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Explosive

Close Combat Vehicle--Light

Critical Design Review

Contract Data Requirements
List

Central Engineering
Laboratories

Columbia Heights Center

configuration management

Contracting Officer's Technical
Representative

Defense Contract Audit Agency

Defense Contract
Administration Services

direct fire control

degree-of-freedom

Division Support Weapon System

Defense Technical Information
Center

Equal Employment Opportunity

electromagnetic pulse

Enhanced Self-Propelled
Artillery Weapon System

free on board

fire out of battery

failure reporting, analysis, and
corrective action system

general and administrative

Generic Autoloader System

Government Industry Data
Exchange Program

1

2
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HHS
HIP
HMMWY

ICAS
IFC

ILS
IR&D
LIFWS -
LSA
LTHD
MRB

NAVPRO
Office

PAC
PDR
PHA
POPS

QA

QC

QE
RAM-D
RDF
RFP
RPM
RRS

SF
Sow

TPM
TTB
UM

wBS

hybrid hard/soft

Howitzer Improvement Program

High~Mobility Multipurpose
Wheeled Vehicle

Improved Conventional
Armament System
indirect fire control
integrated logistics support
independent research and
development

Lightweight Indirect Fire
Weapon System

logistics support analysis

Lightweight Towed Howitzer
Demonstrator

Material Review Board

Naval Piant Representative

payroll added cost

Preliminary Design Review
preliminary hazard analysis
Pricing of Proposal Systems

quality assurance
quality control
quadrant elevation

reliability, availability,
maintainability, and durability

Rapid Deployment Force

request for proposal

rounds per minute

Robotic Resupply System

standard form
statement of work

technical performance
measurement
Tank Test Bed

unit of measure

work breakdown structure
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:E‘ - Compliance Matrix
. ' RFP Reference Proposal Response
¢ Section/
] '.::\* Paragraph | Page Requirement Definition Volume | Paragraph | Page
* )Y
I - C 4 Description, Specifications, Work Statement:
’ C.L.A 4 | General:
R C.1.B 4 | Environmental 34, | 3.L1.10, |3-8,
MRS 3B 2.2.2 2-4
N C.l.C 5 System Safety 3A, 4.,3.3, 4-23,
AR 3B 4.3.3 4-26
S C.1.D 5 | Periodic Meetings 3A, 4.1, 4-1,
i ’ 3B 4.1 4-1
B C.2 6 | 155-mm Towed Howitzer Demonstrator
M C.2.A 6 Operational Requirements:
3 e Stability for Firing and Towing 3A 3.1.4.2, 3-1]0,
My 3.3.2.1 3-49
b ‘. Mistire and Cookoff Handling 3A 3.1.1.2.4 |3-3
R o Air-Droppable and LAPES-Certifiable 3A 3.1.1.9 3-7
bt Cross-Country Capability 3A 3.2.2 3-22
e Emplacement:
SIS Emplaced by Four Persons in
-, 3 Minutes 3A 3.2.2.2 3-28
i o Shiftable by Four Persons in
: i 3 Minutes to 6,400 mils 3A 3.2.2.4 3-43
] : Fires all 155-mm Conventional and
y Improved Munitions 3A 3.3.1 3-46
} o Range Equal to or Greater Than M198 3A 3.3.1.1 3-48
HHESN Transportable by UH60 Helicopter 3A 3.1.1.9 3-7
;'.: Maintain M198 R&M Performance 3A 4,3.4.3 4-26
‘o Preliminary Defect Criteria Stated 3A 4.3.4.3 4-26
! C.2.B 6 Physical Requirements:
: Weight Not Greater Than 9,000 Pounds 3A 3.2.1 3-22
N Size Not Greater Than M198 Envelope
N Volume 3A 3.2.2.1 3-28
': - Maximum Impulse to Recoil is 12,500 3A 3.3.2.3.2 |3-56
- Ibs. sec.
& C.2.C 6 Detailed Requirements:
b1 C.2.C.1 6 Phase I--Study and Analysis 3A 4.1.1 4-]
2 C.2.C.2 7 Phase II--Detailed Hardware Design 3A 4.1.2 4-2
™ oo C.2.C.3 7 Phase Ill--Hardware Development and 3A 4.1.3 4-5
K £ Test
C.2.D 8 Human Factors Requirements 3A 4.3.2 4-22
. C.2.E 8 Prepare Quality Assurance Plan 3A 4,3.4.3 4-26
N C.3 9 | Innovative Recoil Mechanism
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Compliance Matrix--Continued

ﬁ RFP Reference Proposal Response
Section/
) Paragraph |Page Requirement Definition Volume | Paragraph| Page
<.
Y caa 9 Operational Requirements:
9 Reduce Recoil Force by 50% Over 3B 4.2.2.3 4-10
. M198 M45 Mechanism
R 9 Maximum Impulse to Recoil is 3B 3.3 3-20
13,000 1lbs. sec.
P 9 Provide Portable Energy Component 3B 3.2 3-15
i C.3.B 10 Physical Requirements:
10 Weight 1,750 Ib ’ 3B 3, 3-4
10 Adaptable to M198 Cannon Assembly 3B 3.1 3-1
§ 10 Recoil and Cannon Assembly Mountable 3B 3.1 3-]
to M39 Carriage or Equivalent
10 Establish Parts Control and 3B 4.3.5 4-31
@ Standardization Program
10 Detail Requirements: 3B 4.1 4-]
10 Phase I--Study and Analysis: 3B 4.1.1 4-]
vy C3.C.2 10 Phase II--Detailed Hardware Design: 3B 4.1.2 4-2
74 CJA3.C3 11 Phase IlI--Hardware Development and 3B 4.1.3 b-5
Test
+, C.H.A 11 | Data 3A 5.3.2, 5-1
u 5.5.2 5-2
C.4.B 11 | Document Software 3A 5.3.2, 5-1
5.5.2 5-2
< C..C 11 | Provide Final Report 3A 5.3.2, 5-1
N 5.5.2 5-2
c.4.D 12 | Provide Program Plan 4
C.4.E 12 | Provide Monthly Cost and Performance 3A 5.3.2, 5-1
! Reports 5.5.2 5-2
T F. 20 | Incremental Completion Dates 4 4 4-3
-~ H.2d 22 | Government-Furnished Property 4 5 3-3
- Delivery Schedule
< Lu 57 | Predetermination of Rights in Technical 1 3 3-1
Data
» L.8 60 | Contract Data Requirements List l 4 4-2
~: L.10 60 | Contract Pricing Proposal
L.11 60 | Identification of Technical Uncertainties 4 3.6 3-11
o La2 61 | Identification of Limited Rights Data 1 3 3-1
oo LJ9b 63 | Proposal Content:
& L.l 63 | Contract Data (SF33 and Continuation 1
Sheets):
A% L.9.b.l.(a)| 63 Identification of Limited Rights ! |3 3-1
e Data and Supporting Rationale
L.19.b.1.(b)} 63 DD Form 1423's 1 4 4-2
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Compliance Matrix--Continued

RFP Reference

Proposal Response

Section/
Paragraph |Page Requirement Definition Volume | Paragraph|Page
L.19.b.1.(c)| 63 Identification and Justification for 1 5 5-1
Exceptions, Deviations, or Additional
Tailoring
L.19.b.2 63 Work Breakdown Structure Dictionary 2 1,2 1-1
L.19.b.3 63 Technical Approach:
Towed Howitzer Demonstrator 3A
Artillery Recoil Mechanism 3B
L.19.b.4 64 Program Plan: . 4 2.8 2-1
L.19.b.4.(a)| 64 Contractor's Organization:
FMC 4 2.1 2-1
Northern Ordnance 4 2.3, 2.4 2-]
LIFWS Project 4 2.5 2-5
Key Team Member Resumes 4 2.6 2-10
Administrative Procedures 4 3.4, 3.5, |3-6
3.7, 3.8 |3-11
Reporting Procedures 4 3.4, 3.5 3-6
3.7,3.8 |3-18
L.19.b.4.(b)| 64 Program Milestones and Events 4 4 4-3
L.19.b.t.(c)| 64 Direct Hours Identification, Description,
and Quantification by WBS Level 3
and Contract Phase 4 6,7 6-1,
-1
L.19.B.5 64 Cost Data 5 3 3-1
SF 1411 5 2 2-2
7
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Section 1
Introduction

We have the experience and capabilities
to conceptualize, design, and fabricate
the Lightweight Towed Howitzer
Demonstrator (LTHD). We can also
produce and support those designs. Our
design will provide the U.S. Army with
a 155-mm lightweight howitzer that is
airliftable by the modified Blackhawk
helicopter.
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Our understanding of the project objective
and of the operational, functional, and
physical requirements of the LTHD are
summarized below. The description of our
technical development plan and our
approach to complete this project are
consistent with a technology demonstration
project.

We propose a unique combination of
innovative design, state-of-the-art tech-
nology, off-the-shelf components, and
composite materials for the LTHD. Using
this approach, we have resolved the weight
problem with low to moderate technical risk
and within the required timeframe. The
LTHD concept lends itself to the application
of additional advanced technology features
in the future, such as a composite barrel or
an innovative recoil mechanism. However,
these features were not proposed for this
concept, because we consider them to add
unnecessary technical risk.

~ Our proposed weapon system uses a unique

approach to meet the weight and stability
requirements. The system configuration
consists of dual forward-spreading trails
stabilizing a firing platform with a low-level
trunnion and a single-elevation cylinder that
supports the recoil and cannon assemblies on
a dual-rail slide (figure l-1). The concept
was configured to perform similar to the
MI198 Towed Howitzer and to meet the
9,000-pound weight limitation. Environ-
mental, noise, and blast overpressure
requirements are included in the concept
development to provide a reliable system
that can be safely operated by the crew.

The weapon will be supported by a detach-
able wheel wunit. This feature allows
additional weight reduction (600 pounds)
should airlifting under adverse conditions
become necessary. The wheel unit has four
wheels equipped with HMMWYV tires. A four-
wheel configuration will enhance travel
stability of the weapon when towed behind a
vehicle. The wheel unit could also be used to
assist in loading of heavy projectiles
(Copperhead), or to move ammunition in the
firing position.

Our design approach will be a conservative
one. Where possible, components already
employed in U.S. Army systems will be used.
We will use innovative configurations or
materials only where necessary to meet the
weight and stability requirements.
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Figure 1-1,
configurations.

THE

LTHD USES AN INNOVATIVE

APPROACH to 155-mm howitzer
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Use of innovative techniques or materials
will be determined by trade studies. There-
fore, although the design will be innovative,
the techniques or materials used will not be
new and unproven. For example, although
there will be many applications of compos-
ites, we will employ proven technology
before considering the use of state-of-the-
art or unproven materials.

Northern Ordnance will use a system
engineering approach to address the inter-
disciplinary requirements for development
of the [55-mm LTHD.

We realize that any development project
carries with it inherent risk. We have
reviewed the potential technical risks for
this project and have identified risk control
techniques to cope with and control any
encountered risks. Because an urgent need
exists for this weapon system, we have
attempted to minimize all risks during
concept exploration in our independent
research and development (IR&D) efforts.
This effort will continue throughout the
project.

We offer a project team that is experienced
in working with designs exposed to difficult
working environments where ease of opera-
tion and maintenance is essential (figure
1-2). This team has been exploring the
lightweight towed howitzer environment and

weapon system requirements under the
IR&D program since September 1984. This
same team has evaluated recent howitzer
designs to learn about complexities of
howitzer weapon systems and the intricacies
of lightweight design. We have visited with
agencies involved in weapon system design
and weapon system use, such as AMMRC,
ARDC, and USFACS, to determine their
needs and to listen to their concerns. To
support our team, we have engaged Mr. John
Simpson (a ballistics consultant), the FMC
Central Engineering Laboratories (CEL), and
the U.S. Army AMCCOM to join the effort.

CEL will conduct dynamic analyses on the
entire weapon system as well as composite
parts to minimize weight without impairing
structural integrity. CEL's composite
material fabrication shop will produce a
significant portion of the piece parts for the
LTHD demonstrator.

Watervliet Arsenal will provide detailed
desigh of the cannon assembly and will
fabricate, assemble, and test the cannon.

To summarize, we understand the require-
ments and have a sound approach to
complete the project objective successfully.
Our proposed LTHD concept meets all
technical requirements, and we can design
and fabricate the demonstrator system
within the given schedule at reasonable cost.
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Section 2
Understanding the Requirements

We understand the weight, stability,
and operational requirements of the
Lightweight Towed Howitzer Demon-
strator (LTHD).

2.1 PROJECT OBJECTIVE

Our objective for the LTHD project is to
develop and fabricate a 155-mm LTHD that
can demonstrate the deployability and
operability of a lightweight fire support
system via airlift by upgraded Blackhawk
(UH-60) helicopter and use of existing and
developmental 155-mm ammunition. Per-
formance and stability will meet or exceed
that of the existing M198 Towed Howitzer.
Appropriate advanced technology, as well as
proven engineering concepts and compo-
nents, will be combined to achieve the ob-
jective within the given timeframe and at
the lowest possible risk.

Following concept definition, concept de-
velopment, and detailed design, we will
fabricate and deliver a demonstrator to
ARDC for testing. We will develop a weapon
with the following characteristics:

I. Weigh 9,000 pounds or less (to be
transported by the modified Black-
hawk helicopter)

2. Fire the 155-mm ammunition pres-
ently in U.S. Army stockpiles, as
well as improved ammunition pres-
ently under development

3. Exhibit ballistic similitude to the
M198 Towed Howitzer

4. Have a range of 30 km with
rocket-assisted projectiles

5. Perform equal to or better than the
M198 Towed Howitzer

6. Be emplaceable by a four-person
crew in 3 minutes or less

7. Be shiftable by a four-person crew
through 6,400 miis in 3 minutes or
less

8. Provide stability equal to or better
than the MI98 howitzer system
under both firing and cross-country
touring conditions

As we address the project objective
throughout this technical proposal, our
discussions will reflect our understanding of
both the objective and the issues that must
be resolved in accomplishing it.

2.2 SYSTEM OPERATIONAL
REQUIREMENTS

Our experience as a designer and de-
veloper of gun systems ensures the
LTHD will fully meet the operational
requirements.

2.2.1 Performance Requirements

The purpose of -the LTHD is to provide the
Light Infantry Division with the range and
firepower of a 155-mm fire support weapon
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that can be airlifted for remote emplace-
ment by a modified Blackhawk helicopter.
Therefore, the following requirements must
be met:

I.  Meet or exceed the performance of
the present M198 Towed Howitzer
(which is too heavy to be airlifted
by a UH-60 Blackhawk helicopter
Bix | \od), and exhibit the same or
greater stability.

2. Fire all 155-mm ammunition pres-
ently in stock (i.e., projectiles,
fuzes, and charges), and be capable
of accepting modular charges
presently uncer development.

3. Be towable by the family of tactical
trucks presently in the U.S. Army
inventory.

4. Operate with the same or smaller
crew size as the MI98 Towed
Howitzer.

2.2.2 Physical Characteristics

The LTHD must meet the lift linitations of
a modified Blackhawk helicopter. The
system must also be capable of performing
properly in the ambient situations specified
for U.S. Army field equipment. The weapon
must be able to withstand the rigorous
treatment of off-the-road towing, and must
possess these characteristics:

l.  Weight of 9,000 pounds or less

2. Range of 24 km, unassisted; 30 km
with rocket-assisted projectiles

3. Chamber pressure not in excess of
50,000 psi

4. Elevation range of -90 to 1,280 mils

5. Height and width not exceeding that
of the M 198 Towed Howitzer

6. Impulse to the recoil mechanism not
exceeding 12,500 pound seconds

7. Crew protection from excessive
noise or blast overpressure
(MIL-STD-1474)

8. Operation within the requirements
of MIL-STD-1472

Options such as extended range through

higher chamber pressure, more powerful
charges, longer gun tube, adaptation of
future innovative recoil technology, and

possible further weight reductions will be
considered and applied whenever feasible or
practicable within potential schedule or
performance risks.

2.2.3 Operational Considerations

Developing a weapon system requires a
detailed understanding of the environment
in which, and the concitions under which, it
is expected to perform. Because the weapon
is planned for use with the Light Infantry
Division, the assignment to a Rapid De-
ployment Force (RDF) mission is likely. As
this assignment could take the weapon to
any part of the world and would require the
weapon to function reliably under any
climatic conditions, special emphasis will be
given to design for these encounters,

Designing a 155-mm weapon system with a
weight far below anything presently in any-
one's arsenal, yet capable of performing
equal to or better than existing systems,
will require innovative design efforts. Qur
proposed concept employs an unconventional
configuration that takes advantage of new
approaches.  This  unconventional-looking
system will, however, provide the low-risk
development demanded by the stringent
schedule, and does consist of a judicial mix
of innovative technology and conventional
proven components. There will be room for
further developments as the system pro-
gresses through advanced stages of design.
2.2.3.1 Deployment

The system will conceivably be deployed
within the RDF by airlifting the weapon,
crew, and ammunition to the emplacement
point. The unit will continue to depend on
airlifted supplies until ground-based routes
to the battery position can be established,
and wheeled or tracked vehicles arrive,
these conditions, the crew and

Under

.
:




2

o

HIVIG

¥

{‘- .

weapon could be exposed to hostile fire with
very limited capability to displace to
another position. Remote deployment under
these conditions requires a reliable weapon
system with "fail soft" capability (i.e., to be
usable even with reduced performance).
Maintenance will, to a certain extent, be
conducted by the crew instead of a far-
removed support unit. The crew would also
have to move ammunition not directly de-
posited into the weapon firing position.
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This emplacement scenario will, of course,
substantially increase the risk of losing the
weapon. The only assistance would be from
those helicopters that are Light Infantry
Division assets and are also used to fly com-
bat missions and provide airlifted resupply.
Another possibility would be a new type of
towing vehicle that would be light enough
(i.e., weigh less than 9,000 pou 4s and also
tow 9,000 pounds) to be airlifted during a
second wave deployment. However, the
tradeoff remains the availability of fire
support by 155-mm caliber howitzers with
superior range and projectile payload capa-
bility requiring the UH-60 (Blk | Mod) or a
towing vehicle to change position, or a much
lighter 105-mm system which could possibly
be moved by the crew unassisted by a
towing vehicle.
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The system could also be deployed in the
conventional towed artillery method by
being hauled into position by a vehicle which

g |

N would also act as an ammunition support
' -,'.*‘.j vehicle as needed. Therefore, the LTHD can
o be a replacement for heavier towed howit-
"™ zer systems of identical caliber.
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2.2.3.2 Operation and Maintenance
Considerations

Operating and maintaining military equip-
ment requires special consideration by the
designer to allow the operator and main-

tainer to perform their tasks under adverse
conditions.

Operation of equipment can be made easier
by providing easy access to handles, wheels,
controls, indicators, etc., and by ensuring
tasks can be accomplished without excessive
exertion. These human design criteria must
fall within the range of human capabilities
of the 5th to 95th percentile of the U.S.
Army population. Equipment must be laid
out to achieve efficient operation. Although
this may be a function of task assignment, it
has been and will continue to be considered
during weapon design. Design of operational
features will require the continued in-
volvement of human factors engineering to
optimize system effectiveness.

In a similar fashion, maintenance, at least
that portion of it that is expected to be
performed in the field away from mainte-
nance facilities, must be easily accom-
plished. The use of common tools and simple
procedures must be considered to allow a
rapid return to the mission should mainte-
nance become necessary.

These considerations may, in some cases, |
lead to simple and easy replacement of
modular subsystems that require compli-
cated maintenance at proper facilities (a
tradeoff for ease of maintenance in the
field, particularly in remote locations). |
Supply of replacements could be accom-
plished similar to, or in conjunction with,
ammunition resupply.
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Section 3
System Concept

The FMC Lightweight Towed Howitzer
Demonstrator (LTHD), providing M198
performance and stability in a 9,000-
pound package with a conventional
recoil mechanism, is also compatible
with the FMC Artillery Recoil Mech-
anism (ARM) concept.

3.1 CONCEPT EVOLUTION

This section describes our design approach
and concepts for the LTHD and is divided
into these areas:

1. A summary of the evolution of the
concept, problems, alternatives, and
analyses employed to arrive at the
solution (paragraph 3.1)

2. A brief overview followed by a
description of the LTHD from the
operational perspective (paragraph
3.2)

3. Detailed descriptions of the cannon,
carriage, and fire control systems
(paragraph 3.3)

This descriptive approach will provide
adequate background for understanding our
concept design decisions and will also pro-
vide sufficient detail for evaluating our
concept design.

)
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The unique requirements of ultralight
towed artillery are combined with
composite technology through a con-
cept evaluation framework to create
the FMC LTHD.

Long-range large-caliber weapons tend to be
heavy for good reasons (e.g., firing stability
and reduced recoil forces). Therefore, the
successful designer of a lightweight long-
range large-caliber weapon will have to
carefully consider all the ramifications of
this ultralight requirement in all stages of
the problem solution process: definition,
generation, evaluation, and implementation.

3.1.1 The Problem

Defining the problem from the viewpoint of
the procurement agency, vendors, and users
will be vital to the success of the project.
However, creating new concepts is pointiess
if the underlying problems are ill-defined or
completely overlooked.

Our primary objectives for the LTHD pro-
gram include:

1. Developing an LTHD that weighs
9,000 pounds

2. Providing M198 performance and
stability

3-1
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3. Being cost-effective and
during the demonstrator phase

4. Using minimal sole sources during
production

5. Not increasing blast overpressure or
reducing operations effectiveness

timely

Before detailing the primary objectives, we
will describe these elements of the problem:

1. Weight reduction and stability
2. Stability and recoil force reduction
3. Stability, trunnion height, and trail

length
4. Necessary weight reduction
5. Recoil mass reduction
6. Weight reduction and slide avoidance
7. Operations
8. Towing

9. Deployment

10. Environmental constraints
3.1.1.]1 Weight Reduction and Stability
Two conditions must be considered if we
assume that incorporating a few simple
material changes could provide an M98
structure that weighs 9,000 pounds and that
retains its current firing range of 155-mm
conventional and improved munitions:

1. The M203 impulse should be valued
at 12,500 pound seconds rather than
the nominal figure of roughly 11,980
pound seconds generally used.

2. The minimum design quadrant
elevation (QE) for this maximum
charge should be 0 rather than the
270 mil limit currently in effect per
the M198 Specification (Revision |,
April 1981, page 63).

However, incorporating the above con-

ditions would inadvertently create an un-
safe weapon. The weight of the howitzer is
no longer sufficient to hold it down during
the firing

firing. Figure 3-1 illustrates

stability problem.

3-2
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To regain stability, we have three basic

choices:

I.  Reduce the recoil force.
2. Drop the trunnion height.
3. Lengthen the trails.

3.1.1.2 Stability
Reduction

and Recoil Force

Many recoil force reduction methods have
been evaluated. They all have one charac-
teristic in common--when something is
gained, something else is lost. The four
basic approaches are as follows:

I.  Using recoilless artillery

2. Using muzzle brakes

3. Using soft recoil

4. Increasing conventional recoil stroke
3.1.1.2.1 Using Recoilless Artillery
Recoilless artillery reduces the recoil to
zero, while significantly reducing range for
a given charge and projectile. However,
because the M198 projectiles, charges, and
ranges must be maintained, the relatively
inefficient recoilless option can be im-
mediately dismissed.

3.1.1.2.2 Using Muzzle Brakes

Muzzle brakes significantly reduce recoil
forces at the expense of overpressure
exposure to the crew. Concern over the
maximum allowable blast overpressure an
M!198 crew can tolerate has led FMC to
view the MI98 muzzle brake as the upper
limit for U.S. towed artillery, at least in the
LTHD timeframe.

3.1.1.2.3 Using Soft Recoil

Soft recoil expands the time over which the
recoil force can be applied, resulting in
more effective use of the stroke but com-
plicating the consequences of cookoff and
misfire. These consequences result in the
use of procedures that vary with charge and

1
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& T sensitivity to ignition delay variances. If a (figure 3-2) and facilitates conventional

;« NATO primer is used, we must use pro- handling of cookoff and misfire. However,

i cedures which vary with temperature and increasing the conventional recoil stroke
country of origin. increases weight and the chance that sealing

.': problems could occur.
Progress in the technologies that support

soft recoil is encouraging but difficult to
assess with respect to the overall prob-
ability of success. FMC views soft recoil as
an important concept to continue evalu-

Progress in the field of high-pressure high-
velocity hydraulic seals has increased the
upper limit on recoil stroke. Progress in the
area of totally composite, high-pressure

“ ating, but feels it is too unpredictable to hydraulic cylinders for use in U.S. aircraft
, include in the LTHD portion of the Light- has paved the way to long recoil cylinders
K weight Indirect Fire Weapon System (LIFWS) that weigh less.
o Project at this time.
- - FMC views increasing recoil stroke as the
N - 3.1.1.2.4 Increasing Conventional Recoil lowest risk method to regain stability
3 ,;i Stroke through recoil force reduction.
. . Increasing  conventional recoil stroke
e reduces the necessary retarding force
o e ‘
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FIRING STABILITY CAN BE IMPROVED by increasing recoil stroke.
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3.1.1.3 Stability, Trunnion Height, and
Trail Length

Reducing the trunnion height has the most
significant impact on stability and the least
significant impact on weight. For example,
reducing the M198 trunnion height from 4 to
2 feet is equivalent to increasing the recoil
stroke from 70 to 140 inches or lengthening
the trails from roughly 20 to 40 feet.
Secondly, reducing the trunnion height
serves to align the load path and reduce
structure  stresses, thereby reducing
structure weight. However, reducing the
trunnion height also makes loading more
difficult and further limits the recoil stroke
with a conventional configuration.

3.1.1.4 Necessary Weight Reduction

Assuming a 9,000-pound M98 can be made
stable through a combination of recoil force
reduction, reduced trunnion height, and
lengthened trails, we must first determine if
the necessary weight reduction (with a
derivative of the MI98 configuration) is
achievable. The recoiling mass of the M198
is 7,000 pounds. The nonrecoiling mass of
the M98 is 8,600 pounds; the nonrecoiling
mass of the LTHD (assuming the same
recoiling mass as the M198) is 2,000 pounds.
Thus, the nonrecoiling mass must be reduced
from 8,600 to 2,000 pounds to achieve a
system weight of 9,000 pounds. This
reduction would necessitate an average
weight reduction in the nonrecoiling mass of
77 percent. Although not impossible, such a
reduction would be prohibitively expensive.

Another solution would be the adoption of a
modern, lightweight configuration such as
the L119 howitzer. The L119 howitzer has a
system-to-projectile weight ratio of 1,858
to 16 kg (or 116 to 1). Applying this ratio to
the M198 (and using a 103-pound projectile),
we arrive at 11,950 pounds (103 multiplied
by 116), which is roughly halfway between
the 15,760-pound M198 and the 9,000-pound
requirement. (This comparison is a little
misleading, because the L119 range is less

N

than that of the M198, but it illustrates the
fact that the MI98 is already a fairly
weight-efficient design, even by current
standards.)

Both the M198 and the L119 were designed
to be built with metal. Today's composite
materials technology is promising and is
starting to provide lightweight systems.
However, reconfiguring conventional
(metal-based) systems to capitalize on the
properties unique to composites is fre-
quently necessary.

FMC feels that an unconventional con-
figuration, developed in harmony with com-
posite materials and optimum recoil force,
trunnion height, and trail length, will pro-
vide the most cost-effective LTHD.

3.1.1.5 Recoiling Mass Reduction

Reducing the weight of the cannon (the
most massive item in the howitzer) seems
logical. However, reducing the weight of the
cannon increases the recoil force (figure
3-3), which worsens stability and enlarges
the structure. Secondly, reducing the re-
coiling mass increases recoil velocity. This
recoil velocity will necessitate a higher
muzzle velocity relative to the barrel to
maintain the muzzie velocity relative to the
ground in order to maintain M198 range.

FMC feels a weight-reduced cannon will
probably be necessary, but the weight
reduction should be balanced against the
increase in structural weight caused by
higher recoil forces and resultant structural
loads.

3.1.1.6 Weight
Avoidance

Reduction and Slide

A more subtle problem, sometimes r-{ - rred
to as horizontal displacement or slide, also
exists. Reducing howitzer weight increases
slide. The mechanism is similar to that of
recoil.

3-5
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FIRING STABILITY IS REDUCED by reducing recoiling mass.
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The recoiling mass is joined to the non-
recoiling mass with the recoil mechanism.
(The nonrecoiling mass, in reality, also
recoils.) This pseudo-nonrecoiling mass is
joined to the true nonrecoiling mass (earth)
by the spade-soil mechanism. Thus, just as
reducing the recoiling mass increases the
stroke necessary to hold the recoil force at
the same level (figures 3-3 and 3-2, re-
spectively), reducing the pseudo-non-
recoiling mass increases the stroke of the
spade-ground mechanism (constant spade
area, constant resisting force). This is slide.
Thus, reducing howitzer weight increases
slide.

To maintain the same slide as the MI198
within the same ground conditions, the
spade effectiveness must increase. The
primary measure of spade effectiveness is
spade area. FMC feels spade area will have
to increase in such a manner that weight
and emplacement/displacement times are
reduced.

3.1.1.7 Operations

During the conceptual process of solving all
mechanical problems, we must remember
that a variety of people must be able to
operate the LTHD at midnight, with no
moon; in mud, with freezing rain driven by a
high wind; and in subzero temperatures.

Secondly, component failures and crew
reductions must have a "soft" impact upon
system  operation, whenever possible,

especially in functions critical to mission
objectives.

3.1.1.8 Towing

Stability generally refers to firing stability.
However, towing stability problems can also
be as serious as firing stability problems.
Unfortunately, weight reduction tends to
worsen towing stability problems.

Both solid suspension systems and small

tires save weight, but small tires require

high-inflation pressures. These high-

inflation pressures only serve to stiffen the
.

»

ground engagement and aggravate the
problems caused by a solid suspension. If
small tires with high-inflation pressure are
used, the contribution the LTHD can make
to the rapid deployment force (RDF) could
be nullified by an inability to survive towing.

FMC views towing stability equal in impor-
tance to firing stability. The suspension
system or ground engagement will have to
be softer than the M198.

3.1.1.9 Deployment

Weight is critical to tactical (helicopter)
deployment. Tactical deployment by the
UH-60 helicopter (modified to achieve
9,000-net lift capacity) is the driver of the
weight reduction. Weight reduction is the
driver of the LTHD. We have assumed that
the slings are not included in the
9,000-pound howitzer specification; the
actual hook load will be 9,000 pounds plus
the weight of the slings and necessary
rigging. Aerodynamic stability of the
howitzer, while important, is viewed as a
relatively minor consideration at this point.

Vertical shock loading, overall width, and
height are critical to successful strategic
deployment. Vertical shock loading due to
ground impact from air-drop will produce 15
through 20 g's on the structure.

The C130 presents the greatest constraints
upon overall stowed dimensions. Width and
height are the most critical.

The 110-inch wide creates C130 loading
problems. When narrow tires are put on, the
width is reduced to 99 inches, but the in-
flation pressure must increase from 45 to
100 psi, thus creating a towing stability
problem. The fact that these tires are not
standard complicates the logistics aspect of
the RDF mission.

The height of the howitzer is critical; the
howitzer must clear the exit opening as the
howitzer tips and slides down the ramp

during extraction from the Cl130 by
3-7
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: b5 parachute. This height constraint is more 2. The lunette load in the stowed con- -
g critical than that imposed by the 747's figuration should be significantly '
y ' iower ceiling, because cargo is not reduced.

i extracted from the 747. 3. Standard tires and rims should be

used if possible. High-Mobility
Multipurpose Wheeled Vehicle
(HMMWYV) components should be
used, if possible.

The C130 can handle an object that is 40-
i *. feet long. However, if the howitzer is
. "~ winched on, the maximum length of the
howitzer must be reduced by roughly 2 feet.
! 3.1.1.10 Environmental Constraints
B The combination of MI98 lunette load and
C130 ramp capacity creates a problem with
-y loading: the 2.5-ton truck which must be
::ﬁ used (to stay under the ramp limit) is being
" phased out. The elimination of this truck
creates a logistics problem. This high lu-
T nette load should be avoided if possible.

