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Abstract

The objective of this work is to develop a computational algorithm

which combines saddle point and Metropolis/Monte Carlo optimization to

investigate reactions in solution; the reactions involve atom transfer on an

adiabatic potential energy surface. We seek a method to calculate the value

of the rate constant in the form of the simple Arrhenius equation for the

jump rate Y,

v - <w>exp (<E*>-<E>)/kT]

in which <E*> is the average energy of the transition state, <E°> is the

average energy of the initial state, and <o> is the average frequency of

passage through the transition state. Individual configurations

in the Metropolis sample allow either for passage of the reactive species

over the top of the barrier or tunnelling through the barrier. The average

frequency <w> reflects this situation. Because the Metropolis sampling

method deals with discrete collections of particles, with specified forces

of interaction, the transfer frequencies for over-the-top of the barrier and

tunnel transfers can be determined in terms of the actual interactions used

instead of using non-specific, model potential energy functions for the

barrier.
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Introduction

Numerical saddle point methods are available to determine the location

of the transition state for chemical reactions which involve atom

transfer; 1 these methods generally have been used to determine the

configuration of the transition state as a single configuration on an

adiabatic potential energy surface for a reaction in vacuum. Although these

calculations are routinely carried out, they have not been generally applied

to reactions which take place in solution. Our purpose is to develop an

algorithm which combines saddle point optimization with Metropolis/Monte

Carlo sampling2.3 in order to determine values of rate constants for

reactions in solution. No new theory is developed here; we work within the

structure of the transition state theory. We assume that the relatively

simple Arrhenius form of the rate constant,

k - A exp(-E/kT), (1)

applies and that it is possible to estimate the activation energy E as the

difference of the average energies of the transition state, <E>, and the

initial state <E >. The pro-exponential frequency factor is0 %

predominantly an average of the frequency of passage through the transition

state.

An important aspect of this work, we believe, is the fact that it is

possible to calculate the activation energy and the pro-exponential

frequency factor in terms of the discrete configurations of particles

generated in the Metropolis sample together with the actual forces which one

chooses to represent the interparticle interactions. It is not necessary,

for example, to use non-specific (and often one-dimensional) models of the

barrier in the transition state. As a result, it is possible to carry out

INN~
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calculations which are more sensitive to the structure and nature of the

interactions in the reactive system plus solvent.

In the following sections, we discuss the evolution of a reaction with

the use of the Monte Carlo simulation. An important issue is the weighting

of the distribution in a way which samples the transition state. Given

adequate sampling, it is possible to examine each configuration to determine

the how the reactive system passes through the transition state: either by

passing over the barrier or by tunnelling through it. The methods are

illustrated with a simple example, namely, the inversion of a bent molecule

of the form ABA in a two-dimensional solvent of Lennard-Jones disks.

Metropolis Sampling and the Transition State

Metropolis sampling is an energy minimization technique. 3 This is an

important consideration when one attempts to sample configurations of the

transition state ensemble. The Metropolis sampling algorithm is well known .

and documented. Averages of various quantities of interest can be computed

directly as the ensemble of systems evolves:

<q> q (2)

N -1

for N samples where q1 is the value of the variable q in the ib

configuration of the Metropolis sample.

There are two ways to apply Metropolis sampling to the investigation of

the transition state. In the first method, a saddle point optimization to

the transition state is calculated from the initial state configuration.

This is clearly the most rigorously correct approach. However, it is the

most costly path; saddle point optimizations are not generally fast or

efficient. On the other hand, for the second method, the distribution can
.%

be biased so that configurations of the transition state are sampled in the

I' 'II - - - - - - -
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same manner as one samples configurations of the initial state. This

approach is computationally much more efficient. The latter approach is the

one we take.

We consider reactions which can be followed by following the migration

of a definite atomic or molecular species. The inversion of a bent molecule

ABA in a two-dimensional solvent is one example:

-> B/ (a)
A; \

Another example is the transfer of an atom in a bimolecular reaction of

the type

X-Y + Z -> X + Y-Z (b)

In each ca.-e, the location of a particular atom with respect to the others

allows one to follow the reaction; the atom B in the ABA inversion and the

atom Y in the XY + Z to X + YZ transfer will be referred to as "transfer

species" in the remainder of the paper.

Given any individual configuration of the transition state as generated

in an appropriate Metropolis cycle, the transfer species can execute only
4q

one of two types of motion in the transition state: locally stable or

locally unstable notion. The stability of the motion is measured along to

the transfer axis and is determined with respect to the interaction of the

transfer species with all the remaining particles in the instantaneously

rigid surroundings of the configuration.

In the first case, the transfer species occupies a local energy well in

the instantaneous configuration of all the other atoms in the transition

state. We assume that a configuration in which the transfer species is

carried to and on through the transition state in a local energy well

contributes to the totally adiabatic limit of the reaction; the transfer is

both electronically and, with respect to the solvent, vibrationally
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adiabatic. On the other hand, if the transfer species is locally unstable

in the transition state, it must actually reach some state near to the

transition state and tunnel through the remainder of the barrier.

In view of the fact that there is only one of two possible modes of

transfer through the transition state for each configuration, the jump rate

P can be expressed as the simple Arrhenius formula

10 - <w, >exp [ -#(<Et>-<E >(3)

in which the energy difference is the activation energy and <W> is the

average value of the frequency factor for the transfer, - /kT: .

<AO> Co' (4)

and f w for an "over the barrier" transfer
w - (5)

c for a tunnel transfer.

In the next section, we outline the test for local mechanical stability

of the transfer species. Following that discussion, we illustrate the

technique by applying it to the case of the inversion of SO for which there

is a good analytical potential energy function. In the remaining sections

of the paper we consider the calculation of the transfer frequency for

passage over the barrier and for tunnelling through the residual barrier.

, q

RIMI
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Analysis of Mechanical Stability

The transition state is characterized by global mechanical instability.

Nevertheless, it is possible for the migratory atomic or molecular species

to occupy a state in the transition state which is locally mechanically

stable.4 It is necessary to be able to test any given configuration of the

ensemble of transition states to see if this condition is satisfied.

