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CHAPTER I

INTRODUCTION

Classification of an unknown target from radar return signals by means of

sequential hypothesis testing techniques is the subject of this study. A radar

target identification (RTI) system is to be designed to distinguish measurements

of the radar backscatter from an unknown object as belonging to one of a set of

M classes, with each class corresponding to a particular airborne radar target.

The classification of targets observed by a radar or other sensor is of prime

importance in ballistic missile defense and other similar problems. Targets are

(at least conceptually) examined one at a time and classified based on the time

ordered returns from a set of consecutively transmitted pulses. In this report an

observation is considered to be a sample waveform from a random process, and

the classification algorithm or classifier is based on sequential statistical hypothesis

testing.

The radar system to be used is a general purpose, multifrequency, multipo-

larization system. It operates in the range from 8 to 58 MHz in horizontal receive

mode (see[l]). For the targets of interest, these frequencies represent the resonant

region of a catalogue of radar targets which are used for the experimental phases

of the study [2]. The resonant region corresponds to the band of frequencies with

wavelengths which are approximately equal to the dimension of the target.

A reasonable design goal for a target identification system is to realize an al-

N 1
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gorithm that is capable of producing a reliable decision with as few measurements

as possible. It has long been recognized [3,4] that sequential hypothesis testing

techniques provide a reasonable compromise in the tradeoff between the classifica-

tion error rate and the average number of measurements, E{n}, required to reach

a decision.

The theory of sequential hypothesis testing was developed for the binary (two

hypotheses) case by Wald [3]. Since that time, this theory has had a wide variety

of applications. For the application to target identification, the target returns are

observed in stages. At each stage a decision is made either to classify the target

(as a particular object type) or to make another observation.

For the binary case, the sequential classification procedure is optimal in the

sense that a classification is made and the decision sequence ends with the min-

imum number of returns necessary to achieve a prescribed probability of error

[5]. Sequential classifiers provide important advantages over those classifiers that

employ a predetermined, fixed number of return measurements. Targets that are

easy to identify are classified quickly, while targets that are more difficult to iden-

tify can be observed for a longer period of time before reaching a decision. This

results in a more efficient use of the sensor and of computational resources and

an overall improvement in the classification performance. Although most of the

important results from the theory of sequential testing do not require statistical in-

dependence between successive observations, independence of observations greatly

simplifies the design and analysis of the performance of the sequential test.

Since the original work of Wald [3], a number of techniques have been proposed

* that extend binary hypothesis testing methods to the case of Al > 3 alternatives

[6,7,4,8]. Each of these techniques realize some performance characteristic that

may be desirable for certain applications. In addition to the classification error



rate and the average number of measurements, these characteristics may include

the maximum number of measurements allowed, the complexity of implementa-

tion, and the sensitivity to noise power levels. The relative importance of these

performance parameters depends on the application.

The present consideration of M-ary sequential techniques is primarily moti-

vated by interest in the reliable identificaion of aircraft. For this particular ap-

plication, each measurement X is a vector whose component xi, i = 1,... , K are

complex numbers representing the in-phase and quadrature parts of the backscat-

ter signal at a particular frequency, fi.

The target, whose identity is unknown, may be at unknown azimuth and

elevation relative to the radar. In cases where the aspect angle (azimuth and

elevation) of the object are known, the M hypotheses may be regarded as "simple";

each hypothesis corresponding to a target class described by a single prototype.

When the aspect angle of the object is unknown, or known to be within some

range of angles, the decision must be made among M composite hypotheses; each

. hypothesis corresponding to a target class containing N prototypes that represent

the possible aspect angles in the specified range.

For experimentation purposes, simulated radar returns were obtained from

the Ohio State University compact radar range as discussed in [9]. The compact

range data has been normalized so that all system related parameters have been

removed from the measurements. The compact range data is in units of dBm 2

which is the radar cross section of the target, relative to 1 square meter. This unit

of measurement is also used to describe the average power of the noise used in the

simulation.

Figure 1 shows the structure of a classifier designed to identify radar returns

where observations are taken sequentially. The classifier includes three main steps:

S ."
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h~tPtenFtature Selection ClassificationiInpu Paternor Extraction

Figure 1: Sequential Pattern Recognition System

test p~attern reception, feature selection and extraction, and classification. This

studly is mnainly concerned with the classification operations to be performed to

reach a decision.

Choosing an op~timnum set of features from the input pattern results in a re-

(iliction of 1)oth the probability of misclassification and the required number of

II(IeaSur11enits [4]. Feature ordering helps improve the perfornmance of the classifier

as a whole [41. In this study the terni "feature" refers to the frequency component

4
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used. This means that changing features at each stage of the sequential test is

j a change in the frequency elements measured whenever a new observation is re-

quested. Thus, feature ordering for radar target identification is done by selecting

an optimum set of frequencies at each stage of the sequential test. Vectors of

observations that correspond to different set of frequencies at each stage of the

sequential test describe the target in a better way than those utilizing the same

frequencies through the entire test [10]. If the sequential test involves class rejec-

tion, then the optimum set of frequencies depends on the nature and number of

classes that are not rejected. The optimum set of frequencies include those that

give the most "recognizable" returns when applied to different type of targets.

In this study, the set of frequencies used is an optimum set obtained by ap-

plication of feature selection algorithms [10]. The sequential observations are in

fact utilizing repeated measurements of the same set of optimum frequencies, but

the noise content of each measurement differs from stage to stage. Repeating the

same observations many times results in an effective improvement in the signal to

noise ratio [11]. As more observations are taken and the classifier makes use of

the previous measurements, the test eventually reaches a stage where a reliable

decision can be declared.

1.1 Purpose of the Study

The optimal classifier is to be designed such that it requires the least possible

number of observations given a fixed probability of misclassification. To achieve

this goal, an investigation of the algorithms that have already been proposed in

literature is carried out and a comparison between these algorithms is made based

on their performance.

Modifications of the techniques are suggested as a measure to improve their

5
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performance tradeoff between the expected number of observations E{n} and the

probability of misclassification. Ways of converting some techniques that require

a predetermined fixed number of observations into sequential techniques are also

suggested in this study.

This study considers the case where complete a priori knowledge of the statis-

tics of the random observations is available and the case where such a knowledge

is not complete. The former case is known as "parametric" and the latter as

-nonparametric".

The concept of sequential hypotheses test for the binary case, as introduced by

Wald, is discussed in Chapter II. Several generalizations of this technique for the

M-ary case and some modifications of these techniques are discussed in Chapter III.

An M-ary sequential classification technique based on a tree structured algorithm

is proposed in Chapter III. In Chapter IV, a sequential version of the nonparametric

nearest-neighbor (NN) method of pattern recognition is considered.

The performance of the various techniques is evaluated in Chapter V by means

of computer simulation studies. In obtaining the results for Chapter V, the radar

signals are simulated using a set of stored reference patterns of five different com-

mercial aircraft, each corresponding to a class containing vector prototypes rep-

resenting observations of a particular aircraft at up to nineteen different azimuth

angles. (See [1] for a discussion of the generation and characteristics of the aircraft

catalog database.)

6
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CHAPTER II

The Concept of Sequential Hypotheses Testing

A sequential test is an adaptive procedure to decide among two or more al-

ternate hypotheses, where observations are taken sequentially until a decision is

available. If the parameter to be minimized is the average number of observations

(samples), then Wald [3] showed that the sequential probability ratio test (SPRT)

for the binary case (two hypotheses) requires in the mean the least number of

ell measurements. The SPRT, being superior in this sense to the classical fixed num-

ber of observations tests, has been given much attention in the last three decades.

B The sequential probability ratio test, as a binary hypotheses test, has become very

important in the field of radar detection. The application of sequential tests to the

detection problem minimizes the average detection time.

2.1 Observations and Associated Probability Distributions

Consider the problem of classifying a set of n, K-dimensional vector obser-

U.". vations, X (n ) {XI',x 2,... ,xn}, X t E CK as belonging to one of M classes,

S,'" where each class corresponds to an event, wi for i = 1,...,M. Let pn(X/wi)

denote the joint conditional density function of the n random K-dimensional vec-

tor observations. Let P(wi) denote the a priori class probability for the event

wi, i = 1,..., l. We assume that class wi is composed of Ns subclasses, corre-

sponding to the events WiWi2,... ,wi,Ns each of which represents the target of

7

1 .~ -. ._1 r



class wi at a distinct azimuth angle, and let p(x 1/wi,j) denote the joint conditional

probability density function of the 1th observation X(l) = x() given subclass Wij.

