~Ao-A183 782

UNCLASSIFIED

NULTILAYER NETWORKS OF SELF-INTERESTED ADAPTIVE UNITS
<U) MASSACHUSETTS UNIY AMHERST DEPT OF COMPUTER
INFORMATION SCIENCE

F33615-83-C-1078 -

o PR x
‘FEEE I
EEE gr
T B
EEEFFFPETY ““ z
Q - | g
== = = 3
G0
X m
s 2 E
-I\‘Q\IN‘
» R
I
by
b ey

»
«

’I

S V.:
A
K

W
T

~
. o
L)

T RN A TR I N L 8p kAT G R % LW M 4 S ek sk e R, A A B 1, 44 ¥'. 8% aw O B ¢ cp® -0 -0 LV E S .c--w‘q"

0T FILE copy —
AD-A183 782 8

AFWAL-TR-87-1052

MULTILAYER NETWORKS OF SELF-INTERESTED
ADAPTIVE UNITS

Andrew (. Barto, Editor

Computer and Information Science
University of Massachusetts
Amherst, MA 01003

NN
S

L]
’.‘
N
e

.
"l.l
) .
e
)

\ 1y
-' L
vt

Julv 1987

.,,,.f4<
Vs
A
PR N
[30 T Tt T e e

]

A

FINAL REPORT tor period September 1983 - September 1986 :i
P

Approved for public release; distribution is unlimited

AVIONICS LABORATORY

AIR FORCE WRIGHT AERONAUTICAL LABORATORIES

AIR FORCE SYSTEMS COMMAND

WRIGHT=PATTERSON AIR FORCE BASE, OHIO 45433-6543

LI S L P S R LN LI T e L At L LN 1) L] AL LA LN L L L L L L Y UL AT LU LR UL UYL U LA L LA UILY LIRS UL LA S L) ,-‘fn
l

ks
N
(]
NOTICE 5
o0
wher Government drawings, specifications, or other data are used for any .
purpose other than in connection with @& definitely Government-related »
procurenenrt, the United States Government incurs no responsibility cor any . A
obligatior whatsoever. The fact that the Government may have formulated or in ”
any wav supplied the said drawings, specifications, or other data, is not to <
be regarded by implicatior, or otherwise in any manner construed, as licersing B
the heider, or any other person or corporation; or as conveying any rights or e
permission to manufacture, use, or sell any patented invention that may in any T
wey be related thereto. N
"
This report has been reviewed by the Office of Public Affairs (ASD/PA) ;
and is releasable to the National Technical Information Service (NTIS). At e
NTIS, it will be available to the general public, including foreign nations. ‘@
This technical report has been reviewed and is approved for publication. p
-
A
A. HARRY KLOPE— 7 EDWARD L. GLIATTI, Chief -
Project Eng¥neer Inforr..tion Processing Technology Br]
Advanced Systems Research Group Avionics Laboratory T3
Avionics Laboratory
“
FOF THE COMMANDER =
2
<
- iy)g*' /(\ :;_
7/ i, i
MARVI%/;PECTOR, Chief :
System Avionics Division
Avionics Laboratory f}
i
[f your address has changed, if you wish to be removed from our mailing Sf
list, or if the addressee is no longer emploved by your organization please e
rctify -3, Wright-Patterson AFB, OM 45433- 6543 to help us maintain N
a currert ma1i1ng Tict, .

Copies of this repcrt should not be returned unless return is required by
security corsiderations, contractual obligations, or notice on a specific
docurent

[y

.

-

.
b}

T P S P N P e e L. : R T N -
B R R P T N N T T T P T S P L I G ;,._\._m..:...s...s.a; M,L.L.L.J'L.;r.

ENESTENSVR TR susRYysve Nuwa

URI IFICATION HIS PAGE) -

Form Approved
REPORT DOCUMENTATION PAGE OMB No 0704.0188
1a. REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS
UNCLASSIFIED
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION / AVAILABILITY OF REPORT
Approved for public release;
2b. DECLASSIFICATION / DOWNGRADING SCHEDULE distribution is unlimited.
4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)
AFWAL-TR-87-1052
: 6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
University of Massachusetts (F applicable) Air Force Wright Aeronautical Laboratories
. ‘ Gomputer and Infogmation Avionics Laboratory (AFWAL/AAAT-3)

6¢. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Amherst, MA 01003 Wright-Patterson AFB OH 45433-6543
8a. NAME OF FUNDING / SPONSORING 8b. OFFICE SYMBOL]| 9 PROCUREMENT INSTRUMENT 1DENTIFICATION NUMBER

ORGANIZATION (If applicable)

AFOSR NL F33615-83-C-1078
8¢. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

PR(E)GRAM PROJECT TASK V%%rsz:s%mrNo
, . ELEMENT NO NO NO A ION
Bolling AFB, DT 20332
1 ’ 33 61102F 2312 R1 04

11. TITLE (Include Security Classification)
Multilayer Networks of Self-Interested Adaptive Units

12. PERSONAL AUTHOR(S)
Andrew G. Barto, Editor
13a. TYPE OF REPORT 13b. TiIME COVERED 14. DATE OF REPORT (Year, Month, Day) [15. PAGE COUNT
Final FROM (09-83 TO_09-86 July 1987 149
16. SUPPLEMENTARY NOTATION] . -, “"/

v

17. COSATI CODES 18. SUBJECT TERMS (Continve on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP Adaptive Networks Learning
Neural Computing ‘ Stochastic lLearning Automata

Copnecgtionict Svystems Cooperative Computing
19 ABSTRACT (Continue on reverse if necessary and identify by block number)

"This report describes research directed toward refining and evaluating learning
methods tor multilayer networks of neuron-like adaptive units. We define a learning
rule called the\Associative Reward-Penalty, or Ap_p, rule that has strong ties to
both the theory of adaptive pattern classification and stochastic learning automata.
We state a convergence result that has been proven for a single Ag-p unit and show,
via computer simulation, how layered networks of Ag_p units can reliably learn
nonlinear associative mappings. The behavior of these networks is discussed in
terms of the collective behavior of stochastic learning automata in team decision
problems. A number of methods for learning in multilayer networks are compared,
including the Ag_p method and the error back-propagation method. These methods,
or variants of them, outperform the other methods applied to the test problem,
with error back-propagation showing a significant speed advantage over the other

20 DISTRIBUTION/ AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
R uncLassirieounuiTed [SaMEe AS RPT 3 ovic USERS Unclassified
22a NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) | 22¢ OFFICE SYMBOL
A. Harry Klopf 513-255-7649 AFWAL/AAAT-3

DD Form 1473, JUN 86 Previous editions are obsolete SECURITY CLASSIFICATION OFf THIS PAGE

UNCLASSIFIED

19. Abstract (Continued)
~ ﬁ ‘st 2.1

\)methods. The-Ag.p and error back-propagation are compared and contrasted in terms
of their respective approaches to gradient following. T

Simulation experiments are described in which layered adaptive networks are applied

to learning strategies for a pole-balancing task and a Tower of Hanoil puzzle. These
results extend earlier results by replacing the fixed encoding of network input by ‘
an adaptive encoding mechanism implemented by a layered network. Comparisons are

made between the performance of one~ and two-layer networks on these tasks, and the

results are related to more conventional approaches to control in engineering and

problem solving in artificial intelligence.

Accesion For —-‘.I -
NTIS CRA&I v
bDTiC TAB 0
Unannounced]
Justhcaten
T
By e]
Dot ibutive
b e - e e ———a]
Avoiiapldity Codes

} LT 1
‘,l,/.u RN

; Di t , op eutal

Al

UNCLASSIFIED

SO Ry

A D A

B N AT DN P :.- ORI S TR Ny

ACKNOWLEDGEMENTS

First, I would like to thank Charles W. Anderson for permitting me to include
parts of his dissertation in this report. Sections 4, 5, and 6 are condensed versions
of Chapters IV, V, VI, and VII of his dissertation (4], and Section 7 contains some
material from Chapter VIII. Although I rearranged and edited this material, its au-
thorship remains with Chuck. It is mainly for this reason that I am listed as the
editor, not the author, of this report. Of course, not only did Chuck write this
material, he also conducted the research it describes: he designed the simulation
experiments—selected or devised the methods included in the comparative study
described in Section 4, implemented the methods, and interpreted the results. Be-
ginning where we left off with the pole-balancing system as reported in our 1983
paper [13], Chuck designed, implemented, and tested the extensions reported here.
Another reason that I am editor of this report and not author is that parts of Sec-
tion 2 are abstracted from a paper I coauthored with P. Anandan which appeared in
[EEE Transactions on Systems, Man, and Cybernetics |7|. Anandan deserves much
of the credit for formulating the Ag_p learning rule and nearly all of the credit for
proving the convergence theorem. Section 3 contains material abstracted from my

paper in Human Neurobiology [6].

Others contributed to the research described here in a variety of indispensible
ways. Harry Klopf provided us with the provocative idea of self-interested network
components, which we continue to find thought-provoking and fruitful. Rich Sutton's
experiments with reinforcement-learning methods contributed to the foundations for
the present work, and the temporal credit-assignment method he has developed and
refined forms an important part of the strategy-learning networks described here.
John Moore shared with us his great knowledge of animal learning behavior and
mechanisms. not to mention his enthusiasm and wit. Michael Arbib helped us ap-

preciate the history of this field and created an environment in which we could study

i

R I I N R R R R o N TR
PR P A AN A R Y SR SR S '.n"l.ro"_-"..".p\J"J'u‘- -"i'-f\'.'-".'q':'-’.\'_‘-'_‘-'.\'_'.'i

it - we miss him since he went to the University of Southern California. Michael
Jordan joined us near the end of the period covered by this report as a post-doctoral
researcher. He brought a lot of new ideas that will play prominent roles in future
reports. Jonathan Bachrach, Robbie Jacobs, Stephen Judd, Brian Pinette, and Mike
Seymour have all begun promising research that should also figure prominently in
future reports. I thank Neil Berthier, Ross Beveridge, Diana Blazis, David Day,
John Desmond, and Ira Smotroff, who have pursued topics related to connectionist
research, and all the others who have contributed to the high level of interest in
connectionist research at the University of Massachusetts. I thank Susan Parker who
applied her considerable administrative skills to the project, untangling a lot of red
tape in the process. Finally, I wish to thank the connectionists out there for making

this field receive all of the attention it deserves—and more.

N,

e, v,
)

e, 48

SO AN

T B rga s,

-
)
)

fOREESTR WY ¥ RV YO d ¢ &

TABLE OF CONTENTS

SECTION PAGE

1. INTRODUCTION

2. THE ASSOCIATIVE REWARD-PENALTY UNIT
The Associative Reinforcement Learning Task
The Ag_p Learning Rule
Simulation of a Single Ag_p Unit
Ag .p Units and Stochastic Learning Automata

3. COOPERATIVE BEHAVIOR OF Ag_p UNITS
Associative Search Networks and Team Decision Problems
Layered Teamsof Ag_p Units
A Minimal Layered Network of Ag_p Units
The XOR Task
The Multiplexer Task
Discussion—Apg_p Networks and Gradient Descent

4. COMPARATIVE STUDIES OF LAYERED NETWORK LEARNING METH-
OoDSs

Direct-Search Methods
Unguided Random Search
Guided Random Search
The Polytope Algorithm

Error Back-Propagation Methods
Rosenblatt’s Back-Propagation Method
Rumelhart, Hinton, and Williams

Associative Reinforcement Learning
Associative Search with Reinforcement Prediction
Associative Reward-Penalty
Local Reinforcement
Penalty Prediction

Summary of Comparative Simulations

Some Further Experiments- The Batched Ag p Method

......

TABLE OF CONTENTS (Concluded)

SECTION

5. POLE-BALANCING AGAIN
Strategy Learning Networks
Output Functions,
Learning Rules
The Pole-Balancing Task
Interaction between the Network and Cart-Pole Simulation
Results. e
One-Layer Experiments
Results of Two-Layer Experiments
Conclusion L e

6. LEARNING TO SOLVE A PUZZILE

The Tower of Hanoi Puzzle
t Representation of States and Actions
Reinforcement L
Results of One-Layer Experiments
Results of Two-Layer Experiments
Transfer of Learning
Conclusion

7. SUMMARY AND CONCLUSIONS
The Associative Reward-Penalty Unit
Cooperative Behaviorof Ag_p Units

1 Comparison of Methods for Learning by Layered Networks.

! Strategy Learning with Multilayer Networks

Pole Balancing

Tower of Hanoi

) BIBLIOGRAPHY o o e e e e s e e e e e e e

vi

!
L
!
L
L
h
[
L
9\
1
q
[
|
X
i
|
A
\
]
[

AN NI UNSVE UT VAN EEES S 78 .8 i vm:-Reirsmma=

-

) LIST OF ILLUSTRATIONS

FIGURE PAGE
1. Simulation Results for a Single Ag_p Unit 13
2. Stochastic Learning Automaton Interacting with a Random Environment. 14
3. (a) The game problem. (b) The team problem. 15
4. Associative searchnetwork. 0L 19
5. A Minimal Layered Network of Ag_p Units 21
6. Simulation Results for the Two-unit Network. 24
7. Network for the Exclusive-Or Task. 26
8. Behavior of Network Units in a Typical Sequence of 5000 Trials in the

Exclusive-Or Task. 28

9. Histogram of Trials to Criterion for 100 Sequences of Trials in the

Exclusive-Or Task. 29
10. Layered Network for the Multiplexer Problem. 29
11. Histogram of Trials to Criterion for the Multiplexer Task. 30
12. Learning Curves for Error Back-propagation Methods 43
13. Learning Curve for Reinforcement Learning Methods on the Multiplexer

Task 50
14. Learning Curves for All Methods on the Multiplexer Task 60
15. Learning Curves Comparing the Standard and Batched Agr_p Methods . . 68
16. Two-Layer Networks for Strategy Learning 72
17. Good Functions for Pole-Balancing Solution 82
18. Balancing Time versus Trials for One-Layer System 88
19. Weights Learned by One-Layer Network 89
20. Functions Learned by One-Layer Networks 90
21. Balancing Time versus Trials for Two-Layer System 92
22. Weights Learned by Two-Layer Network 94
23. Functions Learned by Two-Layer Networks 95
24. New Features Learned by Two-Layer Networks 98
25. Initial and Goal States of the Tower of Hanoi Puzzle 101
26. State Transition Graph for Three-Disk Tower of Hanoi Puzzle 102

| WPEN

FIGURE
27.

28.
29,
30.
31.
32.
33.

LIST OF ILLUSTRATIONS (Concluded)

Length of Solution Path versus Trials for One-Layer System

Weights Learned by One-Layer Network

...................

Evaluation Function Learned by One-Layer Network

Length of Solution Path versus Trials for Two-Layer System

Weights Learned by Two-Layer Network

Evaluation Function Learned by Two-Layer Network

New Features Learned by Two-Layer Evaluation Network

AR

s
Ly

[
-

viii

CRAYL P NN)

......
........

FAVNUBYNUFENIJSURN N VT LT LN T THELE EVEY

LisT OoF TABLES

TABLE PAGE
1. Unguided Random Search on the Multiplexer Task 37
2. Guided Random Search on the Multiplexer Task 39
3. Polytope Algorithm on the Multiplexer Task 40
4. Rosenblatt’s Back-Propagation Method on the Multiplexer Task 43
5. Rumelhart et al. Error Back-propagation Method on the Multiplexer Task 45
6. Sutton’s Modification of the Error Back-propagation Method on the Mul-

tiplexer Task o 47
7. Associative Search with Reinforcement Prediction on the Multiplexer Task 50

Agr_p Method on the Multiplexer Task 52
9. Ag p with Local Reinforcement on the Multiplexer Task 54
10. Agr_p with Penalty Prediction on the Multiplexer Task 58
11. Performance Summary for Multiplexer Task 61
12. New Features Developed by the Error Back-Propagation Method 63
13. New Features Developed by Ag_p with Penalty Prediction Method 65
14. Results of One-Layer System 8T
15. Results of Two-Layer System 92
16. Results of One-Layer System 107
17. Results of Two-Layer System 111

e

=
el r
G la e

Y 20

...................