It is possible to consider the stability of the motions of the transfer

species within a given field of the surrounding atoms of the reactants in

their configuration in the transition state. The determiniation is made

using the second order coefficient of the Taylor series of the potential

energy function of the system expressed in terms of symmetry adaptable

functions, namely, the spherical harmonic functions.5

The interactions between atoms within a molecule can be expressed

adequately in terms of a collection of two-center, three-center and higher

order functions. The two-center contributions to the potential energy

function can assume familiar forms such as the Morse, Lennard-Jones or

Rydberg functions. The three-center and higher order terms can be expressed

0I

as polynomial functions in terms of the bond variables, pi - R - Ri and

a range function that ensures the appropriate limiting behavior on

dissociation (cf. Murrell, ref. 6).

A general potential energy function can have an angle-dependence:
5

A

F(r) - f(r)YA (r) (6)

in which the angular part is contained in the spherical harmonic function

YA'(r) and f(r) is the radial part. Complicated angular dependencies

clearly can be constructed as sums of products of spherical harmonic and

radial components. A scalar function has the simple representation
A

V(r) - V4-wY (r)v(r). (7)
00

w . ~ C 4 C W . t. E .. W .. .%
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The expansion of this particular (scalar) function as a Taylor series has

the form

V(R+r -r ) - (4w)3 3n-0 r I (-r2) ns' 1As't2

[(2t+1) (2t 2+1) (241l) ] -1/2 (t 1t 2m 1m 2 Itm)

(t1f2,001t0)Y t M (r,)y t M (r)yt=(R)Int(R) (8)

1 2 2 2

for which A is given by

A n!(2t+l) for n 2 t and n - - evenant (n- t) TiW -(n 1) !

-0 for n < t and n - t - odd (9)

and I (R) is given by
1 n-

Int(R) - (-l)n+lR a 1 R v(R) (10)

(1t 1 m 2Itm) is the Clebsch-Gordan coefficient and () is the binomial

coefficient.

At any given point of expansion, it is possible to transform to a

Cartesian representation. For the first and second order terms, in

particular, one finds
A

V'' -(r1 -r).R I (R) (11)

A

where R is the unit vector, and

V(2 ) - (r r )TK(r - r). (12)
1 2 1 2

In a Cartesian representation, the elements of the force constant matrix K

are

,x. x x,, i,/1 ,I1i R + (X2 _ X2 2 (13
ii 3 20 (R j k) 22 R/R 13

for the Cartesian diagonal terms and

'a
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J X X I(R)/R (14)
ij i j 22

for the Cartesian non-diagonal contributions. In these expressions, R is

R -R - R,

the distance between the points I and J. The lower case indices cover the

three Cartesian coordinates x, y, and z.

If I - 0 is the label of the transfer species within the field of the

atoms in the transition state, then stability of that species is

determined by the examination of the eigenvalues of the 3X3 matrix of local

force constants. The elements of the stability matrix are found with

N
k - Z k° (R (15)

J-O

Let the eigenvalues of the k-matrix be xc where i-1,2,3. Stable motion of

the transfer species in the transition state is guaranteed only if

K > 0, all i (16)

In this case, then, the transfer species occupies an energy well in the

transition state configuration. The entire transition state, however, is

still globally unstable.

On the other hand, if . < 0 for any single i (-1,2,3), the transfer

species cannot occupy an energy well in the transition state. It is

necessary for the particle to tunnel through the remaining barrier to the

final state. This problem is considered shortly.

Example: Stability of the Linear Transition State of Sulfur Dioxide

In order to illustrate the test for mechanical stability, we apply it

to a simple inversion in sulfur dioxide for which a good potential energy

function exists, namely the Murrell et al. potential.' 7

Consider the configurations illustrate in Figure 1. The initial state 4LI
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of SO2 is bent. In vacuum, the transition state for the inversion is

linear. By symmetry, the motion of sulfur along the 0-0 line will be

stable. The motion of sulfur along the transfer axis perpendicular to the

0-0 line may or may not be stable. As a result of the symmetry of the

system, the axial force constant can be expressed as5a

k - - 1 [ I (R) 2P (cos a )I (R )] (17)
2 01 2 R21 22 II

where P 2(cos 9) is the second order Legendre polynomial and 0RI is the angle

between the vector R and the transfer (z) axis. The quantities I andI0 20

I are simply
8

22

I (R) d2V 2 dV
20 dR2 + R dR (18)

and

I1(R) dV dV (19)
22 d

The Murrell potential is the sum of contributions. The first terms are

pairwise Rydberg terms

Ve(R)-- D[1 + E a p ]exp(-a1p), (20)
P L1 i

where D is the dissociation energy, p - R - R and the a are coefficients0 i

in the functional form of the potential. The remaining contributions come

from many-body terms:

V (R) - V [l - tanh(Sc/2) 1 + p ppi + E c ipip + .. (21)
-

1-15

R is the set of atomic coordinates. The quantity SL is

S - b (22)

and the transformation matrix b is determined by symmetry. The remaining

quantities, 7I and cL, cij, etc. are determined by fitting the potential to

various data--spectroscopic and ab InitIo calculations.,
7

The values of the various coefficients were taken from Carter et al.7

'j



The R distance is simply twice the Rso distp ze in the transition state.

The energy of the system in its linear transition state is plotted in Figure

2 as a function of the R distance. The equilibrium SO bond length is

1.431 A. There are two energy minima along the OSO linear expansion in the

transition state: the first is approximately 1.35 A. Figure 3 shows the

stability of the notion of the sulfur atom with reference to a displacement

along the transfer axis in the transition state. It is clear from the

figure that at the lowest energy of the system in the transition state,

approximately 1.35 A, the sulfur atom cannot occupy a position of stable

mechanical equilibrium. This is true for both the pair potential and the

many-body contribution. As a result, one anticipates that any inversion of

the SO molecule would involve the tunnelling of sulfur through the 0-0

line.

An interesting feature of Figure 3 is the relatively small range of

values of R which admit over-the-barrier transfers of the sulfur atom.

The stability of the Rydberg part of the whole potential energy function is

standard for pair-potentials; the behavior of the Rydberg potential is

similar to that of the Morse or Lennard-Jones potentials. The many-body

part of the whole potential function does not admit any stable configuration

for sulfur in the linear transition state. This can be seen to be the

result of a strong restoring force for the bending mode. The combination of

pair- and many-body (angle bend) forces, however, does allow a small set of

configurations for which it is possible for sulfur dioxide to invert by

carrying the sulfur atom through the transition region in a potential energy

well. Such a state involves the excitation of the SO stretch displacements

to a considerable extent. As can be seen in the Figures, there is a second

minimum configuration of the transition state at about 1.85 A. It is

unlikely that at ambient temperatures, for example, there would be any
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significant population of states characterized by the lengthened O-S bonds.

