal polyhedra such
as the Mog octahedra in the ternary molybdenum chalcogenides (Chevrel phases)
and Rhg tetrahedra in the ternary lanthanide rhodium borides leading naturally
to the concept of porous delocalization in such materials.

INTRODUCTION

The basic building blocks of metal clustersl are metal polyhedra,
particularly metal deltahedra in which all of the faces are triangles. Initial
theoretical work2-15 focussed on the structure and bonding in discrete metal
polyhedra. Subsequent papersl6-2l have treated various aspects of the fusion
of metal cluster polyhedra. This paper extends our graph theory derived
methods2-S to the infinite fusion of metal cluster octahedra. Such infinite
fusion in one dimension leads to chains, in two dimensions leads to sheets,
and in three dimensions leads to the bulk metals themselves. This work thus
provides a novel background for the study of the relationship between discrete
metal clusters and bulk metals. In addition such an approach is relevant
to the properties of extended solids, particularly properties related to
metal-metal interactions such as superconductivity.22 This paper illustrates
the last point by reviewing the bonding topologies 1in the terhary molybdenum
chalcogenides (Chevrel phases) and ternary lanthanide rhodium borides, which
represent two types of solids exhibiting relatively- high superconducting
critical temperatures and/or critical magnetic fields. The bonding topologies
of such superconductors are characterized by porous infinite
delocalization.23,24
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BACKGROUND

The chemical bonding topology can be represented by a graph in which
the vertices correspond to atoms or orbitals participating in the bonding
and edges correspond to bonding relationships. The eigenvalues x of the
adjacency matrix of such a graph are related to the Huckel theory molecular

orbital energies E and the Huckel parameters o , 8 and S by the following
equation2,3,4,5,21,25,26; .

E = 2y X8 (1)
Positive and negative eigenvalues x thus correspond to bonding and antibonding
 orbitals, respectively.

The two extreme types of chemical bonding in metal clusters may be called
edge-localized and globally delocalized.2:4:5 An intermediate degree of
delocalization called face-localized is also possible in certain cases. An
edge-localized polyhedron has two-electron two-center bonds along each edge
of the polyhedron and 1is favored when the numbers of internal orbitals of
the vertex atoms match the vertex degrees. A face-localized deltahedron
has two-electron three-center bonds in each (triangular) face of the
deltahedron and can arise when the number of internal orbitals of each vertex
atom matches the number of faces meeting at the vertex. A globally delocalized
polyhedron has a multicenter core bond in the center of the polyhedron and
is favored when the numbers of internal orbitals match neither the numbers
of edges nor the numbers of faces meeting at the vertices. Edge-localized,
face-localized, and globally delocalized bonding are all possible in octahedral
early transition metal clusters in which the number of internal orbitals
from each vertex atom can be either three or four.

One of the major achievements of the graph theory derived approach to
the chemical bonding topology in globally delocalized systems 1is the
demonstration of the close analogy between the bonding in two-dimensional
planar polygonal aromatic systems such as benzene and that in three-dimensional
boranes and  carboranes based on deltahedra without  tetrahedral
chambers.2:3:4:21 In both cases the three internal orbitals from each vertex
are partitioned into two twin internal orbitals and a single unique internal
orbital. In the two-dimensional planar polygonal systems the twin internal
orbitals overlap pairwise to form the so-called o-bonding network around
the circumference of the polygon and the unique internal orbitals overlap
cyclically (C, graph) to form the so-called = -bonding network. In the
three-dimensional deltahedral systems the twin internal orbitals overlap
pairwise in the surface of the deltahedron and the unique internal orbitals
form a multicenter core bond (K, graph) at the center of the deltahedron.
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The globally delocalized deltahedra with n vertices have 2n + 2 skeletal
electrons with 2n of these electrons involved in the surface bonding and
the remaining two electrons occupying the single bonding molecular orbital
arising from the multicenter core bond.2:3:4:21 Thus a globally delocalized
octahedron has (2)(6) + 2 = 14 skeletal electrons. Electron-rich polyhedra
with more than 2n + 2 apparent skeletal electrons have one or more
non-triangular faces whereas electron-poor deltahedra with less than 2n +
2 apparent skeletal electrons have one or more tetrahedral chambers. Such
electron-poor deltahedra may alternatively be constructed from a smaller
deltahedron having no tetrahedral chambers by face-sharing fusion with one
or more tetrahedra corresponding to the individual tetrahedral chambers.
Thus a capped octahedron can be constructed by fusing an octahedron to a

| tetrahedron by sharing a triangular face. The electron-poor deltahedra with
tetrahedral chambers can thus be regarded as the simplest examples of
polyhedral fusion. Conversely, the early transition metal clusters based
on infinite fusion of metal octahedra may be viewed as extreme examples of
such electron poverty. Such systems thus are appropriately constructed with
early transition metals which have relatively small numbers of valence
electrons.