Figure 3-4 summarizes the environmental
constraints. Proper sealing joint design and
careful selection of coating materials will
provide- the necessary waterproofness and
resistance to humidity, fuel, hydraulic fluid,
cleaning agents, and cleaning spray. Sec-
ondly, the configuration will eliminate those

FMC feels that the LTHD should meet these "hidden corners" that cannot be thoroughly

w2 towing and transportation criteria:

% cleaned in the event of contamination.
w
l. The LTHD must be narrower than

N the M198.

2
ENVIRONMENTAL REQUIREMENTS

s
& Re QU ) REMENT SPECIFICATION
s
o OPERAT ING TEMPERATURE -25 DEGREE F TO +160 DEGREE F
wY

STORAGE TEMPERATURE

—-70 DEGREE F TO +16C DEGREE F

HUMID I TY 99 % PER MIL-STC-810D PROCEDURE | |

SHOCK MiL-STD-810D, METHOD 5i4.2 AS A GUIDE
T VIBRATION .4 INCH DOUBLE AMPLITUDE t TO 14 HZ, AND 4G i4 TO 500 HZ
:\: FUEL PER VV-F-B00, MIL-T-5624, | MIL-G-3056, AND MIL-F-|6884

HYDRAULIC FLUID PER STANDARD FIRE RETARDENT SPEC. MIL-STD-80830D

=
,1;3 CLEANING AGENTS PER P-C-437
CLEANING SPRAY WATER JET SPRAY 12 INCHES AWAY AND 90 DEGREES TO SURFACE
:'f-: pDUST PER MIL-STD-8100, METHOD 510, PROCEDURE |
hs TEMPERATURE SHOCK PER MIL-STD-810D, METHOD 503
T WATERPROOFNESS PER MIL-STD-8100, METHOD 512.2

. Figure 3-4. ENVIRONMENTAL REQUIREMENTS SHOULD BE EXPANDED to include fire
E retardancy--a necessary consideration when composite materials are involved.
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marily qualitative. Previous discussions with weight holding the spade in the
Army, Navy, and international howitzer ground
designers; users; and vendors provided us
with an understanding for areas to avoid and
areas to pursue and an understanding for the
difference between nice and needed.
L ]
¢ 3-9
“ e me ~ " P g * ‘A-'( e ".. Ol s -f$." €L "'n'?. AN \'.'_.."_.' R ‘_.f’ ’
' { L) ‘ \p'l. -.C'n.l D"-“k‘t" 't, {3 s e i () -"“r. ‘ Vg s <, ‘.-‘.' W ".. N . Lt P v't"’*‘.

Finite element analysis at the system level,
in conjunction with material selection at the
component level, will address temperature,
shock, and vibration requirements. Com-
posites have an advantage over metals in
vibration and shock; composites can vary
their damping capability.

to oil reservoir
achieve the necessary re-

Particular attention
breathers will
sistance to dust.

Use of composites will also require con-
sideration of fire-retardant properties.

3.1.2 Generation of Alternatives

The generation of a broad range of alter-
natives is critical to the success of any
unique opportunity that demands an uncon-
ventional solution. The LTHD presents such
an opportunity.

Our initial approach produced a number of
basic concepts. Concerned about the pos-
sibility that the optimum was not in the set
of alternatives, we broke down the howitzer
configuration- into fundamental functional
elements (figure 3-5). These elements were
ground engagement, elevation, and traverse.
Viewing the LTHD in this manner greatly
expands the number of alternatives to 144,
Figure 3-6 lists these alternatives.

3.1.3 Evaluation of Alternatives

Evaluation of alternatives requires skillful
application of a broad range of analytical
tools. Excessive attention to detail will
"miss the forest for the trees,” while too
little will "spot you in the wrong forest."

The initial layers of evaluation were pri-

Figure 3-7 shows a few of the basic con-
figurations considered. The unconventional
configurations, compared to the conven-
tional configurations (e.g., M1 14, M198, and
M204), tended to be:

l. More compatible with composite

construction

Capable of increased recoil strokes

. Equipped with more weight efficient
structures

4. Harder to load

5. Harder to equilibrate

2.
3

The most relentless issue was that the most
promising concepts aligned the firing load
path with a low trunnion height. Both ham-
per manual breech access and trunnion
accessibility, making the weapon harder to
load and lay. Drawing on our mechanical
breech access and electronic tube laying
experience, we began to focus on the pos-
sibility of a manually operated, mechani-
cally assisted breech and an electronic
laying aid to address these issues.

3.1.4 Solution

A summary of the characteristics that led
to our choice of the configuration for the
FMC LTHD is shown in figure 3-8.

The FMC LTHD, relative to the other un-
conventional configurations, leads to:

1. Improved load path at both high and

low QE's

Compatibility with the FMC ARM

An allowance for minimum trunnion

height

4. A balanced weight distribution that
results in one-third of the system

2.
3.
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f‘ NOTE: A model, fabricated to /12 their relative impact. A more detatled de-
; . scale to provide a hands-on scription of these elements and their re-
' i demonstration, is available by lationship to the primary objectives, as
request. defined in paragraph 3.l.1, is shown in
figure 3-10.
+ o 3.1.4.1 Analytical Approach
‘S 3.1.4.2 Stability Analysis
Our evaluation became increasingly quan-
titative. Sketches became shapes within A digital model was developed to analyze
! ,»’ Digital's VAX computer, via GEOMOD firing stability. This model takes these
Py = (software particularly well suited to geo- variables into account:
l: . metric analysis). The most weight-strength
n 2 critical parts were further analvzed using l. Moving CG of recoiling mass
! L ANSYS, a software capable of determining 2. Stationary CG of nonrecoiling mass
stresses within complex shapes made of 3. Resultant changing moment of
o materials with properties that vary with inertia
j;: g orientation (composites). 4, OQE
Y 5. Traverse
" Specific performance items (e.g., interior 6. Emplacement on an upgrade
K ﬁ ballistics, recoil force profiles, firing sta- 7. Emplacement on a side slope
' bility, and elevation/depression rates) were
¥ handied on the Control Data Corporation Figure 3-11 shows the LTHD stability for
2. Cyber, IBM 3270, and IBM personal com- the case of zero QE, level ground, and cen-
[ oS puters. Custom programs have, when ad- tered traverse for both the nominal M203
vantageous, been written to provide as much (with M198 muzzle brake beta set at 1.70)
X .~ flexibility as practical. and the 12,500 pound seconds input. The
' stabilizing moment (weight holding the
y A number of iterations at the system and howitzer down) is greater than the
. component levels, in the areas outlined overturning moment (trunnion forces trying
[ :'i, below, sized this preliminary concept of the to tip the howitzer over) at all points of the
+ SR FMC LTHD. The three primary inputs to recoil stroke.
| this process were:
We refer to the difference between the
v ._ I. The optimal recoiling mass (para- stabilizing moment and the overturning
) graph 3.3.1) moment as the safety moment. Figure 3-12
o 2. The optimal retarding force (para- illustrates how the safety moment is af-
' }_.r graph 3.3.2.3) fected by side slope, upgrade, elevation, and
W hhd 3. The optimal configuration providing traverse variations.
- for an optimal overall solution
_9: (covered in each paragraph as the The stability model is currently being up-
- - parameters considered are covered) graded to account for system elasticity and
. joint clearances. Analysis to this point has
o The primary output was firing stability. assumed the components are rigid and com-
K. ,'G\ Figure 3-9 shows a summary of the solution ponent joints have zero clearance.
elements that regained MI98 stability and
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Classification Scheme for Howitzer Configurations (Abstracted From Figure 3-5)
R -
. ‘ Elevation Mechanism Traverse Mechanism
K Ground Engagement Mechanism (Relative to Breech) (Relative to Breech)
)
4 61 = Mortar-style E1 = In front of (by Cé6) T1 = Below and in front
A EERE G2 = Rearward trails E2 = Beside T2 = Below
Y G3 = Forward trails E3 = Behind T3 = Below and behind
IR Y G4 = Forward and rearward trails €4 = Below and behind T4 = Above and below
A £5 = Four-Bar linkage T5 = One behind
, E6 = Above and behind T6 = Two behind
S
! Examples of Howitzer Configurations Using Classification Scheme
(n
g e Get Get Get Get
"N Combo No. Example Combo  No. Example . Combo No. Example Combo No. Example
GlET M 1 G2 E1 T 37 M4 63 EI T 73 G4 E1 T 109
1B GIE1T T 2 G2 E1 T2 38 G3 E1 T2 74 G4EI1 T2 N0
N Gl E1 T3 3 62 E1 T3 39 G3 E1 T3 75 G4 ET T3 1N
'-: Gl E1 T4 4 G2 E1 T4 40 G3 E1 T4 76 G4 E1 T4 112
:. Gl E1 T5 5 62 E1 TS5 4 G3 E1 T5 77 G4 E1 T5 113
AN Gl E1 T6 6 G2 E1 16 42 G3 E1 T6 78 G4 E1T6 114
M GlE2 T 7 G2 E2 T1 43 G3EZ T 79 G4 E2 T 115
b Gl E2 T2 8 G2 €2 T2 44 M98 G3 E2 T2 80 G4 E2 T2 N6
Gl E2 T3 9 G2 E2 T3 45 Gl E2 T3 8 G4 E2 T3 117
.. Gl E2 T4 10 G2 E2 T4 46 G3 E2 T4 82 G4 E2 T4 118
SN GIE2TS N 62 E2 15 47 Gl E2 T5 83 G4 E2T5 119
N Gl E2T6 12 G2 E2 T6 48 G3 E2 T6 84 G4 E2 T6 120
P GIE3TI 13 62 E3 T1 49 GIEI M 85 G4 E3TI 121
Gl E3 T2 MW G2 £3 T2 50 G3 E3 T2 86 . G4 E3 T2 122
N Gl E3 T3 15 G2 E3 T3 51 G3 E3 T3 87 M204 G4 E3 T3 123
‘ Gl E3 T4 16 G2 E3 T4 52 FMC Wedge G3 E3 T4 88 G4 E3 T4 124
GY E3 TS5 17 FMC Mortar G2 E3 75 53 G3 E3 TS 89 G4 E3 TS 125
. Gl E3 76 18 G2 E3 T6 54 G3 E3 T6 90 FMC LTHD G4 E3 T6 126 FMC
. turret
R G1E4TI 19 G2 E4 T1 55 G3EA T 9N G4 E4 TV 127
T Gl E4 T2 20 G2 E4 T2 56 G3 E4 T2 92 G4 E4 T2 128
N Gl E4 T3 21 G2 E4 T3 57 G3 E4 T3 93 G4 E4 T3 129
' Gl E4 T4 22 G2 E4 T4 58 FMC Pistol G3 E4 T4 94 64 E4 T4 130
G1 E4 T5 23 G2 E4 TS 59 G3 E4 TS 95 G4 E4 TS 1
> Gl E4 T6 24 G2 E4 T6 60 G3 E4 T6 96 G4 E4 T6 132
‘R G1ES T 25 G2 E5 T G GIES T 97 G4 ES T1 133
P, Gl E5 T2 26 G2 E5 T2 62 Gl E5 T2 98 G4 E5 T2 134
SIS Gl E5 T3 27 G2 E5 T3 63 G3 E5 T3 99 FMC Four G4 E5 T3 135
€] v, Bar
e Gl E5 T4 28 G2 E5 T4 64 G3 E5 T4 100 G4 E5 T4 136
4 G1ES T5 29 G2 E5 T5 65 G3 E5 T5 101 G4 E5 TS 137
Gl ES T6 30 G2 E5 T6 66 G3 €5 T6 102 G4 E5 T6 138
L d GlE6 T1T I G2 E6 T1 67 G3 E6 M 103 G4 €6 T1 139
PN Gl E6 T2 32 G2 E6 T2 68 G3 E6 T2 104 G4 €6 T2 140
T Gl E6 T3 33 G2 €6 T3 69 G3 E6 T3 105 G4 E6 T3 14
! Gl E6 T4 34 G2 E6 T4 70 G3 £6 T4 106 G4 €6 T4 142
Gl E6 75 35 G2 E6 T5 N G3 E6 TS 107 G4 E6 TS 143
S Gl E6 T6 36 G2 E6 T6 72 FMC Space G3 E6 T6 108 G4 £E6 T6 144
Y] Frame
" -
A Figure 3-6. THIS FRAMEWORK results in 144 conceptual configurations.
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FMC
Characteristics Critical Space Four
to LTHD Objectives Points M114 MI98 M204 Mortar Wedge Pistol Frame LTHD Bar Turret
Weight of Howitzer:
Structure compatibility 15 8 10 9 15 15 15 15 15 15 12
with composites
Weight efficiency of 10 4 5 5 10 5 5 5 8 5 5
structure
Low QE load path 5 3 3 s 0 2 5 3 3 3 2
High QE load path 5 s 5 5 5 5 5 5 5 3 5
(Subtotal) (35) (20) 23) (284) (30) (27) (30) (28) (31) (26) (24)
Firing Stability With
Light Structure:
Minimum trunnion height 15 5 5 5 15 15 10 10 15 12 10
Longer recoil 15 4 5 7 15 15 10 10 15 10 15
compatibility
Compatibility with soft 5 3 3 5 5 5 0 0 5 5 5
recoil
(Subtotal) (35) (2) (3) (7) (35) (35) (20) (20) (35) (27) (30)
Operations Effectiveness:
Attainability of zero QE 10 10 10 10 0 10 10 10 10 10 10
Traverse on carriage 5 5 5 (] \] A 5 5 ) 5 5
Precision of barrel at 5 4 5 4 5 5 0 4 5 0 5
projectile exit .
Crew placement for blast 5 4 4 4 5 4 4 4 5 3 5
overpressure
Manual access to breech 3 3 3 3 0 2 2 2 0 2 0
(or mechanical access 3 0 0 0 3 0 0 0 3 0 2
if manual = 0)
Equflibration requirement 2 2 1 1 0 0 1 1 0 1 0
(Subtotal) (30) (28) (28) (22) (13) (22) (23} (270 (280 (21 (27)
Total 100 60 64 (63) 78 84 73 75 94 74 81

Figure 3-8. A WEIGHTED COMPARISON of the conceptual configurations resuited in the
FMC LTHD.
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M198 BASELINE

STABILITY RATING
5 10

DESIGN FOR MINIMUM WEIGHT

DROP TRUNNION HEIGHT S50 PERCENT

MAXIMIZE RECOILING MASS

POINT TRAILS FORWARD

BALANCE WEIGHT DISTRIBUTION

INCREASE SPADE AREA

LENGTHEN RECOIL 28 IRCHES

Figure 3-9. SEVEN STEPS provide the FMC LTHD with firing stability.
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Solution Element

Use M98 baseline

Design for minimum weight

Drop trunnion height
50 percent

Maximize recoiling mass

Point trails forward

Balance weight distribution

Increase spade area

Lengthen recoil 28 inches

Secondary Objective

a.
a.

b.

a.

a.

b.

30-km range

Concept compatible with
composites

Use composites to optimum
degree

Reduce overturning moment
during low QE firing

Hold recoil forces to minimum

level possible for stability
Facilitate use of conventional
barrel to minimize barrel risk

Facilitate balanced weight
distribution
Soft recoil is option

Forward pointing trails provide

anti-hop firing suspension

Increasing weight over spade
improves holding power and
stability

Increasing weight on forward
trails improves anti-hop
effectiveness

Central spade reduces slide
Three claws enhance spade in
soft soil; replace spade in
hard soil

Further reduce recoil force
to level necessary for zero
hop at less risk than altering
muzzle brake

Primary Objective

PERFORMANCE
WEIGHT REDUCTION

LOW RISK

FIRING STABILITY

FIRING STABILITY

LOW RISK

FIRING STABILITY

FIRING STABILITY

FIRING STABILITY

FIRING STABILITY

FIRING STABILITY

FIRING STABILITY

FIRING STABILITY

Figure 3-10.
reduction, and low risk.

o Loy S,
: * * ? ‘:\,A.AJA(lL

THE SEVEN STEPS TOWARD FIRING STABILITY provnde performance, weight
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! Figure 3-11. THE FMC LTHD provides a good margin of firing stability.
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" FENIG
150.00_
a . IMPULSE = 12,500 LB-SEC
18]
} _Il BASE L INE
L GE = 270 MILS GE = 0 MILS
AZ IMUTH = 0 MILS
! O
it 8 AZIMUTH = R400 MILS
. — 90.00
@ — UPGRADE = 270 MILS
l_
' Z SIDE SLOPE = 270 MILS
E L 60.00
: _
g = - ,
s
> _ ,ﬁ:/',
N L I/ yd
E@C U,_J 30.80 /’ﬁ_ﬂ:f/
’ % — ————
= N . =
ﬁ .00 N . . ,
.28 2.88 4.00 6.08 $.00
05 RECOIL STROKE (FEET)
! Figure 3-12. FIRING STABILITY is retained with traverse and on sloping terrain.
;‘ﬂ:
-~
o
o
s

3-21




YT OR T O T OO O TR O TR T O TR T

A i

TR A TR AT T T T

CwtT TR SRR W T MR T T T

3.2 SYSTEM DESCRIPTION

The FMC LTHD goes beyond M98
specifications in critical operational
areas, while providing an 8,500-pound
howitzer for helicopter-only movement.

The following subparagraphs provide a
working understanding of the FMC LTHD.,
More detailed discussions at the component
level are reserved for paragraph 3.3, De-
scription of Subsystems. The thumbnail
sketch of the LTHD (paragraph 3.2.1) pro-
vides sufficient understanding of the con-
cept to embark on the operational
description (paragraph 3.2.2).

3.2.1 Overview

The emplaced FMC LTHD is shown in figure
3-13. The configuration can be likened to an
engine hoist. Elevation 1is achieved by
raising and lowering the boom. The boom is
composed of two slide tubes on the LTHD.,
The load is the cannon. The path of the
cannon during recoil is defined by the slide
tubes. The cannon and the slide tubes are
joined by two recoiling yokes. Traverse is
accomplished by mounting the boom on a
swivel,

Projectile loading is accomplished with the
load-tray mounted above the right slide
tube. Projectiles are manually pushed up the
load-tray with the permanently attached
load-staff through the "right window" of the
platform. When ready to ram, cannoneer |
swivels the load-tray counterclockwise, and
the projectile rolls into the ram-tube. The
ram-staff is inserted through the "left win-
dow" of the platform, engages a "slider"
(positioned at the base of the projectile),
and the projectile is rammed. Loading is
fimited to 525 mils QE; ramming is limited
to 800 mils QE. The resultant rates of fire
are 4 rounds per minute to 525 mils, 2

rounds per minute to 800 mils, and 1 round
per minute at 1,275 mils.

Howitzer lay is maintained with the M98
indirect fire control. The FMC LTHD plat-
form is stationary, whereas the M198 upper
carriage moves in azimuth. Tube lay rela-
tive to this stationary platform is done
electronically and is displayed on the elec-
tronic laying aids. Elevation and traverse of
the tube are accomplished with manually
operated hydraulic pumps (one for the
gunner and one for the assistant gunner).

Firing forces are focused into an integral
firing platform, which is anchored to the
ground through a central (hydraulically
retractable) spade. This layout allows us to
drop the trunnion by a full 2 feet, thus
cutting the overturning moment in half. The
forward pointing trails place one-third of
the LTHD weight on the spade's integral
platform to improve holddown and to pro-
vide the capability to convert to the FMC
ARM without major redesign.

For towing, the cannon is depressed onto a
dolly and secured by dolly mounts. These
dolly mounts are an integral part of the
recoiling yokes.

For more detail in a particular area, the Bill
of Material (figure 3-14) also provides an
index to additional views of specific
components.

3.2.2 Operational Description

This paragraph describes these areas of
operational description:

Vulnerability to aerial bursts
Displacement

I. Deployment
2. Emplacement
3. Firing

4. Speed shift

5.

6.
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M198 MUZZLE BRAKE WITH INTEGRAL LUNETTE

WATERVL IET 41 CAL!IBER BARREL

FORWARD YOKE (DOES NOT RECOIL)
FRONT RECOIL ING YOKE
UPPER RECOIL CYL INDER

SLIDE TUBES DIRECT
FIRE CONTROL

ELEVATION
CYL INDER INDIRECT

ELECTRONIC
LAYING AID
FOR ELEVATION

AG

REAR RECOILING YOKE SRR P ATFORM

M185 BREECH OPENS UPWARD d AW - 2 _LOAD-STAFF
- - |

/C/S

GUNNER'S PUMP AND CONTROLS

G \\\
RAM-STAFF
ELECTRONIC LAYING AID

FOR TRAVERSE CENTRAL SPADE

LEFT SPADE CYLiNDER

Figure 3-13. THE FIRING POSITION focuses the firing forces into a central spade and
integral platform.
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Weight Figure
i Item Mean SD Material Qty Number
Assembly: 8,972 28 l 3-13
L Cannon: 3,756 12.73 1
v Barrel (4 |-caliber) 2,600 10 Steel { 3-31513
Breech (M185 but open 800 6 Steel I 3-31513
up)
', Brepech band 105 l Metal 1 3-3)
Breech band bearing 6 0.03 Same as trunnion bearing 2 3-31
Muzzle plug 5 0.02 Plastic 1
. M198 muzzle brake 240 5 Metal 1 3-31;13
: with pintle
;{f, Carriage: 5,216 25.05 |
f.
Structure: 1,652  21.54 |
oF Basic issue items 150 3 Various 1
_"-,15 Claw--primary 10 0.30 Metal 1 3-17
Claw--secondary 20 0.60 Metal 2 3-17
, Dolly: 545 20 Composite/metal 1 3-32;13
:'j: Brakes Metal/rubber 4
" Dolly clamps Metal 4
HMMWYV tire Rubber/nylon 4 3-32
e HMMWV-- Aluminum or composite 4 3-32
h compatible rim
Strap winch Metal/nylon 1 3.32
L Link-trail positioning 36 0.50 Metal 2 3-32
.t Platform 220 5 Composite/foam/metal 1 3-32;13
Safety "chain" 5 0.02 Steel/nylon 1
Skid plate 10 0.01 Composite or metal 2 3-32
. Spade 200 3 Composite or titanjum | 3-32;13,39
. Spade bearing 11 0.03 Same as trunnion bearing 2 3-32
Spade mounting shaft 30 0.25 Composite 1
o Spade cylinder 70 1 Metal/composite 2 3-32;13,39
o~ Trail--left 135 3 Composite/foam/metal 1 3-32
- Trail--right 135 3 Composite/foam/metal I
Trail bearing 5 0.02 4
? Traverse bearings 5 0.02 3
Travel lock--trail 20 0.20 Metal 2 3-32
portion
. Trunnion 45 1 Composite/foam/metal l 3-32

Figure 3-14.  THE BILL OF MATERIAL includes a weight budget, which accounts for the

f.'\,' variation in component weights and provides an average weight of under 9,000 pounds. (Sheet 1)
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Item

Slide:

Breech cam

Carrier for projectile
Elevation yoke

Front recoiling yoke

Load-tray:
Cleanout cover
Loading staff
Trav lever
Ramming staff
Rear recoiling yoke
Slide tube
Spacer, recoiling vokes
Trunnion bearing

Recoil system:

Dolly mounting
bushing
Forward yoke:
Firing lock
mechanism
Into battery cushion
Travel lock--yoke
portion
Recoil accumulator:
Counterrecoil check
Fluid (pounds)
Recoil cylinder

Front recoiling end
cap

Orifice ring

Rear recoiling end
cap

Recoiling inner
cylinder

Recoiling outer
cylinder

Recoiling piston

Stationary cylinder

Stationary end cap

Stationary piston

Stationary piston rod

Weight

Mean

1,091
45
10
230
130

110

10
135
360
50
L

1,567
20

SD
6.06
0.10

2.50
1.40

Material

Metal

Composite
Metal/composite
Metal or composite

Composite/metal
Composite or metal
Composite/rubber
Composite/rubber
Composite/rubber

‘Metal or composite

Composite/foam/metal

Metal or composite

Self-lube spherical
bearing

Metal/rubber

Metal or composite
Metal

Metal/elastomer
Metal

Metal/composite/N2
Metal/rubber
MIL-H-6083D
Metal/teflon/rubber

12

P b e e

NRNRN — — — — -

—

—

l
1
|
1
1

Figure
Number
3-35
3-35
3-35;13,
16,32,37
3-35;13
3-13
3-35;13
3-35;13,22,37
3-35;13,32

3-35

3-35;16,32
3-37;13,32
3-37
3-37

3.29;37,38,39
3-38

3-38;13,
32,37,39
3-38

Figure 3-14.
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THE BILL OF MATERIAL includes a weight budget, which accounts for the
variation in component weights and provides an average weight of under 9,000 pounds. (Sh:et 2)
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Recoil cylinder shroud

Slide bearing and
scraper
Hydraulic system:
Assistant gunner's

elevation control

valve

Assistant gunner's
pump

Assistant gunner's
reservoir

Fluid (pounds)

Gunner's elevation
contro!l valve

Gunner's pump

Gunner's reservoir:

Gunner's spade control

valve
Gunner's~-traverse
control valve
Hardline
Hose
Portable pump

Fire control

measurement:
Direct fire control
(DFC)

Electronic laying aid--

elevation

Electronic laying aid--

traverse

Indirect fire control
(IFC) mount--primary
IFC mount--secondary

IFC

Traverse:
Traverse cylinder

Traverse XDCR: IFC to

platform
Traverse XDCR:
platform to gun

Weight
Mean SD
10 0.3
8 0.03
327 2.13
8 0.04
20 0.10
50 0.50
90 2

8 0.04
20 0.10
50 0.50
8 0.04
8 0.04
25 0.03
20 0.02
20 0.10
150 2

55 0.50
45 0.50
5 0.02
5 0.02

Material
Composite
Teflon/rubber/metal

Same as gunner's

Same as gunner's

Same as gunner's

MIL-H-6083D
Metal/rubber

Metal/rubber
Metal or composite
Same as elevation control

Same as elevation control

Metal/rubber

MI38/MI18/M172
Composite/electronics
Composite/electronics
Metal

Metal

MI37/M171/M17
Metal/composite/rubber

Metal/electronics

Metal/electronics

Qty

—

Figure
Number

3-37;29
3-35;37

3-39

3-40;13
3-40513,41
3-40;13,41
3-40

3-40
3-40;13

3-39;40

m

;

IR v,
Ala

Figure 3-14.
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THE BILL OF MATERIAL intludes a weight budget, which accounts for the
variation in component weights and provides an average weight of under 9,000 pounds. (Sheet 3)
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Pl Weight Figure
Item Mean SD Material Qty Number
i Elevation: 374 2.33 |
Elevation cylinder 227 2 Metal/composite/rubber | 3-42;13,39,40
o Belleville spring set Composite ! 3-42
- Depression piston and 1 3-42
rod
Elevation cvlinder-- 1 3-42
! inner
P Elevation cylinder-- 1 3-42
. outer
": Elevation cylinder Composite | 3-29;40
& shroud ,
Elevation piston l 3-42
b, assembly
5 Piston 1
Tube 1
. Clevis--lower |
7 Lower cylinder Self-lube spherical !
: bearings bearing
Lower end cap | 3-42
J-:: Upper cylinder Same as trunnion bearings 2
ol bearings
Upper end cap and 1 3-42
- clevis '
i Elevation XDCR: IFC 5 0.02 Metal/electronics |
to platform
Elevation XDCR: 5 0.02 Metal/electronics 1
Wi platform to
o cannon
Equilibrator 135 2 Metal/composite/N2 3-38;39,40
! Equilibrator hose 2 0.02 Metal I
o
0
”
RO
b
e
B
%
Figure 3-14. THE BILL OF MATERIAL includes a weight budget, which accounts for the
\-}5 variation in component weights and provides an average weight of under 9,000 pounds. (Sheet 4)
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3.2.2,]1 Deployment

The LTHD meets or exceeds most M98
specifications, but takes exception to two
overall size dimensions that involve de-
ployment--stowed height (2 inches higher)
and stowed length (5 feet longer).

The stowed height increase is not expected
to create a problem, because the critical
height, determined by the CI130 for LAPES
and air-drop, increases with the distance

2. The lunette height must be adjusted
(figure 3-16).

3.2.2.2 Emplacement

Positioning the LTHD requires a smaller
patch of solid ground than conventional
howitzers due to the configuration's capa-
bility to focus the firing forces into an
integral platform and central spade. Figure
3-17 shows the additional area from the
three claws which, when combined with the

:g' from the last part of the howitzer to exit ability to retract the spade, simplify em-
\& the plane. The FMC LTHD maximum height placement upon rocky terrain.
occurs further forward than does the M|98
- maximum height. The emplacement procedure is shown in
N figure 3-18. The LTHD is assumed to be
- The stowed length is also set by the CI130. disconnected from the helicopter or truck,
As described in paragraph 3.1.1.9, this and in position at the site at the start of the
:‘j: should not present a problem. The reasons emplacement cycle.
<4 for this length increase are as follows:
Figure 3-19 shows the emplacement steps
. l. Longer barrel (41 caliber), ne- (summarized below) timelined for a crew of
et cessitated by higher recoil veloc- four. These steps are:
) ities (explained in more detail in
- n paragraph 3.3.1.1) l.  Extend platform
. 2. The stationary platform, which 2. Spread trails
allows the firing forces to be
2 focused into the ground, (thus, 3. Unlatch spade
reducing weight) adds length behind
the breech. 4. Open breech
! Figure 3-15 illustrates the LTHD from a 5. Elevate cannon to 250 mils
Y tow/stow perspective. The tow config-
uration's tandem wheels and low center of 6. Unlatch dolly

<\ gravity improve towing stability relative to

" the MI98. The reduced height for stow is 7.

necessary for LAPES, specifically from the
Cl130, to clear the top of the exit door
during parachute extraction. Reduction ot
the height (for LAPES) requires these two
steps:

1. The dolly mounting bushing holders
must be reversed.

Remove dolly
8. Verify yoke-tube locks

9. Position spade
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11367 . ¢~
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Figure 3-15. FMC LTHD OPERATIONAL CONFIGURATIONS provide additional

improvements over the M198 in critical areas.
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Figure 3-16. THE STOWED CONFIGURATION requires repositioning dollv mounts and
lunette.
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(TIME IN MINUTES)

. 0 1 2 3
| | | |

.. Y. EXTEND PLATFORM CANNONEER 1 AND 2__[ 2.5 ]
<
2. SPREAD TRAILS GUNNER AND ASSISTANT GUNNER __

g 3. UNLATCH SFADE GUNNER
ASSISTANT GUNNER

N 4. OPEN BREECH

S. ELEVATE CANNON TO 250 MILS ___ GUNNER

6. UNLATCH DOLLY CLAMPS ASSISTANT GUNNER

ASSISTANT GUNNER

- 8. VERIFY YOKE-TUBE LOCKS

E 7. REMOVE DOLLY CANNONEER 1 AND 2

3. POSITION SPADE GUNNER

Figure 3-19. EMPLACEMENT TIME is . minutes with a crew of four.
A more detailed description of these steps NOTE
follows:
Two crewmembers can perform this

e

‘-‘. LR

i

1. Extend platform via dolly winch

pullinrg on elevation yoke. (The nylon
strap winch is mounted on the
dolly.) The winch load is roughly
1,200 pounds for a 9-foot pull. This
is calculated as 0.20 horsepower
input to the winch (assuming an
80-percent efficient winch).

step in 2 minutes (with 30 seconds
allowed for getting into position).
The strap winch on the dolly used to
extend the platform will either have
a dual handle or the crewmembers
will take turns operating the winch.
The CG shifts rearward, but still
remains between the tandem wheels.
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2. Unlock trails; spread and lock trailis.
Two pins on the outside of each trail
connect to the link from the plat-
form. One pin holds the trail in the
firing position; the other pin holds
the link in the tow configuration.
The trail is held in the tow con-
figuration by the travel lock
described in the displacement pro-
cedure (paragraph 3.2.2.6).

3. Unlatch spade. The LTHD is towed
with the spade in the up position.

4. Manually open breech. This s
necessary the first time only.
Thereafter, the breech is opened by
counterrecoil.

5. Elevate cannon to 250 mils. This
step (done in conjunction with step 6
(unlatching dolly clamps]) lowers the
platform to the ground. As the
cannon elevates, first the front two
clamps are released, and then the
rear two clamps are released. At
250 mils, the dolly mounting
bushings (mounted to the front and
rear recoiling yokes) are sufficiently
above the dolly to allow the dolly to
be pulled out.