‘:’- ’-‘_‘.-_'-_'(q_“.-_"-,’-.'f\ Lo ‘-",'\-“‘.’J\.:ﬂnt '_P:{". t‘-‘.ﬂ -

e e P e T e e A e
R N N A TR I A A P I I I "

SECTION 1

INTRODUCTION

This report describes progress made by our research group over the period
September 1983 to September 1986. Although we explored a range of issues in
connectionist learning, the major focus was the study of learning nonlinear associa-
tive mappings by layered networks. In earlier research we obtained some preliminary
results with an approach to this problem based on reinforcement learning [10,3,15|.
However, the specific reinforcement learning rules used in these studies did not pro-
duce rapid and reliable learning in all the learning tasks we tried. During the period
reported on here, we set out to obtain better understanding of this class of methods

through computer simulation and mathematical analysis.

The research direction that proved most fruitful was our effort to develop rigorous
ties between our reinforcement-learning adaptive units and the theory of stochastic
learning automata. Our initial aim was to develop a theoretically tractable learning
rule by developing one that specialized, under one set of restrictions, to a familiar
supervised-learning rule while also specializing, under another set of restrictions, to
one of the simplest of the stochastic learning automaton algorithms. The result is a
learning rule that we call the Associative Reward-Penalty. or Ag _p , learning rule. It
is very closely related to a relatively little-known learning rule presented by Widrow,
Gupta, and Maitra [58] that they called the “selective bootstrap adaptation” rule.
Thus, although it is novel. the Ag p rule is closely connected to existing theory, and
we were able to prove a convergence theorem for a single adaptive unit implementing
the Ag p rule {we call such a unit an Ag p unit) {7). What was rather surprising was
that the Agp_p unit turned out to perform very well as a network component. Lay-
ered networks of Ag p units solve nonlinear associative learning problems with great

reliability. This surprised us because in devising the Ap p unit we were concerned

Tate e

e
%

o £
ot 4

. v
-

@ L

.«
a

a4
|

By ¥ v‘-ﬁ‘

solely with the mathermatical tractability of a single unit and not with network perfor-

mance. However, it later became apparent that the learning capabilities that single
Agp_p units provably possess are crucial in obtaining reliable learning in networks.
Consequently, as a result of our attempts to shore up the mathematical foundations
of our work, we developed an adaptive unit that performed much better in networks

than any of the others we had tried.

During the period covered in this report, a number of other research groups be-
came interested in the problem of learning nonlinear associative mappings by layered
networks, or more generally, the problem of learning by “hidden units.” In addi-
tion to our own method using Agr-p units, two new methods were developed: the
Boltzmann learning procedure of Ackley, Hinton, and Sejnowski [1] and the error
back-propagation method of Rumelhart, Hinton, and Williams [44]. These meth-
ods attracted much public attention, especially the backpropagation method which
Sejnowski and Rosenberg [45] used in a system called NETtalk that learns how to
convert text to speech. Unlike Boltzmann learning, which applies to symmetrically
connected networks, the error back-propagation method applies to networks with-
out cycles (acyclic networks). Consequently, error back-propagation is more directly

comparable to the Ag_p method than is Boltzmann learning.

We invested much effort in performing simulations to compare various methods
for learning in layered networks, including the error back-propagaton method, and
the results are reported here. In the comparisons, we included methods that represent
several different approaches including the most brute-force search method possible.
We chose a learning task that was hard enough to make the brute-force search in-
efficient but not so hard that enormous amounts of CPU time were required. On
this task, the 6 input multiplexer task (see Section 4), the error back-propagation
method proved to be the fastest with a modified Ag _p method coming second and
the unmodified Ag_p method third. We did not systematically apply these meth-
ods to a series of increasingly difficult learning tasks in order to assess how they
“scale” to larger problems. Our experience and theoretical understanding suggest,

however, that the ordering of performance observed on the multiplexer task would

be preserved on more difficult tasks. The comparative simulations do establish that

-
-

B o Ty e v g%

PrE Ll .

e“e e

[<
<
-
N

> - o &

o
- -,',

both the error back-propagation and the Agr_p methods are very much better than

a variety of more conventional search methods.

Although we have not extended the Ag_p convergence theorem, which applies to
a single adaptive unit, to a network of Ar_p units, much theoretical insight into the
behavior of Ag_p networks has been provided by a result proved by R. Williams (one
of the developers of the error back-propagation method). Williams [61,62] has shown
that under certain restrictions on the Ag_p rule, the ezpected change of any weight
within an arbitrary acyclic network of Ag_p units is proportional to the gradient of
the probability of reward for the entire network with respect to that weight. This re-
sult means that Agr-p networks do something similar to what error back-propagation
networks do, but they use estimates of the gradient which can be determined without

the need for explicit back-propagation.

Because a gradient is estimated by Ag_p networks, the following modified training
procedure is suggested. Instead of updating weights after a single presentation of an
input pattern and the generation of a single activity pattern, one can hold the input
pattern constant for several time steps and accumulate a gradient estimate during
the generation of several activity patterns. Updating the weights on the basis of this
improved gradient estimate should improve learning rate. We report the results of

simulations designed to test this hypothesis in Section 4.

Also reported here are results obtained from applications of layered-network
methods to two different tasks requiring the learning of problem-solving strategies.
The first task is the pole-balancing task that we have used in the past to demon-
strate reinforcement leaning under conditions of delayed reinforcement [13]. The
second task is to learn how to solve the Tower of Hanoi puzzle using a method that
is esentially the same as the method used in learning to balance the pole. Qur earlier
work with the pole-balancing problem assumed the existence of a representation for
the system’s state consisting of a large number of non-overlapping “boxes™ produced
by a pre-existing decoder. Given this representation, the task became one of filling in
look-up tables. This simplified representation allowed us to separate representation
issues from the issues of temporal credit-assignment. In the studies reported here,

the pre-existing decoder is replaced by a lavered adaptive network. This network

~ YR AR SRRy "
N

s e AT T AT s e T
P I I N I T I AF P S I SN o AL AT N A VY P W S W A

HANRNANNK MR AEAERVA IR

receives as input a vector of four real numbers giving the state of the cart/pole sys-
tem. The network has to learn how to represent the state so that the system as a
whole can successfully avoid failure. The layered network provides a kind of adaptive
decoder. In order to accomplish this, the adaptive critic element and the associative
search element of previous studies were combined with the error back-propagation
method for learning in layered networks. The resulting system was able to learn
appropriate mappings for the control actions and the internal evaluation, and it was
demonstrated that the multilayer system dramatically outperformed a single layer

system.

Much the same approach was taken with the Tower of Hanoi puzzle. The state
of the puzzle was represented as a binary vector that acted as input to two layered
networks, one of which was responsible for forming an informative evaluation func-
tion, and the other of which was responsible for forming the correct mapping from
puzzle states to actions (moving the disks). This system consistently learned to solve
the puzzle using the minimum number of moves. This example allowed us to discuss
the relationship between our strategy learning methods and an adaptive production

system that has been applied to this puzzle {31].

In the concluding section of this report, I place our results in perspective by

discussing their relationship to more conventional engineering methods. 1 also discuss

directions in which I think it will be profitable to continue the development of these

methods.

A
2
’
2
P
:
y

v .
72"

:: SECTION 2

0

' ‘ THE ASSOCIATIVE REWARD-PENALTY UNIT

"

W

:

‘ We developed a learning rule that we call the associative reward-penalty, or Ag_p ,

| rule {7,6,9,8]. This rule, which can be implemented by a neuron-like adaptive unit

: that we call an AR_p unit, is a refinement of similar learning rules that we had

X studied earlier. We devised it by combining aspects of algorithms for stochastic

A learning automata with aspects of algorithms for pattern classification or system

[identification. As a result of this hybrid nature, this method differs in critical ways

b from the methods, such as the perceptron and Widrow/Hoff LMS methods, that have

' become widely used in connectionist systems (for details, see Ref. [6]). I first give an

‘ informal description of the Agr_p learning rule, after which I specify it more formally

and define the task it was devised to solve.

The Ag_p rule is an embellishment of Thorndike’s [52] “Law of Effect™:

&

. Of several responses made to the same situation, those which are ac-

e companied or closely followed by satisfaction to the animal will, other

- things being equal, be more firmly connected with the situation, so that,
when it recurs, they will be more likely to recur; those which are accom-
panied or closely followed by discomfort to the animal will, other things
being equal, have their connections with that situation weakened, so that,

3 when it recurs, they will be less likely to occur. The greater the satis-

. faction or discomfort, the greater the strengthening or weakening of the

bond. (p. 244)

b

N Although a literal interpretation of this “law” has numerous difficulties with respect

to animal learning data, it remains a principle whose basic features have considerable,

5

...........

I e e
.\{\{\'_\\.\'_ "A\“.\ RN ;.'q'.‘._ \.‘-L .\\ \..‘1.\,\\ .\Ax\)_'\x_'{n.\&'-m'(‘& AL\J\\&'L‘.(\A.'A .ﬂ..'{z..u; \A.‘:h_ 2 st At At '.A. R VR R T T vy

a d u R

2 e w e a8 ol

o

~" P M .
PPN P

but not uncontested, validity {33|. The Ar_p rule implements the basic idea of the
Law of Effect, but it was necessary to add a number of refinements in order to make

it work correctly.

Each situation referred to in the Law of Effect corresponds to an input vector,
or key, that is received as input by an Ag_p unit. From this input vector, the unit
determines an “activation level” which is the weighted sum of the components of the
input vector, where the weights make up the unit’s current weight vector. The unit
then determines its action by comparing its activation level with a randomly varying
threshold, “firing” (action = 1) when the activation exceeds the current threshold
value, and otherwise not firing (action = 0). The noise in the threshold is such that
when the activation is zero, the two actions are equiprobable; when it is positive,
firing is the more likely action; and when it is negative, not firing is the more likely
action. The activation level therefore determines the strength of the bond between
the situation and the actions. As the weights change so as to increase the magnitude
of the activation for specific input vectors, the bond between those vectors and the
various actions increases—positive activation producing a bond between the input
vector and firing; negative activation producing a bond between the vector and not
firing.

The Ag_p learning rule causes the weight vector to change in such a way that
if an action emitted in the presence of situation z yields an evaluation of “reward,”
the unit is more likely to produce the same action when z, or situations similar to
z, occur in the future; in the case of penalty, weights change in such a way that the
unit is more likely to produce the other action, when z, or situations similar to z,
occur in the future. In order for this process to converge correctly to the actions
that correspond to the highest probability of reward, it is necessary to change the
weights asymmetrically in the cases of reward and penalty. Changes in the case of
penalty must be much smaller than the corresponding changes would be in the case
of reward. In the following sections, more technical descriptions of these ideas are

presented.

P I R T BN c et e
(AL PRI PP Y

T ¥ W =

The Associative Reinforcement Learning Task

The Ag_p learning rule is designed to solve what we call associative reinforcement
learning tasks. In these tasks the learning system and its environment interact in
a closed loop. At each discrete time step, or trial, ¢, the environment provides
the learning system with a pattern vector, z(t}, selected from a finite set of vectors
X = {z,..., (™}, £ € R"; the learning system emits an action, y[t], chosen from
the finite set Y = {y;,...,y:}; the environment receives y[t] as input and sends to
the learning system a reward/penalty signal rt] € {reward, penalty} that evaluates
the action y[t|. The environment determines the evaluation according to a map
d: X xY — [0,1], where d(z,y) = Pr{r(t| = reward | z|t| = z,y[t] = y}. Ideally,
one wants the learning system eventually to respond to each input vector x € X with
action y, with probability 1, where y, is such that d(z,y.) = max,ey {d(z,v)}

As pointed out in Ref. {7], in the case of a single, nonzero input vector, this task
reduces to the task usually studied by learning automaton theorists (which, according
to the terminology used here, is a nonassociative reinforcement learning task); see
Section 2 and Ref. [36]. On the other hand, in the case of two actions (|Y| =
2) the task reduces to a conventional formulation of supervised learning pattern
classification (see [10]) if for each z € X, d(z,y1) + d(z,y.) = 1. This restriction
(assuming it is known to hold) implies that feedback received from performing one
action provides information about the other action. This makes the task much easier
and allows conventional supervised learning pattern-classification algorithms (slightly

modified) to succeed (see Ref. [7] for details).

The Agr_p Learning Rule

The Agr_p rule’s action selection method is parameterized at step t by a weight

vector w(t] € R™:

0, otherwise;

N N R R N o Y CE I NPty

S S AR

where w(t|Tz[t] is the inner product of w(t] and z{t|, and the n|t] are independent

-~

identically distributed random variables, each having distribution function W.

According to Equation 2.1, the action probabilities at step ¢ are conditional on

the input vector in a manner determined by the parameter vector w(t]. In particular {
p”[t] = Pr{y(t] = 0|z[t] = z} = Pr{w(t|]Tz + n|t] < 0} = ¥(-w|t|Tz), (2.2) . $
and y
* A

pe(t] = Pr{y(t) = 1fzft] = =} = 1 - p*t]. (2.3)

If, for example, each random variable 7n[t| has zero mean, then when w|t|Tz = 0,
the probability that each action is emitted given input vector z is .5; when w(t|Tz
is positive, action y[t] = 1 is the more likely action; and when w(t]Tz is negative,
action y[t] = 0 is the more likely.! As |w|[t]Tz| increases for all z € X, the mapping .

Equation 2.1 approaches a deterministic linear discriminate function.

The parameter vector is updated according to the following equation: .
K
PR sl = p*IDzlt, el mrewardi
Mltl(1 = vle] - P [thalt], if rle] =penalty;

where 0 < A < 1 and p[t] > 0.
In the case of reward, according to Equation 2.4, w changes so that the probability .
of the action chosen, conditional on the current input vector, moves toward 1 (if .
y[t] — 1 then w changes so that p!* approaches I; if y[t] = O then p'* decreases

toward 0, which means that the probability of producing action O increases). In the
case of penalty, on the other hand, w changes so that the probability of the action -
not chosen, conditional on the current input vector, moves toward 1. Note that the :
parameter A in Equation 2.4 determines the degee of asymmetry in the magnitude ’
of the weight change for these two cases. ‘ ‘
It is shown in (7] that the Ag_p rule reduces under various restrictions to more .\
conventional learning methods. It reduces to the two-action (nonassociative) lincar .'\:
e .

'This version of the Ap . rule differs from that given in Refs. [7.8.61 in that the actions are 0 and
1 instead of —1 and 1. The weight-update rule given below is altered so that the two versions are

exactly equivalent. The 0/1 forin allows the notation to be a bit stmpler.

IR R NAN

‘. -~ - - D P T . RN A L S T [IR T ST YL B PV RR ST SAL N W
t‘.»: .F,\."': N A R N N O e P ST R S N A N S RN . .

- - . -

reward-e-penalty (Lg_.p) learning automaton rule (36| when each [t} in Equation 2.1

is uniform in the interval [—1, 1), the input pattern is constant and nonzero over time

‘ot

steps (z|t] = £ # 0), and the initial parameter vector w[l] is such that w([1|Tz €
[-1,1]. If additionally A = 0, then the Ar_p rule reduces to the linear reward-inaction

(Lg-1) rule [36]. On the other hand, when the Ag_p rule is made deterministic by

[t~

letting n{t] = O for all ¢ (i.e., the distribution function V¥ is the step function), then

the Ag_p rule becomes the perceptron learning rule [42]. With a slight modification,

'l

-
-

the Ar_p rule can be reduced to the pattern-classification method introduced by

> v
-

Widrow and Hoff [59] (the adaline, or LMS, algorithm). Consequently, the Ag_p rule
not only extends learning automata capabilities but also occupies the intersection of
¢ important classes of learning algorithms. Section 2 provides some background on
\ learning automaton methods. The Ag_p rule is most closely related to the “selective
bootstrap adaptation” method of Widrow, Gupta, and Maitra (58], to which it is
compared in {7].

A convergence theorem is proven by Barto and Anandan (7| by extending to
the associative case results proven by Lakshmivarahan (28,27|. It holds under the
following conditions: (C1) the set of input vectors X = {z(!),. .. 2™}, () ¢ R,
(C2) for each z € X and t > 1, Pr{zt] = £} > 0; (C3) the independent, identically

Pl d

distributed random variables n[t} in Equation 2.1 have a continuous and strictly
monotonic distribution function ¥; and (C4) the sequence p[t] in Equation 2.4 is

such that p[t| > 0, 3, p[t] = oo, ¥, p[t]* < co. We can prove the following theorem:

Theorem. Under conditions (C1)-(C4), for each A € (0,1|, there exists a w € R"
, such that the random process {w(t|}.>, generated by the Ag_p rule in an asso-
ciative reinforcement learning task converges to w} with probability 1 (that is,

Pr{lim; ., w|t| -~ w3} = 1), where for all z € X,

- Priy = llw3,z} > 1/2, if d(z.1) > d(z,0);

< 1/2, if d(z,1) < d(z,0).