The general approach for considering metal cluster bonding models involves
calculating the number of available skeletal electrons for comparison with
the numbers of skeletal electrons required to fill the bonding molecular
orbitals for various cluster shapes and bonding topologies. Difficulties

- can arise from uncertainties in the valence orbital manifolds and hence the-
) electronic configurations of the vertex atoms or in the partition of the_
i vertex atom orbitals between internal orbitals participating in the skeletal

bonding and external orbitals participating {in bonding external to the
clusters. Such difficulties can sometimes lead to ambiguities 1in the
assignments of bonding topologies in metal clusters in cases where two or
more different skeletal bonding topologies assign reasonable electron
configurations to the vertex atoms and use all of the available orbitals
and electrons. Such ambiguities arise relatively rarely in the treatment
of discrete metal clusters but occur more frequently in infinitely fused
metal clusters. In addition highly conducting infinite metal clusters may
not have enough skeletal electrons to fill all of the bonding orbitals so
that there are partially filled conduction bands. These ambiguities 1limit
the applicability of graph theory derived methads far the study of the bonding
topology of infinitely fused metal clusters with the difficulties apparently
fncreasing with the number of dimensfons of infinite fusion. Nevertheless,
1deas which lead to satisfactory bonding models for discrete metal clusters
appear to give consistent results for infinitely fused metal clusters.
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The early transition metal clusters treated in this paper contain halogen
or chalcogen atoms which are either edge-bridging (e.g., uz-Cl or uy-S) or
face-bridging (e.g., u3-Cl or u3-S) through two or three electron pairs,
respectively. Neutral edge-bridging and face-bridging halogen atoms are

net donors of three and five electrons, respectively. Similarly, neutral

edge-bridging and face-bridging chalcogen atoms are net donors of two and
four electrons, respectively. In the actual three-dimensional structures
the electron pairs of halogen and chalcogen atoms not required for the primary
bridging within a cluster octahedron or chain of octahedra may be donated
to adjacent octahedra or chains of octahedra. Such electron pairs from
external halogen or chalcogen atoms must be considered in electron-counting
schemes in order to obtain meaningful electron counts.

An important feature of this paper is the extension of octahedral metal
cluster chemical bonding models to infinite solid state systems. In this
context the concept of an octahedral metal cluster repeating unit is most
fundamental. In general, atoms shared by two or more such repeating units
are partitioned equally between the repeating units. Electrons and orbitals
from such shared atoms may not necessarily be partitioned equally but the
sums of the electrons and the orbitals donated by the atom to all of the
units sharing the atom in question must equal the total number of valence
electrons and orbitals available from the neutral atom.

DISCRETE OCTAHEDRAL METAL CLUSTERS

Discrete octahedral metal clusters can be classified into the following
three types (Table 1):
(1) Edge-localized: The chemical bonding manifold of an edge-localized metal
octahedron s one-dimensional corresponding to the 1-skeleton2’ of the
octahedron consisting of twelve two-center bonds along the twelve edges of
the octahedron. This chemical bonding manifold requires 24 skeletal electrons
and 24 internal orbitals corresponding to 4 internal orbitals for each vertex
atom. Important examples of such edge-localized metal octahedra include
the molybdenum (II) halide derivatives M05X3L54" such as "“molybdenum
dichloride,” Mog(u3-C1)gClaCls 2 (ref. 28) as well as the ternary molybdenum
chalcogenides MMogSg (Chevrel phases).29 _
(2) Face-localized: The chemical bonding manifold of a face-localized metal