6. Unlatch the four dolly clamps. This
step must be coordinated with step
5 (elevating the cannon). Unlatching
involves unscrewing a knob on a
swivel bolt and swiveling the bolt
over. This enables the clamp,
holding the bushing down, to swing
out of the way, and allows the
bushing to lift out of the clamp
bottom as the cannon is elevated.

7. Remove dolly. The dolly weighs
about 600 pounds and must be pulled
out by hand if the LTHD is to be
fired at elevations below 300 mils.
At elevations above 300 mils, the
dolly can be left under the slide.
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8. Verify yoke-tube lock is secure:

a. The two yoke-tube locks (one
on each side of the forward
yoke) are spring-loaded and slip
into a metal groove in the end
of each slide tube. When the
locks slip in, a second spring-
loaded pin slips into its groove
and prevents the first pin from
coming out. The position of
both pins is visible from the
crew positions.

b. At displacement, the second pin
must be pulled out and the knob
on the first pin screwed to
extract the first pin from the
groove. This knob has a spring
loaded detent antirotation
feature to prevent it from
moving during firing.

9. Hydraulically position the spade.
The spade is positioned from the
gunner's position by setting the
spade control valve to "up" or
"down" and pumping. The position of
the spade is primarily determined by
local soil conditions. The options
include the following:

a. Do not set spade at all if rock
surface is sufficient to hold
howitzer.

b. Set spade into a predug trench
to improve bite.

c. Set spade in a few inches, and
increase depth a few more
inches each time a round is
fired.

d. Set spade at full depth if soil is
very soft.
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If below-zero QE firing is required, a trench
must be dug as shown in figure 3-20. With-

and the LTHD is fired, the lunette mounted
on the muzzle brake, being the low point,
will dig a trench. The recoil accumulators

e gt e

o e

i out a trench, the lunette will hit the ground

at a -10 mils. The maximum trench depth is (mounted beneath the slide tubes for

32 inches on level ground. This is a result of vulnerability reasons) do not recoil and will

o the reduced trunnion height, a necessity for not be damaged if the trench is of
e stability. If the trench is not deep enough insufficient depth.

LAY

ﬁf’

TRENCH

R

I

. v .
’

Figure 3-20.

FIRING AT NEGATIVE QE requires careful site selection or the digging of a
trench.
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3.2.2.3 Firing

The LTHD crew positions are shown in
figure 3-21. Locating the trunnion behind
the breech at full recoil enables the section
chief position to be at the focal point of
operations. From this position, the section
chief can see all personnel, check the fuze
settings as the projectiles enter the load-
tray, see the prescribed tube lay, and
observe the status of the cannon relative to
the prescribed tube lay. In addition, all
personnel are further from the muzzle brake
than the M98 layout permits, which results
in a reduction of the blast overpressure to
which the crew is exposed.

The LTHD employs a load-tray to facilitate
mechanical breech access. This loading
operation is a two-cycle process (figure
3-22). The two cycles can be operated to-
gether, to provide a U4-rounds-per-minute
rate of fire (as timelined in figure 3-23), or
separately, to provide a &-round burst
capability.

Table 3-1 lists the terminology used with
the load-tray operation and its timeline.
Preparation of the charge, projectile, fuze,
and chamber are not included. Delivery of
the projectile is included, but charge
delivery is not.

W

BRzECH

O 00

Figure 3-21. CREW POSITIONS
the exposure to blast overpressure,

reduce
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SN 3  POLED TC READY-POSITION

READY -TUBE

LOAD-TRAY -ENTRANCE

LOAD/FIRE

FIRE-CYCLE =*
3 READY -POSITION
4 ROTATED TO RAM-POSITION
5 RAMMED

* COPPSRHEAD MUST BE LOADED
B8Y HAND AND RAMMED DIRECTLY

Figure 3-22, LOAD-TRAY facilitates a four-round burst.
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n (TIME IN SECONDS)
6 1 2 3 4 5 € 7 B8 9 10 1t 12 13 14 15
"o FIRE CiCLE o r
R FIRE CrCiE N T T Y A R A
. "
* 1. RECOIL/COUNTERRECOIL _ ____ = AUTOMATIC 3.5 '
' 2. ROTATE TRAY TO BREECH __  _ _ CANNONEER \.__ .
.“w"’
3. PROECTILE ROLLS INTO POSITION - AUTOMATIC
.
f-_:" 4. RAM ___ — . —_ CANONEER 2 ANO3 _ .
5. RGTATE TQAY TO STOW ____~ CANNONEER 1 - 1.0 '
”
. 5. LOAD CHARGE . - . _. —._____ CANNONEER f E
o 7. CLOSE BREECH CANNONEER 1
v, |
' B. INSERT PRIMER/ATTACH (ANYARD __. CANNGeR ' _
<. $. MOVE ASIDE CANNONEER 1
"-
n 10. FIRE CANNONEER 1 E
. L T O O O O T T I e A B
N 0 1+ 2 3 4 S5 6 7 8 9 10 i1t 12 13 14 5
READY CYCLE o
] TeAor crece T T T O T T O A T O N T
1. PLACE PROJECTILE ON CARRIER ____ CANNONEER 4 AND S ____.]
.}: ! ,
N, 2. MOVE TO LOAD TRAY ENTRANCE (LTE) . CANNONEER 4 ANO S .
3. CHECK FUZE SETTING _____ __ ___ SECTION CHIEF ;
!
! 4. SET PROJECTILE ON LTE ____  CANNONEER 2 _ [E
W S. SLIDE PROKCTILE INTO READY TUBE . CANNCREER 2 _ Llsl
\&-I
PY 6. PUSH PROECTILE TO READY POSITION CANNONEER 3 _
? 7. RETURN TO PROJECT ILE PREPARATION _ CANNONEER 4 AND 5 7.5 —
.,
® DOES NOT INCLUDE COPPERHEAD.
.{:
o
..

Figure 3-23, THE FMC LTHD will fire four rounds per minute.
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Tahle 3-1. Load-Tray Terminologv
Name Definition
Load-tray Composed of load-tray-entrance (LTE), ready-tube, and ram-tube

Load-tray-entrance (LTE)
Ready-tube

Load-staff

Ram-tube

Ram-staff

Ready-cycle

Ram-cycle

Load-cycle

Fire-cycle

Burst-cycle

Ready-position

Load/fire-position

Ram-position

First portion of !»ad-tray the projectile passes
Second portion of load-tray the projectile passes
Staff used with ready-tube, permanently attached
Last portion of load-tray the projectile passes
Staff used with ram-tube

Process of getting the projectile from preparation to the LTE and
moving it to the ready-position

Moving the projectile from the end of the ready-cycle and seating
it in the forcing cone. (The ready-cycle is the feeder process that
provides projectiles to the ram-cycle. The ram-cycle is part of
the fire-cycle.)

Ready-cycle and ram-cycle

Process required to fire the LTHD; includes the ram-cycle as well
as other steps required during the fire-cycle

Special cycle that integrates only the necessary steps from the
ready-cycle with the fire-cycle to achieve minimum delivery time
for four projectiles

Point of termination of ready-cycle

Load-tray swiveled away from breech

Load-tray swiveled in front of breech
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X The load-tray provides the ram-cycle with
5 the following:
1

to load the charge. (Figure 3-26¢
shows how the breech height in-
creases with QE.)

i I.  Mechanical assistance to ease the
' breech-loading operation 2. From 525 to 800 mils:
e 2. Ability to maintain the ramming
= staff handgrip at an optimum height a. Cannon must be depressed to
" (figure 3-24) allow charge to be loaded.
' 3. Increase in ramming force (over and b. The swivel joint between po-
! above that required for the MI198) sitions | and 2 will not allow a
N (figure 3-25), compensated for by projectile in position | to pass
’ room for more hands on the ram- to position 2 (figure 3-22). This
N - ming statf when needed also limits the burst to 3
: v rounds, because the projectile
# ' The load-cycle has the following QE in position | (figure 3-22) can-
limitations: not be advanced.
Rk T
“ .@ . From 450 to 525 mils: cannoneer | The resultant rate of fire is discussed in
¢ must be of average height or above paragraph 3.3.3.3.
M -
T
M
> START  STOP
. | ' 0 MIL OF
i
T
Al ‘(:

A

L
:‘.“h'.‘-
|s—

START STOP

80O MIL QE

33"
S :
4
"
B o~
* $C‘, Figure 3-24. THE LOAD-TRAY allows the ram-staff handle to be held at the height most
effective for the crew.
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(POINDS )

FORCE

170.
160,
150.
140.
130.
120,
11a
100,
39,
30.
70.
60.
50.
40.
3a.
co.
10.

00
00
00
00
00

80|
.00
8o

©a
(a]%
00
als)
00

08|

006
006
80

.a0

LTHC

\

=
(4o’
03

.89

chB. 8o

490.99

DE

(MILS)

609 .88

300.00

Figure 3-25.

ADDITIONAL FORCE required to overcome projectile weight due to the

load-tray is compensated for by room for more hands on the handle.
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30.608
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40 .00
30.80](

EHTERLIME HEIGHT

-

0. 00

H

18,84

.88 . . . .
cop.08 408.00 cBBE.00  E00.668

GUADRANT ELEVATION (MILS)

-

BEREEY

' Figure 3-26. BREECH HEIGHT increases with QE; cannoneer | must be of average height
to load charge at QE's of 450 to 525 mils.
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Loading the 54-inch-long COPPERHEAD
M712 Guided Projectile would be done man-
ually or with the dolly. Use of the dolly
would involve these steps:

|. Set COPPERHEAD on dolly (in
cradle provided).

2. Elevate cannon to 300 mils.

3. Roll dolly with COPPERHEAD on it
into position.

4. Depress cannon (slightly) until open
breech is at same level as
COPPERHEAD.

5. Push COPPERHEAD into chamber.

6. Swivel load-tray into ram position
and ram COPPERHEAD.

7. Elevate cannon to remove dolly.

8. Continue firing sequence, starting
at step 5 (rotate load-tray to stow,
figure 3-23).

3.2.2.4 Speed Shifting

Speed shifting (figure 3-27) involves setting
the LTHD back on the dolly, locking one of
the rear brakes, tipping the LTHD up on the
rear wheels, and swiveling the howitzer
around. If the net rolling resistance at the
rolling wheel is assumed to be 750 pounds,
the required horizontal force at the muzzle
break is 200 pounds. With four people, this
translates into 50 pounds per person for |
minute or 0.4 hp per person. Figure 3-28
provides a timeline of the speed shift steps
required.

*

W‘—:"" 100 LBS
SPEEDSHIFT RADIUS=23 FEET —

Figure 3-27.
speed shifting is accomplished on two wheels.

OIS

THE SPEED SHIFT FUNCTION adds no parts or weight to the FMC LTHD;
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1. RETRACT SPADE ___ _ _ _ GUNNER
2. ELEVATE CANNON TO 250 MILS __
3. POSITIONODOLLY __
4. DEPRESS CANNON TO 0 MILS __  ASSISTANT GUNNER
S. LATCH DOLLY CLAMPS

CANNONEER 1 AND 2

6. LOCK ONE REAR WHEEL GUNNER

7. TRAVERSE GUN 6,400 MILS ALL

(TIME IN MINUTES)

ASSISTANT GUNNER E
CANNONEER 1 AND 2 EE:]

|

1 2 3

s ]

[ ]

8. UNLATCH DOLLY CLAMPS CANNONEER 1 AND 2

|
[ |

9. ELEVATE CANNON TO 250 MILS __ ASSISTANT GUNNER

10. REMOVE DOLLY CANNONEER | AND 2

11. POSITION SPADE GUNNER

L=]
=]
(=]

Figure 3-28.
3.2.2.5 Vulnerability to Aerial Bursts

The FMC LTHD minimizes vulnerability to
aerial bursts (figure 3-29) to improve sur-
vivability through component placement and
the selective use of armor by the following: 3.

I.  Mounting recoil accumulators be-

neath the slide tubes, exposing only

a small area 4.
2. Designing the recoil cylinders so

dynamic sealing surfaces do not
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SPEED SHIFT TIME is 3 minutes with a crew of four.

interface with the outside wall.
(Instead, the inside of the outer
cylinder provides the orifice func-
tion.) The precision surfaces are
buried deeper within the assembly.
Providing a protective shroud for
the upper recoil cylinder rod to
protect it during the 3-second
recoil/counterrecoil cycle

Providing a protective shroud for
the elevation cylinder to protect its
rod surface
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Figure 3-29. VULNERABILITY TO AERIAL BURSTS is minimized with careful component
! placement and shrouds.

3.2.2.6 Displacement yoke into receptacles on the inside of either
M trail (in a staggered fashion) to tie the trails
s The displacement procedure is essentially and rear recoiling yoke together during
., the reverse of the emplacement procedure towing. This configuration serves as a travel
described in paragraph 3.2.2.2, with the lock for the elevation cylinder, traverse
g ? exception of step 10 (figure 3-30). This step cylinder, rear recoiling yoke, and, in turn,
k- involves guiding the pins on the forward the cannon.
Y,
s
.
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6. RETRACT PLATFORM

CANNONEER 1 AND 2

(TIME IN MINUTES)

0 1 2 3

| | :

1. RAISE SPADE ] GUNNER @ . | ,

i

I .

2. ELEVATE CANNON TO 250 MILS ___ ASSISTANT GUNNER E ! 5 ‘

’ i

3. POSITION DOLLY  CANNONEER 1 AND 2 [.5 ;
4. RELEASE YOKE-TUBE LOCK __ . GUNNER

S. DEPRESS CANNON TO 0 MILS _______ ASSISTANT GUNNER 5

BRERE

25 !

7. LATCH SPADE GUNNER
i
8. LATCH DOLLY CLAMPS ASSISTANT GUNNER .75 |
i
9. CLOSE AND LOCK TRAILS o GUNNER AND ASSISTANT GUNNER___ [ .75 -
10. SECURE TRAVEL LOCKS GUNNER AND ASSISTANT GUNNER E

Fig-udre“—B:BVO'.

3.3 DESCRIPTION OF SUBSYSTEMS

Components compatible with con-
ventional composite technology, sup-
ported by the analytical power of our
Central Engineering Laboratories
(CEL), combines with the reliability of
the Watervliet cannon to produce the
minimum-risk FMC LTHD.

The following subparagraphs describe the
hardware output from the analytical
approach. As items of concern are covered,
the underlying logic and supporting analysis
is defined. Due to the critical nature of the
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DISPLACEMENT TIME is 3 minutes with a crew of four.

strength and weight considerations, a de-
scription explaining the load paths employed
to arrive at a minimum weight structure is
provided when deemed appropriate.

3.3.1 Cannon

The LTHD employs a conventional tech-
nology cannon similar to the MI199 (figure
3-31). This cannon maintains the capability
to fire all 155-mm conventional and im-
proved munitions and consists of the
following items:

I. Barrel (weight-reduced &l-caliber
version of the M199 that saves [,250
pounds)

.t
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L ) 2. Breech (M185 that opens up) Table 3-2.  Optimal Recoiling
‘ Muzzle brake (MI199 with integral Mass for FMC LTHD

w
.

lunette for towing)

4. Breech band (one that controls Recoiling Mass
cannons X, Y, and Z as well as Item (Pounds Mass)
angular coordinates)

Barrel 2,600
Table 3-2 shows the optimal recoiling mass M185 breech 800
determined at the system level (paragraph Breech band 105
3.1.4.1). Muzzle brake with 240
integral lunette
Recoiling yoke 315
assembly
Recoiling portion of
recoil cylinders 640
Total recoiling mass 4,700

\. —— MUZZLE BRAKE

BARREL 41-CALIBER

BREECH BAND
BEARING

BAND . 9%

o

BREECH /

WATERVLIET will supply the conventional cannon.

Y

Figure 3-31.
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3.3.1.1 Barrel

The 4l-caliber barrel is designed to main-
tain muzzle velocity equal to the M[98. The
details of how we selected this caliber are
as follows:

I. The MI98 recoil velocity s
approximately 43 feet per second.

2. Reducing the recoiling mass from
7,000 (M198) to 4,700 pounds
(LTHD) increases the recoil velocity
to 65 fps.

3. Increasing the muzzle velocity 22
fps relative to the barrel is nec-
essary to maintain the muzzle
velocity relative to the ground.

4. Ballistic similitude has been
approximated with the M203 and the
M483A1 projectile family.

5. Increasing the caliber to 41 and the
combustion chamber from 1,i88 to
1,265 cubic inches achieves the 22
fps muzzle velocity increase and
maintains the same expansion ratio
as the MI]99. The expansion ratio
has been defined as the ratio of the
combustion volume at shot ejection
to that at shot start.

In the interest of weight savings, the LTHD
was structured to accommodate a tapered
barrel. (The barrel outside diameter is not
used to guide cannon motion during recoil.)

Alternatives to the 4l-caliber, tapered,
conventional barrel that were considered
but dropped in the interest of maintaining a
low-risk approach include the following:

1. Composite-wrapped barrels. One
barrel involved a copper-coated
graphite filament overwind; the
other involved an SiC/Al metal
matrix overcasting. As the system
concept development progressed,
the desirability of a lightweight
barrel lessened, because the optimal
recoiling mass (table 3-2) did not
require it.

2. Longer caliber barrels. Increasing
the caliber to the 45 to 47 range
produced a weight reduction due to
the lower pressure. The lower
pressure resulted from an increase
in the combustion chamber volume
to maintain the M99 expansion
ratio and, in turn, maximize bal-
listic similitude. Secondary benefits
included reduced blast overpressure
due to the reduction of muzzle
pressure from increased distance
from the crew. This approach was
abandoned due to the droop and
overall length increases.

3.3.1.2 Breech

The primary reasons for using the MI85
breech are weight, cost, and inventory.

We initially did not plan to employ the
auto-opening feature. When the feasibility
of a four-round burst developed (as a result
of the desirability of mechanical breech
access [paragraph 3.1.3, Evaluation of
Alternatives]), the breech cam appeared
justifiable.

The MI199 breech was considered, but was
dropped in favor of the MI85 breech be-
cause of the weight-cost-inventory con-
siderations and the automatic opening
feature. The temperature indicator was not
a factor due to its availability on the up-
coming M185 breech.

The breech was not positioned to open to
the side because of space problems. The
decision to open up versus down was made
on the basis of these tradeoffs:

l. Breech opening upward:

trunnion

a. Facilitates lower
height without digging

h. Keeps breech away from mud
and shields breech from rain

c. Provides more room for auto-
primer option
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d. Ensures a clear path for pro-
} - pellant loading at high QE

3.3.2 Carriage

-
= a a0 'm

The carriage is composed of the structure,

Breech opening downward: slide, recoil system, and hydraulic system.

b
: a. Automatically knocks iload-tray 3.3.2.1 Structure
)

Y out of the way if breech closes
beiore the tray has been moved The primary purpose of the structure is to
- out of the way position the cannon and transfer the firing
NN b. Ensures cannoneer | does not forces into the ground. The main com-
< have to reach over the bleed ponents are the platform and trails (plus the
N hole to remove the primer in dolly in the tow configuration). Figure 3-32
r. .::: the event of a misfire locates and identifies the components.
s
3.3.1.3 Muzzle Brake " The structure will be described, first from a
1 firing load perspective, then from a towing

The M198 muzzle brake design was chosen

v o
A

because of the known and acceptable crew
risk levels. The Junette was added to the
muzzle brake, because it provides a very
substantial tow point. The lunette s
attached to a very substantial portion of the
towed mass with a minimum weight penalty.

A more efficient muzzle brake, coupled
with the same blast overpressure, was con-
sidered. Statistical analysis of empirical
data available suggested this may be pos-
sible. This effort was abandoned due to the
what-if-it-fails-to-materialize risk.

3.3.1.4 Breech Band

The breech band (figure 3-31) performs a
number of functions with minimal weight
addition by virtue of the recoil system con-
figuration. The breech band (by virtue of its
mounting to the rear recoiling yoke) guides
the cannon motion, applies recoil force, and
constrains the torque reaction through lugs
mounted in self-aligning bearings. These
self-aligning bearings are mounted to the
rear recoiling yoke. Therefore, the key used
to lock the barrel to the breech and, in turn,
to the band, will be used to carry torques
caused by projectile spin. The LTHD's
self-lubricating trunnion bearings are the
same design as those currently used on the
MI tank.

load perspective. The firing load path to the
ground is made up of nine major steps:

I. When the LTHD is fired, the recoil
cylinders retard the motion of the
cannon and impart a load on the
forward yoke to which they are
anchored. This loads the slide tubes
in compression.

2. The load then proceeds to the outer
diameter of the trunnion bearings,
which are mounted on the end of the
slide tubes. The inner diameter of
the trunnion bearings are mounted
on metal stub shafts, which are part
of the trunnion.

3. The load path continues through the
trunnion to its vertical bore.

4. The force is transferred through the
traverse bearings into the equili-
bration accumulator cylinder. This
cylinder is mounted within the
platform. The load path splits:

a. Some of the load is transmitted
directly into the ground via the
claw-primary.

b. The balance of the load enters
the platform and splits again.

5. The vertical component of the force
flows through the base of the plat-
form and is directed into the ground.

,
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Figure 3-32.

6. The horizontal component of the
force flows into the claw-secondary
o (via the reservoir cylinders) and the

spade mounting in the platform. The
- path continues into the spade
’ mounting shaft, the spade bearings,

and the spade.

7. The spade is shaped to carry the
o bulk of the loading in tension (it
T pulls into the ground) rather than
bending.
The force is then transmitted into
the substructure of the spade. This
substructure gives the composite
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THE STRUCTURE is composed almost entirely of composite components.

core of the spade a soft shell to
protect it from rock damage. Figure
3-33 shows one of the finite element
analysis grids employed at FMC's
CEL as part of the component level
dynamic analysis done on this spade.
The spade is field repairable.

The force path enters the ground.
As the force enters the ground,
structural resonance serves to ham-
mer the spade rearward, possibly
resulting in more slide. When the
recoil force ends, a rebound effect

may occur.
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Figure 3-34. THE DAMPING CHARACTERISTICS attainable with composite materials will
improve the resistance of the FMC LTHD structure to shock, resonance, and rebound.
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3. A separate dolly that attaches to
the recoiling yoke provides the

lowest weight solution. This
approach provides these additional
benefits over the others considered:.

a. Should high loading necessitate
the addition of a suspension
(due to towing conditions), this
could be more easily handled on
a unit separate from the main
structure.

pounds. This would enable a
helicopter to lift the LTHD on
a hot day (when the combined
weight would be beyond the
helicopter limits). The speed
shift would have to be per-
formed in some other manner.

Use of the M198 wheels was considered, but
was dropped in favor of the HMMWV tires
and HMMWV-compatible wheels (also used
on the trailing arm drive vehicle developed
by Standard Manufacturing, a potential
prime mover) for the following reasons:

|. Weight reduction

2. Reduction of the probability for the
need of a suspension due to the
reduction in air pressure. The
narrow M98 tire is rated at 100 psi.
Scaling down to 9,000 pounds yields
100 multiplied by  9,000/16,000
which equals 56 psi. A set of four
HMMWV tires provides a rating of
11,000 pounds at 35 psi.

3. Tandem footprint (which should
improve pothole resistance,
although scrubbing on turns may

5. The option of adding the HMMWV
run-flat/bead-lock option

The HMMWV-compatible wheels were
chosen over the HMMWYV wheels with the
following in mind:

I. Aluminum or Composite wheels
(compared to the HMMWV's steel
wheels) provide weight reduction.

2. If either type of HMMWV wheels are
used on the LTHD, compatibility is

:;; b. The dolly could possibly provide maintained.
- additional functions at the site.
c. Separating the LTHD from the 3.3.2.2 Slide
] dolly reduces the total con-
- figuration weight by 600 The primary purpose of the slide is to hold

the cannon and guide it during recoil. The
major elements are the slide tubes, load-
tray, and front and rear recoiling yokes.
Components are shown in figure 3-35. Load-
tray operation is covered in paragraph
3.2.2.3

Two loads occur during firing, one from the
recoil force and one from the torque on the
cannon due to spin-up of 'the projectile by
the rifling. Each load case will be outlined.

Firing loads are carried into the slide tubes
by the forward yoke via the metal grooved
disks on the end of the slide tubes that
receive the yoke-tube lock. The slide tubes
are 10.5 inches in diameter and made of a
fiber-wound-composite/foam-filled con-
struction. Metal bearing housings on the
trunnion end of the slide tubes transfer the
load into the structure.

Torque loads are delivered to the rear re-
coiling yoke by the breech band bearings.
The path continues as follows:

. The load flows through the yoke and
into the slide bearings. The bearing

N shorten tire life) pressures are sufficiently low (under
: ;i- 4. Logistics 250 psi) to permit the use of
Teflon ®.

- ® Registered trademark of DuPont.
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Figure 3-35., THE SLIDE CONFIGURATION provides natural protection to the crew from
the increased recoil stroke.

2. As the load path continues, it The slide mounting to the platform was
creates an upward load on one slide evaluated in both vertical and horizontal
tube, coupled with a downward load configurations. The horizontal configuration
on the other slide tube. The slide was chosen. Attributes for each con-
tubes combine with the elevation figuration are discussed below:
and the forward yoke to form a
torque tube. This strength/stiffness I. Horizontal:
requirement mandated the 10.5 inch
outside diameter of the slide tubes a. Provides lower overall height,
(to obtain sufficient section required by LAPES and air-drop
properties). b. Facilitates lower trunnion

3. The torque reaction finally appears height, important for firing and
at the trunnion bearings primarily in towing stability
the form of vertical components (up c. Raises slide tubes farther above
on one side and down on the other). the ground

*
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1
|
nd d. Reduces aerial vulnerability of The ram-tube portion of the load tray design
. one recoil cylinder and the selected falls short of the barrel] face by 19
. recoil accumulators inches, due to the clearance required for the
upward swinging breech. We are currently
2. Vertical: evaluating the following ideas, en route to
= eliminating this issue:

A

LR}
]
V)

a. Provides compatibility with the
side-opening breech (M199 or
MI185)

b. Reduces aerial vulnerability to
one of the slide tubes (which
are not particularly susceptible
to damage)

The mechanical breech access (paragraph
3.1.3) creates the weight penalty of a
load-tray. This penalty, however, is sig-
nificantly less than the weight saved via the
focused structure concept.

Two load-tray appt raches were considered.
The first was a tr.y that swiveled in over
the trails. The pivot centerline was near the
platform and vertical at zero elevation. The
second, and preferred approach, was a tray
that pivoted about an axis parallel to the
slide. The factors considered in making this
choice are outlined below:

I. Horizontal slide orientation is
feasible. (The first tray required
vertical slides.) The advantages of
the horizontal over the vertical
slides were discussed earlier.

2. Loading times would be reduced.

3. Trails could be higher. This reduces
weight by virtue of the deeper sec-
tion and increases utility as storage
vessels.

4, Four-round burst
peared feasible.

5. Load-tray operation is less awkward
at high QE loading.

6. This configuration eliminates the
cantilevered beam associated with
the former approach, reducing
stress, deflection, and weight
problems.

capability ap-

l. Extend (strong) fingers with the
rammer to bridge the gap.

. Angle the breech.

Swivel the breech down.

Angle the slide.

Move the slide tubes farther apart.

. Move slide tubes off center.

3.3.2.3 Recoil System

The recoil system approach will be de-

scribed in these four steps:

l. Generic approach to the lightweight

challenge
2. Numeric solution to the LTHD
system
3. Mechanical operation of the recoil
system
4. Mechanical operation of the recoil
cylinder
3.3,2.3.] Generic Approach to the Light-

weight Challenge

The generic purpose of the recoil system is
to provide a controlled negative accelera-
tion to the cannon to stop it in a reasonable
distance. Reducing the recoiling mass in-
creases the necessary retarding force, while
increasing the recoil stroke reduces this
force. Thus, the first major consideration is
whether the recoiling mass should be re-
duced. If the recoiling mass is not reduced,
the following situation exists. The M]|98
recoiling mass is 7,000 pounds. Thus, the
balance of the howitzer would have to weigh
in at 2,000 pounds to achieve the 9,000
pound requirement. Because the MI98

weighs 15,760 pounds, the M198 nonrecoiling
mass weighs 8,760 pounds. Therefore, the
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strength-to~weight ratio of the nonrecoiling
mass would have to increase by a factor of
4.5 to 1. This is not impossible, but is not an
optimal solution, considering the risk
element.

If the recoiling mass is reduced, the fol-
lowing will result:

l. The required force to stop the can-
non in a reasonable distance in-
creases (figure 3-3).

2. This increased recoil force will
produce an increased load on the
structure which will, in turn, create
larger deflections at the time of
shot ejection. This will have an
undesirable effect on downrange
accuracy.

The second major consideration is whether
the stroke should be increased. Increasing
the stroke:

lI. Reduces the required
force (figure 3-2)

2. Increases the resultant breech to
ground distance at high QE’s

retarding

3.3.2.3.2 Numeric Solution to the LTHD
System

The numeric solution involved hundreds of
computer runs performed during the concept
evolution of the FMC LTHD, at both the
system and component levels (paragraph
3.1.4). The result is the trunnion loading
force profile listed below and plotted in
figure 3-36.

The total stroke of 102 inches breaks down
as follows:

4.25 inches free recoil
75 inches fluid compression
93.00 inches major energy absorption
4.00 inches overtravel allowance
102.00 inches total

3-56

The recoil retarding force (equivalent to
trunnion loading) is shaped to provide the
following features:

I. A free recoil distance of 4.25 inches
minimizes the force input to the
firing platform prior to shot
ejection.

2. Fluid compression to the full recoil
force consumes 0.75 inch.

3. The initial force (following fluid
compression) is sufficient to main-
tain a positive safety moment
(stabilizing moment less overturning
“moment) with the 12,500 pound
second charge.

4. Thereafter, the decreasing distance
of the CG to the pivot will result in
a decreasing stabilizing moment,
and the recoil force is reduced
accordingly to maintain a positive
and fairly constant safety moment.
Figure 3-11 graphically depicts this
safety moment.

5. The final force is the force nec-
essary to stop the cannon at the end
of the 98-inch nominal stroke. A
4.0-inch cushion was arbitrarily
chosen to allow for overtravel con-
ditions caused by fluid, temper-
ature, manufacturing, and miscel-
laneous variations.

3.3.2.3.3 Mechanical
Recoil System

Operation of the

The mechanical operation of the recoil
system is tllustrated in figure 3-37. The
major items are the recoil cylinders, the
recoil accumulators, and the forward yoke.

The recoil system load path has three steps:

. When the cannon is fired and re-
coils, the recoil cylinders provide
the programmed force profile shown
in figure 3-36. An equalization

passage in the forward yoke bal-
ances the
cylinders.

pressure in the two
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2. From the recoil cvlinder mounting
point in the forward yoke, the load
path flows to the vyoke-tube lock
(one for each slide tube).

3. The vyoke-tube lock transfers the
load into the slide tubes. Operation
of the yoke-tube lock is covered in
paragraph 3.2.2.2.

3.3.2.3.4 Mechanical
Recoil Cylinder

Operation of the

The mechanical operation of the recoil
cylinder (figure 3-38) includes the recoil
cycle and the counterrecoil cycle.

The recoil cycle consists of this sequence of
events:

. When the cannon recoils, the re-
coiling mass moves to the right.

2. The fluid in the programmed pres-
sure chamber is pressurized by the
orifice ring. This provides the re-
quired force-distance profile by
virtue of the contoured inside dia-
meter of the recoiling outer cylin-
der. The recoiling outer cylinder,
combined with the orifice ring,
forms an annular orifice.

TRAVEL LOCK

FIRING LOCK
MECHANISM

SLIDE BEARING
AND SCRAPER

RECOIL CYLINDER

# SHOWN FOR REFERENCE ONLY

REAR RECOILING YOKE s—_
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RECOIL CYLINDER

&

N
£

<

NN
S I N
Y R
v N - S NI
BN M N A

a4 AN X v

%
4

"
N
AN

Figure 3-37.
to reduce risk.

THE RECOIL SYSTEM operates on the conventional hydropneumatic principle
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Figure 3-38,

THE FMC LTHD RECOIL CYLINDERS improve RAM-D by orificing against

the outer wall (reducing sensitivity to outside damage) and bellows accumulators (reducing
sensitivity to outside damage and eliminating nitrogen maintenance).