Therefore, on the basis of this examination, we are inclined to believe that

sulfur would have to tunnel through the 0-0 barrier in most cases.

Similar stability conditions can be seen to arise out of more

approximate representations of the angle bending motions. Smith and

Overend, for example, examined several potential energy functions as

representations of the bending potential in bent triatomic molecules. Given

the fact that the potential for the inversion of SO must be a symmetric2

double well function, Smith and Overend examined the following form which is

suggested by the Swalen-Ibers treatment of ammonia:

V(D-f) - k(-*) 2 + b exp[-c(-*) 2 ] (23)

and the angle 9 is measured from the linear transition state for the

inversion. The coefficients k and b depend on the SO bond lengths:

k - K exp[A(R +R )]

b - B exp[P(RI+R2)] (24)

and A < 0, etc. Using eqs (23) and (24) in the equations to determine the

stability in the linear triatomic, one finds

k - B exp(20R.) (25)
so

(note, in the transition state, 9 - w). As P < 0, it is clear that k < 0 in

accord with the results found above for the Murrell potential6 (P in this

expression is not l/kT). As a consequence, accurately determined

experimental force constants for the bending motions in a molecule can aid

in the determination of the stability of the transition state of a reaction.

Frequency Factor for Completely Adiabatic Transfers

We consider the case for which the transfer species occupies a stable

energy well in a single transition state configuration of the Metropolis

p 4 .4 ~ V ~ ~ ~~ 's
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sample. The problem is to determine the frequency factor which is

associated with the migrating particle in this case.

The test for stability of the migratory transfer species requires the

determination of the eigenvalues of the torce constant matrix for the motion

of the transfer species in the fixed field of the surrounding atoms of

solute and solute. If all of the eigenvalues are positive definite, all

motions of the transfer species are locally mechanically stable. The

oscillatory motion of the transfer species along the axis in the direction

of the final state determines the frequency which is associated with the

wholly adiabatic transfer. Let the z-axis be aligned with the tangent to

the transfer-axis in the transition state. The force constant for harmonic

motion of the migrating atom along this axis is

K - 1 ( R) + 2P (cos 9 )I (R) (26)"

in which the sumation is taken over all atoms in the surroundings. The

frequency for the transfer is simply

w- 2v'm, (27)

where the factor of 2 arises via the same argument as used in the method of

beats, ° and m is the mass of the transfer species. This frequency is used

for a particular configuration in eq (5).

eq.

°°.
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Frequency Factor for Tunnel Transfers

The accuracy of the frequency factor for a nuclear tunnel transfer

depends on the accuracy with which one can describe the system in the first

place.' Extensive use has been made of one dimensional model potential

energy functions as representations of the barrier. We have been able to

show recently that it is possible to get good agreement with experiment

for the inversion tunnelling in the ammonia by using a representation which

employs discrete pair-potentials for the NH interactions. Thus, in

principle, if good model potential energy functions are known for the atomic

pair interactions and the angle bending modes, it is possible to carry out

accurate calculations to estimate the tunnel frequency.

We propose the following computational algorithm. Given a case for ,V

which tunnelling is required, locate the nearest positions of local

stability in the regions of the initial and final states for the transfer

species in the frozen configuration of the environment. [It is necessary to

note that the initial and final states for the tunnel transfer are almost

never the same as the thermodynamic initial and final states of the

reaction.] The rationalization we use is that a fluctuation of the system

will bring the transfer species close to the transition state. These

positions of local mechanical stability can be found, for example, with the

use of steepest descents routines.

Having determined stationary initial and final states for the

calculation, it is necessary to carry out some form of separation of the

local modes from those of the remainder of the system. It is also necessary

to identify the perturbations which account for the tunnel transfer.

We assume that Born-Oppenheimer electronic states have been separated ,

fefrom molecular vibrations; the reactive subsystem migrates over an adiabatic
"',

I',
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potential energy surface. We identify and separate local vibrational modes'

of the reactive solute from the remaining solvent with a second use of the

Born-Oppenheimer-Holstein adiabatic separation applied to the intra- and

intermolecular vibrations. The procedure we follow for atomic motions is

analogous to the method which is used for the electron transfer

problem.13,14 The method works for the atom transfer for the reason that

atom-tunnelling only occurs if the vibrational overlap factors are

nonvanishingly small and interaction with solvent is relatively weak. This

is so, of course, only for reasonably small separations between the initial

and final states for the migration.

The reactive subsystem can be defined to consist of the underlying

reactive solute and nearest neighbor solvent when that solvent interacts
strongly with the solute. The point we make here is that molecular

vibrations can be handled (certainly in the harmonic limit) reasonably

accurately, if the number of atoms and molecules is not too large. Thus, it

is possible, in principle, to define the reactive subsystem to consist of

solute and sufficient solvent such that were any additional solvent

considered, its effect would merely mimic the bulk properties of the

solvent.

A general development of the Born-Oppenheimer-Holstein separation of

local vibrational modes for a reactive system has been presented

4aelsewhere; we summarize that development. A plane is located at the

saddle point for the reaction. Stationary initial and final states are

located on either side of this plane. Functions associated with these

states are basis functions for the description of the tunnel transfer. It

is possible, as is shown in the Appendix, to include basis functions of the

transition state itself in order to account for tunnel transfers which are

oblique; that is, transfers which do not occur on a straight line from the %'I
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initial to the final state through the transition state.

The Hamiltonian operator for the complete system of reactant and

surroundings is written simply as

H - H + H + VOO (28)
I en E

in which H is the vibrational Hamiltonian operator for the reactantI

subsystem and H is the operator for the remainder of the system. The

specific interactions between individual atoms of the reactive subsystem and

atoms and molecules of the surrounding environment are contained in the term

V; these individual contributions can be enumerated.
E

As an example of the Born-Oppenheimer-Holstein separation, we consider

the specific separation for the two-state system which applies when the the

transfer takes place only between ground initial and final vibrational

states. The specific formulae that result should be generally applicable

because of the great probability of a tunnel transfer between the ground

initial and final states which have been adiabatically formed. Locally, one

finds

H XI(F) - ,I(F)XI(F) (29)

In terms of a basis set which is orthonormal with respect to the initial and

final states, the overlap matrix is

S- 1 S F] (30)S IF

The inverse is

S-1 - 1 2 I -Sir] (31)1 - S - i
S IF IF

The state function is constructed as

0 - f x1 + f (32)

The expansion coefficients f I() are functions of the set of environmental

coordinates of the solvent and molecular framework of the reactive solute.

