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ABSTRACT

The study of human driving of automotive vehicles is an important aid to the

development of viable autonomous vehicle navigation and control techniques.

Observation of human behavior during driving suggests that this activity involves

two distinct levels, the conscious and the unconscious.

The behavior of a driver while stopping his vehicle at a stop sign can be

conscious or unconscious, depending on the driver's skill level and the driving

conditions. The driver's behavior involves a difficult process of estimating the

distance to the stop sign and the velocity of the vehicle. Using these estimates, the

driver then takes the necessary control actions to stop the vehicle. This research

attempts to mimic the driver's conscious and unconscious behavior through
/ ~ -I.

mathematical modeling and computer simulation. " r . ,
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I. INTRODUCTION

A. GENERAL BACKGROUND

Man has been intrigued by the concept of robots for centuries. The earliest

robots were mechanical toys moved by clockwork mechanisms. As time passed,

the world became more complex and man began to develop concepts which would

later provide a basis for research and experimentation in more versatile robotics.

Jules Verne, an author of science fiction, was one of those pioneers. He somehow

anticipated a most successful method in robotics, the use of pneumatic or

hydraulic actuators for individual joints in a steam elephant. [Ref. 1]

Over the years, the concept of a robot has changed considerably. Science

fiction writers and movie makers often project the image of a robot as some type

of sublime creature or menacing evil. The popular American idea is that of an

artificial man [Ref 2]. The concept of an artificial man is linked to the belief that

mechanical slaves could free a substantial portion of the world's population from

manual work [Ref. 31.

While not humanlike in appearance, in fact. mechanical slaves called

industrial robots have been developed for production work. These robots normally

operate from a fixed location and are programmed to do tedious and repetitive

tasks. Typically, the programming is accomplished by either leading the robot

through the desired movements and recording these movements, or by coding a
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path consisting of sequences of linear and circular motions [Ref. 4:p. 4]. Recently

however, special robot programming languages have been developed which, when

combined with modern force and torque sensors, allow the robot to adjust to some

variations in the environment [Ref. 4:pp. 395-4101.

The next logical step in robot development is some type of mobile robot. The

"automated guided vehicle" provides an intermediate level between fixed robots

and unconstrained mobility. Here, navigation problems are avoided by using a

control network which may be a wire, painted stripe, or track on a factory floor

[Ref. 4:p. 81.

Research is continuing toward the idealized and unconstrained robot. This

human-like or autonomows robot is capable of making decisions and adapting to

environmental changes which may affect its purpose. In order to adapt to its.

environment, the autonomous robot requires numerous human-like sensors for

input. Thus, studies are being conducted in the areas of vision, touch, and

hearing. Additionally, research is ongoing in related areas of artificial intelligence.

The objective is an autonomous robot capable of analyzing sensor input and

making decisions to produce intelligent actions [Ref. 41. Currently, studies of such

machines are very diversified and must be integrated at some time in the future to

produce an effective autonomous robot.

Perhaps then, the way to construct an autonomous robot capable of decision

making in real-world problems is to integrate the features of a human; the human

senses, the human brain, and human behavior. This would result in a very

V V



complex hierarchical system with interactive and parallel processors. [Ref. 5] A

system of this type is well beyond the scope of this work. Therefore, the objective

of this work is limited to the study of a small portion of human behavior.

Specifically, this research investigates and attempts to mimic the mental process

by which a human driver controls the speed of a conventional automotive vehicle

when coming to a stop at a stop sign or a traffic light. This is an area of

autonomous vehicle research which has been largely ignored, but which may well

be pertinent to the viability of future autonomous vehicles, especially on-road and

wheel-based vehicles.

B. ORGANIZATION

Chapter II introduces vehicle dynamics and discusses human control of speed

and direction in vehicles. Additionally, this chapter reviews a number of research

projects relating to longitudinal speed control in autonomous vehicles. Finally,

Chapter II introduces computer vision and discusses its limitations.

The objective of this research work in relation to autonomous vehicles and

human drivers is discussed in greater depth in Chapter III. In that chapter, the

assumptions concerning conventional automotive vehicle mechanics and

characteristics of human driving are detailed. Those assumptions are described to

show that the graphics simulation implemented for this study ignores many of the

complex interactions that occur between a human driver, his vehicle, and the

environment while traveling on the highway. These assumptions are made to

12
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make the graphics simulation manageable and feasible within the time constraints

of the study. The mathematical model of longitudinal speed control by a human

driver used in this research is derived and detailed in Chapter III.

In Chapter IV, the design and implementation of the graphics simulation for

the mathematical model are presented. The graphics workstations and the

displays on each workstation are discussed in detail. Additionally, this chapter

elaborates on the computer networking system and how it is used in this project.

The overall design strategy and key issues of longitudinal speed control for the

mathematical model are addressed in depth. The functions and implementation

of the various modules developed for the simulation are described. Finally, a

user's guide is included.

Numerous experiments are conducted with the graphics simulation to verify

the mathematical model of Chapter III and validate this work. Chapter V records

and explains the results of the experiments conducted using the simulation model

developed in Chapter IV.

The last chapter, Chapter VI, summarizes the work and its potential benefit

to autonomous vehicle research. Some suggestions concerning possible extensions

to the research are also provided. Additional work in these areas could make the

present study more comprehensive and substantive.

Chapter VI is followed by a list of reference material used in this study.

Lastly, the graphics simulation source code is attached as appendices.

13



II. REVIEW OF PREVIOUS WORK

A. INTRODUCTION

Research in autonomous vehicles has been ongoing for many years. Initially,

progress was slow and difficult, partially because of the limitations of available

technology. The results of early research indicate that many areas of autonomous

vehicle research are extremely complex and remain open to study. However, in

recent years, many advances and technological breakthroughs have made feasible

tasks which were previously impossible.

Some of the research that has been completed on autonomous vehicles is

presented in this chapter to illustrate the nature and complexity of the pi-oblems

encountered. Additionally, this chapter contains a brief discussion on vehicle

dynamics. Lastly, the current status and limitations of computer vision in

relation to autonomous vehicles are discussed.

B. VEHICLE DYNAMICS

There are many complex interactions occurring between a moving vehicle and

its environment which must be considered in any study involving vehicle

dynamics. Some of these interactions are discussed here to provide insight on

subjects which may have an impact on the research at hand.

14



1. Tire and Road Forces

The main forces arising between the tires and the road are those resulting

from acceleration and deceleration in the forward or reverse direction and from

turning. The forces caused by acceleration and braking of a vehicle are related to

the load carried by the wheels and the coefficient of friction. Cornering a vehicle

produces complex lateral forces, making computations difficult, especially when

acceleration or braking is involved. Nearly all tire wear is the result of these

forces. [Ref. 6]

2. Rolling Resistance

Rolling resistance exists because tires are not rigid and change shape as

they come in contact with the roadway. When the wheel turns, the portion of the

tire coming in contact with the road bulges and flexes. As the rotation continues

and this portion of the tire leaves the road, the tire returns to its original shape.

Because the tire momentarily changes shape, energy is consumed. The resistance

to this motion is called rolling resistance. [Ref. 6]

3. Air Resistance

The amount of resistance attributed to aerodynamic drag depends on

many factors such as vehicle shape, frontal size, and velocity. Large, thick vehicle

bodies show a predominance of drag due to pressure built up to the vehicle's front

as it travels in the forward direction at high velocities. This effect can be

minimized in slender streamlined vehicle bodies with smooth contours. [Ref. 7]
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4. Slip Angle and Side Forces.

Slip angle and side forces are encountered when a rolling wheel is acted

on by a side force. The side force is normally caused by centrifugal forces when

the vehicle negotiates a curve. The road usually acts on the tire in a direction

opposing the side force. The angular difference between the direction of motion

and the true wheel rolling direction is called the slip angle. (Ref. 61

5. Other Effects.

The tires and the vehicle are acted on by other forces too numerous to

discuss in this work. Some of these forces include self-aligning torque, gyroscopic

effects, roll forces. suspension effects, vibrations, and engine torque.

C. AUTOMATIC SYSTEMS FOR LATERAL AND LONGITUDINAL
CONTROL

1. Highway Vehicles.

Since the BM6's, numerous research groups have investigated highway

automation as a possible solution to some of the problems pobed by an ever-

increasing number of motor vehicles [Refs. 8-161. These traffic problems cannot be

solved by building larger and faster highways since the cost of construction is

prohibitive. Additionally, as vehicle speeds increase, highway safety becomes an

important issue. In the late 1960's, Fenton and Olson suggested a solution

involving automated highways [Ref. 81. On the automated highway, traffic flow is

increased by decreasing the distance between vehicles through automatic control.

The authors hoped that such a system could greatly increase lane capacity at high

16



speeds while still reducing the number of highway accidents. In this concept,

described in [Ref. 8], each vehicle has two modes: a manual mode for use on rural

roads where the vehicle is controlled by the driver, and an automatic mode for use

on the automated highways.

To control vehicle speed and spacing, some type of longitudinal controller

is required. This could be a centralized computing system which is capable of

maintaining a complete overview of the traffic at all times or an independent

system installed on each vehicle. Additionally, each vehicle requires sensor

equipment to measure vehicular spacing and relative velocity. The information

provided from such measurements must be analyzed and appropriate control

signals sent to the vehicle.[Ref. 81

In another study of vehicle automatic longitudinal control, Bender,

Fenton, and Olson investigated a car following system to increase both highway

capacity and highway safety. The research vehicles in this work were

instrumented so that braking, acceleration, and steering are managed by an

automatic control system. Road tests were then conducted using several vehicles.

The tests were designed to gather data on the acceleration and deceleration of the

following vehicle in response to velocity changes by the lead vehicle. [Ref. 9]

The results of the various road tests show that automatic system

performance can be superior to that of a human driver, especially in situations

where emergency braking is required. Of note is that reaction time to full braking

was 0.4 seconds for the automated system compared to 0.5 - 1.0 seconds for an

17
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alert driver in a similar situation. In many cases, if the following vehicle had been

under driver control when the lead vehicle applied emergency braking, a rear end

collision would probably have resulted. [Ref. 91

In later work, Fenton and Chu focused on control of vehicles entering the

highway environment and on control of vehicles traveling on the highway. Here, a

vehicle controller was designed and tested under full scale conditions. The vehicle

was capable of responding to all non-emergency commands in a satisfactory

manner while maintaining passenger comfort. [Ref. 131

Additionally, other research studies have been conducted on lateral

steering control. Fenton, Melocik, and Olson used a vehicle which tracked a cable

buried beneath the surface of the roadway. Sensors on the vehicle measured the

magnetic field produced by the current in the wire. Then, tle measurements were

processed to provide the vehicle's position with respect to its driving lane. Several

different controllers were designed and tested under full scale conditions. Results

of the tests indicate that excellent lateral control, good insensitivity to

disturbances, and comfortable ride could be obtained using a simple single loop

controller. [Ref. III

The term mechatronies is applied when electronic components have been

intimately integrated with mechanical systems. In automobiles, this technique

provides designers with new opportunities to improve automobile handling,

performance. and safety. EI-Deen and Seireg use mechatronics to improve a

vehicle's ability to perform, even when traveling at high speeds on low friction

18
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surfaces [Ref. 171. Their concept uses a miniaturized computer system

incorporated in the vehicle's power steering unit. The computer reads

preprogrammed rules to enhance the vehicle's steering performance during

critical situations when a driver may not have sufficient time or experience to

react.

With a computer simulation, the authors were able to show that the

proposed system improved vehicle stability in critical road conditions. The

vehicle's computer-controlled steering system uses the preprogrammed rules to

implement corrective steering inputs in real time. This concept could readily be

expanded to include control of vehicle braking and acceleration, thus providing

improved overall performance. [Ref 17]

2. Automated Guided Vehicles.

The concept of the automated guided vehicle (AGV) system embraces all

transportation systems that can function without a driver. The AGV is a flexible

unit suitable for simple transport operations with a small number of destinations

or for complex and centrally-controlled transport processes [Ref. 18]. A study of

AGV's includes all types of driverless industrial trucks, such as fork trucks and

electric tractors. Due to industrial demands. AGV's also include different types of

conveyor assemblies and trolleys. However. the discussion to follow is limited to

driverless industrial trucks.

Successful research with process control by a central computer system and

the use of on-board microprocessors have allowed AGV Systems to compete with



other truck systems. Each installation con-ist- of several components which

include the trucks, the network, the load handling system, the truck controller,

and a traffic controller. The trucks and the load handling system are of the

standard industrial type and are not discussed in detail here. However, the reader

should understand that each truck is modified for steering control, speed control,

and load management by the automatic systems.

The network usually consists of a guidance system and signal devices for

information transfer. Networks range from a simple closed course in small

factories to complex systems with multiple guidewires and switches providing

many possible routes in large installations. Information transfer is simple and

most often passive. Signal devices such as permanent magnets, infrared

transmitterq. or light signals provide information to the on-board proces -r

concerning the current vehicle location, speed restrictions, or other pertinent

data. as necessary for a specific implementation.

Most on-board truck controllers have several functions which include:

- lateral steering control to keep the truck on course,

- route control which moves the truck through a network to its goal, and

- longitudinal speed control and braking.

In typical systems, lateral steering is controlled by a track or the

magnetic field surrounding an electrically excited guidewire beneath the surface of

the road. In the guidewire implementation. two coils on the vehicle are used to

20



sample the magnetic field produced by the current carrying wire. If the truck

deviates from the intended course, a difference in the voltage produced by the two

coils is noted and triggers a control signal to initiate a steering correction.

The longitudinal speed control portion of the truck controller receives

information from several sources. These sources include network signal devices,

vehicle separation devices, and the route controller. Most trucks have only a few

operating speeds, making the task of the longitudinal speed controller simpler.

Route planning is the most difficult problem in the control system design

and can be accomplished on-board the truck by a processing unit, at a central

processing computer, or with a combination of on-board processing and a central

computer. Typically, small companies with a limited number of trucks cannot

afford the expense of .a data link between individual trucks and the central

computer. Additionally, an on-board route processing system provides added

reliability over a single centralized system.

Regardless of the type of route planning system that is implemented, the

control process involves job planning, job management, truck planning, truck

management, and optimization. The task of a centralized computer processor is

complex and can involve numerous priorities and prerequisites as determined by

the network, the task, and management.

With on-board route planning, the vehicle destination is typically input

by means of data transmission as the vehicle passes a certain position in the

21



network. Thus, a certain portion of the planning function is centrally controlled.

This technique forms a hierarchical structure and allows the system to be

autonomous at all levels.

3. Ohio State University Adaptive Suspension Vehicle

The Ohio State University Adaptive Suspension Vehicle (ASV) is a

prototype legged robot intended to provide performance characteristics desirable

in a military rough terrain vehicle. The ASV is a hexapod that uses statically

stable gaits while moving. It can carry its operator and an internal payload of 500

pounds. The machine is powered by a motorcycle engine that drives a flywheel

and 18 variable displacement hydraulic pumps. [Ref. 19

The ASV is equipped with a network of 17 microcomputers to coordinate

foot placement, leg movement, and the control of body attitude, thereby freeing

the operator for higher level decisions concerning speed and direction. The

operator can control forward and lateral velocity, rate of turn, body height, and

attitude, if necessary. [Ref. 191

To ensure careful foot placement in rough terrain, the ASV is equipped

with a sophisticated terrain scanning system that is based on continuous wave

phase comparison using infrared light. The light beam is scanned at a 2 Hz rate

in a raster pattern covering the ground ahead of the ASV to a range of about 10

meters.

Outdoor trials of the ASV hexapod were initially conducted in 1986.

During the first tests, the walking machine demonstrated that it is capable of
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movement in open fields at speeds in excess of 2 mph. It can also negotiate simple

obstacles and ditches. Tests are continuing.

4. FMC Corporation Autonomous Land Vehicle

The aim of this project is to develop an automatic pilot that can control

an autonomous land vehicle in real time. The system is based on the M1J3A2

tracked and armored personnel carrier that is controlled from a command trailer.

[Ref. 201

This system uses a hierarchical control architecture with subsystems

named the Planner, the Observer, the Mapmaker, the Pilot, and the Vehicle

Controller. As indicated by its name, each subsystem has a well-defined and

important function to perform. [Ref. 20]

The highest control system, the Planner, uses digitized maps to select a

general path to the goal for its mission. The Planner is able to incorporate a

variety of mission requirements into the path selection proc !ss. Typical mission

requirements can include minimizing detection of the vehicle by the enemy.

minimizing the time of the mission, or minimizing the energy consumption to

accomplish the mission. The path provided by the Planner is in an abstract form

consisting of segments with left and right boundaries. These segments are output

in LISP syntax and include a general heading to the goal and a maximum vehicle

velocity for that segment.

The main function of the Observer is situation assessment and resolution.

This is based on the segmented path received from the high level Planner and on
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information received from on-board sensors such as an obstacle detector and an

inertial land navigation system. The output of the Observer is a more usable plan

for the next subsystem, the Mapmaker.

The Mapmaker generates the Pilot Map containing the global path

border, the nearest obstacle borders, and the sensor visibility limits. Here, the

output of the obstacle detection sensor is combined with the plan from the

Observer to create the Pilot Map.

The Pilot Map is a local map in a format that the Pilot can use. It is the

Pilot's responsibility to guide the vehicle along a feasible route staying within the

constraints provided by the Planner and avoiding unforeseen obstacles. The Pilot

is able to generate subgoals and select'an optimum path in real time because of

the hierarchical nature of the system. Once an optimal path is selected, the Pilot

issues instructions to the lowest level subsystem, the Vehicle Controller.

Field tests of the FMC Corporation Autonomous Land Vehicle indicate it

can perform obstacle avoidance successfully and complete path execution at 5

mph. The system is now being improved to deal with more complex terrain

features. [Ref. 20]

5. Martin Marietta Autonomous Land Vehicle

The Martin Marietta Autonomous Land Vehicle is an eight wheel all-

terrain vehicle which is mechanically capable of traveling up to 18 mph on rough

terrain and up to 45 mph on improved surfaces. This vehicle also uses a

hierarchical system to provide autonomous navigation and tactical decision
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making. The main modules in this design are the Reasoning Subsystem, the

Perception Subsystem, and the Control Subsystem. [Ref. 211

The Perception Subsystem incorporates various sensors to provide real

time input on the surrounding terrain. A three-dimensional model of the local

terrain is generated by combining input from the different sensors. This model of

the terrain is used by the Reasoning Subsystem for path planning.

The Reasoning Subsystem consists of a goal seeker, a navigator, and a

knowledge base. This subsystem interprets the mission goals and any limitations

which may apply. The goalseeker analyzes the mission and uses the knowledge

base to provide the navigator with numerous subgoals oriented toward the

mission goal. The navigator combines the subgoals with the three-dimensional

model from the Perception Subsystem to provide several possible trajectories.

Finally, cost functions are applied to the possible trajectories to determine one

route for the vehicle to follow. The Control Subsystem converts the selected

route to steering and speed commands to drive the vehicle. (Ref. 21]

D. COMPUTER VISION

Computer vision is an important subfield of artificial intelligence. A strong

demand exists for computer vision applications in nearly every area of robotics.

Still, it is a slow, difficult process and there is a natural desire by researchers to

understand human vision as a problem which could result in the development of a

general methodology for solving computer vision tasks. [Ref. 4:pp. 255-277]
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The problem of computer vision is to give a computer a picture of a scene and

have the computer determine what the objects are in the scene and what their

spatial rlationships are [Ref. 22]. The most powerful computers often require

more than a minute to process a single scene that a human can interpret in the

blink of an eye. As a result, at present, it appears impossible to interpret image

sequences in real time for a moving autonomous robot [Ref 4:pp. 301-308].

Another difficulty with computer vision is the combining of sensor input with

intelligence to perform vision. As long as the robot or vehicle is moving along a

country road with occasional houses and trees, the knowledge of what is expected

is available. But if the vehicle is allowed to move into a different environment

with different terrain and varied scenery, with current knowledge representation

and knowledge learning techniques, it is impossible to give the computer adequate

information or time to analyze its new surroundings. [Ref. 22]

Considerable progress has been made in the field of computer vision in the

last decade. especially in the areas of industrial machine vision systems that use

simple image processing and pattern recognition. However, more work is needed in

the area of autonomous vehicles in order to provide consistent real time data.

E. SUMMARY AND CONCLUSIONS

A brief overview of vehicle dynamics is provided in this chapter.

Additionally, some of the research in a variety of different autonomous vehicles

has been reviewed to gain an understanding of the complexity involved. It is
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noted that sophisticated systems such as autonomous land vehicles require

specialized high performance parallel processing systems to operate in the

environment demanded of them. The ability of an autonomous vehicle to

complete its mission also depends on the speed, accuracy, and quality of its

computer vision system. Without these requirements, autonomy is very difficult, if

not impossible to achieve.

In the next chapter, the problem statement for this work is refined. The

assumptions for the selected vehicle model are detailed and the vision model is

described. As the chapter proceeds, the control model used for the simulation in

this work is developed and linearized.
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III. DETAILED PROBLEM STATEMENT

A. INTRODUCTION

In this chapter, the model used for the three-dimensional graphics simulation

is described in detail. To assist the reader unfamiliar with control theory, a brief

description of the purpose of developing a mathematical model is given.

Additionally, a linearization of the mathematical model is included.

The aim of this research is to examine and study longitudinal speed control

and braking. This serves as motivation for developing a three-dimensional

graphics simulation model. This technique attempts to mimic the way a human

controls the speed of his vehicle on the road, with particular attention to the

aspect of braking.

The hypothesis is that human drivers make errors estimating the distance to a

desired stopping point. We also make errors estimating vehicle speed and

estimating vehicle response when the brake is applied. Humans develop an

acceleration and deceleration plan, which we unconsciously maintain while we are

driving. Through experience and training, humans have an approximate model of

vehicle maximum braking. vehicle stopping distance, and vehicle acceleration and

deceleration capability. The acceleration and deceleration plan, which this work is

primarily concerned with, is some fraction, a , of the vehicle's maximum stopping

capability, where 0 < a < 1.
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The amount by which a varies from the maximum vehicle stopping capability

depends on several factors such as the vehicle speed, the available stopping

distance, the road surface conditions, the skill and experience of the driver, and

the general nature of the environment. Here, the environment includes variables

such as traffic conditions, weather conditions, dangerous situations, and the

degree of the emergency causing the acceleration and deceleration plan to be

executed. In normal stopping conditions a < 1, and for emergencies a I.

B. VEHICLE MODEL

The mathematical model used to describe the vehicle must be simple enough

to provide insight into the behavior of the system, yet detailed enough to provide

an adequate description of the system. To keep our vehicle model simple, the

acceleration and deceleration plan is executed only on straight road sections and

the effects of steering on the vehicle are ignored.

Many interactions between the driver, the vehicle and the environment are

also ignored to keep the complexity of the mathematical braking model

manageable. It has been assumed that braking is perfect in the sense that the

maximum vehicle stopping capability can be reached without skidding, swaying,

sliding, or any other unusual braking effects. Additionally. tire dynamics wi well

as shock and strut effects are ignored. The above restrictions and assumptions

eliminate any rotational moments and allow the vehicle to be idtalized as a
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point mass. The model can be further simplified by allowing velocity and

acceleration vectors only along the vehicle centerline, eliminating sideslip angles.

C. ROAD MODEL

This work assumes that near perfect conditions are available for the

autonomous vehicle. The only obstacles on the road and in the vehicle path are

stop signs and traffic signals with green, yellow, and red lights. The signal devices

are called semaphores. These seemingly unreasonable assumptions were made to

allow the author to concentrate on the deceleration plan rather than on obstacle

avoidance or image and vision processing, where there are already numerous

research activities [Refs. 23-29]. Additionally, the road and surrounding terrain is

fiat, eliminating the influence hills have on the vehicle as well as restricting the

mathematics to two dimensions.

D. VISION MODEL

The vision model for this study is based on that developed by McGhee. Zyda.

and Tan. Their model consists of a set of road points representing the center of a

closed-course track. In the automatic driving mode of that system, the vehicle

continuously selects road points to its front and uses those selected road points as

targets to steer towards. [Ref. 307 p.30]

This model extends that notion and associates with each road point a

maximum safe speed, £max* This maximum safe speed is the smaller of two

possibilities:
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- the speed limit for that stretch of road or

- the maximum safe speed to come to a stop at some known point, say the
location of a stop sign or semaphore.

This notion is depicted graphically in Fig 3.1.

As the driver approaches a stop sign, his perception of the distance to the

stop sign, d P, and of the vehicle's velocity, v , is typically in error. In this study,

it is assumed that the distance the driver perceives to the stop sign is proportional

to the actual distance to the stop sign. That is,

p - dda, (3.1)

where d. is the actual distance to the stop sign and k, is a distance multiplier.

For this study. it is somewhat arbitrarily assumed that 0.8 < kd < 1.2 for most

drivets. Thus, as the vehicle intersects the driver's acceleration and deceleration

plan, the driver makes an initial error estimating the distance to the stop sign. It

is further hypothesized here that the driver maintains this error with small

deviations as he continues to the stop sign. To reflect this, kd is modeled as

kd = k + k, t) (3.2)

where k, is the estimate the driver makes at the start of the deceleration plan

and k,(t) is the random error he makes while continuing his deceleration plan.

By substituting Eq. (3.2) into Eq. (3.1), dp, the driver's perceived distance to the

stop sign becomes
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d (, + k (t))d. (3.3)

The driver also makes errors in his velocity estimate, vP. These errors can

be modeled in a similar manner so that

vP = ksv, (3.4)

where v. is the vehicle's actual velocity and k is a speed multiplier with

typical values assumed to be in the range 0.8 < k < 1.2. The driver also makes

an initial error estimating his velocity and maintains this error with small

deviations as he continues to approach the stop sign. The speed multiplier k.

can thus be modeled as

ka = kf + k,(t), (3.5)

where k is the estimate the driver makes at the start of his deceleration plan

and k is the random error he makes while decelerating. Substituting Eq. (3.5)

into Eq. (3.4) yields

v = (kf -t k,(t))v. (3.6)

The magnitude of the errors the driver makes in his estimates d or v,

depends on many influencing factors such as attentiveness, driver skill, road and

weather conditions, etc. However, a study of all of these factors is beyond the

scope of this work. Rather, in what follows, all of the multiplying factors

appearing in Eq. (3.1) through Eq. (3.6) are simply treated as independent

Gaussian random processes denoted N(p. a') where u is the mean of the process
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and a is its standard deviation. That is, at the beginning of any given trial of

simulated human braking, a random number generator is used to generate k,

and kf. Symbolically, from the assumption on the range of kd and k,

k= N(1, o,) (3.7)

and

k= N(1, aj). (3.8)
fa

In this formulation, all of the factors involving average driver errors in the

perception of speed and distance are combined to determine a, and of, with

small values representing accurate average perception and large errors inaccurate

perception. Since both k, and kf have been postulated to typically lie in the

interval [0.8, 1.21, a value for a around a = 0.1 is appropriate. That is, If this

value is used, average perceived position and velocity are within 20 percent of

the true value in 95 percent of the simulation trials.

Since k, and k. represent fluctuations in k. and k., it follows that

4.of= .'o ad) (3.9)

and '

n = 0(o, an). (3.10)
'-

A"

It is assumed in this study that these fluctuations are small in comparison to the

average error. Thus, a typical value for a and an might be in the range
A.

0.01 < a 0.02.
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In the absence of any theory to guide the selection of standard deviations for

the random processes discussed above, several representative values are chosen for

comparison to real human driving of the vehicle simulation. A more exhaustive

investigation of this issue is left to future research.

E. CONTROL MODEL

To develop the extended vision model, assumptions and restrictions stated

earlier in this chapter are used. These constraints limit the vehicle to flat straight

roads and allow the author to treat the vehicle as a point mass. Therefore, for

vehicles traveling down the highway, the shortest distance d to a stop sign at

which braking can commence is

1 .
'd =-am.. r (3.11)

2

where r is the time to go to the stop sign defined as

T = tstop sign - t (3.12)

and am., is the maximum braking acceleration. In this equation, t represents

the clock time at the current vehicle position while t,, is the clock time at

which the vehicle arrives at the stop sign. Thus,

dr
- - 1. (3.13)
dt
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From Eq. (3.11), the maximum safe speed defined in the vision model is

ZMa = am r. (3.14)

The minimum value for r can be determined from Eq. (3.11) and substituted

into Eq. (3.14), providing a maximum safe speed i at any distance d from the

stopping point. The result is a maximum braking curve determined by

z 3a (3.15)

A graph of the maximum braking curve is shown in Fig 3.2.