octahedron {s two-dimensional consisting of eight three-center bonds in the
eight faces of the octahedron. This chemical bonding manifold requires 16
skeletal electrons and 24 internal orbitals corresponding to four internal
orbitals for each vertex atom. Face-localized octahedra thus require the
same number of skeletal orbitals but efght skeletal electrons less than
edge-localized octahedra. Important examples of such face-localized metal
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octahedra inciude the niobium halide derivatives NbgXjpLg2* such as the binary
halide Nbg(uz-C1)12C16,3 (= NbgC114)30
{3) Globally delocalized: The chemical bonding manifold of a globally
delocalized metal octahedron is three-dimensional consisting of six two-center ¥
bonds delocalized in the surface of the octahedron and a single six-center
core bond delocalized in the volume of the octahedron. This chemical bonding
manifold requires 14 skeletal electrons and 18 internal orbitals corresponding
to only three internal orbitals for each vertex atom.2-5 Typical examples
of globally delocalized octahedral clusters are the octahedral boranes and {
carboranes (e.g., BgHg2~ and CpB4Hg) as well as octahedral metal cluster
carbonyls (e.g., Rhg(CO)1g and Rug(C0)17C). Globally delocalized octahedral !
early transition metal halide clusters include =zirconium halide clusters
containing an  interstitial atom which have the general formula
Zrg(up-C1)126CTp_12%* (E = Be, B, C, N; z = 10-n+pg where pg is the number
of valence electrons of the neutral interstitial atom E).3l

Electron counting in discrete edge-localized octahedral metal clusters iy
can be illustrated by using the molybdenum (II) halide derivatives generically s
represented as MogXglg3t. The structures of these compounds consist of Mog
octahedra, a face-bridging (u3) halogen atom in each of the eight octahedral .
faces, and one bond from each molybdenum vertex to an external ligand (L), :
which may be a halogen atom bridging from another Mog octahedron as in y
"molybdenum dichloride," Mos(u3-C1)gC12C14/2.23 The coordination polyhedron
of each of the vertex molybdenum atoms 1is a Cg4y 4-capped square antiprism
with the external ligand L 1in the unique axial position, four bonds to
face-bridging halogen atoms in the four equivalent medial positions, and
the four internal orbitals in the four equivalent basal positions forming 2
the two-center bonds with the adjacent molybdenum atoms in the same Mog \
octahedron. An L-Mo vertex using four internal orbitals and thus five external
orbitals is a (5)(2) - 6 - 2 = 2 electron acceptor (or -2 electron donor)
after allowing for six electrons from the neutral molybdenum atom and two
electrons from the neutral 1ligand L. This 1leads to the following
electron-counting scheme?:

6 LMo vertices: (6)(-2) = -12 electrons ﬂ
: 8 u3-X bridges: (8)(5) = 40 electrons

+4 charge: -4 electrons

Net skeletal electrons: 24 electrons

These 24 skeletal electrons are exactly the number required for an
edge-localized octahedron having twelve two-center edge bonds as discussed
above.

Electron counting in discrete face-localized octahedral metal clusters
can be 1llustrated using the niobium halide clusters of the type Nb5x12L52+
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including the binary halide Nbg(up-C1)12Clg,3 (= NbgCljg).30 The structures
of these compounds consist of Nbg octahedra, an edge-bridging (u2) halogen
atom across each of the twelve octahedral edges, and one bond from each niobium
vertex to an external ligand (L), which may be a halogen atom bridging from
another Nbg octahedron such as in NbgClj4. The edge-bridged face-localized
NbgX12Lg2* are thus complementary to the face-bridged edge-localized MogXgLet*
clusters discussed above. In the Nb5x12L52+ clusters an -L-Nb vertex using
four internal orbitals and thus five external orbitals is a (5)(2) - 5 -
2 = 3 electron acceptor (or -3 electron donor) after allowing for five
electrons from the neutral Nb atom and two electrons from the neutral ligand
L. This leads to the following electron-counting scheme for NbgXjolgZ*:

6 LNb vertices: (6)(-3) = -18 electrons

12 up-X bridges: (12)(3) = 36 electrons

+2 charge: -2 electrons

Net skeletal electrons: 16 electrons
These 16 skeletal electrons are exactly the number required for a
face-localized octahedron with its eight three-center face bonds as discussed
above.