~. 9
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In the usual manner, write

HO - Eq (33)

and

<X, I HI9> - E<X 1 10 (34)

Upon expansion,

K(f I + S 0ifJ) - <X1IH1 + V~nIXl>fl + <XI 1  + V o Ix j>f j

+ <r1 jH4= 1 1  + <X1IH*nIx i>f 1 (35)

V Mcontains all the interactions which depend upon coordinates of the

reactive subsystem and the environment. Rewrite eq. (35) as

~S j(E - C -H on)f, - (V ij(l61 ) + V~ )z (36)

This equation can be written more transparently as the matrix equation

SKI - VI (37)

where H is the matrix

rE-0
H - H- -- ](38)

In this equation, H anis the Haimiltonian operator for the solvent species

without the specific interaction between solute and solvent. F is the

vector

I - 1;;)(39)
and V is the matrix

V 44~ e ab b( 0

be be+ bb (0

In this expression, V Ljwithout the superacrip index "en" indicates a matrix

element which involves the interaction between the initial and final state

configurations and the migratory species. These interactions are contained
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within the operator H . We have ignored matrix elements which involve the

momentum operators. They can easily be included in this general term. In

analogy to the electron transfer case, the matrix elements V j account in

large part for the perturbations which drive the tunnel transfer.

At this point, one can write

HF - $'VF (41)

Upon expansion and rearrangement of this equation, we find the equation of

motion for the coefficient f , for example,

(E -H -- s2a -S(b+ V)))fan a S2(V* " (Vb.

-- l V + V: - SV ]f (42)
1 Sz  1 b a b bP

With the use of this equation, the matrix element L which accounts for theIF

tunnel transfer can be identified:

L+ - 1 - ( -(43)

with a similar term for L for the reverse transfer.ba

For an individual configuration of the ensemble, a transfer across the

barrier takes place in the OK limit. The tunnel frequency is calculated

with the use of the "Golden Rule" expression:

2 ILif 26(E -Ef) (44)

Assuming harmonic environmental modes and the Condon approximation for the

matrix element Li, it is possible to complete the summation over final

states. The result is

222 (a 2q 2 /2)0
- 2ILI 2 exp(-a q2/2) (45)

where w is the frequency of the accepting/donating mode and

A (45) %
-U

~%
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and q0 is the (dimensionless) equilibrium coordinate of the normal

accepting/donating mode. The number n is fixed by energy conservation:

IE01 - nhu (46)

and E is the energy difference between the initial and final states.

The energy Aw in the denominator of eq (45) comes from the

approximation of the density of states of the manifold as 1/Aw (Siebrand,

ref 15). This is an approximation which has proved to be inadequate for the

radiationless transition in benzene. It is clear that some better

approximations will have to be used to obtain accurate estimates of the

tunnel frequency. For the moment, the expression (45) serves to identify

the route which we suggest to follow in order to determine the transfer

frequency. There is indeed another, even more approximate, route to follow:

one can use the simple method of beats for which the transfer frequency is

given by
10

21L if i
- IL__I (47)

This expression will be reasonably accurate whenever the energy difference

between the initial and final state energy wells is vanishingly small.

This expression is the one which we use in the model simulation of the next

section.

Example: Rate of Inversion of a Bent ABA Molecule

The reaction we simulate is the hypothetical inversion of a bent ABA

molecule, see reaction (a). The mass of the B-species is taken arbitrarily

to be 12 au, viz., carbon. The purpose of this choice is to try to

determine whether an atom of the mass of carbon tunnels to any extent.

The following interactions are used between the atoms of the solute and

between the solute and solvent. First, the Lennard-Jones interaction is

e,..',• t . . ,-. , -€ ff" . . ".€ %."./.'. . . " -"".'-.:2. ''



-20-

used to describe the bonds between A and B. The interaction between the two

atoms A, however, is modelled as harmonic. The reason for doing so lies

with the fact that a Lennard-Jones potential is too "soft" in the

dissociative region to account for the effect of other atoms of solute and

solvent which in a real system would present an effective repulsion to the

expansion of the A-A distance. Thus, with the use of the harmonic

interaction, as opposed to the Lennard-Jones which would be more appropriate

to the species in the gas phase, it is possible to model the effect of an

atom transfer within a rigidly bound polyatomic molecntle with the use of a

minimal system as we have done here. Note, we have not used angle bend or

higher order interactions in this calculation, as correctly we should do.

The reason for omitting them is primarily due to the fact that we have not

yet worked out a good way to approximate the interaction in a form which can

be incorporated into the tunnel calculation. We are currently seeking ways

to approximate these important interactions.

The solvent is modelled as a collection of uniform spheres of radius

2.8 A. A Lennard-Jones potential is also used to describe the interaction

between the inidividual atoms of the solute and the solvent. Finally, the

interactions between the molecules of solvent are also modelled as

Lennard-Jones. The parameters are suinarized in Table I.

We used Lennard-Jones potentials throughout the calculation in the

interest of computational speed. The form of the potential used was

V - e(a/r)6((a/r)* - 2] (48) V

in which a is the distance for which V - -e. More elaborate potential

energy functions usually require calls to exponential, error and similar

functions. This fact can greatly increase the amount of time needed to

carry out a large number of calculations.

In carrying out the calculation, we fixed the central B atom in the ABA
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molecule at the center of the unit cell in the Metropolis system. The

A-atoms and the solvent were free to move. The entire system was

two-dimensional; the solvent was modelled as a collection of Lennard-Jones

disks. In order to eliminate edge effects, the minimum image technique was

used. The unit cell was surrounded by eight image cells. Each particle

within the primary cell interacted either with another species in the cell

or its nearest image if the image was closer. Sampling was carried out on a

canonical ensemble.

The calculations required the use of the Cray XMP/24 computer in order

to obtain results in reasonable time. The Metropolis simulation proceeded

in two steps. First, the unconstrained optimization of the system was

carried out in order to determine the average energy of the initial state.