3.

The flow of fluid from the pro-
grammed pressure chamber to the
spent fluid chamber, combined with
the displacement of the recoiling
mass, reduces the volume in the
spent fluid chamber.

The volume reduction in the recoil
compression chamber increases the
volume in the spent fluid chamber
bevond the reduction mentioned in
the above step, thus displacing fluid
to the counterrecoil chamber,

‘.

5.

The fluid added to the counterrecoil
chamber is stored in the recoll
accumulator.

The counterrecoil cycle consists of this
sequence of events:
The fluid displaced to the recoil

accumulator results in a counter-
recotil pressure.
The magnitude of this counterrecoil

pressure that acts upon the recoil

3-59
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cylinder to return the cannon to the
battery is controlled by the orifice
in the counterrecoil check valve.
The counterrecoil buffers, which are
external and mounted on the for-
ward yoke, ease the cannon move-
ment into battery.

The logic behind our design of the recoil
cvlinder includes the following points:

l.

3-60

The orificing is performed against
the inside surface of the outer wall
for these reasons:

a. Scrubbing the working fluid
against the outer wall will
increase heat transfer and the
feasibility of a composite
overwrap. {Conventional com-
posites are poor conductors of
heat.)

b. The lack of dynamic seals may
facilitate a linerless composite
cylinder, resulting in further
weight reduction.

c. Moving the sealing surfaces
inward insulates the recoil
cvlinder from damage to a
greater degree.

The majority of the recoil cylinder
recoils to maximize the recoiling
mass.

The recoil cylinders are, in effect,
self-displacing. The high internal
flow rates are contained and only
enough volume is- displaced to the
recoil accumulator to provide re-
asonable at-battery forces from
reasonable nitrogen pressures.

The scheme allows the recoil ac-
cumulators to provide makeup fluid.
This fluid store can be replenished
bv the portable pump of the hy-
draulic svstem (figure 3-39).

The recoil accumulators do not
recoil because bellows accumulators

were chosen to perform that -

function. Bellows accumulators
were employed because of the
elimination of dynamic seals. This
resulted in:

a. Elimination of nitrogen pre-
charge maintenance

b. Reduction in the sensitivity of
the inner wall to damage.
(Bellows  accumulators  can
operate under conditions that
would seize a piston-type
accumulator.)

Two constraints on the application
of bellows accumulators are nec-
essary to reap these benefits:

a. Avoidance of high flow to pre-
vent damaging pressure drop
across open bellows

b. Avoidance of mounting on
recoiling mass (in excess of 200
g's could damage bellows)

3.3.2.4 Hydraulic Svstem

The hydraulic system (figure 3-38) supports
the following functions, and an operational
description is provided for each in the
paragraphs listed bejow:

Function Paragraph

Elevation (from gunner or 3.3.3.3
assistant gunner's position)

Elevation with failed 3.3.3.3

equilibrator (from
portable pump)

Equilibrator temperature 3.3.33
compensation (from
portable pump)

Recoil cylinder {luid 3.3.2.3
replenishment (from
portable pump)

Spade positioning (from 3.2.2.2
gunner's position)

Traverse (from gunner's 3.3.3.2
position)

[ Y
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Figure 3-39,

CENTRALIZATION OF THE HYDRAULIC SYSTEM reduces weight; controls

at the gunner and assistant gunner positions provide for flexibility and degraded operations.

Several hydraulic cylinders are emploved. In
general, pilot-operated check valves hold
the rod positioned. Where practical, com-
posite-wound cylinders are employed to
reduce weight.

The portable pump saves weight by pro-
viding the multiple functions that are not
directly tied to the firing operation.

3.3.3 Fire Control

The M 198 optics, enhanced by radio battery-
operated electronics {with provision for
manual backup), are combined with hyv-
draulic cvlinders to provide fire control. The
components are identified in figure 3-40,
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3.3.3.1 Lay

The MI]98 direct fire control (DFC) unit
pivots on the bearing centerline of the
platform end of the elevation cylinder. The
elevation cylinder moves with traverse. A
link to the slide provides elevation.

The MI98 indirect fire control (IFC) unit is
mounted just behind the DFC on the plat-
form. The IFC maintains platform lay.
Electronics are used to measure tube lay
relative to platform lay. The difference
between these actual and the desired tube
lay are displayed on electronic laying aids.

1.6
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The two electronic laying aids (figure 3-4]),
one for elevation and one for traverse, are
mounted above the trail pivots (figure 3-40).
Each has a digital set point and green lights.
The lights indicate the lay of the cannon
relative to where it should be. A sun-
shade/guard for the lights, plus an inten-
sity-adjusting on-off knob, accommodates
bright sunlight to pitch-dark-in-the-rain
operations. As the desired lay is approached,
blue indicators light. When three indicators
are lit, the cannon is within | mil of the
desired lay. When all the indicators light,
the cannon is within the prescribed re-
solution. This prescribed resolution is set

by an adjustable "null band" to provide the
sensitivity versus time tradeoff necessary
from a specific mission perspective.

The electronic laying aids can be swiveled
so either the gunner/assistant gunner or the
section chief can set the lay. The lights
allow the section chief to see the proximity
of the cannon to desired lay for both
elevation and traverse (figure 3-21).

Indicator lights (with a light and protection
shade) were chosen over digital or analog
meter displays for ruggedness, operation in
a range of ambient lighting, broad field of
view, and simplified field repair.
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ELEVATION CYLINDER

ASSISTANT GUNNER'S ELEVATION
CONTROL VALVE

INOIRECT FIRE CONTROL
MOUNT -SECONDARY

ELECTRONIC
LAYING AID

ASSISTANT
GUNNER ™S
RESERVOIR

INDIRECT
FIRE CONTROL

FIRE CONTROL
MOUNT -PRIMARY

EQUILATION
ACCUMULATOR
TRUNNION =
TRAVERSE CYLINOER

* SHOWN FOR REFERENCE Cric»

Figure 3-40.

FIRE CONTROL SYSTEM WEIGHT is reduced through a single elevation

cylinder: RAM-D is improved with a bellows accumulator (reducing sensitivity to outside

damage and eliminating nitrogen maintenance).

3-62

4

[t




»
L‘
¥
& EIVIC
i
o]
U}
K
"
o
BUBBLE LIGHTS (GREEN) PRC-77 BATTERY
¥ ! _// - ——
af R ( / \
> oA -\ ~£
S
o 0O T I; (O~
- L AN ]
- [H==""TAN ______TZ
" — AN \— - -
3 Y U K 0
)
‘BN SET POINT
P ON/QFF/
: INTENSITY LIGHTED THUMBWMEELS
. NULL BAND
‘I
o OE OR DEPRESSION (MILS)
v \ ez, !
- & 2 2s77770/277777727077) J
\ E 3 7777777 l
2 ; W
. -6 ' V777 ‘
. i f ' l ' | |
1 -100  -10 -1 . +10 +100
b
_" S NULL BAND = p-—
& SET POINT
b
ol
s,
-
A RS
o
2
’ o
-
4T . . . .
9 Figure 3-41. THE ELECTRONIC LAYING AIDS reduce the time required to set lay while
j accommodating the FMC LTHD low trunnion height and stationary platform.
N ¥
N s
N ] 3-63
e
::-.~ . - N T N N N T N T AN S O AN NS \::':'"'\'



In the event of an electronic failure, the
‘FC will be moved to the secondary IFC
.nount. The secondary IFC mount is located
just in front of the primary mount and is
integral with the DFC mount. Since the
gunner and assistant gunner would not be
able to see the fire control levels, a third
person would be required to announce the
fire-control-level status during elevation
and traverse.

3.3.3,2 Azimuth

The traversing function is provided by a
hydraulic cylinder operable from the gun-
ner's position (figure 3-21). Hydraulic power
is provided by a foot or hand-operated pump
at the gunner's position. Directional control
is provided by the traverse control valve at
the gunner's position. Fluid is locked into
the cylinder with pilot-operated check
valves when a position is to be held (figure
3-39).

3.3.3.3 Elevation

The elevating function, provided by a single
(wo-chamber hydraulic cylinder (figure
3-42), is operable from the gunner's or gun-
ner's assistant position (figure 3-21) and
provides the minimum weight solution.
Hydraulic power is provided by a foot or
hand-operated pump at either position.
Directional control is provided by the
elevation control valve at either position.
Fluid is locked into the cylinder with
pilot-operated check valves when a position
is to be held (figure 3-39).

The cannon is raised by the (over-
equilibrated) equilibration chamber in the
elevation cylinder (figure 3-42) and lowered
by the depression chamber. The gunner or
assistant gunner will move the elevation
control valve in the elevation direction and
stroke the pump once to open the pilot-
nperated check valve, which will allow the

equilibrator to raise the cannon. To depress
the cannon, the gunner or assistant gunner
will move the valve to the depress position
and pump the cannon down. To hold position,
the valve would be moved to the center
"hold" position.

Recoil energy recovery schemes were in-
vestigated, but in every case, the overall
system weight and complexity increased
beyond reasonable limits. However, we have
tried to minimize the energy required for
the elevation function through the use of
reduced seal friction, more accurate tem-
perature compensation, and the introduction
of a nonlinear spring assist.

Dynamic analysis of the resultant depression
and elevation cycle times, in combination
with the load and fire times (figure 3-23),
and the QE limitation (paragraph 3.2.2.3),
indicates 4 rounds per minute are attainable
to 525 mils QE, 2 rounds per minute to 800
mils QE, and ! round per minute at 1,275
mils QE. (Above rates do not apply to
COPPERHEAD.)

Equilibration temperature compensation is
accomplished by altering the volume of oil
in the equilibration chamber with the
portable pump (figure 3-39). The portable
pump is connected to the reservoir (PT,
figure 3-39) and equilibration chamber (PQ)
via quick-disconnects. Fluid will be added to
or removed from the equilibration chamber
until the cannon elevates at the desired
rate. This method was chosen due to weight
savings and elimination of these three,
normally unavoidable, variances:

l. Knowledge of the ambient
temperature

2. Variation in nitrogen precharge
pressure (at some standard

conditions)
3. Seal friction variations (new and due
to wear-in)
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Figure 3-42,

THE ELEVATION CYLINDER employs a simple, two-chamber design with

integral equilibrator to minimize weight and reduce friction.

A bellows-type accumulator was chosen to
provide the equilibration chamber with fluid
for the following reasons:

I. The elimination of dynamic seals
eliminates the need for periodic
precharge maintenance.

2. The excellent heat transfer across
the bellows to the fluid reduces the
time required to as little as |
minute for the equilibration pres-
sure to stabilize, after significant
changes in the elevation setting.
Conventional accumulators  take
many times this amount of time to
stabilize. During this time, addi-
tional energy is required, because
the cannon is not properly
equilibrated.

The equilibration accumulator is mounted
within the center post in the platform. This
location necessitates the use of a metal

hose which, if damaged, would eliminate the
equilibration function. This mounting was
done with the following in mind:

. The platform provides excellent
protection to the accumulator itself.

2. The accumulator housing doubles as
the traverse shaft, thus reducing
weight.

3. Should the equilibrator or hose fail,
the portable pump would be con-
nected to port PQ (figure 3-39).
Elevation would involve pumping;
depression would involve bleeding
fluid back to the reservoir.

The nonlinear Belleville spring set (figure
3-42) minimizes the mismatch between the
equilibration force needed and accumulator
force-supplied curves. Without the spring
set (or if it fails), the energy required to
depress the cannon would increase at QE's
above 800 mils.

3-65
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FMC's response to the Negotiation Issues attached to ARDC's Request for Best
— and Final Offers for the 155MM Lightweight Howitzer Demonstrator and
A Innovative Recoil Mechanism, dated 13 November 1985, is organized in the same
sequence as provided by ARDC. We have specifically attempted to keep our
‘. direct responses to the issues raised as brief as possible, and then provided
detailed discussions and descriptions in referenced appendices. We have also
numbered all elements (pages, figures, appendices, etc.) of our response to
- the issues with keyed prefixes for easy identification, should you desire to
0 separate the document. The key we've used for this purpose is as follows:

Issue Identifier Key
First Letter:

Lightweight Howitzer Demonstrator H

Innovative Recoil Mechanism R
Second Letter:

Technical Issues T

Management Issues M

Cost Issues C
Numerical:

I-sue Number Numeric

Pages, figures, and tables are sequentially identified with dashed numerics,
and appendices are sequentially identified with dashed alphabetics for each
issue. Thus, HT4-3 identifies page 3 of our response to Howitzer Technical
Issue 4. Similarly, RT3~A2 identifies page 2 of Appendix A of our response to
Issue 3 of the Technical Issues for the Innovative Recoil Mechanism. We hope
this approach will make it easy to identify elements of our response should
they become separated from our complete document.
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Negotiation Issues
mMC
155MM LIGHTWEIGHT HOWITZER DEMONSTRATOR

Technical Issues:

Issue 1. The proposed demonstrator size exceeds the M198 envelope. How do
you propose to reduce the envelope size to that of the M198?

FMC Response. The FMC LTED exceeds the six M198 stow and tow envelope
dimensions in two categories, overall length (30' vs 24'8") and overal. height
(7'2" versus 7'), both in the stow configuration (see Figure 3-15 in
progosal). ur response will be twofold. First we will review the items
considered and illustrate that the FMC LTHD (with a minor modification) is
compatible with the transportation-driven size constraints. Then we will
introduce a revision to the original concept proposed, which we call VERSION
1.1, that, among other things, eliminates the height variance and reduces the
overall length variance from 5'4' to 1'0".

We reviewed the following items relative to precursory transportation
requirements compatibility of the FMC LTHD:

1. Opening and cargo compartment dimensions and restrictions. Since the
FMC LTHD 1s narrower than the M198, no problems were expected here.
The different profile and shifted center of gravity necessitated
additional investigation, particularly relative to cresting during
LAPES, the findings of which are detailed below.

2. Structural limitations of ramp and cargo compartment. Since the LTHD
is lighter than the M198, no problems are expected here.

3. Pressure and G-loading. Preliminary stress calculations assumed the
following G-levels: forward, 8; aft, 1.5; lateral, 1.5; vertical,
18.5 (ground impact following parachute extraction).

Figures HT1-1, -2, and -3 show the FMC LTHD (VERSION 1.0) being pintle loaded
into a C130E. The dimensions of the C130E (used in Figures HT-1 thru -7) were
obtained by measuring such an aircraft at the Minnesota Air National Guard Air
Base in Minneapolis, and talking to the pilots and technicians familiar with
the C130 family. The shaded area will be removed from the concept to
eliminate potential interference.

Figure HT1-4 shows the end view of the FMC LTHD in a CI30E. Although the MC
LTHD does not conform with the aisle requirements (MIL-A-8421) states that the
aisle is necessary because the C130 does not have a catwalk, the fact that the
LTHD is 14" narrower than the M198 indicates that the LTHD deviation from
specification will be significantly less than the M198.

HT -1
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Technical Issues:

Issue 1. (Cont'd.)

Figures HT1-5, -6, and -7 show the FMC LTHD being parachute extracted from a
C130E. Note that the roof clearance necessary for tip-off experienced during
parachute extraction is achieved by palletizing the LTHD in a
muzzle-tipped-up-30'" configuration onto a 3.5 inch-thick pallet. Note also
that the load center of gravity has been adjusted for addition of the
(estimated) 2,500 lbm pallet with honey comb.

Figure H11-8 illustrates the relationship of the FMC LTHD to the tip-off
curves for the C130.

Figure HT1-9 illustrates the relationship of the FMC LTHD tc the tip-off
curves for the Cl4l. This shows the tip-off constraints of the Cl4l to be
less restrictive than the C130.

FMC LTHD VERSION 1.1 (pictured in Figure HT2-1) eliminates the height variance
relative to the M198 and reduces the length variance from 5'4" to 1'0" by
providing an overall length of 25'8". The favorable width variance of 14" for
the FMC LTHD relative to the M198 is maintained. VERSION 1.1 also
significantly increases the angle of departure relative to the initial
proposal, which will, in turn, improve cross-country capability and
compatibility with amphibious landing craft, should the need arise.
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Negotiation Issues
m™C

155MM LIGHETWEIIGHT HOWITZER DEMONSTRATOR

Issue 2. The proposal fails to meet firing rate requirements at max QE due to
loading limitations. How do you propose to meet these requirements?

FMC Response. An enhancement of the original proposal addresses and fulfills
these requirements. We refer to this enhancement as VERSION 1.1. Figure
HT2-1 illustrates Version 1.1. Figure HT2-2 provides the time line of the
firing operation. Appendix HT2-A provides an operational and component
description relative to the LTHD originally proposed.

The human factors aspect of how VERSION 1.1 provides four rounds per minute
(at max QE without exceeding M198 human factors requirements) is discussed in
the RESPONSE to QUESTION 4.
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HT2-A Description of VERSION 1.1.

The FMC LTHD VERSION 1.1 (the concept described in the 4 June 85 proposal is
considered VERSION 1.0) addresses a number of opportunities to improve the
LTHD concept, as highlighted by ARDC's technical questions during the best and
final offer.

VERSION 1.1 further simplifies the FMC LTHD structure, while reducing its size
and improving high QE loading capability as well as human factors.

The OPERATIONAL and COMPONENT CHANGES are described below.
Operational Changes

Relative to Version 1.0, the following changes (all to the firing sequence)
are necessary. Emplacement, speedshifting, and displacement are essentially
unchanged (hydraulic extraction of the spade has been replaced by manual
extraction).
Cannoneer 1
Is now positioned behind the trails, no longer positions tray, places
charge into ram tray instead of into breech, trips breech cam with a
linkage to it, reloads the automatic primer feeder every ten rounds,
and uses a permanently attached lanyard.

Cannoneers 2 & 3
No longer handle projectile, still ram projectile, and now also
advance charge on ram tray to Swiss notch.

Cannoneers 4 & 5 ,
Still deliver projectile to tray, but now also accelerate ram tray
toward breech (with short staffs that double as spade pry bars) to
assist cannoneers 2 & 3 in ramming function.

Component Changes (Relative to Version 1.0) with Rationale

Automatic Primer Feeder
Necessary to achieve four rounds per minute without depressing tube.
" FMC is currently fabricating a prototype to fit on the M185 breech
(for HEL's M109 test bed demonstrator). Adds 50 pounds.

Breech Trip Linkage
To close breech at high QE firing, a trip link, operable from
platform, is necessary. Adds 15 pounds.

Elevation/Equibration Cylinder
One converted to two and mounted in a V to permit direct access to
breech (via ram tray mounted between slides), thus eliminating swivel
load tray. Bellvelle springs eliminated due to elimination of the
need to elevate/depress for each round at high QE. Adds 115 pounds.




Elevation Yoke
Elevation cylinder attachment can be lowered due to elimination of
swivel tray clearance constraint. Saves 10 pounds.

Equilibration Accumulator
One converted to two and moved from platform into trails. Adds 30
pounds.

Fire Control
Access to trunnion pins permits fire control to be moved to trunnions
(1ike M198), thus eliminating electronics, transducers, and
batteries. Saves 60 pounds.

Hydraulic Reservoirs
Moved into trails to allow thicker walled equilibration accumulators
to double as trail hinges (more effective use of weight). Saves 15
pounds.

e A B EE 2= I

Ram Tray .
Converted from swivel-in-load-and-ram-tray to roller-slide-ram-tray
design to facilitate high QE loading. Mechanism integral to ram tray
locks ramming piston (attached to end of ramming staff) to ram tray.
Ram tray with projectile (or charge) is staffed up slides until pin
on elevation yoke is engaged, at which time mechanism releases
ramming piston, allowing it to continue irto combustion chamber.
When ramming piston is retracted into ram tray, ramming piston is
again locked to ram tray and tray is in turn released from elevation
yoke.

e |

;-

-

Eliminates ''span to reach breech'" difficulties caused by
swivel-in-load-and-ram-tray when coupled with (preferred) swivel up
(M185) breech. Saves 75 pounds.

=

Platform
Shortened to provide overall howitzer length reduction. Redesigned
to accommodate new trunnion (which moves traverse bearing forward 17
inches). Elevation cylinder mounting moved closer to trail hinge,
reducing loads carried by platform. Two of three claws eliminated.
Single claw retained ties into traverse bearing (and thus moves
forward 17 inches, averting potential interference with air cargo
loading ramps). Traverse bearing is two foot diameter. Trail links
attach to platform between trails (in a V) instead of outside.
Gunner's and assistant gunner's pumps and controls moved into
platform (from trails) to improve access (weight still carried under
Hydrualic System). Saves 25 pounds.

oy
LA

N

4 2= W

b

) Recoil Accumulator
] Combining recoil cylinders into one longer one and integrating it
HR with the upper recoil cylinder shield/elevation yoke to forward yoke
brace will reduce weight and reduce number of accumulators on weapon
from three to two. Saves 10 pounds.
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Spade

Shortening platform moved trail pivots forward, which in turn forced
trail pivots out (to maintain clearance for 800 mil traverse range).
This did not leave enough room for spade and spade cylinder on sides
of platform without going beyond eight foot width. It was also
desirable to drop bottom edge of trails to increase bearing span,
which forward spade had heretofore prevented.

Thus one spade became two, conical in shape to enhance “natural” load
carrying ability, and mounted at the rear of the platform, which
facilitated manual extraction with ram tray lever. Adds 10 pounds.

Traverse Cylinder

Two elevation cylinders allow traverse to be accomplished by
displacing oil from one cylinder to another, while holding
equlilibration constant. Precursory calculations indicate an average

stroke of .015"/mil of azimuth, felt to be a reasonable sensitivity.
Saves 35 pounds.

Trunnion

Facilitates rear access to breech. Also clears path for parts that
could come loose during recoil, that, with previous trumnnion design,
could have been deflected, thus averting possible injury to
personnel. Adds 10 pounds.

Advantages

QE loading limit increased to 1300 mils (versus 1.0).

Human factors improved when loading at high QE (versus 1.0).
Reduced overall lemgth (wvitsus 1.0).

Angle of departure improvet. (versus 1.0).

Cannoneer 1 is moved behind trails (versus 1.0).

Distance of nearest crew position to muzzle brake increased by
roughly nine feet (versus M198), significantly reducing exposure to
blast overpressure.

Fire control mounted to trunnion pin (versus 1.0).
Compatible with soft recoil (versus 1.0 and M198).

Areas that require additional investigation.

Reduced overall length may necessitate a slight reduction in trunnion
height to maintain stability.

There may be a correlation between azimuth and equilibration, which
may increase depression loads at some azimuths.

Mounting fire control at low trunnion height may adversely impact
work space and accessibility.

A simple method of limiting QE and AZ will be necessary.




Negotiation Issues
MC
155MM LIGHTWEIGHT HOWITZER DEMONSTRATOR

Technical Issues:

Issue 3. What are the traverse limits?

FMC Response. 400 mils left and 400 mils right (see Figure 3-15 in our
Technical Proposal Volume 3A, last line).
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Negotiation Issues

MC
155MM LIGHTWEIGHT . 'TZER DEMONSTRATOR

Technical Issues:

Issue 4. The concept has various human engineering problems associated with
loading the weapon at high QE, including operation of the breech and forces
required to push the projectile into the forcing cone. This concept requires
a trench to be dug when firing below 0° QE. How do you propose to alleviate
these problems?

FMC Response. This question has been broken into the six sub-questions listed
and addressed below.

A. FORCE REQUIRED TO RAM PROJECTILE AT HIGH QE. Figure HT4-1 provides
the calculated forces to ram VERSION 1.1 at high QE. The VERSION 1.1
ramming procedure (relative to the M198 procedure) is summarized as
follows:

Where the M198 uses two cannoneers to deliver the projectile and
hold it in front of the breech for ramming, VERSION 1.1 provides
a ram tray onto which they set the projectile and then accelerate
both the tray and projectile approximately one-third of the
distance to the breech.

The same cannoneers that handle ramming with the M198 then
complete .the ramming function with VERSION 1.1.

Where the M198 places the ramming cannoneers just behind the
projectile handlers, VERSION 1.1 places them roughly ten feet
behind the projectile handlers, thus reducing congestion during
the loading function.

VERSION 1.1's force levels, as well as the means and heights of
application, are on a par with the M198 at max QE, and provide an
improvement over those of the M198 at the lower (most common)
QE's. Additionally, the horizontal force component (applied by
the cannoneer's waist) moves the load to a very strong part of
the anatomy (see Figure HT4-1). It will, however, require that
the ramming path (about 11' long, behind the trunnion) provide
medium to high traction (per MIL-STD-1472C, TABLE XXV).

B. PROPELLANT LOADING AT HIGH QE. VERSION 1.1 employs the tray and
ramming staff used for the projectile to advance the charge to the
Swiss notch.
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Technical Issues:

Issue 4. (Cont'd.)

C.

PRIMER INSERTION AT HIGH QE. VERSION 1.1 employs an automatic primer

feed mechanism. A ten primer clip is proposed. Thus, the clip would
have to to be replaced after each ten rounds.

To maintain a sustained rate of fire is two rounds per minute
(determined by the thermal warning device in service and published as
two rounds per minute by US ARMY publications), the crew would have
2.5 minutes to depress the gun to 500 mils, reload the auto primer,
and elevate. Preliminary calculations for the original FMC LTHD
suggested a depress/elevate cycle from max QE (with the non-linear
Bellvelle spring) would take 0.75 minutes.

If a sustained rate of fire higher than two rounds per minute at high
QE were required (until the barrel temperature danger threshold is
reached), the clip size could be increased, a means of changing the
clip from the ground might be feasible, and/or a ladder-like
structure could be integrated with the slide.

BREECH OPERATION AT HIGH QE. The breech is opened automatically
during counterrecoil. Closing would be handled with a linkage
connected to the breech cam that is accessible from ground level.

LANYARD OPERATION AT HIGH QE. The lanyard would be permanently
attached.

TRENCH REQUIREMENT AT NEGATIVE QE. Two options were suggested in the
original proposal when using the FMC LTHD as proposed at negative QE
(1) find terrain that provides the trench "naturally", or (2) dig a

trench. This problem occurs due to the low trunnion height, which is
desirable from a firing stability viewpoint.

If neither of these solutions is acceptable, the trunnion height
could be made adjustable. The trunnion would be raised two feet
(providing the same four foot trunnion height as the M198) to

accommodate negative QE firing. This, of course, has an adverse

impact upon firing stability, particularly if the M203 charge is
used.

To put negative QE firing in perspective; at about 60,000 1lbf of rod
pull, the M198 has a "QE safety margin" of about 10 degrees (arc of
the tangent of 15,600/60,000 less the max negative QE of 5 degrees);
the LTHD, to maintain the M198's negative QE spec while achieving a
9,000 lbm weight, assuming similar rod pulls, has a "QE safety
margin' of only 3.5 degrees.
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5. Version 1.1 Ram tray weighs 15 1lbm.

Appendix HT4-A. Ramming Force Analysis (sheet 1)

Assumptions
1. Relative differences in friction between M198 and FMC LTHD Version e
1.1 are insignificant (Version 1.1 tray is on rollers).

2. Necessary ramming velocity is 15 FPS.

3. Difference in weights of M198 ramming staff and Version 1.1 ramming
staff is insignificant.

4, M198 Load tray weighs 10 1lbm,

6. Averaging from endpoints 1is representative of relative magnitudes

(as compared to the increased accuracy available from analysis via
differential equations). N

M198 Ramming (104 LBM Projectile)

Force required to offset gravity:
F1 = (104 LBM) * (SIN QE)

Force required to accelerate projectile from O to 15 FPS in 4.73 feet: %o

| 4 »

((15 FPS ** 2)/(2 * 4,73 £t))/32.2) * 104 = 76.82 LBF

Total ramming force per‘cannoneer (2 assumed):

FR = (F1 + 76.82)/2

Horizontal component:

FRy = FR * COS QE

Vertical component: FRy = FR * SIN QE

FMC LTHD Version 1.1 Ramming (104 LBM Projectile)

Point A is starting point (ram

PR €rF R

staff pivot). Cannoneers 4 &

5 wmove projectile and tray

CIMEIIS IS ARE 31 VEll FOR from A to B (4.73"). f
UE = 72 CE=FEES Cannoneers 2 & 3 ram
projectile from B to C
(7.62'). 'Point C represents a
ranmed projectile, Ramming
staff i4s 11'3" long (CL to CL).

- X Y 2
. 53 60.5 41.3

t—ﬁ'

R0 28.1 35.6 24.4

S L
g

A 4 " y 0 o™,
‘» ’,s'~_s,§_4'$!:‘$.\'0 !"‘.‘-' S LE

g X "
X (‘,., OO W\ .' o108,

4
72 79.5 56.5 6
5
5

— . 45 52.5 35.6
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Appendix HT4-A. Ramming Force Analysis (sheet 2)

Moving From A to B at 72° QE

Assume that cannoneer 4 & 5 accelerate projectile portion of projectile

& load tray unit to 15 FPS over 4.73 ft. distance (thus equaling M198
ramming force) from point A to B.

Cannoneer 2 & 3 are thus responsible for accelerating 15 LBM load tray
to 15 FPS from point A to B.

To find the required ramming force here, a computer program was written
(shown below) for a dynamic analysis:

10 REM PROGRAM TO DETERMINE RAMMING FORCE FROM A TO B

20 F = 80

30 TIME = 0

40 T = .01 -
50 QE = 72

60 QE = QE*3.14159/180

70 V0o =0

80 PO =0

90  PRINT "TIME", "POSITION", "VELOCITY", "ANGLE"
100 HT = PO*SIN(QE)-1.5

110 LE = (11.25%%2 — HT*%*2)%**_5

120 ANG = QE - ATN(HT/LE)

130 A = (F*SIN(3.14159/2-ANG)~15*SIN(QE))/(15/32.2)
140 V = VOHA*T

B g 53 S 5 N S 8B

555

. 150 Vo =V
ﬁ .‘ 160 P = POFVAT+, S*A*T#*2
170 PO = P _
180 PRINT TIME, P, V, ANG*180/3.14159
g: 190 IF P = 4,731 THEN GOTO 220
¥ 200 TIME + TIME4T

210 GOTO 100

l! 220 END

Program results show that a constant 80 1b. total ramming force results
in a 15 fps load tray speed at point B. (Forces higher than 80 1bs.
o3 result in greater speeds). Minimum force values for any QE can be
ﬁa determined the same way. The total force can then be resolved into its
horizontal and vertical components. Horizontal components:

gﬁ Point A: 40 LBF * COS (72 - 79.5) = 39.7
2 Point B: Zo LBF * COS (72 - 56.5) = 38,5
o Average: 39.1 LBF

g: Vertical Components:

o Point A: 40 LBF * SIN (72 - 79.5) = -5.2
‘ﬂ Point B: 40 LBF * SIN (72 - 56.5) = 10.7

Average: 2.75
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Appendix HT4-A. Ramming Force Analysis (sheet 3)

Moving B to C at 72° QE

Cannoneer 2 & 3 are responsible for maintaining the average velocity of
15 FPS from point B to C. This requires that the weight of tray and
projectile be matched by the ramming force.

The ramming force each cannoneer must provide is:

Point B = FRB = (((15 + 104) * SIN QE)/COS Y) *

.
w

Point C = FRC = (((15 + 104) * SIN QE)/CO0S Z) * .5
Average FRgc = (FRB + FRC)/2

Resolving this force into the horizontal force component each cannoneer
must provide: -

Point B = FHB = (FRgc) * COS (QE - Y)
Point C = FHC = (FRpc) * COS (QE - Z)
Average = FHpc = (FHB + FHC)/2

Resolving this force into the vertical force component each cannoneer
must provide:

Point B = FVB = (FRgc) * SIN (QE - Y)

Point C

]

FVC = (FRgc) * SIN (QE - 2)

Average = FVgc = (FVB + FVC)/2

Moving A to C at 0° QE

Force required to accelerate projectile and load tray to 15 FPS in

12.35 ft. (per cannoneer): (((15 FPS * * 2)/(2 * 12.35 ft))/32.2) *
(104 + 15)/2 = 16.8 LBF
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Negotiation Issues
FMC
155MM LIGHTWEIGHT HOWITZER DEMONSTRATOR

Technical Issues:

Issue 5: Precursory stability analysis to support the submitted graphs are
missing. Provide this analysis.