For a driver desiring to stop his vehicle at a stop sign, the brake must be

applied prior to reaching the last possible braking point. This can be

accomplished by employing the previously discussed acceleration and deceleration

plan in which, during braking, the vehicle acceleration is

abTak = aarn' 0 < a <1 1. (3.16)

If a = 1, the driver has used maximum braking and the vehicle velocity is shown

by Fig 3.2. For routine braking situations, 0 < a < 1 and a typical graph is as

shown in Fig 3.3.

F. LINEARIZED ANALYSIS

For a vehicle, the braking deceleration is a function of brake pedal depression

6 such that

abrake  kbrake kbrake > 0. (3.17)
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Additionally, the engine provides some braking. A representation of engine

braking was developed by McGhee, Zyda, and Tan [Ref. 30: p.33) as

1
anie i - i (3.18)

a

where ZiC is the commanded velocity resulting from accelerator depression and

r is the acceleration time constant. Now the total acceleration due to braking is

=-abrak e  aengine. (3.19)

After substitution of Eq. (3.18), this becomes

1.
" - - abrake + (X - )" (3.20)

a

Substituting Eq. (3.17) into Eq. (3.16) yields a brake pedal depression value of

a 1
6= a -x (.1max (3.21)
- kbrake ra kbrake

where it is assumed that the driver removes his foot from the accelerator before

applying the brake. This value is to be applied at the moment the vehicle

intersects the deceleration plan, shown as point A in Fig 3.3. However, drivers

are human and often make errors judging the distance to the stop sign aid

estimating the vehicle velocity. To remedy these problems, two integral terms are

added to Eq. (3.21), resulting in the brake pedal depression equation
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-4 - amax - kp~pla -p k!pan P)

-k (3.22)k brake

where dplan is distance from the stop sign in the driver's acceleration and

deceleration plan, vplan is the closing velocity, dp is the distance to the stop sign

as perceived by the driver, v is the velocity of the vehicle as perceived by the

driver, k is the position gain factor, and kV is the velocity gain factor.

By substituting Eq. (3.22) into Eq. (3.17) and using the result in Eq. (3.20).

the vehicle net acceleration is given by

k brk k kp (d plan d P) + kbrakekv ( vpian - vp)

1*
-amax + (3.23)

Since the vision model assumes that the average driver error in estimating

distance and velocity is zero, for purposes of linearization, from Eq. (3.1) it can be

assumed that

d = da. (3.24)

For the same reasons from Eq. (3.4),

Vp = va = z. (3.25)

To continue the linearization, it must be noted that if z is taken as the distance
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from the vehicle starting point to its current location, and x,,,p is the location of

the stop sign, then

dp = da = ztop - z (3.26)

and thus

dplan - dp = dplan - (Zstop - X). (3.27)

Using Eq. (3.25) and this result, Eq. (3.23) becomes

k = - kbkpk(dpan - z Sop z) + kbrakekv Vptf - %

- amax  (3.28)

or

+ -k/ki + kbrkZ= 

,J.

kbrak kp(Xstop - d Ian) + kbrake k a -p a am .. (3.29)

Using standard control theory techniques, the characteristic equation associated

with Eq. (3.29) is Il

A2 + kIA + ko =0 (3.30)

where

k= + kvkbrake (3.31)
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and

k0 = + kkbrake .  (3.32)

From Eq. (3.26), the ,ssociated eigenvalues are

1

2
_ _ k, _(3.33)

A 2 2 o

For critical damping, eigenvalues A1 and A2 must be equal, real, and negative.

[Ref. 311 This occurs if the second term of Eq. (3.33) is zero, giving

l2

k0  - (3.34)
4

and

Ic1

A - --. (3.35)
2

G. SUMMARY

The basis for any computer simulation is a detailed mathematical model.

The purpose of this chapter has been to develop a model which can be used in a

computer simulation to study longitudinal speed control. In the next chapter, the

programming environment and the computer simulation model are discussed in

detail. A user's guide is also provided.
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IV. SIMULATION MODEL -

A. INTRODUCTION

Several methods for implementing the mathematical model developed in the

previous chapter were examined during the formulation of this study. The design

selected by the authors is an extension of the three-dimensional color graphics

animation model implemented by McGhee. Zyda, and Tan in work closely

paralleling this research [Ref. 30:pp. 46-67].

To support this work, the simulation implemented by McGhee, Zyda. and

Tan was modified to provide vehicle control through manual methods or with an

autosteer/cruise control system. This was facilitated by networking two IRIS

(Integrated Raster Imaging System) workstations, one with the vehicle simulation

and one with a vehicle controller. The two IRIS workstations communicate over

the Local Area Ethernet Network in use at the Naval Postgraduate School. The

selected design provides several different control modes for vehicle operation and

enables a user to control the simulation from either IRIS workstation with manual

methods. autosteer/cruise control, or a combination of manual. autosteer. and

cruise control.

The remainder of this chapter discusses the programming environment, the

three-dimensional graphics simulation, and the networking techniques used. First,

the programming environment is discussed. Next. the display on each J
43, "
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workstation is described in detail. Also, the Local Area Network and its use in

this research are examined. Additionally, the autosteer/cruise control system and

vehicle operating modes are reviewed. A complete description of all modules and

supporting files used for the simulation is provided. Lastly, a user's guide is

included.

B. PROGRAMMING ENVIRONMENT

1. Hardware

The IRIS 2400 Graphics Workstation, manufactured by Silicon Graphics.,

Inc., is the target hardware for the design, development, and implementation of

the mathematical model developed in Chapter III of this work. The workstation is

a high resolution system capable of combining real-time color graphics while

operating under the UNIX operating system [Ref. 32-33].

2. Programming Language

The UNIX operating system on the IRIS workstation supports C,

FORTRAN, Pascal, and Franz LISP. The C programming language was chosen

for this work since a large portion of the software was produced in C during

earlier work by McGhee, Zyda, and Tan [Ref. 30]. Additionally, communications

packages developed at the Naval Postgraduate School are implemented in C and

require low level system calls which are most easily handled by programs also

written in the C language [Ref. 34].
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C. DISPLAYS AND DRIVING COURSE

1. Vehicle Simulation on Driver's Display

The vehicle display includes a dashboard with operating instructions and

instrumentation on the lower portion of the IRIS monitor and an "out-of-the- "

windshield" view of the highway environment on the upper portion of the IRIS

monitor, as shown in Fig. 4.1. This display has been named the "driver's display"

and corresponds very closely to an environment with an onboard operator,

whereas the display on the second IRIS workstation, shown in Fig. 4.2, has been

named the "navigator's display," corresponding to a remote control environment.

Of course, the driver's display could also be interpreted as part of the remote

environment if the vehicle is assumed to be equipped with an on-board television

camera and a video data link.

The highway environment consists of a closed-course track constructed

with four straight sections of simulated asphalt and four curved sections of

simulated asphalt. Intersections, stop signs. speed limit signs, and a semaphore

have been added to the software developed by McGhee, Zyda, and Tan [Ref.

30:pp 46-67]. Fig. 4.2 is an overhead view of the closed-course track showing the

locations of the semaphore and the stop signs.

2. Control Simulation on Navigator's Display

The navigator's display is executed on an IRIS workstation which is

networked to the driver's display. This IRIS system projects an overhead view of

the closed-course track on the left portion of the monitor and essential vehicle
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instrumentation on the right portion of the monitor as depicted in Fig. 4.2.

Additionally, the progress of the vehicle on the highway is provided by crosahairs

which are updated as the vehicle moves around the highway circuit.

D. NETWORKING

The two IRIS workstations used in this research communicate on a Local

Area Ethernet Network. The Ethernet can transfer serial packets of data at a

maximum transfer rate of 10 megabits per second [Ref. 35: pp. 80-86].

In addition to Ethernet, this work utilizes a prototype multimedia computer

conferencing system designed by Manley to effect continuous communications

between two programs executing on separate computers [Ref. 34]. During

program execution, pertinent vehicle information such as vehicle coordinates,

distance from the start of the highway circuit, vehicle velocity and vehicle braking

information is continually transmitted from the driver's display to the navigator's

display. Additionally, the status of the semaphore and the current operating

mode are transmitted to the navigator's display. In return, the driver's display

receives command and control information from the navigator's display which

includes commanded velocity, vehicle braking control, vehicle steering control,

and operating mode.
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E. DRIVING MODES

The 3D color graphics simulation developed for the mathematical model

presented in this work can be controlled by the user with the IRIS workstation's

mouse, or by the autosteer/cruise control feature, or by a combination of mouse

and autosteer/cruise control.

1. Lateral Steering Control

Two methods of lateral steering control were developed by McGhee,

Zyda, and Tan [Ref. 30:pp. 30-45]. Both methods are used in this simulation. The

first method allows a user at the driver's display to manually steer the vehicle by

observing the "out-of-the-windshield" view on the driver's display and using

lateral movement of the mouse on the IRIS workstation. This closely models the

"sight picture" and actions a driver would experience behind the steering wheel of

an actual automobile, a situation with an onboard operator. Since the mouse on

the navigator's display can also control the lateral movement of the vehicle model,

a remote control situation can also be simulated with the user at the navigator's

display. Therefore, by selection of the proper driving mode, the user can

manually control lateral steering from either IRIS workstation.

The second means by which steering can be controlled is the autosteer

method, where the vehicle steers toward target points in the center of its driving

lane. As the vehicle proceeds, new targets are continually selected such that the

vehicle constantly has a goal to its front.
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2. Manual Longitudinal Speed Control

Two methods of longitudinal speed control have been developed in this

simulation. In the first, the user can manually control the vehicle velocity and

braking by utilizing the mouse on either IRIS workstation and by obser.ring the

"out-of-the-windshield" view on the driver's workstation, thus providing a

capability to simulate onboard or remote control of vehicle speed. Acceleration

and deceleration are accomplished by clicking the associated IRIS workstation

mouse buttons. This simulates the depression and release of the accelerator in an

actual vehicle. Braking is manually controlled by vertical displacement of the

mouse to apply brake pressure and by return of the mouse toward its original

position to reduce or remove the brake application.

Manual longitudinal speed control can be monitored using the

instruments provided on the dashboard of the driver's display or with the

instruments provided on the navigator's display.

3. Cruise Control

The second method of longitudinal speed control employs an idealized

cruise control system. This system uses output from a simulated vision system to

respond to speed limit signs. stop signs, and a semaphore. In routine

circumstances, cruise control operates as in a conventional vehicle and maintains

a commanded velocity for the driver. However, the cruise control system in this

work can also set a new commanded velocity based on speed limit signs observed

by the simulated vision system as the vehicle travels the closed-course track.
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Additionally, the cruise control system can react to a stop sign or semaphore and

guide the vehicle to a smooth stop. After an appropriate delay at a stop sign, or

when the semaphore turns green, the cruise control system accelerates the vehicle

through the intersection while the simulated vision system watches for new signs.

To maintain longitudinal speed control, the cruise control module

analyses the vehicle location, the vehicle velocity, and semaphore/stop sign

information using the mathematical model developed in Chapter III. Based on

the results of this analysis, control information in the form of commanded velocity

(accelerator position) and brake position is transmitted from cruise control on the

navigator's display to the vehicle on the driver's display.

The cruise control method of longitudinal speed control can be monitored

with the instruments provided on the dashboard of the driver's display or with

the instruments on the navigator's display.

4. Modes of Operation

The simulation developed in this research is designed to be controlled

from either the driver's display (an onboard control situation) or from the

navigator's display (a remote control situation). Additionally, the user can select

any combination of the lateral and longitudinal control methods previously

described. Thus, the user has nine different driving modes as detailed irn Fig. 4.3.

The user can change driving modes at any time with a single keystroke at the

keyboard of either display.
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F. MODULE DESCRIPTION ON THE NAVIGATOR'S DISPLAY

1. Navigate.c

This module is the control module for the navigator's graphics simulation.

It initializes the IRIS workstation, sets all the local and global variables, and

opens a connection to the driver's display on the second workstation. Navigate.c

receives and displays the commanded velocity, the vehicle velocity, the vehicle's

brake position. the vehicle's distance from the start of the course and the vehicle's

coordinate location. Additionally, this module provides command and control

information to the driver's display. Lastly, while in manual steering modes,

navigate.c handles input received from the mouse on the navigator's display. Fig.

4.4 through Fig. 4.8 is a flowchart of this module.

2. Cruise.c

This module is a key module in the navigator's display and is instantiated

only in the cruise control modes. Here, the module calculates the driver's

acceleration and deceleration plan using Eq. (3.15). Next, simple vision input is

processed with the current vehicle velocity and vehicle location to regulate

longitudinal speed control as shown in Fig. 4.9, a flowchart of cruise.c. If the

vision input indicates a stop sign within the driver's acceleration and deceleration

plan, a call is made to brake.c to stop the vehicle. Brake.c is used in a similar

manner during semaphore color processing.
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Figure 4.4 NAVIGATOR.C Flowchart
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Figure 4.8 Main Loop of Navigator.c (Part 4)
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Figure 4.9 CRUISE.C flowchart
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3. Brake.c

Brake.c has several functions, but is also instantiated only during the

cruise control modes. First, this module calculates d, the driver's perceived

distance to the stop sign using Eq. (3.3) and the vision theory developed in

Chapter III of this work. Also, brake.c computes v , the driver's perceived

velocity using Eq. (3.6). Finally, the module provides abrake the braking

deceleration for the vehicle utilizing Eq. (3.28). Engine braking, as defined in Eq.

(3.18), is computed in the vehicle simulation. Fig. 4.10 is a flowchart of this

module.

4. Signal.c

This module is also instantiated in the cruise control modes. Signal.c

provides vehicle control input for the different light phases of the semaphore in

the highway environment as depicted in Fig 4.11.

5. Clear.c

Clear.c has only a single function. It is called in the cruise control modes

after a complete stop at a stop sign. The module simulates a driver observing

that it is safe to proceed through an intersection. Clearx.c uses the system clock to

delay an arbitrary length of time, then removes the brake and sets the

commanded velocity to the last assigned speed limit on that stretch of highway.

6. Mapview.c

This module has two main functions. First, mapview.c builds an overhead

view of the highway environment with its crossroads, stop signs and semaphores
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as shown in Fig. 4.2. Lastly, this module uses information received by navigate.c

from the driver's display to plot the vehicle location by moving crosshairs around

the road circuit. %

7. Gauges.c

The function of gauges.c is to build the instrumentation and control

placard shown on the right of Fig. 4.2. Data for the instruments is provided by

navigate.c.

8. Mouse.c

The function of this module is to allow the user to manually govern the

vehicle's speed and braking.

9. NetV.c

NetV.c was designed and implemented by Manley [Ref. 34]. Its purpose

is to open an Ethernet connection to the driver's display on the other IRIS

workstation.

10. Checkkey.c

This function monitors the keyboard, allowing the user to change driving

modes with a single keystroke.

11. Savedata.c

Savedata.c stores test data which has been saved during program

execution in temporary arrays. At program completion, savedata.c is invoked and

writes the test data to a file named test.
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12. Generate.c

This module uses the system random number generator and provides

output in the form of Gaussian random numbers. The IRIS's random number

generator is seeded from the system clock to ensure unique output of uniformly

distributed random numbers during each execution of the simulation. Then, a

Gaussian distribution can be closely approximated by summing twelve random

numbers uniformly distributed between - 1 and + 1 and dividing the total by

two.

13. Loadintarray.c

The function of loadintarray.c is to read vision information from a file

named roadmap to an array during program initialization. The vision information

is later used by cruise.c during analysis in the cruise control modes.

14. Welcome.c

The purpose of this module is to display a welcome banner on the IRIS

monitor while the graphics system is initialized and files are loaded.

15. Const.h

User defined constants for the navigator's display have been organized in

this file to make future software modification easier. Const.h must be an include

file in each program module which contains program constants.

16. Vars.h

All global variables for navigator's display are in this file. Vars.h must be

listed as an include file only in the navigator.c module.
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17. Vars.ext.h

External variables which are required when working in the C

programming language are in this file. Vars.ext.h must be listed as an include file .4.

in all modules other than navigator.c

18. Vision.h

This file contains simulated vision input required for program operation.

The locations of stop signs, speed limit signs, and the semaphore are provided.

Additionally, for each speed limit sign, there is an associated speed in the file.

19. Makefile

This is a utility for program organization and management provided with

the UNIX operating system. It assists the user by keeping track of which files need

to be recompiled following modification. [Ref. 36:p. 105]

G. MODULE DESCRIPTION FOR THE DRIVER'S DISPLAY 4

Most of the modules on the driver's display were designed and implemented

by McGhee, Zyda, and Tan [Ref. 30:pp. 46-67]. However, many modifications

were made to support this work. Therefore, all modules on the driver's display

are discussed below in depth. I,'

1. Carsimu.c

This is the control module for the driver's display graphics simulation.

Additionally, carsimu.c has several important functions. First, it initializes the

IRIS graphics system, sets all local and global variables, and completes the

.5

65 '



connection to the navigator's display on the other workstation. Carsimu.c also

transmits pertinent vehicle data to the navigator's display and receives command

and control information in return. While in the autosteer modes, this module

calculates the headings to the successive target points in the center of the vehicle's

driving lane. Carsimu.c also processes all manual steering input from either IRIS

workstation's mouse. Lastly, it processes manual longitudinal speed control input

from the driver's display. Fig. 4.12 through Fig. 4.18 is a flowchart of this

module.

Several changes have been made in this module to support this research.

First, the target steering system implemented in earlier research is dependent on

high, constant velocities and becomes unstable at low speeds or during complete

stops. Therefore, the AutoSteer modes cannot be used at velocities near zero.

Thus, this module has been changed to default to a Manual mode whenever the

velocity decreases to approximately 3 kph. This logic is displayed in the flowchart

of Fig. 4.14. Additionally. checkkey.c, a routine which scans for keyboard input, is

designed to accept AutoSteer modes only when the vehicle velocity exceeds 11

kph.

Lastly. for this work, the authors desired the vehicle be capable of

multiple laps on the closed-course track. This requires an improvement to

overcome the problem of discontinuity in the arctangent function used for the

AutoSteer modes [Ref 30:p. 66]. An implementation of the algorithm is shown in

Fig. 4.19. In this solution, a, is saved and used as a reference in the calculation
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of ,. If +1 is significantly different from at, a discontinuity exists and

a,+1 is adjusted. In this work a variation of 3.5 radians is allowed for routine

corrections and normal engagement of the AutoSteer modes. When a

discontinuity is encountered, a variation of approximately 27r radians is

observed.

2. Circuit.c

The primary function of circuit.c is to build the highway environment for

the vehicle simulation. Several modifications to support this work were

incorporated since its design. First, a fourth curve has been added to close the

rectangular circuit as shown in Fig. 4.2. Additionally, two crossroads have been

added along with three stop signs, several speed limit signs, and a semaphore.

sigma = atan2((gx - cx),(gy - temp)):
if (sigma - last sigma < - 3.5)

{
lap = 1 + (int)((lastsigma - sigma - PI)/(2 * PI));
sigma = sigma -r 2 * PI lap;
lastsigma = sigma;

else lastsigma = sigma;
sigmadot = (sigma - oldsigma)/deltat;
old-sigma = sigma;

Figure 4.19 Key C-code for the Arctangent Discontinuity.
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3. Other.c

This module contains the support routines used to build the sky,

mountains, semaphore, stop signs, and other terrain features in the driver's

display.

4. Find subgoal.c

When in an autosteer mode, find subgoal.c searches for the next target

point to steer towards. The module is designed such that the target point is

continually being computed. However, the information is only used when in an I,

autosteer mode. This is done for two reasons; first, to ensure the target point is

always in front of the vehicle and second, for efficiency when an autosteer mode is

engaged.

5. Integrate.c

This module performs the Euler-Heun numerical integration required to
'S

provide vehicle dynamics [Ref. 30:pp. 64-65]. In the autosteer modes, the steering

angle for the dashboard display is computed. In the manual modes, the module

allows the driver to control the steering wheel angle.

6. Display.c

The dashboard display is built by this module as shown in Fig. 4.1.

7. Checkkey.c

This module responds to all input from the keyboard, through which the

user can change driving modes.
7
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8. Welcome.c

Welcome.c displays a welcome banner while the IRIS graphics system is

initialized and files are loaded.

9. Letter.c

This utility was designed and implemented by J. Artero and R. Kirsch,

and was later modified by L. Williamson. The module creates most of the upper

case Roman alphabet for use in graphics displays. Several numbers have been

added to create speed limit signs for our work.

10. NetV.c

The function of this module, designed by Manley [Ref. 341, is to establish

an Ethernet connection to the navigator's display on the other workstation.

11. Loadarray.c

Loadarray.c reads a file named roadmap containing the target points

which the vehicle steers toward while in the autosteer modes. For efficiency, the

points are stored in an array during program execution.

12. Roadmap

This is the file containing the target points which the vehicle steers

toward while in the autosteer modes. The points are one meter apart and match

the center of the vehicle's driving lane.
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13. Const.h

Programmer defined constants for the driver's display are organized in

this file to make software modification easier. Const.h must be an include file in

each program module containing programmer defined constants.

14. Vars.h

All global variables for carsimu.c are in this file. Vars.h is an include file

only in carsimu.c.

15. Vars.ext.h

Vars.ext.h contains all the external variables required when programming

in the C language. All modules, other than carsimu.c, must list vars.ext.h as an

include file.

16. Map.c

This routine is independent of the other modules on the driver's display.

Map.c is used to generate the roadmap file and the target points the roadmap file

contains.

17. Makefile

This is a utility for program organization and management provided with

the UNIX operating system used on the IRIS workstations. Its purpose is to assist

the user by keeping track of which files need to be recompiled following

modification. JRef. 3 6:p. 1051
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H. USER'S GUIDE

To execute the graphics simulation, enter the following commands. First, on

the driver's display workstation enter the command:

carsimu

The display will respond with:

Server waiting to connect to npscs-irisl

This response indicates the driver's display has opened a socket to the second

workstation. At this time, on the navigator's display enter the command:

nav

The navigator's display will complete the connection to the other workstation and

graphics initialization will begin. It takes a short time for the workstations to read

the roadmap into memory and make all the graphics objects.

The driver's display begins as shown in Fig. 4.1. The top portion of the IRIS

monitor is the "out-of-the-windshield" view of the highway environment and the

lower portion of the display is the vehicle instrumentation and a control placard.

The navigator's display, shown in Fig. 4.2, has an overhead view of the

highway environment on the left portion of the IRIS monitor. On the right side of

the monitor pertinent vehicle instruments and a control placard are displayed.
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A user can change operating modes by referring to the control placard and

providing the appropriate input on the keyboard of either workstation. Fig. 4.3

provides more detailed information on the operating modes. To exit, enter an e %

on either keyboard.

To control the speed of the vehicle manually, select the proper mode (see Fig

4.3). Then, clicking the rightmost mouse button corresponds to incrementally

depressing the accelerator in a vehicle while holding the right mouse button

corresponds to steadily increasing the accelerator depression in a vehicle. Clicking

the center mouse button corresponds to incrementally releasing the accelerator

and holding the center mouse button corresponds to steadily decreasing the

accelerator. A user can release the accelerator immediately by clicking or holding

the left mouse button. The brakes can be applied by displacing the mouse

vertically (away from the user). To remove or reduce the braking, move the

mouse toward its original position (toward the user). Instrumentation provided on =

each display and the "out-of-the-windshield" view assist the user.

To steer the vehicle while in one of the manual steering modes, move the

mouse to the left or the right, as necessary. The steering wheel turning rate and

displacement on the driver's display is proportional to the speed and displacement

of the mouse. Again, the instrumentation on each display and the "out-ofothe-

windshield" view assist the user. Additionally, if the vehicle is too close to the
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edge of the highway, the Danger warning indicator on the driver's display will

begin to flash. If the vehicle should leave the highway and crash, the user must

exit the simulation by entering e on the keyboard.

Test data can be recorded by entering a t on the navigator's display. Because

of the l-u)lme of information stored, it is recommended the this feature be

activated only when conducting a trial simulation. The recorder can be toggled off

by entering t a second time. At program termination, the data is permanently

saved in a file named test.

I. SUMMARY

The hardware and software for the three-dimensional graphics simulation

model are discussed in this chapter. A complete system has been developed

through which experiments can be conducted involving both manual and

computer controlled longitudinal speed control. In the next chapter, experiments

using this system are described and analyzed.
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V. EXPERIMENTAL RESULTS

A. INTRODUCTION

Numerous simulation trials were conducted with different program variables

to check the validity of the stated hypotheses and the correctness of the

mathematical model derived in Chapter III. The results of the simulation trials

were recorded and plotted for analysis and documentation.

The closed-course track as shown in Fig. 4.2 has three stop signs and a

*: semaphore. However, for these studies, only the semaphore and stop sign #2 were

used. This allowed the driver or the cruise control system adequate time to

stabilize at the maximum safe speed for that stretch of road prior to encountering

a stop sign or a semaphore with a red light. Additionally, this work studies only

speed control and not the more complex analysis required when approaching an

intersection as the semaphore turns yellow. Thus. for these trials, the simulation

was set such that the semaphore is always red as the vehicle approaches.

In all experiments, the trial begins by setting and stabilizing the velocity at

the desired value. As the vehicle approaches the red semaphore or stol sign ;2.

the driver or cruise control adjusts the vehicle speed and uses brakin, as necessary

so as to stop at the appropriate location. The trial is complete when the vehicle

comes to a stop.
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Several trials have been made to record the characteristics and results of

manual and cruise control braking. In each case, regression analysis employing a

least-squares fit has been applied to relate the deviations resulting from several

stops [Ref. 37]. Using the resultant curve, Y, the total acceleration due to braking

can be determined. A value for amax, the maximum acceleration due to braking

can be determined by using the results obtained from a trial with 100%(' braking.

This is shown in Fig. 5.1. Now, the driver's acceleration and deceleration plan

can be calculated with

- (5.1)
amax

The remainder of this chapter documents the results of several experiments.

First, the trials conducted with manual longitudinal speed control are reviewed

and the results obtained from these experiments are discussed. Then, the

experiments with the cruise control system, which incorporates the mathematical

model developed in Chapter III. are discussed and analyzed.

B. MANUAL LONGITUDINAL CONTROL

During the manual longitudinal control trials, it was found to be extremely

difficult to stop at the required location. This was attributed to a lack of visual

references which help humans to perceive motion and accurately judge distances.

Additionally, a time period was required for the driver to become accustomed to

the dynamic characteristics of the vehicle. To help overcome these handicaps,
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distance remaining markers were added at ten meter increments for the last 60

meters approaching the semaphore. Also, the test driver practiced several stops in

order to grow accustomed to the vehicle dynamics.

Typical results for manual longitudinal control are shown in Figs. 5.2 - 5.5.

In the trials for Fig. 5.2 and Fig 5.3, Driver #1 and Driver #2 attempt to stop at

the semaphore while the operating mode is NavSteerDrSp. This mode is chosen

because the driver is responsible only for speed control and not steering control,

resulting in a reduced workload. In both cases, the trials were initiated from 50

kph. Fig. 5.2 and Fig. 5.3 show the difficulty encountered by the drivers when

attempting to stop at a designated location. On occasion, one driver overshoots

the semaphore and enters the intersection. Analysis of Driver # l's data shows his

a is 0.59 and for Driver #2, a is 0.76.