No other averages were determined. These optimizations were carried out for

a sequence of temperatures beginning with a cycle at 4 K to 300 K. The

simulation of the transition state involved calculations for the same

sequence of temperatures as used in the determination of the initial state.

The algorithm to determine the energy and frequency factor for the

transition state, however, was considerably more complicated than that used

in the determination of the initial state.

The vacuum transition state for the ABA system is the optimized linear

configuration A-B-A. With the B-species fixed to the center of the unit

cell, and the A-species constrained to move along the A-B-A line, the system

was allowed to evolve configurations of the transition state in the 9

following manner. Motion of the A-species along the A-B-A line was allowed

together with motion of the solvent to optimum configurations. We made the

assumption that the solute in its transition state could adiabatically

adjust to the solvent. Thus, the Metropolis steps generated configurations

of solute and solvent which were near to, but not exactly, the transition
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state. In order to generate the final configuration which represented the

transition state, we carried out a Newton-Raphson saddle point optimization

of the ABA solute in the frozen solvent. We reasoned that the solvent would

equilibrate to a configuration close to the transition state. Therefore,

the equilibration of the solute in the rigid solvent would not return the

solute to a ground or initial state configuration. In carrying out this

kind of optimization to the transition state, it is clear that geometrically

non-linear transition states are possible.

For each new configuration of solvent generated in the Metropolis

sample, a Newton-Raphson optimization was carried out for the B-species

alone to determine the nearest stationary states on the reactant and product

sides in the frozen configuration of the transition state. Note, these

initial and final states are not the thermodynamic initial and final states.

They are states below the transition state barrier in which the B-species

occupies a local energy well.

We found that on occasion, the routine would find two energy minima on

the same side of the A-A line. In this case, the configuration was

discarded and the last configuration kept. The test of whether the initial

and final states are separated by the A-A line is simple. The directed

distance from the line1

Ax + By + C - 0 (49)

to the point (x1,y1) is

d AxI + By (50)

±(A2 + B) 11

In the same manner, the distance to a second point (x ,y2) from the same

line is d . If, then

8 -(Ax 1 + ByI + C)(Ax2 + By2 + C) > 0 (51)

both the initial and final state lie on the same side of the A-A line. This

04
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test is easily generalized to three dimensions; the A-A line is simply

replaced by the dividing plane which contains the saddle point or some other

suitably defined point of reference.

The mechanical stability of the migratory B-species was determined for

each Metropolis element of the ensemble of transition states. If the

species B proved to be stable in the presence of its environment of the

A-species and the solvent, that element of the transition state ensemble was

adiabatically attained. We then determined the frequency associated with

the motion of B along the transfer axis according to eqs (26) and (27).

This frequency was identified as w and used in eq (4). If the B-species

was found to be locally unstable in the transition state, then a tunnel

frequency was calculated. This frequency was determined by the following

sequence of steps.

The determination of the tunnel-transfer frequency was found by using a

one-dimensional analysis along the transfer-axis. Thus, we considered only

the direct, straight-line transfer from the initial to the final state. The

basis functions are the simple ground state one-dimensional harmonic

oscillator functions:

u (a,z) - (r/a) /4exp(-l/2 az ) (52)
0

and a similar function for the final state (identified in the exponent by

the coefficient ).

Let z be the transfer-axis. The potential energy operator can be

written as

V(z)- zC (R) (53)n
n-0

where

C (R) - n! A n P (cos 9R )I (R ) (54)

L-0-

A ..
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In these expressions, R represents the set of distances from the

transfer-species to the collection of N solvent molecules and remaining

atoms of the solute. The angle between the z-axis and the location of the

species i at a distance R from the coordinate origin is 0.

The state function

i(z) - fu 0 (a,z) + fbu (6,z) (55)

yields the usual matrix elements which are needed to evaluate the frequency

factor. The overlap S is

"'a 1/2 2 __ .___
S - q; exp (- 2(c+') (56)

and R is the distance between the initial and final locations of the

B-species. We specifically need to evaluate the matrix element V . This
ab

is

V -<u (,z)IV(z)Iu0,z)>

112P____1/ 2 o n-

- exp(-Q ) c C(P) 7 ()(-d) [l-(-1)]
WO-i E C n (R10 (-

.(m-l), (& -j8)'" /  (57)

where

Q 2 OP R 2(58
" 2(a+ ) (58)

and

d (59)

The quantities t and t are the distances to the initial and final
a b

locations at a and b as measured from the origin on the z-axis. Finally,

the quantity C (R 0) is evaluated with the set of distances and angles

measured with respect to the origin of coordinates on the B-species on the

z-axis.
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We made the assumption that the environmental factors V a contribute

only a small amount to the total value of the matrix element and may,

therefore, be ignored. This assumption can always be tested by direct

computation whenever one suspects it is not reasonable. However, the

combination of small overlap and large distances in C (R) would seem ton

justify the neglect of these terms under most circumstances.

The frequency of the tunnel jump was evaluated with eq (47). The

quantities a and P were determined in terms of the harmonic frequencies

which could be assigned to the transfer-species in its initial and final

locations.

The system consists initially of a simple square lattice at 4 K.

Several runs were made at 4 K to "temper" the system. Next, runs were made

at 50, 100, 200 and 300 K. This routine was followed both for the

determination of the initial state energy (unrestricted Monte Carlo) and for

the transition state calculations (biased in favor of the linear transition ,"
5,

state for ABA).

The results of the calculations are summarized in Table II. As can be

seen, two values of the (harmonic) A-A interaction were used. the "hard"

5 -1
harmonic interaction (viz., 8 x 10 dyn cm ) yields degrees of overall

adiabaticity of reaction which are much smaller than those found with the
smaller value of the A-A interaction ( 8 x 104 dyn cm'1). Because of the

weak A-A interaction in the first case, it is clear that the activation

energy for this system, when it is positive at higher temperatures, is very

small. As one would expect, with the stronger A-A interaction, the

activation energy is larger, reflecting the work needed to stretch the A-A

distance in the transition state.

There is a temperature-dependence in the frequency factor, to a degree.

%'
At low temperatures, below 100 K, the frequency factor increases with
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decreasing temperature. At 200 K and above it appears to be essentially

constant.