The a posteriori probability of the event (class) wi is given as

P(wi/x 1 P(Wi)p(X'1 W) (2.1)

P(X1)

where

N,
p(X/WO) = E P(wi,j)p(x /wij) (2.2)

j=1

Assuming the M classes are equally probable, then for Gaussian distributed ran-

dom observations the joint conditional density function, which is a Gaussian mix-

ture (for n observations), is expressed as follows:

n

Pn(x/wi) = fI P(xi/wi) (2.3)
1=1

1 N 1 exp [ = KRe2{xkl-si,j,k} r{xkl -si,j,k}(2.4)

Where x1 is the k1th frequency component of the Ith measurement vector, and si,j,k

is the kth frequency component of the prototype corresponding to the jth subclass

(azimuth angle) of class wi.The joint density function, p(x l ) in (2.1) is given by

M

P(x1 ) = EP(i)P(x/wi) (2.5)

Let the conditional probability of deciding hypothesis wi when the unknown

target is a member of class wj be e(i,j). Thus, e(ij) i 5 j is the probability of

misclassifying a target from class wj, while e(j,j) is the probability of correctly

classifying that target.

8
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2.2 Binary Case: The Sequential Probability Ratio Test

The sequential probability ratio test (SPRT) and other sequential hypothesis

tests discussed below are based on the set of pairwise likelihood ratios, Lij(n)

calculated at the nih stage of the test, among M possible hypotheses given as

LiP(n) = Pn(x/wi) (2.6)

pn(x/wj)

for i,j = 1,...,M.

The sequential probability ratio test due to Wald [3] for testing a sample

hypothesis or class wl against a single alternative w2 (M = 2) proceeds as follows:

1. Compute the likelihood ratio L 1,2 (n) based on n observations,

2. If L 1,2(n) > A, decide wl

"K If L 1,2(n) < B, decide w2

Otherwise, increment the number of measurements, n, and repeat the test.

In this test, the parameters A and B are chosen so that:

A- - e(2, 1) (2.7)A = e(1, 2)(27

e(2,2) (2.8)

B = 1-e(1,2)"

This test is optimal in the sense of minimizing the probability of error with the

fewest average number of required measurements, E{n} [3].

Equations (2.7) and (2.8) define the decision boundaries which partition the

feature space into three regions: the region where wi is chosen; the region where

w2 is chosen; and the region of indifference (or null region). The null region is the

region in which no terminal decision is made. This region is a major factor in de-

termining the total number of observations and the probability of misclassification.

9
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As the null region becomes larger, the test becomes longer and more observations

must be taken, and the probability of error is reduced.

2.3 Example

Suppose that X1, x2,. .. , xn are n independent measurements each with prob-

ability density function p(x/wi), i = 1, 2, a univariate Gaussian with mean si and

variance a

The likelihood ratio L1, 2(n) at the nth stage of the test is given as:

An log(L 1,2(n)) = Elog P(X/Wl' (2.9).j=1 ,p(-T/W,2)

(S -s2) n 1
A 0r2 -[xj- 2s 1 -S2)] (2.10)

j=1

The decision procedure becomes as follows:

2 +. 2n ~ sE j > -log A + +s2) (2.11)
j= l g -(s22

2 2 n

Exj < - logB + (s3+£2) (2.12)
j=1 sl -- s 2 2

Otherwise another observation is required.

The distance between thresholds that define the null region:

a.2 Ad = - log (2.13)

Notice that as the variance a2 increases or as the class means Sl and $2 approach

each other, the null region becomes larger. Thus, more measurements are required

if the noise level increases, or if the targets to be classified are similar to each other.

This is due to the fact that as the null region becomes larger, more observations

10
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are required in order to drive the test out of this region to either of the terminal

decision regions.

In the above example, notice that the decision regions of the SPRT were

originally fixed by the thresholds A and B. However, these regions depend on

the statistical parameters of the random observation x. At high noise levels, more

observations are required before a terminal decision can be made.

The experimental phase of this study deals with the performance of a radar

target identification system employing sequential techniques where the noise level

affects the decision boundaries and consequently the overall error probability. If

these parameters (variance or class means) are fixed then the boundaries of the

decision areas are uniquely defined by the thresholds A and B and hence by the

error probabilities e(l, 2), and e(2, 1).

Prediction of the number of observations required before terminating the se-

quential test might give an idea about the test length. In [3] an expression is given

for the expected number of measurements E{n} that a SPRT requires assuming

a Gaussian distribution. Predicting the expected number of samples in the bi-

nary hypotheses tests is much simpler than that of the M-ary hypotheses tests.

This is due to the fact that the probability analysis in the binary case is not as

complicated as the M-ary case, especially in defining the decision regions and the

corresponding error probabilities.

2.4 Modified Sequential Probability Ratio Test (MSPRT)

The SPRT due to Wald is optimal in the sense of minimizing the average

number of observations E{n} with fixed error probability. It is, however, possible

for this test to require an unreasonable number of measurements before reaching a

• 11
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decision. For this reason, various modifications of this test have been considered,

including an abrupt truncation of the test at some value n = N.

As an alternative to an abrupt truncation, a modification of the thresholds, A

and B is suggested in [4]. Here, the decision boundaries incorporate a dependence

on n so that the new thresholds approach a common level at n = N (see Figure

2). The form of the modified thresholds given in [4] is

A(n) = exp [ci(1 - " r(2.14)

B(n) = exp [c2(1 _- ) (2.15)

for constants cl, c2 and r. Notice that as the maximum number of measurements,

N increases, this test reduces to Wald's test.

In [4] it is shown that with a proper choice of the coefficients cl, c2 and r, the

number of measurements can be limited while retaining the low error probability of

the Wald test. The relation between the average number of measurements required

for the Wald test Ew{n} and the average number of measurements required for

the modified test E1 {n} is given by

E Ew{n} < Ew{n} (2.16)

1+r

Thus, the modified test limits the maximum number of measurements and reduces

the average number of measurements at the expense of a slight increase in the

error probability.

Using the modification discussed above, the decision procedure in the previous

example becomes as follows: if

n 2nEXj > , C- e 1  + S2) l(.)

j = I S 1 - -s 2

also, if

12
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A SPRT
A

num~ber of obseirydonh

Figure 2: SPRT and MSPRT decision regions

j < 1- + (31 + 32) x E w2 (2.18)

j=l 31 -- 2 NY

The distance between thresholds at the nth stage of the test is

dn = s- 2 - C2) (1 (2.19)

Notice that as n --+ N the separation between the two decision boundaries ap-

proaches zero. At n = N the region associated with wl and the region associated

with w2 meet, eliminating the null region, and the test is terminated. In [4] it is

shown that by adjusting the starting points of stopping boundaries it is possible

to achieve error probabilities as nearly as low as those in Wald's SPRT.

13



2.5 Group Sequential Tests

In a group sequential test, observations are taken in groups rather than single

observation at a time. The motivation behind this approach is the fact that the

classical SPRT is a complex procedure that requires many operations at each stage

of the test. A comparison must be performed after each observation, a feedback

signal is required to request an additional observation, and a new hypotheses test

is required at each stage of the test. The sequential observation policy suggested

in [12] reduces the computation time of the SPRT and proceeds as follows:

1. At each stage of the sequential test, a test statistic is calculated based on No

observations.

2. A two-threshold test similar to the Wald test is performed. No more obser-

vations are requested when any of the Wald thresholds is crossed. Otherwise,

this group of observations is discarded, a new group is observed and the test

is repeated.

This approach is called a "Memoryless grouped-data sequential procedure". This

technique is easier to implement than the Wald test, but is not optimal in any

sense. However, this approach has better performance than tests with fixed num-

ber of observations [12]. The reduction in the average number of measurements

using this approach can reach 60 percent compared to tests which use fixed number

of observations. The SPRT, on the other hand, reduces the number of measure-

ments up to 72 percent (see [12]). Truncation of the above test is simpler than

the truncation of the SPRT because the number of observations in this case is

geometrically distributed [12].

14
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The above technique is useful whenever the number of observations required

to terminate the sequential test is large. This might not be the case in radar

target identification where minimizing the number of observations (test length) is

the main concern.

2.6 Relative Efficiency of the Sequential Probability Ratio Test

The efficiency of the sequential probability ratio test is defined as the ratio

of the expected number of measurements in the sequential test to the number

of measurements required by a fixed number of observations test to achieve the

same error probability. This ratio represents the performance of the sequential

test in classifying targets with a certain error probability and minimum number of

observations.

The relative efficiency is derived for the binary hypotheses case in [13,4]. In

[13], the efficiency of the Wald sequential test to discriminate between the two

hypotheses, wl, and, w2 is given as:

e(2, 1) log + (1 - e(2, 1)) log
7"7 =- -2 (~1-1(e(2,1))+ 7((e(1,2))2)

when w2 is true, and

.e(l, 2) log + (1 - e(1, 2)) log e(2(2.21)

(0-1(e(2, 1)) + 4-I((e(1,2))2)

* when w 1 is true, where -1(.) is the inverse of the standard normal distribution

€(.). For derivation of the above equations see [13].