Electron counting in discrete globally delocalized octahedral early
transition metal halide clusters containing an interstitial atom can be
illustrated by the zirconium chloride cluster ZrgCijsN containing an
interstitial nitrogen atom in the center of a ZIrg octahedron. In ZrgClisN
each zirconium vertex is bonded to five chlorine atoms. Four of these chlorine
atoms (up-Cl) bridge edges to a neighboring zirconium atom whereas the fifth
chlorine atom bridges from another Zrg octahedron. This latter (external)
chlorine may formally be regarded as a ligand (L) so that ZrgClijsN may be
treated as ZrgCljoNLg3*. The zirconium vertices clearly use five external
orbitals for bonding to chlorine atoms making them (5)(2) - 4 - 2 = 4 electron
acceptors (-4 electron donors). This leads to the following electron counting
scheme for ZrgClioNLg3* (= Zrg(up-C1)1oNCl,123%):

6 LZr vertices: (6)(-4) = _ -24 electrons

12 up-C1 Bridges: (12)(3) = 36 electrons

Interstitial N atom: 5 electrons

+3 charge: -3 electrons

Net skeletal electrons 14 electrons
This 1s the correct electron count for a globally delocalized octahedron
which has six two-center bonds delocalized in the surface of the octahedron
and a single six-center core bond delocalized in the volume of the octahedron.
Note that this bonding topology requires only three internal orbitals from
each vertex atom meaning that each vertex zirconium atom has a manifold of
only eight bonding orbitals, namely five external and three rather than four
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internal orbitals. This corresponds to a 16-electron configuration similar
to that found in a variety of stable zirconium compounds such as (05H5)zzrc12

Also note that the presence of an interstitial atom in the center of an :
octahedral cluster favors a bonding topology containing a six-center core ¢
bond delocalized through the octahedral volume containing the interstitial

atom rather than bonding topologies having only edge bonding in the octahedral )
l-skeleton or face bonding in the octahedral surface. '

INFINITE FUSION OF METAL OCTAHEDRA i
The fusion of metal cluster octahedra can extend infinitely in a single
dimension leading to chains of such octahedra, in two dimensions leading
to graphite-like sheets constructed from metal octahedra, or in all three
dimensions leading to the bulk metals themselves.32 Examples of infinite
chains of edge-fused metal cluster octahedra are found in the lanthanide
halides of the stoichiometry MaC13 as exemplified by Gd2C13" (Figure 1).33 3§
Examples of two-dimensional infinite sheets of metal cluster octahedra are !
the graphite-like zirconium monohalides (Figure 2).34 This section discusses
electron and orbital bookkeeping in these one-dimensional and two-dimensional
systems and implications of the resulting model for the structure and bonding
in bulk metals, which represent the limiting case of infinite polyhedral )
fusion in all three dimensions.
Consider first the chains of edge-fused octahedra in GdpClj3 (Figure 1).
These metal chains have both Gdg octahedral cavities (a2b4 in Figure 1) and
Gd4 tetrahedral cavities (a2b2 in Figure 1) with twice the number of
tetrahedral cavities as octahedral cavities. A repeating octahedral Gdg
unit in the chain can be represented as Gdp3Gdg,2P(u3abb-C1)4(up32-C1)4 5.
Both the axial (a in Figure 1) and bridging (b in Figure 1) gadolinium atoms
are nine-coordinate and use five external orbitals each for bonds to chlorine h
atoms, four of which are in the same chain and the fifth ("external") halogen
atom (not shown in Figure 1) 1is located in an adjacent chain of metal
octahedra. Thus the gadolinium atoms each are (2)(5) - 3 - 2 = 5 electron
acceptors (-5 electron donors) after allowing for the three electrons of
the neutral gadolinium and an electron pair from the external halogen atoms.
This leads to the following count of skeletal electrons and internal orbitals
for an octahedral Gdg unit in 6dzC13 (= Gd23Gdg/2P)(u33bd - C1)4(uz32 - C1)4,2:

2 axial Gd: (2)(-5) = -10 electrons (8 orbitals)
4/2 axial G6d: (2)(-5) = -10 electrons (8 orbitals) i
4 u3-Cl: (4)(5) = 20 electrons )
4/2 up-Cl: (4/2)(3) = 6 electrons '
Total skeletal electrons and

internal orbitals 6 electrons (16 orbitals)

..............
--------
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Fig. 1. Lanthanide halide structures (e.g. Gd2C13) based on edge-fused
octahedra showing a unit of two octahedra. For clarity electron pair donation
from halogens in other chains to each vertex atom is not shown.