FMC Response. A computer simulation model was developed to analyze the LTHD's
stability under a wide range of operating conditions. The model is similar to
one developed by the Weapons Division, Large Caliber Weapon Systems Laboratory
(Technical Note 84-001). Both models assume that the gun is not able to slide
backward at any time during firing and that a rear ground '"pivot" point exists.

The two models differ, however, in a number of important aspects. The most
important difference is that the LTHD analysis model accounts for changes in
the systems' center of gravity and mass moment of inertia which result from
the recoil and counter-recoil motion of the gun barrel and other movable
components. Another important difference is that the model considers very
specific firing conditions, including barrel quadrant elevation (QE), azimuth,
and forward and side slopes of the ground. In addition, rather than using an
average input force over the duration of the firing cycle, a trapezoidal input
force is used that much more closely matches empirical data for specified
firing conditions.

A complete list of inputs and a discussion of how they were obtained is
provided in Appendix HT5-A. A list of outputs is contained in Appendix
HTS-B. A discussion of program method, is presented in Appendix HTS-C.
Appendix HT5-D contains the computer printout for 92-inch stroke (less than
original proposal) as part of stroke sensitivity analysis. Note that weapon
remains stable at six inch reduction in stroke with 12,500 lb-sec impulse.
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§% Appendix HTS5-A Stability Analysis Inputs
In defining inputs to the LTHD analysis model, an x,y,z coordinate system was
3! established. The ground plane defines the z/x plane. Hence, y is up and
‘ perpendicular to the ground plane, -z is back-to-front along the ground, x is
side-to-side along the ground and positive to the right when facing forward.
&
The model requires the following inputs: _
A. System Geometry
gg 1. Recoiling components

a. individual component weights
- b. individual component locations (y and -z,)
SE 2. Stationary components
a. individual component weights
b. individual component locations (y and -z)
g? 3. Other measurements
3 a. distance from rear pivot to barrel tip, along -z axis
b. distance from rear pivot to tip of trails, along -z axis
c. angle.between trails and -z axis _
ii d. distance from rear pivot to point at which input force
is applied, along y axis
e. distance from rear pivot to point at which input force
?ﬁ is applied, along -z axis
& f. distance from side p1vot to point at wh1ch input force is
applied, along x axis
g. distance from side pivot to the center of gravity of the
a stationary components, along x axis
h. amount of play in end of trails (zero in this analysis)

§$ i. spring constant of each trail (rigid in this analysis)
-
N B. Firing Conditions
1. Quadrant elevation of gun barrel
< 2. Azimuth angle of gun barrel
L 3. Forward slope of hill (angle between ground and true
horizontal, along -z axis)
& 4. Side slope of hill (angle between ground and true horizontal,
i; along x axis.)
o
ot
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Appendix HT5-A (Cont'd.)

‘IR C. Input Force and Recoil Stroke Position _

Qq ;ﬁ 1. Rec011/counter-reco%1 force profile, force vs. time

ka 2. Recoil/counter-recoil stroke profile, position vs. time

AN .

) ll The system geometry inputs were obtained from a solid modeling analysis of the
R LTHD performed on GEOMOD. Firing conditions can be varied, depending on the
W situation to be analyzed. In general, worst-case conditions occur when the QE
el L and azimuth values are zero. When non-zero values of hill slopes are

* ~ specified, the worst-case condition of firing "uphill'" is analyzed.

The determination of input force and recoil stroke position data requires a
. more involved explanation. In describing the approach, worst-case conditions

"X}
.'
e
.
X A

o
]

¥ N are considered.

L'P.

.\ - - - - -

AN i; The worst-case input force is one that imparts a 12,500 1b-sec impulse to the

bt " system. In order to meet the objective of optimum stability, we want to

distribute this force as evenly as possible throughout the recoil stroke, such

o A that the resulting overturning moment is less than the stabilizing moment at

Y o~ all times. The recoil system used should ideally accomplish this.

) . . ‘o c s .

j:c - Thus, an input force is specified which is thought to result in the

‘k{ j} overturning moment being less than the stabilizing moment over the recoil

- - stroke. Its profile over the stroke length is trapezoidal, and is estimated

LSS to impart a 12,500 1lb-sec impulse to the system. This profile is used as an

RN input to a program that simulates gun recoil (RECOIL.FORT, FMC Corp., E.C.

SRS 1133). Given the recoiling mass of the LTHD, the specified input force

o profile, stroke length, and other firing conditions, the program outputs a

A LS time profile of the recoil mass velocities, barrel positions, and the force
!E values which stop the recoiling mass within the specified recoil stroke. This

o data is then input into an orifice sizing program, which outputs the data

H - - - -

}:i ) required to completely configure a recoil cylinder system.

-, .

RoL The trapezoidal force profile and the recoil cylinder data is then input back
st into RECOIL.FORT to determine the best estimate of the impulse to be imparted
) [; to the system. If the impulse differs from the 12,500 lb-sec requirement, a
=~ new force trapezoid must be determined and the above process is repeated. If
:& the impulse requirement is met, the output of RECOIL.FORT, consisting of the

;g{ oy time profile of input force and barrel positions, is input into the LTHD

«i:j " stability model.

) -

K

The stability model then uses this data, along with the system geometry and

; e firing condition information, to determine how well the stabilizing moment
3{ st exceeds the overturning moment throughout the firing cycle. If the results
2 show a system that is unstable or too stable, a new trapezoidal force is

j: .;: specified and the complete process just described is repeated.

i 128

. A similar, yet simpler procedure is used when the ballistic properties of a

SO specified projectile/charge combination are used instead of an impulse

0;} “- requirement.
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Appendix HT5-B Stability Analysis Outputs

The LTHD analysis model produces the following outputs:

A.

The summary of initial conditions describes the state of the system if it were

Summary of Initial Conditions

1. Total weight of recoiling components

2. Total weight of stationary components

3. Total weight of system

4, Location of systems' starting center of gravity

5. Systems' starting mass moment of inertia

6. Deflection of trails (zero for this analysis--assumed rigid)

Moments About Rear Pivot Throughout Firing Cycle
1. Stabilizing moments

2. Overturning moments

3. Safety moments

System Condition Throughout Firing Cycle
1. Force trails exert on ground if trails are on the ground
2. Hop height if trails are off the ground )

Maximum Input Force Values Throughout Firing Cycle
1. Maximum allowable input force without causing backward '"hop"
2. Maximum allowable input force without causing sideways '"hop"

on level ground and the barrel was at 0° QE and azimuth. Moments about the
rear pivot and the system condition (trails are on the ground or off the
ground) are output at specified time intervals throughout the firing cycle.

Maximum allowable input force values are output at specified increments of the

recoil stroke.
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Appendix HTS5-C Stability Analysis Method

Description of Method

The summary of initial conditions in the output are simply calculations of
system characteristics in a static situation. The component masses and the
coordinate locations of their centers of gravity are used to determine the
system center of gravity and system mass moment of inertia. In order to
obtain better approximations for these values, here and throughout the
analysis, a technique is used which divides the barrel into small mass
segments. After the initial conditions are calculated, the system is
geometrically repositioned for the input firing conditions.

The system safety moment is defined as the net moment acting on the system
about the pivot point. When specific input force values and barrel positions
are known at very small time intervals throughout the firing cycle, a safety
moment for a given time interval can be calculated.

Because the systems' center of gravity and mass moment of inertia change with
barrel position, moment arm lengths with respect to the pivot point will also
change. Thus, the model recalculates these values for each point in time
analyzed during the firing cycle. At this same time, the input force and
system weight are broken down into those components which want to '"stabilize"
the system and those which want to "overturn" the system. By repeating this
procedure throughout the firing cycle, a profile of stabilizing, overturning,
and safety moments is created.

Under the given firing conditions, should the overturning moment acting on the
system exceed the stabilizing moment at any time during the firing cycle, the
system becomes unstable. In this event, the modél uses equations of angular
motion to find the resulting height of "hop''. As shown in Figures 3-11 and
3-12 of Volume 3A, the LTHD analysis yielded positive safety moments and no
hop occurred during the firing cycles.

A similar approach to that used in determining the safety moments is used to
determine the maximum allowable input force at any given position of the gun
barrel. The maximum force is that which results in all moments acting on the
system sumaing to zero. The maximum force thus creates a situation of
"borderline stability" in either the backward direction or sideways
direction. As in the safety moment determination, the calculation uses the
systems' center of gravity location that corresponds to the gun barrel
position being analyzed.
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Stability Analysis Print-out (sheet 1)

g
T~
’

.
- —

INITIAL CONDITIONS:

WEIGHT OF RECOILING COMFONENTS (LB) = 43527
WEIGHT OF NON-RECOILING COMPONENTS (LB) = 3774
SYSTEM WEIGHT (LB) = 8301

INDIV. TRAIL’S SPRING CONSTANT (LB/IN) = O
PLAY IN END OF TRAILS (IN) = 0

)

. AT MAXIMUM EXTENSION OF BARREL:
) CGZ (IN) = 203,2339
CBY (IN) = 25,38302
CGX (IN) = 47.99132
DEFLECTION OF TRAILS (IN) = ©
MASS MOMENT OF INERTIA (LB-IN-SEC) = 1154324

2 B

SWEEP ANGLE LEFT (DEGREES) _ = 0
) ELEVATION ANGLE (DEGREES) = 0
UPWARD SLOPE OF HILL - FORWARD (DEGREES) = ©
UPWARD SLOPE OF HILL - SIDE (DEGREES) = ©

=i

DATA FILE: B:DPLT.DAT (Ra (z,500 Wb -fec InfoSe)

g . STROKE, c6 -2, STABLE OVERTURN- SAFETY WT. AT
INCHES INCHES MOMENT, ING MOM., MOMENT EA TRAIL,
: FT-LBS FT-LBS FT-LBS LBS
g - 0 203.233%9 140587.1 o 140%87.1 - 234.3118
0 203.2339 140587.1 ., -3.849308E-02 140587.1
o 234.3119
'.00168 203.233 14058465 44425, 88 95960.59 159.9343
.01392 203.2264 .- 140581.9 858427.93 95953.94 159.9232
% . 05652 203. 2031 1405465, 8 44535.38 95930.38 159. 884
oL . 16308 203.145 140525, 6 4446%4.11 956871.44 159.7857
) - . 37056 203.0319 140447.3 44690.86 95754. 44 159.5941
.69972 202.85%24 140323.1 44749.44 95573, 65 159.26894
) - 1.1%128 202. 6061 140152.8 44829.856 95322.91 158.8715
|
ﬂ 1.713 202.2998 139940.9 44930.29 95010.56 158.351
. 2.36328 201.9451 1394695. 56 $0105.462 8958%9.91 149.3165
3.07944 201.5544 139425.4 56572.7 826851.68 138.0861'
.ﬁ 3.84408 201.137S 139136.9 61903.72 77233.21 128.722
4.4644348 200.7011 138835 93475.74 451%9.22 7%.26536
ﬁ S.456144 200. 2555 138524.8 120391.8 18134.92 30.22484
6.28116 199.808S 138217.5 1280%51.1 10146.47 16.94412
; 7.10268 199.3505 137907.6 1280%8.2 9849.386 16.415%564
v‘l‘
: M 7.925761 198.9116 137597.1 127786.4 9810.6326 16.35106
0
:i' B8.749561 198. 446235 137286.3 127491.1 979%. 188 16.32%531
h
g 9.573839 198.0128 126975.3 127169.5 9805.833 16.34306

-

Ty
&2




]
oM

Appendix HTS5-D. Stability Analysis Print-out (sheet 2)

0

Z R an

10.39788 197.5634 1364664.5 126778 9886.511 16. 47737

MY

11.2212 197.1144 136353.9 126378.9 9974.958 16.6249]
' - 12.04332 195. 6661 136043.8 125894.5 10149.22 16.91537
12.86364 196.2187 135734.3 125398.3 10335.94 17.2265¢
s 13. 68168 195.7726 13542%.7 124870.1 10555. 61 17. 59264
: : 14.4969¢6 _193.328 135118.1 124225.8 10892.2¢6 18. 15371
g 15.30888 194.8852 124811.8 123%567.1 11244.7% 18.74129
: ' 16.11696 194. 4444 134506.9 122764.4 11742.51 19.57064
;’:}, ’ 16.92072 194.00462 134203.7 121872.9 12330.81 20.5513*
ﬁ 17.71968 193.5704 133902.3 121053 12849. 33. 21. 41563
. 18.51372 193.1374 133602, 120393.1 ' 13209.63 22.0140
';‘, ﬁ 19.30284 192.707 133205, 1 119822.8 13482. 29 22.4704
: , - : 20.08704 192.2794 133009.2 119325.4 13683, 64 22.8040
‘ - 20.86632 191.8%44 132715.3 1186866.9 - 13848.32 23.0805
:i: 21.464068 191.4321 132423.1 118440.4 13982. 48 23. 304;
;;“ E;i 22.41024 191.0124 132132.8 118106.5 140256.25 23.377
':; bl 23. 17488 190.5954 _ 131844.4 117762.8 14081.%8 23. 4693
! | 2e.08976  1av.7693  i3izvaie  isen® jagso-ae 2maime
, 24, . 272. 4066.86 23. 4447
;; : 25. 44 189. 3601 130989.8 116962.9 14026. 88 23.37813
‘j @ 26.18%52 186. 9536 130708.7 116754.4 13954, 21 23, 25704
: 26.92%96 188.%5497 130429.2 116%48.5 138680.73 23. 13454
K WS e BSES NGRS 3EmY D
! 29.1192 187.3538 129601.9 115829.4 13772.2% 22.95379
;; & 29.84064 186.9602 129329.7 115609.2 13720.51 22.86752
— 30.5574 186. 35693 129059.3 115402.8 1346546.52 22,76087
Es ig 31.26948 186.181 128790.7 115111.9 13678.79 22.79799
::E g‘lz.:;géz izg 19‘23 i_:;:isg: 114915.4 12208. 42 22. 6807
% 33037728 183.0315  137993.5  114437.6  iseev.se 33 eeees
g 24.0704 184,655 127734 114192.3 12540, 67 22.5;677!
' i: 75896 lat.278 127474.2 113971.1 T3503.18 22.30%3
:l ﬁ 35.44272 182.90%51 127216.3 1137%7.7 134%8.61 22.47101
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. Appendix HTS5-D. Stability Analysis Print-out (sheet 3)
E T6.12192 183.5346 126960, 1 113519 13341.01 22.40149
36.79632 183.1668 126705, 6 113326.5 3379.17 22.29862
! 37.46616 182.8016 126452.9 113065.2 13287.7 2.31284
' 38.13132 182, 4z88 126202 1127683.5 13418.45 22.35409
":‘," B 38.79192 182.0785 1259%52.8 1124624.1 13328.72 22.21454
' 39.44784 181.7208 125708.3 112373.7 13331.%8 22.21932
g 40.09908 181.3457 125459.7 112:128.2 13331.43 22.2190%
40.74588 181.0129 125215.6 111931.5 13284.09 22.14017
41.38788 180. 6628 124973.5 111731.5 13242 22.07001
ﬁ 42.02544 180.3151 124732, 111479.4 - 13253.52 22.08921
N ) - 42, 65844 179.9499 124494, 1 111229.5 13264.563 22.10772
}j' 5 - 43.28676 179.6273 124257,1 110982.8 13273.22 22.12222
i‘, - 43.910%2 179.2871 124021.8 110843.1 13178.69 21.96449
i 44,%52984 178.9493 123788.2 110617.4 13170.74 21.9%124
45.14448 178.6142 _ 1233%6.3 110392.8 13163.45 21.93909
@ 4%,75448 178.2814 123326.1 110149.% 13176.%6 21.96095
45,36032 177.9511 123097.6 109900. 1 13197.48 21.99581
l -7 as.9s152 177.46232 122870.8 109684.% 13186.26 21.97711
47.%%816 177.2978 122645.7 - 109464.7 13181 21.968S
) 48. 15024 176.9749 122422.3 10919S5.8 1I226.48 22.084415%
& 48.73788 176.6345 122200.6 109006.8 13192.8 21.98969
49.32108 176.3364 121980.6 108846.5 13134, 11 21.89021
g 49,89984 176.0208 121762.3 108606. 4 13155.92 21.926%%
50.47404 175.7076 121545. 6 108540.4 12205.2¢6 22.00879
Y 51.04392 175.3968 121330.7 100102.3 13228.3%6 22,0473
51.60924 175, 0885 121117.4 107872.2 13245.17 22.0752
52.17012 174.7927 12090%.8 107693, 1 13212.72 22.02122
gﬁ 52.72668 174.4791 12069%.8 107461.4 1327445 22.0%742
- s.27868 174.1781 120487.6 107252.3 325,27 22.0%e3!
£2.82648 173.8793 120280.9 107045, 7 15235, 22 22.0%874
ﬁ £4,36972 172.2831 120076 106840, 2 s2c.78 I2.0%5¢es
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Appendix HTS-D. Stability Analysis Print

S4.90864
55.443512
355.9732
S6.499
57.020382
S57.5376

S8.05036
S8.gses

39.06292
S59.56272
60.05832
60.54949
61.03644

61.51908
61.99752

62.47176
62.94168
63.4074

43.8488

64.32612
64.77912
§5.22805
65.67264
66.11316

66.54948
66.98172

67.40976
67.8226
68.25226

68. 66908

173.2892
172.9977
172.7086
172.4219
172.1375
171.85535

171.5759
171.2986

171.0237
170.7511
170. 4808
170.2129
169.9474

169.6841
169.4232

169.1646
168.9082
168.46543
168. 4027
168.1533
167.9062
1467.6615%
167.419
187.1788

166.9408
166.70%

166.4714
166.240%
166.0116

165.7849

119872.7
119673
119471
119272.7
119075.9
118880.9

118687.4
118495.6

118305.4
118114.9
117929.9
117744.6
117%560.9

117378.8
117198.2

117019.4
116842,

1166646.4
116492.4
116319.8
116146.9
115979.6

115811.8

113481
115318

115156. 5
114996. 8
114838.2

1144681.4

106676.9
106415.8
106095, 4
105889
105710.3
103203

105297.7
105088. §

104774.8
104607.4
104410.9
104212, 3
103970.3

10370S.2
103497, 4

103207.8
103023, 5
102853, 4
102614.8
102231.4
102157.9
1018468.8
1014Z2.

101418.4

101187.9
101012. 4

100812.4
1002S9.3
100277.8

100022, 9

-out (sheet 4)

132Ts.81
132T5.25
1327%.58
13383.73
13345. 61
13377.86

13389.7
13407.56

13528. 68
13509.44
13519.03
13532.27
13590. 63

13673. 61
12700.86

13811.64
13818. 66
13812.99
13877.32
13988.38
12991.02
14110.79
14158.11
14227.28

1429Z.17
14204.22

14342.04
144357.29
14540. 4%

14647 .51

22,0597

22.292%

22.30624

22.276
22.2964

22,3162
22,3439

22.5478
22.515
2.321
22.353538
22.6511

22,7894
22.8248

235.0194
23.0511
3.02164
23.12921
23.31404
2c. 31847
23.%51804
23.59684
23.71214

22.822
22.8409]

22.90%513
24.06222

24,.28674¢

24,412%%




Appendix HT5-D. Stability Analysis Print-out (sheet 5)

69.08052
69.48804
69.89136
70.29061

70.48576
71.076%96

71.46396
71.847

72.22596
72.60096
72.972
73.32896
73.70195
74.046088
74.41584
74.766%6
75.114
75.4572

73.79644
76.1317¢

76.446316
76.79065

77.11428
77.4Z3%6

77.74%98
78.0618

78.26996
78.67428
78.97474

79.2713%51

79.56444

1635.5603

165.3382
165.1182
164.9003

164,685
164.4717

164.2607
164.0318

163.6843)1
163. 46406
163.4382
1635.2381
163.0402
162.8444
162.63508
162. 4394
165.2701
162.082¢9

161.8979
161.7158

161.5742
161.3557

161.1792
161.0049

142.8326
160.6425

160.4944
160. 7285
160. 1646
160.0028

159.842

114326.1
i14372.4
114220.2
114069.6

112920.5
113772.9

1131986
113088
112919.5
112782.6
112647.2

112813,

(2]

1

-
[R]

>8

o

] m

112249,
112120.4

111992, 4
11184%.9

111740.8
111617.3

111495.2
111274, 6

11125S. 4
111137.7

111021.4
110906. 6
11079Z.2

110681.2

110870.8

99842. 31}
99348.74
99T46T. 4
99132.32

98903. 48
98714.5)

98417.3%
98145.72

97930.91
97718.09
97418.9
97149. 86
96966. 56
96751. 82
96451.84
96177.62
95904. 22
95879, 32

95473.74
95195.2

94918.06
946684.91

94482.07
94227.39

93928. 69
93642.22

92276.7S
93042.98

92770.62

144687.82
148235. 64
148S4.82
14936.28

12017.08
150%8. 43

12209.%9
13336.71

17408.54
15479.9

15439.11
15769.88
18814.07
15895. 54
16061.41
16203.19
16343, 64
164435.05

16%18.65
164670.65

16822.73
16932.39

1701Z.16
17144.98

17326.71
17495, 46

17644, 69
17042, 64
18022.62
18161.2

18229.9<

24.473)
24.7061
24.73011
24.89388

<. 0285
22.09744)

[
=. 3494

25.56127
25. 6809

25.79992

256.06%27

26.28322
26.36023
26.492468
26.76912
27.00542
27.24284
27.40834

27.3212
27.78434

28.0380S
28. 22077

28.3T54
28.57844

28.878
29.1392S

29.40797
29.73789
J0.0278s
30. 26882

20.28242
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Appendix BRTS-D.

79.8%32%2
80.132876
80.4204

80, 69808
B80.97216
81.2425)
B81.5090%
81.7719%6
82.03116
B2. 28665
82.Z%C84

82.78668
83.02112
B82.27208

B3.5092)
B3.7429¢6

83.973
84.19944
84.4224

84.64164
84.8%731

85. 06968
ec.27848
85,4848
Z.6824

8%.88364

86.0784
B84. 2698

Bo.45761

84.4472014

139. 46834
139.52¢98
139.3762

139.2248

158.9278
138.782S
158.6391
158.4978
158.7I384
158.2212
158.0838
157.9%524
157.821

137.6917
157.%642

157.2182
157.1937

157.074)
156.9%64

156.8407
156.7268
156.6149
156.304a9
154.5968

156.2906
156. 1862

126.0828

195.9822

110461.7
110354,
110247.8
110142
110039.6
109937.6
109837.1
109737.9
109640
109542.7
109448.7
109253
109262.7
109171.8

109082.3
108994.2

108907.4
108821.9
108727.8

1084655,
10B8573. 6

108493.5
108414.7
108T37.2
108261.2
108166.4

108112.9
108040, 7

107969.8

107900,

t)

92057.85
91778.16
91301.09
91181.28
90894.72
90612.6
90312.31
90012.01
89708.47
89404.06
89:121.22
68827.31
88516.835
88208.99

87903.246
87613.09

87302.06
86985, 22
Bb668.38

B862635.32
B6062.13

85761.%7
85444, 68
B8%116.89
84754, 47
B84449.02

BaiZB.6!
8I84%Z.2C

gZsr8. 08

82198.2%

18403.84
1857S.9
18734.69
18961.6%
19144.9
19323
19224.77
19725.84
19931.57
20139.59
20327. 44
203827.7
20745, 89
20962.82

21177.07
21281.09

21604.29
21826. 468
22069.39

22289.74
22T11. 46

227T1.98
22968.0%
2T218.42
27466.71
2I717.26

279%4.27
2419%. 42

24441.7)

24701.9°

Stability Analysis Print-out (sheet 6)

J0.67324
J0.96002
31.28467
31.60294
31.90837
32.208sS%
S2.54151%
32.87664
33.21953
33. 346823
33.8797S
J4.21309
34.57474
Ta.92831

- -

IS.63242

IT.0eny

34.0074S
26.39479
36.78264

Z7.1499
I7.51944

I7.88698
IB.2804S

>B.69777

29.92a7

80,7264
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Appendix HT5-D. Stability Analysis Print-out (sheet 7)

86.82312
87.00072
B7.174%%
87.34584
B7.513236
87.67752
87.83832
87.99588

88.15008
88.30104

88. 448644
88.59312
88.73424
88.87212
89.00676

89.13828
B89.266%6

89.3916
89.31364
89.6222
89.748
89.860%4
89.97

90.07&Z2
90.179352

90.27972

90.3748
90.47088

90.T6184
90. 64992

90,73488

155.8845
125.7876
155.46925
155.5994
135. 508

155.4185
185.3208
155. 2449

155.1608
155.078S

154.998

154.9192

154.8422

154.767

154. 6936

154.6219
154.5519

154.4837
154.4172
154.2524
154, 2893
154.22

154.168C

154.1103
154.0%4

133.9994

152.9464
1535.8951

152.84%8
132.797%

122.7312

107831.9
107764.8
107699. 1
107674, 5
107571.3
107509, 4
107448.7
107389.2

1073314
107274.1

107218.3
1071563.8
107110.%
1070%8.5%
107007.7

1069%8
106909.6

1068462.4
1068156.3
106771.5
106727.8
10668S.3
106644

1064603.
1063564.9

1063527

106490. 4
106454.8

106420.%
106287.2

106788,

82855.78
82462, 66
82090.5

81770.36
81440.7

B81102.43
80773.91
80447.3%5

80121.465
79791.71

79464.43
79133.24
78796.22
78454.35
78087.72

77711.65
77364.5%58

77038. &4
76712.18
746389.09
76063.36
75742.33
75421.73

75086.59
74742

74402.84

74096.82
72792.2

72489.%6

72190.38

72894, 4%

24976.06
25302.15%5
25608.86
2TB44. 18
26130, 63
264046.74
264674.77
26941.85

27209.39
27482.34

27753.9¢
28030.57
28314, 31
28604, 1

28919.94

29246.27
2954%.01

29823.72
30104.14
30382. 41
30644, 45
30941.99
31222.2

T1517.24
31821.9

3212T.18

A - A
et Vv o b

J2662. 64
I2920.92
32196.8S

T460.67

41.82724
42.1707%
42.468144
43.10749
43.55158
44.01179
4445853
43.90389

45,3494
47.804%3

446.25714
45.71829
47.19128
47.67422
48.20063

48.7447
49.24244

49.70701
S0.17429
S0.6382
51.1083
T1.857088
$2.02802

£2.5297
S52.03749

£3.32966

ST.9903
S4.428801

$4.88I99
S5.32921

S55.76896
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"i‘ B Appendix HTS5-D. Stability Analysis Print-out (sheet 8)
i
“ 90.81696 153.7064 106324.1 72601.29 33722.8 56.20588
oy 90.89592 15,6633 106294,3 72308. 13 32986, 14 S6.46448
~ 90.972 153.56218 106265.5 72021.%2 34244.01 57.07442
; 91.04508 153.582 106237.9 71741.97 34495, 9% 57.4945%&
!! - 91.11528 153.5437 106211.4 71480.07 34731.31 57.88686
. s _ 91.18248 153.507 106186 712253 34960.47 %8.26916
EE . V} 91.244668 153.4721 106161.7 70976.81 35184,.93 S8. 64297
91.30812 153. 4385 106138.5 70735.29 35403.19 59.00678
a; - 91.366%6 153.4067 106116.4 70500.5 35615.89 59.36131
} o 91.42212 153.3763 106095. 4 70274.9 ~ 3=820.47 59.7023t
Ea' _ . 91.4748 153.3476 106075.4 70057.82 . 36017, 61 60.03093
o 91.5245 153. 3205 1060%4.6 699849.76 346206.87 60,3464
e 91.571%2 153, 2949 106038.8 69650.32 36386. 51 60,64918
Eﬁ - . 91.61556 153.2708 106022.2 69460.6 36561.58 60. 93768
: 91.65472 153.2484 106006. 6 69281.5 36725.08 61.2102
o 91.69512 153.2275 105992 69113.35 34878. 68 61.46623
I‘ 91.73051 153,2082 105978.7 » &£8956. 41 . 37022.23 61.70553
' 91.76328 153.1903 - 105966.2 68810.93 3715%5.27 61.9273
?ﬁ 91.79304 153.1741 105954.9 6B4677.58 37277.38 62,12086
2 91.82004 153. 1594 105944.7 68556, 29 37388. 4 62.31593
) 91.84428 153.1462 105935.5 68444.72 37488.76 62.4832¢6
91.846564 153.1345 105927.4 68349..09 37578.26 62.563246
91.88412 152.1244 105920.3 682463, 62 37656.68 62.76321
gg 91.89996 153.11%8 105914.3 68190.51 37723.75 62.87%04
) 91.91279 152.1088 105909. 4 68129.93 37779.43 62.96788
l; ) - 91.92301 153.1032 105905, 4 68082, 03 37823. 41 63.04122
91.93032 183.0992 105902. 6 68045, 9 37855.7 63.09%508
§§ 91.93488 153.0947 105900.8 68024, 62 37876.19 63.12927
91.936%6 153.09%8 105900.1 6B01%.25 37884.87 63.14379

INITIAL DEFLECTION (IN) OF TRAILS = 0O

DEFLECTION (IN) OF GUN BARREL AFTER 15 MSEC = -3.292527€-02
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Negotiation Issues

mC

155MM LIGHTWEIGHT HOWITZER DEMONSTRATOR

- =

Technical Issues:

Issue 6. Provide supporting data to verify claimed weight of components.

o<

FMC Response. The component breakdown for the FMC LTHD has been restructured
to conform to M198 terminology and is shown in Figure HT6~1. To this list has
been added the stress analysis method and accuracy used to arrive at the

!g planned material; the estimated probability this material would be used in the
g

demonstrator, and material volume and density estimates used to arrive at the
estimated component weights.

Using the average component weights provided in Figure HT6-1 to compare with
the M198 equivalents, we find the LTHD weights to be as follows:

N
ﬁ Item M198 FMC LTHD
e - Cannon 4,850 3,756

-
ﬁ Carriage 8,610 3,471
N .