Notice that the efficiency of the SPRT depends on the error probabilities

chosen to define the decision boundaries of the sequential test. Since no estimates

for the average number of observations required by M-ary sequential tests exist, the

15
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relative efficiency of any multiple hypotheses test can be computed experimentally

only.
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CHAPTER III

M-ary Hypothesis Tests: Parametric Techniques

This chapter is concerned with parametric M-ary hypotheses testing tech-

niques where M is the number of possible classes, M > 3. The joint conditional

density function pn(Z/wi) of the n random K-dimensional vector observations

is assumed to be known. The a priori class probabilities P(wi) for the event

wi i = 1,..., M, are also known. Thus, the case of a random observation with

known statistical parameters is considered in this chapter.

3.1 Bayes Sequential Test

*1 From a decision-theoretic standpoint, the most reliable test for deciding among

M hypotheses is the Bayes sequential procedure discussed in [4]. This test is

optimal in that it minimizes the Bayes risk for a given set of cost functions and

prior probabilities. Unfortunately, from the standpoint of implementation, the

complexity of this test is a major concern. At each stage of the sequential process

it is necessary to find the expected risk of making a decision, as well as the risk

of continuing the test. Dynamic programming is used to implement this technique

[4].

The intuitive argument of using dynamic programming for a finite sequential

r classification problem can be stated as follows: With observations taken one at a
time, each stage of the test is a decision problem including both the choice of taking

17



additional observation or terminating the sequential test. It is easy to determine

the expected risk involved in the decision when the test is terminated. However it

is difficult to compute the expected risk employed in taking additional observation

[14].

A new measurement is requested if its cost is less than the cost of terminating

the sequential test. That is, observations are repeated if the following inequality

is satisfied.

C(x,...,X,) + IPn(xl,...,Xn+l)dP(xn+l/x,...

< minR(x1 ,...,Xn;di) (3.1)
S

where R(xl,X2, ... , Xn; di) is the average risk of choosing the ith class after tak-

ing n measurements, C(x 1 , X2 , , Xn) is the cost of these n observations and

Pn(x1,. . . , Xn+l) is the average risk of the (n + 1)th observation. While it is possi-

ble to implement the Bayes procedure using dynamic programming techniques, this

test has found limited applications because of the required complexity, especially

*in situations where rapid decisions are desired.

In the remainder of this chapter, we consider various aspects of sequential M-

ary tests that are substantially less complex than the Bayes procedure. Because

of the relative ease of implementation, the tests discussed below are candidate

procedures for the classification of radar signals. Unfortunately, these tests produce

higher error probabilities, or require more observations, on the average, than the

Bayes sequential procedure. In order to compare the performance of these tests,

-it is necessary to evaluate the error probability and average number of required

measurements for a variety of cases. The performance evaluation of these tests is

the subject of Chapter V.

18

....-.--...-.. ";.- .- ;."' - , *.."



0-,

3.2 Pairwise Likelihood Ratios: The Armitage Test

The first M-ary technique we consider is due to Armitage [6]. At each stage

of the test, this approach involves the comparison of all M(M - 1)/2 pairwise

likelihood ratios, Lij(n), with a set of properly chosen thresholds, Aid. The

Armitage algorithm is restrictive in the sense that all M - 1 likelihood ratios for
hypothesis wi must simultaneously exceed thier respective thresholds in order for

wi to be selected.
This algorithm is summarized as follows:

1. Compute Lij(n), i,j = 1,2,...,M, i 6j

2 2. If Lij (n) -:_ Aij Vj = 1, 2.... IM, j 96 i, decide class wi.

Otherwise, increment the number of measurements, n, and repeat the test.

The constants Ai j could conveniently be made equal to a fixed threshold A. In this

case, the inequalities specify that pattern observation continues until the likelihood

function of one of the hypotheses is A times each of those of the other hypotheses.

In [6] it is shown that the probability of reaching a decision approaches one as

the number of measurements increases. The decision probabilities, e(i, i), and the

thresholds, Ai j for this test are related by:
1

e(i,i) > 1- (A(3.2)

Ai=[1 - (3i e(k,)

e(i,j)

These inequalities show that the probability of correct decision may be made large

.%.- if the thresholds are chosen sufficiently large. Notice that for M = 2, the threshold

is identical to the Wald test threshold. However, this test might be considered as

19
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M(M - 1)/2 binary tests where each of these binary tests has one decision area

defined by the above threshold. Notice that for M > 3, the above threshold is

lower than that specified by Wald for the binary case. Unfortunately, there is also

a direct relationship between the size of the thresholds and the average number of

required measurements. In addition, this test, like the Wald test, is not limited to

a maximum number of measurements.

3.3 Modifications of the Armitage Thresholds

In order to develop a sequential test that reduces the average number of re-

quired measurements while retaining the simplicity of an approach based on a

comparison of pairwise likelihood ratios, we consider a modification of the Ar-

mitage technique that is analogous to the modification of the Wald test discussed

in section (2.4). In particular, we form a set of thresholds that depend on the

number of measurements, n as:

a ,.i(n) i= 1,2,..., M i # j (3.4)

where Aij are the original thresholds defined by Armitage and r is a constant.

Notice that if r = 0, the thresholds correspond to the Armitage thresholds. Also,

notice that the above modification does not place a limit on the maximum number

of measurements required. However, as shown in chapter V, the thresholds for the

case where r = 1 significantly reduces the average number of required measure-

ments, E{n} while having little effect on the error probability of the classifier.

The motivation behind such a modification is that this technique gives very

good results at low noise levels. Thus, it is sometimes possible to reduce the number

of observations, provided that any slight increase in the probability of error does

not change the performance of this technique as a whole. However if r > 3 then

20



the change in the error probability becomes significant. This is an expected result

because, as r becomes significantly large, the null region is reduced at the expense

I of larger decision areas. Thus, terminating the sequential test becomes more likely.

% . The disadvantage of the above mentioned modification is that it does not

guarantee a termination of the sequential test within a reasonable number of mea-

surements.

3.4 Geometric Mean Comparison: The Reed Test

The second type of algorithm we consider is based on a comparison of the

individual likelihood functions, pn(x/wi) for each class, to the geometric mean of

the M likelihood functions. This test, due to Reed [7], is characterized by a decision

occuring on the basis of class rejection rather than class acceptence. That is, while

the tests discussed above formulate a decision on the basis of the "most likely"

class hypothesis, the approach used in the Reed test is a sequential elimination of

the "least likely" class hypotheses until a single remaining hypothesis is chosen.

Since this method compares each of the likelihood functions to a common

geometric mean, only M ratios must be computed; a significant reduction from the

M(M - 1)/2 pairwise likelihood ratios required for the Armitage test. In addition.

as the least likely alternative classes are eliminated, even fewer computations are

-" required as the test progresses until a single likelihood ratio is used to terminate

the test. The implementation of the Reed approach may be summarized as in [4]:

1. For each of the MR remaining candidate classes (initially, MR =Al) 0, C

Z: " {W,..,WM),i 1,. .,MR compute

I-I  x / 1/MR]I/
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2. For i = 1, 2,..., MR, reject class 9i if Un(x/6i) < Ai.

3. If just one class 0i remains decide hypothesis i,

Otherwise, increment the number of measurements, n and repeat the test

based on the remaining classes.

In the Reed algorithm, the thresholds, Ai are independent of the number of

• measurements, n and are related to the decision probabilities as:

A i =( ' 11 (3.6)

[lMR )

, which suggests that this test is characterized by the some of the same disadvantages

as the original forms of the Wald and Armitage tests. In [4], Fu suggested the

application of n-dependent thresholds, Ai(n) given by

Ai(n) = Ai 1- n (3.7)

for constant r, where N is the prespecified maximum number of allowed measure-

ments.

Notice that the ratio Un(x/9i) can be considered as the Afth root of the

product of Al likelihood ratios Lij j = 1 l.... ,M where Lij is the likelihood ratio

for the binary case.

The Reed algorithm requires the computation of the geometric mean of AIR

hypotheses. Computational problems may result since this product is near zero

whenever one of the hypotheses is unlikely. In the Armitage algorithm, such un-

"likely hypothesis would affect only one likelihood ratio provided that Al - I likeli-

hood functions are considered before making a decision. However in the Reed test,

the unlikely hypothesis affects the entire test. Thus, whenever unlikely hypotheses

exist, the decision criteria faces a numeric problem.
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3.5 Modifications of the Reed Algorithm

A suggested modification of the Reed test involves changing the likelihood

function Un(z/9i) given above into the following form:

,'(x/i) = Pn(z O (3.8)r}'4- MR

where 0i E {t.l,... ,twM). Thus, instead of computing the geometric mean at each

stage of the test, we compute the arithmetic mean. By using such a likelihood

function, we eliminate the computational problems discussed above. A modifica-

tion in the threshold directly follows the modification in the likelihood function.