The degree of overall (electronic and vibrational) adiabaticity of the

reaction is easily determined in the sampling cycle by assigning a value of

unity to any configuration which admits an over-the-barrier transfer and

zero to the cases for which tunnelling through the residual barrier is

required. As one expects, in the system in which there is a strong A-A

association, there will be a greater amount of tunnelling through the

residual barrier in the transition state. This is clear from the fact that

even at 300 K, the fraction of over-the-barrier transfers is only about

0.01.

A curious feature of these calculations is the fact that especially for

the "weaker" force constant and at very low temperatures, the linear ABA

species seems to be stabilized by the solvent as indicated by the apparent

negative activation energies. It may be the case that at the low

temperatures in particular, a very large number of cycles needs to be used

in order to reach an accurate value of the initial state energy. It was

clear from our results, however, that at the higher temperatures, the system

clearly stabilizes for the number of cycles used (from 156,000 to 312,000).

Whether or not the solvent stabilization of the linear configuration at

low temperatures for the weaker interaction is real needs to be examined in

more detail. We did not determine average configurations of the intial

state. We did keep a record of the average cartesian coordinates of the ABA

atoms in the transition state calculations. For the case of the weak

A-A interaction, we found that the average A-A separation was approximately

2.8 A which is a very small extention over the equilibrium value of 2.75 A.

However, with the stronger interaction between the A-atoms, even this slight

extention is reflected in a significant increase in energy. For the

Um



-27-

stronger interaction, the average A-A distance in the transition state is

approximately 2.78 A. For both the "weak" and the "strong" A-A harmonic

interactions, the transition state remained, on average, linear in the

presence of solvent.

Discussion

The objective of this work is to model the transition state by a

combination of saddle point and Monte Carlo optimizations. Metropolis

sampling generates individual elements of the ensemble of configurations of

the transition state. Saddle point optimization can then be applied to each

configuration in order to generate an ensemble of individual transition

states.

The general analysis we have outlined highlights the important features

of the treatment. Many issues need to be explored and developed further.

An important issue, which we have mentioned, but not included in the example

calculation, has to do with the role of many-body interactions. These are

arise predominately as angle-bend interactions in vibrational spectroscopy

in the harmonic limit. Bend-bend and bend-stretch interactions are

manifestations of higher order many-body forces. The example of SO2, given

earlier, shows that these higher order contributions cannot be neglected if

one is to get an accurate estimate of the pre-exponential factor for the

reaction. It does seem possible, on the basis of the Smith-Overend work on

anharmonic interactions, g to estimate these interactions with the use of

vibrational spectroscopy of the initial and final states. The systematic

investigation of this approach needs to be examined further, and we plan to

do so.

There has been other work to apply Monte Carlo methods to the study of
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chemical reactions. Doll and Adams17 in a series of papers have

investigated the use of Metropolis sampling together with an improved

version of Slater's1 theory of reactivity. They have applied their

analysis to the thermal desorption problem. At first glance, our approach

is similar to the Adams-Doll work. On closer examination, however, there

are significant differences. Doll 17a proposed examining the expression
1

L(q) - 1 <6(x - q)x> (60)

which yields the average number of zeros for the function x(t) - q in an

interval of time 0 : t : r. The quantity q, in Slater's theory, is a

critical distance for reactivity, a critical bond length or height of the

barrier. Adams and Doll 1 b 'd replace the delta-function by a Gaussian and

directly evaluate the average by the Metropolis technique. The value of q

is specified. The specification of q is a restriction which is not

satisfactory for reactions taking place in solution. As noted in the early

work on the transition state theory,19'20 the quantity q in essence is the
P

location of the hyperplane which passes through the transition state in the

reaction hypersurface. This identification alone, however, is not

sufficient to derive the final form of the transition state rate constant.

Optimization needs to be carried out on the hyperplane in order to reach the

true saddle point which is the transition state. It is this prescription

which we have followed here. As we have noted, it is possible to assume ,

that a transition state which is evaluated for the system in vacuum (in the

absence of solvent) can be used as a template on which to bias the

distribution to the transition state for the reaction in solution.

Subsequent relaxation of the system to the true transition state in solutin
is needed. As a consequence, we do not see how Doll's approach can be

directly extended to apply to the systems we consider.

In our work, we have not directly considered librational motions or
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full rotational contributions to the transition state. Wardlaw and Marcus21

and Viswanathan et al.22 have investigated these issues in particular for

reactions which take place in the gas phase. Librational motion,

particularly for solution phase, is important, and, indeed, has not been

neglected entirely in our work. The assumption of Born-Oppenheimer

separability of the solute vibrational modes from degrees of freedom of the

solvent shows how specific account of the librations is included. The issue

is the matter of time-scales. The Metropolis samples we made primarily

involved the displacement of solvent. The solute was then adjusted to the

solvent by a steepest descent calculation. The validity of this sequence of

steps rests on the assumption of the adiabatic separation of the solute

intramolecular vibrations from the solvent center-of-mass motions; we did

not consider the intermolecular coupling of internal molecular vibrations,

although it is possible to do so. We assumed, however, that the

center-of-mass motions of the solute were similar (in scale) from those of

the solvent. Therefore, displacement of the solvent according to the

Metropolis method should evolve on the same time-scale as libration of the

solute. Librational contributions are then automatically included--but not

distinguishable from solvent contributions--in the averages.

Librations are included in the determination of the tunnel transition

probablilty. This is apparent in the analysis which separates the

intramolecular solute vibrations from the remaining degrees of freedom of

the solvent and center-of-mass motion of the solute. This is implicit (and

can be made explicit with a vibrational analysis in the harmonic limit) in

eq (28). Eq (45), in fact must be summed over all the modes which

contribute. For a system of limited extent, this is in principle possible.

However, even for the size of system which we have considered here, the

determination of the eigenfrequencies for the vibrations together with the
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sequence of steps for the Metropolis sampling would be very costly in

computer time. This is one of the reasons why we opted to use the simpler

expression eq (47) in this work.