<

In addition, for all r ¢ X,

e ey,

1, ifd(z,1) ~d(z,0);

lim Pr{y = lw},z} = {
A e0 A } 0, ifd(x.l) “ d(.‘l’,O).

z

s " e m m "W "MD" "M A" Ry e T AT ATE w M p m . " .. - IR T - I e R i S et S I S A AT RSl -.'_'
I }!I..’ .‘!’lf I'.!I ‘f‘.—":-af$!".f v, 5 I g EEE G SOALCH " IR e e e A e et

. e SRR W W N SRR T SRR T T T

According to the usual performance criteria for learning automata [36], this result
implies that for each = € X, the Ag_p rule is e-optimal. In fact, it implies a strong
form of e-optimality for each z € X. It is highly unlikely that this result is the most

general that can be proved about this class of learning rules (see [7]).

As is often done when using similar pattern-classification methods, in most of
our simulations we hold p[t] constant in order to increase learning speed even though
a weaker form of convergence in this case has not yet been proven. We have not
yet investigated elaborations of the Ag_p rule that reduce to recursive least squares
methods based on the Newton’s algorithm, but these have the possibility for showing
improved convergence rates. We view condition (C1) that the set of input vectors is
linearly independent as the most serious restriction required for the present theorem.
It is likely that this restriction can be removed and a result proved that involves

some form of operator pseudoinverse.

Simulation of a Single Agr_p Unit

In order to illustrate the performance of the Agr_p learning rule, we describe
the results of simulating a single Ag_p unit in a simple associative reinforcement
learning task that requires discrimination between two linearly independent, but
non-orthogonal, input vectors. We use as a measure of performance the probability
that the unit will receive reward on the average time step given its current parameter

vector. We denote this M(t] when computed based on the parameter vector w]t}:

M|t] = Z;E,[Pr{r[t] = 1jzt] = z}|
> &ld(z 1)p" 1] + d(r.0)p™ 1],

where £, is the probability that input pattern r occurs on any trial. This measure is
maximized when the optimal action for each input pattern occurs with probability

1, in which case it is

e B el e

A1max - X f,max{d(x, l),d(T,O)}

re X

10

. {3{ rree ."-‘,;_, AN

RSN S Y P AL

e

-

o™

-~

oAy,

P’ W of i 2

[DR R A g A ¢

J’.Ill"

AL P s

Sa ko B £7, i 2 8% e 8 1S b g kg U h g AT RS R kb 1 Bt gt Bt it 8 Wy b i a%) St asac pdg'd NN X IO 1D

The distribution function of the random variables used in all the simulations de-
scribed here is the logistic distribution given by ¥(s) = 1/(1 + e */T), where T is
a parameter. This is a sigmoidal function that is similar to a normal distribution
function but is easier to evaluate. It is also used in the studies of statistical coopera-
tivity (e.g., Ref. [24,1]), where T is the “computi.ional temperature” of the system.
As T approaches zero, the distribution function approaches a step function, which
means that the Ag_p unit more closely approximates a deterministic system. Given
this distribution function, the probability p'*[t] in Equation 2.4 is as follows (from

Equations 2.2 and 2.3):
pr[t] = 1-p%t
= 1-¥(-w(t|Tz)

= 1-[1/1+ e'”('IT’/T]

1

¥ (w(t)Tz).

In all simulations presented here, we set T = .5.

In the first simulation the input vectors are: z(!) = (1,0)T and z(® = (1,1)T,
which are linearly independent but not orthogonal. These vectors are equally likely
to occur on each trial (&, = £, = .5). The weight vector, w, is zero at the start
of each sequence of trials, which makes the actions initially equiprobable for both
input vectors. The reward probabilities implemented by the unit’s environment are

given by the following table:

z d(z,0) d(z,1)
D 6 9
@ 4 2

Thus it is optimal for the learning system to respond to (0, 1)T with action 1 to obtain
reward with probability .9, and to respond to (1,1)T with action 0 to obtain reward
with probability .4. Therefore, in this task M, ., - (.9 + .4)/2 — .65, and the initial
overall reward probability is (.6 +.9+ .4+ .2)/4 = .525. Note that any nonassociative
learning automaton algorithm will be able to achieve a reward probability of at most

(.94 .2)/2 -~ .55 by learning to perform the action 1 at all times. Also note that

11

for each input z, the reward probabilities are either both greater than .5 or both

less than .5, making this task considerably more difficult than one with the reward

probabilities placed above and below .5 for each z.

Figure 1a shows results of simulating an Ag_p unit in this task with three different
values of A: .01, .05, and .25. We held the parameter p|t| at the value .5 for all
t. Plotted for each trial t is the average of M(t| over 100 runs, where a run is a
sequence of 5000 trials. The dashed lines show theoretical asymptotic performance
levels for the three values of A (if p[t] were decreasing according to (C4)). Note
that this asymptote approaches the optimal performance level .65 as A decreases
and that the learning rate decreases as A decreases. The average final parameter
vectors for A = .01, .05, and .25 are respectively (2.99, -4.04)T, (2.73, -3.08)T, and
(1.91,-1.71)T. Figure 1b shows a plot of M|t| for one of the runs contributing
to the average shown in Fig. la for A = .05. Although this task involves only
two-diinensional pattern vectors, it illustrates the essential difficulties of learning to
discriminate between patterns that are similar by virtue of sharing a subset of feature

values.

Ag_p Units and Stochastic Learning Automata

The theory of learning automata originated with the independent work of the So-
viet cybernetician Tsetlin [55], mathematical psychologists studying learning [16,19],
and statisticians studying sequential decision problems (e.g., the “n-armed bandit
problem” [41]). Although this theory has an extensive modern literature in engi-
neering (reviewed in [36]), there has been very little cross-fertilization between this
theory and neural-network research. In this subsection I briefly describe this the-
ory, contrast it with the theory of supervised pattern classification, and describe
how learning rules like the Ag _p rule can be seen as a synthesis of aspects of these

theories.

Figure 2 shows a learning automaton interacting with an environment. At each
step in the processing cycle, the automaton randomly picks an action from a set

of possible actions, Y {y;,...,y}. according to a vector of action probabilities,

12

WRNREENE X

REWARD

I PROBABILIT vo’

0. 550

0.525

0.500¢, . N " " . . N N N n
a | 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

TRIAL NUNBER

REWARD

0.

PROBABILITY

0.

o0 oo

0.500b, . Y Y
b i 500 1000 1500 2000 2500 3000 3500 4900 4500 5000

TRIAL NUNBER

Figure 1: Simulation Results for a Single Ag p Unit

3
5
0
o
v
O
S
A
_.‘\
5
Tq
L

.
3 _aj

‘
.

o

Success Probabilities

: {dlv ey dk}
4
)
) . Random
. Environment Evaluation :
Action “success”
’ y€ {y.. .} Stochastic r= “failure”
A Learning
[Z Automaton

Action Probabilities
{P(yl),-u-P(yk)}

Figure 2: Stochastic Learning Automaton Interacting with a Random Environ-
ment.

P - {p(y1).--..p(ye)}}. The environment then evaluates that action by selecting an

evaluation signal that it transmits back to the automaton. Figure 2 shows the case

03

in which the evaluation, r, is either “success™ or “{.ilure” and is selected according
to probabilities {d,,...,d,}. where d, = prob{success|y,} (other formulations allow
a countable number or a bounded continuum of evaluations). Upon receiving the
evaluation, the automaton updates its action probabilities as a function of its current
action probabilities, the action chosen. and the environment's evaluation of that
action. Beginning with no knowledge of the environmental success probabilities, the
objective of the automaton is to improve its expectation of success over time. Ideally,
it should eventually choose action y; with probability 1. where d; max{d,.....d,}.
Many different algorithms have been studied under a number of different performance

measures, and many convergence results have been proven [36;,

Theorists have become increasingly interested in the collective behavior of learn-

ing automata. Figure 3 shows collections of N learning antomata interacting with an

environment. In Fig. 3a. each automaton receives a different evaluation signal that
depends, in general. on the actions of all N automata. This models the situation
in which the automata have differing. and possibly confhieting. interests. This is a

game decision problem. In contrast to the problems studied in classical game theory,

L ol

[D 3 A Bt | P N

s s

e e & & o A A

Xxap

Vs s A S S

et ey "an At ‘a¥ gl aW. gl ey v gt ¢ -|~..—¢;-l'|i‘0 AN $o8 Sof 2B Yok B "al %al Yo $o8 Uom Vog o) Mop .9 Gip 0

Random Environment Random Environment
T .rN r r
LA\l " [LAx LA, " LAy

(a) (b)

Figure 3: (a) The game problem. (b) The team problem.

the automata operate in total ignorance of the payoff structure of the game and the
presence of the other automata. In the case of zero-sum games (games of pure con-
flict), theoretical results show that when employing certain algorithms, the learning
automata converge to the game’s solution (if that solution involves pure strategies;

see Refs. [29,30,56)).

Figure 3b shows a collection of learning automata in the team situation, which is
the special case of the game situation in which the automata receive the same evalua-
tion signal. In this case, the automata have a common goal but each automaton only
has partial control over the evaluation. As in the case of games, the learning process
in this case is incompletely understood, but a number of mathematical results have
been proven, the strongest of which shows that certain stochastic learning automaton

algorithms lead to monotonic increases in performance [37].

Comparing stochastic learning automata and the typical adaptive units used in
theoretical neural-network research reveals several important differences. First, a
tvpical neuron-like adaptive unit has multiple input pathways that carry patterned
stimulus information. Such a unit might also have a pathway specialized for training,
such as the pathway for the desired response of a Widrow;Hoff Adaline or a Per-
ceptron unit. The learning process causes the unit to implement or approximate a
desired mapping from stimulus patterns to responses. A learning automaton, on the
other hand, only has a single input pathway for the evaluation signal. Learning ei-
ther results in the selection of a single optimal action or a suitable action probability
vector no (nontrivial) mapping is produced. On this dimension of comparison, then,
the usual adaptive units are doing something more sophisticated than are learning

antomata.

|

R ITINI IEN IO E T N I NTTT T IrrTryTmmmy PRI O A I IR TN O I R A O U IO O A O R N O O R S O KR

However, the usual adaptive unit requires an environment that directly provides
either a desired response or a signed error that directly tells the unit what response
it should have produced. In contrast, a learning automaton has to discover, in a
stochastic environment, which action is best by sequentially producing actions and
observing the results. Since there are no constraints on the success probabilities,
information gained from performing one action provides no information about the
consequences of the other actions. This can be a non-trivial problem even in the case
of two possible actions and is fundamentally different from the supervised learning
problem [18]. Therefore, in terms of the amount of information required for successful
learning, a stochastic learning automaton implements a form of learning that is more

powerful than the supervised learning performed by most neuron-like adaptive units.

Because typical network adaptive units and learning automata excel on different
dimensions, it has been fruitful to study learning units that combine the capabilities
of these two types of systems. The resulting units, such as Ag_p units, are able to
learn mappings in the absence of explicit instructional information. This ability has
implications for applications to learning control problems as discussed in Section 5.
Units such as Ag_p units can also participate in team or game decision problems sim-
ilar to those in which learning automata have been studied. Unlike nonassociative
learning automata, however, these units can learn to act conditionally on information
from a variety of sources, including other units in a collection. Consequently, collec-
tive behavior more complex than that produced by nonassociative learning automata
can be procuced by networks of units combining associative learning with reinforce-
ment learning. The following quotation illustrates that Tsetlin [55] was similarly

interested in more elaborate forms of collective behavior:

We have discussed very simple forms of behavior, and for this reason
we limited ourselves to the simplest types of automata. The exchange
of information among these automata takes place in the language of
penalties and rewards. Although this language seems universal enough,
it would, however, be interesting to also look at more complicated au-
tomata that possess some specialized language to communicate to other

automata. Such automata are needed to describe more complex forms

LI IR S R - e T w s . ’ . et . BT IR S LS Lo Ve e T m e . ..
NN NS, S Ay A R R R T T A M R PEE P SR e T S TP LIRS
& ‘._‘.A_.:L-,-: R e) _'1/“;I PR A A AT A S I IR TAL LSNP L IR DRI Y o i o e

of behavior. These more complex behavioral forms necessitate the use of

much more diverse information. (p. 125)

To the best of my knowledge, there has been no systematic attempt to study the

collective behavior of learning automata that communicate in this way.? Some of

our research represents the beginning of this type of study as described in the next

section.

“Recent work by Thathachar and Sastry |51! uses stochastic learning automata in an algorithm
for supervised pattern classification. Although this algorithm combines pattern classihcation and

learning automata in a very interesting manuer, it does not involve mutually communicating learning

- antomata,

anmmmr‘]

COOPERATIVE BEHAVIOR OF Ag_p UNITS t

SECTION 3

In this section, I present an overview of our studies of cooperating collections of
Agr-p units. Since details of the simulations are provided elsewhere [6], I mainly dis-
cuss the significance of these results and their relationship to other lines of research:
the collective behavior of stochastic learning automata, game and team decision the-
ory, and other methods for learning in layered networks. In Section 7, I briefly discuss
problems with scaling this approach to larger problems and suggest how they might

be solved by means of modularity and local reinforcement.

Associative Search Networks and Team Decision Problems

Our early work with the networks we called associative search networks, or ASNs,
stressed the ability of these networks to learn associative mappings in the absence
of explicit instructional information [14,11]. Figure 4 shows an ASN. It differs from
the usual single-layer associative memory networks discussed in the connectionist
literature (e.g., Ref. [23]) because instead of having reference channels for specify-
ing desired outputs of the units, it has a single channel for broadcasting a scalar
evaluation signal to all of the network’s units. We studied ASNs in associative re-
inforcement learning tasks [14,12,11]. The object of such a task is to construct the {

mapping that associates each key with the action (recollection) that yields the best

possible evaluation from the environment. A basic assumption is that the network
has no a priori knowledge about the environment’s evaluation function. If a network
can solve this task, then the associative mapping it constructs has exactly the same

properties as the mappings learned by the usual associative memory networks. In this

e @ - eEEEmAr- W S a . -

1R

]
1
\
|
|
[
.

AP S O e S T S P

CalalatnaCadnsent s Cale

R e T

Scalar Evaluation

Recollection

Figure 4: Associative search network.

case, however, the mapping would be formed in the absence of explicit instructional
information. The scalar evaluation signal contains much less information than the
reference vector required for storing information in the conventional case—it can be
generated by an environment that can evaluate the behavior of the network, that is,
the collective behavior of the network’s units, but cannot specify the desired behavior

of each individual component.

In addition to relating ASNs to associative memory networks, one can relate them
to the teams of stochastic learning automata mentioned in Subsection 2 and shown
in Fig. 3. An ASN in an associative reinforcement learning task is a generalization
of a set of learning automata in a team decision problem. If one were to hold the
input pattern to the ASN fixed for all time, the result would be the same as a team
of nonassociative learning automata facing a team decision problem. Since all units
receive the same reinforcement, they have no conflicts of interest. Consequently,
the ability of an ASN to search for optimal patterns can be seen to arise from the
cooperative activity of the adaptive units as ecach attempts to maximize its own
performance. The ability of the adaptive units of an ASN to do this conditionally on
information provided by the input patterns implies that the units cooperate to form

associative mappings.

19

NGO (AT S N

LAY sINTe

Layered Teams of Ag_p Units

A natural extension to the single-layer ASN is to add additional layers of
Ag-p units. In these networks, units learn to act conditionally on information pro-
vided by other units in the network as well as information provided by the network’s
environment. As a result, layered networks can learn to implement nonlinear asso-
ciative mappings. Suppose the network’s environment presents stimulus patterns to
the network by making the patterns’ components available as input to some subset
of the network’s units. We call the units that receive this external stimulation the
input units. The output signals of another subset of units are received by the envi-
ronment, and patterns of these signals constitute the “overt” actions of the network.
These are the output units, or to use the term of Hinton and Sejnowski (24|, “visible

units.” The units that are not output units (including any input units that are not

output units) we call the “hidden units” after Hinton and Sejnowski [24]. ! Suppose

that the environment evaluates the activity of the visible units and broadcasts a

reinforcement signal to all the units of the network.