The new thresholds are:

A' - 1 - e(i i)( (3.9).,. i= (1 - co,j))

Notice that If the error probabilities e(i,j) are equal, then the thresholds Ai and

SA' are equal.

Using this modification a class 9i is rejected if:

p:},(E) < AP [ R, (1e.) (3.10)
[MR j=l

while, in the Reed algorithm, a class 8i is rejected if:

pn(X/O,) < AL pn(X/Oi) (3.11)

The geometric mean being less than the arithmetic mean implies that the decision

region for the modified test is larger than that of the Reed test. Thus, less ob-

servations are required to terminate this test. At low noise power levels the joint

.- . ~ probability density functions pn(z/8i) i = 1,..., M are cosiderably different from

-. each other, thus, their geometric mean is much less than their arithmetic mean,
(a
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which means that the rejection region for the modified threshold is much larger

than that defined by the Reed test. Thus, at low noise power levels, the average

number of observations is reduced significantly by using the above modification.

The application of n dependent thresholds suggested by Fu [4] is still valid in

this case.

3.5.1 Double Thresholds: The Reed Test

The standard Reed test employs only one decision region. However, at high

noise power levels, rejecting a hypothesis is not usually done before taking many

observations. Thus, a suggested modification to the Reed algorithm is to add

another threshold Bi to define an acceptance region, that is: a hypothesis Oi is

accepted if Un(x/Oi) > Bi, 9i E W...,wMI. This modification improves the

* performance of the Reed test at high noise power levels. The threshold B i is given

h" as:

BI - k=~ 9i 1 (3.12)

9 also, for arithmetic mean comparison, the threshold B is given as:

1B - E MR e(k,) (3.13)

- MR

Using this modification a decision can be reached even before rejecting any

class. Thus, this modification reduces the hypotheses testing time in addition to

reducing the average number of measurements at high noise power levels.

3.6 Single Likelihood Ratio: The Palmer Test.

Classes of sequential tests that are not direct extensions of the Wald test to .AI

hypotheses are sequential rank tests and tests where each test statistic is compared

24



to multiple thresholds. Examples of tests with both of these characteristics are

discussed in [15] and [16].

In [16], Palmer proposes a method based on the computation of the M likeli-

.4- hood functions, pn(x/wi) at each stage of the test. The decisions for this test are

made on the basis of the value of the ratio of the two largest likelihood functions.

This single likelihood ratio is compared to a threshold, A. The implementation of

, ' this test is summarized as:

1. Compute pn(z/wi) V i =1,...,M.

2. Compute the likelihood ratio Lij(n) of the largest and second largest likeli-

hood functions.

3. If Lij(n) _ A, decide wi,

Otherwise, increment the number of measurements, n, and repeat the test.A
In the Palmer test, the threshold Ai is given as:

AM
Ai = 4(1 - e(i, i))2  

(3.14)

This test gives small error probability at low noise power levels with small number

of observations. However, at high noise power levels, the error probability becomes

significantly large because the difference in the likelihood functions becomes very

small, and a decision based on the two largest likelihood functions is not reliable.

Finally, we point out that this test may also be modified to include an n-dependent

threshold to allow a non-abrupt truncation while limiting the maximum number

of measurements.
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3.7 Sequential Maximum A Posteriori Test

The maximum a posteriori probability (MAP) technique chooses the hypoth-

esis whose a posteriori probability is maximum. Thus, the decision is direct

(nonsequential) and the target membership is assigned to the most likely hypothe-

sis. Assuming equiprobable classes and equal cost functions, the joint conditional

density functions of the n random K-dimensional vector observations are enough

to decide one of the M possible hypotheses. That is, the hypothesis with largest

likelihood function pn(x/wi) i = 1,..., A is determined to be the class of the

unclassified target. In this method, no thresholds are required and the decision is

a one-shot procedure.

Assume n observations are taken and the sample average = - Znl Xi,

then the expected value of ±, E{X} = E{X}; however the variance of the sample

average, var{k} = vat{X} Thus, as the number of samples, n, increases, the

variance of the random observation X decreases by a factor of n. This feature

motivates the following algorithm:

1. Computepn(x/wj) j=1,2,...,M

2. Compute pn(x/wi) = maxl<j<M [pn(x/wj)]

3. If pn(x/wi) > Ai Decide class wi,

Otherwise increment the number of measurements, n, and repeat the test.

The test is truncated after observing a maximum number of samples N by choosing

the class with maximum a posteriori probability. This technique gives reasonable
UI

results as shown in Chapter V.
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In [17], stopping rules for this test are derived from those of the Armitage

test. These stopping rules are applied to the likelihood functions rather than the

likelihood ratios. Thus, equation (3.3) can be modified as:

p>1 (3.15)
m P(wj)P(x/ - Pw) + r P(w)

or

~P(wi/x) 2_P!) @. (3.16)

This test can be considered as a comparison of the likelihood function of a class w i

to the arithmatic mean of all likelihood functions. Thus, it requires the computa-

tion of M likelihood ratios, while M(M - 1)/2 likelihood ratios are required by the

I 'Armitage test. However, this test is less restrictive than the Armitage test since
it does not employ pairwise comparison. Thus, the performance of this algorithm

j is, at the most, as good as that of the Armitage test.

This test can be modified to include hypotheses rejection (using (3.10)), where

a class is rejected if:

pn(x/wi) 1 -e(i,i).17)
M R  -- M R

Ei=I Pn(X/wj) -i=1 e(i,j))
*or

~._ P(woi/x) < (3.18)

Moreover, this test can be considered as Bayes sequential test with suboptimal

.Y :~decision boundaries.

-
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3.8 SPRT Applied to Tree Structured M-ary Hypothesis Tests

Algorithms for computing the optimal decision boundaries and predicting the

average number of observations, E{n}, exist for various versions of sequential

& binary hypotheses tests. In this section the M-ary problem is treated as a sequence

of binary hypotheses comparisons. The test is composed of many levels where a

binary classification test is applied at each level. Thus, the M-ary test is reduced

to a set of binary tests.

The radar target identification problem that requires choosing one hypothesis

among M possible hypotheses can be solved by dividing the M classes into two

seperate groups of classes, each including a certain set of classes that have similar

features. Each of these groups is then divided into two subgroups and so on.

Dividing groups into subgroups continues until two classes only are contained in

each group. The Wald SPRT is then applied to various levels of the test. Thus,

choosing among M hypotheses is reduced to a multilevel binary test. At each level

of the test, a decision to reject a certain group or to repeat observations is made.

In order to make sure that the test terminates with a finite number of obser-

vations, truncation must be employed in the sequential decision procedure. Trun-II: cation can take place in two forms. The first form involves truncation once in the

entire test (see Figure 3). If all the allowed measurements are requested before

reaching the lowest level of the test i.e., before deciding between two classes, then

the test continues by eliminating the null region for the rest of the binary tests.

:'4" Thus, after truncation, the rest of the binary tests are considered as likelihoodh.'.

ratio tests.

The second form of termination employs truncation at various levels of the

.1I-ary test. Thus, new decision regions are formed whenever a new level is reached

28
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(see Figure 4). Truncation at each stage should be done in such a way that the

total number of observations requested before the last truncation is equal to the

maximum allowed number of observations. Thus, if the M-ary test consists of L

levels and the maximum number of observations at each level Z = 1,2,..., L, is

Ni then N = ELl N i is the maximum number of allowed measurements for the

entire test.

" :The number of levels depends on the number of classes M, as well as on the

way groups are selected and the number of classes m < M, in each group. Groups

may contain one or more classes depending on the way these classes are separated.

A group that contains one class needs no further testing once the test reaches its

level.

*. In this study, grouping is performed according to the physical similarities

between aircraft. That is, grouping is based on physical aspects such as location

*of the engine, shape of the tail, size of the aircraft etc... Let 01,... ,m be the

classes contained in a group Oi, where 9j E {Wi,... ,WM} j 1,... ,m. Also, let
pn(x'/Oi) be the joint conditional density function of the th observation. Then

¢ rn

P(X/ei) E P(99)p(X/9,) (3.19)
j=1

. If n samples are observed then:

n m
g p(Xlx 2 X1.., xn/oE)= 1 EP(X1/Oj)P(9j) (3.20)

1=1 j=1

where p(X'l i) is given by:

-' T p(l~) " 1 N" 1 exp - EK l R 2 (x1 - Si,k,j) +- 2(xl - Si,kj) (321)

Ns i= (2ra2) .