Tapia and co-workers23 have recently examined an actual reactive system

in solution: the protonation of 3 methyl-but-l-yne-3-ol in water. In this

work, however, they did not optimize the transition state in solution as we

have done. Instead, they examined the role of solvent in the system in its

initial, transition and final states; the transition state was frozen at the

vacuum configuration. They indeed found that there were important solvent

effects. They were not able, however, to investigate how the presence of

the solvent can alter the structure and dynamics of the solute in the

transition state in solution over that determined in vacuum. There is

growing evidence that the interaction of solute with solvent and with

metal surfaces in many cases alters the bonding in a substrate sufficiently

to see in the vibrational spectrum. Although a study of type of Tapia et

al.23 can yield interesting information about solvation and large scale

changes in solvation in going from the initial to the transition state, it

is probably not possible to obtain accurate estimates of other quantities

associated with the transition state. We think that our approach may point

to way to filling that need.

The Metropolis sampling algorithm is not the only possible means of

modelling chemical reactivity. Recently, Wilson and Hynes and

their co-workers25 reported an extensive examination of the SN2 type of

reaction using molecular dynamics. Their approach is complimentary to ours

in the sense that they also seek to follow the course of the reaction by

employing adequate potential energy functions for the interactions.

Chemical reactions are manifestly time-dependent phenomena, and, as such, it

seems immediately clear that molecular dynamics is the most natural model to
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express this fact. On the other hand, the transition state theory of

reactivity makes extensive use of ensemble averages which can be examined in

an essentially time-independent frame of reference. In this sense, the

Metropolis/Monte Carlo may prove useful. This is our view.

Pursuing the comparison further, Wilson et al. used their molecular

dynamics algorithm to construct the potential energy surface for the

reaction. At the same time, however, they also examined the frequency of

first passage, reflection and subsequent passage. Thus, they were able to

estimate the transfer frequency from two points of view: one direct and the

other through an analysis of passage over and tunnelling through the average

barrier. There are issues which seem better handled with the molecular

dynamics approach, viz., the issue of "dynamic friction" and the question of

the role of momentum in the approach to and passage over the barrier. In

our approach, through the Monte Carlo algorithm, we seek to account for some

similar factors through the detailed analysis of the tunnel frequency. It

remains to be settled just how close the two approaches will come to each

other. In general, the Monte Carlo approach is computationally cheaper; it

is expected, therefore, that one day it may be useful in approximate, but

still reasonably accurate and predictive, calculations which may become

generally available.

No matter how simple the system, the examination of reactivity consumes

great amounts of computer time, even on the fastest machines. We need to

look for more direct, and probably approximate, methods to handle the

solvent. As an alternative to scanning for meaningful minima, Warshel

proposed several schemes,26 one of which is his "surface constrained soft

sphere dipole" model for use with polar solvents. This model is flexible

and accurate, when applied to the determination of solvation enthalpies. As

Warshel notes, the enthalpy is the leading term--the entropy is a second

'7" . . . . . , - - -.-. --*-
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order effect.

It would seem that Warshel's approach might apply to the determination

of transition states and reaction rates as we have proposed here. There is,

however, a problem which needs to be resolved before Warshel's model of the

solvent can be combined with our approach. Warshel's technique is to build

shells of solvent about the reactive solute. 26 The innermost shell is the

most sensitive to states and changes of states of the solute. The next

layer of solvent is constrained to the configuration of bulk solution. The

states of the solute and strongly bound solvent can then be determined by

means of steepest descents optimization, and, for the transition state,

saddle point optimizations. The difficulty with this approach is the fact

that static optimization of this type only finds one most probable

configuration. Such a configuration may correspond either to a

configuration which is completely adiabatically attained or to one for which

a tunnel transfer is required. The balance between tunnel transfers and

over-the-top passes is not possible.

Some form of sampling of the neighborhood of the transition state is

needed in order to determine an accurate average value of the

pre-exponential frequency factor. Warshel has already noted that it is

possible to use Metropolis/Monte Carlo methods to sample states in the

neighborhood of the optimally determined state, as found, for example, with

the use of a steeptes descent routine. In this way, one may be able to

determine accurate values of the frequency factor with a modest expense in

computer time.

Conclusion

We have suggested that the reaction rate constant can be constructed as

J.
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an ensemble average of configurations of the transition state which are

generated according to a modified Metropolis sampling scheme. For each

element of the collection of configurations in the ensemble of transition

state configurations, the transfer species either occupies a local energy

well or must tunnel through a residual barrier. A frequency factor can be

determined for each case. The average of the frequency factors associated

with these two possibilities in principle yields an accurate value of the

pre-exponential frequency factor in the Arrhenius expression for the rate

constant. We believe that the algorithm which we suggest shows some

potential in helping us to examine complicated chemical reactions in

solution.

This work has been supported in part by contracts with the Office of

Naval Research, Arlington, VA.

Appendix

Basis and State Functions for Use in Tunnelling Calculations

In this appendix, we outline a general method for determining state

functions which can be used in tunnelling calculations. In order to

construct a usable Born-Oppenheimer separation of the local modes from those

of the surroundings, it is necessary to develop first an analysis of the

reactive subsystem. Given a set of atomic and molecular species which make

up the reactive molecular system, and given a set of realistic interaction

potential energy functions, the first objective is to develop an analysis of

the motions of the isolated molecular system. In order to be able to

follow the tunnelling of the transfer species, it is necessary to identify

the parts of the reactive subsystems and then to connect the separate parts
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in an analysis which focuses on the terms which account for the transfer.

With special reference to the transfer species, there are three

principal locations for this species: the initial configuration, the

location of the transfer-species in the transition state, and finally the

location of the species in the final state configuration. If the trajectory

for the transfer-species is a straight line, it is possible to consider the

tunnel transition only with reference to the intial and final stationary

configurations. If the reaction path is geometrically non-linear, or

oblique, it is necessary to consider a piece-wise linear transfer; precedent

for this of course is the construction of basis sets of atomic orbitals in

the familiar LCAO versions of the molecular orbital theory. An illustration

of an oblique path for tunnelling is shown in Figure 4 for a hypothetical

diffusion of a species from one vacancy to another.

Although the initial and final states are mechanically stable, the

third location, the transition state, is not. Nevertheless, this state can

be included in a linear combination in order to connect the initial with the

final state along a piece-wise linear path.

We imagine a dividing plane in the transition state. Left/initial and

right/final states are defined with respect to this plane. We next consider

a set of harmonic oscillator basis functions which are centered at the

initial, transition, and final states. Let the set be (ui(ri)) where the

index i is a function label and the index I is a label for the point of

expansion. These functions are locally orthonormal with respect to the

point of expansion. The form of the particular functions ui(r) is not

important at this stage, but they are typically the spherical harmonic

oscillator or similar functions.