How can a hidden unit improve its reward probability when its output cannot
directly affect the environment? The only possibility is for it to assist visible units
in increasing their reward probabilities; and this might be possible only by assisting
intermediate units. For example, a hidden unit might adjust its weights in order
to produce a signal A that another hidden unit combines with other information to
produce a signal B, where signal B, in turn, allows a visible unit to make a required
discrimination. The adaptive units must be able to discover how they can contribute
to the common goal. We regard the linking up of units under these conditions to be

a form of cooperation by which units coordinate their activities for mutual benefit.

'Note that our use of these terms differs slightly from their usage hy Hinton and Sejnowski and
others. They replace each of our network input pathways with a specialized unit whose activation can
be clamped to specific valies by the network’s environment, and they call these units visible units

ton. I have always preferred not to do this given my background in switching and automata theory.

A Minimal Layered Network of Ag_p Units

Figure 5 shows a network of two Agr_p units, v, and us. Only u, receives stim-
ulus patterns from the environment, and only the action of u; is available to the

i: environment (u, is hidden; u; is visible). Suppose this network faces an associa-

-
a

“ufw b

Figure 5: A Minimal Layered Network of Ag_p Units

tive reinforcement learning problem in which the network’s output, the output of
us, affects the reward probability in a manner that depends on the stimulus pattern
presented to u;. Both units receive the same reinforcement signal. If there were no
means for u, to communicate with u,, the units would be capable of achieving only
y limited reward frequencies. The action of u; influences the reinforcement of both
units, but in the absence of a communication link, u, remains blind to the discrimi-
native stimulus and therefore cannot learn to respond selectively in a discrimination
task. On the other hand, in the absence of a communication link, u; can sense the
discriminative stimulus but cannot influence the reinforcement received. The com-
plementary specialties of the two units have to be combined in order for each to
attain optimal performance. In simulating this situation, we arranged for the action
of uy to potentially influence u, by providing an interconnecting pathway with an
. initial weight of zero. If this weight can be adjusted properly, the network can re-
spond correctly. However, the correct value of the interconnecting weight depends

on how u; has learned to respond to its input. Conversely, the correct behavior of u,

" depends on the value of the interconnecting weight, that is, on how u; has learned

to respond o its input signals. Thus the two units must adapt simultaneously in a

21

z.a.v-:a-z_ 4-.4-.

iy gifae e AN T St S P S L i et

tightly-coupled cooperative fashion in order to maximize reward frequency.

To be more specific, we set up the simulation in the following way. Each unit is
provided with a constant input (equal to 1) to allow its threshold to vary and one
other input pathway. We regard only this second stimulus component as the stimulus
pattern z, treating the constant input as part of a unit’s internal mechanism. Each
unit of the network in Fig. 5 can therefore receive the input “pattern” 0 or 1, where
for u, it is generated by the network’s environment, and for u, it is the output of
u;. The reward probabilities implemented by the network’s environment are given

by the following table:

Table entry d(z,y) is the network reward probability given that u, receives r as
input and u, responds with y as output. that is, given that the network as a whole
responds to z with y. Thus it is optimal for the network to respond to = ~ 0 with
action 0 to obtain reward with probability .9, and to respond to £ = 1 with action 1
to obtain reward with probablity .9. In this task M.« = (.9 + .9)/2 = .9, and the
initial overall reward probability (with all weights zero) is (.9 + .1 +.1 + .9)/4 = 5.
Note that if the network fails to discriminate by responding identically to all input

patterns, the overall reward probability is (.9 + .1)/2 .5.

There are two ways the network can solve this problem. Let us denote the weights
associated with u;’s (nonconstant) input pathway w'. ¢ 1,2. In the first solution,
u, learns to fire only when stimulus z - 1 is present by setting its threshold high
(i.e.. setting its threshold weight negative) and setting w! positive. Unit u, does
the same thing- sets its threshold high and #? positive so that it it fires only when
stimulated by u’s firing. Consequently, the network as a whole fires only when r 1.
In the second solution. uy learns to fire at all times ercept when stimulus r 1 is
present, and u, learns to fire at all times ereept when vy fires. Then when uy is silent

in response to r 1, u, is disinhibited and so fires.

In simulating a trial with this network. and with all the networks to be described,

the environment first presents a stimulus pattern to the network, and then proceed-

22

OO OO O Ot O T O I Y O O T O T T Y T T T T T T VT O O O I N N KO OO O RO TOU O RO R TR TS

ing from the input side of the net\l;/ork, we sequentially compute the output of the
successive units so that their actions are available as input to “downstream” units.
This is possible because the networks described here do not have recurrent con-
nections. When the network’s overt action is generated, the environment produces
the reinforcement signal, and all the units update their weights. We view the weight
modifications as occurring simultaneously for all units, although this is actually done

sequentially by the computer program.

Figure 6 shows the behavior of the network for a typical sequence of 500 trials
with A = .04 and p = 1.5. Figure 6a shows the evolution of the behavior of u, in
terms of two graphs. The first shows the conditional probability that u, fires (y; = 1)
given that its (nonconstant) input is 0, and the second shows the same thing for input
1. Both of these probabilities start at .5 since the weights are initially zero, and they
change in approximately the same way for about the first 50 trials. This means
that during these trials the unit is experimenting with firing and not firing in the
presence of both input signals. At this point the two conditional probabilities show
the beginning of differentiation between the two cases, which becomes unequivocal by
about trial 80. From then on, with a few brief exceptions, u, has a high probability
of firing in response to an input of 1 and a low probability of firing in response to
an input of 0. Figure 6b shows the evolution of the mapping implemented by u,
and u; acting together by showing the probability that u, fires (yo = 1) for the
different values of the network input z (not for the values of u;’s local input). Since
the network learns to respond correctly, u, learns to remain silent unless excited by
u,’'s activity; that is, the first solution is formed in which both w, and w, become
positive and both units set high thresholds. Figure 6c shows the evolution of the
overall performance measure M,. Figure 6d is a histogram of the number of trials
required to reach a criterion of 98% of M,,., for each of 100 sequences of trials. In
all sequences the network reached this criterion before 1500 trials. In 45% of the
sequences, the network produced the first solution; in the remainder it produced the

second.

A series of two units in a discrimination task provides one of the simplest examples

we could devise to demonstrate statistical cooperativity of self-interested units. [t is

.............

RN N RPUE I I S RIS M

Priyi=tr =0} 0S5 h] -zt e e e

200 300 00 500
300 300 100 500

TRIAL NUNBER

100 200 300 100 500

1.0t T
Muue
[/ R I it Al b A I IS I S S I I I 1
. 0.]
* REWARD
: PROBABILITY 0.
) 0. 1
0. ..
0.4,]
[} 0 100 200 300 400 500
TRIAL NUMBER
5 1of o 7
|
NuUMBER OF ‘ J'] :
M TRAINING ‘\t ” E} ‘
SEQUINCES t j'[’m il E”
, i
o il Hiindldl o ho ol ‘
d 0 Tn00 €60 T %00 OVER 000 .
TRIALS UNTIL SOLUTION {MEAN=320)
1 Figure 6: Simulation Results for the Two-unit Network.
X 24

e T T R Y LT e e %t N e A e 4 e Y o S NN R WM e EL o w man L wa s awo w . e ae, .
P N AN I S T T S A AT ALY > I PR, PNl AL A P A A UL St S At AR
Sl SR Lh.p@hhmﬁu»ﬁu,uhlma.mhﬁghhh Sl L Gl Sl A S N LGRS L RIS OREERSRNY |

clear that the Ay p units effectively form a link that permits them to obtain higher
reward rates than they could attain if they were to act independently. Moreover,
a unit contributes to the formation of this link only because doing so furthers its

interests. We interpret this as a form of cooperativity in the literal game-theoretic

sense. One may regard the link as a “binding agreement” by which the units form
a coalition for mutual benefit. We have simulated series of 3, 4, and 5 units with
appropriate connections being made in all cases, although learning slows considerably
as the depth of the network increases. Although the discrimination required in
these tasks is not difficult, the necessity to construct a long chain of connections
that faithfully transmits the discriminative stimulus is quite difficult. The correct
behavior for any unit depends on the behavior implemented by all the other units so

that the solution cannot be constructed from stable solutions to subtasks.

The XOR Task

In the task just described, cooperative learning is required only because the net-
work lacks a direct pathway from input to output. The task itself is easily within
the capabilities of a single unit. Here we illustrate the simplest example of a task
that cannot be solved by a single linear threshold unit, or any single-layer network of
them. In this problem the hidden unit is needed not just to transmit a discriminative
stimulus to the visible unit; the hidden unit must learn to respond to particular con-
figurations of its stimulus components in order to create a signal that the visible unit
needs to behave properly. In our simulation, a network of two Ag_p units is placed
in a task requiring it to form the two-component exclusive-or mapping. The network
has a single hidden unit, u,, and a single visible unit, u,, which are connected as
shown in Fig. 7. The stimulus patterns are all the two-component binary vectors:
' (0,0), 2™ (0,1), 2 (1,0), 2 (1.1). These patterns are equally likely

to occur on any trial. Fach unit also has a constant input and a threshold weight.

SRR TN PN T

e W e me A

- o -

l..l.l_v'

“

I W

s a4 L

'.;V' 5 PSS

aJafala s

Iyt - 13 LIRS AN LMY 1] LS L [P \] Y, 4 Y. o. § . 4%p & a [[X] g YRR X -

The reward probabilities are given by the following table:

z . d(z,0) d(z,1)
.1

9

.1 9
1 9
9 1

Table entry d(z,y) is the reward probability given that the network receives r as
input and responds with action y. The optimal reward probability is M., = .9,
which is obtained when the action of the visible unit is the exclusive-or of the pattern
components, that is, when u, fires when one or the other, but not both, stimulus
components are present. It must also not fire when both components are absent. A
single Ag_p unit can be correct for at most three of the four cases, yielding a reward
probability of .7, since weights do not exist that allow a single linear threshold unit
to respond correctly to all four stimuli (see Duda and Hart, 1973, or Minsky and
Papert, 1969). However, the performance of the network of Fig. 7 can approach
M...x if the hidden unit learns to respond only to the fo-'rth case and the visible unit
takes advantage of this signal to “debug” its responding. This can happen in several

ways depending on whether the hidden unit learns to turn on or off for the fourth

case.

Xy

Figure 7: Network for the Exclusive-Or Task.
Figure 8 shows performance of the two-unit network for a typical sequence of 5000

26

SRS T S . P T T ST
» SRR R S R A A R I S N

. “
..........

- §

T T CY

AT

v at gl

P v A e |

v s 8 3 &

a"a" N A

"

O]

Sl "al "ab taf_ tak tal _Val U 2, "8 cat fal "ag gt gt "ai_cab a0 “ad "2l “af a8 %ol *af ‘af "ot ° ‘alk Valb ‘a8 ‘2t taf “al *al "a8 . "al. ‘sl ‘s L)

trials with p = 1.5 and A = .08. In Fig. 8a are graphs showing how the output proba-
bilities of the visible unit develop for each input pattern; Fig. 8b shows the analogous
information for the hidden unit; and Fig. 8c shows the overall performance of the
network as a function of the trial number. The visible unit quickly learns to respond
correctly to all patterns except z{!) = (0,1) (Fig. 8a), causing the network perfor-
mance to level off near .7 (Fig. 8c). Eventually (¢ ~ 1400) the hidden unit comes to
respond reliably to z{!) and to reliably not respond to any other pattern (Fig. 8b).
At the same time, the visible unit begins to be excited by the hidden unit’s signal
so that its output tends to be correct more frequently for all four patterns (Fig. 8a).
Once this mutually beneficial relationship between u, and u, begins, it quickly devel-
ops until almost perfect performance is achieved (the theoretical asymptote is .892

for this value of A). It is clear that this is a cooperative process.

Figure 9 shows a histogram of the number of trials until a criterion of 95% of
M nax 1s attained for each of 100 sequences of trials. The average number of trials
until criterion is 3501, or about 875 trials for each stimulus pattern. In all of the

sequences the network reached this criterion before 15,000 trials.

The Multiplexer Task

The network shown in Fig. 10 has six input pathways and a single principal output
pathway (from unit 5). There are 39 weights to adjust: one associated with each
of the pathway intersections and one threshold weight for each unit. The reward
contingencies implemented by the network’s environment force the network to learn
to realize a multiplexer circuit in order to obtain optimal performance. A multiplexer
is a device with k address input pathways and 2* data input pathways (here k 2),
each of which is associated with a distinct k-bit address. Given a pattern over the
address pathways, i.e., an address, a multiplexer’s output is equal to whatever signal
(0 or 1) appears on the data pathway associated with that address. It therefore
routes signals from different input pathways to a single output pathway depending
on the “context™ provided by the pattern over the address pathways. If we call the

address components a; and a; and the data components d,.d;,ds, and d4. a minimal

27

Ty -

- -

> 8 o 3.8

AN AN RN . 1 o 3% g% ‘g4 N Vel uad Aay ool b g g V.8 b 1.9°0,.8'% 1 M W WA +,) 2% AP U N SR LI WA . * g ¥ 94"
£ {0.0) ' = (0,8}, 0D 5 (1,0),0'" = (1,1)
P) ’ '
.L .
Pl = tlsas™) - ‘ ‘ . | .
. "\ 4(4).,«—- AP U PR | ,‘A_'\,AA‘__W__ B k. ,
s o et ~ -c v ;
tort T . m—-_—.f o —*——-—w——*—vﬁ w~x'
P'(n-llx-x“’)t‘_"r\l l r" ' 'r l
n 0‘, SNSRI - ..77?"777 o o B -
‘”00 3000 ‘009) SCJD

(*i '“M“"'"TT“ o “‘g*’ |

]

o o T 3coo T TTawm 008
A (N TN) L.
. Uhlﬁ.&uk./vf\wb AMJJL I DTSN NS N
a k] X% TR T TUOYes T T T wese T T 5o
TRiaL WuMEER
IR AT i
Priy = 11z = ¢ ""w " - n)
o i !
oo TS | B T S N N
¢ 1t - %0 31000 0 woo T owocd

Pv(n=llr=x“'):.slv ‘V’rin’l": ' , “\}U

! ‘ |
. '&) Uou A ‘
4 By T T TEIT T e
..* U
Pe{y, =tz = s} 2 (.L o X
via N , _
b}) - T‘:bi 7:‘":: - ‘43757 T) Ty
: NP , \)
AN Wo! ot
Priy, =1z =My .. d e [. h .4‘ |
Vase . B W R U T
b S i

TRiAL wuMBCR

o T
racmann ey ’f‘ Vo r/.m Y [' Y '

TR . wAw

Figure 8: Behavior of Network Units in a Typical Sequence of 5000 Trials in
the Fxclusive-Or Task.

ERT TR TS TR T T T I R T N IR

B, e et gt tal e eV et i gt g gl At gis 3t it e €0 8'ad's 10 B'a Atadte At g 0's Vel a dn S g daub'e bt EPESE A AT TR A ER RN " R AN T

- e
e -

S ., ! H‘ om 0w o

¢ 5000 10000 15000 OvER 20000
TAALS VN TR SOLVTION (WEAR=I004 }

Srrl AL

Figure 9: Histogram of Trials to Criterion for 100 Sequences of Trials in the
Exclusive-Or Task.

[NENE N N

-

v 4

Data

Reward

or

Address T 1 . T
|
|
! Penalty

|
|

rTYevy

A = Output

Figure 10: Layered Network for the Multiplexer Problem.

logical expression for the maltiplexer function is

dyayd) V dyazdy V a1dzds VvV aja;y dy.

There are a total of 2¢, or 64, input patterns.

For each of the 64 possible input patterns, we rewarded each unit of the network
with probability 1 if the visible unit (unit 5) produced the correct output, and we
penalized each unit with probability 1 otherwise. The input patterns were chosen
randomly for presentation to the net. All of the units implement the Ag_p algorithm
with T = .5 except for the visible unit (unit 5) which uses T = 0 (and therefore
essentially uses the perceptron algorithm; see Section 2). Fig. 11 is a histogram
of the number of trials required for the network to respond 99% correctly for 1000
consecutive trials in each of 30 sequences of trials with p = 1 and A - .0l. The
average number of trials required is 133,149, or about 2080 presentations of cach
stimulus pattern. In every sequence the network reached the criterion before 350,000

trials.