This test is not optimal because applying an optimal binary test (SPRT) at each

level does not mean that the entire decision procedure is optimal. However, the
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Level 1 2 3

null region

number of observalions

Figure 3: Decision regions dependent on the number of observations only.

Level 13

'number of observations

Figure 4: Decision regions dependent on the number of observations and testing
stage.
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average number of observations of the M-ary test which is equal to the summation

of the average number of observations requested by the Wald test at each level, is

U predictable.

An optimal choice of groups would definitely improve the performance of the

- ~ above algorithm. Moreover, the tree algorithm can be considered as a combination

of both Armitage and Reed tests since it includes a pairwise comparison among

groups and employs group rejection at each level of the test.

J3
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CHAPTER IV

M-ary Hypothesis Tests: Nonparametric Methods

4.1 Nonparametric Techniques

A common aspect of the algorithms discussed in the previous section is the

dependence of the decision statistics on the likelihood functions, p,(x/'i). Un-

fortunately, a useful statistical characterization of a radar system is not always

available to the system designer. While statistics for the observed patterns can

be estimated through learning processes, it may be undesirable to employ a para-

metric technique designed for a particular system in hopes that the algorithm is

robust with respect to mismatched system characteristics. In this case, it is often

necessary to employ some form of nonparametric classification technique. Thus,

nonparametric classifiers are used for situations where the probability distribution

functions of the hypotheses cannot be parametrized by a set of finite parameters.

Nonparametric classifiers usually achieve good performance over a large class of

distribution functions.
=a

Fixed sample size nonparametric recognition systems have been treated ex-

N tensively in the literature [11]. However, few results exist for the sequential form

of nonparametric techniques. Most of the nonparametric classification techniques

discussed in the literature are based on some form of rank tests [4], or on a calcula-

tion of the "distance" or least-mean-square difference between the observed signal

. vector. X and the set of catalog prototypes, Sij, i 1 .... Al, j 1 X.....\ for
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the Ns prototypes of each of the M classes [8]. An example of a nonparametric

technique based on a comparison of distances is the nearest neighbor (NN) algo-

rithm which is employed in various pattern recognition applications [18,19] and is

implemented in a sequential scheme later in this chapter.

4.2 Linear Sequential Pattern Classification

The linear sequential pattern classifier approach combines the sequential na-
'-S

: ;~.4 ture of classifiers based on sequential decision theory with the linear structure of

a linear classifier [8]. In this algorithm, decisions to repeat an observation or to

"S classify the pattern are made using linear functions derived from a set of sample

Npatterns by the least mean-square error criterion. The decision procedure of this

classifier, for a pattern X, is to measure the components x1, x2,.. x K, and clas-

sify X to class i if its image (X x Wn) lies closest to a reference point bi; that is,

if

raXxW-bill= in X x Wn - bjjl (4.1)
1 :j<M

Where the transformation matrix Wn can be expressed in terms of the sample

pattern matrix S and the reference point matrix R. At the nth stage of the test

Wn = S+R. Where S+ is the generalized inverse of the matrix S. The decision

boundaries employed are exactly the same like those defined by Armitage [6] but

mapped into a decision space of the linear least mean square classifier.

The concept underlying this approach is very simple, however the implemen-

tation of this technique requires much computation at each stage of the sequential

test. The implementation of this algorithm is complex because it requires the

.- computation of the generalized inverse of the pattern matrix S whose dimensions

increase whenever a new observation is requested.
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In [14] a sequential classification algorithm using nonparametric ranking is

proposed. This technique requires ranking of vector components that represent

both the catalog data and the random observation. If single frequency radar is used

and the target is of known azimuth, then this algorithm can be applied directly.

However, if the observation vector utilizes more than one frequency component,

then ranking is according to the norm of the vector of observations, thus resulting

in a loss of information. If the azimuth position of the target is ambiguous or

known only to be within a certain range then this algorithm is not useful.

4.3 Sequential Nearest Neighbor (SNN) Techniques

The nearest neighbor technique of pattern recognition is based on the com-

putation of the vector distance between the observed signal, X and each of the

class prototype vectors Sij from class i, and subclass j. Specifically, the nearest

neighbor algorithm decides class wi if i = argmini{llX - Si,jI; j = 1,...

where 11 - denotes the Euclidean distance for the K-dimensional complex vectors.

This technique may be implemented as a part of a sequential classification

procedure as:

1. Compute the a% erage, X = 1 iX of the n available observations,

2. Compute dmin = rninj{fIX - SijII;j = 1,...,N8 },

dmin = min - sl,j,k) + 2( - l,) (4.2)
I k 3-1)(42

3. Decide class wi if i = argminl{IIX - Sl,jII;j 1,..., Ng} and if dmin _ Ai.

Otherwise, increment the number of observations, n, and repeat the test.

We point out that the process of averaging observations in the first step of the

test may be viewed as a means to enhance the signal-to-noise ratio (SNR) of the
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Figure 5: Decision regions for the SNN technique

decision statistic. Indeed, for coherent averaging and independent noise, the SNR

at the nth stage of averaging is increased by a factor of lOloglo(n) (dB) which

implies a reduction by a factor of n in the expected value of the miimun distance

squared, drin for the test. On the other hand, the enhancement of the SNR by

averaging additional observations is directly related to the enhancement of the

decision statistics based on likelihood functions for parametric tests, especially in

the case of additive Gaussian noise,

In a fashion similar to that employed for the parametric tests, we may modify

the thresholds in the sequential nearest neighbor test to limit the maximum number

of measurements and reduce the average number of measurements while maintain-

ing low error probabilities. In particular, we choose the measurement-dependent

thresholds as:
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A,(n) = Ai 1 + n (4.3)
N1

for constant r. Figure 5 shows the decision boundaries for this algorithm. Notice

that the null region is above the threshold in contrast to the techniques discussed

in the previous chapters. The reason for this choice of thresholds is that the

sequential test becomes less restrictive as the number of observations increases.

As shown in chapter V, by increasing the value of the thresholds Ai, the

classification time decreases with a slight increase in the probability of error. Thus.

the performance of this algorithm, like the other parametric techniques, depends

on the area of the null region, as well as the way this region varies with the number

of observations.

The results of simulation studies of the performance of this nonparametric

technique show that under certain circumstances, the sequential nearest neighbor

test performance is comparable to that of the parametric techniques discussed

above. In addition, the sequential nearest neighbor test requires only the compu-

tation of Al • N, vector distances at each stage of the test.

The choice of the thresholds A i depends on the data available or the catalogue

of information used for comparison. As a nonparametric approach, the nearest

neighbor decision rule requires decision boundaries that are not directly related

to error probabilities e(2,j). The threshold A i must be chosen such that the

sequential test is not terminated before enough observations are requested. That

is. no decision should be declared unless the tested target is closer to any prototype

p in its class than any other prototypes in the other classes. Thus, information

concerning the noise power level will help in choosing optimal (or suboptimal)

stopping boundaries.

An important feature of the nearest neighbor test as a nonparametric classi-
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fication algorithm is that it does not require noise free catalogue data, that is the

class prototype vectors can be noisy.

U The above mentioned algorithm can be applied to any version of the nearest

4' neighbor decision rule. For example, similar algorithms can be applied to the

nearest neighbor with reject option. In the nearest neighbor with reject option

aid for every pair of integers (k, 1) with k/2 < I < k the k nearest neighbors of

an observation are examined, and if 1 or more of them are in the same class the

observation is assigned to this class, otherwise it is rejected.

A sequential version of the "nearest class mean classifier" can also be derived

. in a similar manner as the sequential nearest neighbor algorithm. The nearest

c i,,, imean classifier is a classification algorithm based on choosing the class whose

prototypes are closer in average to the tested target than the prototypes of all other

classes. In 110] it is shown that the minimum distance classifier gives better results

than the nearest neighbor method at high noise power levels. Thus, an efficient

seq ,ential classification algorithm may use the sequential version of the nearest

. neighbor at low noise power level and a sequential minimum distance classifier at

"N high noise power levels. To be able to use such an algorithm, a priori knowledge

of the. noise power level should be available in advance.
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CHAPTER V

Simulation Results

In this chapter, we present the results of Monte-Carlo simulation studies of

the performance of the various sequential tests discussed in the previous chapters.

The percentage of classification error and the average number of measurements,

E{n} are given for a number of combinations of; the total number of classes -!,

the number of subclasses Ns, and the dimension, K of the vector of observations.

* X. The maximum number of measurements is set at a nominal value of N = 10.