‘ Recoil 2,150 1,525
Y

- Fire control 150 220
1 —_—_ —_—
Yy f)|
' ‘-l

‘ Total 15,760 8,972
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i E Figure HT6-1. FMC LTHD Component Breakdown (Sheet 1)
';; @ LINE  DESCRIPTION Q STRESS PLAN TOTAL FOR QTY L
b T ANALYSIS y
Y == - -~ MATERIAL PROBA- DENSITY VOLUME WEIGHT L
i KTHD ACCUR BILITY (3/IN3) (IN3) (LBM)
! A ] c £ F 6 H I 4 L
o . S32I52  SSCSSITISCIC0LITIIIZIS2T0533222IS8 T TSIS T33IsD ZsoIIIIzTIsIIIosIIsoeSss  23ozss zZzZzsSIs ZzZzzss zzZzzI oz
';; @ Al000 .LTHD Asseably (Version 1.0) 1 3.972 |
‘ Clo0c ..Cannon 1 3,75 2
! £1050 ...Barrel (41-caliber) 1 Steel 99 0.28 9,286 2,600 3
. ‘ C1100 ...Breech 1 Steel 99 0.28 2,357 300 3
4 C1150 ...Breech band 1 TRAD 30  Steel 80 0.28 375 105 3
C1200 ...Breech band bearing 2 PUBL S  Torrington 27SFL44 90 13
' g C1300 ...K198 auz brk w/ pintle 1 TRAD 30  Steel 7 0.28 857 240 3
FI000 ..Fire control systes 1 24 2
0 g F1050 ...Optics and sounting 1 164 3
‘9 - cm—— -
:: F1100 ....Assistant gunner 1 "\
o FIISO ..... K133 1 K133 99 85
F1200 ..... N172 1 N172 99 28 35
s ) FI2s0 ..... Nig | Ni8 99 85
. - :
e F1300 ....Gunner | 1S 4
1, F1350 ..... H137 1 H137 99 17 %
v W ) Fl400 ..... 171 1 Ni71 2 55
F1450 ..... uiz 1 M7 99 8 5
" F1500 ..... Prisary at (to pltfra) I Al 80 0.10 L] 45
N o FISSO .....Scndry ot (soves w QE) 1 s
'1, N FIS70 ...... Mount set 1 Al 7075-T¢ 8 0.10 80 8 6
N FI1S80 ...... Link 1 CF/E 80  0.057 §3 36
¥ . e cmew ae  emmeme  ecmma- -
l F1600 ...Electronics 1 o0 3
. F1650 ....Elect laving aid (QE) 1 CF/E box, elect, battry 20 4
:1 F1700 ....Elev XDCR: IFC-pltfra 1 60 S 4
¢ F1750 ....Elev XDCR: pltfra-cannon 1 s 4
I:'; g F1800 ....Elect laying aid (A2) 1 CF/E box, elect, battry 60 20 4
iy F1350 ....Trav XDCR: IFC-pltfra 1 54
g F1900 ....Trav XDCR: pltfre-cannon | S 4
i |
u:l
X
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Figure HT6-1. FMC LTHD Component Breakdown (Sheet 2)

61000 ..Carriage assesbly 1 3,41 2
§1050 ...Cradle assesbly 1 1,275 3
61100 ....Elevation yoke assy i 300 4
gl1so0 ..... Elevation yoke 1 TRAD 230 §
eil7e ...... Frame 1 Ti 70 0.6 719 115 6
61180 ...... Set of inserts 1 Fiberglass 60 0.07 1,643 15 6
61200 ..... Breech cas 1 Ti 70 0.16 250 0 5
61250 ..... Travel lock (to trail) 2 S
6300 ...... Lifting eye 1 Ti 70 0.16 i 7 6
61325 ...... Travel lock mechanisa 1 Ti 70 0.1 50 8 6
81350 ....Elevation cylinder 1 - 298 4
e1400 ..... selleville springs 1 CF/E S0 0.057 439 AR
Gl450 ..... Depressn pstn & rod 1 TRAD 30 Al 7075-Té 80 0.10 360 36 S
61500 ..... Elev cyl-inner 1 TRAD 30 Al 7075-Té 80 0.10 600 60 5
61550 ..... Elev cyl-outer 1 TRAD 30 Al 7075-T6 80 o.10 700 0 5§
61600 ..... Elev cyl-shroud 1 Fiberglass 80 0.07 286 205
61650 ..... Elev piston 1 Al 7075-T6 80 0.10 140 45
61700 ..... Clevis—lower 1 Al 7075-76 80 0.10 100 10 §
61750 ..... Lower ¢yl brg 1 PUBL 5  Torrington 27SFL44 60 6 5
61800 ..... Lower end cap | Al 7075-T¢ 80 0.10 110 11 s
6i850 ..... Upper ¢yl brgs 2 pUBL 5 Torrington 27SFL44 60 11 35
61900 ..... Upper endcap & clevis 1 TRAD Al 7075-T6 : 80 0.10 350 35
62000 ....Equil accusulator 1 TRAD Hetal Bellows Corp 90 135 ¢
62050 ....Equilibrator hose 1 Metal Bellows Corp 50 2 4
62100 ....Load-tray 1 115 ¢4
82150 ..... Cleanout cover | Al 7075-Té6 0 0.10 S0 5§
62200 ..... Loading staff 1 FRP rod 80 0.07 143 10 5
62250 ..... Tray lever 1 Al 7075-T¢ . 0 0.10 S0 S 3
82300 ..... Rasing staff 1 FRP rod 80 0.07 143 10 5
62350 ..... Load tray hsg assy l 85 3
62360 ...... Frame 1 TRAD Ti 70 0.16 281 4H 6
62370 ...... Nrap 1 Kevlar/epoxy 70 0.05 700 3¢
62380 ...... Coating 1 Urethane 70 0.05 100 56
£2400 ....Slide unit 1 425 |
62450 ..... Slide tubes 2 360 S
62460 ...... Basic tube 1 TRAD Pultruded CF/E 60  0.057 2,456 140 6
62470 ...... Overurap 1 Fiberglass 60 0.07 429 30 6
62480 ...... Inner core 1 Foaa S0 0.001S 6,665 10 ¢
62500 ..... Yoke-tube lock endplt 2 TRAD 30 Al 7075-T6 . 60 0.10 190 19§
82550 ..... Trunnion mount unit 2 TRAD % 5
62600 ...... Lifting eyes 1 Ti 60 50 8 ¢
62625 ...... Trunnion brg mount | Ti 60 0.16 94 15 ¢

FIELD EXPLANATIONS AND ABBREVIATIONS EXPLAINED ON LAST SHEET
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Q:' a Figure HT6-1. FMC LTHD Component Breakdown (Sheet 3) T
™ . T e - S mmeT TEeST mmsesemmoememcsmssces cessee coecee emoen soeee- -
o P;‘c 62650 ...Platfora & trunnion assy | 392 3
i - T :
o 62700 ....Platfora 1 TRAD See Appendix HT7-A 60 210 4
62750 ....Claw--primary 1 Ti 50 0.16 63 10 4
62300 ....Claw--secondary 2 Ti 20 0.16 125 20 4
g 62850 ....Traverse bearings 3 PusL Purchased 15 4
k . 62900 ....Trunnion l 60 4
o A 62920 ..... Spacefrase 1 TRAD Ti 80 0.16 188 S
AR 62930 ..... Panels 1 Fiberglass 60 0.0 29 30 S
A 62950 ....Trunnion bearing 2 PUBL S Torrington 27SFL44 90 11 4
62975 ....Trunnion pins 2 Steel 30 o0.28 54 15 4
‘ e 63000 ....Spade mounting shafts 2 Ti 60 0.16 119 19 4
": - 83050 ....Traverse cylinder 1 TRAD 30 32 4
" :-_: 63100 ..... Piston and rod 1 55
o) 63120 ...... Piston 1 Al 7075-T6 90 0.10 10 16
63130 ...... Rod l Ti 90 0.16 25 4 6
K w 63150 ..... Cylinder 1 Al 7075-T6 90 0.i0 160 16 §
e 63200 ..... Front end cap 1 Al 7075-Té 30 0.10 40 § 5§
) §3250 ..... Rear end cap 1 AL 7075-T6 90 0.10 50 55
- 63300 ..... Tie rods 4 Steel 9 0.23 7 5
W 3 == e e
> 63350 ...Trails (set of) 1 35 3
o 83400 ....Trail positioning link 2 3% 4
o 63420 ... Ends . 1 Ti 0 0.16 5 12
T 63430 ..... Tube 1 CF/E 60  0.057 105 6 §
- 63450 ....Trail w integral brg-LH 1 TRAD See Appendix HT7-A 60 140 ¢
S 63500 ....Trail w integral brg-RH 1 TRAD See Appendix HT7-A 60 140 -4
R it 63550 ....Trav lock to elev yoke 2 i 6 0.16 25 20 ¢
A 63600 ....Skid plates 2 204
SU 63620 ... Outer shell set 1 Fiberglass 70 0.07 129 95
W 63630 ..... Inner core 1 Foas 90 0.006 167 15
~ & ee=es escccecccccccesaceecacacoooa- - =mes meses e e I i -
N 63650 ...Spade asseably 1 285 3
o~ ; 63700 ....Spade I FEA 10 See Appendix HT7-A 50 ‘ 210 4
" 63750 ....Spade bearing 2 PUBL S  Torrington 27SFL44 S0 14
i - s -
j.‘a e 63300 ....Spade cylinder 2 TRAD 30 64 4
N 63850 ..... Piston and rod 1 55
== 63370 ...... Piston l Al 7075-T6 9 0.10 10 )
o !v-_— 63880 ...... Rod 1 Ti 90 0.16 25 46
Y 63900 ..... Cylinder 1 AL 7075-T6 90 0.10 10 16 S
,,: 63950 ..... Front end cap 1 Al 7075-T6 9 0.i¢ 40 45
::-, I 64000 ..... Rear end cap 1 Al 7075-16 90 0.10 S0 S5
2N 64050 ... Tie rods 4 Steel 90 0.28 7 25
S 64100 ...Hydraulic systes 1 273
+ =
oo G4150 ....Gunner’s hardware 94 4
- 64200 ..... Elev ctrl valve 1 Purchased 90 35
'-f :_' 64250 ..... Puap 1 Purchased 90 205
[ 31 64300 ... Reservoir 1 Al 60 0.10 500 005
,;":‘ 64350 ..... Spade ctrl valve 1 Purchased 90 8 5
3
KN - FIELD EXPLANATIONS AND ABBREVIATIONS EXPLAINED ON LAST SHEET
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Figure HT6-1.

@ FMC LTHD Component Breakdown (Sheet 4)
64400 ..... Traverse ctrl valve 1 Purchased 90 3
@ G44S0 ....AG hardware harduare 73
64500 ..... Elevation ctrl valve 1 Purchased 90 8
~ G4550 ..... Pusp 1 Purchased 90 20
i 64600 ..... Reservoir 1 Al 60 0.10 500 50
, 64650 ....Hydraulic fluid HIL-H-6083D 99 90
Q‘% 64700 ....Hardline 1 Steel 80 0.28 89 25
24 64750 ....Hose 1 Purchased 90 20
64800 ....Portable pusp 1 Purchased 90 20
! 64850 ...Dolly assembly i 671
64900 ....Dolly framework 1 110
. 64520 ..... Frase 1 TRAD Filasent wound CF/E 60 0.057  I,7s4 100
;-}" 64930 ..... Core 1 Foan S0 0.002 5,000 10
M 64950 ....Brake calipers 4 Kelsey-Hayes series 70 70 Y]
65000 ....Air-over-oil actuator 1 Purchased 80 15
w 65050 ....Brake rotor 4 CI S0 0.26 162 42
hed 65100 ....Whl hubs w brgs & bolts 4 52
65120 ..... Hubs 1 Al 7075-Té 60 0.10 90 9
85130 ..... Set of brgs and bolts 1 Purchased (steel) 80 4
@ 65150 ....Axles 4 Ti 60 20
£5200 ..._HMMWV tire 4 Boodyear 99 248
) 65250 ... .HHMMWY cospatible ria 4 Purchased 99 120
N 65300 ....Strap winch 1 Purchased 90 15
FEN 65350 ....Brake lines 1 Steel 70 0.28 18 5
AN §5400 ...Loose itees | 165
ﬁ 65450 ....Basic issue itess | 145
65500 ....Safety “chain® {tow) 1 5
. 65520 ..... Rope l Kevlar 80 0.05 20 i
'~§ 63830 ..... Hooks 2 Ti 60 0.16 25 4
s 65550 ....Carrier for proj 1 Fiberglass/epory 80 0.07 143 10
65600 ....Muzzle plug 1 Wood 90 S
B.',l
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N ﬁ Figure HT6-1. FMC LTHD Component Breakdown (Sheet 5)
,‘_i s322 sTIZssszos2ssasIssEzzose=azt - h-g-4-4-4 assss SSSI223223T2222223232223222 2222z oz o= sz =
N N R1000 ..Recoil systes 1 1,525 2
WD ® mess sesse ceccssesssssssccaccosmas  scscss  ccscses  ccecne ccmen- -
3 An 3
3 RI0S0 .._Non-recoiling group 1 75 3
u R1100 ....Forward yoke assy 1 548 4
N RUSO ..... Recoil accusltr unit 2 TRAD 15 S
b g RI200 ...... gellows accusulator 1 Netal Bellows Corp 90 7 6
T RI2SD ...... Counterrecoil check 1 Kepner cartridge 50 1 6
’:{ - ;W z EmEEmEmE S e T AP DD D A AR R D R M R e e - - -
R1300 ..... Forward yoke 1 220 5
¢ g Ri320 ...... Spacefrase 1 TRAD Ti 70 0.16 750 1260 6
{ RI330 ...... Set of plate inserts i Fiberglass 60 0.07 1,429 100 ¢
} R13S0 ..... Yoke-tube lock 2 TRAD 30 Ti 60 0.16 188 30 S
; g RI400 ..... Into battery cushion 2 Urethane S8 0.05 80 45
. RI4SO ..... Hydraulic fluid NIL-H-6083D 99 120 S
RISCO ..... Recoil cyl shroud 1 CF/E 80  0.057 175 10 5
. H RISSO ..... Slide brg and scraper 2 Teflon & urethane 3 0.07 114 3 S
LY ” - ————- -— ————-—— -
i‘ -
[ RIG0O ....Recoil cyl (fixed prtn) 2 206 4
N RIESO ..... orifice ring 1 TRAD 30 Al 7075-T6 hc anodized 80  0.10 40 45
K o R1700 ..... Stationary cylinder 1 TRAD 30 Al 7075-T6 8 0.10 450 6§ 5
RL75¢ ... Stationary end cap 1 Al 7075-T6 80 0.10 160 16 5
R1800 ..... Stationary piston 1 AL 7075-T¢ 80 0.10 30 A
2. RISSO ..... Stationary pstn red 1 TRAD. 30 Al 7075-T6 80 0.10 350 B
e - - - .
& LY
i_ R1900 ...Recoiling group 1 ) 771 3
N Sommessmsssssoee- T o= T e T TTTTUS mmemoms mmemms momees -
i RI9S0 ....Front recoiling yoke 1 130 4
' Ri970 ..... Space frase 1 TRAD Ti 70 0.1 500 80 S
. RI980 ..... Set of plate inserts 1 Fiberglass 6 0.07 714 50 5
X 3 R2000 ....Recoiling yoke spacer 2 TRAD AL 7075-16 0 0.10 1 (A
;{ et R2050 ....Rear recoiling yoke 1 135 4
3 R2070 ..... Space frame 1 TRAD Ti 70 0.16 $31 85 5
R2080 ..... Set of plate inserts 1 Fiberglass 60 0.07 714 50 5
g R2100 ....Slide brg & scraper 4 TRAD 30  Teflon and urethane 80 0.07 229 16 4
4 R2150 ....Dolly sounting bsg ] Urethane S0 0.05 400 20 4
) - em—— cmmmmmerec e meanenre eeemes emcesne amceee cemoa= -
fv" .
;: :’Q R2200 ....Recoil cyl {reclng prtn) 2 430 ¢
«: ~ R2250 ..... Front recoiling end cap 1 Al 7075-T6 . 2 0.10 S0 53
R2300 ..... Rear recoiling end cap 1 Al 7075-T¢ 96 0.10 100 105
¥ ﬂ R2350 ..... Recoiling inner cyl 1 TRAD 30 Al 7075-T6 90 .10 800 80 S
' ro R2400 ..... Recoiling outer cyl 1 TRAD 30 Al 7075-T6 90 0.10 1,150 115 5
R2450 ..... Recoiling piston 1 Al 7075-T6 90 0 S0 59
: \'::. szzzs prefutrefetufafubupubedetadubabibfinpueuiprup = ===z zzz:z2 pteifrfubupeefefind-f-gpuabdrepugfufapeuind g pupedaputuguid Pefadiaiegedied juiedaiiaiied <
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Figure HT6-1. FMC LTHD Component Breakdown (Sheet 6)

FIELDS - EXPLANATION AHD ABBREVIATIONS

FIELD C:

FIELD D:

FIELD E:

FIELD F:

FIELD 6:

FIELD I:

FIELD X:

QUANTITY FOR NEXT HIGHEST LEVEL (GIVEN BY FIELD L).
METHOD USED FOR STRESS ANALYSIS.

TRAD = TRADITIONAL

PUBL = PUBLISHED

FEA = FINITE ELEMENT ANALYSIS

ESTIMATED ACCURACY OF STRESS ANALYSIS (IF FIELD D HAS AN ENTRY BUT FIELD E HASN'T, DESIGN HAS
CHANGED SINCE ANALYSIS).

HATERTAL

CF/E = carbon fiber with epoxy resin

FRP = fiberglass reinforced plastic

ESTIMATED PROBABILITY THAT MATERIAL LISTED WILL BE FINAL CHOICE.
TOTAL YOLUME FOR QUANTITY OF ITEMS REQUIRED (FIELD C).

TOTAL MEIGHT FOR QUANTITY OF ITEMS REQUIRED (FIELD C).
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Negotiation Issues

MC

~

K . 155MM LIGHTWEIGHT HOWITZER DEMONSTRATOR

Technical Issues:

-
-

Issue 7. Clarify the use of composite materials or material concepts which
incorporate the use of composite material.

X ]

LRI
-
"; L v

FMC Response. This is largely provided by Figure HT6-1 in our response to
Issue 6. The general methodology used and planned, with discussion of a few
of the more involved components, is discussed in Appendix HT7-A.
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Appendix - HI7-A
Material Considerations

The following paragraphs describe the methodology planned in selecting
materials/processes and performing stress analysis to insure that the
selection is not suboptimal from either a component or system viewpoint. Then
the approaches under consideration for three composite components (the spade,
platform, and trails) are discussed.

Overview: Some components will not be considered for composites due to the
weight-cost-RAM-D tradeoff. Examples of (currently) pre-designated materials
include steel (for cannon components exposed to combustion pressures),
aluminum (where high pressure sealing 1s involved), nitrided titanium (where
high pressure sealing surfaces with potential exposure to nicks and dings are
involved), and standard components whose potential weight savings do not
justify development cost and/or RAM-D risk, such as fire contol, bellows
accumulators, and bearings.

Components designated to be made of aluminum constitute 1837 lbm of FMC's
LTHD, 1737 1bm of which are currently planned for alloy 7075-T6. When the new
lithium alloys of aluminum become available, their 9 to €102 weight savings
could reduce the aggregate weight of the 7075-T6 components by 165 1lbm.

The balance of components will be cnnsidered for composite construction. The
default material is carbon fiber/epoxy. When conceptual functions initially
take form, a precursory material selection and approximate -stress analysis
will be undertaken to evaluate one general approach versus alternatives.
Stress analysis will be taken to greater degrees as the overall concept
advances and the role of the component within the overall system becomes
critical.

Complex parts, where needed and justified, will be built from modular
structural elements and easily assembled into the total structure. Part
replacement is therefore easily made if localized damage occurs. Composite
plate structures will be used in the structure to absorb load and provide
damping of impulse loads as required.

Composite Components: Composite components will be designed to be easily
replaced (e.g., failure from unanticipated nonstructural loads). Use of
multiple prepreg or wet lay—up woven roving sheets to facilitate load bearing
panel construction is an element of the unit construction/modular construction
method to be used, i.e., the FMC LTHD is to be constructed of easily
fabricated modular parts to form a monocoque structure. Use of cored sandwich
panels is preferred for bolt—-on structural panels under bending loads.

System Integration: Extensive use of an overall finite element model for the

entire structure will permit design optimization to be performed over all load
conditions and reaction load angle inputs due to firing, towing, air
transportation, and ground impact from parachute and LAPES drops.
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Spade

The spade analysis in Appendices HT7-B, -C, and -D provides an example of
the component design process planned. This precursory design meets all
structural requirements as well as it's initial weight target. ANSYS
finite element analysis for several trial designs, under static and
dynamic loading, indicates the superiority of a space-frame design over
all-titanium, all-steel or all-FG/EP designs for several antir~ipated load
cases.

Other possibilities include Al/SiC.

Platform

Plan: Design of the platform is performed from modular built-up
components. A space frame composed of carbon fiber/epoxy filament wound
tubes and/or composite built-up sections made from carbon-fiber woven
rovings (with cored inserts) will comprise this component.

The rearward impulse loads from the recoil cylinders are to be reacted
into this structure together with reactive spade loads and other static
loads. These input loads can be made to induce (mostly) tensile and
bending stress within the platform by proper design.

Use of optimized (for the given load direction and magnitude) multilayer
bonded carbon/epoxy woven roving plates in this structure to absorb load
completes the monocoque design. Additional stiffening elements can be
bonded onto existing structural components to improve capability in -
certain directions if a directional failure mode exists; i.e., the
structure can be selectively reinforced in certain directions. Metal
bearings and other load bearing and load transfer surfaces can be
constructed with weld-on attachments to facilitate bolting/bonding of the
adjacent composite structure to complete load paths.

Use of alternate materials to reduce cost is dependent upon advanced
stress analysis.

Trails

Plan: The planned trail design contains a three-dimensional, space-frame
lattice-work of (carbon fiber/epoxy) filament wound tubes. These tubes
are bolted/bonded to longitudinal box beams through special
end-connection junctions. Reinforcement with Rohacell foam inserts will
increase both bending stiffness and energy absorption capability.

Use of additional side and top bolt-on plates made from a choice of
carbon, E-glass or Kevlar/epoxy bonded woven rovings then closes the
structure and provides additional stiffness for bending shear and tension
loads. Kevlar over-wraps cover outside parts of the structure to
increase scuff resistance greatly while providing some armor capability.
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Option 1: Use of filament over-wraps over modular, bolt together
sections of space-frame networks is also a viable alternative
construction technique. Choice of materials, part dimensions, and fina!
configuration are dependent upon stress analysis results, failure mode
analysis, and energy absorption capability. (An option to this
construction would be use of a tapered I-beam made from carbon fiber
roving layers built up over a central foam core web. Advanced analysis
will decide the optimum construction method.)

Summary: Several advanced iterations in the design process are expected
in order to select a near-optimum design. Quasi-static and dynamic tests
of representative structural elements will be performed to access stress
adequacy; tension-field tests on built-up composite layer plates with
different layer stack-up sequences, as well as standard ASTM shear and
tensile/compressive tests, then will confirm materials properties used to
obtain optimum solutions from finite element analysis.
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APPEMDIX HT7 - Bl
5[@@ Central Engineering Laboratories
Santa Clara

interottice
B. Anderson - Northern Ordnance oute April 17, 1985
C. R. Ortloff “ R. Kazares

E. Thuse
Further Work on the Lightweight Howitzer

Sudtect Additiornal Composite Spade Load Cases

This memo addresses further load cases of importance to the lightweign-

composite howitzer spade design. These cases relate to lnading originat ~g
from rock impact upon spade seating during gun firing. For the first case,
point loading of 60,000 1bf is assumed to occur at the spade bottom enge a-
the cei .erline (Figure 1) while the top edge is fixed. The material of *he
spade is carbon fiber and properties have been listed in the previous memg

B&’ﬁ?ﬁ@%’?x"‘

7t¥ X (CRO to BA, 4/1/85), Figure 1 indicates that the maximum SIGE stress in
y A the fiber-wound frame is 55 ksi which is less than the material breaking
';b ~ strength of 120 ksi, Vertical deflection under load (Figure 2) does no*
9 exceed 0.1 inches indicating that the internal beam lattice netwnrk 'Figc. .ro

4) is effective in absorbing vertical load, Beam stress values in tr g
grid network are listed in Figures 5 and 6 and are generally low inaica~ -1

L7

y;i adequate stress safety margin. Stress in the waffle plate (Figure
BOA s insert (which lies inside of the “picture frame" spade boundary (Figure °
;#. . and over the beam lattice network (Figure 4) and is bonded together “v
R urethane "poured" into the waffle plate channels and depressions) is “a¢«
oh than 13 ksi . Stress in the urethane plugs that fill the waffle p'a‘o
c: depressions 15 likewise low {Figure 7). The net conclusion of the s=r_c-
S analysis is that the lightweight composite spade can easily survive -~ -°
N loading on its lower edge corresponding to 1mpulsive impact with tm=o--.
nett SN rock. Although cases run are for static loading, a prior memo ‘M, “-. -.
""i o s . . 9. p ° .
My o to B. Anderson 3/27/85) indicates a 25% increase in stress levels “-~-

Ky dynamic loading., With this increase over static stress levels amdaz -
safety margin remains to insure survivability of the composite spa~s,

3 BN

'Ej o The next load case considered consists of a concentrated, localize? “---=
Yo load set (Figures 8, 9) acting on the spade outer face. This ipar:~-
fkj irj arises from impact with a ground imbedded Stone upon rearward movemen® ¢
e v the spade resulting from gun recoil. The magritude of tre ta%a' “zr:-

—_— acting as shown in Figures 8, 9 is 60,000 "hf, i.e., 15,000 1bf at ea2-» ~¢

four nodes. SIGE stress results, Figure 1C, indicate high localizer s°-.cx
around the spade attachment arms at the fixed end, Since this fixen =~-
pinned in actuality and can be easily redesigned to withstand hich '~:-
the end zone loads should be ignored. {n the filament wound "pr7° . -=
frame", stress 1s less than B85 ksi, still helow the farlure strengs- -°¢
carbon fiber. Waffle plate stresses (Frgure 11} are less rthan 178 weor -
the region around the load points. The thickness of the plate cai- -
increased over the value used for the present design (0.4 inches' *~ ' -

h{a 2]
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this stress without significant weight increase. The waffle plate can
therefore be easily modified to withstand localized impact loading withnut
failure. Figure 12 represents the stress distribution in the web frame
between the side beams, Again, these stresses may be reduced hy increasing
web plate thickness over the original value (0.5 inches). Beam lattice
stress (Figures 13, 14) indicate values to A5 ksi in the vicinity of rtne
load points. This stress is less than the failure stress of the individyal
beams. The urethane plug stress, Figure 15, again indicate stress levels
below failure stress for that material. Addition of Kevlar caver plates
over the waffle plate sides will further add to the safety margin of the
structure.

From the two load cases presented, it can be concluded that composite spa-e
impact upon ground imbedded stones resulting from gun recoil forces dnaas
not cause spade failure. Localize high stress regions can easily be
redesigned (usually in the form of a part thickness increase) without a
large weight penalty. These two load cases considered together with two
prior cases indicate that the composite spade design proposed has the
capability to withstand typical service loads without experiencing part
farlure and stil] retain a total weight less than 200 1b,

ROk~
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' FMC Corporation

E@ Central Engineering Laboratories

>,

v Interoffice

‘ To: Bart Anderson Date: April 1, 1985
Northern Ordnance Division

(o

o From: C.R. Ortloff cc: R. Kazares

E. Thuse

‘. Subject: Lightweight Howitzer Design

e

b The design of a lightweight composite howitzer spade is accomplished by
means of the following elements:

N 1. An outer "picture frame" structure (Figure 1) with an integral

lattice network of beam elements. Additional beam elements
(Figure 2) also provide structural stiffening to the side frame
elements. All elements may be metal or composite material. in the
latter case a straight, hollow, carbon fiber, filament wound structure
(with a multiplicity of wind angles) and with a trapezoidal cross-
o~ section may be made and deformed into the configuration shown in

[ ZAH

o~ Figure 1 before curing and bonding. Beam elements may be bonded
into this structure.
F "%

2. A "waffle" plate (Figures 3, 4) of multiple layers of cross-oriented
carbon fiber woven roving bonded by a suitabe epoxy. This plate is
inserted into the inside of the picture fram. and fits over the heam

t& lattice network.

3. Chopped fiber reinforced urethane plugs (Figure 5). This material
(Figure 3) is poured into the box depressions and channels of the
!! waffle plate to bond the bar elements to the carbon fiber waffle
plate so that the waffle plate, bar elements and outer picture frame
act as an integral structural unit under load.

f‘...
s 4, Bonded cover plates. These plates cover the inner and outer
surfaces of the waffle plate and provide scuff resistance. These

3’ plates may be a few layers of Kevlar,
N

The net configuration of the space is shown in Figures 6, 7 and 8 (with
e the outer covering plates removed).
)

X The presence of a metal Tower edge to prevent scuffing of the composite
. lower edge upon spade ground entry (during firing) is a point of later
A design consideration. The design of the pin connection ends are omitted

Ny for purposes of this survey.
" The next gquestions to be answered are:

1. Does the design presented have the capability to withstand impulsive
pressure loading (Figure 9) on its inner concave face without
> failure?
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Bart Anderson April 1, 1985

2. Can the proposed design withstand edge loading of 60,000 1bf from
gun-firing spade seating without structural failure?

3., Can the above be achieved for a total composite spade structural
weight less than 200 1b?

Results of static loading to F3,000 'hf/normal area of spane are Shown
in Figures 9 to 17. For a ts%al weight of 148.% 15 (Figyre 9, SIGE
stresses in the carbon fiber wound frame are less than the yltimare
stress of the carbon fiber matrix {>180 ks1 tensile) while st resses in
the carbon fiber woven roven waffle plate (Fic re 11) is less than 1A
ksi. Stresses in the urethane filler plugs (F gure 12' are less than
the material ultimate stress cf 7 ksi, Stress in elements pf the inner
cover sheet (Figure 13) are far less than design ultimate stress,
Stress in the bar network (element numbers, Figure 14) are listed in
Figure 15. These stresses are far lower than the failure stress.
Deflections in the frame center line are about 1.5 inches (Figure 16
while maximum waffle plate ceflections are cn the same order (Figure
17). Property tables for materials are given in Figure 18 wnile reals
are given in Figure 19. Tre material and real numbers are given in
Figure 2, 3, anc 5. The reals follow the same number code as the
material number coce excert fcr real constant set 2 fcr which the
listing represent Air-ea, 1YY 177 nX and nh7 where hX represen*s tre
distance from beam neutral ax:s %o outer fiter for example,

Results frgn an edge loacirz case '3IN,2CC '5f on the lower half-gection
edge at 72 to the horizortal, rop edge fixed! indicate acdequate margins
of safety in SIGE (Figure 20 in the spade area. Figure 21 indicates
adequate waffle plate margins of safety in stress. Figure 22 and 22
indicate that the bar lattice stresses are low [less than 2 ksi) for the
0.5 X 0.5 inch bars., Deflections (Fiqures 24 and 25) are likewise low
in both X and Z directions. Dimensions of the composite spade are
contained in ANSYS file DVAL1:TCRTLOFF ABXILWH.F16;1 on storage at CEL.

In total, the low weight of 143.5 1b indicates that additional part
strengthening can be made resylting in lower stress levels, The spade
to sice frame element joining regions are the sources of high stress and
can be redesigned to lower the stress level and still keep within the
upper weight margin, The feasibility of the composite spade has
therefore been demonstrated; optimization of the design will awail
formal contract award.

C

C. R, Ortloff
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CGPOSITE SPADE
(HALF SECTION)
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SCHEMATIC OF THE COMPOSITE SPADE DESIGH
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Central Engineering Laboratories

L

A
' L

INTEROFF ICE
s
' T0: C. Ortloff DATE: March 27, 1685
v
- FROM: Michael Coulter cc: E. Thuse
R. Kazares
o SUBJECT: Lightweight Howitzer - Spade Analysis

Preliminary Stress Calculations (Static & Dynamic)
on All-Metal (Steel, Titanium) & FG/EP
Thick-Spade (Figure 1) Configurations

Per your request, three different configurations of the spade concept described
. in Figure 1 have been analyzed; steel, titanium and fiberglass. The results of
2t these preliminary analyses are summarized in Table 1. The loading for these
analyses consists of a static pressure (corresponding to max recoil force of
65,000 1b) distributed as shown in Figure 2 (red outlines). Due to symmetry
only half of the structure was modeled., . A fixed constraint was used as the
ii boundary condition as shown in Figure 2. Stress contour plots along with
displacement plots for each of these configurations are shown in Attachments
e A-C. Disregard the high stresses at the locations where the mode! was

constrained as this area was not modeled accurately for this preliminary studv.

'! The maximum stress in the region where the pressure load was appliied is

approximately 8000 psi. for each case analyzed.

‘

33 In addition to the abova2 analyses, one transient dynamic pressure load case was
run for the steel spade for the purpose of determining dynamic effects of *re

?@ loading descriti¢ in Figure 3, The maximum stress in the pressure surfare

- region increases 25% from the static load case to 15,000 psi. Displacemens an+

T stress contour plots are shown in Attachment [,

-

" Eacnh of the a-nve load cases assumes the spade 1s alreacdy embedded into tne

$: ground, The final load case analyzed for the steel spade consists of a

. compressive force (60,000 1b) being applied as shewn in Figure &4 (red arr~ac’,

% This 15 just a» estimate of the force applied to the spade if qun were f:re?
without the spade being embedded 1rtd the ground. A maximum stress of 45 po

:E' results from this loading. Deflection and stress contour plots are shown 7

Attacnment F .
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C. Ortloff March 27, 1985%

The results of this preliminary analysis indicates that each of the
configurations analyzed can withstand the given loading. However, it should be
noted that the purpose of this analysis was to determine if this concept is a
viable one, not to do a detailed analysis of the proposed design.

Gkl

ike Coulter




- T . AT TETTETT W T TR TR R T TTRTTT W YT R TT T TR R T e T R T e W TR s TE R ST T e T e W

N N APPENDIX HT7 - D3
TABLE 1

v LOAD CASE SUMMARY

e o MATERTAL TOTAL WEIGHT MAX, DEFLECTION MAX STRESS ON PRESSORE SNRFACE

‘ STEEL 2300 1b. 0.15 in. R000 psi.
TITANIUM 1300 1b. 0.27 in. 8000 psi.