The trials for Fig. 5.4 and Fig. 5.5 were initiated at 75 kph but the operating

mode was ASteerDrSp. This mode also relieves the driver of steering control

which is difficult at 75 kph [Ref. 30:p. 701. Data for Fig 5.4 and Fig 5.5 were

recorded while approaching stop sign #2. To stop in this situation. the driver

must intercept his acceleration and deceleration plan while the vehicle is traveling

around a curve. Also, this stretch of highway does not have distance remaining

markers, making it more difficult for the driver to judge the distance to the stop

sign. Fig. 5.4 and Fig 5.5 show that on occasion both drivers fail to stop until in

the intersection. For Driver #1, a is 0.73. An analysis of the data in Fig 5.5

shows that Driver #2 has an a of 0.82.

84

5j



*ra

4.)o

bC4)

LOF

0 *O

4) 0*

0

crI)

-Y.0

-4.4-4

0 9 ** ) I

0C O 0 LOs-

u 5

00

"4 5



0 OD

4))

ba-0

oo ED1~

.4-, 4..' -

0<0

O

0 Lo

v-4 LO0

00

'6 ". N V.



4) 9

46)

.9-

4-)4

* 00

.06.

-4

00

.9-4 
44 . 0

*6O. 0
t S. *:j

4- .0.0 t 0 LOC, c

* H0

0 -

87.

IN9



. '

CCq

I.0

.,. .4

.... 0

.1 .. 00

.L. O

6 . 0

.4 . ..

cd t..?..

LO 0 L
LO .4.

00 LO.6

o 4

0 * ~

.4-4 *.... 88



C. AUTOMATIC DRIVING-P

The most difficult portion of the cruise control trials was finding a position

gain factor, k . and a velocity gain factor, k . Note that for this work, two

equations. Eq. (3.33) and Eq. (3.34), have three unknown variables. From the

closely related work of McGhee, Zyda, and Tan [Ref 29:p. 391, A is expected to

be small, and most probably in the interval - 2.0 < A < - 0.5. Therefore, values

for k and k were calculated for - 3.0 < A <, 0.0 in increments of 0.1. The

acceleration and deceleration plan gain factor, a, was set to 0.5. To calibrate the

system without the effects of noise resulting from a human driver's judgement, 'N

kd. the distance multiplier, and k., the speed multiplier were both set to 1.0.

Trials were then conducted for various A within the prescribed domain. Results

of trials at high velocities show for A > - 2.0, the vehicle stops short of the

desired location. Subsequent trials with a = 0.6 and A =- 2.2 showed the

vehicle was capable of stopping properly from various speeds. Fig. 5.6 depicts the

vehicle stopping from 50 kph and Fig. 5.7 displays the vehicle stopping from 75

kph.

With the system calibrated, the human driver is modeled by constructing kd

and k using input from the Gaussian random number generator. Fig. 5.8 is the

result of four trials starting at 50 kph. It is of note that in all cabes the cruise

control super driver stopped the vehicle prior to entering the intersection. For the

super driver in Fig. 5.8, a is 0.55. Similarly, Fig. 5.9 depicts four trials from 75

kph. Again. the super driver was successful in stopping the vehicle prior to
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entering the intersection. In this case, a is 0.53. Note that the autopilot applies

hard braking early in the simulation trial, while the human driver uses hard

braking late in the simulation trial. This may be due to the difficulty the human

driver has judging the distance to the stop sign.

D. SUMMARY

The results of this chapter show that the behavior of a human driver as he

estimates the distance to a stop sign and the velocity of his vehicle can be

mathematically modeled. Additionally, the mathematical model developed in this

work mimics this conscious or unconscious behavior to a significant extent. C

However, before any degree of confidence can be attached to the hypotheses of

this work, additional research is needed to gather statistical data about how

human acceleration and deceleration plans vary with driving conditions.

Therefore, currently, the hypotheses of this work can provide at most a viable -

basis for longitudinal speed control in autonomous vehicles. 'U
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VI. SUMMARY AND CONCLUSIONS

A. SUMMARY

This work differs from previous research in the area of longitudinal speed

control for autonomous vehicles in that the previous models did not mimic human

control of the vehicle. Rather, much current research focuses on vision, sensors,

planning, navigation, and avoidance. Few, if any, previous works explore the

behavioral aspects of human driving which could provide some different insights

into possible approaches to autonomous vehicle control.

At the start of this work, it was observed that human driving can be divided

into two distinct levels, that of conscious and unconscious behavior. This work is

concerned entirely with studying and modeling a simple conscious or unconscious

aspect of human driving, that of controlling the accelerator and the brake position

during a stop.

An important product of this work is the development of a three-dimensional

color graphics simulation model utilizing two graphics workstations

communicating over an Ethernet network. This model provides a realistic bA

environment in which real-time experiments can be conducted to support ongoing

research. The model can be modified, enlarged, or enhanced to facilitate related

work in the future.
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B. CONCLUSIONS AND POSSIBLE EXTENSIONS

In this simulation, the navigator's display is modularized for ease of

management, modification, and expansion. Thus, several possible extensions to

this research exist. First, a possible enhancement to the present system is a

sophisticated vision model requiring complex vision analysis. The present model

is simple and sees only key signs and semaphores. An improved model could

possibly detect other traffic, obstacles, and even pedestrians. Such a model would

require elaborate techniques and algorithms to detect and analyze each situation.

Additionally, the Autosteer mode may be improved to include automatic

steering at low speeds and possibly at a complete stop. This extension would allow

the user to conduct simulation trials without being distracted by mode changes.

Another possible extension to this work focuses on path planning and

navigation. Such research would entail a complex highway environment or a

cross-country environment with numerous routes. In this model, the navigator's

display could select a route based on path planning and obstacle avoidance

algorithms.

The extensions described above require a programming language and special

hardware suited for advanced artificial intelligence applications such as vision,

path planning, and obstacle avoidance. In consideration of these requirements, a

final extension to this work involves replacement of the navigator's display and its

host workstation by another system on a LISP machine. The use of the Ethernet

communications in the implementation of this work allows an entire display and
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its host computer to be readily replaced by a system such as a LISP machine. An

implementation of the vehicle simulation under the control of a navigator's

display on a LISP machine would provide an improved platform for advanced

work in vision, path planning, and obstacle avoidance.

In conclusion, it is hoped that this research will serve as a basis and

motivation for advanced work in the behavioral aspects of human driving.

Research of this nature can have a significant impact on the development of

autonomous vehicles of the future.
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APPENDIX A

SOURCE CODE FOR THE NAVIGATOR'S DISPLAY

filename: NAVIGATE.C
author: Michael J. Dolezal
date: May 20, 1987

#include "gl.h"
#include "device.h"
#include "const.h"
#include "vars.h"
#include "stdio.h"
#include "math.h"
#include "time.h"
#include. sys/types.h.-
#include < sys/times.h>
#include "sys/signal.h"

main()
{

/* variables to control the car

int lightcolor = REDLIGHT; /* color of signal light */
int command; /* read/write variable */
int condition = 0; 1* signal received from simulation */
mt status - 0; 1* read/write variable */
int car; 1* socket number of local system */
int nbyte; /* read/write result */
int mode = 0; /* control mode sent to vehcle */
int datatime 0 0; /* time counter for recording data */
int systemclock; 1* contains the system clock time */
int starttime; /* initial value for the system clock */
int mousex 0 0; /* heading info from mouse */
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int thousand, hundred, ten, unit;
int statussize, distancesize, cxsize, cysize, commandsize,

controlsize, velocitysize, carstatsize;
int timedata[1000]; /* used to record real time */

long controlsignal 0 0; /* heading and brake info sent to car
long carstat - 0; /* cmdvelocity and braking info from

cardriver */
long seedval; /* used to seed random number generator */
long float drand480; /* the random number generator */
void srandO; /* used to seed random number generator */
float gaussiangeneratorO; 1* random number generator */

char tempstr[30], thouc[2], hundc[2], tenc[2], unitc[2];

float rdistance = 0.0; /* distance the vehicle is down the road */
float a max - 1.8;
float temp, tempval;

Boolean notdone = TRUE; / used to control display loop */
Boolean recorddata = FALSE; /* used to record data */

extern long timeO; /* System clock */
long clocktime; /* For clock value */
char *clockc;

struct tins mytime; /* Place to put the time structure */

/* function that connects server to client */
int connectclientO;

statussize = sizeof(status);
distancesize = sizeof(rdistance);
cxsize = sizeof(cx);
cysize = sizeof(cy);
commandsize = sizeof(command);
controlsize = sizeof(controlsignal);
velocitysize = sizeof(velocity);
carstatsize - sizeof(carstat);

1* open up the net path to machine npscs-irisl /I
car = connect-client( npscs-iris2", 5);
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loadintarrayo; /* load the vision data '

ginit(); /* initialize the IRIS *

doublebuffero; 1*use doublebuffer mode '

gco nfigo; 1*use the above settings ~/t

cursoffo; /~set the cursor off ~

qdevice(KEYBD): 1 check input fin keyboard ~

setvaluator(MOUSEX, 250, 0, 500);
setvaluator(MOUSEY, -10, -10, 400);
noise(MOTJSEX. 10);
noise(MOUSEY. 10);

color(BLACK); /~clear the buffers *
clearo;
swapbufferso;
clearo;
swapbufferso;

makethemapview(&mapobj);
rnakethegauges (&gauges);

welcomeo; 1* display the welcome panel *

seedval = t ime ((Ion g*) 0); /~seed the random number generator ~
srand48(seedval);

/ * generate random numbers*/
for (stopcount = 0; stopcount < 10; ++stopcount)

f
ksubi Istopcount] = gaussiangeneratorO;
ksubfistopeount] = gaussiangeneratorO:
I

stopcount =0:

for (cyclecount =0; cyclecount < 150; ++cyclecount)

{ s b ~ y l c u t ( r a d 8 ) . 1 . 1
ksube[cyclecount] = ((drand48() ) 0.01) + 0.01;
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cyclecount = 0;

while(notdone)

nbyte = write(car, &commnand, comxnandsize);
nbyte = write(car, &controlsignal, controlsize);
abyte = read(car, &status, statussize);
nbyte = read(car, &velocity, velocitysize);
notdone = status/100;
lightcolor = ((status - (notdone * 100))/10);
condition = status - (notdone * 100) - (Iightcolor *10);

switch (condition)

cae{ ter~
case ArSteerNaSp:

niousespeedinput (&cmdvelocity, &distance, &eye, &numsights,
&lastremembered, &brakeposition, &accel-brake); .

break;
case NayManual:

inousespeed input (&cmdvelocity, &distance, &eye, &numsights,
&Iastrernembered, &brakeposition, &accel brake);

mousex = getvaluator(MOUSEX);
break;

case NavSteerDrSp:
mousex = getvaluator(MOTJSEX);
if (distance % LAPDIST > vision[eyel [LOCATION])

if (vision[eye] [OBJECT] == SPEEDLIMIT)
lastreinembered = vision [eye] [SP EE D];

if (eye < numsights) eye = eye + 1;

nbyte = read(car, &carstat, carstatsize);
accel -brake = -carstat/1000;
crndvelocity = (int)((carstat%1000) * MPSTOKMPH);
break; %

case ASteerDrSp: if (distance % LAPDIST > vision [eye] [LOCA TION])

if (vision [eye] [OBJECT] == SPEEDLIMIT)
lastreznerbered = vision [eye] [SPEED];

if (eye < numsights) eye = eye + 1;

nbyte =read(car, &carstat, carstatsize);-
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accel -brake =-carstat/1000;
cmdvelocity = (int)((carstat%1000) * MPS .TOKMPH);
break;

case DrManual:if (distance % LAPDIST > vision [eye] [LOCATION])

if (vision[eyel [OBJECT) == SPEEDLIMIT)
lastremaembered = vision [eye] [S PEED];

if (eye < nunisights) eye = eye + 1;
I

nbyte = read(car, &carstat, carstatsize);
accel brake =-carstat/1000;
cmdvelocity = (int)((carstat%1000) * MPSTOKMPH);
break;

case CruiseNavSteer: mousex = getvaluator(MOUSEX);
case AUTOPILOT:
case CruiseDrSteer:

cruisecontrol(systexnclock, a max, Iightcolor);
cmdvelocity = cruisevelocity;
break;
} *switch (condition) *

1* reset vision array after every lap*/
if ((distance + 1) % (LAPDIST - 1) == 0)

eye =0;

nbyte =read(car, &cx, cxsize);
nbye =read(car, &cy, cysize);

nbyte =read(car, &rdistance, distancesize);

distance rdistance;
thousand =distance/bOO0;

hundred =(distance - (thousand * 1000))/100;
ten =(distance - (thousand * 1000) - (hundred *100))/b0;
unit =distance - (thousand * 1000) - (hundred *100) - (ten *10);

clocktirne = tirne((longk)0); 1*record the system clock ~
clockc = ctime(&clocktiine);
systemclock = times(&znytime);
sprintf(thouc, "%d", thousand);
sprintf(hundc, "%d", hundred);
sprintf(tenc, "%d", ten);
sprintf(unitc, "76d", unit);
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editobj (mapobj);
if (lightcolor =t= GREENLIGHT)

objreplace(greenlighttag);
color(GREEN);
objreplace(redlighttag);
color(DIMRED);

if (lightcolor == YELLOWLIGHlT)

objreplace(yellowlighttag);
color(YELLOW);
objreplace(greenlighttag);
color (DIMGREEN);

I
if (lightcolor == REDLIGHT)

I
objrep lace (redlighttag);
color(RED);
objreplace (yellow lighttag);
color (DIMYELLO W);

objreplace(cartag);
move2(cx-5.O,-cy);
draw2(cx+5.O,-cy);
move2(cx, -cy-5.O);

* draw2(cx, -cy+5.O);

/~display the system time ~
objreplace(timetag);

* charstr(clockc);

if (recorddata)

sprintf(tempstr, "%s ki %.3f kv %.3f", "RECORDING",
ksubi(stopcountl, ksubffstopcounti):

objreplace~testtag);
charstr( tempstr);

I
else

sprintf(tempstr, "1ki %.3f kf %.3f",
ksubi[stopcount], ksubf~stopcountI):
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objrep lace (testtag);
charstr(tempstr),

closeobj 0
callobj (mapobj);

1* EDIT GUAGES *

sprintf(tempstr, "%dtt, (distance/ LAPDIST) + 1);

editobj (gauges);
objreplace(cxndvelocitytag);
rectfi(CMDX, CMDY, CMDX + 50, CMDY + 2 *czndvelocity);

objreplace(carvelocitytag);
rectfi(CARVELX, CARVELY, CARVELX + 50,

(int)(CARVELY + 2 * velocity));
objreplace(brakepositiontag);
rectfi(BRAKEX, BRAKEY, BRAKEX + 50, BRAKEY -accel brake);
objreplace( laptag);
charstr(tempstr);
objreplace(thoutag);
charstr(thouc):
objreplace(hundredtag);
charstr(hundc):
objreplace(tentag);
charstr(tenc).
objreplace(unittag);
chanxtr(unitc);

switch (condition)

f
case AUTOPILOT: objreplace (mode inserttag);

charstr("Q");
objreplace(rnodetag);
charstr( "AiitoPilot");
ctuov2i(LAPX -26. LAPY -72):

charstr("")
closeobjo;
break,

case CruiseDrS teer:objrep lace (rodeinserttag);
charstr("C");
objreplace(modetag);
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charstr ("Cruise Control");
cmov2i(LAPX - 26, LAPY - 72);
charstr("Driver St Cont");
closeobjo;
break;

case CruiseNavSteer:objreplace(xnodeinserttag);
charstr("R");
objreplace(modetag):
charstr(" Cruise Control");
cmov2i(LAPX - 26, LAPY - 72);
charstr("Nav St Cont"):,
closeobjfl;
break;

case ASteerDrSp: objreplace(rnodeinserttag);
charstr( IS") ;
objreplace(modetag);
charstr( "AutoSteer");
cmov2i(LAPX - 26, LAPY -72);

charstr ("Driver Sp Cont");
closeobjO);
break;

case A SteerNSp: objreplace(znodeinserttag);
charstr("A");
objreplace(modetag);
charstr(tAutoSteerhl);
emov2i(LAPX - 26. LAPY -72);

charstr("Nav Sp Cont");
closeobj 0;
break;

case DrManual: objrep lace ( modeinserttag);
charstr("D");
objreplace(modetag);
charstr ("Driver Manual");
cxnov2i(LAPX - 26, LAPY -72);

charstr("No Nay Cont");
closeobj();
break;

case NayManual: objreplace (modeinserttag);
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charstr("W");
objreplace(inodetag);
charstr("Nav Manual");
cmov2i(LAPX - 26, LAPY - 72);
charstr("Total Control");
closeobjo;
break;

case DrSteerNavSp: objreplace(modeinserttag);
charstr("X");
objreplace(modetag);
charstr ("Driver Steer");
cmov2i(LAPX - 26, LAPY -72);

charstr("Nav Speed");
closeobjo;
break;

case NavSteerDrSp: objreplace(modeinserttag);
charstr("F");
objreplace(modetag);
charstr("Nav Steer");
cmov2i(LAPX - 26, LAPY -72);

charstr ("Driver Speed");
closeobjO);
break;

callobj (gauges);

checkkeybd (&notdone, &recorddata, &mode, &condition,
&stopcount, velocity);

command =(mode * 1000) + cmdvelocity;
controlsignal = (mousex * 1000) - accel-brake;

if (recorddata)

I
data Jdatatime] [DISTANCE] =rdistance;
data [datatime] [VrELOCITY] = velocity;
czndvel~datatime] = cmdvelocity;
brakedata[datatiine] =-accel brake;
timedata[datatimel systemclock -starttixne;

if (condition == CruiseNavSteer condition == AUTOPILOT
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condition == CruiseDrSteer)

{s ~aaie sb~tpon]
est_iodatatime] = ksuboistopcounti;

else

f
est -irdatatimel = 0.0;
estfqdatatimej = 0.0;

+ +datatime;

else starttixne = times(&mytime);

swapbufferso;

close(car);
/ * writes data to a file ~

savedata(data. datatime. brakedata, timedata, crudvel);
color(BLACK):.
clearo;

* swapbufferso;
* .Clearo);

swapbufferso;
finisho;
gexito;

filename: CRUISE.C
author: Michael J. Dolezal
date: May 20. 1987

#include "const.h"
#include "vars.ext.h"
#include <math.h>

cruisecontrol(systexnclock, a max, lightcolor)
int systeinclock, lightcolor;
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II

float amax; :
{
float temp;

switch(vision[eye] [OBJECT])
{
case SPEEDLIMIT:

if ((distance % LAPDIST) >= vision(eye][LOCATION]){
cruisevelocity = vision[eye][SPEED];
lastremembered = vision[eye] [SPEED];
if (eye < numsights) eye = eye + 1;}

else cruisevelocity = lastremembered;
break;

case STOPSIGN:
PLANNED DIST = vision[eye](LOCATION] - distance;
if (PLANNEDDIST > 0)

{
temp = 2 * a max * PLANNED DIST:
PLANNED VELOCITY = 3.6 * (sqrt(temp)):

else PLANNED VELOCITY = 0.0;
if (velocity > PLANNED VELOCITY) stopping = TRUE;
if (velocity == 0.0) clearintersection(systemclock);
else if (stopping) stopcaro;
break;

case SIGNALLIGHT:
PLANNED DIST = vision[eye][LOCATION) - distance;
if (PLANNED_DIST > 0)

{
temp = 2 * a max * PLANNED DIST;
PLANNED VELOCITY = 3.6 * (sqrt(temp));
}

else PLANNED VELOCITY = 0.0:
if (velocity > PLANNED VELOCITY) stopping TRUE;
if (stopping) signallight(lightcolor, systemclock):
break;

default:
break;

} /* end switch *1
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filename: BRAKE.C
author: Michael J. Dolezal
date: May 20, 1987

#include "vars.ext.h"

stopcar0

{
float pervel, perdist, temp, templ;
float VELOCITY GAIN FACTOR;
float POSITION GAIN FACTOR;
float ALPHA = 0.60;

VELOCITY GAIN FACTOR = 4.289;
POSITION _G3AIN FACTOR = 4.840;

Used to calibrate system
ksubi[stopcount] = 1.0;
ksubfgstopcount] = 1.0;
ksube[cyclecount] = 0.0;
ksubn[cyclecount] = 0.0;,/

/* what does the driver perceive */
perdist = (ksubi[stopcount + ksube[cyclecount]) * (PLANNEDDIST);

pervel (ksubflstopcount ] + ksubn[cyclecount]) * velocity;

if (PLANNEDDIST < 0) PLANNEDDIST = 0;

accel-brake = (int)(-(POSITION GAIN-FACTOR* (PLANNEDDIST-perdist)) +
(VELOCITY GAIN FACTOR *
(PLANNED_-VELOCITY - pervel)) - ALPHA * ON);

cruisevelocity = 0;
if (accel-brake > 0) accel-brake = 0;
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if (accel -brake < -200) accel-brake =-200;

+ +cyclecount;

temp =ksubilstopcount) + ksube[cyclecount - 1];
tempi ksubflstopcountj + ksubn~cyclecount - 11;

filename: SIGNAL.C
author: Michael J. Dolezal
date: May 20, 1987

#include "vars.ext.h"

signallight(lightcolor. systemclock)

int lightcolor, systemclock;

switch (lightcolor)

case GREENLIGHT:

brakeposition =OFF;

accel-brake = OFF;
cruisevelocity = lastrernembered;
if (eye <z nurnsights) eye eye + 1;
firstcall =TRUE;

stopping =FALSE;

+ +stopcount;
cyclecount = 0;
break:

case YELLOWLIGHT

stopcarO;
break;

case REDLIGHT

stopcarO;

114



break;

}a

filename: CLEAR.C
author: Michael J. Dolezal
date: May 20, 1987

#include "vars.ext.h"

clearintersection (systemclock)
int systemclock;

if (firstcall)

savedtime = systemclock;
firstcall = FALSE;

else if (systemclock - savedtime > 120){ I.,

brakeposition = OFF;
accel brake = OFF;
firstcall = TRUE;
stopping = FALSE;
if (eye < numsights) eye = eye + 1;
cruisevelocity = lastremembered;
++stopcount;
cyclecount = 0;
}

* * * **** *** * ** *** * ** * *** ****** * * ** ******** **** *c

filename: MAPVIEW.C
author: Michael J. Dolezal
date: May 20, 1987
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#include "gL.h"
#include "vars.ext.h"
#include "stdio.h"
#include "const.h"
makethemapview (mapobj)
Object *mapobj;

{
int i; /* loop control *1

mapcolor(DIMGREEN, 0, 110, 0);
mapcolor(DIMYELLOW, 170, 170, 0);
mapcolor(DIMRED. 110, 0, 0);
mapcolor(LIGHTBLUE, 0, 255, 255);

*mapobj = genobj0;

makeobj(*mapobj);

pushmatrixO; /* save the stack *1
pushviewport); /* save the viewpoet */
viewport(0, 767, 0, 767); /* reset the viewport */

/* coordinate system set to match the
coordinates fo the road. */

ortho2(-108.0, 660.0, -184.0, 584.0);
/* fill the background */

color(LIGHTBLUE);
rectf(-108.0, -184.0, 660.0, 584.0);
color(BLACK);

/* Draw the straight roadlengths */

color(BLACK);
rectf(-12.0, 0.0, 4.0, 400.0); /* Length #1 *I
rectf(76.0, 472.0, 476.0, 488.0); /* Length #2 */
rectf(548.0. 0.0, 564.0, 400.0); /* Length #3 */
rectf(72.0. -88.0, 476.0, -72.0); /* Length #4 *1

/ Draw the corners *
color(BLACK);
arcfi(76, 400, 88, 900, 1800); /* Draw first arc
color(LIGHTBLUE);
arcfi(76, 400, 71, 900, 1800); /* Backfill the offroad area */

color(BLACK);
arcf(476.0, 400.0, 88.0, 0, 900); /* Draw second arc */
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color(LIGHTBLUE);
arcf(476.0, 400.0, 71.0, 0, 900); /* Backfill the offroad area

color(BLAC K);
arcf(476.0, 0.0, 88.0, 2700, 0); /* Draw third arc
color(LIGHTBLUE);
arcf(476.0, 0.0, 71.0, 2700, 0); /* Backfill the offroad area

color(BLACK);
sarcf(76.0, 0.0, 88.0, 1800, 2700); /* Draw fourth arc *
color(LIGHTBLUE);
arcf(76.0, 0.0, 71.0, 1800, 2700); /* Backfill the offroad area

color(BLACK);
rectf(-50.0, 92.0, 595.0, 108.0); /* draw the first crossroad ~ ~
rectf(-50.0, 292.0, 595.0, 308.0); 1* draw the second crossroad ~

cmov2i(16, 5); 1* mark the start *
charstr("START");

stopsign(32.0, 113.0, 1); /*add the stopsigns *
stopsign(519.0, 113.0, 3);
stopsign(519.0, 316.0, 2);

color(BLACK); /* make a signallight *
rectfi(12, 314, 43, 394);

redlighttag = gentagO;
rnaketag(redlighttag):
color(DIMRED);
circfl(27, 378, 10);

yellowlighttag =gentagO;
maketag(yellowlighttag);
color(DIMYELLOW);
circfi(27. 353, 10);

greenlighttag = gentagO;
inaketag(greenlighttag);
color(DIMGREEN);
circfi(2'4, 328, 10);

/mark the car with crosshair ~
color( WHITE);
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linewidth(2);
cartag = gentag();
maketag(cartag);
move2(0.0,0.0);
draw2(0.0, 0.0);
move2(0 .0 ,0.0);
draw2(0.0, 0.0);
linewidth(1);

/* display the system time ~
cmnov2i(-50, 560);
color(RED);
timetag = gentagO.;
maketag( timetag);
charstr("

/* indicate if recording data ~
cmov2i(250. 560);,
testtag = gentagO;
maketag(testtag);
charstr(" "):

/return the state of the machine. *
popviewport 0;
popmatrixo;
closeobj 0;

stopsign 0

stopsign(xpos, ypos, num)
float xpos, ypos;
mnt num;
I
char tempstr[5];
Coord verticejloj 121:

float width =42.0;

float temp =5 *width/24;

float teinpi 7 *width/24;

vertice[0][0] =XPOS;

vertice[0][i] ypos;
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vertice[11[01 = xpos + temp;
verticelill = ypos,

vertice[2]f01 = xpos + width/2;
vertice211 = ypos + tempi;

vertice[3J [01 = xpos + width/2;
vertice[3] [1] tempi + (2 * temp) + ypos;

vertice4][Oj = xpos + temnp;
vertice[41I1 = ypos + width;

vertices[OJ[0 xpos - temnp;
verticef 5]11 = ypos + width;

vertice[61[0J = xpos - width/2;
vertice[61[1] = tempi + (2 * temp) + ypos;

vertce[7J [01 = xpos - width/2;
verticef71[1] = tempi + ypos;

vertice[8 (01 = xpos - temp;
verticeI811iJ = Ypos;

1* fill the sign in red *
color(RED);
polf2(9, vertice);

/ * outline the sign ~
color( WHITE);
poly2(9, vertice);

/* put stop on the sign ~
cmov2(xpos - 16, ypos, + 16);
charstr(" STOP");

color(BLACK);
cmov2(xpos - 3.0, ypos + width + 5.0);
sprintf(texnpstr. " 'cd", nuin);
charstr(tempstr);

filename: GAUGES.C



author: Michael J. Dolezal
date: May 20, 1987

#include "const.h"
#include "vars.ext.h"

makethegauges (gauges)
Object * gauges;

f
* gauges = genobj();

makeobj ( *gauges);

pushmatrixo;
pushviewport 0;

viewport(768. 1023. 0. 767);
ortho2(0.0, 255.0. 0.0, 767.0);

/* fill the backcolor ~
color( WHITE);
rectf(O.O, 0.0, 255.0, 767.0);

1label the gauge *
color(BLACK);
cmov2i(32, 730);
charstr(" COMMAND");
cmov2i(159, 730);
charstr ("VEHICLE");
cmov2i(40, 714);
charstr ("SPEED");
cmov2i(155, 714);
charstr("'VELOCITY");