In each case, the goal is to classify an observation of an unknown radar signal

as being produced by one of a set of up to five different commercial aircraft, each

. represented by a class containing prototypes representing vector observations of

*" the particular aircraft at up to nineteen different azimuth angles ranging from 00

to 1800.

5.1 Database

The database consists of coherent radar backscatter measurements of scale-

model of five coniinercial aircraft, obtained from The Ohio State University Elec-

troScience Laboratory compact range. The compact range data have been normal-

ized by removing all system related parameters from the measurements. Scaled

data are available for cach aircraft at 0' elevation angle, and azimuth positions at

00. 100, 20 ...... 1S0 . The dimension of the vector of observations K range
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):.. from K = 1, to, K = 51, covering a frequency range 8-58 MHZ using horizontally

j transmitted, horizontally received polarization (HHP). Each measurement compo-

nent is a complex number whose phase and amplitude are known (coherent radar

backscatter). (See [1] for a discussion of the generation and characteristics of the

aircraft catalog database.)

5.2 Measurements and Noise Model

The Ith observation vector X 1  [x1,x,..., XI ]T, whose dimension K cor-

responding to the number of frequencies used, represents the complex normalized

scattering coefficient of a prototype from an unknown class. The complex number

'k corresponds to the complex scattering coefficient whose magnitude is the square

root of the measured cross section in square meters, m 2 , and whose phase is that

of the measured signal.
For the simulation experiments of both parametric and nonparametric sequen-

S tial techniques, it is assumed that the observation process corresponds to a linear

-., system measurement of the signal vector, S, in the presence of additive Gaussian

noise. The signal vector is taken as one of the N, prototypes from one of the Al

classes, where each class corresponds to one of the five aircraft in the database.

The additive Gaussian noise is represented by two uncorrelated random nuni-

- bers WR, and VI, each having a Gaussian distribution with zero mean and variance
552

T . Thus the total additive noise W = WR + jW I j = v/T) has a Gaussian dis-

""' tribution with zero mean and variance a2 . The Ith observed complex normalized

.%" p.. scattering coefficient of a target of class i and at jth azimuth position and using

k t h frequency component is:

55k 4 Re(3ij~k) + R1JI + J [In(,jk) + Il](.1
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Table 1: Error rate and average number of measurements for the Reed technique
with .l = 5 classes, Ns = 6 prototypes/class, and K = 4.

Noise (dBsm) Error E{n}
,., 16 0.000 2.14

19 0.004 2.44
122 0.044 3.29

25 0.136 4.57
28 0.288 6.86

31 0.412 8.90

5.3 Simulation Approach

When the azimuth angle of the radar object is assumed to be known. then

Ns = 1 and the resulting vector observation, X = S+11 is assumed to be Gaussian

random vector with mean vector S and covariance matrix, a 21, where I is the

K x K identity matrix. When the azimuth angle of the object is assumed to

be unknown, or known to within a specified range, the observation vector X is

a. assumed to be distributed as a Gaussian mixture as in (2.4), corresponding to

the N, subclasses for each of the Ml classes. The target is assumed to stay in

the same azimuth position whenever a new observation is requested, that is, all

measurements correspond to one target at a fixed position in azimuth and elevation.

In Figure 6, the probability of classification error is shown as a function of

noise power level for the Reed test using the modified form of the thresholds (3.7).

The average number of required measurements, E{n} for this test as a function of

noise power level is given in Figure 7. These results are also tabulated in Table 1.

Ul

The results in Figureb 6-7 are computed for I, = 6 prototypes per class.

corresponding to target azimuth angles of 0', 100, 200. 300, 400, and 500. In this
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', '.., *Figure 6: Error rates for the Reed test with M = 5 classes, N, = 6
prototypes/class, K = 4.

13.0

-1RdT0

11.0

9.0

"! 7.0

5.0

3.0

1.0

0.0 6.0 12.0 18.0 24.0 30.0 36.0 42.0 48.0

Noise Level (d8sm)

%P Figure 7: Average number of measurements for the Reed test with MI1 5 classes.
,, . NIVN 6 prototypes/class, K = 4.
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case, the measurement vectors are of dimension, K = 4 corresponding to coherent

backscatter measurements at 8, 11, 16, and 25 MHz. The error percentages and

the average number of measurements are based on the results of three hundred

experiments.

The coordinates of the abscissa in these figures refer to the power, or variance.

of the Gaussian observation in terms of decibels relative to the power, Pr received

from an ideal radar signal reflector with one square meter area, i.e.,

Noise Power(dBin 2 ) = 100. logj - (5.2)

For the experimental results presented here, the average signal power of the com-

ponent of the radar measurement due to the target of interest is approximately

20dBm 2 , so that an approximate SNR in decibels may be calculated for any of the

data presented below as SNR - 20 - Noise Power(dBin 2 ). Figures 8-9 show the

", effect of the suggested modifications to the Reed test on both the probability of

error and average number of measurements, with N, = 6, K = 4.

In Figures 10-12 the probability of classification error is shown as a function

noise power level for the Reed test with N, = 5(4), and K = 3(2) respectively.

The average number of required measurements, for these cases are shown in Fig-

ures 11-13. Figures 14-15 show the classification error and average number of

measurements for the Reed test with N = 2 (0', 10') and K = 2.

Figures 16-17 show the probability of error and the average number of mea-

surements as a function of the noise power level for the Reed test using a single

frequency radar with N, = 1 (simple classes). Similar results for the Armitage

and Palner tests are shown in Figures 18-37. These results are also tabulated in

Tables 2- 3.
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Figure 8: Comparison of error rate for Reed and modified Reed techniques with
M = 5 classes, N8 = 6 prototypes/class, K 4.
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Figure 9: Comparison of the average number of measurements for the Reed test
and the modified Reed with M 5 classes, N8  6 prototypes/class, K = 4.
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Figure 10: Error rates for the Reed test with M = 5 classes, Ns 5
prototypes/class, K = 3.
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Figure 11: Average number of measurements for the Reed test with Al =
classes, A's 5 prototypes/class, K 3.
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Figure 12: Error rates for the Reed test with M = 5 classes, N = 4
prototypes/class, K =2.
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Figure 13: Average number of measurements for the Reed test with Al 5
classes, Ns 4 prototypes/class, K 2.
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Figure 14: Error rates for the Reed test with M = 5 classes, N, 2
prototypes/class, K = 2.
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Figure 15: Average number of measurements for the Reed test with M 5
classes, Ns = 2 prototypes/class, K = 2.
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Figure 16: Error rates for the Reed test with M = 5 classes, N, = 1
prototypes/class, K = 1.

Table 2: Error rate and average number of measurements for the Armitage
technique with M = 5 classes, N8 = 6 prototypes/class, and K 4.

Noise (dBsm) Error E{n}
16 0.000 1.37
19 0.000 2.28
22 0.006 4.50
25 0.064 7.18

- 28 0.234 9.41
31 0.352 9.96
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Figure 17: Average number of measurements for the Reed test with M = 5
classes, N8 = 1 prototypes/class, K = 1.
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Figure IS: Error rates for the Armitage test with A1 5 classes, N, 6
I prototypes/class, K = 4.
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Figure 19: Average number of measurements for the Armitage test with M = 5
classes, N = 6 prototypes/class, K = 4.
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Figure 20: Error rates for the Armitage test with M = 5 classes, N, 5
prototypes/class, K 3.
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Figure 21: Average number of measurements for the Armitage test with Af =
* classes, N, = 5 prototypes/class, K = 3.
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Figure 22: Error rates for the Armitage test with A 5 classes, N, 4
prototypes/class, K 2.
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* Figure 23: Average number of measurements for the Armitage test with Al 5
classes, N8 = 4 prototypes/class, K = 2.
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Figure 24: Error rates for the Armitage test with Al 5 classes, N, = 1
prototypes/class, K = 1.
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Figure 28: Error rates for the Palmer test with M = 5 classes, N 6

prototypes/class, K 4.
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Figure 29: Average number of measurements for the Palmer test with A = 5
classes, N = 6 prototypes/class, K 4.

54
=%• I



-m-

W, W

p

1.0

1 _____ Palmler

* 0.8

'" 0.4

*~01

0.0

! r.0.0 6.0 1/2.0 18.0 24.0 3 0.0 3Y6.0 42.0 48.0

Now Aevl (des)

:-_,.: Figure 30: Error rates for the Palmer test with M =5 classes, N,' prototypes/class, K 3.

055

;- w

. .'0.

,..,

• }. 55

.%'p. 'q



Figures 38-39, show the effect of the proposed modification (3.4) to the Ar-

mitage procedure. For these simulations, target prototypes at azimuth angles of

00 , 100, 20, 300, and 40' are used for measurement vectors of dimension K = 3

frequencies at 8, 9, and 10 MHz. These results are also tabulated in Tables 4-5-6.