FIBERGLASS 800 1b. 1.25 in. 7 8000 psi.

{ MATERIAL PROPERTIES

aa,

MATERIAL YOUNGS MODULUS POISSON RATIO DENSTTY

6 2

STEEL 30x10% 1b/in 0.3 0.283 15/in°
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e

e g,

6 2

TITANIUM 1710° 1b/1n 0.33 0.161 1h/in°

»

6

r FIBERGLASS* 5x10° 16/in? 0.20 0.10 15/in’
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ATTACHMENT A

Displacement and Stress Contour Plots - Steel Spade
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ATTACHMENT B

Displacement and Stress Contour Plots - Titanium Spade
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ATTACHMENT C

Displacement and Stress Contour Plots - Fiberglas Spade
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ATTACHMENT D

Displacement and Stress Contour Plots - Steel Spade
Transient Dynamic Analysis Results
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ATTACHMENT E

P

Displacement and Stress Contour Plots - Steel Spade
Compressive Load Case Results
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Negotiation Issues

mMC

-
> W

g 155MM LIGHTWEIGHT HOWITZER DEMONSTRATOR

Technical Issues:

Issue 8. Provide additional detail to illustrate the operation of key
subsystems; i.e., traverse mechanism operation and load tray interference at
various traverse positions.

FMC Response. Photographs of the FMC LTHD model (1:12 scale) shown in Figures
HT8-1 through -3 illustrate the operation of the traverse cylinder and load
tray at traverse and elevation extremes during loading and ramming. The
traverse cylinder has been color-coded "wood pencil yellow'" for easy
identification. The traverse cylinder attachment points have been color-coded
"oil-base clay green'" for the same reason.
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Loading Loading Close-Up

Ramming Ramming Close-Up

Figure HTB-;. Load Tray Operation at 400 Mils Right
. Traverse (2Z2ero QE).
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FMC LTHD DESIGN REVIEW
4 MARCH 1986

INTRODUCTION
THE WEIGHT-STABILITY RELATIONSHIP
OVERVIEW OF THE CONFIGURATION

EMPLACEMENT
COMPONENTS

LAYING TUBE
LOADING AND FIRING
MISFIRES

HANGFIRES

STICKERS

COOK OFF
SPEEDSHIFT
DISPLACEMENT

A VIEW OF THE FMC APPROACH IN RETROSPECT
ANALYSIS AND DESIGN AT NOD

BALLISTICS
FIRING STABILITY
TOWING STABILITY

WORK UNDERWAY AT CEL
AREAS OF CURRENT DESIGN EMPHASIS

MATERIALS
OPERATIONAL

TECHNICAL ISSUES
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' l THE WEIGHT-STABILITY RELATIONSHIP
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VARIABLES NOT SHOWN

_WT
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y ELEVAT ION (o)

B TRAVERSE

A §§ FORWARD SLOPE PIVOT POINT
g SLIDE SLOPE

2 SYSTEM ELASTICITY

" !! HOP IS NORMALLY VIEWED AS "REARWARD HOP", AS SHOWN.

4 "SIDE HOP" 1S ALSO ANALYZED, BUT NOT SHOWN.
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' !B OVERVIEW OF THE CONFIGURATION
: % THREE 1/12 SCALE MODELS
g gﬁ HAVE BEEN CONSTRUCTED
¥ FROM COMPUTER MODELS
| & TO VALIDATE OUR CONCEPTS
i %? #1 ILLUSTRATES THE SYSTEM CONCEPT INITIALLY PROPOSED
' S
\ |
b ii ADDITIONAL MODELS VALIDATE SUBSYTEM REVISIONS FROM BAFO

) (ADDRESSING HIGH QE LOADING)
A .

o @ #2: LOAD TRAY TO FACILITATE HIGH QE LOADING

y

) #3: PLATFORM-SPADES-GIMBAL UNIT COMPATIBLE WITH LOAD TRAY

y EVENTUALLY #1 WILL BE UPGRADED
¢ §§ TO INCLUDE THE SUBSYSTEM MODELS
CURRENTLY UNDER CONCEPTUAL DEVELOPMENT

LTHD |
i 4 MARCH 1986
BA l

Hg‘ul;’h’iugni"i &n't*‘b.gh“hh'l ‘H‘t‘”h(l fk%Hl

oAy b ol
S TN ““Ni.“ AR I N DR SOOI RO ACK N e, g

USRS EN AU R A IR LN ;' HILL LT



+MC

OVERVIEW OF THE CONFIGURATION, CONTINUED

A. EMPLACEMENT
1. EXTEND PLATFORM, WHICH OPENS BREECH
- USING THE STRAP WINCH MOUNTED TO DOLLY
- YOKE TUBE LOCKS SHOULD SNAP INTO PLACE

. VERIFY Yoke-Tuse Locks.

e
o £ NN

. RELEASE TRAVEL Locks
. UNLATCH, SPREAD, AND RELATCH TRAILS

. UMLATCH SPADES, SWIVEL DOWN, RELATCH
A. LATCHING OF SPADES IS ACHIEVED BY

- BOLT GOING THRU SPADE PERIMETER INTO PLATFORM

- MULTIPLE HOLES ARE PROVIDED IN SPADE PERIMETER

B. SPADE DeEPTH (ARC) CAN BE VARIED TO SUIT TERRAIN

;| o

. REMOVE HELICOPTER SLING

[
e AAC
P Ao

6

7. UNLATCH DoLLY CLAMPS

8. ELEV CANNON OFF DoLLY (DRIVING SPADES INTO GROUND)
9

. ReMove DorLLy (IF FIRING BELOW 250 MILS)

=% 4

L |

B R 5

LTHD
4 MARCH 1986
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+MC

OVERVIEW OF THE CONFIGURATION, CONTINUED

B. COMPONENTS

1.

M185 STYLE BREECH (AUTO OPENING)
A. OPEN WITH LOOSE WRENCH INTEAD OF STANDARD HANDLE

~ STANDARD HANDLE HITS LOAD TRAY
- LONGER HANDLE OVERCOMES STRONGER SPRING
B. STRONGER CLOSING SPRING FOR HIGH QE CLOSURE

AUTO PRIMER IS MOUNTED TO THE BREECH

A. SPENT PRIMER IS EJECTED
= WHEN BREECH OPENS. OR

- VIA TRIPPING A LEVER
B. NEW PRIMER IS INSERTED

= WHEN BREECH CLOSES, OR
= BY REVERSING THE TRIPPING LEVER

c. CLip HoLpS TEN PRIMERS.

39.3 CALIBER BARREL WITH M199 COMBUSTION CHAMBER
A. SAME MAXIMUM RANGE AS Mi98
B. SAME RESISTANCE TO STICKERS AS M198

M199 MuzzLe BRAKE WITH INTEGRAL LUNETTE
A. EMPLOYING BARREL AS BACKBONE DURING TOWING

REcoIL CYLINDERS ABOVE AND BELOW CANNON
A. FREE RECOIL DELAYS LOADING UNTIL SHOT EJECTION
B. 98 INCH EFFECTIVE STROKE PLUS 4 INCH OVERTRAVEL

SLIDE Tuses (10.5 INCH OD CoMPOSITE) GUIDE RECOIL
A. PROVIDE MAXIMUM STIFFNESS AT MINIMUM WEIGHT
B. PROTECT CREW FROM SUPERLONG RECOIL STROKE

| LTHD
~ ' 4 MARCH 1986

BA
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OVERVIEW OF THE CONFIGURATION, CONTINUED

&! B. COMPONENTS, CONTINUED
§§ 7. TITANIUM GIMBAL CARRIES LOAD INTO PLATFORM
2

8. INTEGRAL PLATFORM-SPADES-GIMBAL UNIT
gg A. ELIMINATES LOOSE SPADES

9. Two ELEV CYLS PROVIDE EQUIL, AZ. HI QF BREECH ACCESS

;ﬁ 10. SWIVEL DOWN LOAD TRAY
A. INCREASES RAMMING ACCELERATION DISTANCE
N - REDUCING RAMMING FORCES AT Max QE
gg B. KEEPS ARMS OUT OF BREECH, REDUCING RISK OF INJURY

11. FORWARD COMPOSITE TRAILS

ﬁi A. PROVIDES BALANCED WEIGHT DISTRIBUTION
B. PLACES ALMOST 3,000 POUNDS OVER SPADES

o 12. DoLLY EMPLOYS HMMWV TIRES IN TANDEM

Eg A. SIMPLIFIES LOGISTICS

B. "WHEELBASE" IMPROVES POTHOLE RESISTANCE
!l C. PI6GYBACKS HMMWV WHEEL-TIRE WEIGHT SAVINGS EFFORTS

LTHD
4 MARCH 1986
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OVERVIEW OF THE CONFIGURATION, CONTINUED

C. LavyIine TuBE

1.
2.
3.

EQuIiL AND ELEV FORCES ARE PROVIDED BY HYDRAULICS
THESE FUNCTIONS ARE COMBINED INTO EACH CYLINDER

THE _CYLINDERS ARE ATTACHED NEAR TRAILS
A. FACILITATES AN OPEN CENTER FOR HIGH QE LOADING
- INITIAL CONCEPT USED ONE CENTERED CYLINDER
WHICH OBSTRUCTED RAMMING STAFF ACCESS
B. CANNON ELEVATION LOADS BYPASS PLATFORM
- SIMPLIFIES AND LIGHTENS PLATFORM

CYLINDERS ARE SIMPLIFIED THRU OVER-EQUILIBRATION
A. RESULTING IN THE NEED FOR ONLY 2 CONTROL CHAMBERS
- CHAMBER 1 PROVIDES DEPRESSION FORCE
- CHAMBER 2 PROVIDES EQUILIBRATION FORCE
- CHAMBERS 2L AND 2R ARE COMMONED
B. ALL CONTROL IS ACHIEVED THRU CHAMBER 1
- AD%USTING OIL VOL UNIFORMLY IN 1L & 1R SeTs QE
- ELEV IS ACHIEVED BY VENTING TO TANK
-~ DEPRESSION IS ACHIEVED BY PRESSURIZATION
- TRANSFERRING OIL BETWEEN 1L AND 1R SETS AZ

LTHD
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OVERVIEW OF THE CONFIGURATION, CONTINUED

D. LOADING AND FIRING

1.

ADJUST RAMMING STAFF LENGTH FOR ELEVATION
A. SIX FOOT HANDLE BELOW 600 MILS

B. FOUR FOOT HANDLE FROM 600 10 800 MILS

C. TWO FOOT HANDLE ABOVE 800 MILS

MOVE PROJECTILE FROM CARRIER INTO LOAD TRAY
A. SLIDE FORWARD BELOW 800 MILS

B. FLIP BACKWARD ABOVE 800 MILS

DroP LOAD TRAY (TWO HANDS REQUIRED)

PROJECTILE HANDLERS INITIATE MoTION (ABOVE 600 MILS)
- APPLY FORCE TO RAMMIMG STAFF IN DIRECTION OF BREECH

PROJECTILE IS POSITIONED FOR RAM ONE FOOT FROM BREECH
PROJECTILE IS RAMMED THRU A 54 INCH STROKE (AT MAX QF)
RAMMING STAFF IS PARTIALLY RETRACTED

PROPELLANT IS SET INTO LOAD TRAY

PROPELLANT IS POSITIONED IN THE CHAMBER

THE RAMMING STAFF IS FULLY RETRACTED. WHICH HELPS
RETRACT THE LOAD TRAY, WHICH

TRIPS BREECH CLOSED, WHICH

INSERTS THE PRIMER.

TWIST LANYARD ROD

A. THIS ACTUATES A LEVER ON THE AUTO PRIMER WHICH

B. TRIPS THE LANYARD LEVER ON THE AUTO PRIMER

IGNITION AND RECOIL

LTHD
Y4 MARCH 1986
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" OVERVIEW OF THE CONFIGURATION. CONTINUED

sl =z e

&

D. LOADING AND FIRING., CONTINUED

16. COUNTER-RECOIL, WHICH

17. OPENS BREECH, AND

18. EJECTS PRIMER.

19. EVERY TEN ROUNDS OR WITH STICKERS AND COOKOFFS
A. TUBE SHOULD BE DEPRESSED

B. COMBUSTION CHAMBER SHOULD BE SWABBED OUT
C. PRIMER CLIP SHOULD BE REPLACED

3 22 28

s B2

E. MISFIRES

1. WAIT THREE MINUTES., IF NO RECOIL

2. REPhACE PENT PRIMER
A. HOOK LEVER ON AUTO PRIMER WITH RAMMER

B. PuLL DOWN, EJECTING SPENT PRIMER

C. INSPECT PRIMER

D. IF MECHANISM APPEARS TO BE WORKING SATISFACTORILY
E. PusH uP LEVER ON AUTO PRIMER WITH RAMMER

F. WHICH INSERTS NEW PRIMER

3. ResuME LOAD-FIRE PROCESS AT STEP 14, TWIST LANYARD

»E PR &

- F. HANGFIRES
ES 1. WAIT THREE MINUTES

gg 2. IF NO RECOIL, TREAT AS MISFIRE
' 3. IF RecorL, RESUME LOAD-FIRE PROCESS FROM THE TOP

& & LTHD
iy 4 MARCH 1986
e BA
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N OVERVIEW OF THE CONFIGURATION, CONTINUED

35 G. STICKERS
- I 1. WAIT THREE MINUTES
o ga : 2. CoMBUSTION CHAMBER IS VENTED

A. Hook LEVER ON AuTO PRIMER WITH RAMMER
B. PULL DOWN, EJECTING PRIMER AND RELEASING GAS

3. TuBe IS DEPRESSED
4. BREECH IS OPENED WITH WRENCH
5. PROJECTILE IS REMOVED (UNLESS PLAN IS LARGER CHARGE)
éi N 6. PRIMER CLIP IS REPLACED IF NECESSARY
7. TuBE IS ELEVATED
8. LOAD-FIRE PROCESS IS RESUMED

b A. WITH NEW PROJECTILE, STEP 2 (LoAD PROJECTILE)
B. WITH LARGER CHARGE. STEP 8 (LOAD PROPELLANT)

I
x

--
i
L2 |

%

K&

j & LTHD
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OVERVIEW OF THE CONFIGURATION, CONTINUED
COOKOFF

1. Swiver LoADp Tray Up
A. To THE SToP, TO COMPLETE LOAD-FIRE PROCESS
B. PARTIALLY, TO BURN CHARGE IN THE ATMOSPHERE
- SLOSH WATER UP LOAD TRAY TO PROTECT IT FROM HEAT
- DEPRESS TUBE TO CLEAN OUT COMBUSTION CHAMBER
- REsUME LoAD-FIRE PROCESS, STEP 8 (LOAD CHARGE)

2. NOTE POSITION oF TEMPERATURE INDICATOR

SPEEDSHIFT
. UNLATCH, SWIVEL UP, RELATCH SPADES
- ELEVATE CANNON TO 250 MILS
. POSITION DOLLY UNDER THE CANNON
. Depress CANNON TO ZERO QE

. Lock ONE REAR WHEEL

1
2
3
y
5. LATCH AT LEAST TWO (DIAGONAL) DOLLY CLAMPS
6
7. LIFT CANNON AT THE MUzzLE BRAKE AND TRAVERSE

8. UNLATCH DoLLY CrLaMPS

9. UNLATCH, SWIVEL DOWN, RELATCH SPADES

10. ELEVATE CANNON OFF DoLLY (DRIVING SPADES INTO GROUND)

11. ReMove DoLtY {1F FIRING BELOW 250 MILS)

LTHD
t 4 MARCH 1986
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OVERVIEW OF THE CONFIGURATION, CONTINUED

12

J. DISPLACEMENT
1. UNLATCH, SWIVEL UP, RELATCH SPADES

; 2. ELEVATE CANNON TO 250 MILS

: 3. PosITION DoLLY UNDER THE CANNON

. 4. Depress CANNON TO Zero QE

¢ 5. RELEASE YOKE-TUBE LOCKS

. 6. LIFT BREECH CAM AND CLOSE BREECH
\ 7. LATCH DoLry CLAMPS

: 8. RETRACT PLATFORM WITH STRAP WINCH
5 9

UNLATCH., CLOSE. RELATCH TRAILS
10. Secure TRAVEL Locks

B sal 5o M OGS MR S me DA o T ows i 2 eR

&
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!! A VIEW OF THE FMC APPROACH IN RETROSPECT
.
|

: L THE TRADITIONAL HOWITZER CONFIGURATION
HAS BEEN ALTERED

52 _ BECAUSE IT
5§ RETAINS M198 STABILITY AT BELOW WEIGHT TARGET

Ay N

i~ WHILE FACILITATING THE USE OF
»
¢ TRADITIONAL LIGHTWEIGHT STRUCTURES

r Y
. i AND REDUCING

Ny iy SYSTEM RISK THROUGH DIVERSIFICATION OF SUBSYSTEM RIsK

ot oo IS

Na

4
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A VIEW OF THE FMC APPROACH IN RETROSPECT. CONTINUED

A. RECONFIGURATION RETAINS M198 STABILITY THROUGH
1. LoweR TRUNNION REDUCES OVERTURNING MOMENT ARM
. SUPERLONG RECOIL STROKE REDUCES RECOIL FORCES
. MINIMIZATION OF NON-RECOILING MASS WITH COMPOSITES

2

3

4. MAXIMIZING RECOILING MASS REDUCES RECOIL FORCES

5. SHAPING OF RECOIL FORCE PROFILE MAXIMIZES STABILITY
6

. INCREASED VERTICAL SPADE LOADS RESIST LIFT-OUT
- DUE TO BALANCED DISTRIBUTION OF WEIGHT

7. INCREASED SPADE AREA (INCREASES SKID RESISTANCE)
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§ ‘ FMC

¢
)
L A ViEw OF THE FMC APPROACH IN RETROSPECT, CONTINUED
SN
A

B. TRADITIONAL LIGHTWEIGHT STRUCTURES INCLUDE
) "
! " 1. ORGANIC COMPOSITE CONSTRUCTION
¥
ST
N} o A. TRAILS
g

B. SLIDE TUBES USED TO GUIDE CANNON RECOIL

IS C. PROJECTILE CARRIER
1! N i
I E D. LOAD TRAY

2. METAL/ORGANIC COMPOSITE CONSTRUCTION

E @ A. TWo CANNON MOUNTING YOKES |
':2 ) B. RECOIL MOUNTING YOKE 3
) ﬁ C. PLATFORM

,i " D. BELLOWS ACCUMULATORS

' & 3. TITANIUM

_ l A. SPADES

,5. B B. BREECH CAM

; .:_\ C. GIMBAL

l - 4., 7075-T6

% < A. RECOIL CYLINDER ASSEMBLIES

: }'5.2 B. ELEVATION/EQUILIBRATION CYLINDER ASSEMBLIES

_ 5. SPACE FRAME CONSTRUCTION

5 :2 A. DoLLy

R 3 LTHD
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w
o A VIEW OF THE FMC APPROACH IN RETROSPECT., CONTINUED
;” iﬁ

; e
a3
w& C. SuBSYSTEM RIsKk IS DIVERSIFIED THROUGH
. ﬁ 1. EMPLOYMENT OF A TRADITIONAL (BUT LONG) RECOIL SYSTEM
s
S 2. COMPATIBILITY WITH SOFT RECOIL THROUGH FORWARD TRAILS
sl

e 3. COMPATIBILITY WITH SUPERLONG MICROPROCESSOR RECOIL
i = 4. TANDEM HMMWV TIRES TO REDUCE "SUSPENSION" STIFFNESS
-‘\‘ =y
w; - M198 TIRES ARE 3+ TIMES STIFFER (45 vs 20 psI)
WSS
Yu o 5. DoLLY SIMPLIFIES ADDITION OF SUSPENSION (IF NEEDED)
-1 - IF SOFTER TIRES AREN'T ENOUGH DUE TO
O - REDUCED MOMENT OF INERTIA FROM LESS WEIGHT
‘§ R - HIGHER CG FROM WEIGHT REDUCED LOWER CARRIAGE

A)
o 6. REDUCED BLAST OVERPRESSURE EXPOSURE TO CREW
Yy - MUZZLE BRAKE IS ROUGHLY TEN FEET FURTHER FROM CREW
it N 7. CONTINGENCIES FOR ADDITIONAL HOP/SLIDE MARGIN

g -

- REcoIL OVERTRAVEL BUFFERS cOULD REDUCE FORCES 4%

]
0 !: - No FREE RECOIL cOULD REDUCE FORCES ANOTHER 4%
l'.
h“ , - ADDITION OF MINI-SPADES ON TRAIL ENDS COULD
gﬁ §§ - INCREASE RECOIL FORCE NECESSARY TO PRODUCE HoPp
o . - INCREASE SPADE AREA RESISTING SKID
o S§ - SPADE MODIFICATIONS CouLD PROVIDE A SECONDARY RECOIL

LTHD
4 MARCH 1986
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VIEW OF THE FMC APPROACH IN RETROSPECT, CONTINUED

MANY COMPONENTS COMPATIBLE WITH MULTIPLE TECHNOLOGIES

SpaDeEs (STEEL, TI, OR SIC/AL METAL MATRIX)

OuTER ELEVATION CYLINDER (AL, AL/LI, SIC/AL, CFE/TI)

OuTer RecorL CyLINDER (AL, AL/L1i, S1C/AL, or CFE/TI)
- ALREADY CONFIGURED FOR HEAT REJECTION (CFE/TI)
- BY ORIFICING AGAINST OUTER CYLINDER

GimsaL (TI1 or AL)
Yokes (Ti/CoMPOSITE, AL, OR TI)

RECOIL ACCUMULATORS (BELLOWS OR PISTON)

DoLLy (RACE CAR SPACE FRAME TECHNOLOGIES)

LTHD
4 MARCH 11986
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BALLISTICS
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LTHD BARREL LENGTH TO MAINTAIN M198 RANGE

M198

RECOIL COMPONENT WEIGHT,. LBS 7258
RECOIL COMPONENT MASS, SLUGS 225
TIME PROJECTILE IS IN

BARREL, MILLISECONDS 12.79
MUZZLE VELOCITY WITH RESPECT

TO GROUND, FT/SEC 2831.1
RANGE, METERS 24309

LTHD

4611

143

12.74

2825.6

25252

LTHD BARREL LENGTH = M198 BARREL LENGTH + 1.8 INCHES

LTHD
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RECOILING MASS=225 SLUGS (7258 LBS)

(M198)
203-
PROJECT ILE
TRAVEL ,
INCHES
200 INCHES
MV=2831.1 FT/SEC
170_]
4.3 ’
RECOIL . 13 TIME, MSEC
DISTANCE,

INCHES 3.3~

RECOILING MASS=143 SLUGS (4611 LBS)

(LTHD)
203
PROJECTILE
TRAVEL,
INCHES
200 INCHES
MV=2825.6 FT/SEC
170_] l
4.3
RECOIL 12 12.74 13 TIME, MSEC
A DISTANCE,
‘ INCHES 5.2

LTHD
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MUZZLE VELOCITY VS RANGE

29 T
M203A1 CHARGE
XM7S5 PROJECTILE
SOURCE: PRODAS
28 -
27 -
26 pu—
25 o
24 -
LTHD
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M203
M203A1

PROJECTILE:

Ko M549 (96 LBS)
" XM795 (105.6 LBS)

=

LTHD
: 4 MARCH 1986
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. ZONE 8S (WORST CASE) BALLISTICS
B TEMPERATURE

z 145 DEGREES F

& CHARGE: ZONE 8S
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BALLISTIC PARAMETERS

BORE CROSS-SEC AREA, SQ. IN.

BORE DIAMETER, IN
SHOT START PRESSURE, PSI

BARREL RESISTANCE PROFILE
INCHES, PSI

0.4
.0
.6
.4
.5

212
PROJECTILE WEIGHT, LBS

M549 PROJECTILE
XM795 PROJECTILE

BARREL LENGTH, INCHES

M198
LTHD

CHAMBER VOLUME, CU. IN.

WITH M543 PROJECTILE
WITH XM795

LN

29.81
6.16

2000

2512
3712
2719
2437
1875
1365

+MC
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CHARGE CHARACTERISTICS - M203

PRIMER
WEIGHT, LBS
CO-VOL, CU. IN. /LB
IMPETUS,IN-LBF/LB
RATIO OF SP. HEATS
FLAME TEMP, K
PROPELLANT - M30At
WEIGHT, LBS
Co-voL, CU. IN. /LB
IMPETUS,IN-LBF/LB
RATIO OF SP. HEATS
FLAME TEMP, K
DENSITY,LB/CU. IN.
GRAIN DIA, IN
GRAIN LENGTH, IN
BURNING RATE COEFF,
IN/SEC/PS
BURNING RATE EXPONENT
PERFORATION DIA.. IN
PERFS PER GRAIN
WITH M549 PROJECTILE:
MAX PRESSURE, PSI

(145 DEG F)

.25
24.3
1260000
1.25
2380

26.3
29.13
4312800
1.2380
3025
.06
L4514
1.0124

.0049310
6743
.0451

1

54400

MUZZLE VELOCITY, FT/SEC 2843

LTHD
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CHARGE CHARACTERISTICS - M203A1

PRIMER
WEIGHT, LBS
CO-vOL, CU. IN. /LB
IMPETUS,IN-LBF/LB
RATIO OF SP. HEATS
FLAME TEMP, K

PROPELLANT - M30Af
WEIGHT, LBS
CO-VOL, CU. IN. /LB
IMPETUS,IN-LBF/LB
RATIO OF SP. HEATS
FLAME TEMP, K
DENSITY,LB/CU. IN.
GRAIN DIA, IN
GRAIN LENGTH, IN
BURNING RATE COEFF,

IN/SEC/PS

BURNING RATE EXPONENT
PERFORATION DIA., IN
PERFS PER GRAIN

L < ht.. X0
ri® TG5O, »_0“;!’» ‘-0'!u!§4.=‘ﬂ . l‘.-
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IR RO N R T
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.10625
24.3
1260000
1.25
2380

28.0
27.23
3982200
1.2506
2629
.0593
.240
29.00

.0009173
.8074
.080

1

LTHD
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COMBUSTIBLE CASE - NC

WITH

WEIGHT, LBS
CO-VOL, CU. IN. /LB
IMPETUS, IN-LBF /LB
RATIO OF SP. HEATS
FLAME TEMP. K
DENSITY,LB/CU. IN.
GRAIN DIA, IN
GRAIN LENGTH, IN
BURNING RATE COEFF,
IN/SEC/PS |
BURNING RATE EXPONENT
PERFORATION DIA., IN
PERFS PER GRAIN

M549 PROJECTILE:
MAX PRESSURE, PSI
(145 DEG)

+MC

CHARGE CHARACTERISTICS - M203A1 CONTINUED

1.75
30.00

2160000

1.250
1553
.0340
6.25
30.35

.0015
1.0
6.226
1

56000

MUZZLE VELOCITY, FT/SEC 2820

LTHD
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VARIATION IN IMPULSE CALCULATIONS

"4
e e,

.

CONDITIONS:

M203 CHARGE (8S) - 145 DEGREES F
M549 PROJECTILE

") MUZZLE BRAKE IMPULSE (LB-SEC)
7 MOMENTUM
INDEX FMC ARDC 1 VAR
‘ 0 (NO BRAKE) 12,285 13,500  -9.0
-
i .73 10,200 10,500  -2.4
- ! 1.45 8.140 8,800 -7.5

r:‘l +
[ 3 L S

. M
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ZONE 1 BALLISTICS
-- FOR CAM SIZING

TEMPERATURE :
-60 DEGREES F

CHARGE: ZONE 1
M3A1 ZONE 1
XM215

PROJECTILE:
M549 (96 LBS)

M485 (92 LBS)

MINIMUM STROKE:  14.9 INCHES
MINIMUM IMPULSE: 2,073 LB-SEC

+VIC
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g FMC

CHARGE CHARACTERISTICS - M3A1 (ZONE 1)

o
e PRIMER
WEIGHT, LBS .25
CO-VOL, CU. IN. /LB 24.3
IMPETUS. IN-LBF /LB 1260000
RATIO OF SP. HEATS 1.25
FLAME TEMP, K 2380
PROPELLANT - M1
WEIGHT, LBS 1.7688
CO-VOL, CU. IN. /LB 30.57
IMPETUS., IN-LBF /LB 3660000
RATIO OF SP. HEATS 1.2593
FLAME TEMP, K 2417
DENSITY,LB/CU. IN. .0567
GRAIN DIA, IN .1079
o GRAIN LENGTH, IN .4963
% BURNING RATE COEFF,
IN/SEC/PS .0032310
& BURNING RATE EXPONENT  .6857
W PERFORATION DIA.. IN .0451
g PERFS PER GRAIN {
3 WITH M549 PROJECTILE:
= MAX PRESSURE, PSI
X (-60 DEG F) 4900

MUZZLE VELOCITY, FT/SEC 695

o :_'.‘

Vel e

;?::n Y
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£ FMC
K
: 2 CHARGE CHARACTERISTICS - XM215
» PRIMER
Q WEIGHT, LBS .10625

5 CO-VOL. CU. IN. /LB 24,3

- IMPETUS. IN-LBF /LB 1260000

% RATIO OF SP. HEATS 1,25

& FLAME TEMP, K 2380

PROPELLANT - M1
b2 WEIGHT, LBS 3.3
. CO-VOL, CU. IN. /LB 30.57
IMPETUS , IN-LBF /LB 3660000
5 RATIO OF SP. HEATS 1.2593
- FLAME TEMP, K 2u17
e DENSITY,LB/CU. IN. .05670
¥ GRAIN DIA, IN L0514

% & GRAIN LENGTH, IN .2245
= BURNING RATE COEFF.

