Wittig Synthesis Of Conductive Segmented Block Polymer Compositions

by

Paul J. Hans and Bernard Gordon III

Prepared for Publication

in the

ACS Division of Polymer Chemistry, Polymer Preprints

Penn State University
Polymer Science Section
Materials Science and Engineering Department
University Park, PA 16802

August 1, 1987

Reproduction in whole or part is permitted for any purpose of the United States Government

This document has been approved for public release and sale; its distribution is unlimited.
Wittig Synthesis of Conductive Segmented Block Polymer Composites (unclassified)

Conducting polymers such as polyacetylene and polyparaphenylene have been shown to have electrical conductivities which vary from the insulator to semiconductor and metallic regimes upon doping with electron acceptor or donor molecules. Unfortunately, many of these materials are plagued by undesirable properties such as oxidative instability (in the case of polyacetylene) and intractability or infusibility. Researchers have attempted improvements of the physical properties and environmental stability of polyacetylene by blending with elastomers, preparing composites with polyethylene film, and synthesizing block and graft copolymers. Some enhancements of the physical properties of the materials (e.g., mechanical behavior, solubility behavior) compared to polyacetylene were generally observed. Electrical conductivities were generally less than for pure polyacetylene although stretching blend films was observed to enhance the conductivity, often by an order of magnitude over the unstretched film. In this paper we reported
on the preparation of segmented block polymers prepared via a Wittig condensation of conductive poly(p-phenylene pentadienylene) oligomers and linear alkanes. It is felt that preparation of segmented block polymers will result in conductive materials with good mechanical properties providing phase morphology and size can be controlled.
WITTIG SYNTHESIS OF CONDUCTIVE SEGMENTED BLOCK POLYMER COMPOSITIONS

P.J. Hana and B. Gordon III
Department of Materials Science and Engineering
Polymer Science Program
The Pennsylvania State University
University Park, PA 16802

Conducting polymers such as polyparaphenylene and poly(paraphenylene) have been shown to have electrical conductivities which vary from the insulator to semiconductor and metallic regimes upon doping with electron acceptor or donor molecules, such as AsF5 and Na respectively. Unfortunately these materials are plagued by undesirable properties such as oxidative instability and insusceptibility to instability in poly(paraphenylene) by blending with elastomers (1-3, 13a, 13b), preparing composites with polyethylene film by insitu polymerizations (4, 5, 13c), and synthesizing block (6, 7) and graft (15) copolymers. Some enhancements of the physical properties of the polymers (e.g. mechanical behavior, solubility behavior) compared to poly(acetylene) were generally observed. Electrical conductivities were generally less than those of poly(paraphenylene) although stretching blend films was observed to enhance the conductivity, often by an order of magnitude over the unstretched film (1, 13a).

Work in our laboratory has focused on an alternate route to n-type poly(paraphenylene vinylene), namely poly(acetylene pentadienylene), 1, prepared via a Wittig synthesis as shown in Figure 1.

\[
\text{Br}^+ \quad \text{Br}^- \quad \text{Ph}_3 P - t- \text{CH}_2 \text{CH}_2 \text{PPh}_3 \quad \text{THF} \quad \text{Ph}_3 P \equiv \text{CH} (\text{CH}_2)_n \equiv \text{CH} \equiv \text{PPh}_3
\]

Figure 2.

Two comments can be made about this approach. Gourley et al., [14] studying poly(paraphenylene vinylene) oligomers observed that the conductivities were not strongly affected by the degree of polymerization. This suggests that long conjugated chains are not necessary for conductivity. Galvin and Wnek [4, 13c] observed an apparent percolation threshold of the electrical conductivity at approximately 3 weight % poly(paraphenylene) in the polyethylene film composites. Attempts at dispersing polyparaphenylene powder in polyethylene films cast from solution did not yield high conductivities (upon doping) even at loadings as high as 40 weight % poly(paraphenylene). This was rationalized as being due to a "combination of particle size and wettability effects" [13c]. Transmission electron micrography data of a composite sample indicated irregularly shaped dispersed phases of poly(paraphenylene) (on the order of 600 - 2000 Å) in the polyethylene matrix. On the other hand, the films loaded with powdered poly(paraphenylene) were "grossly inhomogeneous on a microscopic scale." [4].

The degree of polymerization and the size of the conducting segments we hope to be able to control the phase morphology and phase size in the block polymers obtaining microdomains of poly(paraphenylene pentadienylene) dispersed in the alkane matrix, analogous to conventional segmented block polymer systems [16].

The doped form of 1, being a carbanion, is highly reactive towards proton sources and oxygen and therefore would not be stable in an air environment. Current work in our laboratory is aimed at chemically stabilizing the delocalized carbanions [12]. The formation of segmented block polymers offers the possibility of physically stabilizing the conductive segments by surrounding them in a matrix of insulating segments in a manner somewhat analogous to work performed with poly(acetylene) [1, 2, 3].

Finally, we will present room temperature d.c. conductivity data on a series of low molecular weight delocalized carbanions of increasing length of conjugation. These are shown in Figure 2 along with some preliminary conductivity data for three of the anions measured by the direct resistance method. The anions were prepared using the Loehmann's base mixture [17] (equimolar amounts of potassium tert-butoxide and n-butyl lithium in...
pentane) as the metalling system. It should be noted that the linear heptatrienyl anion readily cyclizes to the cycloheptatrienyl anion [18] above -30°C and therefore could not be measured. The salts were washed thoroughly with dry pentane, dried under vacuum (< 0.01 mm Hg) and the electrical conductivity was measured using the direct resistance and four probe methods.

\[
\sigma = -4 \times 10^{-1} \text{(Ω-cm)}^{-1}
\]

\[
\sigma = -1 \times 10^{0} \text{(Ω-cm)}^{-1}
\]

\[
\sigma = -1 \times 10^{-10} \text{(Ω-cm)}^{-1}
\]

\(\ast\) from ref. 10

Figure 3

In summary, segmented block polymers have been prepared via a Wittig condensation of poly(p-Phenylene pentadienylene) oligomers and linear alkynes and their conductivities measured. It is felt that preparation of segmented block polymers will result in conductive materials with good mechanical properties providing phase morphology and size can be controlled. In addition, the conductivities of a series of low molecular weight delocalized carbamions have been reported.

Acknowledgments

The authors acknowledge the Office of Naval Research for financial support.

References
1. Rubner, M.F.; Tripathy, S.K.; Geoger, J.; Cholawa, P.; Macromol. 1983, 16, 870
5. Galvin, M.E.; Weck, G.E.; Polymer 1982, 23, 795
6. Aldissi, M; Syn Metals 1986, 13, 87
8. Gordon III, B.; Hancock, L.F.; Polymer - in press
END
10-87
DTIC