From these figures it is clear that fewer measurements are required for the modi-

fied test for higher values of the parameter r while the resulting error percentages

remain almost the same as for the original test (r = 0).

Figures 40-41 show the reduction in the average number of obsevations due to

the modified armitage thresholds (3.4) where the target prototypes are at azimuth

angles of 0', 100, 200, 300. The measurement vector is of dimension K - 2

frequencies at 8 and 9 MHz.

In Figure 42, the probability of classification error is shown as a function of

noise power level for the tree structured sequential test. The average number of

required measurements, E{n} for this test as a function of noise power level is

given in Figure 43. This sequential test starts by classifying the target into groups

of hypotheses {w 5}, or {wl,w2,w 3 ,w4} then, if it is not of class {w 5 }, the target is

classified its a member of the groups {wI, w2 } or {w 3 , w4 }. Finally, the classification

Table 3: Error rate and average number of measurements for the Palmer
- technique with Al = 5 classes, Ns = 6 prototypes/class, and K 4.

Noise (dBsm) Error E{n}
16 0.003 1.01

18 0.020 1.03
22 0.088 1.20
26 0.235 2.84
28 0.329 4.51

30 0.448 5.52
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, .Figure 31: Average number of measurements for the Palmer test with M 5
classes, Ns = 5 prototypes/class, K = 3.
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Figure 32: Error rates for the Palmer test with M 5 classes, N, 4
* prototypes/class, K 2.
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Figure 33: Average number of measurements for the Palmer test with = 5
classes, Ns = 4 prototypes/class, K = 2.
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Figure 34: Error rates for the Palmer test with Ml 5 classes, N, 1prototypes/class, K =1.
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Figure 35: Average number of measurements for the Palmer test with M = 5
classes, Ns = 1 prototypes/class, K = 1.
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Figure 36: Error rates for the Palmer test with AI 5 classes, N 2
prototypes/class, K 2.

Ii

59

I CI ,



13.0
Pit P.,,d, ?

11.0

9.0

• 7.0

5.0

3.0

1.0

0.0 6.0 12.0 18.0 24.0 30.0 36.0 42.0 48.0

Now L,.,a (d.m)

Figure 37: Average number of measurements for the Palmer test with A = 5
classes, N8 = 2 prototypes/class, K = 2.
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* Figure 38: Error rates for the modified Armitage thresholds for r = 0, 1,2 with
M = 5 classes, Ns = 5 prototypes/class, K 3.
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Figure 39: Average number of measurements for the modified Armitage
%~thresholds for r = 0. 1, 2 with M = 5 classes, N8  5 prototypes/class, K 3.
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Figure 40: Error rates for the modified Armitage thresholds for r 0, 1.2 with
.1= 5 classes, , 1 prototy pes/class, K I
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N Figure 41: Average number of measurements for the modified Arniltag('
thresholds for r = 0. 1, 2 with Af = 5 classes, Ns = 1 prototypes/class. A 1.

LA At' 4: Error rate and average number of measurement s for the imodified
Ariiiut ai~v thlresll(ls with .11 = 5 classes, Ns 3 prototvpes/cliiss. K 3 1

4

Noise ( Bsi ) Error E{ e r i
30 0.536 9.292
32 0.600 9.552

34 0.656 9.760
36 0.672 10.00
3S 0.6s4 10.00
40 0,704 10.00
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Table 5: Error rate and average number of measurements for the modified
Armitage thresholds with Al = 5 classes, Ns = 5 prototypes/class, K 3 aid

r=1.

Noise (dBsm) Error E{n)

30 0.588 8.180
32 0.636 8.548
34 0.648 8.996
36 0.680 9.404
38 0.664 9.808
40 0.704 9.992

'5

Table 6: Error rate and average number of measurements for the modified
Armitage thresholds with Al = 5 classes, Ns = 5 prototypes/class. AK 3 and

r=2.

Noise (dBsm) Error E{n}
30 0.568 5.964

" 32 0.628 6.212
34 0.676 6.652

36 0.696 6.948
38 0.696 7.364
40 0.724 8.032
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Figure 42: Error rates for the tree structured sequential test test with .'11 5
classes, , = 6 prototypes/class, K = 4.

is to any of the two classes in either of these groups. The thresholds used in tli>

.inuIlation are of the form shown in Figure 3. That is, truncation takes place once

* and the test continues after that as nonsequential binary likelihood ratio tests.

Tabulated results are shown in Table 7.

In Figure 44. the probability of classification error is shown as a function of

no mise power level for the sequential nearest neighbor test using the modified formn

f t li thresholds (4.3). The average number of required measurements. En } f, ir

hi.s test as a function of noise power level is given in Figure 45. These rcsult i ,

al,() talbllated in Table 8.

Trh' results in this figure are computed for .V 6 pro t()tylvp , clr,

,Irri'spoIding to target azimilth angles of 0', 100. 200. 300. 400. andt .I ct . I TiI-

casc' the nieasureiiert vectors are of dimlension, K - 4 cirrs(i-n,-e( IlL t,, -,,l :i 1
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Figure 43: Average number of measurements for the tree structured sequcivt il
test with A= 5 classes, .s 6 prototypes/class. A 4.

Table 7: Error rate an( average number of measureniexlts for the tree struc tld
sequential teclnique with .A1 = 5 classes, .N = 6 protot.pes/clas,, ad A 4.

Noise (dB sm) Error E{ n
16 0.002 1.05
19 0.00S 1 27
22 0.008 1.99
25 0.(68 3.95
28 0,161 5.8"
31 0,216 7.51
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Figure 44: Error rates for the sequential nearest neighbor test with .1I 5
classes. , = 6 prototypes/class, K 4.
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Table S: Error rate and average number of measurements for the sequential
nearest neighbor technique with Al = 5 classes, Ns = 6 prototypes/class, and

K =4.

Noise (dBsm) Error E{n}
P 16 0.007 1.78

18 0.010 2.71
20 0.014 4.13
22 0.012 5.88
24 0.012 7.38
26 0.020 8.56

backscatter measurements at 8, 11, 16, and 25 MHz. The error percentages and

?".'" the average number of measurements are based on the results of three hutnred(l

experiments.

In Figures 46-48, the probability of classification error is shown as a functi"n

noise power level for the sequential nearest neighbor test with N, 5(4). and

K = 3(2) respectively. The average number of required measurements. for these

cases are shown in Figures 47-49. Figures 50-51 show the probability of error andt

the average number of measurements as a function of the noise power level for the

sequential nearest neighbor test using a single frequency radar with N8  1 (simple

classes). Figures 52-53 show the misclassification error an( the average numler ,,f

observations for the sequential nearest neighbor with N,8 = 2 (0' , 10') prototvi,,.

ant( K = 2.

Figures 56-57. show the probability of error and the average umiiher of i,

%e ,,rvat i,,s as a function of the threshold A i (accepted nimum distaice) f,,r th

Sili it ial nearest neighbor t(st . These experiments were rni at a 25 (,1Bsm i -,,
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Figure 46: Error rates for the sequential nearest neighbor test with .1= 5
classes.V 8  5 prototypes/class, K 3.
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Figure 48: Error rates for the sequential neares neighbor test with M 5
". classes, N, = 4 prototypes/cless, K = 2.
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Figure 50: Error rates for the sequential nearest neighbor test with A = 5
classes, Ns = 1 prototypes/class, K = 1.
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Figure 52: Error rates for the sequential nearest neighbor test with M 5
classes, N8 = 2 prototypes/class, K 2.
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-, Figure 53: Average number of measurements for the sequential nearest neighbor
.' .1 test with Al = 5 classes, N8 = 2 prototypes/class, K 2.
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Table 9: Error rate and average number of measurements for both the sequential
nearest neighbor technique and the fixed nearest neighbor technique with -,l 5

classes, N = 1 prototypes/class, and K = 4.

Noise (dBsin) Error (SNN) E{n}(SNN) Error NN N =10

30 0.028 7.98 0.012
32 0.044 8.69 0.048
34 0.083 9.22 0.056
36 0.130 9.69 0.120
38 0.192 9.80 0.200

.1.0

,%.0.8 .... IV-10

.30.6

0.4

01

0.0

0.0 60 12.0 18.0 24.0 30.0 36.0 42.0 48.0

Nos* Ldvel (dBrm)

Figure 54: Comparison of the error rates for the sequential nearest neighbor test
and the fixed nearest neighbor test with Al = 5 classes, N, = 1 prototypes/class.

i" K =4.
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Figure 55: Comparison of the average number of measurements for the sequential
nearest neighbor test and the fixed nearest neighbor test with M = 5 classes,

N, = 1 prototypes/class, K = 4.
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bor with fixed number of observations is shown in Figures 54-55. Figure 34, shows

that the probability of error is almost the same for both algorithms, while Figure

33 shows the reduction in the average number of measurements due to the sequen-

tial nearest neighbor. Thus, Figure 55, can be considered as a plot of the efficieiicy

of the sequential nearest neighbor. Tabulated results of this comparison are shown

in Table 9.