NUNSLN OF

MQuEnNces

L0 0 Wpd 00 4 1

se00e 160000 150000 200000 258000 300000 150004
TRALS UNTR SOLUTION (MEAN=13S 148)

Figure 11: Histogram of Trials to Criterion for the Multiplexer Task.

This task illustrates some of the computational sophistication that can arise with
the formation of nonlinear functions. Linear threshold functions can exhibit only a
very restricted form of context sensitivity: contextual information can bias activation
one way or the other, effectively raising or lowering a threshold. Nonlinear context
sensitivity, on the other hand, can result in the complete alteration of behavior as

a function of contextual information. The exlusive-or task described in Section 3

30

AR L L s tatat

) ‘o -t " R -t - e S ..-'.H.- ‘.- P . . - . ‘.. LT ‘» . - ' . .» ."., . - -
T I R R R Sy ST T P S, . ., R I, S, LU P ST . S, S, W

! illustrates this in the simplest form, where one stimulus component can be regarded
) as switching the processing of the second stimulus component between the identity
and inversion functions. The multiplexer illustrates a more extreme form by which
the contextual information provided over the address pathways completely alters the

set of signals to which the principal unit is sensitive.

R LA

- Discussion— Ag_p Networks and Gradient Descent

| Not long after we began experimenting with networks of Ag p units, Rumelhart,
) Hinton, and Williams [44] presented an error back-propagation method for learning
‘ in layered networks that has since become well-knowr This method is described
in Section 4, where its performance is compared with that of several other methods
including the Ag_p method. This error back-propagation method is now deservedly
. popular since it is simple to understand and outperforms other methods for learning

in layered networks, including ours based on Ag_p units. What is most interesting

. here is that the error back-propagation method together with a theoretical result of
Williams (61,62| sheds much light on the collective behavior of Ag_p units in layered

networks. In fact, it is not too misleading to regard Ag _p networks as performing a

s s A s

kind of stochastic approximation to the back-propagation method (although this is

.

not strictly true for several reasons to be discussed).

The error back-propagation method is a gradient descent procedure in weight
space. The remarkable result is that information about how to step in weight
X space to minimize (or maximize) a global network performance criterion can be
obtained locally in the networks. In the case of the back-propagation algorithm,
this information the partial derivative of the performance criterion with respect
to each weight - is obtained through a complex process in which error signals are
- transformed and passed backward through the network. Another way for a unit to
determine what steps to take in weight space is for it to determine the derivative
of the performance criterion with respect to its activity by varying its output and
observing how the global performance changes as a result. Given this estimate, the

unit can then correctly determine how to change its weights.

&

.

A e m,w Nt t ek e -
=~ t{ " -,."\' v ‘_‘-. » oy "..\ N LN e
A A

PR EE T R T R S B I A NP I I U S R
~ X AT T e T e T e T e T T
o A Y. 4Py Wy N M v " e

S

R P Iy

‘p d'g d'g &' Sy s * L] 1 g tg 8'g 03 8 . L] Qg d'g s« el L) * L) + (VIR N ARR)

More specifically, suppose the units are deterministic, and that a given hidden
unit can vary its output around its current value while the outputs of all of the
other units are frozen at their current values. By observing the consequences of this
variation on the performance criterion, the unit can determine the gradient of the
criterion with respect to its output at the current point in weight space. From this
it can easily determine the criterion’s derivative with respect to its weights, and so
can alter them appropriately. Now each unit in turn can do this with the other units
frozen. If a unit’s new weights are not put into place until all the units have varied
their outputs, the result will be a step in weight space according to the gradient of the
criterion. This process, which is reminiscent of, but different from, the Boltzmann
relaxation process, would work but has obvious shortcomings since some outside

agency would have to orchestrate the process and it would be quite slow.

But can the units vary their outputs simultaneously and observe the consequences
to achieve the same result? This could be made to work if the units independently
influenced the criterion function, but it is difficult to see how it could be done if these
influences are not independent, which is the only case of real interest. It turns out,
however, that it is possible for interacting units to simultaneously vary their outputs
to obtain an estimate of the appropriate gradient. This is essentially what happens
in networks of Ag.p units. Williams has shown [61] for an arbitrary acyclic network
of Ag p units that if the parameter A in Equation 2.4 is zero for each unit?, then
the expected direction of each weight change is proportional to the gradient of the
global network reward probability. Consequently. each weight changes according to
an unbiased estimate of the partial derivative ol the global criterion function with
respect to that weight. On any particular trial, the step in weight space actually
taken may or may not amount to an improvement, but the trend will always be in

the correct direction.

Thus, Ag p networks (with A 0) provide a way of locally computing gradient
information without the need for a complex back-propagation process. We have

found that in practice such networks actually require A to be nonzero (in fact, a

“We call units with X 0, Ap ;1 units, for Aszocintive Heward-Inachion units: upon penalty, no

weight changes ocenr.

LIATS

TN .

R e, i i i e A e e e e A

dl

positive value much smaller than p) in order to converge properly. Although the

average direction of weight change is correct when A = 0, the process can get stuck
at suboptimal points in weight space because the units become deterministic too
soon. Setting A nonzero seems to prevent this from happening by eliminating all
absorbing states from the stochastic process. Consequently, even after learning is
complete, all the units retain a small amount (depending on the size of A) of random

variability in their behavior.

This view of Agr_p networks provides a link, albeit an approximate one, to the
gradient descent procedure implemented by the Rumelhart et al. back-propagation
method. The link is not exact for two reasons: 1) since Agr_p units are binary
whereas back-propagation units have continuous outputs, the activity spaces in the
two cases are different, and 2) the criterion functions in the two cases are different-—in
the Ag_p case it is the network reward probability whereas in the back-propagation
case it is the total mean-square-error of the visible unit’s activity. Nevertheless, the
relationship between these two methods is useful in understanding the cooperative
interaction that occurs in Ag_p networks. As one would expect from this relationship,
the Ar_p method is slower than is the back-propagation method in terms of the
number of stimulus pattern presentations. This is borne out in the comparative
studies described in the next section. However, the Ag_p method does not require a
back-propagation process to assign credit to the units. This could have advantages
in terms of hardware implementation and in terms of biological plausibility. The
relationship of the Agr_p method to gradient descent also suggests a modification of
the Ag_p learning scheme, which we call the batched Ag_p method, that is described

in Section 4.

33

A

L

SECTION 4

COMPAKATIVE STUDIES OF LAYERED NETWORK LEARNING METHODS

A
4
In assessing any new approach to an old problem, it is necessary to compare
the new method with ones that have been tried before. We therefore conducted :
simulation studies designed to compare a number of methods that have been proposed
for learning in layered networks. We compared eleven such methods by applying each k'
to the same learning task. We chose the multiplexer task (see Section 3) because it . l
is difficult enough to show the advantages of the more sophisticated methods, but it)
is simple enough that reasonable amounts of CPU time are required for statistically)
significant comparisons. In this section | review the results obtained. Complete -
details are available in Ref. [4] from which this section is abstracted.
In the experiments to be described, the hidden-unit learning rule is the primary N
variable. The learning rule for the output unit is the same for most experiments.
The perceptron learning rule [42] is used for the output unit since it is well-known .
and is relatively insensitive to the learning rate parameter p (so p would not have to
be varied to optimize performance).! The network structure is as in Fig. 10. A step E'
in the simulation of this system consists of the following. An input vector is selected :_
by choosing one randomly, without replacement, from the set of all input vectors. -
Upon receipt of an input vector, the outputs of the hidden units are calculated, Y,
followed by the calculation of the output of the output unit. The output of the .
output unit is subtracted from the desired output. This error controls the perceptron 5
learning rule as it is applied to the weights of the output unit, after which the .
particular learning method being tested in the hidden units is applied to the hidden .
"
'The application of the error back-propagation method 44| to the hidden units requires the use of ‘
a differentiable output function in the output unit, so a semilinear output function and learning rule ’
were used in the ontput unit for the experiments with the error back-propagation method. N
~
34 '.:~3
R
¥

-‘.'s -‘\-N'v\

A
lfx.'..(h‘ L(L(A. oy @ mﬁ." Y ..\._ {L{A&m’ ~ " ORI L O Y - . o+ . PP > NPT

units’ weights (although some methods, such as the direct-search methods, do not
change the weights of the hidden units on every step). This completes one step in
the simulation. Every input vector is presented once during the first 64 steps, and
once again for every subsequent set of 64 steps, where the order of presentation is

determined randomly.

The direct-search methods are presented first. These methods require no knowl-
edge about the network other than the number of hidden-unit weights and their
ranges of values. Following the direct-search methods, several error back-propagation
methods are presented that involve the propagation of the output unit’s error to the
hidden units. Several reinforcement-learning methods are then presented, including
the Ar_p method. A modification of one reinforcement-learning rule is considered
that generates localized reinforcements to the hidden units by propagating informa-
tion from the output unit back to the hidden units. Finally, a mechanism is consid-
ered that treats hidden units that have not yet acquired a substantial influence on

the output unit differently from those that have developed influence.

The behavior of each method depends on several parameters. A comparative
study should guarantee that parameter values are used that are optimal for a given
method to ensure the absence of bias in favor of one method over another. However,
the time required to simulate the learning process in these experiments prohibited a
thorough optimization of the parameter values. We were able to test an average of six
different values over a broad range for each parameter, and when a method depends
on more than one parameter, only one parameter was varied at a time. Note that
this attempt to compare methods, where each is operating with optimal parameter
values, does not address the important issue of the relative degree of robustness of
the methods. Since the parameter values that are optimal depend on the learning
task, it is possible that a learning method may excel at a particular task when using
specific parameter values and yet perform badly on another task when using those
same parameter values. On the other hand. a method that learns more slowly than
other methods on a specific task may have a speed advantage over the other methods
when applied, with the same parameter settings, to a class of tasks. The comparative

studies reported here do not address this important issue.

_ . -; _- ,' BT .‘ ._.' N -‘\-’_-'-.“_

VevauyBwRE

PREX XA

-t -

Another important issue that is not addressed by these studies is the issue of
scale-up. How do learning times grow as tasks get larger or more difficult? We did
not apply the battery of learning methods to a series of increasingly difficult learning

tasks.

Direct-Search Methods

Unguided Random Search

The simplest possible brute-force random search was included to provide some
idea of how difficult the test learning task is. This method consists of randomly
choosing new weight values for all of the hidden units in the network (using uniform
probability density function); evaluating these weights by allowing the network to
interact with its environment for a number of steps (denoted n); and remembering
after each evaluation period the weight values receiving the best evaluation so far.
Here we want to evaluate the current values of the weights by measuring how well the
network can solve the task using the given weight values. The output unit continues
to learn while the weights of the hidden units are held constant. The weights of the
output unit are set to zero whenever new values for the hidden units’ weights are

generated.

The unguided random search was tested on the multiplexer task for several values
of n. For each value of n, the results from 10 runs of 300,000 steps were collected.
The final performance level of a run, v, is the number of input vectors for which
the network is incorrect when using the best set of weights found on that run (so
0 -. v -~ 64 and a purely random strategy of generating outputs would result in an

average value of 32).

In addition to the performance level at the final step of each run, we determined
the value of a measure of cumulative performance, g, which for a single run is the sum
of the number of errors made on every step. For a nonlearning, random strategy.

errors would occur on an average of half of the steps, producing a value for p of

150,000.

36

AN A

“

e R e e [. “ . ot R ST o
TR W AR R R PRSI > s AN N A N P
JUA PN .'ni\;:..‘ux;u‘.\‘.‘u\;nf.' PR L P . T rm h L "N A u": .A... Py *y iy

W

The results of the experiments are listed in Table 1, including the 99% confidence
intervals of v and x. The unguided random search performed better than a nonlearn-
ing, random strategy for all values of n that were tried. The value of i consistently
declines as the parameter n increases. Recall that after every n steps, a new weight
vector is generated that does not depend on previously-tested vectors, so there is no
gradual improvement in performance as a run progresses. However, since the output
unit is learning throughout each n step period, larger values of n result in better
performance at the end of the n step period and better average performance over

that period, which explains the inverse relationship of u and n.

Table 1: Unguided Random Search on the Multiplexer Task

n v I
50 256+ 278 140,228 + 263
100 22.7 + 2.88 134,397+ 128
200 23.4+3.80 127,913+ 237
400 18.0+ 3.21 122,209+ 176
800 16.5+2.66 117,809+ 342
1600 15.7+3.22 115,099+ 324
3200 18.41+5.23 112,848+ 462
6400 17.0+4.29 112,577+ 803
12800 169+ 3.96 111,477+ 1,064
25600 17.7+3.71 110,654+ 1,535

The values of v do not show that any one value of n is optimal. When n is 200
or less, significantly higher values of v are obtained than when n is 400 or greater.
In fact, for n < 200, performance is not significantly different from that of a single

layer, for which v =~ 24.

A learning curve for the unguided random search on the multiplexer task was
obtained by choosing the best value of n. which is 1600, and performing 30 runs of
300,000 steps each. This resulted in performance measures of v - 17.0 { 2.93 and
i 115,062 + 229 and the learning curve in Fig. 14 (the upper-most curve). On
this and all subsequent graphs, an initial rapid drop appears from 0.5 errors per step
to approximately 0.37 or 0.38. This is caused by the output unit learning as many

correct responses as possible without using hidden units; a single unit given the input

37

e T Ve

r o

‘g.n(:_l

R T I T T I N A LS I S S - A R S T
e AT s e N e P e e ~ s

vectors for the multiplexer task can learn the correct output for 40 of the 64 input

vectors, resulting in an average of 0.375 errors per step.

Guided Random Secarch

There are obviously many ways of improving the unguided random search, all of
which involve generating weight vectors that depend on the currently-best vector (or
on a series of best vectors). We studied two methods: a guided random search and
the polytope method described below. The guided random search differs from the
unguided random search only in the manner of generating new weight vectors. Rather
than being chosen according to a uniform probability density function, weight vectors
are chosen from a unimodal probability density function (defined below) centered on
the weght vector that is currently the best. This density function is symmetric
about the currently-best vector, and the probability of selecting vectors decreases as
the Euclidean distance from the currently-best vector increases. We used a density
function based on the logistic distribution (see Ref. [4] for details). The method
depends on two parameters: the number of steps between the generation of weight

vectors, n, and the spread of the density function, 7.

As stated earlier, the amount of computer time required to perform these exper-
iments prevented a systematic search for the optimal values of n and r. However,
we did perform two unidimensior il searches by holding 7 2 while varying n, then
varying 7 while holding n at the value resulting in the best performance. For each
parameter setting, results were averaged over 10 runs with each run lasting 300,000
steps. The results in Table 2 show that intermediate values of n are required to
achieve good performance. However, unlike the results for the unguided random
scarch, the cumulative performance measure, u, also has a U-shape as n increases,
providing evidence of a tradeoff between learning in the output unit (large n) and
optimizing the weights of the hidden units by making more trials (small n).

Performance as a function of 7 also has a U-shape there appears to be an optimal
value of 7 in the range of 0.5 to 2 (as the value of r increases, the probability density
function approaches a uniform density function, and the behavior of guided random

search approaches that of the unguided random search. The learning curve in Fig. 14

e W

R "RV et tat, 1%, 2t 4N CAY ANe A¥a At B dkoa A et and e bt bt dies i i

f..

Table 2: Guided Random Search on the Multiplexer Task

KRR A SRS P L L L

n v " T v n
50 27.2+3.76 138,978+ 898 0.1 189+491 106,894 % 6,204
100 24.1+3.61 131,957+ 2,102 0.2 17.1+253 109,454+ 4,897
200 18.4+394 124,089+ 1,345 0.5 149+4.13 105,34316,124
* 400 13.8+3.76 115,390+ 3,271 1.0 11.4+358 102,583+6,128
800 13.31+4.73 111,205+ 3,851 20 12.5+394 106,818+ 2,524
1600 13.1+4.21 106,544 13,314 40 1564283 108,128+ 2,797
3200 12.5+43.94 106,818 + 2,524 8.0 15.0+4.06 108,498+ 3,066

6400 16.5 +4.48 108,225+ 2,413
12800 17.6+5.29 108,620+ 3,615

T=2 n = 3200

was produced by averaging 30 runs of 300,000 steps each, using n = 3200 and 7 = 1.
The resulting performance levels are v = 13.1 + 2.36 and x = 103,866 + 3420.