These skeletal electrons and internal orbitals can be used in the octahedral
Gdg unit as follows:
1 6-center octahedral core

bond (aZb4) 2 electrons 6 orbitals
2 4-center tetrahedral core

bonds (a2b2) 4 electrons 8 orbitals
Total electrons and orbitals

required 6 electrons 14 orbitals

The failure to use twao of the available 16 orbitals in this bonding topology
can correspond to the axial gadolinfum atoms (two for each octahedral Gdg
unit) having 16-electron rather than 18-electron configurations. In addition,
the apparent tendency for multicenter core bonding in tetrahedral as well
as octahedral cavities in even this one-dimensional infinite metal cluster
contrasts with the edge-localized bonding always found in tetrahedral chambers
in discrete metal clusters.2:-4:20 The closed shell electronic configuration
of GdyCl3 is consistent with its semiconducting energy gap Eg of approximately
1ev.35

Now consider the two-dimensional infinite sheets of metal octahedra as
found 1in the graphite-like zirconium monohalides (Figure 2)3%4 or the
hydrogen-stabilized lanthanide monohalides of the stoichiometry HLnX.36 The
structures of these systems are constructed from two layers of hexagonal
sheets of metal atoms which form both octahedral and tetrahedral cavities
(Figure 2). There are twice as many tetrahedral as octahedral cavities in
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Fig. 2. A top view of a segment of the two stacked hexagonal sheets of metal
: atoms in the zirconium monohalide structure. The sheet indicated in dotted
1ines is below the sheet indicated in solid lines.

these infinite sheet structures as in the infinite chain structure of GdzClj
. ) (Figure 1) discussed above. The octahedral cavities each have six internal
' faces and two external faces; the external faces are capped by u3 face-bridging
halogen atoms (Figure 2). Each metal vertex is shared by three octahedral
cavities. The nine valence orbitals of each vertex metal atom are directed
towards the vertices of a 4,4,4-tricapped trigonal prism and are partitioned
into three external orbitals for bonds to face-bridging halogen atoms, three
internal orbitals for core bonding in the three octahedral cavities meeting
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at the metal vertex in question, and three internal orbitals for face bonding
across the external faces of the tetrahedral cavities meeting at the metal
vertex in question. A zirconium vertex in such a system thus u;es three
external orbitals and is an acceptor of (2)(3) - 4 = 2 skeletal electrons
(i.e., a -2 skeletal electron donor) after allowing for the four valence
electrons of a neutral zirconium atom. This leads to the following electron
counting scheme for ZrCl (= Zrg/3(u3-Cl)7):

6/3 Ir: (6/3)(-2) = -4 electrons (12 orbitals)
2 u3=Cl: (2)(5) = 10 electrons
Total skeletal electrons

and orbitals 6 electrons (12 orbitals)

These six skeletal electrons and twelve internal orbitals can be used for
the following bonding topology based on a single repeating Zr5/3(u3-Cl)2
octahedral unit: )
1 6-center octahedral core bond 2 electrons (6 orbitals)
2 3-center face bonds across
external faces of tetrahedral

cavities 4 electrons (6 orbitals)
Total electrons and orbitals
required 6 electrons (12 orbitals)

Note that in the two-dimensional infinite sheets of ZrCl1 as 1in the
one-dimensional infinite chains of GdpClj there are two tetrahedral cavities
for each octahedral cavity and single multicenter bonds for each of these
cavities, both tetrahedral and octahedral.

Now consider bulk metals as infinite arrays of fused octahedra in all
three dimensfons. The structures can be visualized as an infinite stacking
of the hexagonal metal sheets in Figure 2 1into the third dimension
perpendicular to the sheets. In frequently encountered metallic structures
such as the cubic close packed structures there are two tetrahedral cavities
for each octahedral cavity analogous to the infinite one-dimensional edge-fused
metal octahedra chains (e.g., Gd2C13 in Figure 1) and infinite two-dimensional
edge-fused metal octahedra sheets (e.g., ZrCl1 in Figure 2) discussed above.
In a bulk metal all of the valence orbitals of each metal atom are internal
orbitals. Since each metal atom is shared by six octahedral cavities and
since an octahedral cavity is formed by six metal atoms, the number of valence
electrons for each octahedral cavity {is equal to the number of valence
electrons of the metal. Formation of one multicenter bond each in each
octahedral cavity and in the two tetrahedral cavities for each octahedral
cavity requires six electrons per octahedral cavity corresponding to a metal
atom with six valence electrons such as chromium, molybdenum, or tungsten.
This correlates with the experimental observation of maximum heat of
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atomization (i.e., maximum stability of the metal lattice) for the group
6 metal tungsten3’ in the 5d transition metal series as well as the role
of the transition metal divide3® at the group 6 metals in determining the
composition, structure, and oproi-~rties of certain transition metal alloys
such as the beta tungsten phases. In the 3d and 4d transition metal series
the correlations are not quite as good since the maximum heats of atomization
are found for the group S5 metals vanadium and niobium rather than the
corresponding group 6 metals chromium and molybdenum, respectively3d’; this
may be related to the s-d shear hypothesis of Stone. 38