/* draw the command speed gauge7
color(GREEN):
cmdvelocitytag = gentago;
maketag (cmdvelocitytag);
rectfi(CMDX, CMDY, CMDX + 50, CMDY);
scalegauge(CMDX, CMDY);

colo(GREN); / * draw the car velocity gauge

carvelocitytag =gentagQ;
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znaketag(carvelocitytag);
rectfi(CARVELX, CARVELY, CARVELX + 50, CARVELY);
scalegauge( CARVELX, CARVELY);

/* draw the brake pressure gauge /
color(BLACK);
cmov2i(41, 470);
charstr ("BRAKE");
cmov2i(28, 454);
charstr( "PRESSURE");

color(RED);
brakepositiontag = gentagO;
rnaketag(brakepositiontag);
rectfi(BRAKEX, BRAKEY, BRAKEX + 50, BRAKEY);
scalegauge(BRAKEX, BRAKEY);

colo(BLAK); /* draw the distance indicator ~

cmov2i(177, 470);
charstr("LAP");
cmov2i(155, 454);
charstr(" DISTANCE");

/~outline the box ~
* linewidth( 2);

recti(LAPX, LAPY, LAPX + 80, LAPY + 60);
linewidth( 1);

crnov2i(LAPX + 35, LAPY + 35);
laptag =gentagO;
maketag(laptag);
charstr("1");

cmov2i(LAPX + 9, LAPY + 16);
thoutag = gentagO;
malcetag (thoutag):
charstr("0"):

cmo'v2i(LAPX + 27, LAPY + 16);
hundredtag = gentag();
rnaketag(hundredtag);
charstr( "0"):

crnov2i(LAPX + 45, LAPY + 16);
tentag =gentago;
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malcetag(tentag);
charstr("O");

cmov2i(LAPX + 63, LAPY + 16);
unittag = gentagQ;
maketag(unittag);
charstr("O");

/ * set up the mode indicator /
cmov2i(LAPX -8, LAPY - 40);
charstr( "Mode:")
color(RED);
modeinserttag =gentagO;

maketag(modeinserttag);
charstr("D");

cmov2i(LAPX - 26, LAPY -56);

color(RED);
modetag = gentagO;
maketag(modetag):
charstr( "Driver Manual");
cmov2i(LAPX - 26, LAPY -72);

charstr("No Nay Cont");

color (BLACK);
1* Display help information ~

cxnov2i(168, 290);
charstr("MOUSE");

emov2i(155, 274);
charstr( "Steering");

cmov2i(155, 239);
charstr ("Brakes");

/' draw a direction arrow for left/right and up/down ~
]inewidth(2):
niove2i(155, 261);
draw2i(225. 261):

move2i(165, 266);
draw2i(155, 261);

move2i(165, 256);
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draw2i(155, 261);

uiove2i(215, 266);
draw2i(225, 261);

move2i(215, 256);
draw2i(225, 261),

move2i(225, 250);
draw2i(225. 205);

move2i(220, 215);
dlraw2i(225, 205);

move2i(230, 215);
draw2i(225, 205);

move2i(220, 240);
draw2i(225, 250);

znove2i(230, 240);
draw2i(225, 250);

linewidth(1):

cmov2i(65, 214);
charstr("KEYBD CONTROLS");

cmov2i(30, 194);
charstr("Q: AutoPilot");

cznov2i(30, 174);
charstr("C: Cruise. Dr Steer");

cxnov2i(30. 154):
charstr("R: Cruise, Nay Steer");

cmov2i(30, 134);
charstr("S: AutoSt, Dr Speed");

cxnov2i(3O, 114),,

charstr("A: AutoSt, Nay Speed");
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cmov2i(30, 94);
charstr("D: Driver Control");

cmov2i(30. 74);
charstr("W: Nay Control");

cmov2i(30, 54);
charstr("X: Dr Steer, Nay Sp");

cmov2i(30, 34);
charstr("F: Nay Steer, Dr Sp");

cmov2i(30. 14);
charstr("E: Exit");

popviewportO;
popmatrixo;
c loseobj:

sci~legaugeO;

scalegauge(basex, basey)
int basex, basey;
f
char tempstr[l01;
int i;

1*outline the gauge *
linewidth(2);
color(BLACK);
recti(basex. basey. basex + 50, basey + 200);
linewidth( 1):

/ * calibrate the gauge >
for (i = 10: i -- 100: i = i 10)

f
move2i(basex, basey + 2 *)

draw2i(basex + 13, basey + 2 *)

move2i(basex + 37, basey + 2 *)

draw2i(basex + 50, basey + 2 i)
cinov2i(basex + 16, basey + (2 *i) - 4);
sprintf(tempstr, "%d", i);
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charstr(tempstr);

} p'scalegauge()*

filename: MOUSE.C
author: Michael J. Dolezal
date: May 20, 1987

#include t"consth"
#include "vars.ext.h"

I.

mousespeedinput (cindvelocity, distance, eye, numsights, lastremembered,
brakeposition, accel brake)

int * crdvelocity. * distance, * eye, * nuisights, * lastrernembered,
*brakeposition. 'accel-brake:

if (getbutton (MOUSE 1))

*cmdvelocity = *cmdvelocity + SPEEDINC;

if (* czdvelocity > 100)

* cmdvelocity = 100;

if (getbutton(MOUSE2)) /* decrease speed ~

*cmdvelocity = *cmdvelocity - SPEEDING;
if (*crndvelocity < 0) *cmdvelocity = 0;

if (1 'istance %7 LAPDIST -, vision[ *eye] (LOCATION])

if (vision[ -eye] [OBJECT] ==SPEEDLIMIT)
*lastreniexbered =vision[ *eye] [SPEED];

if (*eye < * nuinsights) *eye = *eye + 1;

* brakeposition = (getvaluator(MOUSEY) )/2;
if (*brakeposition < 0) *brakeposition =0;

* accel brake - ( *brakeposition);
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filename: NETV.C
author: James Manley
modified by: Michael Zyda
date: April 29, 1987

******* **** ********************** ***** ******* **

1*

This is file netV.c
as modified by M. Zyda, 29 April 1987

This segment, when linked into a program on a computer with a UNIX 4.2 BSD
operating system, will allow the program to communicate with programs
executing on other computer systems over an Internet network.

*1

#define TRUE 1

/* include files for UNIX 4.2 BSD *1

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <bsd/netdb.h>

/** *** *** * ********************* *** *** ***********

The connect server(remoteclient-name, portnumber) function performs
the actions required to connect a server system to a remote client system

int connect _server(remote client name, port-number)

/* name and port number of the remote client system /

char remote client name[];
int portnumber;
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/* pointer to the remote client system's name /

char * ptrclient name;

/* local socket number */

int local server socket;

/* function that opens a socket */

iat socketo;

/* function that accepts a connection from a remote client

socket *1

bat acceptO;

/* socket number of the remote client system /

int remote client socket;

/* protocol and address data structure specified for the

socket */

static struct sockaddr in address = { AFINET };

/* address of the remote client system /

long remote client address:
/* port number of the remote client system */

short remote client port;

/* size of the address data structure of the remote client
system 7

int address size;
/* begin the process of attempting to connect to the

remote client system */

/* get a pointer to the remote client system's name /

ptrclient name = &remote _clientname[0];
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/* convert the remote client system name to its address 1

remote client address = (long)gethostbyname(&-ptr client name):

/* initialize the remote client port number above the

system reserved ports * /

remote clientport = IPPORTRESERVED + 1:

/* add the remote client port number to the number of

reserved ports */

remoteclient-port = remoteclientport + portnumber:

/* initialize the remote client socket number to an
invalid value */

remote client socket = -1:
/* remote client system address family (Internet in this

case) */

address.sin family = AFINET

/* place the remote client port number into the address

data structure */

address.sin-port = remoteclient-port;

/* put the port number in network byte order /

address.sin port - htons(address.sinport);

/* place the remote client system's address in the address
data structure */

address.sin addr.s addr = remote client -address:

/* find number of bytes in the remote client address */

address-size = sizeof(remote client address):

/* attempt to open a local socket /
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local server socket = socket(AF _INET,SOCKSTREAM,O);
if(local server socket < 0)

{

/ the server couldn't open a local socket */

perror("Server couldn't open a local socket:");}
else
{
if(bind (local _server socket, (caddr t) &address,

sizeof(address)) < 0)
{ -
perror("Server couldn't bind address to local socket: ");

/* set the maximum number of remote client systems to

be connected to */

listen(local serversocket,5);
printf("Server waiting to connect to %s\n".remote client name);

/* attempt to accept a connection *1

remote client socket = accept(localserversocket, &address,
&address-size);

if (remote client socket < 0) 0{-_

an error occurred in the server attempting to
accept a connection from remote client system */ .4

perror("Server couldn't accept a connection
from the remote client system.'");

close(local server_ socket):

} /* end else local server socket >= 0 */
/* return the socket number of the remote client system */

return(rernote client socket),

} /* end of function connect server() */
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The connect client(remote server name portnumber) function performs
all the actions required to connect a client system to a remote server
system

int connect client(remote-servername, portnumber)

/* name and port number of the remote server system */

char remote server name(];
int portnumber;

/* pointer to the name of the remote server system *_

char *ptr server name;

/* local socket number */

int local client socket;

/* function that opens a socket */

int socketo;

/* function that connects local socket to remote server

socket */

int connectO:

/" the socket number on the remote server system */

int remote server_socket;

/* the protocol and address data structure specified for
the socket */

static struct sockaddr in address { AFINET };
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/* address of the remote server system */

struct hostent *remote server address:

/* port number of remote system /

short remote server port;

/* begin the process of attempting to connect to the
remote server system */

1* establish ptr to the remote server name /

ptr server name = &remote-server name[O];
1* convert the name of the remote server system to an

address * /
remote server address = gethostbyname(ptr server name):

/ * clear out the address structure /
'4

bzero((char *)&address, sizeof(address));

/ * copy the remote server address structure into the

address structure */

bcopy(remoteserveraddress->h addr,

(char *)&address*sinaddr,

remote serveraddress- > h length):

/* initialize remote server port number above the system

reserved ports */

remote server port = IPPORT RESERVED + 1:

/* add the user's remote server port number to the number
of reserved ports */

remote server port = remote server-port + portnumber;

/* remote server system address family(Internet in this

case) */

181

up

p ' :.;- 'C,."-° 4" S- . .. ' ,. . . . .- . . . - " -. . . . ..



address.sinfamily = AFINET;

/* place the remote server port number into the address
structure '7

address.sinport = remote-serverport;

/* put the port number in network byte order */

address.sinport = htons(address.sin port);

/* attempt to obtain a local socket */

localclient socket = socket(AFINET, SOCKSTREAM, 0);

if(localclientsocket < 0)
{

/* the client couldn't open a local socket */

perror("Client couldn't open a local socket: ");

}
else

{d

/* place Internet address family type in address
structure * /

address.sin family = AF INET:

/* attempt to connect local client socket to remote

server socket */

remote server socket =

connect (local _client socket. (caddr t) &address,

sizeof(address));

if(remote server socket < 0)
{

/ an error occurred in attempting to connect to
the remote server socket */

132



perror("Client couldn't connect to the remote server socket: ");
close (local -client -socket);

else

I* successfully connected to the remote server

system *1

printf(" Connection established with %s.\n",remote server name);

} "

} /* end else socket >= 0*/

1* return the socket number of the local client system */

return(local client socket);

} /* end of funcition connect client() */

function writeimmediate(socketnumber,buffer,nbytes) writes to the
network connection by forking a child process which actually performs the
write operation.

int write _immediate(socket number, buffer, nbytes)
/* socket number to be written '7

int socket-number;

/* buffer of bytes to be written */

char buffer[l;

/* the number of bytes to be written */

long nbytes;
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/* function which initiates a child process */

int forko;

/* value returned from routine fork() ki

int forkval;
/* initiate a child process which will perform the write

operation */

forkval = fork(;

/* determine whether a child process was successfully

started *1

if(forkval == 0)

{

/* attempt to perform the write operation */

while(write(socket_ number,buffer,nbytes) '.= nbytes)
{

I* attempt to write the buffer contents */

/* terminate the child process after the buffer is
successfully written */

exit(');
I

else
/* an error occurred in starting the child process

{
perror("Error occurred while attempting

to fork a write-immediate process: ");

/* return an error value to the application */

return(-1);

1
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/* return a value indicating successful operation */

return(forkval);

} /* end of write__immediate() function /

filename: CHECKKEY.C
author: Michael J. Dolezal
date: May 20, 1987

**~****~**,******************~* ****** ********

#include "const.h"
Oinclude "device.h"
#include "vars.ext.h"

checkkeybd(ptnotdone. ptrecorddata. ptmode, ptcondition.
ptstopcount, velocity)

Boolean *ptnotdone, *ptrecorddata;
int *ptmode, *ptcondition, *ptstopcount;
float velocity;{

keypressed = NULL;

*ptmode = *ptcondition:

if (qtest0)

f
qread(&keypressed);

switch (keypressed)
{
case 'q':
case 'Q': if (velocity > 3.0){

*ptmode = AUTOPILOT;
}

break;
/* Cruise cont and driver steer */
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case 'CV:

case 'C': if (*ptmode == ASteerNSp 11 *ptmode ASteerDrSp)
{
*ptmode = AUTOPILOT:
}
else *ptmode = CruiseDrSteer:

break;

/* Cruise cont and remote steer 7
case Y:
case 'R': if (*ptmode == ASteerNSp 11 *ptmode == ASteerDrSp)

{
*ptmode AUTOPILOT;
}
else *ptmode = CruiseNavSteer;

break;

/* Auto speed and driver speed */

case s':
case 'S': if (velocity > 3.0)

{
if (*ptmode -- CruiseNavSteer fl

*ptmode == CruiseDrSteer)

{
*ptmode = AUTOPILOT;

, }

else *ptmode = ASteerDrSp;
}

break:

/* Auto speed and remote steer */
case a:
case 'A': if (velocity > 3.0)

{
if (*ptmode CruiseNavSteer

'ptmode CruiseDrSteer)
{
*ptmode = AUTOPILOT;
}

else *ptmode ASteerNSp;
}

break;
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/*All remote manual control*/
case 'w'
case 'W: *ptmode NayManual;

break;
case W
case 'D': *ptmode =DrManual;

break;

case Y
case 'X: *ptmode = DrSteerNavSp;

break;

case T
case 'F': *ptmode = NavSteerDrSp;

break;

case 'e:
case 'E': *ptnotdone = FALSE;

break;

case Y
case 'T': if (*ptrecorddata) *ptrecorddata =FALSE;

else *ptrecorddata =TRUE;

break;

*ptcondition =*ptmode;

} *checkkeybd ~

filename: SAVEDATA.C
author: Michael J. Dolezal
date: May 20, 1987

#include '1vars.ext.h"
#include "stdio.h"
# include "const.h"

savedata(data, datatime, brakedata, timedata,cmdvel)
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float dat a[] [2];
int datatiine;
int brakedatall;
int timedata[];
int cmdveli];
f
FILE *fopeno, *fp;
int i;
fp = fopen("ltest", "w");

for (i = 0; i < datatime; ++i)

fprintf(fp, "%d %d %.3f %.3f %d %d %.3f %.3f\n", i, crndvel[i],
data~iJ (DISTANCE],
data[i] [VELOCITY], brakedata[i]. timedatai], est i ji],
estfji]);

close (fp);

filename: GENERATE.C
author: Michael J. Dolezal
date: May 20, 1987

4include "vars.ext.h"
# include "const.h"

float gaussiangenerator()
f
float temp;
int i;
long float randomnuns121:
long float drand48O);
long float sum = 0.0;
for (i = 0; i <= 11; +±i)

randomnums[i] = (0.2 *drand48O) - 0.1;
sum =sum + randomnums[i];
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temp = (sum/2.00) + 1.0:
return(temp);
}

filename: LOADINTARRAY.C
author: Michael J. Dolezal
date: May 20. 1987

#include "vars.ext.h"

loadintarray()
{

if ((fp = fopen("vision.h","r")) ==NULL)

{
printf("Cannot see into vision.h.");
return(-1);
}

else
{
for (eye = 0: !feof(fp); ++eye)

{
fscanf(fp, "%d %d %d", &vision[eye][LOCATION].

&vision [eye] [OBJECT], &vision [eye] [SPEED]);
if (eye == 99)

{
printf("Vision array is full, increase size please.,n"):
break;
}

}
}

nurusights = --eye; /* number of items in vision file 7
eye = 0:

}

filename: WELCOME.C
author: Michael J. Dolezal

date: May 20, 1987
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#include "const.h"
#include "vars.ext.h"

static int parray[4][2] {{275,600}.{250.625},{275.625} ,{30.600 l
static int parrayl[4121 = {275,475},{250,500} ,{275,500},{300,475} };

WELCOME D ISP LA Y

welcoxne(

color(YELLOW);
clearo;

color(BLCE);

rectfi(200,625,300,700);
rectfi (200,600,225,625);
polf'2i(4,parray);

rectfi(325,600,425,700);
rectfi (450,600,550,700);
rectfi(575,600,675,700);
polf2i(4,parrayl);

rectfi (200,47 5,225,500);
rectfi(200,500,300,5 75);
rectfi (325,4 75,425,575);
rectfi(450,475,550,500);

* rectfi (450,500.4 75.5 75);
rectfi (575,4 75.6 75.500);
rec tfi (5 75,500,600,5 75);
rectfi (700,525,800,5 75);
rectfi (7 37,4 75,762,525);

color(YELLOW)-,

rectfi (225,650,2 75,675);
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rectfi(350,625,400,675);
rectfi(475,600525.625);
rectfi(475,650,525,675);
rectfi(575,625,600,675);
rectfi(625,625,650,675);
rectfi(225,525,275,550);
rectfi (350,525,400,550);
rectfi(350,475,400,500);
rectfi(725,550,775,575);

color(MAGENTA);

cmov2i(200,350);
charstr("Welcome to the world of ROAD RALLY, a simulation");

cmov2i(200,325):
charstr("of a car on a road controlled by a remote driver");
cmov2i(200,300);
charstr("(a control program executing on another processor).");

cmov2i(200,275);
charstr("To exit the program press all three mouse buttons");

cmov2i(200,250);
charstr("at the same time. Files are now loading and the");
cmov2i(200,225);
charstr("demonstration will begin shortly. ");

linewidth(5) :
cmov2i (200,150):
charstr("Car simulation by: Tan Chiam Huat and Mike Whiting");
cmov2i(200, 125);
charstr("Driver simulation and networking by: Mike Dolezal"):
linewidth (1);
swapbufferso);

} /* welcome */

filename: CONST.H
author: Michael J. Dolezal
date: May 20, 1987
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# l*. an* * S***********.****'*-* *****

#include "gl.h"
#include "device.h"

#include "stdio.h"
/* defines the light conditions */

#define REDLIGHT 1
#define YELLOWLIGHT 2
#define GREENLIGHT 3

/* used to define braking conditions */
#define OFF 0
#define ON 200
#define SPEEDLIMIT 4
#define STOPSIGN 5
#define SIGNALLIGHT 6
#define LOCATION 0
#define OBJECT 1
#define SPEED 2
#define MPS TO KMPH 3.6
#define DIMGREEN 9
#define DIMYELLOW 10
#define DIMRED 11
#define LIGHTBLUE 12

/* next 6 constants are for locating guages *1
#define BRAKEX 39
#define BRAKEY 250
#define CARVELX 166
#define CARVELY 510
#define CMDX 39
#define CMDY 510
#define LAPX 150
#define LAPY 390
#define DISTANCE 0
#define VELOCITY 1
#define SPEEDINC I
#define LAPDIST 2074
#define DrManual 0
#define ASteerNSp 1
#define CruiseNavSteer 2
#define AUTOPILOT 3
#define CruiseDrSteer 4
#define ASteerDrSp 5
#define NavManual 6
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#define DrSteerNavSp 7
define NavsteerDrSp 8

filename: VARS.H
author: Michael J. Dolezal
date: May 20, 1987

4include "stdio.h"

mt cmdvelocity 0: /* commanded vehicle velocity /
mt cruisevelocity = 0: /* velocity read from vision file /
mt distance: / distance the car has traveled
mt vision[100J[3]: /* 2-D array to hold vision file */
mt eye = 0: /* loop counter and elements in vision /
mt numsights:
mt lastremembered = 10; / the driver remembers his last assigned

speed */
int numpoints, /4 number of points in roadmap */
int stopcount, cyclecount; /* control variables for arrays holding

random numbers */

mt brakeposition = OFF;
nt accel brake 0; /* acceleration due to braking */
mt savedtime = 0;
int brakedata[30001; /* stores test data */
mt PLANNED DIST:
mt cmdvel[1000]:

Boolean stopping = FALSE:

Boolean firstcall - TRUE:
float velocity 0.0: velocitv of the car /
float brakingdist:
float PLANNED VELOCITY:
float cx = 0.0: /* car's x coordinate /
float cy = 0.0; 1* car's y coordinate */
float data[3000][21; /* array to store data */
float est i[3000]; /* holds ksubi */
float estq30001; /' holds ksubf /
float ksubi 101, ksubf[l1O. ksube[1501, ksubn[1501:
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FILE *fopeno, *fp;

Tag cartag, greenlighttag, yellowlighttag, redlighttag;
Tag cmdvelocitytag, carvelocitytag. brakepositiontag;
Tag laptag, modetag, unittag, tentag, hundredtag, thoutag:
Tag modeinserttag, timetag, testtag:

Object mapobj, gauges;

Device keypressed;

filename: VARS.EXT.H
author: Michael J. Dolezal
date: May 20, 1987

#include "gl.h"
* include "const.h"
*include "stdio.h"

extern mt cmdvelocity; /* commanded vehicle velocity */

extern nt cruisevelocity; /* read from vision file */

extern mt distance; /* distance the car has traveled */
extern nt vision[100][31; /* 2-D array to hold vision file */
extern mt eye, numsights; /* loop counter and elements in vision */

extern mt lastremembered; /* the driver remembers his last assigned
speed /

extern int numpoints: /* number of points in roadmap /
extern int stopcount, cyclecount; / control variables for the random

number arrays */
extern int brakeposition;
extern int accel brake;
extern int savedtime:
oxtern int brakedatal3)00): -stores rest data
extern int PLANNED DIST:

extern Boolean stopping;

extern Boolean firstcall:

extern float velocity; /* velocity of the car 4/
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extern float brakingdist;
extern float PLANNED VELOCITY; .4

extern float ksubi[10], ksubf10], ksube[150] , ksubn[150];
extern float data[3000] [2];
extern float esti[3000];
extern float estf3000];

extern FILE *fopeno, *fp;

extern Tag cartag, greenlighttag, yellowlighttag, redlighttag; J'

extern Tag cmdvelocitytag, carvelocitytag, brakepositiontag;

extern Tag laptag, modetag, unittag, tentag, hundredtag, thoutag;
extern Tag modeinserttag, timetag, testtag;

extern Device keypressed; .,

'-N

filename: VISION.H
author: Michael J. Dolezal .4

date: May 20, 1987

************** ********** ******** ********,
I

4 4 95

40 4 52
292 6 0
300 4 75 '
1135 5 0

1136 4 65
1239 4 50

133150 
1340 4 55

filename: MAKEFILE
author: Michael J. Dolezal
date: May 20, 1987

FLAGS = -g
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SRCS = navigator-c\
clear.c \
welcome.c\
generate .c\
cruisexc
mouse.c\
checkkey.c \
savedata.c \
loadarray .c\
mapview.c\
gauges.c\
brake.c\
signal.c\
net V.c

OBJS = navigator.o\
clear.o\
welcome .o\
generate.o\
cruise.o\
xnouse.o\
checkkey .o\
savedata.o\
load array .o\
mapview.o\
gauges .o\
signal.o\
brake.o\
netV.o

nay: (O.BJS)ce -o nat' (OBJS) -Zf -Zg -lm -g -lbsd -ldbxn
(OBJS) : orzst.h .ps 12
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APPENDIX B

SOURCE CODE FOR THE DRIVER'S DISPLAY

/** **** **** *** ****** ** **** *********** ******* ** *

filename: CARSIMU.C
author: Tan Chiam Huat
modified by: Michael J. Dolezal
date: May 20, 1987

:***************~** *************~*** ***** ** /

This is the main program of the entire vehicle simulation
program(original by Tan Chiam Huat. modified by Mike Dolezal).
To recompile this program just issue the command "make".
This program allows a user on an IRIS workstation to send
data to and receive control information from another user
on the UNIX1 VAX.