The Polytope Algorithm

Another method for directly searching the weight space is the Polytope Algorithm
[21]. This method is often called the “simplex” method, not to be confused with the
simplex method for linear programming. The polytope algorithm is a deterministic
hillclimbing method that maintains a list of m weight vectors, ordered according
to their evaluations. The m weight vectors are treated as vertices of a polytope in
m - 1 -dimensional space, and new vectors are generated in a fashion designed to shift

the polytope towards an optimum weight vector, taking large steps when progress

is being made in improving the evaluation and taking smaller steps when it appears
that the optimum has been approached. Since this is a deterministic hillclimbing
method, it can get stuck at a local optimum, but it is good at following ravines. We
included it in our study as an example of a reasonably sophisticated, deterministic,

direct-search algorithm to complement the random methods presented above.
The polytope algorithm depends on the parameter m, the number of weight
vectors maintained as vertices of the polytope. and the parameter n, the number

of steps over which each weight vector is evaluated. Other parameters are p,, p,,

39

Lol an— e an ait B At 20 JER Sl

Y X X

-t
«®

...‘.t.." R .-.!.. ..-...“.-.-..-I‘..",
AP SISO LNVl T o, L N, L W A

gV a3 T R T U O R R TOM O R W OO A TR g pUat gha g8 0 gt tak t ol gl Vel b sah vgl bal 10 000 5,0 taid 0

and p., which determine the lengths of reflection, expansion, and contraction steps,
respectively. Valid ranges for these parameters are p, > 0, p. > 1, and 0 ~ p. < 1.
To reduce the number of experiments to a practical level, we did not attempt to find
optimal values for p,, p., and p., but set them to reasonable values. We did vary m
and n, as shown in Table 3. The value of m was fixed at 20 while n varied, after
which n was fixed at 1600, which gave the best value of v, while m was varied. The

results are again averages over 10 runs at 300,000 steps per run.

Table 3 suggests that the optimum value of n is between 400 and 3,200. The
results are even less conclusive about the optimum value of m; additional runs must
be made to obtain performance averages with less variance. The values n = 1600
and m = 10 were used in 30 runs of 300,000 steps to obtain the learning curve in

Fig. 14, resulting in v = 14.2 + 2.09 and ¢ = 94,977 + 3079.

Table 3: Polytope Algorithm on the Multiplexer Task

n v u m v ©
7200 20.844.04 118,780 6,537 3 17.412.78 100,046 + 6,767
400 17.8 + 4.33 105,624 + 4,442 5 17.6+4.51 96,223+ 4, 441
800 13.0+ 3.82 99,575+ 5,310 10 1214 1.97 94,157 + 4, 165
1,600 12.6 + 2.70 102,449 + 3,654 15 1594 6.15 102,793 + 4,071
3,200 14.2 + 2.76 109,711 £ 1, 460 20 12.6 £ 2.70 102,449 + 3, 654
6,400 15.7 4 3.74 110,860 + 2,058 25 14.7+4.24 107,972+ 2,447

12,800 19.0+ 3.93 110,866 + 2,488

m = 20 n — 1600

None of the direct-search methods were able to solve the multiplexer task within
the allotted 300,000 steps. The unguided random search showed no improvement
over time because the weight vectors being tested were not dependent on previous
search steps. Its fina. performance level is slightly better than that of the single-layer
system (v - 17 versus v 24). The guided random search does show improvement
over time, though its learning curve becomes approximately flat early in the runs.
Averaged over the last 3,000 steps of every run, the number of errors per step is
approximately 0.35. The polytope algorithin performs better than both random

search methods, reaching an average over the last 3,000 steps of 0.28 errors per step.

40

. AN T R

RO .
-t ~

'.o'

.)_'.‘-\.-._..-._\ NS . D .- W LN e RN
Loy, SR S, SR T Fo . Fok, T LSV, L L L ST S/, U S AR WV 5SS VT v

ansnanaad

AT N L

Error Back-Propagation Methods

Next we discuss some error back-propagation methods for learning in hidden

units, starting with a method studied by Rosenblatt [42].

Rosenblatt’s Back-Propagation Method

Rosenblatt is known for his work with the perceptron-family of learning rule,
but his error back-propagation method has received little attention. Since this was
proposed early in the history of research on learning in multilayer systems and seemed
to work reasonably well for the experiments Rosenblatt performed, we wished to
include it in our study. Rosenblatt’s back-propagation method is a nondeterministic
way to assign errors to hidden units based on the errors of output units. The following

is our specification of Rosenblatt’s back-propagation method:

1. Initialize all weights to zero.

2. Receive input vector, calculate the output of all units using a linear threshold

function, and receive error signals for the output units.
3. Apply the perceptron learning rule to the output units.

4. Calculate the error, é,;, passed back from output unit k to hidden unit ;
(probabilistically based on the output unit’s error, the weight connecting unit

7 to unit k, and the output of unit j).

vi|t] random variable from a uniform probability density
function over [0, 1], where k « O takes the values of the
indices of the output units,

I, if y,ft] = Vand (d,[t] -y [t])weltl - Oand vt] - py;

vE, il y(t) o O0and (dft] oy, lt) wyelt] - 0and velt] - py

byxlt] or
if y;[t] = 0 and (d,[t] - y,lt]) wlt] - 0 and veft] < pa;

0. otherwise,

AR AR B

Pk A g8 o
A A4)

AR AR

AR RAINAS)

“‘v l." |_' . ." “‘ ‘.- .

R
.-

ANV

.‘. .

5. Apply the perceptron learning rule to each hidden unit 7, using the sign of the

sum of the back-propagated errors from the output units as the error signals:

Awg,[t] == psgn (Z 61k[t]) ,[t].

kecO

6. Repeat, starting at Step 2, until the prespecified number of time steps has

elapsed.

Rosenblatt’s back-propagation method depends on the parameter p, a factor de-
termining the magnitude of change for each weight, and the parameters p,, p,, and
p3, which are probabilities affecting the frequencies with which the back-propagated
error signals take the values +1 and —-1. Rosenblatt performed a number of ex-
periments and determined that the values p; = 0.9, p, = 0.3, and p; = 0.1 were
reasonable values. Rather than attempting to optimize all four parameters, we used
these values for p;, p;, and p3 for all experiments, only varying the value of p.

The results are in Table 4. There are few significant differences for different
values of p, although values from 0.125 to 0.5 resulted in slightly lower values of
v. The values of v and u show no improvement over a single-layer system. Indeed,
the learning curve for Rosenblatt’s method in Figs. 14 and 4 shows no improvement
over time and is always worse than the single-layer level. The learring curve is
averaged over 30 runs of 300,000 steps each. giving values of v -~ 23.9 + .58 and u
121,115 + 92. To judge the performance of Rosenblatt’s back-propagation method

fairly, additional values of p,, p;, and p; must be tested.

Rumelhart, Hinton. and Williams

Another approach to the back-propagation of errors was taken by Rumelhart,
Hinton, and Williams [44,. Our specialization of this method to the two-layer multi-

plexer network 1s as follows:

1. Randomly initialize all weights to be in the interval | 0.1,0.1].

12

B U T T R S A T e Y T MU W S SR SO

[
1
L
4
4
{
1
[
L
<
"

Table 4: Rosenblatt’s Back-Propagation Method on the Multiplexer Task

r v R - S

0.030 24.7+ 3.54 121,085+ 238

0.060 23.6+ 2.96 121,286+ 168

0.125 22.8+3.11 121,112 4 156

0.250 22.0+ 292 121,129+ 176

0.500 21.9+2.83 121,175+ 278

1.000 24.0+2.74 121,161 + 169

2.000 23.1+3.18 121,132+ 134

0.5F i
|
L" ROSENBLATT
0.4¢ 1
AvERaGE 0.37 7
fRRORS L]
PER
TIME STEP 0.2} 1
0.1} RUNELHART - STEN 7
/ RUMELHART
0 %= T :]
0 100,000 200.000 300.000
TIME STEPS

Figure 12: Learning Curves for Iirror Back-propagation Methods

RN

. »_o.
‘AJ 'l.l" .‘.‘l

»

-,

.“."._

‘a

2. Receive input vector, calculate output of all units, and receive error signals for

the output units. All units use the semilinear output function:

1

- ;}w-‘flt]-’ff[tl

y;lt] =
1 +e
3. Calculate é, for each output unit k € O:
Oc(t] = (dic[t] — wielt]) wlt] (1 - welt])
where d}, is a modified version of the desired output, defined as

" t] = 09, If dk’t] =];
e = 0.1, if dift] — 0.

4. Apply the learning rule to the weights of each output unit k:
Awji[t] = p bk[t] z5(t] + pm Awje|t - 1],

where z,{t| is an input component received by output unit k. Recall that the
output units receive the original input terms to the system plus the output of

the hidden units.

5. Calculate é; for each hidden unit j:

6;(t] = (Z 5k[3]w1k[t]) yilt] (1 —y;(t)).

keO

6. Apply the learning rule to the weights of each hidden unit j:

Awg,[t] = p §;[t] Zi[t] + pm Awy |t - 1],

7. Repeat, starting with Step 2, until the prespecified number of time steps have

elapsed.

44

NLArL A

LA “ag Y

et gL,

By adding a fraction of the previous Aw to the current weight change, (Steps 4
and 6), it is hoped that the weight values will be more likely to follow the slope of
the error function at the bottom of steep valleys, by canceling opposing steps up
one side or the other. Rumelhart et al. consider this additional term as affecting the
“momentum” of the trajectory of weight values. The method has two parameters:
the rate of change parameter p and the factor p,, that controls the magnitude of the
momentum ter n. Table 5 shows the values of p and p,, that were tested and the

results averaged over 10 runs of 100,000 steps each.

Note the modification of the desired output value in Step 3. Rather than values
of 1 and 0, values of 0.9 and 0.1 are used. Without this modification, weight values
can grow in magnitude to the point where truncation errors due to the particular
computer implementation can cause weight values to become frozen—the value of

y(1 — y) in the weight update equation becomes equal to zero.

Table 5: Rumelhart et al. Error Back-propagation Method on the Multiplexer

Task
S <
0.05 35188 1 3 1.8 + 0.84
.10 317161 1602 11.7 t 3.30
0.25 14144 + 1426 0.3 + 0.55
0.50 6066 1 1052 0.3 4 0.39
1.00 4944 + 1224 0.7 £0.39
2.00 3289 + 935 0.2 £ 052
4.00 3294 1 836 0.2 + 0.52
8.00 13446 + 4097 6.6 +2.93
16.00 32422 + 5497 183 + 3.12
Py =0
P v 7 N v o
0.05 349764 496 189 +1.97 0.05 6130 + 349 0.1 % 0.26
0.10 33218 t+ 1671 15.9 t 4.57 0.10 3207 + 454 0.01 0.00
0.25 26245 t 7354 9.3+ 7.79 0.25 1747 4 480 0.0 £+ 0.00
0.50 11287 t 2562 0.1 £0.26 0.50 1492 1 844 0.2 £ 0.52
1.00 3836 t 8G9 0.2 1052 [.00 58024 2686 1.9+ 1.86

2.00 3267 + 1229 1.0 + 0.86
4.00 8905 + 2213 3.5+ 1.55
' 0.5

P - 0.9

f,f-.‘.'-*_. » TR ._._. - . .‘._.‘ J‘.‘\

S e
- Co mta : * e y “ Y.
iy ‘-';4'4 ..h‘.l ‘.4“4\‘ i"AM'_A \..h‘ M".h\ ‘.A 'LL BRSSP R S P 4\4 ‘_A .‘)\.n ™ o™ .41'..3.‘.?.‘:‘

HEBENENABNEBNENBENABRENEBNES

The output value of a semilinear unit is a real value between 0 and 1. To compare
with the other methods that use binary-valued, linear threshold units as the output
unit, the output of the output unit k was set to 1 if y > 0.5 and was otherwise set to
0 while calculating x4 and v and the learning curve. This is only done in measuring

performance, not in actually running the learning method.

From Table 5 one can see that this error back-propagation method reliably solved
the multiplexer task within 100,000 steps, for p = 0.1 and 0.25 and p,, = 0.9. For
= 0.25 only 1,747 errors were accumulated over 100,000 steps (u = 1,747). Best
performance (considering both v and u) resulted when p = 0.25 and p,, = 0.9.
These parameter values were used to generate the learning curve shown in Fig. 4
and in Fig. 14, averaged over 30 runs of 300,000 steps each. The curve shows that
extremely good performance is achieved very early in the runs; as early as 6,000
steps the average number of errors per step is below 0.06. The performance measures

associated with this learning curve are v = 0.00 + 0.00 and ¢ = 1,962 + 148.

The third curve in Fig. 4 shows the results of an experiment designed to test a
modification to Rumelhart et al.’s method proposed by Sutton [48]. He suggested
that it is the sign of the weight value appearing in the expression in Step 5 above
that is the important contribution of the weight, and that the magnitude of it might
hamper the method’s progress, particularly when the magnitude is very small. We
tested this hypothesis by replacing wj, with the sign of wj, resulting in a new

expression for ;(t|:

é;[t] = (Z bk|t] Sgn(wzkltl)) ylt] (1~ yst]).
k€O
As before, we varied p, with the results shown in Table 6 which are averaged over
10 runs of 100,000 steps each. The best value of p is still 0.25 and for p,, it is 0.9.
The results averaged over 30 runs of 300,000 steps, using these parameter values, are
v - 0.00 + 0.00 and » - 1,354 + 575, and the learning curve is shown in Fig. 4.
The modification appears to retard the method’s initial progress, but the task is still
reliably solved. The cumulative error measure, u, is not significantly different from

that of the unmodified Rumelhart method. The modified method does appear to be

46

more robust than the unmodified method; the task is reliably solved (v = 0.00) for

a wider range of parameter values.

Table 6: Sutton’s Modification of the Error Back-propagation Method on the
Multiplexer Task

P v u
0.10 27750+ 3438 7.2+ 3.74
0.25 115944958 0.1+0.26
0.50 5846+ 1370 0.0 + 0.00
1.00 3013+573 0.1+0.26
2.00 2336+ 355 0.1+0.26
400 437841179 1.0+0.86

pm =0
4 v [l P v [

0.10 16447 + 2504 1.6+ 1.45 0.05 5001 + 538 0.0+ 0.00
0.25 5427 + 447 0.0 £0.00 0.10 2411 £ 310 0.0+ 0.00
0.50 2742 +£ 369 0.0+ 0.00 0.25 1310 £ 404 0.0+ 0.00
1.00 1536 £ 192 0.0 £ 0.00 0.50 1353+ 796 0.2+ 0.00
2.00 2173 £ 767 0.1 +£0.26 1.00 2968 + 1309 0.7+0.77
4.00 8524+ 1175 3.6 +0.96

Pm =0.5

| Pm = 0.9

Associative Reinforcement Learning

Four associative reinforcement-learning methods were studied, two being vari-
ants of one of the others. Barto and colleagues have developed several associative
reinforcement-learning methods [7,6,14,47]. Sutton [47] compared a number of these

methods. For tasks most similar to those faced by hidden units in the networks ap-

plied to the multiplexer task, Sutton found that a particular learning rule, which we
will call “associative search with reinforcement prediction,” or AS-RP, rule performed

better than others.

;

LY
'S

47

L i I N S R e S R e T - RN WL P
el T T e G A e - . - . e A AR,

,".‘ URY| .‘ .

~

e &

.

L LA N T §

S

Pl I WA

"D il b A]

[l g W9

ot af ta@ Wl Pk B V.8 a8 i2b 'ay Bop e T ETEN IR tap - LY NN N I I I AT IN I NI I K I IR I NI EYN

Associative Search with Reinforcement Prediction

The AS-RP method employs an additional unit that adjusts its weights, v, in order
to match as closely as possible the value of the reinforcement expected for acting in
the presence of each input vector. This provides the hidden units with a “reference”
signal to which the current reinforcement can be compared to determine whether
it is greater or less than the reinforcement usually received when given the current
input vector. One can think of this extra unit as a predictor of the reinforcement to

be received. The AS-RP method is defined as follows:

1. Initialize all weights to zero.

2. Receive input vector, calculate output of all units, and receive error signals for

the output units. The output, y,, of hidden unit ; is given by:

1, ifi w;j[t] zi(t] + n,[t] > 0;
y;lt] = i=0

0, otherwise,

where the n,(t] are sequences of random variables with density function
3. Apply the perceptron learning rule to the output units.
4. Calculate the reinforcement signal for the hidden units:

1
=1 o) 3 I -yl

JEO
where m is the number of output units. Since m = 1, r|t| € {0, 1}.