SUPERCONDUCTORS

The graph theory derived method for the study of the chemical bonding
topology of metal clusters can also be extended to superconducting materials.
In this connection Vandenberg and Matthias22 have shown that most high
temperature superconductors contain discrete metal clusters fn this crystal
lattices thereby suggesting the relevance of this approach.

One class of superconductors of particular interest consists of ternary
molybdenum chalcogenides, commonly known as Chevrel phases.29:39 These phases
were the first superconducting ternary systems found to have relatively high
critical temperatures40 reaching 15 K for PbMogSg. In addition the upper
critical field of PbMogSg (Hc2 & 60T) is the highest value observed for any
class of superconductors.41,42

The most important type of Chevrel phases have the general formulas MpMogSg
and MpMogSeg (M = Ba, Sn, Pb, Ag, lanthanides, Fe, Co, Ni, etc.). The basic
building blocks of their structures are MogSg (or MogSeg) units containing
a bonded Mog octahedron (Mo-Mo distances in the range 2.67 to 2.78 K) with
a sulfur atom capping each of the eight faces. This leads to an Mog octahedron
within an Sg cube. Each (neutral) sulfur atom of the Sg cube functions as
a donor of four skeletal electrons to the Mog octahedron within that Sg cube
leaving an electron pair to function as a ligand to a molybdenum atom in
an adjacent Mog octahedron. Maximizing this sulfur electron pair donation
to the appropriate molybdenum atom in the adjacent Mog octahedron results
in a tilting of the Mog octahedron by about 25° within the cubic array of
the other metal atoms M.43 These other metal atoms M furnish electrons to
the MogSg units allowing them to approach but not attain the MogSg4~ closed
shell electronic configuration. This corresponds to a partially filled
conduction band. Electronic bridges between individual Mog octahedra are
provided by interoctahedral metal-metal interactions (nearest interoctahedral
Mo-Mo distances are in the range 3.08 to 3.49 R for  MogSg and  MogSeg
derivatives).29

The MogSgd~ closed shell electronic configuration for the fundamental
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Chevrel phase building block is isoelectronic with that of the MogXaLg*
halides discussed above remembering that each molybdenum vertex receives.
an electron pair from a sulfur atom of an adjacent MogSg unit and thus may
be treated as an LMo vertex. This leads to the following electron counting
scheme for the closed shell MogSg4~ unit:

6 LMo vertices: (6)(-2) = -12 electrons
8 u3-S bridges: (8)(4) = 32 electrons
-4 charge 4 electrons
Total skeletal electrons 24 electrons

These 24 skeletal electrons are again the exact number required for an
edge-localized octahedron having two-center bonds along each of the 12 edges.
Note the analogy between the chemical bonding topology in M05534' and that
in MogXglg4* discussed above.

The Chevrel phases include not only species constructed from discrete
MogSg (or MogSeg) octahedra but also species constructed from MogSii, Moj2Sis.
and (MogSg)_ units formed from the fusion of octahedra by sharing triangular
faces. This fusion process may be regarded as analogous to the formation
of polycyclic aromatic hydrocarbons from the fusion of hexagons by sharing
edges. This suggests the classification of fused molybdenum octahedra by
the trivial name of the polycyclic benzenoid hydrocarbon having an analogous
configuration of its planar hexagon building blocks (Figure 3). A similar
scheme has also been used to classify rhodium carbonyl clusters having related
structures based on face fused octahedra.20,21 In the case of the fused
molybdenum sulfide octahedra in Figure 3 only the linearly fused species
are known analogous to the linear polyacenes (benzene, naphthalene, anthracene,
tetracene, pentacene, etc.).