5.4 Comparison

A number of conclusions can be drawn from these results. First, notice that

the sequential nearest neighbor test produces a reasonably low error rate, but

requires a large average number of measurements because of its nonparametric

nature. In addition, at high noise power levels, ( > 20 dBsm) this test frequently

requires the maximum number of measurements (N = 10) before reaching a deci-

sion. However, this test requires only the computation of A1 x N, vector distances

at each stage of the sequential test. Moreover, the variation in the error rate with

respect to the noise power level is almost linear. Thus, at very high noise power

levels, the sequential nearest neighbor gives low error rate compared with the other

parametric algorithms.

The Armitage technique also produces low error rates at lower noise power

levels but the average number of measurements for this test seems to be particularly

sensitive to the noise level, and it requires a large number of measurements for levels

exceeding 20 dBsm. The reason is that pairwise comparison is very restrictive,

especially at high noise power levels. In addition, this algorithm is relatively

complex because it requires the computation of M(M - 1)/2 likelihood ratios

at each stage of the sequential test. However, as shown in Figures 58-63. this test

provides the best (among the presented algorithms) compromise of the tradeoff
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Figure 56: Error rates for the sequential nearest neighbor test as a function of
- "the minimum distance at a 25 (dBsm) noise level with M = 5 classes, N, 6

prototypes/class, K = 4.

i between the average number of observation and the probability of error.

The method due to Palmer requires the computation of single likelihood ratio

at each stage of the test. This method gives low error rate, compared to the other

algorithms, at low noise power levels (< 15 dBsm). However, the performance of

the Palmer test is not satisfactory at high noise power levels (> 20 dBsm) since

.: it gives higher error rate than other algorithms with almost the same number of

observations. The reason for this is that a decision based on comparison of the
'.:-.t ,

two largest likelihood functions is not reliable at high noise power levels because

all of these functions approach each other at such noise levels.

The Reed algorithm (geometric mean comparison) requires the computation of

Al likelihood ratios only. This algorithm does not provide a good compromise of the

tradeoff between the error probability and the average number of measurements

rd
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,,,Al =5 classes, N, 6 prototypes/ class, K =4.
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especially at low noise power levels. The reason is that at low noise levels all

likelihood functions have small values except for that of the unclasssified target and

S the geometric mean of all of the likelihood functions does not carefully represcnt

the likelihood function of the true hypothesis. However, this algorithm is less

sensitive to noise power levels than the other parametric algorithms in that the

Paverage number of observations increases smoothly as the noise power increases.

Finally, Figures 42-43 imply that the best performance is attained by apply-

ing the tree method suggested in this study. While this test requires more com-

putations than most of the other tests, it generally requires the least number of

observations and the error compares favorably to that of the other tests. The tree

test gives a good compromise of the tradeoff between the number of oservations

and the probability of error. However the performance of this test depends on the

number of classes and the types of thresholds chosen. In addition, this algorithm

is not as complex as the Armitage test since it requires the computation of one

likelihood ratio at each stage, and even fewer computations are required as the

" test progresses until each likelihood function represents a single hypothesis as in

Wald test. Moreover, it is possible to predict the average number of observations

required by the tree algorithm since the number of observations is predictable at

each level of the algorithm.

The sequential maximum a posteriori algorithm proposed in this study, which

- is a modification to the Reed test, reduces the number of observation required by

the Reed algorithm without altering the error rate and also without increasing the

complexity of the Reed algorithm. In addition, this test can be considered as a

suboptimal solution to the Bayes sequential test.
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5.5 Sequential Classifier Operating Characteristics (SCOC)

The performance of each of the sequential classification algorith ins disc',ss, ,

in this Study is evaluated according to its o)erating characteristics. In Figures

3S-63, the probability of misclassification is plotted against the average nuinhber

of observations for each of the sequential classification algorithms. Thcse clrves

are considered as operating characteristics for the sequential classifiers. Moreover.

these curves can be used for comparison of the various techniques discussed ill

this study. Thus, a sequential classifier can be designed, using these operating

characteristics, such that it will require a certain number of observations for an

. accepted probability of error.

Figure 63 shows that for the modified version of the Armitage threshold pro-

. posed in this study, the best reduction in the average number of observations is

attained when r 1.

Figures 58-63, show that tie Armitage and the tree tests are the best in corn-

promising the tradeoff between the probability of error and the average number

of measurements. In addition, while the Armitage technique requires less ob-

servations than the tree method for high error probabilities (> 3 percent), the

tree technique requires fewer observations for very low probability of error than

the Armitage technique. Moreover, it is clear from these figures that there is a

reduction in the average number of observations needed by sequential methods

compared to the maxinmum a posteriori test (Likelihood) with fixed number of oh-

servations. This reduction reaches 60 percent at some noise levels and for certain

error probabilities. However. for high error" prolbability (> 10 percent ), the l, r-

at in g characteristics of all the sequential classification techniques approach cach

other. Finallv, it is cl,;r that the performance of each of tle sequential alg ()Iitliln
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depends oil the computations required and the complexity of the sequential test.
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CHAPTER VI

Conclusions

The simulation results presented in Chapter V indicate that sequent iail by

pothesis testing techniques may realize significant advantages for applications t

radar target identification problems. The flexibility of these techniques and thejir

ability to satisfy practical constraints on the classification error performance of

radar systems make the incorporation of sequential algorithms particularly att rac

tive for RTI.

Sequential methods can be used to tune and direct interrogating radar for

maximum reliability. Moreover, sequential hypotheses techniques call annotlnc,

4 early, low-confidence decisions and, as more data is aquired, high confidetic', dc.i

sinUs. Thus. se'qiiential terhuiiqiies are flexible.

By changing the lparalters that define the decision ,,giillS. WC C'i ,. i

the performnance of tilit test to iat chl Out bounds o li error probl ability ail t,.i

Ih lgtII (miiiiter of observati is. A coiioin featnire ,,f all tili- araimtir i, atn

.lillliaralilf'triE' w(pl lit al alg ,rithin l s reselitf- Ii this t dy \ i, that we c '-a, t , I

Iit,' perfe )Ie namic, ,)f th , ',I, liu ie, -1 s lf-', lil, the , ci l,i n I ,ulieiarli, . 4i, 111;1,

t hlii lepelndlent ,i t Ili, w nlhe.r ,of ( 1A'rvat n t.
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the probability of error remains unchanged. The reason is that when observations

are taken sequentially, the classification test might terminate before requesting all

observations specified by a fixed number of measurements test.

The performance of the various sequential classification algorithms depends

on the noise power level. Thus, we may choose to use more than one classification

algorithm at different noise power levels provided that an a priori knowledge

of the noise power level is available. For example, we may use the method due

to Palmer at low noise power levels because of its simplicity and also the tree

algorithm at high noise power levels.

It is clear from this study that the performance of any sequential classification

algorithm is dependent on the complexity of the algorithm. In general, the tree

algorithm proposed in this study, minimizes the average number of observations.

with less complexity than the pairwise comparison (the Armitage test).

Truncation is a major factor in sequential classification algorithms because.

the number of observations is usually finite. Thus, an optimal form of truncation

is necessary to achieve a good performance. It is also clear that the optiinizatio

of parameters as the maximum number of measurements, and the choice of the

functional form of the various decision thresholds deserves further investigation.

6.1 Noise Dependent Group Sequential Tests

One common feature of all of the sequential techniques discussed in tils stuid

is that a large number of observations is required at high noise h'vels. This is clewrl1

sho wn in Chapter V, Whenever an observation is repeated, hypotheses testilng I-

performed at each stage of the sequential test

If a priori knowledge about the noise power level is available, which i, t},

ca.se f4' parinetrtic techniques, then the following nio(Iification call c h itplie, 1,,
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any of the sequential tests discussed.

1. The maxinmum allowed number of observations N is chosen as a function of

the noise )ow'r a 2 . That is, N is proportional to the noise power.

2. Groups of observations, rather than single observation, are repeated one at

a time. observation. The size of these groups is dependent on both the noise

power an( the stage of the" test. For example if a group of 4 ineasureniilnt.,

is ()served at the )eglikmig, the size of the second group could be 2 or 1.

It is obvious that the above Inodification reduces the Com)lexity of the se-

(jtelntial classification algorithins because hypotheses testing is performed after

rie'esting a grot Ip of observations rather than single observation at each stage of

1h," i .,Al,,It-It l t est.

I~I

II

4."
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