5. Calculate the prediction of reinforcement, r,, as follows:

n

rplt] = D_wilt] zit

1=1

)

where n is the number of input components to the system and u,|t] is the

predictor-unit’s weight associated with input component z,|t].

48

p R R R R IR S LT
\J'.'I',' "-ﬁ ."“(E o, 'f."'\"-" B LTS CR

REAINATURR AU LN U U LIS US o VRASKEANREEY ™ L ag C IRx7 L X X1 MEMN FUNE UWIRAAR N N ¢4.4°¢4.9°a B g b g9 * - - + » TEVE U \J LI\ T L . N N >

6. Apply the associative scarch rule to hidden unit j:

Awilt] = p (r[t] — rp[t)) (y;lt] - 7)) =ilt],

where

milt] = E {y;[t]lw,¢]; z[t]}

which is the expected value of the output y; of unit 7, given its current weight

-

values and input. Since y; € {0,1}, 7; is the probability that y; = 1.

F
! 7. Update the predictor’s weights.

X T RXEAAF N,

Avilt] = p, (r(t] — rp[t]) zi[t].

8. Repeat, starting with Step 2, until the prespecified number of time steps have

L B %y Cw e R

elapsed.

Two parameters control this method: the rate of change in modifying the hidden

units’ weights is p, and the rate of change in modifying the reinforcement predictor’s

u ~' ."-..",“ LS

weights is p,. Five values of p were tried while p, was set to one of three values. For

each set of parameter values, 10 runs were made of 300,000 steps each.

o

The results in Table 7 show that the AS-RP method did not completely solve

-
+ Y T T -

the multiplexer task, but for p = 0.16 and p, = 0.01 the value of v was about
2.8, meaning that after 300,000 steps an average of only 2.8 out of 64 input vectors
resulted in an incorrect output. The performance of the AS-RP method over time is
shown by its learning curve in Figure 13. The learning curve is averaged over 30 runs
using p = 0.16 and p, = 0.01, and resulted in v = 3.36+1.98 and 1 = 48,754 + 8,662.

Better performance might be attainable by testing additional parameter values.

Another way to improve this method’s performance is to include the output of
the hidden units in the set of input components to the reinforcement-predictor unit.
It may be impossible for a single unit to implement an accurate mapping from input
vectors to reinforcement values, just as it is impossible for a single unit to implement.

a multiplexer function. This possibility was not tested.

49 =
-

Table 7: Associative Search with Reinforcement Prediction on the Multiplexer

Task
\
P v 3 p v H
3 0.01 23.7+356 121,756+ 131 0.01 24.3+3.51 121,867+ 224 .
0.04 116+4.70 95,602+ 8,825 0.04 10.2+5.29 90,639+ 14,970
0.16 2.813.12 42,149+ 16,354 0.16 57+3.11 61,708 £ 15, 2%
0.64 4.6 + 4.86 46,453 + 21,080 0.64 9.3+4.13 65,222+ 16,051
1.28 12.1 4556 75,454 + 20,789 1.28 54+ 4.18 40,169 + 20, 829
5
pp = 0.01 pp = 0.03
P v T
v 001 24.6+2.78 121,436+ 270
e 0.04 13.7+4.61 95,407+ 8,819
0.16 354204 48,320+ 13,120
b 0.64 4.7 £ 3.87 50,817 + 24,206
% 1.28 13.2+4.59 79,975 % 21,263
¥, pp = 0.1
: O S 2 M M 4
0.4 1
L -
RVERAGE
ERRORS g 4
. PER
: N p
. TINE STEP o1 4
. D.1F]
N
X L RANOON 1
h PREOICTION _ .
L N e e
> O L PRP -PENALTY PREDICTION e L
0 100.000 200. 000 300.000
. TIME STEPS

Figure 13: Learning Curve for Reinforcement Learning Methods on the Mul-
tiplexer Task

50

N O Y T N N T Y Y U P D T O N N T O T U T T U U N TN T O O U O T O O D U U N OWT S O T O W LN W

X
i
‘:.
:‘ Associative Reward-Penalty
ey
;‘ The second method from the reinforcement-learning class that we studied is the
- Associative Reward-Penalty, or Ag_p , learning rule described in Section 2.
N
: 1. Initialize all weights to zero.
N
) .. ; . .
2. Receive input vector, calculate output of all units, and receive error signals for
:" . the output units. Output functions are those used for the AS-RP method.
\ 3. Apply the perceptron learning rule to the output units.
L)
; 4. Calculate the global reinforcement signal for the hidden units.
s
A 1
=1~ 0 % 1l - gl
o
X For the multiplexer task, |O| = 1, so r[t] € {0, 1}, but in general r[t| € [0, 1].
i] 5. Apply the Ag_p rule to each hidden unit.
,l
‘ 6. Repeat, starting with Step 2, until the prespecified number of steps have
s elapsed.
r
RS
‘N The Ag_p method depends on two parameters. The rate of weight change is
: controlled by p and A. If A = 0, no change is made to the weight values when the
N “penalty” signal r[t] = O is received. See Section 2.
}: Table 8 contains the results of the Ag .p method on the multiplexer task, averaged
over 10 runs of 300,000 steps each. Of the parameter values tested, p = 1 and
A - 0.004 resulted in the best performance, solving the task with a final number of
: errors over all input vectors of 0.02.
4
The learning curve in Fig. 13 shows that the Ag _p method performed much better
b than the AS-RP. Averaged over 30 runs of 300,000 steps each, and using p =~ 1 and
é A - 0.004, the Ag_p rule resulted in v = 0.01 4 0.01 and x = 15,725 + 3,129. The
” value of 0.01 + 0.01 for v indicates that the solution to the multiplexer task was

reliably found.

\ 51

Table 8: Ar_p Method on the Multiplexer Task

A v @ [v [
0.001 052+ 1.30 24,960+ 10, 347 0.1 130+202 51,109+ 10,157
0.002 0.33+0.80 25,234+ 7,486 0.2 0.08+0.03 25377+ 5,479
0.004 0.02+0.01 14,493+ 5,557 0.4 1.80+4.63 20,301% 7,050
0.008 0.01+0.01 20,046+ 5,918 0.8 071%+153 17,320+ 7,553
0.016 18.80+6.65 107,729+ 7,101 1.0 0.02+0.01 14,493+ 5,557
0.032 23.00+3.26 118,806+ 185 1.6 0.01+0.00 15,167+ 3,908

3.2 11.60%+8.63 81,798+ 16,013

p=1 A = 0.004

Local Reinforcement

The AS-RP and the Ag _p methods function in a “global” reinforcement paradigm
in which each hidden unit receives the same reinforcement signal. However, hidden
units in a multilayer system can be provided with more informative evaluation infor-
mation than that provided by the global reinforcement signal. We investigated one
possible way of using this information to construct a unique “local” reinforcement
signal to each hidden unit. The approach is similar to Rosenblatt’s back-propagation
method in its division into several cases according to units’ outputs and weight values,

but differs in that reinforcements are propagated rather than errors.

Steps 1 through 3 are identical to those of the Ag_p method.

4. Let rji[t] be a reinforcement based on the output value of output unit k and

the weight connecting hidden unit 7 to output unit k, defined as:

0.5, if ka[t] = 0
I, if wilt] #0 and dift| = yi|t]
or
rielt] = yslt] = 1 and wyeft](delt] yit]) >
or
y;[t] = 0 and wjft)(dilt] - yi[t)) < O;
0, otherwise.
1
Y
52 \
i
1
N
T T TN S R e It) OO Tt N T AT A e e T S N N T)

R R I, R T T T T T T e T e A TR T e T e e Y . R
B T) N N A I A I A A N N T M o g ARSI NS

d
Calculate the local reinforcement signal for hidden unit ; as: ‘ ‘
ry = 11 mielt],
keO

H

though, for this task O = {5},s0 r; = r;5. o

v

5. Apply the Agr_p rule to the hidden units, now using separate reinforcements ::‘
for each:? .

»

| Awi{t] = prjt] (ys[t] — mj(t]) zit] “
+Ap (1 = r5{t]) (1 — ys{t] — m5(t]) zi¢]. i

6. After the prespecified number of steps have elapsed the final-step performance)
measure v is calculated. ':

The motivations for the cases in Step 4 is as follows. When a hidden unit has no :
influence on the output unit, i.e., w;, = 0, then no preference in its output should be p
revealed. To accomplish this, r;, is set to 0.5 regardless of the output of the hidden ’
unit, the output unit, and the correct output. The second case is composed of three ,
situations. First, if the hidden unit does have a nonzero output weight, i.e., w;, # 0, '.:_
and the output unit generated a correct response, then the hidden unit is “rewarded” ‘
by being assigned a reinforcement value of 1, increasing the probability of the output -
value that it just produced. The second part rewards the hidden unit if its output :,":
value is 1 and its output weight has the same sign as the output unit’s error. The .
third part rewards the unit when its output value is 0 and its output weight differs

in sign from the output unit’s error. .
This modification to the Agr_p rule does not add any new parameters. We tried

a number of values for p and A and averaged the results over 10 runs of 300,000 .

steps each. From Table 9 we see that p = 0.5 and A = 0.0001 resulted in the best

value of v, which was 0.55 errors over the 64 input vectors after 300,000 steps. The ~ :

. cumulative measure, ¢, was lowest for A - 0.0005. '
2This can be called the “S-model” Ap.p rule following the terminology used in the study of R
stochastic learning antomata [36]. It is applicable if the reinforcement value, r, is a real number in
the interval [0, 1]. Note that it specializes to the version of the A _p method given by Equation 2.4 ;?:
if the reward and penalty values of r are respectively represented hy 1 and 0. ”\

TR A R $n W »*5-'.'."‘-.'\.:\(\\.;\.-‘ Lot .-_'.,- ._~_..-_ v, e, '-. .:_ .~.._~_‘,’._.-'__.' P -.:.,._ -_..-._- ‘:.-‘._»‘:.'.:.- .._- ?__~."~_'_- ‘_-_:_-".-

NN T X A AR L) N g b g a0 g R Ao 8.4 ‘2 44 49 8'@ 845 .8 4. 4'y AT, 4 0 & ‘a @ VHE™ *e B e $%. PV, 8 N

Table 9: Ar_p with Local Reinforcement on the Multiplexer Task

A v M P v M

0.0 1.32+ 2.24 16,069 % 10, 750 0.01 23.72+3.05 12,2127+ 116
0.00001 3.07+ 2.84 28,822+ 15,678 0.25 2.84+3.61 40,581+ 16,852
0.0001 0.24+0.52 12,512+ 4,937 050 055+1.27 17,109+ 7,221
0.0002 1.07+1.72 17,830+ 7,706 0.75 1.31+1.69 23,290 10,555
0.0005 0.39+0.55 10,418+ 1,973 1.00 0.24+052 12,512+ 4,937
0.001 0.76 + 0.87 14,539+ 1,997 1.25 1444266 22,467+ 12,208
0.002 4.64+ 551 21,145+ 2,279

0.004 6.53 +4.69 34,506+ 1,613

0.008 10.30 £ 3.18 64,436+ 1,644

p=1 A = 0.0001

A learning curve for the Ag_p with local reinforcement, again averaged over 30
runs of 300,000 steps each, is included in Fig. 13. The values p = 0.6 and A =
0.0001 were used for the method’s parameters. This modification to the Ag_p method
performs slightly better that the original Agr_p method before approximately the

20, 000" step, and thereafter its performance is worse than that of the Ag_p .

The local reinforcement addition seems to help during the early stages, but is a
hindrance throughout the remainder of a run. Perhaps this indicates that using the
information about the hidden units’ output weights and the output units’ errors is
only beneficial while the hidden units have minor effects on the output unit through
output weights of small magnitudes. When output weights are near zero, learning
according to the Ag_p method with global reinforcement is very slow because there
is very little correlation between a hidden unit’s output and the global reinforcement
signal. But as the output weights increase in magnitude they acquire more of an

influence on the global reinforcement and can begin to optimize their weight values.

A more complex task-—one requiring more than a single output unit-—might demon-

strate a greater potential for using this scheme for calculating local reinforcement. -

54

c A WEBAR & A “m WM B & S

>, €L D R S A T T U T
.., ‘. -.\-.\ ‘.ﬂ- "NI'./'{'."I'I s, T N D AL T LT

. * 3t S ket Batatatatst hat iyt AT TR TER A a%0.5 0.8 0 p a0, 8 828 ba® ¥ tan cah, Valtstgia’ Y Q L Wadia §'4 #%2'at ot ok ¥ PO LY BOX O YD) » 3.8 &

I._.
3
Penalty Prediction ':.
o
The plight of a hidden unit that has not yet acquired, or has lost, a substantial -
influence on the output units is to learn very slowly if it is modifying its weights N
through efforts to increase the reinforcement value. Is there some way to put such ,,
an “unused” unit to better use? We applied a second extension of the Ar_p method n
to the multiplexer task to investigate this question. This extension is based on the "
assumption that poor performance is caused by the lack of an appropriate represen- N
tation. Situations for which incorrect outputs are generated need to be represented .
differently, perhaps with additional components, giving the output units more de- :
grees of freedom with which they can alter their outputs. ’
To realize this idea we divide the learning rule for the hidden units into two parts, .
each part coming into play at different stages. When a hidden unit has a substantial ':
effect on units “downstream,” then the normal Agr_p learning rule is followed. But I’
when a hidden unit does not significantly influence other units, the hidden unit e
adjusts its weights in an attempt to match them to input vectors that result in :_:
low reinforcement values, in effect becoming a “penalty predictor.” In this way, :
new features are introduced that represent inputs for which the performance of the '
system is low. This is related to the data-directed method of Reilly, Cooper, and :
Elbaum [40], who dedicate new hidden units whenever an error is encountered by
their system. '
The implementation of this strategy depends on a measure of the degree to which -:-
a hidden unit has an influence on other units. Since in this task a hidden unit can only _,.
influence one other unit, we simply used the magnitude of the hidden unit’s single o
output weight as an indication of influence, though, as Klopf and Gose [26] showed, 'j
other measures might lead to more accurate indicators of influence. The magnitude 3
of a hidden unit’s output weight is squashed into the range [0, 1| by passing it through :
a logistic function. Some method of combining the measures from different output -
weights must be employed when the network has more than one output unit. The
Ag .p method is modified as follows:
Steps 1 through 4 are identical to those of the Ay _p method.
55

e B .]

-

%ot Sa¥ ‘mi “al Vot ‘et *ad 0l vt al Tata e At a Y4 8% 2 A% 2%x A%a 302 4%z 65 B0h 82 8% 8%2 %2 0 e 4% A% £1a 8% $5a t'n 82 8's §'a.8%2 1Tp 0 g, 0y 000 0" 0" 0} MR N ™

5. Apply the Ar_p rule with penalty prediction to the hidden units:

(a) Calculate the influence, a;, of hidden unit j on the output units:

1

altl =
1+e Ta
(b) Update the weights: .
_ r(t] (y,t] = m;[t]) zit]
swai = et (0 L e)

+(1 = ayt]) pa (1 = rft] — m,(t]) z[t].
6. Same as Step 6 of the Ar_p method.

The equation in Step 5b is composed of two main parts. The first part is the
expression for the S version of the Agr_p rule. Its contribution to the update of
weights varies inversely with that of the second part of the equation. The second part
is only significant when «, is small, meaning that hidden unit j has little influence
on the output unit. It serves to push the weight vector in the direction of the current
input vector when r is small and it pushes the weight vector away from the input

vector when r is large.