- IN/SEC/PS .0032310
3 BURNING RATE EXPONENT 6857
. PERFORATION DIA., IN  .018

R PERFS PER GRAIN 1

o LTHD

4 MArRCH 1936
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. CHARGE CHARACTERISTICS - XM215 CONTINUED
o
" COMBUSTIBLE CASE - NC
WEIGHT, LBS 5
Y CO-VOL, CU. IN. /LB 30.00
- IMPETUS. IN-LBF /LB 2160000
) RATIO OF SP. HEATS 1.250
% FLAME TEMP, K 1553
DENSITY,LB/CU. IN. .0340
i GRAIN DIA, IN 5.8
, GRAIN LENGTH. IN 7.0
§ BURNING RATE COEFF,
5 IN/SEC/PS .0015
| BURNING RATE EXPONENT 1.0
| PERFORATION DIA., IN  5.766
N PERFS PER GRAIN {
M
- WITH M549 PROJECTILE:

MAX PRESSURE. PSI
RS (-60 DEG F) 8010
MUZZLE VELOCITY, FT/SEC 894

LTHD
4 MARCH 1986
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" FIRING STABILITY

o RECOIL
X

RECOIL CYLINDER

SYSTEM FLEXIBILITY

o COUNTER-RECOIL

CUSHION
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4 MArRCH 1986



- -

y
%
"
)
¢ -
-
‘
n |
. u.".)
, NONRECOIL ING MASS |
1
R L RECOIL ING MASS \ By ] |
o - L
<] ! >
at LA . . \
3 ~ | -

. : TRUNNION HE | GHT f/_,__J \& \ \
////7 wR —

IR,
s
il

‘.; \
Y VARIABLES NOT SHOWN !
.t - A
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; ELEVAT ION - B(t) i
Y TRAVERSE |
i FORWARD SLOPE PIVOT POINT
i SLIDE SLOPE
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A ﬁ-
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R )
" HOP 1S NORMALLY VIEWED AS "REARWARD HOP™, AS SHOWN.
) "SIDE HOP™ IS ALSO ANALYZED, BUT NOT SHOWN.
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o CENTER OF GRAVITY VS STROKE
>
R 190 -
» o
E
R N
o) E
R 180
® o0
~ F
G
?; R
22 ? 170 -
w7
. §
.« R
i k R 160
M
% R
g
‘ R 150 —
I
g n
140 -
E
B s
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RECOIL STROKE, FEET LTHOD
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: FMC

MASS MOMENT OF INERTIA
80,000 - VS

STROKE

&
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70,000 -
MASS
MOMENT
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o

65,000

s

FOOT
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SECOND
SQUARED

555

. 60,000
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: REAR
PIVOT

55,000 -
b LTHD
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RECOIL FORCE VS STROKE

: WORST CASE
¥ c-;.
Y
X 70,000
| MAX |MUM ALLOWABLE FORCE
! ﬁ 60,000

d
§ &2
- 50, 000
¢ a2 F RECOIL FORCE

0

AN
! !.:" E
: 40,000
b .. P

W o

U

. N

-~ D

=2 S 30,0004
4
L
.- 20,000 ~
LI
;‘ .ﬁ’u'
p &
N 10,000
¥
N v
g
-
. 2 0 T l T T l T l 1
y 0 1 2 3 4 5 6 7 8
L]
) "'-'-.
’ & RECOIL STROKE, FEET LTHD
‘- - 4 MARCH 1935
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FIRING STABILITY RESULTS
WORST CASE

RECOIL FORCE:
ALWAYS AT LEAST 6.9% UNDER MAX ALLOWABLE FORCE

ON FLAT GROUND

ALWAYS AT LEAST 4.6% UNDER MAX ALLOWABLE FORCE
UN 10% GRADE FORWARD AND SIDE

UNSTABLE AT:

23% GRADE UPHILL (13 DEGREES)

OR  38% GRADE SIDE SLOPE (21 DEGREES)

OR  19% GRADE UPHILL AND SIDE SLOPE (11 DEGREES)

LTHD
. 4 MARCH 1986
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P
LLES

SYSTEM FLEXIBILITY

4 2 2

TRAILS:
PRELIMINARY

N TRAIL

: SPRING COMSTANT, HOP HT,  DIST IN TIME.
B LB/INCH IN. STROKE, IN  MSEC
ot RIGID 0 -- --

‘ 100,000 0.131  12.9 21
i 50.000 0.301  17.0 27
» 10,000 {.428  33.8 50
= 5,000 2.28 43.9 66
| 2,500 3.42 57.0 88
8§ OTHER COMPONENTS:
e NON-LINEAR ELEMENTS - FEA MODELS USED
5
o

LTHO

i 4 MARCH 1986
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+MC

TOWING STABILITY

STATIC

TIPPING ANGLE

DYNAMIC

BUMPS AND HOLES

LTHD

4 MARCH 1986 ;
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TOWING
STATIC ANALYSIS

STOW TOW

M198 M198 LTHD
C.G. HEIGHT, IN. T.B.D. 53.1 52.8
DIST. BETW. WHEELS

IN. 92.8 92.8 83.0

TIPPING ANGLE T.8.D. 41.1 38.2

WHEEL LOCATIONS OPTIMAL

LTHD
] 4 MarcH 19838

------
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+WIC

TOWING

DYNAMIC ANALYSIS

M198 LTHD

TIRE SPRING CONSTANT,
LB/IN 4,507 1,312

DAMPING COEFFICIENT .019 .019
TOW WEIGHT, LBS 15,780 8,982
TIPPING MASS MOMENT OF

INERTIA (FROM

WHEEL ALONG AXLE),
FT-LB-SECR2 19,065 9,272

TOW SPEEDS

5, 25, 45 MPH
MODEL BOTH LTHD & M198, BUMPS, HOLES

PLAN: ADAMS
DRAM
DEVELOP OWN SOF TWARE

LTHD
4 MARCH 1986
SD
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o
o il WORK UNDERWAY AT CEL
i: A A. FINITE ELEMENT MoDEL AT CEL wILL MODEL (DURING PHASE 1)
¥
1. PLATFORM,
S 2. SPADES,
R
Ky T 3. TRAILS,
K> 3

4, GimMBAL,

5. TRAVERSE BEARINGS,

6.

7. REPRESENTATIONS OF THE
- ELEVATION CYLINDERS

SLIPES, AND

ST
=

> b

e - ELEVATION YoKE

-

oo B. THIS WILL PROVIDE

. . 1. CONFIGURATION CANDIDATES

g 5; 2. BETTER WEIGHT AND COST ESTIMATES
- 3. A MEASURE OF STRUCTURAL ELASTICITY

‘ - WHICH WILL IMPACT FIRING STABILITY ANALYSIS
!; - FEASIBILITY oF QE/AZ CYLINDER ANCHORS NEAR TRAILS

s
-ﬁ ,-'I..
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AReEAS OF CURRENT DESIGN EMPHASIS

7

A. MATERIALS

E A

=20

|

)

«

. BEHAVIOR OF TEFLON ON COMPOSITE SLIDES DURING RECOIL?
. Is Fi11, B1, HELICOPTER JOINT TECHNOLOGY APPLICABLE?

. IS THE COMPOSITE JOINT ANALYSIS VALID?

5

P

»

e,
rrr.

N O 0 NN

"
5
4

Ay
A

. ARE ANY MATERIALS ON CRITICAL TECHNOLOGIES LIST?

. ARE THE COMPONENTS REASONABLY PRODUCIBLE?

. WHAT ARE NECESSARY INCOMING AMND IN-PROCESS QC POINTS?
WHAT IS THE SUSCEPTIBILITY TO

-~ OVER-THE-ROAD

= QPERATING
= BALLISTIC DAMAGE?

. How EAsILY AND WeLL CAN THE DAMAGE BE REPAIRED?

9. WouLbp A SPECIAL (TITANIUM) HMMWV WHEEL BE PRACTICAL?

2

hadhl

A |

h _‘.{‘_ a

2 A

sy

Yo%

2

o P oA

=

LTHD

4 MARCH 1986
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RN .
« ‘l AREAS OF CURRENT DeESIGN EMPHASIS., CONTINUED
-
I B. OPERATIONAL
w 1. WILL BREECH ©PRING CLOSE BREECH AT MAX QE?

2. CAN MANUAL PRIMER EJECTION/INSERTION BE SIMPLIFIED?
-~ INTEGRATION WITH LANYARD LEVER MECHANISM

ST
o

WILL THE TUBE LAY VARY SIGNIFICANTLY FROM FIRE CONTROL?
- OR WILL SLIDE DEFLECTION BE SUFFICIENTLY REPEATABLE?

o
wes]
*

WHAT IS THE IMPACT OF SYSTEM ELASTICITY ON STABILITY?

)
(65
.

R o WILL THE EL/EQ/AZ CYLINDERS CONCEPT PROVE FEASIBLE?
N W (DOES WEIGHT SAVINGS JUSTIFY A BREAK FROM TRADITION?)
+ TRANSFERS EQUILIBRATION LOAD AROUND PLATFORM
(REDUCING COMPLEXITY AND NEIG?T 8F PLATFORM)
DIFFICULTY IN LAYING DUE TO AZ/QE CROSS~CORRELATION?
(ABOUT THE SAME AS THAT CAUSED BY 7-8% GRADE)
EQUILIBRATION MIGHT VARY WITH AZ?

- (CROSS-CORRELATION MAY INCREASE HUMAN FACTORS)
ii Is AZ SENSITIVITY AT MAX QE ACCEPABLE?

(RESOLUTION ABOUT ONE-THIRD OF THAT BELOW 1000 MILS)
WILL THE AZ AND QE LIMITING METHODS PROVE REASONABLE?
("NATURAL LIMIT" IS ELLIPTICAL, NOT RECTANGULAR)
WILL MAINTAINING THE NULL SETPOINT BE PRACTICAL?

(OR WILL IT "DRIFT"™ AND HAMPER TRAVERSE OPERATIONS?)
- WILL IT IMPACT FIRING STABILITY?

WYY,
re s
1%
'a'..

[} 1

- =

4 8
R
1

N e i
’

- - e

A (SYSTEM ELASTICITY IMPACTS FIRING STABILITY)
s
3 r 6. SHOULD THE PRIMARY FIRE CONTROL BE ELECTRONIC OR OPTICAL?
[+ -~ ELECTRONICS RELIEVES CONGESTION AROUND GIMBAL.
7. ACCURACY OF TRANSFER FUNCTION FOR HMMWV TIRES ADEQUATE?

. 33 - FOR COMPARISONS TO M198 TOWABILITY
R
§ 8. DO THE SUBSYSTEMS ADDRESS DEGRADATION OF OPERATIONS?

e
8 % 9. HoWw TO MAKE THE "LONG" CYLS SURVIVE THE HIGH G'S?

- 10 G's FROM RAILROAD HuMP TEST

oy - 18 G's FrRoM LAPES
o
% LTHD

v . 4 MARrcH 1986
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¥ Q;

q N TECHNICAL ISSUES

M

R - 1. CORRELATING NOD IMPULSE DATA WITH ARDC.

\ . - AS OUTLINED BY ScoTT.

. 3 2. WHAT IS WEIGHT BREAKDOWN OF BASIC ISSUE ITEMS ON M198?
. - FOR INTEGRATION INTO OVERALL WEIGHT BUDGET.
F 3. WHAT IS RAMMING DISTANCE FOR M198 AT MAX QE?
e - TO DEVELOP STANDARD OF COMPARISON FOR LTHD.
Iy
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I' Section 4. Configuration
<o Overview
FMC Approacho-ooooooooooooon--ooc

weight Breakdownlticltlol.OOOI...
' Since the Mar 4 Design Review....

L -
|
[SAB S W3]

Operational Viewpoint

< Cl30E Deployment.seeesceeccossoes
Towing............I...........‘..

LTHD Emplacement.scccecsccsscoccsas
M198 Emplacement.ccececcesascscee
- Elevation and TraverS€..cecsccceces
Loading and Firing.cecececccccccos

[}
Ll ol V] [o oIS |
SR i

. Misfires...I........l........'...
:._‘ Hangfires...................C....

".f- Stickers........'..‘O.......I....
Cookoff........I.'.........l.....

speedshiftl........'I.........I..

(
= =

L W -5 L - L
!
M~ AU W

ib Displacement.ceccsccsccacccsssssss 4=
R Component Viewpoint
\::‘ Cannon..............O........ODO. 4-19

Recoil SysteMiceisssecsvessscesses 4=20
! Carriage....l..l.............'... 4-22

Hydraulic ContrOlS-...-..-....... 4-23
Fire Control.-................... 4-24

o,
-:" .
d Ground Engagementeeccescceccscsees 4-25

Dolly.l..........'...l.l.l...‘... 4-26
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li SINCE THE MARCH 4 DESIGN REVIEW - COMPONENT-WISE
B
Eo THE RECOIL PATH BEARING HAS BEEN CHANGED
R FROM THE OUTSIDE OF TWO COMPOSITE TUBES
\ TO LONG BEARING STRIPS INSIDE A LARGE TUBULAR SLIDE
. !! TO INCREASE SLIDE STIFFNESS

) AND AVOID EXPERIMENTATION WITH NEW RECOIL BEARING MATERIALS
g - PLATFORM EMPLOYS UPPER TRAVERSE BEARING ALMOST FOUR FEET ABOVE
R - LOWER BEARING
é N REDUCING PLATFORM STRESSES
. AND FORMING A NATURAL ROLL BAR
2~
&
5 . A CONVENTIONAL ELEVATION AND TRAVERSE LAYOUT HAS BEEN ADOPTED
N TO GET AROUND THE CROSS-COUPLING OF THE MARCH 4 CONCEPT
1 .. X

ii COMPOSITE CABLES ATTACH EQUILIBRATION CYLINDERS TO GIMBAL

TO MINIMIZE WEIGHT WHILE ATTACHING NEAR CG OF SLIDE AND

L L INCREASING STABILIZING MOMENT
AR

'| AN ENERGY RECOVERY SYSTEM HAS BEEN ADDED
N WITH A MINIMAL (UNDER Y40 POUND) WEIGHT PENALTY
” :j PIVOTING CLAWS HAVE BEEN ADDED TO THE FORWARD END OF THE TRAILS
K TO REDUCE SKID AND HOP
. - PROVIDE PROTECTION AGAINST CRITICAL DAMAGE DUE TO JACK-

o KNIFING WHILE BACKING UP
e A WALKING BEAM SUSPENSION HAS BEEN ADDED TO THE DOLLY

TO IMPROVE TOWING STABILITY

LTHD
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LTHD EMPLACEMENT (3 MINUTES WITH CREW OF 4)

HOWITZER ON GROUND WITH BRAKES SET. TAKE TO POINT OF BEING READY
TO INSTALL FIRE CONTROL AND LAY THE HOWITZER.

1. RELEASE AIR BRAKE LINE BETWEEN SLIDE AND DOLLY

2. RELEASE OUT-OF-BATTERY LOCK PIN

3. EXTEND PLATFORM (BREECH OPENS AND DOLLY LATCH RELEASES AT
BATTERY POSITION). SET EXTEND-PLATFORM-VALVE TO
"EXTEND", RETURN TO "NORMAL"™ WHEN COMPLETE.

4. UNLATCH LEFT CLAW-TO-SLIDE TRAVEL LOCK AND REPOSITION
CLAW-TO-TRAIL LOCK

6. REPEAT FOR RIGHT TRAIL.

5. REMOVE LEFT TRAIL TO PLATFORM LOCKS (TOTAL OF TWO),
SWIVEL TRAIL OUT. AND REINSTALL

7. REPEAT FOR RIGHT TRAIL.

8. HYDRAULICALLY PRESS CLAWS INTO G6ROUND
SET LOAD-TRAILS-VALVE TO "LOAD"™. RETURN TO "NORMAL"
WHEN PENETRATION SLOWS

9. ELEVATE GUN
SET ELEVATION-LOCK-VALVE “UNLOCK"™ AND SET ELEVATION-
VALVE TO “ELEVATE"
SET ELEVATION-LOCK-VALVE TO "NORMAL™ AND SET ELEVATION-
Lock-VaLVE TO “LoCK"

10. RELEASE DOLLY BRAKES AND REMOVE DOLLY (NECESSARY ONLY IF
FIRING BELOW 200 MILS)

11. IF SPADES ENGAGE GROUND LESS THAN SIX INCHESs RAISE

PLATFORM, DIG IN., AND DROP PLATFORM. PLATFORM IS
RAISED AND LOWERED WITH PLATFORM-LIFT-VALVE.

LTHD
4 June 1986
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!i M198 EMPLACEMENT PROCEDURE

= N

N

oL

Oy A

B

™

HOWITZER ON GROUND WITH BRAKES SET.
TAKE TO POINT OF BEING READY TO INSTALL FIRE CONTROL AND LAY THE HOWITZER.

1.

- - h et L o ld ol VAR TAFRINET WV RTT W AT e T TR s e o m e o e e

+IVIC

REMOVE LEFT-TO-RIGHT TRAIL RETAINING PIN

UNLOCK LEFT-TO-RIGHT TRAIL LOCK

REMOVE LEFT TRAIL LOCKING PIN., OPEN TRAIL. REMOVE SPADE.,
INSTALL ON END OF TRAIL, REPLACE PIN

REPEAT FOR RIGHT TRAIL

REMOVE FIRING BASEPLATE FROM LEFT TRAIL AND POSITION UNDER BALL

LOCK FIRING BASEPLATE INTO POSITION

RELEASE BRAKES

PuMP WHEELS DOWN

RELEASE WHEEL LOCKS

VENT PRESSURE AND ALLOW HOWITZER TO SETTLE ON FIRING BASEPLATE
PUMP WHEELS UP !

LOCK WHEELS IN THE UP POSITION
RELEASE QE TRAVEL LOCK
IF SPADES ARE LESS THAN 6 INCHES INTO GROUND, LIFT TRAILS AND DIG IN

LTHD
4 June 1986
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'i LOADING AND FIRING (FOUR ROUNDS PER MINUTE. 1 ROUND PER MINUTE
ABOVE LIMIT OF SwIssS NOTCH)

RAM STAFF ADJUSTED FOR LOADING ELEVATION (LOW FOR BELOW 600 MILS,
HIGH TO SWISS NOTCH LIMIT

¥

b 1. PusH SPRAY-CHAMBER-VALVE TO SQUIRT WATER INTO CHAMBER

i 2. Move PROJECTILE FROM CARRIER INTO LOAD TRAY

RS 3. SET PROPELLANT INTO LOAD TRAY

- 4. SET RAMMING STAFF ON CROSS BAR ON LOAD TRAY

i 5. PuSH ON T-HANDLES TO ADVANCE LOAD TRAY TO LATCH POSITION FOR
:3 RAMMING

) 5. WITH FRONT HAND ON T-HANDLE AND REAR HAND ON REMOVABLE POLE,
ii MOVE RAMMING STAFF FROM CROSS-BAR TO BEHIND PROJECTILE

. RaM ProJeCTILE (42 INCH STROKE)

oA

6
7. RETRACT RAMMING STAFF UNTIL PROPELLANT ROLLS INTO POSITION
8. ADVANCE PROPELLANT TO SWISS NOTCH

9

. RETURN RAMMING STAFF TO CROSS BAR ON LOAD TRAY

L 10. UNLATCH LOAD TRAY AND RETRACT TO GIMBAL POSITION
11. REMOVE RAMMING STAFF AND PLACE ON GROUND

el
ff 12. TRIP BREECH CLOSED (AUTOMATICALLY INSERTING PRIMER)
o 13. TwIST LANYARD ROD
J
= 14. BREECH WILL OPEN AS CANNON RETURNS TO BATTERY
S
LTHD
;: 4 JunNe 1986
i BA
e 4-17

oW e e s S PTL L IR AR L DU S0 S S S S A B LT Tl T R 4

~ o I\ Tw T PLTSFN " . -’-' -y -'-" -’..{ " .-_-.‘(..—"A“‘_.‘.."-.'_- ("_'_‘.'._.f‘;'l_',-“l_.-‘x{ - 8. V":(‘ ! ',' ’."
""4“'-"‘:"."-‘..:,‘ c‘n'u L2 A T Y .l L > Ll “ NP \ v \“\' T g e o o Xy nY J‘( 3 ' A\



¥ <2

| v b
: 9861 INAL h | %
” QH11 "

QYVANYT LISIM] ‘GT d34S 1V S$SS3D044 381 4-Qv07 3WNSIY °¢

(WSINYHIIW 1333 0L HYTIWIS WSINYHIIW VIA) YIWIYd MIN LHISN] °@

WO TP

ATIY010V3SILYS wzmzxox 38 01 SYV3ddv WSINVHIINW 4] °2
Y3IWIYd 1ID3I4SNT -8
v (TYEWI9 0L QIS NMOQ HIWI¥d OLAY WOMI WSINVHOIMW VIA) ¥3WIud IN3IAS 123f£3 ¥

Y3WIY¥d IN3dS 30V1d3Yy °¢

.~ .:'_._-:.; .
'Aé:n..'LL\L

110034 ON 41 °SILNNIW 3I3¥HL LIVM °]

trers

e ~
A

OAESe
ak

SIUIIST|

= T
ﬂ‘l‘L\’-’ Li X,

9
-

e




i

v8
9861 3INNL h
QH11

-
‘.
-

o

NI

J'.‘-

- - W W VT W ™ EY TPV Y Y SO THES T W Y T W ey wes
B L NN
AV N At

d0l 3HL WOH4 $S3J0¥J 3IWIJ-AVOT] 3WNSIY *1I003Y 4 °§ X

IYIISIW SY LV3IYL *1I023Y ON 4] *2

] ’ SILNNIW 33¥HL 1IVM °] 0

S3IYI JONVH N

I_ -
.l
e

N

e

* Ul -(‘D‘ .--..‘-.
ATy

7.
Y




9861 3INNL h \
. GH17

(1NV11340¥d QV07) ¢ d3ILS *3ISUVHY) ¥3IOUVT HLIM *8
(3711231044 QY07) 2 d3LS *3ITI4I3L0¥4 MIN HLIM °V

SS300¥4 3YI4-AY0 3IWNS3IY °8

38N1L 34YAIT1] °/

AYVSSIOIN 41 dIND ¥IWI¥d 3I¥IdIY °9

(30UYVHD ¥394¥1 SI NVId SS3INN) 3111)3L0¥d JAOW3Y *g

Ty

HON3IYM 1VIJ3dS HLIM HO3348 NIdQ °h

Janl ss3y¥diq °¢

] WSINVHI3W NOILI3f3 H3IWI¥d LIN3IdS VIA °V
YIBWYHI NOILSNAWOD IN3IA °2

.

“"-"-’ -

SILNNIW 33¥HL 1IVM "]

o
Bt el SN S LY,

SHINIILG o




apep—p—

ve
9861 3NNL h
aHiN '

]

PP W P U T A O U WE VT oY W W oWy Wy " wire | w & =

YOLVIIOGNT 3¥NLIVY¥3IdWI| 40 NOILISO4 3ILON °2

(1NY113d0Y¥d Q¥07]) § 431G *SS3ID0¥4 IUIJ-AVOT 3IWAS3Y -
Y38WVHD NOILSN8WOD LNO NV31D 01 38Nl $$3¥dig -
JYIHISOWLY IHL NI 3I9¥VHD N¥NG 0] °@ :
$5300¥d 3I¥I4-QV0T INNILNOD *SSII0¥J 3IWIJ-GVOT] 3131dWO) Of °V .

AVY] QY07 10Vy13Yy °]

Gogas Had Stk gl S04 dag Sact Mot Bad Aol

s e Aa e ey g6 8ol

4403009




F‘"‘m i o - WRTERC T WL Wy TV TERETAE TEN AT A= — - 2 fe o= e o e m e o ‘l

's

[
5.

+
s
N

r"l.
2

ii SPEEDSHIFT (3 MINUTES WITH CREW OF 4)
1. ELEVATE PLATFORM (EXTRACTING SPADE)
SET PLATFORM-LIFT-VALVE TO "LIFT"

a0

[; 2. DEPRESS CANNON ONTO SPEEDSHIFT SToOL (POSITIONED UNDER SLIDE
. AT FIRING-CG MARK)

3. UNLOAD TRAILS
SET LOAD-TRAILS-VALVE TO "OFF", WHEN COMPOSITE CABLES GO

-

o SLACK, SET VALVE TO "NORMAL"

§§ 4, RELEASE CLAW TO TRAIL LATCH., RETRACT CLAWS WITH RAM STAFF,
AND RELATCH CLAW TO TRAIL

i

‘ 5. RETRACT PLATFORM CYLINDERS

‘ SET PLATFORM-LIFT-VALVE TO "DROP"

- 6. TRAV 6400 MILS BY PUSHING ON TRAILS (ONE CANNONEER AT MID-

o TRAIL., ONE AT CLAW)

!: /. RELEASE CLAW-TO-TRAIL LATCH, EXTEND CLAWS, AND RELATCH CLAW
TO TRAIL

- 8. LOAD TRAILS

b

ez 9. ELEVATE CANNON OFF SPEEDSHIFT-STOOL AND REMOVE STOOL

‘.i;,

|5 LTHD

- 4 JuNne 1986




"8,

)

- —— hedfndbogdind Bt el B il et e d il ' BT LA TSN TAES T T 7 W TRFTT R T T T VTR R e R e R R E R TR A T T e e e T R e e s e s ._._1

(<
N ')
- ‘
+MVIC
-y, ‘
.i DISPLACEMENT (3 MINUTES WITH CREW OF 4)
:5 1. ELEVATE PLATFORM
- 2. POSITION DOLLY UNDER CANNON

u
s 3, GUIDE DOLLY PIN INTO REAR YOKE WHILE DEPRESSING CANNON ONTO
= DOLLY
o 4. SET DOLLY BRAKES
o 5. RETRACT PLATFORM CYLINDERS
a

6. TRIP BREECH CLOSED
- 7. UNLOAD TRAILS :

8. RELEASE CLAW TO TRAIL LATCH, RETRACT CLAWS WITH RAM STAFF,

AND RELATCH CLAW TO TRAIL

!: 9. REMOVE TRAIL TO PLATFORM LOCKS (TOTAL OF FOUR)
- 10. SWIVEL TRAILS IN AND REINSTALL TRAIL-TO-PLATFORM LOCKS WHILE
s LATCHING CLAWS TO SLIDE
e
o 11. RETRACT PLATFORM (CHECK TO MAKE SURE DOLLY PIN ENGAGES
. FORWARD YOKE)
-~
‘\:,

12. SECURE OUT-OF-BATTERY LOCK PIN
.
.’.
7 13, CONNECT AIR BRAKE LINE BETWEEN SLIDE AND DOLLY
o
>
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RECOIL SYSTEM

RECOIL CYLINDER STROKE IS INCREASED
X =0 T0 6 IS FREE RECOIL
X =6 70 102 IS EFFECTIVE RECOIL (WAS 5 TO 96)
X = 102 10 105 IS OVERTRAVEL CUSHION
KEVLAR-WRAPPED FOR WEIGHT REDUCTION

COUNTERRECOIL CYLINDERS CARRY MORE LOAD THAN TYPICAL

FACILITATES A SMALL AMOUNT OF ENERGY RECOVERY FROM COUNTERRECOIL
CUSHION

FACILITATES A LARGE AMOUNT OF ENERGY RECOVERY IF A PUMP-MOTOR
ORIFICE IS EMPLOYED

REDUCES AMOUNT OF FORCE REQUIRCID FROM RECOIL CYLINDERS NEAR
STROKE END (AS VELOCITY FALLS)

KEVLAR-WRAPPED FOR WEIGHT REDUCTION

RECOIL AND COUNTERRECOIL CYLINDERS USED TO SHIFT CG TO UNLOAD GUN
FROM DOLLY (ALTHOUGH RODS ARE EXPOSED WHEN IN TOW CONFIGURATION)
ELIMINATION OF STRAP WINCH ON DOLLY
CIRCUITRY ALSO ALLOWS GUN TO BE CAUGHT IN RECOIL FOR PRIMER CLIP
REPLENISHMENT
ELIMINATION OF YOKE-TUBE LOCKS OF MAR 4 CONCEPT

SELF-DISPLACING ACCUMULATOR IS USED FOR RECOIL/COUNTERRECOIL
TRADITIONAL PISTON-TYPE ACCUMULATOR
INDICATOR ROD SHOWS VOLUME
DRIVES OIL BACK AND FORTH BETWEEN RECOIL CYLINDER AND MANIFOLD TO
TRANSFER HEAT TO MANIFOLD
KEVLAR-WRAPPED FOR WEIGHT REDUCTION

SLIDE MANIFOLD
FINNED SURFACE REJECTS HEAT FROM OIL FROM RECOIL CYLINDERS AND
COUNTER-RECOIL CHECK VALVES

LTHD
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CARRIAGE

TRAVERSE BEARINGS POSITIONED ABOVE AND BELOW TRUNNION
REDUCED STRESSES IN PLATFORM
REDUCED BEARING WEIGHTS
TOWING STABILITY IMPROVED VIA REDUCTION OF TOWING CG

ENLARGED "TUBULAR"™ SLIDE
IMPROVED STIFFNESS THROUGH INCREASED SECTION
ENCLOSED WAYS MINIMIZE DAMAGE TO WAY SURFACES
COMPATIBILITY WITH "OFF-THE-SHELF™ LINEAR BEARING MATERIALS
WAYS OF GARLoCk DU
SHOES (ON YOKES) OF STEEL OR NITRIDED TITANIUM WITH WAY SCRAPERS
INTEGRATION OF SHIELD WITH STRUCTURAL MEMBER

FACILITATES REDUCTION OF TRUNNION HEIGHT TO 18.25"
PROTECTS CREW FROM SUPER-LONG RECOIL !

ROLLING LOAD TRAY
FACILITATES LOADING OUT OF BATTERY
IMPROVES DELIVERY OF PROJECTILE TO LOADING SYSTEM

SPEEDSHIFT STOOL
ELIMINATES SCRUBBING TIRE POTENTIAL OF MARCH Y CONCEPT
FACILITATES SPEED SHIFT ABOUT TRAVERSE CENTERLINE (UNDER PLATFORM)
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FIRE CONTROL

STANDARD M198 FIRe CONTROL

-~ MOUNTS TO SIDE OF GIMBAL. LINKED TO SLIDE FOR QE
- POSSIBLY SOME WEIGHT REDUCTION THROUGH MATERIAL BLOCK CHANGES IN
» SOME QUADRANT PARTS

TRAVERSE CYLINDER LOCKED IN PLACE WITH BEArR-Loc (TM oF YoRkK
- HYDRAULICS) KEVLAR-WRAPPED FOR WEIGHT REDUCTION

7 EQUILIBRATION CYLINDERS conPosxre CABLED TO GIMBAL AND SLIP-RINGED
g TO SLIDE MANIFOLD
o IMPROVES RAM-D (NO HOSES IN EQUILIBRATION SYSTEM)

INCREASES SAFETY MOMENT (BY MOVING WEIGHT AS FAR FORWARD AS POSSIBLE)
- IMPROVES ABILITY TO DEAL WITH HIGH G ENVIRONMENTS

ELIMINATES CORRELATION OF QE AND AZ PRESENT IN PREVIOUS CONCEPT

BEAR-LOC'S WILL HOLD CANNON WITH COMPOSITE CABLE FAILURE OR
HYDRAULIC COMPONENT LEAK
KEVLAR-WRAPPED FOR WEIGHT REDUCTION

T
"Al“l l.'
s v

EQUILIBRATION ACCUMULATORS ARE OF BELLOWS TYPE
| BELLOWS ACCUMULATOR
MINIMIZES STICTION
IMPROVES HEAT TRANSFER BETWEEN OIL AND GAS (REDUCING ADIABATIC
EXPONENT)
- IMPROVES RAM-D
= FACILITATES USE OF HE PRECHARGE
. HE PRECHARGE MAINTAINS SPRINGINESS AT HIGH PRESSURES AND CUTS
- WEIGHT
TEMPERATURE COMPENSATION IS SIMPLIFIED THROUGH OIL VOLUME
ADJUSTMENT ’
KEVLAR-WRAPPED FOR WEIGHT REDUCTION
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Section 5. Studies and Analyses
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Slide RESPONSE@.cessoosooccccccnccsoessssd=2D
Elevation, Equilibration & Traverse.....b>-2%
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LTHD RELIABILITY BOALS BASED ON M198 HOWITZER PERFORMANCE DATA

(CORRECTIVE MAINTENANCE FAILURES)

——————-———_—ﬁ
CORRECTIVE MAINTENANCE

HARDWARE
MRBF (ROUNDS)

|

OPERATIONAL
MRBF (ROUNDS)

CANNON 135 110
CARRIAGE (M198 -
CARRIAGE, RECOIL 35 25
AND SPADE/TRAIL)
FIRE CONTROL 1435 90
DOLLY 150 100

(M198 - SUSPENSION)

LTHD
SYSTEM

(MMBF=870 MILES)

(MMBF=380 MILES)

- —

T

MRBF =
20 ROUNDS

MRBF =
14 ROUNDS

A e A e L e T R e A A o T
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LTHD Reliability Goals
Based on M198 Howitzer Performance Data
(Combat Abort Failures)
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LTHD RELIABILITY GOALS BASED ON M198 HOWITZER PERFORMANCE DATA
(COMBAT ABORT FAILURES)

» -y
- . -

L/
o COMBAT ABORT
:‘;
0 HARDWARE OPERAT IONAL
o % MRBF (ROUNDS) MRBF (ROUNDS)
.
?é N CANNON 1,500 1,200

::"

:tf P

w h CARRIAGE (M198 - :

S CARRIAGE, RECOIL 580 390
8 % AND SPADE/TRAIL)

Y | LI 4

‘o

e ! FIRE CONTROL 1,600 900

3.

¢

"'

a‘ N

Y

& DOLLY 3,200 2,000

& (M198 - SUSPENSION) (MMBF = 18,500 ) (MMBF = } )
P i 2SS aledes
’ ’):':'
p, LTHD MRBF = MRBF =

~ 8YSTEM 300 ROUNDS 200 ROUNDS
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LTHD Maintainability Goals

Based on M198 Howitzer Performance Data
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LTHD MAINTAINABILITY GOALS BASED ON M198 HOWITZER PERFORMANCE DATA

O RN NING
AENE AN e

MEAN TIME TO MEAN
REPAIR (HRS) MANHOURS (HRS)
— e — — ‘.-'.T
CANNON 1.3 2.5
CARRIABE (M198 -
CARRIABE, RECDIL 2.4 4.1
AND SPADE/TRAIL)
FIRE CONTROL 2.5 3.5
DOLLY x5 8.6
(M198 -~ SUSPENSION) : )
LTHD 2.8 .9
SYSTEM - '
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