The molybdenum atoms in the fused octahedra of Figure 3 are of two types,
inner and outer. Outer molybdenum atoms are similar to those in the discrete
octahedral MogSg building blocks discussed above. They thus use four internal
orbitals and receive an electron pair from a sulfur atom of an adjacent metal
cluster unit (indicated by arrows in Figure 3). The inner molybdenum atoms
(circled in Figure 3) use six internal orbitals and do not receive an electron
pair from a sulfur atom of an adjacent metal cluster. They are therefore
zero electron donors, i.e. (3)(2) - 6 - 0 = 0. Edges connecting pairs of
inner molybdenum atoms are bridged by sulfur atoms but these sulfur atoms
also bond to one molybdenum atom in each adjacent Moj triangle ("above" and
"below" in Figure 3) so that they function as ug sulfur atoms and donors
of four skeletal electrons to their own cluster units. Thus all sulfur atoms
in the species depicted in Figure 3 may be regarded as four-electron donors
when considered as neutral ligands. Electron and orbital counting arguments
summarized in detail elsewhere23 suggest a combination of face-localized
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and edge-localized bonding in Mog octahedra formed from a triangle of outer

molybdenum atoms and a triangle of inner molybdenum atoms (e.g., both‘
octahedral cavities 1in the naphthalene analogue MogSyj%-) but globally

delocalized bonding in Mog octahedra formed only from inner molybdenum atoms

(e.g., the central octahedral cavity in the anthracene analogue Moj2S146-).

The limit to the face-sharing fusion of molybdenum octahedra is the
infinite linear polyacene analogue (Mossez')_ (Figure 3) known in a number
of derivatives (MyMogSgle. (M = K, Rb, Cs) as well as the selenium analogues
[MoMogSeg]. (M = Na, K, Rb, Cs, Ti, Ag) and the tellurium analogues
[MoMogTegl. (M = Rb, Cs, In, T1).44,45 A11 molybdenum atoms in these infinite
chains of face-fused octahedra are inner molydenum atoms and none of the
chalcogens bridge to other chains so that there are no close contacts between
the different chains. In accord with this structure these systems function
as pseudo-one-dimensional metals with strongly anisotropic conductivities
several hundred times larger parallel to the chains of octahedra relative
to the perpendicular directions.44:46 The Mog 7S¢/~ octahedra serving as
building blocks for these [MyMogSgle derivatives and their selenium and
tellurium analogues have 13 skeletal electrons, i.e. none from the (inner)
molybdenum vertices, 12 [= (6/2)(4)] from the three (= 6/2) sulfur atoms,
and 1 from the -1 charge. These 13 skeletal electrons for each Mog/2S¢/2”
unit are one less than the 14 skeletal electrons required for the corresponding
octahedral cavity to be globally delocalized (2n + 2 = 14 for n = 6). These
holes in the closed shell electronic configurations for globally delocalized
(MogS¢~2). provide a mechanism for electronic conduction along the chains
of face fused octahedra. Peierls distortionsd7.48 leading to alternately
long and short spaces between the Mo3X3 (X = S, Se, Te) units in the chains
of fused octahedra appear to be relatively unfavorable but have been
suggested45:49 to account for the broad metal-semiconductor transitions in
the ternary molybdenum tellurides [MyMogTeg]. (M = Rb, Cs).

Another interesting class of high temperature superconductors consists
of the ternary lanthanide rhodium borides, LnRhgBg (Ln = certain lanthanides
such as Nd, Sm, Er, Tm, Lu),50.51 which exhibit significantly higher
superconducting transition temperatures than other types of metal borides.
These rhodium borides have a structure consisting of electronically 1inked
Rhg tetrahedra and thus provide further support of the general idea of
VYandenberg and Matthias22 that most high temperature superconductors contain

discrete metal clusters 1in their crystal lattices. The topology of an hX
individual RhgBs unit 1in these ternary borides is that of a tetracapped a
tetrahedron of T4 local symmetry in which the four degree 6 vertices correspond !
to rhodium atoms and the four degree 3 vertices correspond to boron atoms. ,'f:
Furthermore, a tetracapped tetrahedron is topologically equivalent to a cube f-:
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with diagonals drawn across each of its six faces in such a way to preserve
tetrahedral (Tq) overall symmetry. The diagonals of such a cube correspond
to six Rh-Rh bonds (average length 2.71 A in YRh4B4)52 and the edges of such
a cube correspond to twelve Rh-B bonds (average length 2.17 A 1in YRh4B4).5¢
The ratio between these two lengths, namely 2.71/2.17 = 1.25, is only about
13% less than the /2 = 1.414 ratio of these lengths in an ideal cube. This
suggests that the RhgBs4 building blocks can be approximated by a cube in
the three-dimensional lattice. The Rh-Rh distances of 2.71 Z in these RhgBg
units are essentially identical to the mean Rh-Rh distance in the discrete
molecular tetrahedral rhodium clusterS3 Rh4(C0)12 regarded as a prototypical
example of an edge-localized tetrahedron.2.4