#include "const.h"
#include "vars.h"

#include "stdio.h"
4include "errno.h"
4include "svs/signal.h"

maino

L O C A L D E C L A R A T I O N S

..

int mousex, cal mousex;
int cmdbrakeposition = OFF; /* brake info networked from controller 0/
int remotedriver = 0; /* decoded steering signal */
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mt prey mousex = 250;
int prevremotedriver 250: / previous input from remote driver
mt sampling interval - 1;

mt old-sampling-cycle - -1;
mt new sampling cycle:
int lightcolor = REDLIGHT; /* used to pass signallight to driver */
int cardriver; /* socket to the local client system /
int nbyte; /* read/write variable */
mt connect server(); /* function connecting car to the driver */

mt no coord;
mt where = 0:
mt counter = 0: /* counter for signal light timing */
mt lap = 0; /* lap counter for arctan function */
int i. count, unit, ten, hundred, thousand, no of round:
mt mode 0; /* current operating mode */
mt status = 0:
mt condition = 0: /P current operating mode */
mt brakeposition = 0:
int accel brake = 0: /P acceleration due to braking 7
int command = 0; /P received from driver /

/* temp vars to minimize function calls */

int statussize, cxsize, czsize, distancesize, commandsize,
controlsize, velocitysize, carstatsize;

long carstat - ; /* used to send the velocity and the

brakeposition to the recorder */
long controlsignal = 0; /* steering and brake info received from

controller */
float cmdspeed = 0.0:
float prediction distance:
float tolerance - 1.0;
float old _sigma - 0.4:

/ * used to correct discontinous arctangent */
float lastsigma - 0.0:
float temp. tempi. tempvel:
float gx. gy. gz:

char thousandc[2], hundredc[2. tenc[21. unitc[21:
char timec[lO; / Car time in char format */

extern long time(; / System clock 7
long clocktime; , For clock value /
char *clockc;
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Boolean alarm = FALSE; /* Off road warning flag /

Boolean debug = FALSE; /* Turn off debug info */
Boolean notdone = TRUE; / Controls program termination 7

Dimension consumption = 1.0; /* Fuel consumption '/
Dimension crashdown = 0.0; /* Off-road display flag */
Dimension fueldown = 0.0; /* Fuel depleted display flag */

Dimension headingdeg = 0.0; /* Heading in degrees */
Dimension headingrad = 0.0; /* Heading in radians /
Dimension rdistance = 0.0; /* Distance travelled */
Dimension vd = 100.0; /* Viewing distance */

/* Signal Light Setup */
Dimension timegreen = 0.5;
Dimension timeyellow = 1;
Dimension timered = 4;

Coord crashx = 512.0; /* X viewport coord to detect off-road */

Coord crashy = 385.0; /* Y viewport coord to detect off-road *
Coord warnxl = 212.0, /* X viewport coord to warn off-road '7
Coord warnx2 = 700.0; /* X viewport coord to warn off-road /
Coord warny = 385.0; /* Y viewport coord to warn off-road */

Colorindex colors[']; /* Array to store color of crash spot /

short nopixel = 1; /* No of pixel to detect off-road */

Coord cx, cy, cz; /* Current viewing point */

Coord rx, ry, rz; /* Reference point *1
Coord pz, px; /* Last viewing point */

Object terrainl, odometer, warning, heading meter;
Object speedometer, fuel, steerwheel;
Object signboard, sky. mountain;
Object road, help, gauges, arrow, house, housel;

SYSTEM INITIALIZATIONS

******** *****************************************~** ****

/* Open up the net path to npscs-unixl 7
cardriver = connect-server( npscs-irisl , 5);
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/"' Initial state vector of the automobile ~
state-vectorf 1] = 0.0; P* initial z coord ~
state vector[21 = 0.0; /* initial x coord ~
state vectorf3l = 0.0; 1* initial velocity ~
state -vector(4] = 0.0; /* initial heading ~
cx = 0.0;
cy = 3.0;
cz = 0.0;
rx = 0.0;
ry = 3.0;
rz = -vd;

1*complete function calls for read/writes *
statussize =sizeof(status);
cxsize = sizeof(cx);
czsize =sizeof(cz);
distancesize = sizeof(rdistance);
conimandsize = sizeof(cominand);
controlsize =sizeof(controlsignal);

velocitysize =sizeof(teinpvel);

carstatsize =sizeof(carstat);

count = 0;
unit = ten =hundred =thousand =0;

/* initialize signal lights ~
timegreen (timegreen *20);

tirneyellow =(timeyellow * 20) + timegreen;
timered = (timered * 20) + timeyellow;

1* initialize the workstation *
ginitO);
doublebuffero;
gconfigo;
cursoff (;
qdevice(KEYBD);
viewport(0, XMAXSCREEN, 0, YMAXSCREEN);
ortho2(0.0, 1023.0, 0.0, 767.0);
blink(10. CYAN, 255, 0, 0);
bbox2i(5. 5, 0. 1023, 0, 767);

/* Colors are further defined in const.h ~
mapcolor (MOUNTAIN, 199, 123, 63);
mapcolor(MOUNTAIN1, 210, 150, 0);
mapcolor(FIELD, 5, 190, 20);
mapcolor(SKY, 50, 8, 155);
mapcolor(WARN. 125, 0, 0);
mapcolor(CHMWALLI ,1 18,76,0);
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mapcolor(CHMWALL2,146,114,0);
mapcolor(WINDOW .0.141.205);
mapcolor (SIDEROOF,188,50,14);
mapcolor (FRAME,118,50,14);
mapcolor(WALL,164,111,O);
mapcolor(SIDEWALL,146,94 ,1);
mapcolor (ROOF, 148,50,14);
mapcolor(DIMGREEN.0, 110, 0); /* colors for signal light */
mapcolor(DIMYELLOW, 170, 170, 0);
mapcolor(DIMRED, 110, 0, 0);

mapcolor(GRAY. 165, 165,165);
mapcolor(ROOF1.100.100,100); /* Dark Grey

mapcolor(FRAME1,0,60,60); /* Light Grey */ C

mapcolor(SIDEWALL1,150,60,60); /* Light Grey *1
mapcolor(WALLl,160,60.60); /* Pink */
setvaluator(MOUSEX. 250, 0, 500); /* set the system- mouse 7
setvaluator(MOUSEY, -10, -10, 400);
noise(MOUSEX. 10);

MAKE ALL THE O B J E C T S

makethespeedometer(&speedometer);
makeheading(&heading meter): "%
makesteerwheel(&steerwheel);
maketheodometer (&odometer);
maketerrainl (&terrain 1):
makewarning (&warning);
maketheroad (&road);
makehouse 1 (&house 1);
makehouse(&house);
makethesky (&sky);
makegauges(&gauges);
makehelp (&help);
makefuel(&fuel);

/* Display the introductory image */
welcomeo;

/* Read the roadmap /

no coord = loadarrayo;
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/* Initialize the buffers ~
color(BLACK);
clearo;
swapbuffers Q
clearo;
swapbufferso;

M A IN S IM UL A TIO0N LOO 0P

while(TRUE)

f
nbyte = read(cardriver, &commnand, comnxandsize);
nbyte = read(cardriver, &controlsignal, controlsize);

remotedriver = controlsignal/OQO;
condition command/10OO;
cmdspeed =(command - (condition * i000))/MPS TO KMPH;

1*adjust velocity for acceleration due to braking,
time is one cycle */

state -vector[3] state -vector[3] + (BRAKEGAIN * accel-brake);
if (state -vector[31 < 0.0) state-vector[3] = 0.0;

/ * counter for signal light color ~
counter = counter 4-1:
new -sampling-cycle -count/ sampling _interval:
++Count;
pz = cz; px = cx;
clocktime = time((long *) 0);
clockc = ctirne(&clocktime);

/ * Sound alarm around 2m before off the road

cmov2(warnxl, warny);
readpixels(nopixel, colors);
if (colors~Ol ! BLACK && colors[0] != WHITE && colors[l ! YELLOW)

alarm =TRUE;

else alarm = FALSE;

if (!alarm)
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cmov2(warnx2, warny);
readpixels(nopixel, colors);
if (colorsJO0 ! BLACK && colors[O] != WHITE &

colors(0] !=YELLOW)

alarm =TRUE;

else alarm = FALSE;

1* Check if the vehicle is off the road
IMPT :Assume road surface is black
and surface signs are white or yellow centerline */

cmov2 (crashx, crashy);
readpixels(nopixel, colors);
if (colors[0J != BLACK && colorsfj1 != WHITE && colorsiol != YELLOW)

crashdown = -1000.0;

rz = - (vd*cos(state -vector4]) + state vector[1]);
rx = vd*sin(state-vector[4]) + state vector[21;

/ * prevent arctan from exploding by exceeding
small angle assumption when speed gets slow*/

if (state-vectorl3l < (10.0/MPSTOKMPH))

if ( o d to{~e r r p o d t o r a u l
if (condition ==ASteerNrSp) condition = DrManual;

if (condition ==AUTOPILOT) condition = CruiseDrSteer;

1*compute a new state for the vehicle statevectors. '

compute new state (condition);

cz = -state -vector['];
cx = state vector[21;

/* Check if keyboard pressed. ~
check keybd (&not done, &debug, &start, &mode, &condition);

/ * combine data to improve efficiency ~
status = (notdone * 100) + (lightcolor * 10) + mode;
tempvel = (state _vector[3J * MPSTOKMPH):

/send data to the navigator *
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nbyte = write(cardriver, &status, statussize);
nbyte = write(cardriver, &tempvel, velocitysize);

if (statevector[3] > 0)
{
predictiondistance = state vector[3] * prediction-time;/*

"where" is passed to findsubgoal so that searching

need not always start from the beginning of the road.
The z and y convention in the graphics system is reversed.
Also the sign is going in the opposite direction. So
compensate before passing into find-subgoal.
,/

where - find subgoal(no-coord, where, tolerance,
prediction distance, cx, -cz, px, -pz, 0.0);

}

switch (condition)

{
case ASteerDrSp: if (old-samplingcycle < new sampling-cycle)

{
old sampling cycle = new-samplingcycle;
if (where < 0)

, {
/* Stop completely and remove autopilot */

statevector[3] = 0.0;
speed = 0.0;
condition = DrManual;
}

else

{
gx = roadmap [where][0];
gy = roadmap[where][1];

gz = roadmap[where][21:

/* Convention difference: Z-axis in graphics is Y-axis in

mathematical model. Also Z-axis is negative when moving
into the screen which therefore must be converted to
positive for our calculation. 7

temp = -cz;

154



sigma = atan2((gx-cx),(gy-temp));
if (sigma -lastsigma <c - 3.5)

lap =I + (int)((lastsigma -sigma - PI)/(2 PI));
sigma = sigma + 2 * PI lap;
lastsigxna = sigma,

else

lastsigma = sigma;
I

sigma -dot = (sigma - old -sigma)/ deltat:
old-sigma = sigma;
if (getbutton(MOJSE 1))

if (speed < (98.0/MPS TO KMPH))

start =FALSE:

speed =speed + (speedinc/MPS TO KMPH);

I
else speed = 100.0/MPSTOKMPH; /* Top Speed ~

if (getbutton(MOUSE2)) /* decrease speed ~

speed = speed - speedinc;
if (speed < 0.0) speed = 0.0;

if (getbutton(MOUSE3)) /* decrease speed *

speed =0.0;

I
brakeposition = (getvaluator(MOUSEY) )/2;
if (brakeposition < 0) brakeposition = 0;
accel-brake =-brakeposition.

carstat = (brakeposition '1000) + (int)(speed):

nbyte =write (cardriver, &carstat. carstatsize);
break;

case AUTOPILOT:
case ASteerNSp: if (old-sampling-cycle < new -sampling -cycle)
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old -sampling -cycle = new -sampling -cycle;
if (where < 0)

/* Stop completely and remove autopilot ~

state vector31 =0.0;
speed = 0.0;
condition = DrManual;

else

gx =roadmap [where] l01;
gy = roadmap [where] [11;
gz =roadmap [where] [21;

/ * Convention difference: Z-axis in graphics is Y-axis in

mathematical model. Also Z-axis is negative when moving

into the screen which therefore must be converted to

positive for our calculation. ~

temp =-cz;

sigma =atan2((gx-cx),(gy-temp));

if (sigma -lastsigma < - 3.5)

lap I + (int)((lastsigrna -sigma - PI)/(2 *PI));

sigma = sigma + 2 * PI lap;
lastsigina = sigma;

lastsigma = sigma:

sigma dot = (sigma - old sigma)/deltat,
old -,ignia = Pia

accel brake =- (coiltroisigrial - rviiotcdriver 100X)))

break:
/* Nay speed and Driver's steering/

case DrSteerNavSp:
/* cruisecolt rol aii(I local -stevring

case (ruseDr~teer: niohlex getvaluatur(N1O1SEX)
cal mousex = tnousex -prev riioisex:
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steer wheel angle = steer wheel angle + (float) cal mousex/200: %
prevmousex = mousex: !
speed = cmdspeed; %
accel brake = -(controlsignal - (remotedriver * 1000));
start = FALSE;
break; %

/* steering and speed with local mouse
case DrManual: mousex = getvaluator(MOUSEX);

cal mousex = mousex - prev mousex;
steer wheel -angle = steer wheel _angle + (float) cal mousex/200;
prey mousex = mousex:
if (getbutton(MOUSEl))

if (,.peed < (98.0/MPS TO KMPH))
{ _
speed = speed + (speedinc/MPS TO K.MPH);-
} '
else speed = 100.0/MPS TO KMPH: / Top Speed '/

if (getbutton(MOUSE2)) /* decrease speed 7
{

speed = speed - speedinc;
if (speed < 0.0) speed = 0.0:
}

if (getbutton(MOUSE3)) /* decrease speed /

speed = 0.0;.'

brakeposition = (getvaluator(MOUSEY))/2:
if (brakeposition 0) brakeposition = 0:
accel brake =- brakeposition:

carstat = (brakeposition * 1000) + (int)(speed):

nbyte = write(cardriver. &carstat. carstatsize)

start = FALSE;
break;

/ steering and speed with mouse on remote controller
/* cruise control and remote steering

case CruiseNavSteer:
case NavManual: cal mousex = remotedriver - prevreinotedriver:
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steer-wheel -angle = steer-wheel -angle + (float) cal-mousex/200
prevremotedriver = remotedriver;
speed =cmdspeed;
accel brake = -(controlsignal - (reinotedriver *1000)):
start = FALSE;
break;

case NavSteerDrSp: cal mousex = rernotedriver - prevremotedriver;
steer-wheel -angle =steer wheel-angle + (float) cal_znousex/200:
prevremotedriver =remotedriver;

if (getbutton (MOUSE 1))

if (speed < (98.0/MPSTOK.MPH))

speed = speed + (speedinc/MPSTOKMPH);

else speed = 100.0/MPS _TO KMPH; /* Top Speed7

if (getbutton(MOUSE2)) /* decrease speed ~

speed = speed - speedinc,
if (speed < 0.0) speed = 0.0;

if (getbutton(MOUSE3)) / * decrease speed /

speed = 0.0;

brakeposition = (getvaluator(MOUSEY))/2;
if (brakeposition <0) brakeposition = 0:
accel brake = -brakeposition,
carstat (brakeposition * 1000) + (int)(speed):

nbyte write (cardriver, &carstat. carstatsize):

start =FALSE:

1)reak:
P / end switch *

/* Clear the vehicle winidow %
viewport(0, XMIAXSCREEN. 385. YNIAXSCREEN);
color(FIELD).
clearo
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/* Clear the display panel
viewport(O. X.MAXSCREEN. 0. 38O1:
color( WHITE);
clear():

/* Reset viewport /
viewport(0. XMAXSCREEN, 0, YMAXSCREEN);

/~Calculate distance travelled

rdistance rdistance4sqrt( (cz-pz) (cz-pz)+-.(cx-px) *(cx-px)):,

distance (int) rdistance;

nbyte = write (cardriver, &cx, cxsize),
nbyte =write (c ardriver, &cz. czsize):
nbyte = writefeardriver. &rdistance. distancesize),

thousand distance/ 1000:
hundred =(distance - thousand* 10O00;O
ten = distance - hundred 100 - thousand' 000)/110:
unit =distance -ten *10 -hundred 100 - thousand*1000;

if (unit ==10) {unit 0; ++ten;}
if (ten ==10) {ten = 0, ++hundred;}
if (hundred = 10) f hundred =0; ++thousand:}
if (thousand ==10) thousand =0;

sprintf (timec.' HO5.2f",car timne);

sprintf(thousandc." %Od ",thousand):
sprintf(h undredc. (. ".hundred);

/DISPLAY HELP PANEL 7
callobj(help):

EDIT '-KY
editobj(!,ky

obireplac(- skylooktag)
look at (c xx y X z rx .rv.rz,.00).
rlO-seobjl)
callobjhsky

/* EDIT TERRAIN /
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editobj (terrain 1);
objreplace (terrain 1looktag):
lookat (cx,cy,cz,rx,r)y.rz,0.O0).
c loseobj (;
callobj (terrainl1);

/* EDIT ROAD *
editobj (road);
objreplace(roadlook tag);
lookat(cx, cy, cz, rx, ry, rz, 0.0);
if (counter < timegreen)

obj replace (green lightt ag),
color(GREEN);
objrep lace (redligh ttag);
color(DIMRED):.
lightcolor =GREENLIGHT;

else if ((counter > timegreen) &&(counter <= timeyellow))

objrep lace (greenlighttag);
color (DLMGREEN);
objrepl ace (yellowlighttag);
color(YELLO W);
lightcolor = YELLOWLIGHT;

else if ((counter > timeyellow) && (counter <= timered))

objreplace(yellowlighttag);
color(DMYELLOW).
objreplace (redlighttag);
color(RED);
lightcolor = REDLIGHT;

else if (counter timered)

counter -0;

closeobj o;r
callobj(road);

/*EDIT HOUSES
editobj (house);
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objrep lace (houselookt ag);
lookat (cx~ey,cz.rx.ry.rz,0.O);
objrep lace (housetrans tag);
translate (-80.0, 0.0, -50.0);
objrepiace(housescaletag);
scale(0.40, 0.40, 1.0);
c loseobj (;
callobj(house);

ed itobj (housel1);
objrep lace (housel1looktag);
look at (cx,cy,cz~rxry~rz,0.0);
objrep lace (house 1transt ag);
translate(- 30.0, 0.0, -10.0);
objrep lace (house Isc aletag);
scale(0.50. 0.50. 1.0);
closeobjo;
c allobj (house 1);

editobj (house 1);
objrepl ace (house Ilook tag);
look at (cx,cy,cz,rx,ry,rz,.O.);
objreplace (housel1transt ag):
translate (-30.0, 0.0. -15.0);
objreplace (houseliscaletag);
scale(O..50. 0.50, 1.0);
closeobjo:
c allobj (housel1);

/* EDIT STEERING W'HEEL
editobj(steerwheel);
objrep lace (steerw heelt ag);
rotate((int) -(steer- wheel -angle *C 10*BAD To DE(I'i. Z'
c loseobj()
callobj(steerwheel):

EDIT ODOMETER
ed It obi o(iornc1'fr:
objreplhce(odotagI 1.
charstr(thousandc).
objreplace(odotag21;
charstr(hundredc
ohjreplace(odotag3 1
char'~tr(tenc),
ohjreplace(odotag4
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charstr (unitc);
closeobjO);
callobj (odometer):

/* Display the clock ~
color( WHITE):,
cmov2i(100, 750);
charstr(clockc):
color( BLACK):
color(CYA.N);
cmov2i(400, 750):

switch (condition)

case AUTOPILOT: charstr( "AutoPilot");
break;

case CruiseDrSteer: charstr(" Cruise Control. Drivers Steering");
break;

c&-se CruiseNavSteer: charstr( "Cruise Control. Navigator's Steering");
break:

c&Ae ASteerDrSp: charstif"AutoSteer. Driver's Speed");
break:

case ASteer.NSp: charstr( "AutoSteer, Navigator's Speed");
break:-

case DrManual: rharstr("Drivt-r Manual Control");
break:

rwse N avManual. charstr( "Navigator Manual Control");
break:

Ci.,Dr' teerNav.-p rhar,;tri"DrIver Steers, Nav's Speed");
break:

CaL~f N av-ieerDr-p c har~t ri"Nav Steers. Driver's Speed"):
break.

ED)IT \\ AR.NIN(, INDICATOR ~
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editobj (warning);
objreplace(braketag);
color(WARN);-

if (state -vectorf3l > 0)
4 I

objreplace(belttag);
color(WARN);,
if (alarm)

objrep lace (dangert ag);
color(CYAN);

I
else

objreplace(dangertag):,
* color( WARN);

closeobj~

else
1* BRAKE SIGNAL FOR CAR STOP *

editobj (warning);
objrep lace (braketag);
color(RED);
objreplac e(tempt ag);
color(RED):
closeobjQ

I
if ((count < 1000) && (state-vector[3] > 0.0))

editobj (warning);
obj replace (tempt ag);
color(WARN);
closeobjO);

if ((count > 5000) &&(state vector[3] *MPS TO KMPH > 65))

editobj (warning);
objrep lace (temptag);
color(RED);
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closeobj 0;

callobj (warning);
/* EDIT HEADING INDICATOR ~
/* Compute heading using vehicle state vector ~

if (state -vector[4] < 0.0) headingrad =2*PI+state-vector[4j;

else headingrad = state vector[41;
no of round = (headingrad*180.0/PI)/360.o:
headingdeg =headingrad*180.0/Pl - (float) no of round'360;

editobj(heading meter);
objrep lace (transll1); -

translate (head ing-xpos- 20.0-4.5 *head ingdeg, 4.0, 0.0);
closeobjo;

callobj (heading-meter);
/~EDIT SPEEDOMETER INDICATOR

/* 2.5 factor is for converting to the dashboard display ~

speedbar =181.0 - state vectorj3l MPS TO KMPH 2.5:
editobj (speedometer):

o bjrep lace (transl4);
translate(O.0, speedbar, 0.0);
closeobj ();
callobj (speedometer);

1* EDIT BRAKE AND CMDSPEED GI'AGES ~
editobj (gauges);
objrep lace (manbraketag);
rectfl(BRAKEX, BRAKEY, BRAKEX + 50, BRAKEY -accel-brake);

objreplIace (mans peedt ag);
rectfi(CMDX. CMDY, CMDX + W0

CMDY + (int)(2 *speed "'MPS TO KMPH));
closeobjo;
callobj (gauges);

/* EDIT FUEL GUAGE ~
if (state _vectorJ MPS TO _KMPH .- 0.0)

fuelquant = fuelquant - consumption;

if (fuelquant <= 0.0)

fueldown =-1000.0;

fuelbar fuelquant/MAXFIJEL*320.0 + 14.0;
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editobj(fuel);
objreplace (fuell1);
rectf(281.0, 14.0, 324.0, fuelbar);
closeobjO);

* callobj(fuel);
1* EDIT CRASH INFO DISPLAY FOR OFF-ROAD *

pushrnatrixo;
PushattributesO;
translate (0.O,crashdown,0.0);

/* Set all warning lights when crash ~
if (crashdown ==-1000)

I
editobj (warning);
objreplace(braketag);
color(RED);
objreplace(dangertag);
color(RED);
closeobj 0;
callobj (warning);

I
color(RED);
rectf(0.0,1385.0,1023.0,1 767.0);

color(BLAGK);
cznov2i(370,1576);
charstr(" CRASH 1) ;

crnov2i(370,1 560);
charstr("OFF THE ROAD");

cuiov2i(370,1544);
charstr("PUSH 'E TO EXIT");

popattributes0;
poprnatrixO;

swapbufferso;
} ~while loop ~

close(cardriver);
color(BLACK);
clearo;
swapbuffers;
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clearo;

swaphufferso;
finisho;
gexit 0;
}I1 main ~

filename: CIRCUIT.C
author: Tan Chiani Huat
modified by: Michael J. Dolezal
date: May 20, 1987

#include "const.h"
#include "vars.ext.h"

B U ILD T HE R AL LY C IRC U IT

maketheroad (road)
Object * road;

Dimension temp, 1;

Dimension high =3.2:

Colorindex signbg = YELLOW;
Colorindex upsign = RED;
Colorindex rightsign =BLUE; 5

* road = genobj 0;
makeobj( *road):

pushrnatrixo:
pushviewport ~
viewport(O, XMAXSCREEN, 385. YMIAXSCREEN): del

setdepth(O,1023);
perspective (Fov. 1023.0/385.0. 0.0, 1023.0);
roadlooktag = gentago;
rnaketag (road look tag);
lookat(0, 0.0, 0.0, 0.0, 0.0, 0.0, 0);
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FIRST STRETCH OF ROAD

surf(O.0, 0.0, 0.0, ROADWIDTH, ROADLEN, BLACK);
surf(-4.2, 0.0, 0.0, 0.2, ROADLEN, YELLOW);

Build the sign "START"

temp =-3A.6:
color( WHITE):
pushinatrix o:
tranislatetexnp - 1.0. 0.0. 0.01;
rotate I-900.'X)
letter('T., BLACK);
popinatrixo;

color( WHITE);
pushrnatrixo;
translate(teinp - 0.25. 0.0. 0.0):
rotate (-9OW'X);
letter('R'. BLACK);
poprnatrixo-.
co~or i W HITE):
pushinatrix U:
translate(temp - 1.5. 0.0. 0.0):
rotate (-900 ,):
letter('A'. BLACK):
poprnatrix,

coior( WHITEj.
pxushmatrixo)
translate(tenip - 2.75. 0.0. 0.0):
rotate(-9.X-).
Ietter('T'. BLACK).
popmatrix():
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color( WHITE).
pushrnatrix();
translate~ternp - 4.0. 0.0. 0.0);
rotate (-9w0. *X*)
letter('S'. BLACK):
popmatrix();

Build the sign "TURN" before the bend

color( WHITE):
pushmatrix();
translatel-3.25. 0.0. -fROADLE.N - 0))

rotate (-9O.'X)
letter('N'. BLACK);
popmIatrixo :

color( WHITE);
pushxnatrixo;
translate(-4.5. 0.0. -(ROADLEN -5.0));

rotate (-900., *Xi
letter('R', BLACK);
popmnatrixo:

color(WHITE).
push matnxo
trax1katet-3.73. 0) 0. - RO ADLE.N 50I)j.

rotate(-900.X,
letter() 1. BL.ACK).
popinatrix.

rolq, rlWHITE

frafnsiatc'l- (1 00 U ROADLE.N -3 (U:

rot ate(-9(X).X)
letter) 'T., BLAC K)
)fpopmatrixf)



Add the first crossroad

* pushinatrixo;
translate(0.0, 0.0, -(ROAD LEN /4.0));
rotate(900, 'Y');
translate(0.0, 0.0, 2.0 * ROADLEN);
stripe(0, 0.0, 0.0, ROADWIDTH/2.0, 8.0 *ROADLEN, BLACK);
for (temp = 20.0; temp < (4.0 * ROADLEN); temp += 40.0)

pushmatrixo;
translate(0.0, 0.0, -temp);
rotate(-ow, qX';
polyarrow(0.7, 1.2, 0.0, WHITE);
popmatrixo;

popxnatrixo;

Add the second crossroad '

pushmatrix ~
translate(0.0, 0.0, -(3.0 ROADLEN/4.0));
rotate(900. qY');
transiate(0.0, 0.0, 2.0 " ROADLEN);
stripe(0O. 0.0, 0.0, ROADWIDTH/2.0, 8.0 ROADLEN. BLACK):
for (temp =20.0; temp : (4.0 *ROADLEN); temp += 40.0)

pushmatrixo;
tranalate(O.0, 0.0, -temp);
rotate(-0.)
poly arrow (0.7. 1 2. 0.0. W'HITE):.
poplmatrix( )

jx)pmlatrix(.
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pushmatrixo;
transiate(6.0, 0.0, -15.0);
speedlimit('2'. '5');
poprnatrixo;

Create 2nd speedliinit sign

pushmatrixo;,
translate(6.0, 0.0, -(ROADLEN/4.0) - 15);
speedlimit('3'. '3'),
popinatrixo;

Create the 50 meter distance marker

pushmatrixo;
translate(O.0, 0.0, -42.0,
rotate(-900, 'Y');
stripe(O.0, 0.0, 0.0. 0.2, 4.0. WHITE);
popmatrixo-,

temp = -3-6;
color( WHITE);
pus hmatixo;
translate(temp - 2.75. 0.0. -38.25):
rotate(-900. *X)-,

letter('O'. BLA('K).
popmIatrix( .

rolor(1AHITE).,
pushmatrix()
transIate( temp - 4.0. 0.0, -38 231
rotate(-")i. X1,
letter('5'. BLAC K).
popriiatrix~j
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Create the 40 meter distance marker

pushmatrixo:
translate(O.0. 0.0. -52.0):
rotate(-9(X. ,Y*L
stripe(0.O. 0.0. 0.0. 0.2. 4.0. WHITE).
popznatrixi).

temp =-36

color( WHITE)
pushmatrixo.
translatef temp - 273 ()5. -48.23:

letter('O'. BLACK):
poprrmat rx

color(WHITE).
pushznatrixo.
translate(temp - 4.0, 0.0. -48.25):
rotate(-900. 'X)

popmatrix().

plifinatrix()

point rixi.
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letter('O'. BLACK):
popmatrixt):

color(WHITE):
pushuiatrtxj:)
tranalate(ternp - 4.0. 0.0. -58.25):
rotate(-9OO- 'X);
letter( '3'. BLACK):

poprnatrmxO:

Create the 20 meter distanice marker

pushmatrix()
translate(0.0. 0.0. -72.0)

'strpe 0.0. o.U. 0)0. ((.2. 4 0, WHITEi.
popruatrix I),

temp =-1 6:
coior(WH IT E)
pushniatrixo.
translate(teirp -2 75, (.10, -88 25 i
rotate(-"(I). 'X).
letter('O', BLACK

colorV" HIT[
pushinatrixi

It&Ulslatl zllip 4 11 0 t

rotate(-9W
r I L \

in . rt ., K,



pushuiatrix( a

trauslIateM( 0 )0. S~2 I)

rotatel -9(X. a.-
stripe4( 0. 1)0. 0 0, 0.2. 40. WHITE),
Ipopuilatrliv a

temp 3 -6.

colorf WHITE.
pushuaatrix( V

translate(tenip -2 7 5. 0 0. 78 25 i

rotuatrlx- I

color WHITE
pushmat rm
t ransiatuorn iIQ 4 0 1) (1

rotate(-9(K) X
Ietternf IELA( K

rushat i V

pP~hWa rIJ



C:reate the 60 meter distance marker

ptishznatrixo;
transiate(0O. 0.0. -232.0);
rotate(-900. "N");
stripe(O.O. 0.0. 0.0. 0.2. 4.0. WHITE);
popmatrix(),

pushunatrix ),
t r &nsl ate i5,2, 0.0. -232-0)
billboard''.0)
popmlat rix

translIat*r. U U t 1 242

rotatpi-g~x. *NI

~trip ~(4) U U 1 2 40 U %HITF
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First road bend

pushmatrixo;
translate (BEND RAD IU S, 0.0, -ROADLEN);
rotate(-900, 'X);
bendo;
popinatrixO;

Build 1st right turn signboard

pushmatrixo;
translate(5.O, 0.0, -(ROADLEN-5.O)),
signb(1.9. 2.5. 3.0. signbg):.
popmatrixo):
pushrnatrixo:
translate(4.3, 4.0. -(ROADLEN-5.0));
rotate (-goo: Z,):
polvarrow(0.7. 1.2. 0.0. rightsign);
popmatrix ):

SECOND STRETCH OF ROAD

pushmatrixo:
translate (BE' NDRAD IVS. 0.0. -ROADLEN -BENDRADIUS);

rotate(-900. 'N"):
surf(O.0. 0.0. 0.0. ROAD\\IDTH. ROADLE.N. BLACK):
popmatrixLo:

Build a series of road strips,
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color( WHITE);
for (i = BENDRADIUS + 8.0; i < ROADLEN; i += 20.0)

pushmatrixo;
translate(i, 0.0, -ROADLEN -BENDRADIUS (ROAD WIDTH/4));
rotate(-900, 'Z');
rotate(-900, 'Y');
rectf(-0.5, 0.0, 0.5, 3.0);
popmatrixO;

color(BLACK);

Create 3rd uparrow signboard

pushmatrixO;
translate (BEN DRAD IU S + 50.0, 0.0, -ROADLEN -BENDRADIUS + 6);
rotate (-goo,'IY');
signb(I.9, 2.5, 3.0, signbg);
popniatrixO;
pushmatrixo;
translate(BENDRADIUS + 50.0, high, -ROADLEN -BENDRADIUS + 6);
rotate (-900 ,'Y');
polyarrow(0.7, 1.2, 0.0, upsign);
popmatrixO;

Second road bend

pushinatixQ);
temp =BENDRADIUS + ROADLEN;
translate(ternp, 0.0, ..ROADLEN);
rotate(-900, 'X');
rotate(-900, 'Z');
bend 0;
popmatrixQ;
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Build 2nd right turn signboard

pushrnatrixo;
translate(temp - ROAD WIDTH, 0.0,

-ROADLEN - BENDRADIJS - (3 *ROADWIDTH/4.0) - 2);
rotate (-900,'IYT)
signb(1.9, 2.5, 3.0, signbg);

translate(temp - ROADWIDTH, 4.0,
-ROADLEN - BENDRADIIJS -2.7 -(3 *ROAD WIDTH/4.0));

rotate (-900,'IY');
rotate (-900, 1Z');
polyarrow(0.7, 1.2, 0.0, rightsign);
popmatrixo;

THIRD STRETCH OF ROAD

4. pushmatrixQ;
temp = 2 * BENDRADIUS + ROADLEN;
translate(temp + (ROADWIDTH/2). 0.0, 0.0);
surf(0.0. 0.0, 0.0, ROADWIDTH, ROADLEN, BLACK);
popmatrixO;

P

Create a series of arrows

for (i =ROADLEN; i > 5.0; i -~ 20.0)

pushmatrixoj
translate(temp + (ROAD WIDTH/4.0), 0.0. -i);
rotate (-900,'X');
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rotate(-1800, 'Z'):
polyarrow(0.7. 1.2, 0.0. WHITE);
popmatrixo;

Create 5th speedlimit sign

pus hiatrix 0;
translate(ROADLEN + (2 * BENDRADIUS) -6.0,

0.0, -ROADLEN/4.0 + 10.0);
rotate(-1800, 'Y');
speedliinit( 's'');
popmatrixo;

/* Create 3rd stopsign '

pushmatrixQ:,
translate(ROADLEN + (2 *BENDRADIUS) -6..0, 0.0, -ROADLEN/4.O 5.0):
rotate(-1800, 'Y');
stopsign(1.9, 3.0);
popmatrix 0;

Create 4nd uparrow signboard

pushmatrixo;
translate(temp + ROADWIDTH, 0.0, -ROADLEN + 10.0);

signb( 1.9, 2.3. 3.0. signbg):
popmatrixo;
pushmatrixo;
translate(temp + ROADWIDTH, high, -ROADLEN + 10.0);
rotate(- 1800,'Y');
polyarrow(0.7. 1.2, 0.0, upsign);
popmatrix0;
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Create 5th speedlimit sign

pushinatrix 0;
translate(ROADLEN + (2 *BENDRADIUS) -6.0,

0.0, - 3 - ROADLEN/4.O + 10.0);
rotate(-1800, 'Y');
speedlimit('4*.'5'):
popmatrix();

Create 2nd stopsign

pushmatrix();
translate (RO ADLEN + (2 *BENDRADIUS) -6.0,

0.0, - 3 * ROADLEN/4.0 -50);

rotate(-1800, -Y,);
stopsign(1.9, 3.0);
popinatrixo;

Third road bend

pushinatrixo;
temp =BENDRADIUS + ROADLEN;
translate(temp, 0.0. 0.0).
rotate(-900. 'X):
rotate(-1800, '1');
bendO
popxnatrixo;

FOURTH STRETCH OF ROAD
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pushmnatrix()~
temp =BENDRADIUS,
tmanslate(tenip. 0.0, temp (R0AD%% IDTH,.2)1.
rotate(-QO0, 1-),
surf(O.O. 0.0, 0.0, ROADWIDTH, ROADLE.N. BLACK).
poprnatrix().

P.

Create a series of arrows

for hi temp * 100 Wi Temp ,ROAI)LEN 20 )1

pushrnatrixo;
traml~ate(i. 0.0. temp - R0AD\%IDTHA40);
rotate(-9()0,X}
rotate (Owl.'ZVI
polyarrow(0.7. 1.2. 0.0. WHITE),
popznatrtx().

Create 5nd uparrow signboard

1i

pushmatrixo:
translate(ROADLEN. 0.0. BENDRADITUS *ROADWIDTH).

rotate (- 2700.'Y') :
signb(1.9. 2.5. 3.0. .Igribg):
popmatrixo(:
pushrnatrixo;
translate (ROAD LEN, high. BENDRADII> -~ ROADWIDTi
rotate (- 2700, "1");
polyarroA,9.7, 1.2. 0.0, upsign):
poprnatrix o;
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1# 11 - 'A /tt

V ert 14.U 0) x

vert ice,() 1 -

v*ert ice() I

verT icr 1

* vertive12

vertice"2 0) x - el)i

v'ertice'? 11 y

vtr we22

ver Ice,34

vcrtice3; 2' -k'zgth;

verticeJ41 Oj =x + temnp.

vertice[41 I = y
vertice[41 21 = Z



KI, ~~

legWid th W2. Izf Of uirpport in g

lenlp 1 = enigt hi 2.
tf'11p2 -lexigth /4.

vcrtice0' 01 = 0.0;
verticel0]'il = height-,
verticejljl21 = 0.0;

vertice[11[01 = -teinpi:
vertice[1] 1] = height;
verticel][21 = 0.0;
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\e-trlIr .%~ idth + height,

% erlice 4 1 height:
e~rt icr 4 2 =[0:

/* Generate the supporting leg *
10 0 0. 0.

verticel 0'1 0.0;,
verticelV0'2 0.0:

vertice1~l{0O -temp3;
verticel [I1) =i 0.0;
v ert ice fI1J[21 =0.0;

vert Icel1(21 (01 -temp3;
verticel1[21 [ 11 height;
vert ice 1[2][21 0.0;

verticel[3] [0] temp3;
verticel [31[11 = height;
verticel [3] [2] 0.0;

verticel [4] [0] ternp3;
verticel [41 [1i] 0.0;
verticel [4] (2] =0.0;

color(BLACK):
polf(5.vert ice 1);

} ~ signboard *
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stopsign (width, height)
Dimension width, height;

Coord vertice [10][31;
Coord verticel [5][3];

Dimension legwidth, tempi, temp2, temp3, temp4;
legwidth = 0.2; /* size of the supporting leg *1
tempi = 5 * width/24;,
temp2 = width/2;
temp3 = legwidth/2;
temp4 = 7 * width/24;

/* Make the sign *1
vertice [01[0] = 0.0;
vertice [01[1] = height;
vertice [0][2] = 0.0;

vertice [1][0] = tempi;
vertice [1][1] = height;
vertice [1][2] = 0.0;

vertice [2][0] = temp2;
vertice [2][1] = temp4 + height;
vertice [2112] = 0.0;

vertice [3][01 = temp2;
vertice [3][1] = temp4 + (2 * tempi) + height;
vertice [3][2] = 0.0;
vertice [4][0] = tempi;
vertice [4][1] = height + width;
vertice [41[21 = 0.0;

vertice [5][0] = - temp 1;
vertice [5][11 = height + width; %
vertice [5][2] = 0.0;

vertice [61[0] = - temp2;
vertice [6[11 = temp4 + (2 * tempi) + height;
vertice [6][21 = 0.0;

vertice [7][0] = - temp2; J..
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vertice [71111 = ternp4 + height;
vertice 171121 = 0.0;

vertice 181101 = - tempi1;
vertice 18]1] = height;
vertice 181121 = 0.0;

vertice 1911[01 = 0.0;
vertice 191111 = height;
vertice 191121 = 0.0;

color(RED);
poif (10, vertice),

/* Put the face on the stopsign ~

color(WHITE);
linewidth(2);
poly (10, vertice);

/* Put the letters STOP on the sign ~

color(WHITE);
pushmatrixo,
translate(-0.6, 4.0, 0.0);
scale(0.5, 0.5, 1.0);
translate(-5.0, -3.8, 0.0);
Ietter('S', RED);
popznatrixo;

color( WHITE);
pushmatrixo;
translate(-0.2, 4.0, 0.0);
scale(0.5, 0.5, 1.0);
translate(-5.0, -3.8, 0.0);
letter('T', RED);
popxnatrixO;

color( WHITE);
pushrnatrixo;
translate(0.2, 4.0, 0.0); '

scale(0.5, 0.5, 1.0);
translate(-5.0, -3.8, 0.0);
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letter('O', RED);
popmatrixO;

color( WHITE);
pushmatrixo;
translate(0.6, 4.0, 0.0);
scale(0.5, 0.5, 1.0);
translate(-5.0, -3.8, 0.0);
letter('P', RED);
popmatrixo;

/~Build the supporting leg ~

color (GRAY);
rectf(-temp3, 0.0, temp3, height);

} * Stopsign *

BUILD SIG NAL

signallight (height)
Dimension height;

Dimension legwidth =0.5;

Dimension separation = 20;
Dimension temp, tempi, temp2;
temp =0.70 *height;

templ 0.30 *height;

temp2 =legwidth/2;

1* Build the post *

color(GRAY);
rectf(-temp2, 0.0, temp2, temp - (0.05 * height));
rectf(-temp2 - separation, 0.0, temp2 - separation, temp -(0.05 *height));

/* Build the background and lights ~

color(BLACK);
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rectf(-(templ/3.0), temp - (0.05 * height), templ/3.0, (1.05 *height));

rectf(-(templ/3.O) - separation, temp - (0.05 * height),
templ/ 3.0 - separation, (1.05 * height));

greenlighttag = gentagO;
maketag(greenlighttag);
color(GREEN);
circf(0.0, ((templ/6.0) + temp), tempi/7.0);
circf (-separation, ((temp 1/6.0) + temp), temp 1/7.0);

yellowlighttag = gentagO;
maketag(yellowlighttag);
color(DIMYELLOW);
circf(O.0, ((templ/2.0) + temp), templ/7.0);
circf(- separation, ((templ/2.0) + temp), templ/ 7.0);

redlighttag = gentagO);
maketag(redlighttag);
color(DIMRED);
circf(0.0, height - (templ/6.0), templ/7.0);

circf(- separation, height - (templ/6.O), templ/7.0);
} ~Green Light *

B U ILD A R ROW

polyarrow(bodywidth, headwidth, high, arrowcolor)
Colorindex arrowcolor;
Dimension bodywidth, headwidth, high;

I
Coord verticelsi [3], verticel [3] 13];
Dimension bodyheight = 0.8;
Dimension headheight = 1.5;
Dimension teinpl = bodywidth/2;
Dimension tenip2 = headwidth/2;

vertice[0] [0] = 0.0;
vertice[0][l] = 0.0 + high;
vertice[01[2) = 0.0;
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vertice[1][0J = -tempi;
vertice[1][1] = 0.0 + high;
vertice1I[21 = 0.0;

vertice[2] [0] = -tempi;
vertice[2] [1] = bodyheight + high;
vertice[2] [2] = 0.0;

vertice[3] [0] = tempi;
vertice[3] [1] = bodyheight + high;
vert ice [3] 121 = 0.0;

vertice[4] [01 = tempi;
vertice[4][1] = 0.0 + high;
vertice[4] [2] = 0.0;

color (arrowcolor);
polf(5,vert ice);

verticelO] [0] = -temp2;
verticel[0][1] = bodyheight + high;
verticel[0][2] = 0.0;

verticel~il](o = 0.0;
verticei[lJ[1] = headheight + high;
verticel[l][2] = 0.0;

verticel [2] [0] = temp2;
verticel[21[11 = bodyheight + high-,
verticel [2J[2] = 0.0;

color (arrowcolor);
polf(3,verticel);

* polyarrow *

B U ILD HO0US E

makehouse (house)
Object *house;
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float sidewall[51(2i', roof[21, chmwalll4[21;
float chmwal2[41[21, sideroof4l[21;

*house=geflobjo;

makeobj ( *hos);

pushxnatrixo;
pushviewporto;
viewport(O, 1023, 385, 787);
setdepth(0,1023);
perspective (Fov, 1023.0/385.0, 0.0. 1023.0):
houselooktag = gentagO;
maketag(houselooktag);
lookat(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0);

pushmatrixo;
housetranstag = gentagO;
maketag(housetranstag);
translate(0.0, 0.0, 0.0);
housescaletag - gentagO;
maketag(housescaletag);
scale(1.0, 1.0, 1.0);

/* Draw front wall *

color( WALL);
rectf(-1.0,0.0,16.0,10.0);

1* Draw side wall ~

sidewall[0I[01=(-4.0);
sidewall[0] [11 =(2.0);
sidewall[1] [01(0.0);
sidewall[l][11=(0.0);
sidewallt2l [01 =(0.0):
sidewall[2] [1] (10.0);
sidewall[3][01=(-3.0);
sidewall [3] [1] =(13.0);
sidewall[4 10)]=(-4.0);
s idewall[4f1 ]= (11.5);

color(SIDE WALL);
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polf2(5,sidewall);

/* Draw roof and sideroof ~

rooflo][l= (-1.0);
roofj][J=(1O.0);
roofll(01=(17.0);
roofjlj [1J= (10.0);
roofl2jl~j=(14.0);
roofl2lflI=(13.5);
roof[3l 101'= (-3.0);
roof[3][111=(13.5);

color(ROOF);
poif2 (4 ,roof);

siderooffOl [0 = (-4.3);
sideroof[Ol11= (11.5);
siderooft 111[01= (-4.0):
siderooff 1] [11 =(11.5);
sideroofl2i 10] = (-2.8);
sideroof[2ll[1] =(13. 1);
sideroof[3110J=(-3.0);
sideroof[3 3] 11]= (13.5);

color (SIDEROOF);
polf2(4,sideroof);

/* Draw window *

color(WINDOW);
rectf(2.O,4.0,5.0,7.0);
rectf(g.0,4.0,12.0,7.0);

/ * Draw window frames *

color(FRAME);
Iinewidth(4);
move (2.0,4.0,0.0);
draw (5.0,4 .0,0.0);
draw (5.0,7.0,0.0);
draw (2.0,7.0,0.0);
draw (2 .0,4 .0,0.0);
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move(3.5,4.0,0.0);
draw(3.5,7.0,0.0);
move(2.0,5.5,0.0);
draw(5.0,5.5,0.O);

move(g.0,4.0,0.0);
draw(12.0,4.O,0.0);
draw(12.0,7.0,0.0);
draw (9.0,7.0,0.0);
draw (9.0,4.0,0.0);
move(10.5,4.0,0.0);
draw( 10.5,7.0,0.0);
move(9.0,5.5,0.0);
draw (12.0,5.5,0.0);

1* Draw chimney front wall ~

color (SIDE WALL);
rectf(l.0,12.0,3.0,14.2);

/* Draw the hole on the chimney *

color(BLACK);
rectf(1.5,13.3,2.5,13.8);

/* Draw top and side walls of the chimney ~

chmwalll 101101=0.5;
chmwalll[0l[11= 12.5;
chmwallll(11[0] =1.0;

chmwalll[1] [11= 12.0;
chmwalll [2J[0] =1.0;

chmwalll[2] [1]=14.2;
chmwalll[3]1[01=0.5;
chxnwalll[3][11=14.7;

color (CHMW ALL 1);
polf2(4.chmwalll);

chmwal2[01 [01=2.5;
chmwa112[01[1]=14.7;
chmwall21l][01=3.0;
chmnwall211][1]=14.2;



chmnwal2[2][01=1.0;
chmw&ll2(21[l]=14.2;
chmwal2[31 [01=0.5;
chmwa112[3][11=14.7;

color(CHMWALL2);
poHf2t4,chmwall2);
popznatrixo;

popviewporto;
popmatrixo;
closeobjO);

} ~makehouse *

makehousel (housel)
Object *housel;

f
float sidewall(S) 12], roof14112), chmwalll (4]121;
float chmwall2[(41[21, sideroof 4] [21;

* housel1=genobj 0;
makeobj(*housel);

pushmatrixo;
pushviewport 0;
viewport(0 - 280, 1023 - 280, 385, 767);
setdepth(0,1023);
perspective (Fov, 1023.0/385.0, 0.0, 1023.0);
housellooktag =gentagQ;
maketag(housellooktag);
lookat(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0);

pushmatrixo;
houseltranstag = gentagO;
maketag (house 1transtag);
translate(0Q 0.0, 0.0);
houseiscaletag = gentagO;
maketag (house 1sc aletag);
scale(1.0, 1.0, 1.0);

/* Draw front wall*
color(WALL1);
rectf(-1 .0,0.0,16.0,10.0);
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/* Draw side wall *
sidewailfO] (0]=(-4.0);
sidewall[ 101 '11(2.0);
sidewall[l][01=(O.0);
sidewall(1j [11=(o.0);
sidewall [2][101=(0.O);
sidewall[2J[] l=(10.0);
sidewall[3] [0]=(-3.O);
sidewall[3] IllJ=(13.0);
sidewall[41 [o]=(-4.0);
sidewall[4] [Ifr(11.5);
color(SIDEWALL1);
polf2(5,sidewall);

1* Draw roof and sideroof ~

rooflOjIO]=(-1.0);
roofjOffh]=(i0.0);

roofil[1=(i70.);
roofj2][0J=(14.0);

roof[2][l]=.:(13.5);
roof[3J [01]=(-3.0);
roofl3IlI=(13.5);

color(ROOFI);
polf2 (4 ,roof);

sideroof[0] [0] (-4.3);
sideroof[l [1]=(11.5);
sideroof[1 01 = (-4.0);
sideroof[][ll]= (11.5);
sideroof[2] [01 = (-2.8);
siderooff2j fl](13.1);
sideroofj3] [01 =(-3.0);
sideroof[3] Ill] (13.5);

color (SIDEROOF);
polf2 (4 ,sideroof);

/* Draw window ~

color( WINDOW);
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rectf(2.0,4.0,5.0,7.0);
rectf(9.0,4.0,12.0,7.0);

/* Draw window frames */

color(FRAME);
linewidth(4);
move(2.0,4.0,0.0);
draw(5.0,4.0,0.0);
draw(5.0,7.0,0.0);
draw(2.0,7.0,0.0);
draw(2.0,4.0,0.0);
move(3.5,4.0,0.0);
draw (3.5,7.0,0.0);
move (2.0,5.5,0.0);
draw(5.0,5.5,0.0);

move(9.0,4.0,0.0);
draw( 12.0,4.0,0.0);
draw(12.0,7.0,0.0);
draw(9.0,7.0,0.0);
draw(9.0,4.0,0.0);
move(10.5,4.0,0.0);
draw(10.5,7.0,0.0);
move(9.0,5.5,0.0);
draw (12.0,5.5,0.0);

/* Draw chimney front wall */

color(SIDEWALL1);
rectf(1.0,12.0,3.0,14.2);

/* Draw the hole on the chimney */

color(BLACK);

rectf(1.5,13.3.2.5.13.8);

/* Draw top and side walls of the chimney */

chmwall 1[0J [0]=0.5;
chmwalll[0][1=12.5;
chmwalll[l][0]=1.0;
chmwalll[1 [1]= 12.0;
chmwalll[2][0]f= 1.0;
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chmwa11l[2] [i]=14.2;
chmwalll [3] 101 =0.5;
chmwalll[3 [i]= 14.7;

color (CHMWALL 1);
polf2(4,chmwalll);

chmwa112[0] 101= 2.5;
chmwall2 [0][[1]= 14.7;
cbmwall2 [11[01=3.0;
chmwa]12[1] [1]=14.2;
chmwa112 [2] [01=1.0;
chmwal112 [2 [ 1] =14.2;
chmwa1l21[3] 101=0.5;
chmwall2 [3] [11=14.7;

color (CHMW ALL2);
polf2(4.chmwall2);
popmatrixO;

popviewport 0;
popmatrix 0;
closeobjo;

}/* makehousel ~

SPEEDLIMIT

speedlimit (numberi, number2)
char numberi, number2;

float vertice [5][31;
Dimension legwidth = 0.2-,
Dimension height 3.3;
Dimension width =1.625;

Dimension temp =legwidth/2.0;

Dimension tempi1 width/2.0;

1* make the sign face ~
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color(WHITE);
rectf(-templ, height, tempi, height + (1.25 * width));

vertice [01[01 = - tempi ;
vertice [0][1] = height;
vertice [0][21 = 0.0;
vertice 111101 = - tempi ;
vertice [11[1] = height + (1.25 * width);
vertice [1][21 = 0.0;

vertice 121[01 = tempi
vertice [2][1] = height + (1.25 * width);
vertice [21121 = 0.0;

vertice [3][0] = tempi
vertice [3][1 = height;
vertice [31121 = 0.0;

vertice [4](01 = - tempi
vertice [4][1] = height;
vertice [4][2] = 0.0;

J* put the black edge on the sign */

color(BLACK);
linewidth(2);
poly(5, vertice) 6

/* Add the speed */

pushmatrix(;
translate(-0.4, 4.0, 0.0);
scale(0.8,0.8,1.0);
translate(-5.0, -3.8, 0.0);
letter(numberl, WHITE);
popmatrix);

color(BLACK);
pushmatrixO;
translate(0.35, 4.0, 0.0);
scale(0.8,0.8,1.0);
translate(-5.0, -3.8, 0.0);
letter(number2, WHITE);
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popmatrixQ;

1*make the leg ~

color(G RAY);
rectf(-temp, 0.0, temp, height);

} *makethespeedlimit *

billboard (nuini, num2)
char numi, num2;

I
float vertice [5] [31;
Dimension width =1.625;

Dimension tempi =width/2.0;

/~make the sign face *

color(WHITE);
rectf(-temp 1, 0.0, tempi1, width);

vertice 1011[01 = 0.0;
vertice [0][1] = 0.0;
vertice [0][2] = 0.0;

vertice [1][O] = tempi
vertice [1][1] = 0.0;
vertice [1][2] = 0.0;

[etc 21[01 = tempi
vrie[21[11 = width;
vrie[21[2] = 0.0;

vrie[3][01 = - tempi
vertice [3][1] = width;
vertice [3][2] = 0.0;

vertice [4][0] = - tempi
vertice [4][11 = 0.0;
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vertice [41[21 = 0.0;

1* put the black edge on the sign ~

color(BLACK);
linewidth(2);
poly(5, vertice);
linewidth(l);

1* Add the distance *

color(RED);
pushmatrixo;
translate(-0.4, 0.8, 0.0);
scale(0.8,0.8,1.0);

Ietter(nuxnl, WHITE);
popmatrixo;

color(RED);
pushmatrixo;
translate(0.35, 0.8, 0.0);
scale (0.8,0.8, 1.0);
translate(-5.0, -3.8, 0.0);
letter(num2, WHITE);
popmatrixo;
} * billboard *

filename: FIN]) SUBGOAL.C
author: Tan Chiaxn Huat
modified by: Michael J. Dolezal
date: May 20, 1987

#include "const.h"
#include "vars.ext.h"

find -subgoal (no-coord, where, tolerance, pred-distance, vx, vy, px, pz, vz)
float pred distance;
float tolerance;
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float vx, vy, vz, px, pz;
int nocoord. where;
{
float dist, temp;
float x, y, z;
int i;

if (where > (no coord - 3)) where - 0;

for (i - where; i < nocoord; ++i)

x = roadmap[i][1 ] - vx;
y roadmap[i][1] - vy;
z roadmapli][2] - vz;

dist = sqrt(x*x + y*y);
temp = preddistance - dist;

/* converts negative to positive */

if (temp < 0) temp = -(temp);

if (temp < = tolerance){
if (!start)
. {

if (vy > pz && roadmapi][1] > vy)
{ '
start = TRUE;
return(i);}
else if (vy < pz && roadmap[i][1] < vy){

start = TRUE;
return(i);}

} *

else{
start - TRUE;
return(i);

/* If no points found, return an error code */
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return(-');

} /* find subgoal *1

filename: INTEGRATE.C
author: Tan Chiam Huat
modified by: Michael J. Dolezal
date: May 20, 1987

/* Runge-Kutta 2nd order numerical integration routine */

#include "const.h"

#include "vars.ext.h"

compute-new-state(condition)

iat condition;
{
float xcap[5l, xdot[5];
int i;

derivative(state vector, xdot, condition);
for (i - 1; i <= SYSTEMORDER; ++i)

/* Euler prediction */

xcap[i] = state vector[i] + xdot[i] * deltat;

car time = car time + deltat;
derivative (xcap, xdot, condition);
for (i = 1; i <= SYSTEM ORDER; ++i)

/* Trapezodial correction */

state vector[i] = (statevector[il + xdot[i]
* deltat + xcaplil)/2.0;

} /* compute-new state */
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derivative(work vector, xdot, condition)
float workvector], xdotD;
iut condition;
{
xdot(1] = cos(workvector[4]) * workvector[3l;
xdot[2] = sin(workvector[4]) * workvector[3];

xdot[3] = - (1/velocity time_consant) * work vector[31
+ (1/velocity time consant) * speed;

if (condition == AUTOPILOT j1 condition == ASteerDrSp I
condition == ASteerNSp)

{
xdot[41 = (headingangle rate gain * sigma-dot) +

(headingangle gain * (sigma - workvector[4j));
steer wheelangle = xdot[4]/(turningresponse gain * work vector[3]);
}
else

{
xdot[41 = turningresponsegain * work vector[3]

* steer-wheelangle;}
/* derivative */

filename: DISPLAY.C
author: Tan Chiam Huat
modified by: Michael J. Dolezal
date: May 20, 1987

#include "const.h"
#include "vars.ext.h"

SPEEDOMETER

makethespeedometer(speedometer)
Object *speedometer;
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coord charxpos, posi, pos2 , tempx, tempy;
Object meter,meternum;

*pos1 =467; pos2 l= 5 0;
tempx = pos I + 90;
tempy = pos2 + 80;

* charxpos = pos1 + 30;

/* Generate outline for speedometer dial /

meter =genobj 0;

makeobj(meter);
color(BLACK);

rectfi(posl, pos2, tempx, tempy);

color(WHITE);
rectfi(posl+ 10, pos2+lO, tempx-10, tempy- 10);
color (BLACK);

cmov2i(posl,pos2-15);
charstr(" km/hr )

latri[0J [0-posl;
latri (0] [1]=190-9;

latri(1J [0J=posl+25;
latri[11[1]=190;

latri (2] 0] =pos 1;
latri[2] [1]=190+9;

polf2(3.latri);

ratri[0][0] =ternpx;
ratri(0][1]=1909;

ratri[1J [0] =ternpx;
ratri[1][1I=190+9;
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ratr[2J 101 =tempx-25;
ratri[2l111-=190;
polf2(3,ratri);

closeobjO);

/* Generate number in speedometer display

meternum=genobj 0;

makeobj (meternum);

color(BLACK);

cmov2i(charxpos,000);
charstr( "000");
cmov2i(charxpos,030);
charstr("010");
cmov2i(charxpos,060);
charstr("020");
cmov2i(charxpos,090);
charstr("030");
cmov2i(charxpos,100);
charstr("040");
cmov2i(charxpos,125);
charstr("050");
cmov2i (charxpos, 150);
charstr("060");
crnov2i(charxpos,175);
charstr( "070"1);
cmov2i(charxpos,200);
charstr("080");
cmov2i(charxpos,225);
charstr("090");
cmov2i(charxpos.250):
charstr(" 100");
cmov2i(charxpos,275);
charstr("I 110"1);
cmov2i (charxpos,300);
charstr("120");
crnov2i(charxpos,325);
charstr(" 130");
cmov2i(charxpos,350);
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charstr("140");
cmov2i(charxpos,375);
charstr("150");
cmov2i(charxpos,400);