We construct orthonormal functions for the initial and final states on

either side of the dividing plane. These functions will be the basis
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functions for the construction of a set of state wavefunctions for the

system. The elements in the expansion must contain functions which are

centered at the initial (or final) state and the transition state; the

method has already been discussed for the case of proton transfer.27 Thus,

it is possible to allow for the transitory occupation of the transition

state region by the particle. Functions of an orthogonal set can be written

as

-N' 1/ Zd u(r) (Al)
L(R)j LCR)jI i i I

where the coefficients of expansion d are determined by the Gram-SchmidtII

method. The label L(R) in eq (Al) indicates a function for the left (right)

hand side of the transfer hyperplane. The functions are now used to
L(R)i

construct the state functions for the motion of the particle on the left

(right) hand side of the transfer plane:

leaIA (A2)
L(R) L(R)j L(R)j

where the index p is an energy level index.

Eigenvalues and eigenvectors for the initial and final transfer states

are determined on the left and right hand sides of the transfer plane; this

is done, as usual, by means of a variational calculation. For H the
L(R)

local Hamiltonian operator for the motion of the transfer species on the

left (right) of the transfer plane, a set of eigenvalues {EL(R)) results

which are associated with the migratory species.

As long as the basis set only contains functions that allow for motion

of the transfer species between two stationary points, the initial and the

transition state or the transition and the final state, these functions

alone cannot account for the complete migration.

Next the optimally determined local states *A are used to construct
L

state functions for the whole transfer system: initial, transition and final 5~
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states. Orthonormal L/R functions are constructed by Gram-Schmidt

orthogonalizat ion: 28

XL(R) DPL(R) LC(R) (3

with the coefficients D (R) determined by the orthonormalization. The

coefficients C (I-1,R) in the expansion
I

S CIX (A4)

are determined by a variational calculation.

The result of all of these steps is the expression of the matrix

elements for the transfer in terms of local functions u (rI) centered about

each of the three primary points for the transfer: initial, transition and

final states.

As an example, consider the special case of a ground state transfer.

As basis functions, we use the ground state spherical oscillator functions:

u0(r) - (a/w) 3/4exp- an (A5)
0 2

The orthonormal expansion functions for the left and right hand sides are

OLU - u a(r (M)

and

(-s2 )1 ru(rt) at0

L2 ( - 1 2 tTII-~ S u (r) (A7)
at

where St is the overlap between site a (on the left) and t in the

transition state; there are similar terms for 0 and 0R2 These functions

now can be combined to get the left and right hand side state functions:

*L - aL1*L1 + aL20L. (A8)

# Re no a 10R +R0L
0The lowest eigenvalue for this set of basis functions is e L(R) We now

construct the left and right orthonormal basis functions:

0 0 (
XL - (A9)
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--2 1/2 RX- S(1 LR)

and the overlap is expressed in terms of the basis functions u (r ). The

system energies are now simply

1 1 2 . 1 ./2
E - !(HL - H ) ± !((H - H ) + 4H ) (AlO)

where the matrix elements have an obvious origin. These matrix elements

also can be expressed in terms of integrals of the basis set u i(r ).

We now have a representation in which the transfer species is described

in an initial or final state (left or right state) which includes an account

of the link to the transition state. The expansion of the matrix element

H in eq (AIO), for example, indicates a connection from the initial to the
LR

final state through the transition state.

There has been some discussion of this type of approach from the point

29
of view of the Bardeen transfer matrix formalism. The approach we advocate

here, however, is slightly different. We assume that there exists a set of

well behaved and denumerable potential energy functions which operate

between the species in the system. We also assume that the structure of the

system is known or at least specified. The transfer formalism, initiated

30
by Oppenheimer, works well for barriers which are not fully described,

I.e., barriers of arbitrary extent and height. The transfer system, as we

see it, is as well characterized as is the atomic substructure in a

molecular orbital calculation. We simply partition the wavefunctions in

such a manner as to reveal the interactions and matrix elements.
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Table I

Potential energy functions and parameters

Bond Potential e/k Characteristic distance

A-B Lennard-Jones e - 2.5 a - 1.41 A

A-A Harmonic k - 8(80) r - 2.75

A-S Lennard-Jones e - 0.05 a -2.8

B-S Lennard-Jones e - 0.05 2 - 2.8

The form of the Lennard-Jones potential used is

V - e(a/r) [(a/r) - 2]
U 12

and the pair dissociation energy e is expressed as erg x 102. The harmonic

potential is

1 2V(r)- k (r- r0 )

and k is expressed as dyn cm"1 x 10'.

1i
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Table II

a. Computed quantities for the ABA inversion with k - 8 x 10 4dyn cm

Temperature (K) <E0> <E$> <W> adiabaticity

4 -9.429 -9.594 0.334 0.0308

50 -9.413 -9.437 0.368 0.2298

100 -9.157 -9.233 0.190 0.7218

200 -8.782 -8.774 0.232 0.5862

300 -8.588 -8.587 0.240 0.4652

b. Computed quantities for the ABA inversion with k - 8 x 10 dyn cm"

4 -9.484 -9.557 0.773 0.00001

50 -9.400 -9.311 0.405 0.0077

100 -9.262 -9.052 0.280 0.0145

200 -8.790 -8.686 0.263 0.0891

300 -8.568 -8.504 0.266 0.0884

%4
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Figure Captions

1. The initial and transition states for the inversion of SO constrained
2

to two dimensions.

2. The energy of linear SO2 in the transition state for the inversion as a

function of the SO bond distance. Only a symmetric stretch is considered.

The energy is calculated with the use of the Carter, et &l. potential (ref.

7).

3. The behavior of the second derivative of the potential energy [E" -

dlE/dz ] with respect to the displacement of the S-atom along the line

normal to the 0-0 line. The curve labelled a is the behavior due to the

Rydberg pair potential. The curve b is the behavior of the many-body part

(which accounts for angle restoring forces). Curve c is the sum of a and b.

The region of curve c above zero indicates the region of stability for the

motion of S normal to the 0-0 line in the transition state.

4. The course of diffusion of an atom from one location to a vacancy

along an oblique path. The transition state does not lie on the straight

line from the initial to the final site. Account of the transition state

can be incorporated in the analysis by mixing basis functions for the

diffusing species at the location t-s with basis functions for the intial

and final locations.
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