The boron and rhodium atoms in LnRhgB4 have four and nine valence orbitals,
respectively. All of these valence orbitals are used to form two-center
bonds leading to an edge-localized structure. The four bonds formed by a
boron atom are as follows: _
(1) Three bonds to rhodium atoms in the same Rh4B4 cube (average Rh-B distance
2.17 A in YRhgBy).
(2) One bond to the nearest boron atom in an adjacent RhgB4 cube (B-B distance
1.86 R in YRhgBg) thereby leading to discrete By units in the structure.
The nine bonds formed by a rhodium atom are as follows:
(1) Three bonds to rhodium atoms in the same Rhg tetrahedron (average Rh-Rh
distance 2.71 A in YRhgBg).
(2) Three bonds to boron atoms in the same RhgBs4 cube (average Rh-B distance
2.17 A 1n YRh4B4).
(3) One bond to the nearest rhodium atom in another RhgB4 cube in the same
sheet of such cubes (Rh-Rh distance 2.68 A in YRhqBg).
(4) Two bonds to the next nearest rhodium atoms in adjacent RhgB4 cubes (Rh-Rh
distances 3.18 A in YRhgBs).
In deriving the chemical bonding topology each boron atom is considered to
have three internal orbitals and one external orbital and is therefore a
donor of two skeletal electrons since one of the three boron valence electrons
is needed for the B-B bond using its external orbital. Similarly each rhodium
atom has six internal orbitals and three external orbitals and is therefore
a donor of six skeletal electrons since three of the nine rhodium valence
electrons are needed for the three external Rh-Rh bonds formed by a given
rhodium atom.

From these considerations a neutral RhgBg unit in the LnRhgBg borides
can be shown to have 32 skeletal electrons as follows:

4 Rh vertices: (4)(6) = 24 electrons
4 B vertices: (4)(2) = 8 electrons
Total skeletal electrons for each RhgBgq unit: 32 electrons
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Since a tetracapped tetrahedron or the topologically equivalent cube with
six diagonals has 18 edges corresponding to six Rh-Rh bonds and twelve Rh-B
bonds as outlined above, a closed shell edge-localized RhgBg unit requires
(2)(18) = 36 skeletal electrons corresponding to the tetraanion RhgBg4-. Since
the lanthanides also present in the lattice form tripositive rather than
tetrapositive fons, the LnRhgBg borides must be Ln3*RhgBq3~ with the Rh4Bg3-
anion having one electron less than the closed shell electronic configuration
Rh484". This electron deficiency provides a partially filled conduction
band leading to facile <lectron transport and high electronic conductivity.

The chemical bonding topologies of both the Chevrel phases MMogSg and
the ternary lanthanide rhodium borides both consist of edge-localized discrete
metal polyhedra (Mog octahedra and Rhgq tetrahedra, respectively) linked into
a three-dimensional structure both through other atoms (sulfur and boron,
respectively) and through interpolyhedral metal-metal interactions. This
leads naturally to the concept of porous delocalization. Thus the bonding
in a polyhedron with edge-localized bonding is porous in contrast to the
dense bonding in a polyhedron with globally delocalized bonding. In other
words porous chemical bonding uses a one-dimensional chemical bonding
manifold54 corresponding to the 1l-skeleton?’ of the polyhedron in contrast
to dense chemical bonding which uses a three-dimensional chemical bonding
manifold54 1involving the whole volume of the polyhedron. An interesting
refinement of the idea of Vandenberg and Matthias2? arising from this analysis
of the chemical bonding topology of both the Chevrel phases and the ternary
lanthanide rhodium borides s the conjecture that a porously deloc2lized
three-dimensional network consisting of electronically 1linked polyhedral
metal clusters having edge-localized chemical bonding leads to superconducting
systems having relatively high critical temperatures and magnetic fields.
Thus the porosity of the chemical bonding in these systems makes their
superconductivity more resistant to magnetic fields and temperature than
that of densely delocalized systems such as pure metals. This idea appears
to be related to the suggestion35 that the high critical field of the Chevrel
phases arises from a certain localization of the conduction electron wave
function on the Mog clusters leading to an extremely short mean free path
and/or a low Fermi velocity corresponding to a small B.C.S. coherence length.
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