* charstr("160");
emov2i(charxcpos,425);
charstr("170");
cmov2i(charxpos,450);
charstr("180");
cmov2i(charxpos,475);
charstr("190");

c loseobj 0

/~Put all pieces of speedometer together ~

*speedometer-genobj;
makeobj ( *speedometer);

/* Draw the boundary *

callobj (meter);

/* Draw the display speedometer in the window*/

scrmask(charxpos,tempx,pos2+ 1O,tempy-1O);

pushmatrixo;
transl4=gentagO.:
inaketag(transl4);
translate (0.O,0.O,O.O);
callobj (meternum);
poprnatrixo;

/* Reset screenmask to full size screen
scruiak (0. 1023.0.767);

viewport (0, 1023.0,767);

c loseobjQ

} *iakethespeedorneter /
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FUEL METER

makefuel(fuel)
Object *fuel;

Coord. fuelxl, fuelx2, fuelyl, fuely2;
Object fuelbound,fuellevel;

fuelxl - 277.0; fuelx2 =fuelxl + 51.0;
fuelyl - 10.0; fuely2 =340.0;

/* Generate outline for fuel indicator ~

fuelbound=genobjo;
makeobj(fuelbound);

color (BLACK);
rectf(fuelxl, fuelyl, fuelx2, fuely2);

cmov2(fuelxl + 5.0,345.0);
charstr ("fuel ');

/* Generate hash marks for fuel levels ~

linewidth(3);

move(fuelx2, fuely2-30.0, 0.0);
rdr(5.0, 0.0, 0.0);

move(fuelx2, fuely1±60.0, 0.0);
rdr(5.0, 0.0, 0.0);

linewidth( 1);

closeobjo;

/ * Generate the fuel level bar that moves

fuellevel=genobj 0;
makeobj (fuellevel);
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color(WHITE);
rectf(fuelxl +4.0, fuely 1+4.0, fuelx2-4 .0, fuely2-4 .0),

closeobjo;

/* Put all pieces of fuel together *

*fudel.geflobjo;
makeobj ( *fuel);
callobj(fuelbound);

callobj(fuellevel);
color(YELLOW);

fuell = gentagO;
maketag(fuell);
rectf(fuebll+4.0, fuelyl +4.0, fuelx2-4 .0, fuely2-4 .0);
color(BLACK);

closeobjO);

/ * makefuel ~

HELP PANEL

06I

makehelp (help)
Object *help;

*helpgelobjo;
znakeobj(wlheip):

color(BLACK);

* cmov2i(102, 345);
charstr ("controls");

* linewidth(5);
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recti(1O,1O,265,340);

f* Generate info on display ~

cmov2i(30, 315);
charstr("Q: AutoPilot");

cmov2i(30, 295);
charstr("IC: Driver Steer");

cmov2i(30, 275);
charstr("R: Cruise, Nay Steer");

cmov2i(30, 255);
charstr("'S: AutoSt, Dr Speed");

cmov2i(30, 235);
charstr("'A: AutoSt, Nay Speed");

cmov2i(30, 215);
charstr("D: Driver Control");

cmov2i(30, 195);
charstrQ' W: Navigator Control");

cmov2i(30, 175);
charstr("X: Dr Steers, Nay's Sp");

cmov2i(30, 155);
charstr("F: Nay Steers, Dr's Sp");

cmov2i(30, 135);
charstr("E: Exit");

linewidth(2);

cmov2i(28,95);
charstr( "Speed");
circi(29,80,6);
circi(5O,80,6);
color(RED);
circfi(71,80,6);
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color(BLACK);
cmov2i(28,55);
charstr(" Decel");
color(BLACK);
circi(29,40,6);
color(RED);
circfi(50,40,6);
color (BLACK);
circi(71,40,6);

cmov2i(140, 95);
charstr(" Steering");P

move2i(140, 80);
draw2i(185, 80);

move2i(150, 85);
draw2i(140, 80);

move2i(150, 75);
draw2i(140, 80);

* move2i(175, 75);
draw2i(185, 80);

move2i(175, 85);
draw2i(185, 80);

cmov2i(140, 55);
charstr( "Brakes");

move2i(215, 65); 5

draw2i(215, 25);

xnove2i(210, 55);
draw2i(215, 65);

move2i(220, 55);
draw2i(215, 65);

znove2i(210, 35);
draw~ 17 9591 25)
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move2i(220, 35);
draw2i(215, 25);

linewidth(1);

closeobj 0;

} ~makehelp ~

ODOMETER

maketheodometer (odometer)
Object * odometer;

coord posl, pos2, tempx, tempy;
Coord temp, charx, chary;
posi = 467; pos2 = 50;
tempx = posi + 90; tempy = pos2 + 50;

* odometer = genobj 0;
makeobj (*odometer);
color(BLACK);
rectfi(posl, pos2 , tempx, tempy);
color( WHITE);
rectfi(posl+5, pos2+5, tempx-5, tempy-5);
color (BLACK);

temp = (tempx - posi - 10)/4;
rnove2(posl+5+temp, pos2+5);
draw2(posl+5+temp, tempy-5);

move2(posl+5+temp &2, pos2-+5);
draw2(posl +5+temp *2, tempy-5);

move2(posl+5+temp*3, pos2+i5);
draw2(posl+5+temp*3, tempy-5);

move2(posl+5+temp*4, pos2+5);
draw2(posl+5+temp*4, tempy-5);
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charx =posl±5+teznp/2; chary =(tempy-pos2)/2+pos2-5.0;

cmov2(charx, chary);
odotagi = gentagO;
maketag(odotagl);
charstr("O");

cmov2(charx + temp, chary);
odotag2 = gentagO;
maketag(odotag2);
charstr( I0"l);

cmov2(charx + temp*2, chary);
odotag3 = gentagO;
maketag(odotag3);
charstr("0");

cmov2(charx + temp*3, chary);
odotag4 = gentagO;
maketag(odotag4);
charstr("0");

* color(BLACK);
cmov2i(posl,pos2-15);

* charstrQ' meter");
closeobj 0

} *maketheodometer *

W A R N I N G P A'N E L

makewarning (warning)
Object *warning;

Coord tempx, tempy, posi, pos2;
Coord ix. iy, tempyl, ternpy2, tempy3, tempy4, hg;

posi 840.0; pos2 =10.0;7
tempx = posi + 140.0; tempy =340.0;
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iy = ix = 20.0;
*warning = genobi o;

makeobj ( *warning);

color(BLACK);
rectf(posl, pos2, tempx, texnpy);
hg = (330 -5*iy)/4;

dangertag =gentagO;

maketag(dangertag);
color (RED);
rectf(posl+ix, pos2+iy, tenipx-ix, pos2+iy+hg);
color(BLAC K);
cmov2(posl + (texnpx-posl)/2 - 25.0, pos2+iy+hg/2-5.O);
charstr(" Danger");

teniptag = gentagO;
maketag(temptag);
color(RED);
rectf(posl +ix,pos2 +iy '*2+hg,tempx-ix,pos2+iy *2+2*hg);

color(BLACK);
cmov2 (posi + (texnpx-posl) /2 - 12.0, pos2+iy*2+hg+hg/2-5.0);
charstr( "Temp");

beittag = gentagO;
* znaketag(belttag);
* color(RED);

ret~oli~o2i*+g2,ep-xps+y33h)
* color(BLACK);

cmov2(posl + (tempx-posl)/2 -40.0, pos2+iy*3+hg*2+hg/2-5.0);
* charstr ("Seat Belt");

braketag = gentagO;
inaketag(braketag);
color(RED);
rectf(pos 1±ix.pos2 +iy'4±hg %' .tempx-ix,pos2+iy*4+4Thg);
color(BLACK);
cniov2(posl + (teznpx-posl)/2 - 17.0, pos2+iy*4+hg*3+hg/2-5.o);
charstr (" Brake");

color(BLACK);
crnov2(posl42.O, tempyi5.0);
charstr( " Warning");
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rmuwlwrwrw~~w -'MMK.CwWW

closeobjO);
} * makewarning *

STEERING WHEEL

makesteerwheel(steerwheel)
Object *serwel

* steerwheel = genobjo;
makeobj (*steerwheel);

pushmatrixo;
color(BLACK);
circfi(512, 290, 40);
color( WHITE);
circfi(512, 290, 30);
color(BLACK);

translate (512.0, 290.0, 0.0);
steerwheeltag = gentagO;
maketag(steerwheeltag);
rotate(0, 'z')
rectfi(-33, -5, 33, 5);

popmatrixo;
closeobj;

}/*makesteerwheel*/

H E AD ING MET E R

makeheading (heading meter)
Object * heading-meter;
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Object meter, theading,
Coord posl, pos2 , tempx, tempy;
posl = heading xpos; pos2 = 350.0;
tempx = posi + 175.0;
tempy = pos2 + 12.5;

meter = genobj 0;
makeobj(meter);
color (BLACK);
rectf(posl-2.5, pos2-2.5, ternpx±2.5, tempy+3.5);
color( WHITE);
rectf(posl, pos2, tempx, tempy + 1.0);
closeobj();

/ * Generate the heading on top of the terrain map*/

theading=genobj 0;
makeobj (theading);
color(BLACK);

cmov2(000.0,pos2-2.0);
charstr("340");

cmov2(045.0,pos2-2.0);
charstr("350");

cmov2 (090.0,pos2-2.0);
charstr("360");

cmov2(135.0,pos2-2.0);
charstr("010");

cmov2( 180.,pos2-2.0);
charstr ("020");

cmov2(225.0,pos2-2.0);
charstr( "030");

cmov2(270.0,pos2-2.O);
charstr("040");

cmov2(315.0,pos2-2.0);
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charstr("050");

cmov2(360.O,pos2-2.0);
charstr("060");

cmov2(405.0,pos2-2.0);
charstr("070");

cmov2(450.O,pos2-2.O);
charstr("080");

cmov2(495.0,pos2-2.0);
charstr("O90");

cmov2(540.O,pos2-2.0);
charstr(" 100");

cmov2(585.0,pos2-2.O);
charstr("110");

cmov2(630.0,pos2-2.0);
charstr("120");

cmov2(675.O,pos2-2.0);
charstr("130");

cmov2(720.0,pos2-2.0);
charstr("140");

cmov2(765.O,pos2-2.O);
charstr("150");

emov2(810.0,pos2-2.0);
charstr("160");

cmov2(855.O,pos2-2 .0);
charstr("170");

cmov2(900.0,pos2-2.0);
charstr(" 180");

crnov2(945.0,pos2-2.O);
charstr(" 190");
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cmov2(9WO0,pos2-2.0);
charstr("200");

cznov2(1035.0,pos2-2.0);
charstr("210");

cmov2( 1OS.0,pos2 -2.O);
charstr( "220");

cmov2(1125.O,pos2-2.0);
charstr("230");

cxnov2(1170.O,pos2-2.0);
charstr("240");

cznov2(1215.0,pos2-2.0);
charstr("250"1);

cmov2( 1260.0,pos2-2.0);
charstr("260");

cmov2(1305.0,pos2-2.0);
charstr("270");

cniov2(1350.O,pos2-2.0);
charstr("280");

cmov2(1395.O,pos2-2.0);
charstr("290");

cxnov2( 1440.0,pos2-2.0);
charstr("300");

crnov2( 1485.0,pos2-2.0);
charstr("310");

cmov2(1530.0,pos2-2.O);
charstr(" 320");

cmov2(1575.O,pos2-2.0);
charstr("330");

cxnov2( 1620.0,pos2-2.0);
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charstr("340");

cmov2(1685.O,pos2-2.O);
charstr("350");

cmov2(1710.O,pos2-2.O);
charstr("360");

cmov2(1755.O,pos2-2.O);
charstr("O1O");

cmov2(1800.O,pos2-2.O);
charstr("020");

color(BLACK);

closeobj 0;

/* Put all the pieces together ~
* heading -meter =geno bj 0);
makeobj (* heading -meter);

/* Draw the boundary *
callobj (meter);

/* Draw the heading ~

scrmask( (int) posl,(int) tempx,(int) pos2,(int) tempy);

pushmatrixo,
transli gentago;
maketag(transll);

translate (.,O.O,O.O);

c allobj (t heading):
scrmaskIO.1O23,O.767);
popmatrix0;

color(RED);
Iinewidth(4);
move2(posl+175.O/2,pos2);
draw2(posl4-175.O/2,tempy);
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Iinewidth(l);

scrrnask (0,1023,0,767);
c loseobj;

} *makeheading *

xnakegauges (gauges)
Object *gauges;

* gauges = genobj();

xnakeobj (* gauges);

/* make the brake gauge ~

cmov2i(BRAKEX + 4, BRAKEY + 210);
charstr ("brakes");

color(RED);,
rnanbraketa g = gentagO;
niaketag(manbraketag);
rectfi(BRAKEX, BRAKEY. BRAKEX + 50, BRAKEY):
color(BLACK);
scalegauge(BRAKEX, BRAKEY);

1* make the cmdspeed gauge ~

cmov2i(CMDX - 6, CMDY + 226);
charstr ("command");

cmov2i(GMDX + 2, CMDY + 210);
charstr ("speed");

color(GREEN);
manspeedtag = gentago.
maketag(manspeedtag);
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rectfi(CMDX. CMDY, CMDX + 50, CMDY).
scalegauge(CMDX. CMDY);

closeobj()

* }*

scalegauge(basex, basey)
int basex, basey;

char tempstrI101:
inti;

/*outline the gauge$/

linewidth(2);
color(BLAC K);

* recti(basex, basey, basex + 50, basey + 200);
linewidth (1);

/~calibrate the gauge *

for (i = 10; i < 100; i =i+ 10)

move2i(basex, basey + 2* )
draw2i(basex + 13, basey + 2 * )

movei~baex +37, asey+ 2 i)

rov2i(basex + 37, basey + 2 * i);

cmov2i(basex + 16, basey + (2 *i) -4);

sprinf~tepstr "'(", 0

charstr(teinpstr):

) 4scalegauge()o

filename: CHECKKEY.C
author: Michael J. Dolezal
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date: May 20, 1987

#icld %11" * *$**** *****

#include "gln.h"

#include "device.h"
#include "vaxs.ext.h"

checkkeybd (ptnotdone, ptdebug, ptstart, ptznode, ptcondition)

Boolean *ptnotdone, *ptdebug, *ptstar;
int * ptmode, * ptcondition;

keypressed = NULL;

*ptmde =*ptcondition;

if (qtest)

I
qread(&keypressed);

switch (keypressed)

f
case 'q':
case 'Q': if (state -vector31 > 3.0)

*ptmode AUTOPILOT:
*ptstart =FALSE;

break;
/ * Cruise cont and driver steer *

case c:
case *C' if (('ptmode == ASteerN~p 'ptniode ==A~eerDr~pJ &

(state -vector'-' 13.0)1

*ptmode =AUTOPILOT,:

* ptstart FALSE:

else *ptmode = CruiseDrSteer:
break;

/ * Cruise cont and remote steer ~
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case Y
case 'R': if (*ptmode == ASteerNSp *ptmod ASteerDrSp)

*ptmode =AUTOPILOT;

*ptstar= FALSE;

else *ptmode = CruiseNavSteer;
break;

/* Auto speed and driver speed *
case 's:
case 'S': if (state -vector[31 > 3.0)

if (*ptmodje == CruiseNavSteer 11 *ptmod CruiseDrSteer)

* ptmode =AUTOPILOT;

* ptstart =FALSE;

else *ptmode = ASteerDrSp;

break;

case :a':/* Auto speed and remote steer ~

case 'A': if (state -vector[3] > 3.0)

if (*ptmode == CruiseNavSteer *ptod CruiseDrSteer)

*ptmode =AUTOPILOT;

*ptstar= FALSE;

else *ptmode = ASteerNSp;

break;
/ * All remote manual control ~

case ,
case W: *ptmode = Navyianual:

.ptstart =FALSE:
break;

case
case 'D': *ptmode DrManual;

*ptstart FALSE;

break;
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case Y:
case 'X': *ptmode - DrSteerNavSp;

*ptstart = FALSE;

break;

case T:
case ': *ptmode - NavSteerDrSp;

*ptsta r FALSE;

break;

case W:
case 'E': *ptnotdone FALSE;

break;

}
*ptcondition = *ptmode;

} /* checkkeybd */

filename: WELCOME.C
author: Tan Chiam Huat
modified by: Michael J. Dolezal
date: May 20, 1987

This same module is used on the Navigator's Display
and can be found in Appendix A of this study.

filename: LETTER.C
author: Tan Chiam Huat
modified by: Michael J. Dolezal
date: May 20, 1987

*** **************************************

/* This file contains routines to display block alphabetic characters
suitable for inclusion into graphics objects. These letters are
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used instead of IRIS FONTS when one desires to treat them as
graphics objects that can be rotated, scaled, etc. (font char-
acters can't)

/* This file includes routines for 27 characters, "A" through "Z",
and also :' and " " (blank) (but not "G","iQ"l,"V"," ,"X",Z") */ 1

/* The routine draws the desired letter in absolute coordinates.
in the center of the display.

/* To use these routines, the color desired for the letter must

be specified when the object is created (in the user program),
and the desired backgound color must be passed to the routine.

/* Original version written by J. Artero and R. Kirsch; current
version written by L. Williamson, digits added by Mike Dolezal. */

iinclude "gl.h"
#include "device.h"

letter (asci,backcolor)

int asci; /* index of character we want to display */

Colorindex backcolor; /* specified background color *.

{

Coord box [8][2]; /* vector of coordinates forming the
vertices of a letter object

switch(asci){ ::I
S

case 'A':

box[0][0]=4.6875;
box[OI[1J=3.25;
box[l]l[o=4.9375;
box[11111=4.25;
box[2[01=5.0625;
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box[2][11=4.25;
box[3] (01=5.3125;
box[3] 111=3.25;
polf2 (4 ,box);

color (backcolor);
box[O] []=4.8125;
box[OI[1]=3.25;
box[1] 101=4.84375;
box1[11=3.375;
box [2101=5.15625;
boxI2I [iJ=3.375;
box[3J [01=5.1875;
box[3] [1]=3.25;
polf2 (4 ,box);
box[0J (01=4.875;
box[11]=3.5;
box[1][01=5.0;
boxf 1] f]=4.0;
box[21[01=5.125;
box [21 [ 11 =3.5;
polf2(3,box);

break;

case 'B':

box[Ol 101=4.6875;
box (01 [11 =3.25:
box(1J[01=4.6875;
box[1] [11=4.25;
box[2] [0]=5.i875;
box[2][11=4.25;
box[3] [0] =5.3125;
box[3] [11=4.125;
box[4I [0] =.3 125;
box[4] [1] =3.375;
box[51 [0] =5.1875;
box[51 [1) =3.25;
polf2(6,box);

color (backcolor);
box[0][0]=5.25;
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box[0] [1]=3.8125;
box [1][0] =5.3125;

box[l][1] =3.875;
box[2] [01=5.3125;
box[2][l]=3.75;
polf2(3,box);

box [0101=4.8125;
box[0][1]=3.375;
box[l] [0]=4.8125;

box[2][0]=5.125;
box[2][l]=3.75;
box[3] [01=5.1875;
box[3] [11=3.6875;
box[4] [01=5.1875;
box[4] [1]=3.4375;
box[5][0]=5.125;
box[5] [11=3.375;
polf2(6,box);

box[0] [0J=4.8125;
box0j j[J = 3.875;
box[1] [01 =4.8125;

box [1j]=4.125;
box[2] [0]=5.125;
box[2J[11=4.125;
box[3] [01=5.1875;
box[3][11=4.0625;
box[4] [01=5.1875;
box[4] [1] =3.9375;
box[51[0]=5.125;
box[5] [i]=3.875;
polf2 (6,box);
break;

case

box[0] [0]=4.6875;
box[0] [1]=3.375;
box[1] [0]=4.6875;
box 1] [1] =4.125;

box[2] [0]=4.8125:
box[2] [1] =4.25;
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box(3J [01=5.1875;
box[3]11=4.25;
box[4] (01 =5.3125;

box[4][11=4.125;
box[5]tO]=5.3125;
box[5] [1]=3.375;
boxl6l [01=5.1875;
box 161111 =3.25;

box[7] 101=4.8125;
box[7][1]=3.25;
polf2(8,box);

color (backcolor);
box[OJ [01=4.8125;
box[0] [11=3.4375;
box[l] [0]=4.8125;
box[1] [11=4.0625;
box[2] (01 =4.875;
box[2j[1]4.125;
box[3J [01=5. 125;
box[3[]=4.125;
box[4] 101=5.1875;
box[4] 111=4.0625;
box[5] [01=5.1875;
boxi[i 111=3.4375;
boxj6][0J=5.125;
box[6I[1]=3.375;
box[7] [01=4.875;
box[7] [11=3.375;
polf2(8,box);

rectf(5.1875,3.5,5.3125,4.00);

break;

caseT:

box [01[0]=4.6875;
box[01f11=3.25;
box[1]101=4.6875;
box[1][11=4.25;
box[21[0]=5.1875;
box[2]ll=4.25;
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box[3] 101=5.3125;
box[3][11=4. 125;
box[4] [01=5.3125;
box[4J [1] =3.375;
box[5] [01=5.1875;
box[5J[1]=3.25;
polf2(6,box);

color (backcolor);
box[Il[0]=4.8 125;
boxOJ [1J=3.375;
box[1][01=4.8125;
box[l][11=4. 125;
box{2][0=5.125;
box[2] 111=4. 125;
box[3] [0] =5.1875;

box[3J[11=4.0625;
box[41 [01=5.1875;
box[41[11=3.4375;
box[5]j0]=5.125;
box[5] [1]=3.375;
polf2(6,box);

break;

case 'E':

rectf(4.6875,4. 125,5.25,4.25);
rectf(4.6875,3.25,5.3125,3:375);
rectf(4.6875,3.25,4.8125,4.25);
rectf(4.8125,3.75,5.0625,3.875);

break;

case 'F':4

rectf(4.6875,3.25,4.8125,4.25);
rectf(4 .6875,4.125,5.3125,4.25);
rectf(4.8125,3. 75,5.125,3.875);

break;

case 'H':
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rectf(4.6875,3.25,4.8125,4.25);
rectf(4.8125,3.6875,5.1875,3.8125);
rectf(5.1875,3.25,5.3125,4.25);

break;

case TI:

rectf(4.6875,4.125,5.3125,4.25);
rectf(4.6875,3.25,5.3125,3.375);
rectf(4.9375,3.25,5.0625,4.25);

break;

case '3:

box[OJ 101=4.6875;
box[0J[1] =3.375;
box[1] [O]=4.6875;
box[1J [11=3.625;
boxI2l [01=5.3125;
box[21111=3.625;
box[31 [01=5.3 125;
box[31 (11=3.375;
box[41 [0]=5.1875;
box[4J [11= 3.25;
box[5] 101 =4.8125;
box[51[] [=3.25;
polf2(6,box);

rectf(5.2,3.625,5.3125,4 .25);
color (backcolor);
box[0] [0J=4.8125;
boxOl [1] =3.4375;

box[l] [01=4.8125;
box~ill[11=3.625:
box[2][01=5.1875;
box[2] [1]=3.625;
box [3j101=5.1875;
box[3] [1]=3.4375;
box[41 [01=5. 125;
box[4][1]=3.375;
boxl5l[01=4.875;
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boxisi Ili=3.375;
polf2(6,box);

break;

case 'K:

rectf(4.6875,3.25,5.3125,4.25);

color (backcolor);
boxfOj [01=4.8125;
boxO] 111=3.875;
box(1j [0] =4.8125;
boxll] [1] =4.25;
box[2] [0J=5.125;
box[2] [iJ=4.25;
polf2(3,box);

box[0] 101 =5.02;
box[O]l 1=3.875;
boxll] 101=5.3125;
boxil]l]1=4.25;
box[2] 101=5.3 125;
boxf2] [i]=3.25;
polf'2(3,box);

box[Ol 101=4.8125; .

box~ll 101 =4.8125;
box(1J 111=3.625;
box[2] [0] =4.9;
box[2][11=3.74;
box[3] 101=5.14;
box 13111=3.25;
polf2(4,box);

break;

case V

rectf(4.6875,3.25,4.8125,4.25);

rectf(4.6875,3.25,5.3125,3.375);
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break;

case ''

rectf(4.6875.-3.25,5.3125,4.25);
color (backeolor);
box[I[01=4.6875;
box (01(11 I= 4.25;
box[1] 101=5.3125;
box[l[11=4.25;
boxf 21 (O]=5.0;
box[2][11=3.75;
polf2(3,box);

box[O]10]=4.8125;
boxOJ [1]=3.25;
box[l1 0] =4.8125;
box[1] [1]=3.8 125;
box[21 [01=5. 125;
box[2]I1J=3.25;
polf2 (3 ,box);

box[0][O]=4.875;
box[0][1]=3.25;
box[1] [0] 5.1875;
box[1] (1]=3.8 125;
box[2] [01=5.1875;
box [2] [1] =3.25;
polf2(3,box);

break;

case 'N':

rectf(4.6875,3.25,5.3125,4 .25);

color (backcolor);
box[0] [01=4.8125;
box[0] 1] =3.25;
box[1] [0] =4.8125;
box[1J [1=3.9375;
box[2] [O]5.l875;
box[2] []3.25;
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poff2(3,box);

box[iol[0]=4.8125;
box[0J [lJ=4.25;
box[1] 101=5.1875;

bo .l[1=4.25

box[2] 101=5.1875;
box[2] [11=3.5625;
polf2(3,box);

break;

case '0':

box[Ol [01=4.6875;
box[O][11=3.375;
box[1] [01=4.6875;
box[1] 111=4.125;
box[2] [01=4.8125;
box[2] [11=4.25;
box43] [01=5.1875;
box[3] 111=4.25;
box[4] [O]=5.3125;
box14I11]=4.125;
box[5] 101=5.3125;
box[5] 111=3.375;
box[61 [0]=5.1875;
box[61 [11=3.25;
box[7] [01-4.8125,
box[7][11=3.25;
polf2(8,box);
color (backcolor);
box[0] [0]=4.8125;
box[0] [1]=3.4375;
box [11[0] =4.8125;
box[1 i]=4.0625;
box[2J [0] =4.875;
box[2] [11=4.125;
box[3][01=5.125;
box[3] [1]=4.125;
box [4] [0]=5.1875;
box[4][1]=4.0625;
box [5]101=5.1875;

237



box[5] [1]=3.4375;
box[61[0]=5.125;
box[61[1I=3.375;
box[7][0l=4.875;
box[7] [1]=3.375;
polf2(8,box);
break;

case ''

box[O][0]=4.6875;
box[O][11=3.2-5;
box[1] [01=4.6875;
boxill [11=4.25;
box[2J [01=5.1875;
box[2] [i]=4.25;
box[3] [01=5.3125;
box[3] [11=4.125;
box[4] [01=5.3125:
box[41 [11= 3.25;
polf2(5.,box);

color (backcolor);
box[0][O)=4.8125;
box[OJ[11=3.25;
box[1] [01 =5.3125;
box[1] [1]=3.8125;
box[2] [01=5.3125;
box[2][11=3.25;
polf2(3,box);

box[O1 [01=4.8125;
boxOl [1] =3.8125;
box[1I [01=4.8125;
box[1] [11-4.125.
box[2] [01=5. 125:.
box [2][1] =4.125;
box[31[01=5.1875;
box[31[1]?=4.0625;
box[4] [01=5.1875;
box[4J [11=3.875;
box[5][01=5.125;
box[5] [11=3.8125;
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polf'2(6,box);
rectf(4.8125.3.25,5.3125,3.6875);

break;

case 'R':

box[0J[0J=4.6875;
box[0]J 11=3.25;
box[1J 101=4.6875;
box[ 11111=4.25;
box[2][O]=5.1875;
box[2] 111=4.25;
box[31 101=5.3 125;
box[3]11=4.125;
box[4] [01=5.3125;
box[4][1]=3.25;
polf2(5,box), ;

color (backcolor);
box[OJ 101=5.1875;
box[O[11=3.625;
boxill 10]=5.3125;

box[21[0]=5.3125;
box[2] 111=3.25;
polf2(3,box);

box[OI[Ol=4.8125:
box[0] [11=3.75;
box[1] [0J=4.8125;
box[ ]114.125;
box[2] 101=5. 125:,
box[2] [11=4. 125;
box[3][OJ=5.1875;
box[3] [11=4.062-5:
box[41[0J=5. 1875;
box[411]3.8 125;
box[51 101=5.125:.
box[5]111=3.75;
polf'2(6,box);

box[0J[0]=4.8125;
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box[0][1]=3.25;
box[1j [01=4.8125:

box[2] [0]=5.05;
box[2]1111=3.625:
box[31(01=5.175:
box[311= 3.25;
polf'2(4.box);

break;

case ''

box[0] [01=4.6875;
box[0] [11=3.375:
box[1] [01=4.6875;
box[1] [11=4.125;
box[2] [0] =4.8125:
box[2J [11 =4.25;
box[3I [01=5.1875;
box 13 ]1]= 4.25;
box[41[0=5.3125;
box [4j [1]=4.125;
box1[5]J01 =5.3125:

boxisi [11=3.375:
box[6] 10] =5.1875;
box[61 1] =3.25;
box[7] [01=4.8 125;
box[7] 1] =3.25;
polf2(8,box);

color (bac kcolor);
box[0][0]=4.8125;
box[0] 11= 3.4375;
box[1] [0] =4.8125:
box[I]( 11=3. 75
box [2] [0] =5.125:
box[2]111 =3.75;
box[3] [01=5. 1875:.
box[3][1]3.6875;
box[4] 10] =5. 1875:
box [41 Ill = 3.4 37 5;
box[5] [0]=5. 125:
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box [5] [11=3.375;
box[6]101=4.875:
box 161[11= 3.3 75;
polf2(7,box);

box[01[0j=4.8125;
box[0] [1] =3.9375;
box[1][0] =4.8125;
box~il[11=4.0625,
box[2][0]=4.875;
box[2] 111=4. 125;
box[3][01=5.125;
box[11 1=4.125;
box[41[01=5.1875;
box[4]114.0625; -

box[51 [0] =5.1875;
box[5][1J=3.875;
box[6]1[01=4.875;
box[6] [11=3.875:
polf2(7,box);

box[01[0]=4.6875;
boxIOIl]=3.5625;
boxll] 101=4.6875;
box [11111=3.875;
box[2] 101=4.8125;
box[2](11=3.75;
box[3110]=4.8125;
box[3] [11 =3.5625;
polf'2(4,box);

box[0j1]=5. 1875;
box [01[11=3.875;
box [1101=5.1875;
box[11 ]=4.0;
box[21[OJ=5:3125,

box[3] [0] =5.3125;
box 131 [ 11 =3.7 5;
polf'2(4,box);
break,

c ase
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rectf(4.6875,4.125,5.3125,4.25);

rectf(4.6375,3.125,5.625,4.25);

break;

case 'U':

box[O][0]=4.6875;
box[0J[l]=3.375;
box[11[01=4.6875;
boxl[1]=4.25;
box[21[0]=5.3125;
boxf 2]111] =4.25;
box[3J [0] =5.3125;
box[3][1=3.25;
box[4] 10] =4.8125;
box[4] [1] =3.25;
polf2(5,box);

color (bac kcolor);
box[O] [0]=4.8 125;
box[O] [1] =3.4375;
boxi[]10=4.8125;
box~l][1]=4.25;
box[2J (01=5. 1875;
bex[21[1]=4.25;
box[3][01=5. 1875;
box[3][1]=3.5325;
box[4j 101=5.01;
boxI4]11=3.375;
box[Sj[O]=4.875;
box[11=3.375;
polf2 (6,box);

box(0] [0]=5.0625;
box[0] [1] 3.25;
box[l1]O]=5.1875;
box l[111= 3.375;
box[2][01=5.1875;
boxI2I j1J=3.25;
polf2(3,box);

break;
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case 'Y': 1

box[0] [01=4.6875;
box[0] [11=4.25;
box[1J[0J=4.9375;
box[1] [i]=3.75;A
box[2] [01=5.0625;
box[2] [11=3.75;
box [3] [01=4.8 125;
box[31 [1] =4.25;
polf2(4 .box);
box[Oj [01=4.9375;
box[O][1J=3.75;
box[1] [O]5.0625;
box[1J 111=3.75;
box[21[01=5.3125;
box[2l[1]=4.25;
box[3] 101=5.1875;
box[31]=4.25;
polf2(4 ,box);

rectf(4.9375,3.25,5.0625,3.75);

break;

case '1': A

rectf(4.9375, 3.25, 5.0625, 4.25);

break;-A

case '2': '

box[0] [01=4.6875;
box [0] 1 ] =3.25;
box[1] [0[=4.6875;
box[1J [1]=4.25;
box[2] [01=5.1875:.
box[21111=4.25; 1
box[3J [0] =5.3125;
box [311]= 4.1 25;
box[4] [0] =5.3125;
box[4] [11=3.375;
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box[51[O1=5.1875;
box[5i [1] =3.25.:
polf2 (6,box);

color (backcolor);
box[OJ [01=5.25;
box[Oj[1J=3.8125;
box[ 11101=5.3125;
box[l]1] = 3.875;
box[21 101=5.3125;
box[2][1]3.75;
polf2(3,box);

box[0J [01 =4.8125;
box[0][1]=3.375;
box[1][O]=4.8125;
box[ 11111=3.75;
box[2] [01=5.125;
box[21[11=3.-75;
box[31[0]z=5.1875;
box[3] [1]=3.6875;
box[4I[01=5.1875;
box[41[11=3.4375;
box[5][0]=5.125;
box[5][11=3.375;
polf2(6,box);

box[0] [014.8125;
box[Oflh=3.875;-
box[1J [01=4.8125;
box[ 11111=4.125;
box[2][0]=5.125;
box[2] [11 =4.125;
box[3] [O]=5.1875;
box[3] [1]:=4.0625;
box[4] [01=3.1875;
box[4J [1] 3.9375;
box [51[01 5.125;
box[51[1]=3. 875;
polf2(6,box);

color (bac kcolor);

box(O[0J=4.8125;
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box[0][1]=3.875;
box[1] [01=4.8125;
boxjl] [11=4.125;
box[2]101=4.6875;
box[21[1] =4. 125;
box[3] [0]=4.6875;
box[3] [1]=3.875;
polf2 (4 ,box);

color (backcolor);
box[0] [0] =5.3125;
box[O] [11=3.875;
box i] [01 =5. 125;
box[1] [11=3.75;

4 box[21[0]=5.125;
box[2] [11=3.45;
box[3J [0]=5.3125;
box[3] [11-3.45;

* polf2(4,box);

break;

case '3:

* box [0) [01=4-6875;
box[0] [1]=3.25;
boxfl][01=4.6875;
box[1][1]=4.25;
box[2" [O]-5.1875-,
box[2)[1J=4.25;
box[3][01=5.3125;
box[3J[1J=4.125;
box[4] [O]=5.3125;
box[4] [1] =3.375;
box[5][0J=5.18745:
box[51[11=3.25:

* polf2(6,box);

color (backcolor);
boxl[OJ0=5.25;
box[0] [1]=3.8125;
box [1] [0] =5.3125;

box[ I1] 11 3875;
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box[2J 101=5.3125;
box[2][1] =3.75;
polf2(3,box);
boxIOl (oJ=4.8125;
box(Ol [11=3.375;
box[1] 101=4.8125;
box~ll 111=3.75;
box[2][01=5.125;
box[2llll=3.75;
box[3] 101=5.1875;
box[3] 111=3.6875;
boxl4l 101=5.1875;
box[41[11=3.4375;
box[5] [01=5.125;
box[5]lll=3.375;
polf2(6,box);

box[0] 101=4.8125;
box[0] [1]=3.875;
box~ll 101=4.8125;
box[1J 111=4.125;
box[21 [01 5. 125;
box[2][1j=4.125;
box[31 [01=5.1875;
box[3] [11=4.0625;
box[4][0]=5.1875;
boxI4]l 1=3.93375;
box[5i 101=5. 125;
box(51 111=3.875;
polf2(6,box);

COlOr(backcolor);
box([0]10=4.6875;
box[0ll]=[]3.375;
box[1J [0] 4.6875;
box l[111=4.125;
box[2]1[01 =4.8125;
box[211J=4.125;
box[1101=4.8125;
box[3]111=3.375;
polf'2(4,box);

break;
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case '4':

rectf(5.1875, 3.25, 5.3125, 4.25);
rectf(4.6875, 3.75, 5.3125, 3.875);
rectf(4.6875, 3.75, 4.8125, 4.25);

break,

case '5':

box[0] [0]=4.6875;
box[0] [1]=3.25;
box[1] [01=4.6875;
box[1] 111=4.25;
box[2] [01=5.3125;
boxl2l[1]=4.25;
box[3][J=5.3125;
box[3][11=3.375,
box[4J [01=5.1875;
box[4J [i]=3.25;
polf2(5,box);
color (backcolor);
boxiol [0] =5.25;

box[1][0]53.3125;
box[1] [i]=53875;

box[2][0]=5.3125;
box[2] [11=3.75;
polf2 (3,box),

box[0j 101=4.8 125;
box[01[11=3.375;
box[1]101=4.8125;
box[l][1]=3.75;
box[2][0]=5.125;
box[2] [1] =3.75;
box[3] [0=5. 1875;
box[3] [1]=3.6875;
box[4] [01=5. 1875;
box[4] [1]-3.4375,
box[5] [01=5.125;
box[5][1]=3.375;
polf2 (6,box);
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box[O] 10]=4.8125;
box[]1i11=3.875;
box[l] [0]=4.8125;
box[1][11=4.125;
box[2J [j=5. 125;
box[2][11=4.125;
box[3] [01=5.1875;
box[3] 11=4.0625;
box[4]101=5.1875;
box [4] [11=3.9375;
box[5]101=5.125;
box(51 [1] =3.875;
polf2(6,box),

color (backcolor);
box[Oj [0] =5.25;
box[ol [11=3.8125;
box[1] [0] =5.3125;
box~[1 1]=3.875;
box[2][0]=5.3125;
box[21]=4.125;
box[3J[0]=5.125;
box[31[11=4.125;
box[4][01=5.125;
box[4] [11=3.875;
polf2(5,box);

box[0] [0]=4.8125;
box[0][1]=3.375;
box[1][0]=4.8125;
box[1] [i]=3.75;
box[2] [01=4.6875;
box[2][1J=3.75;
box[3] [01=4.6875;
box [3111-=3.375,
polf2 (4 .box)-:

break;

case '6':
box[0] [0]=4 .68745;
box[0J [1] =3.25;
boxi[]0=4.6875;
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box[lJ [l]=4.25;
box[21 [0J=5.1875;
box[2J [1] =4.25;
box[31 101=5.3125;
box[31[1]=4.125;
box[4] (0]=5.3 125;
box[4J [1]=3.375;
box[5][[O]5.1875;
box[5][1]=3.25;
polf2(6,box);

color (backcolor);
box[O][0]=5.25;
box[0] f1]=3.8125;
box[l] 101=5.3125;
box[1] [1]=3.875;
box[2] [0] =5.3125;
box[2][1]=3.75;
polf2(3,box);

box[0] [01=4.8125;
box[O][1J=3.375;
boxfI1j0O]4.8125;
box[1] [1] =3.75;

box[2][01=5.125;
box[2] 111= 3.75;
box[3][01=5.1875;
box[3J [1]=3.6875;
box[4][01=5.1875;,
box[4] 111=3.4375;
box[51[0]=5.125;
box[5] [11=3.375;
polf2(6,box);

box[0] [0] =4.8125;.
box [OJ[11=3.875;
box[11[0]=4.8125;
box[l1111= 4.125;
box[2 [oJ=5. 125;
box1jil[l=4. 125;
box[3] [0] =5. 1875;
box[31]14.0625;
box[4] [0] =5.1875;
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box[4][11=3.9375;
box[51[0]=5.125;
box[S]11=3.875;
polf2(6,box);

box[O[0=5.3125;
box[O][11=3.75;
box[l][0]=5.3125;
boxilll-=4.125;
box[]2[0]=5.125;
box[2][1]=4.125;
box[3]1[01=5.125;
box[3][1]=3.875;
polf2(4, box);

break;
case ':1:

rectf(4.9375.3.35,5.0625,3.60);
rectf(4.9375,3.90,5.0625,4.15);

break;

case '.

break;

} 1* end switch *f

} /* end routine "letter"

/********** ******************************

filename: NETV.C
author: James Manley
modified by: Michael Zyda
date: April 29, 1987

This is the same routine used in the Navigator's
Display. The code for the module can be found in

Appendix A of this study.
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filename: LOADARRAY.C
author: Michael J. Dolezal
date: May 20, 1987

Reads road map into system array named roadmap

#include "const.h"
#include "vars.ext.h"
#include "stdio.h"
#include -<errno.h>

* mnt loadarray()

* int i;
* FILE *fp;

if ((fp = fopen("roadmap", fr")) NULL)

printf( "Cannot read roadmap. \n");
return(-');

else for (i = 0: !feof(fp): ++-fi)

fscanf(fp ," %f %f %fP, &roadmap [i] 101, &roadmap [[i],,
&roadxnap(iJ 121);

setbell('1');
ringbell():
setbell('2');

p ringbell():

return(--i);

filename: CONST.H
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author: Michael J. Dolezal
date: May 20, 1987

All program constants are defined in this file

typedef float Dimension;

#include "gl.h"
# include "device.h"
#include "znath.h"
#include "time.h"
#include "stdio.h"

#define SYSTEM ORDER 4
#define MOUNTAIN 8
#define MOUNTAIN1 9
#define SKY 10
#define FIELD 11
#define WARN. 12

#define WALL 13
#define SIDEWALL 14
#define ROOF 15
#define WINDOW 16
#define CHMWALL1 17
#define CHMWALL2 18
#define SIDEROOF 19
#define FRAME 20

*#define SIDEWALLI 21
: define WALLI 22

*#define ROOF 1 23
#define FRAMEl 24

*#define WINDOW1 25
#define DIMGREEN 26
#define DIMYELLOW 27
#define DIMRED 28
#define GRAY 29
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#define MAXFUEL 3000.0
#define PI 3.14
#define Crossroadlen 4000
#define REDLIGHT 1
#define YELLOWLIGHT 2
#define GREENLIGHT 3 a
#define ON 1
#define OFF 0
#define MPS TO KMPH 3.6
#define RAD TO DEG 57.2215 /* This is equivalent to (360)/(2 *PI) *
#define BENDRA:DIUS 76.0
#define ROADWIDTH 16.0
#define ROADLEN 400.0
#define LAPDIST 2174
#define DrManual 0
#define ASteerNSp 1
#define Grui,-eNavSteer 2
#define AUTOPILOT 3
#define CruiseDrSteer 4

#define ASteerDrSp 5
#define NayManual 6
#define DrSteerNavSp 7
#define NavSteerDrSp 8
#define BRAKEX 397
#define BRAKEY .10 9

*#define CMDX 577
#define CMDY 10
#define BRAKEGAIN 0.0015

filename: VARS.H
author: Michael J. Dolezal2
date: May 20, 1987

41 .

All global variables are in this file.
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Tag transl4, transl3, transl2;
Tag transl, transl, trans22;

Tag odotagi, odotag2, odotag3, odotag4;
Tag dangertag, temptag, beittag, braketag;
Tag fuell, roadlooktag, skylooktag, stopsigntag;
Tag greenlighttag, yellowlighttag, redlighttag;
Tag steerwheeltag, terrainllooktag;
Tag manbraketag, manspeedtag;
Tag houselooktag, housetranstag;
Tag housescaletag;
Tag housellooktag, houseltranstag;
Tag houseiscaletag;

Coord latri[3][2], ratri[3][2];
float fuelbar,speedbar;
float fuelquant = MAXFUEL; /* Maximum fuel available *]
float headingxpos 429.5; 1* Heading indicator position */
float speedinc = 1.0; /* Speed increment/decrement *1

Device keypressed;

Boolean start = FALSE; /* Start of program flag *1

/,

Larger turning response-gain corresponds to "stiff"
steering and lower value corresponds to "sloppy"
steering. Large velocity gain corresponds to sedan
automobile and smaller value corresponds to sport car.

Operator has control over steer wheel angle and speed
using the mouse.

Car time is the integration timer.

float state vector[5];
float velocity _time consant = 9.0;
float turning response gain = 0.02;
float headingangle gain 0.294;
float heading-anglerate gain = 0.828;
float steer wheel _angle - 0.0; /* Unit is radian */
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float predictiontime = 1.17; /* Unit is second */
float sigmadot 0.0;
float steer inc = 0.10; /* Unit is radian */

float car time 0.0;
float deltat - 0.17;
float speed 0.0;
float sigma = 0.0;

1* IRIS allow such a large array only if it is global */
float roadmap[5000][3];

Angle Fov = 1000; /* Field of view 100 deg */

int distance = 0; /* distance traveled *1

********* ******** ** *** ******* *** ******* ***I/'

filename: VARS.EXT.H
author: Michael J. Dolezal
date: May 20, 1987

.4
********* *********************** *********

1*

All external variables are in this file

extern Tag transl4, transi3, transl2;
extern Tag transli, transl, trans22;
extern Tag odotagi, odotag2, odotag3, odotag4;
extern Tag dangertag, temptag, belttag, braketag;
extern Tag fuell, roadlooktag, skylooktag, stopsigntag;
extern Tag greenlighttag, yellowlighttag, redlighttag;
extern Tag steerwheeltag, terrainllooktag;
extern Tag manbraketag, manspeedtag;
extern Tag houselooktag, housetranstag;
extern Tag housescaletag;
extern Tag housellooktag, houseltranstag,-
extern Tag houseiscaletag;

1%
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extern Coord latri[3][2], ratri[3][2];

extern float fuelbar,speedbar;
extern float fuelquant;
extern float headingxpos;
extern float speedinc;

extern Device keypressed;

extern Boolean start;

extern float statevector[5];
extern float velocitytimeconsant;
extern float turningresponsegain;
extern float headinganglegain;
extern float headinganglerate gain;
extern float steer wheel angle;
extern float prediction time;
extern float sigma dot:
extern float steer inc;
extern float car time;
extern float deltat;
extern float speed;
extern float sigma;

extern float roadmap[5000][3];

extern Angle Fov;

extern int distance;

filename: MAP.C
author: Tan Chiam Huat
modified by: Michael J. Dolezal
date: May 20, 1987

This module works independently from the rest of the system.
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It generates the road map for autonomous navgiation.
Original by Tan Chiam Huat, modified by Mike Dolezal to complete the
circuit with the car in the right lane.

#include <stdio.h>
#include <math.h>

main()

FILE *fp;
int i:

/* Road Specification * p

1* Note: Must match that used in the carsinuxc program ~

float bendradius 76.0;
float roadwidth =16.0;P

float leni = 400.0;
float len2 = 400.0;
float len3 = 400.0;
float len4 = 400.0;
float newx, newy, miss;
float caix, caly, start-rad,
float perstep rad;

flot sep= 10; ~road map increment step ~
float radp 1.b0;adus
float rad2 bendradius;
float rad3 = bendradius;
float rad4 = bendradius;
float lastxv=luendais
float lastyvalue;

float x1. yl. z1:
float x2. v2, z2:
float x3, y3, z3;
float x4, y4, z4;
float x5, y5, z5;
float A6, y6, z6;
float x7, y7, z7;
float x 8, y8, z 8

1* Road Segment Specifications *
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XI 0.0; yl = 0.0; zi = 0.0;
x2 = 0.0;, y2 = leni; z2 = 0.0;
x3 = radi; y3 =y2 + radi; z3 = 0.0;
A4 = x3 + len2; y4 =y3; z4 = 0.0;
x5 = x4 + rad2; y5 =y4 - rad2; z5 =0.0;

A = x5; y6 = y5 - Ien3; z6 =0.0;
x7 =x5 - rad3; y7 =y6 - rad3; z7 =0.0;

x8 = x7 - len4; y8 =y7; z8 = 0.0;

fp = fopen (" roadmap ,w")

newy = yl;,
for (i = 0; newy <= y2; ++i)I

#ifdef DEBUG
printf("%.2f %.2f %.2f\n",xl,newy,z 1);

#endif

fprintf(fp,"%.2f %.2f %.2f\n",xl,newy,zl);
lastyvalue = newy;
newy += step;

newy l astyvalue;
miss =y2 - newy;

#ifdef DEBUG
printf("missl % .2f\n" ,miss);

-Aendif
start rad = 0;
if (miss > 0)

f
start rad = rniss/radl;
caix = cos(start _rad);
caly = sin(start _rad);
newy += valy:
newx + = caix;

#ifdef DEBUG
printf("%.2f %.2f %.2f\n",x2+newx,y2+newy,z2);

#endif

fprintf(fp,"%.2f %~.2f %.2f\n",x2+newx,y2±newy,z2);
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perstep_rad = step/radi;
for (i = 0; newx <= x3; ++i)

start -rad ±= perstep-rad;
calx =radi * cos(start rad);
caly =radi * sin(start-rad);
lastxvalue = newx;
lastyvalue = newy;
newy = y2 + caly;

* newx = x2 + (radi - cabc);
if (newx < x3)

* #ifdef DEBUG
printf(t1 %.2f %.2f %.2f\n",newx,newy,z2);

#endif

fprintf(fp. "% .2f %.2f %.2f\n".newx.newy,z2);

newx = lastxvalue;
newy = lastyvalue;

4 miss = x3 - newx;

#ifdef DEBUG
printf("miss2 %. 2f\ n ",miss);

* *endif

if (miss > 0)
I
newx = x3 + miss;

*ifdef DEBUG
printf( "%.2f (7c.2f %/.2f ,n",newx,y4,z3);

#endif

fprintf(fp,"7o.2f % .2f %.2f\n" ,newx,y4,z3);

for (i =0; newx <= A4; ++i)
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lastxvalue = newx,
newx += step;
if (newx < = x4)

#ifdef DEBUG
printf("%/'.2f %.2f %.2f\n" ,newx,y4,z3);

#endif

fprintf(fp,"'/.2f %.2f %.2f\n",newx,y4,z3);

newx -lastxvalue,

miss =x4 - newx;

#ifdef DEBUG
printfQ'rniss3 %.2f\n",miss);

#endif

start rad = 0:

if (miss > 0) i

start rad = miss/rP d2;
caly = rad2 * cos(start rad);
catx = rad2 * sin(start rad);
newy = y4- (rad2 - caly);
newx = x4 + calx;

#ifdef DEBUG
printf("%.2f %.2f %.2f\n" ,newx,newy,z4);

#endif

fPrintf(fp,"'% .2f %.2f %.2f\n" ,newx,newy,z4);

perstep _rad = step/radi:
for (i =0; newy >=y5; + +i)

start rad += perstep rad;
caly = rad2 * cos(start _rad);
caix =rad2 * sin(start-rad);
lastxvalue = newx;
lastyvalue = newy;
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newx =x4 + caix;
newy = y4 -(rad2 -caly);

if (newy >= y5)

#ifdef DEBUG
printf("%.2f %.2f %.2f \n",newrx,newy,z4):

#endif

fprintf(fp ," %.2f % o.2f % .2f\n" ,newx,new-y~z)

newx = lastxvalue;
newy =lastyvalue;
miss = newy - y5; J,

#ifdef DEBUG
printf( "miss4 97c 2f\~ n ",miss);

#endif
if (miss > 0)

*newy =Y5 + miss;
#ifdcefDEU

printf("'%.2f %.2f %.2f\n",new-x,newy,z5);
#endif

fprintf(fp," %.2f % .2f % .2f\n" ,newx,newy,z5);

for (i =O0 newy >= y6. ++i)

lastyvalue = newy;
newy -~ step;
if (newy >= y6)

*ifdef DEBUG
printf( "% c.2f %,.2f % .2f,\n" ,newx,newy,z5);

#endif

fprintf(fp,"%.2f %.2f %.2f\n",newx,newy,z5);

newy =lastyvalue;
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miss = newy -y;

#ifdef DEBUG
printf("miss5 %.2f\n ",miss);

#endif

start rad = 0;
if (miss > 0)

start -rad = miss/rad3;
caix = rad3 cos(start-rad);
caly =rad3 *sin(start -rad);
newx = x6 -(rad3 - caix);
newy = y6 -caly;

#ifdef DEBUG
printf("%.2f %.2f %.2f\n",newx,newy,z5);

#endif

fprintf(fp."%.2f % o.2f %7.2f \n" ,newx,newy,z5);

perstep-rad =step/rad3;
for (i =0: newx > = x7; ±±i)

start -rad += perstep-rad;
calx = rad3 *cos(start-rad);

caly = rad3 *sin(start-rad);

lastxvalue = newx;
lastyvalue = newy;
newy = y6- caly;
newx = x6 - (rad3 - caix);
if (newx > = x7)

4 ifdef DEBUG
printf("% c.2f %7.2f %.2f \n" ,newx,newy,z5);

#endif
fprintf(fp,"% .2f % .2f % .2f\n" ,newx,newy ,z5);

newx =lastxvalue;
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newy = lastyvalue;
miss = newx - x7;

#ifdef DEBUG
printf("miss6 %.2f'\n",miss);

#endif

if (miss > 0)

newx = x7 - miss;

#ifdef DEBUG
printf("%.2f %.2f %.2f\n",newx,y8,z8);

#endif

fprintf(fp,"%.2f %.2f %.2f\n",newx,y8,z8);

for (i = 0; newx -,= x8; ++i)

lastxvalue = newx;
newx - step;
if (newx >= x8)

#ifdef DEBUG
printf(" %.2f % .2f %.2f\n" ,newx,y8,z8);

#endif

fprintf(fp,"%.2f %.2f %.2f\n",newx,yS,z8);

newx =lastxvalue;

miss newx - xc8;V

#ifdef DEBUG 1
printf( "miss7 % .2f~n" ,miss); '

#endif

/* Process curve #4 ~

newx =lastxvalue;
newy = lastyvalue; I
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miss = x8 - newx;

#ifdef DEBUG
printf( "miss8 %.2f\n"l,miss);

#endif

start rad = 0;
if (miss > 0)

start -rad = miss/rad4;
caly = rad4 * cos(start rad);
calx = rad4 * sin(start-rad);
newy = y8 + (rad4 - caly),
newx = x8 - caix;

#ifdef DEBUG
printf(" % .2f % .2f % .2f\n" ,newx,newy,z4);

#endif

fprintf(fp,"%.2f %.2f %.2f\n",newx,newy,z4);

perstep-rad = step/radi;
for (i = 0; newy <= yl; +±i)

start rad += perstep rad;
caly = rad4 * cos(start-rad);
calx =rad4 * sin(start rad);
lastxvalue = newx;
lastyvalue = newy;
newx = x8 - caix;
newy = y8 + (rad4 - caly);
if ((newy >= y8) && (newy <= yl))

#ifdef DEBUG
printf("'37.2f %.2f % .2f ,n" ,newx,newy~z8);

#endif

fprintf(fp,"%.2f %.2f %.2f\n" ,newx,newy,z8);

fclose(fp);
} *main ~
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filename: MAKEFILE d

author: Tan Chiam Huat
modified by: Michael J. Dolezal
date: May 20, 1987

CFLAGS =-Zf
SRCS =other.c\

netV.c\
integrate. \
display.c\
letter.c \
welcome.c\
find-subgoal.c\
checkkey.c\
loadarray .c
circuit.c\
carsimu.c

OBJS =other.o'\

netV .o\,
integrate.o\
display.o \
welcome.o\
carsixnu.o\
find _subgoal.o\
checkkey.o,,
loadarray .o\
circuit.o\
letter .o

carsimu: S(OBJS)
cc -o carsimu $(OBJS) -Zf -Zg -lxxi -Ibsd -ldbmi

*(OBJS): const.h
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