In addition to the parameters p and A of the Ar_p method, this modification
depends on the values of p,, w,, and 7,, which have their strongest effect when «,,
the influence on the output units, is small. The variable «, is a function of unit j’s
output weights, defined in such a way as to scale its value between 0 and 1; a, - 1|
when unit y has a very strong influence on an output unit, and a, = 0 when it has no
influence. The scaling function for « is controlled by the parameters w, and r,, and
its form is that of the logistic function, where 7, is the “spread” of the function and
w, is the value of its argument such that «, = 0.5 when w, - w,[t]. For example, if
w, = 1.5 and 7, = 0.1 and there is one output unit, then «, will have the following ‘

values for the given values of unit j's output weight:

output weight (w,x}) o,

0 0.000

1 0.007

+2 0.993

13 1.000
56 ‘

\j

O S R e e R S ~ .~ - S T T T N
R R e Tt e T e A N

LS g e 0t 0D u

For the multipiexer task, the output unit learns under the perceptron learning
constant with a learning constant of p = 1. Therefore, the output unit’s weights,
which are the output weights of the hidden units, will always be integer-valued. For
w, = 1.5 and 7, = 0.1, the Ag_p with penalty prediction method will approximate
the original Ag_p method except when the value of the output weight is 0, as it is

initially, or 1.

Table 10 shows the results of testing this method for various parameter values
over 10 runs of 50,000 steps each. Using the values p = 1 and A = 0.004, which gave
the best performance for the original Ag_p method, we found that p, = 16, w, - 1.5,
and 7, = 0.1 were the best parameter values tested. Not reported here are further
experiments in which p and A are varied, again finding p = 1 and A = 0.004 to be
the best of a small set of alternative values.

The best parameters were used to generate the learning curve in Fig. 13, averaged
over 30 runs of 300,000 steps each. The learning curve shows that this method
performed much better than the original Ar_p . The Ag_p with penalty prediction
resulted in performance measures of v = 0.08 £0.17 and u = 7,411 £ 1,773. Roughly

twice as many errors on average were made during the runs of the Ag_p method

(p == 7,411 versus p = 15,725). f:%
The fact that large values of p, result in better performance than small values :'.j
suggests that the advantage of the penalty prediction modification is due to the size q

of the large jumps in a hidden unit’s weights when the unit has a small output
weight. and not in the direction of the weight change. This hypothesis was tested

through further experiments, as follows. The method was modified in a way that

preserved the size of the large weight changes while removing the dependence on the
reinforcement signal to direct the weight change. Instead. a random signal guided
the changes in weight values when the output weight is of low magnitude. Thus,
Step 5b of the Ag_p with penalty prediction becomes

A, 1] mif\(+,\/)(Iﬂrlrrf('!;j(lfl ,’,T]JV/’) I;J"r;),r':rl)

1 ot) pals, b T)t

where the s, (] are sequences of Bernoulli random variables {possible values are 0 and

Table 10: Ag_p with Penalty Prediction on the Multiplexer Task

e et T e N T T T e T T T T el e
h\'\)‘n P A R R e T U o T Y W AT

p = 1.0, A = 0.004

7, = 0.1

58

Pa W v u T, v n N
0 05 7.30 £ 5.06 11,246 + 1,965 0.01 2.78 + 2.66 7,695 + 2,304
1 05 2350+3.11 20,009+ 223 0.1 0.26 + 0.52 4,761 %+ 2,225
2 0.5 19.90+6.85 18,004+ 2,032 0.2 0.48 + 1.05 8,698 + 3,030
4 0.5 470+ 5.51 10,795+ 3,324 0.4 18.00+ 5.89 18,542+ 2,108
8 05 0.54 + 1.21 4,682 + 1,498 0.6 23.80+£2.90 20,242+ 100

16 0.5 3.20 £ 3.06 6,143 + 2,389 0.8 23.20 + 2.27 20,340+ 64

32 05 7.10 £ 5.29 7,712+ 2,734 1.0 23.70 £ 2.13 20,243+ 74
4 1.0 2260+ 3.35 19,786 £ 325
8 1.0 6.20+£6.75 10,142+ 4,136

16 1.0 0.37 +£0.52 6,779+ 1,626 p= 1.0, A =0.004

32 1.0 3.80 £+ 3.85 8,253 +1,723 e =01, w, =15
4 15 14.70+7.79 17,297 +2,781
8 15 4.20 £ 5.51 8,301 + 2,403

16 1.5 0.26 + 0.52 4,761 + 2,225

32 1.5 5.20 + 5.52 8,140+ 3,714
4 2.0 25.00% 3.66 20,209+ 53
8§ 20 1940+6.28 19,185+ 1,477

16 2.0 1270+ 6.68 14,733 + 4,688

32 2.0 4.00 + 3.84 10,030 £ 3,328
4 40 2380+ 1.32 20,234+ 55
8 40 22.10+3.19 20,252+ 66

16 4.0 23.70% 3.12 20,2544+ 66

32 40 23.00+3.21 20,240+ 72

R o . m 2 1 ER %% %% YXT VAR

+
.
l'{
‘4

l 2

1).

The learning curve for the Ag_p with random prediction is shown in Fig. 13.
Its performance is worse than that of the Agr_p with penalty-prediction method,
suggesting that there is an advantage in predicting penalties. However, it performs
better than the simple Agr_p method. Thus, there is also an advantage to taking
undirected, large steps in the search for weight values for unused units. The increase
in performance of the Agp_p with penalty prediction method over the simple Ag_p is

probably due to both effects.

Summary of Comparative Simulations

To facilitate the comparison of the learning methods’ performance on the mul-
tiplexer task, most of the learning curves are superimposed in Fig. 14. Recall that
the errors per time step are plotted by averaging over 30 runs and over bins of 3,000
step intervals. A non-learning, random strategy of selecting outputs would result in

an average of 0.5 errors per time step.

It is easily seen that the classes of methods in order of decreasing performance

are

1. error back-propagation (excluding Rosenblatt’s method),
2. reinforcement learning, and

3. direct search.

This ranking is supported by the values of the performance measures, shown in Ta-
ble 11, where the methods are ranked according to their resulting values of 4. There
is no statistically-significant difference hetween the values of g for the two veraons
of the Rumelhart et al. method. However, the diflerence bhetween these methods
and the best reinforcement-learning method. the Ay powith penalty prediction, s

significant.

Among the reinforcement-learning methods, some differences in gy are <igmificant

while others are not. In particular, the results of the AS-RP method are signilicantly

R I A SR N L R R N UL
A N L AN e Y e v e o et At e

»
3

% % Ts 1 e Y

AVERAGE h
(RRORS 1!
PER Iy
TIME STEP i

A A A AV S A S A v Dy AT GEEE LU S SN OO SR

0.5f) ' o

0.4}

“ .oy ~ - - " --
- AT P e Y

!
0.3} i

POLYTOPE

D.2F 1)

ROSENBLATY

UNGUIDED RANDON
fy ~ /\./\//\\ \/\/ -\
! ~ W VY

GUIDED RRNOON

XA

~A
v

0 100,000 200. 000
TIME STEPS

300.000

Figure 14: Learning Curves for All Methods on the Multiplexer Task

60

.
e Btint IOAL KK &l lhccdions™

o B % at = \J LN
&4 " R T S AR TPy ¢ : - g b WaP R N8 P Ve S W T ad tg¥ tab gl g, RTL g o Y Y] § O Ba® £, ' i Y] e # a's o 0 LT &

[C ¥V ¥ ¥

Table 11: Performance Summary for Multiplexer Task

method v u parameters

Rumelhart 0.00 £ 0.00 1,354 £ 575 p=0.25 pn =09
sign of output weight "
Rumelhart 0.0040.00 1,962 + 148 p =025 pm=09 »
AR_p with 0.08+0.17 7,411+1,773 p =1, A =0.004, b

penalty prediction po = 16, wy = 1.5, 1, = 0.1
‘.
'
Ag_p with 0.014£0.00 10,695+2,690 p=1, A =0.004, :
random prediction Pa =16, wy = 1.5, 7, = 0.1 <

AR_p 0.0140.01 15,725+3,129 p=1, A = 0.004

Pyt
A
Ag_p with 0.65+1.08 20,467+6,923 p = 0.6, A =0.0001 «
local reinforcement)
!
AS-RP 3.36+£1.98 48,75418,662 p =0.16, pp = 0.01 -
polytope 14.242.09 94,977+3,079 n = 1600, m = 10, p
cr=2,¢c.,=2,¢c.=0.2 -
guided random 13.1+2.36 103,866+3,420 n = 3200,r =1 :'
unguided random 17.0+£2.93 115,062+229 n = 1600 ':
Rosenblatt 23.9+1.58 121,1154+92 p =05, '

p1 = 0.9, py = 0.3, ps = 0.1 ¢

worse than all other reinforcement-learning results. As discussed earlier, another

version of the AS-RP method should be tested: the output of the hidden units

should be included as input to the reinforcement predictor, thus not restricting the
reinforcement prediction to be a linear function of the input as originally represented.
All other differences are significant. The direct search methods are significantly worse

than others and their relative ranking is also significant.

Now we can ask what new features actually developed during successful runs of
multilayer learning methods, that is, to what sets of input patterns did the hid-
den units tune? For a partial answer to this question, we analyzed two runs, one
with Rumelhart et al.’s method and the other with the Ag_p with penalty prediction
method. Each run was interrupted at three points to determine the features that the
hidden units had acquired at various stages. Fig. 14 shows that a single run using
the Rumelhart et al. method is very likely to have solved the multiplexer task by
the 10,000'" step, so the run was analyzed after 2,000, 5,000, and 10,000 steps. The
results of this analysis appear in Table 12. A unit’s state is specified by a logical
expression for the union of all input vectors for which the output of the unit is 1.
For example, unit 1 on the 2,000 step responds with output 1 for input vectors
(0,0,0,0,0,1)T and (0,0,0,1,0,1)T (disregarding the constant component of the in-
put vectors). Labeling the components of the input vectors as (a;,as,d;,ds, ds,dy),
for address lines a;, a, and data lines d,, dz, d3, d4. A minimal logical expression for
the union of these vectors is @,d,d,d3d,. Included with each hidden unit expression
is the approximate value of the unit’s output weight, indicating how that unit affects

the activation of the output unit.

In addition to the hidden-unit analysis, expressions were determined for the out-
put unit, both with and without the features generated by the hidden units. Let us
start our discussion of Table 12 with these expressions, by first studying the last row.
At step 2,000, a relatively complex expression developed for the output unit, but by
step 10,000 the unit’s expression is exactly the multiplexer expression, as expected.
The expressions for the output unit without hidden units show that at step 10,000

the new features learned by the hidden units are necessary for the generatton of the

correct output for input vectors containing three of the four possible addresses; for

62

L AT I N g TP e e T et
NI AL UM N A O SR SR

PP AT EN T AP FANR PN T Gl TO 7 500 DI Sh)

[TAICTLE PO PAPL P

KT A N T RTINS U VR U

\J M 1 A ¥, ¥ fa LY L L "l

(M
.Q
N
o
¢
.:.
d
Table 12: New Features Developed by the Error Back-Propagation Method :
ot
. Step 2,000 Step 5,000 Step 10,000 s
Unit 1 a,a2d,d3d, a1az(dids Vv didyds)v @1dz(dyds v didy)v .
alﬁg(dldzds \ d1d3d4) alﬁz(dlti:; \Y (Ild4) o
(-2) (1) & 4
Unit 2 ayaz ’,J3d4 ap '2(.{] "lﬁgd’l :
(-2) (-7) -11) -
Unit 3 null ﬁ162J2d3d4V ajazds -
ayaz(dady Vv dadz v did) .
(1) (-9) (-12)
Unit 4 null &1&2(J1J3d4 V d2d3d4)\/ alﬁzds Ay
a,&z(dld3d4 \Y d2d3d4) :
(-1) (-3) (-7) s
output &ldz(d3d4 V dads aydsVv ayaVv .
unit vdady vV d1J2d4 ayazVv ayazVv -:
without led3J4 \% d1d2J3)V aydqzVv ayazVv ’
hidden dlaz(d|d2d4 Vv dydady alaz(dq \% d2d3) ajaady)
units vdydads v d2d3d4)V
a‘ﬁz(d3d4 V dads
vdady)V .
alag(d1d2d4 \ dld3d4 :-
\/dldgd;; \Y d2d3d4) :
output dlﬁg(dld2d4 V didad, dydgd,Vv aya,d,v ‘
unit Vdgdg)\/ dayazdyV ajazdyVv .
with dlag(d|d2d4 \ d1d3d4 al(‘zz(d:; \ d|d2d3)‘; (l]&zdgv ;
hidden \/dzdg)\/ (1]02((’4 / dz(i_';) (1|(12d4 .
units (l](iz(d|d2d4 v dydady ::
vdgda)v ,

AR SR

N R N R R
S A R A A AT WA SR s PR AP\

a|02(d|d2d4 \ dld3d4
\/d|d2d3 4 d2d3d4)

. \r \f..-

63

e e e .
. R .
L S A P . .,

P 4
P R

P
" PR
- a A

'
a_md

..................

R AVEANRK KN ANN

-

ANARRT PO PU PP NY RS EN S) IR RPNV VUV LIS VS U UT U KA 4p6 Qa9 p * g s qvete i gty

address (1,1) the output unit itself is capable of producing the correct output.

Given the expression for the output unit without hidden units at step 10,000, it
is clear how the terms formed by units 2, 3, and 4 are being used. All have negative
influences on the output unit, effectively carving out of the output unit’s expression
those input vectors for which the output unit produces a 1 when the correct output
is 0. The role played by unit 1 is much less clear, and would require a careful analysis

of exact weight values for us to understand.

Table 13 shows the results of a similar analysis of a run with the Ar_p with
penalty prediction method. The run was interrupted at 10,000, 20,000, and 50,000
steps, a larger total number of steps than was used for the analysis of the Rumelhart
et al. method. The expression for the output unit with hidden units at the 50, 000"

step is indeed the multiplexer expression.

The manner in which the hidden units interact with the output unit to produce
the correct output is not as straightforward as it was for the previous example. It
is clear that unit 4 has acquired the same role here as it did in the other run. This
is purely a matter of coincidence, since there is no a priori bias among the hidden

units; initially, each unit is equally likely to develop a particular feature.

In conclusion, this section presents the results of several methods for learning in
multilayer networks on a particular learning task. The task is of sufficient scale that
direct search methods perform poorly, never solving the task within the allotted time.
Several error back-propagation methods were studied. of which Rumelhart et al.’s
method readily dealt with the difficulties of the task. reliably solving it within sev-
eral thousand steps. Reinforcement-learning methods were also tested. with various

degrees of success.

In comparing the performance results described in this section, it is important to
keep in mind two critical limitations of this study. The most obvious limitation is that
a single task was used. The results provide no indication of how the relative ranking
of the methods would change if different tasks, either simpler or more complex, are
used. Answers to the question of how well the methods scale-up to harder tasks
require further experiments on tasks of varving complexity. A related jssue is how

a method’s performance is affected by altering the network architecture, such as the

6

Pa Mg et 4,8

WL\ RFLEY\ R

3 Sab LU YT

N7 at g¥ pl o at TaW at

N N LA LN L AR LW LA LA LW LN Ve

Table 13: New Features Developed by Ag_p with Penalty Prediction Method

Step 10,000 Step 20,000 Step 50,000
Unit 1 (‘l]ﬁgd{(jﬂhV null &152J1d2J4
a|&2d1dzd3(I4V
araz(didady
ledzd3d4)
| ©) (1) (7
!
Unit 2 \ iiﬂiz(d](izd;;-v J]dz)\/ ﬁldztil\/ ﬁ]&g&l\/
! aydadyd, aldchldg a|&2J|d2
(-7) (-13) (-13
Unit 3 dlaz-d4V drdsdeV dyadgdsV
(—llagdgthv &102J2d4v ﬁlazaz(h\/
aydsdady aldz(d2d4 \% d2d3d4) a1dgdad,
(-8) (-10) (-16)
Unit 4 ! null 01&2d3 alazd.:;
(1) (-9) (-25)
output ayazVv ajazVv ayasVv
unit dlaz(dzds v d_4)V drazdev &102(d3 \ (Igdq)\/
without ayiz(dy v d3d4)V aasVv ayd;Vv
hidden ajazdy ayazdy ayazdy
units
output ajaz(d, v dydads)v dyagd;V dyazd,V
unit alaz(dzd:; W dzd4)\/ dragdedyv dazdaVv
with al(ig((igd:; v dadady aydzds. aydzdsV
hidden '/d|d2d4 \% dldzd_’;) (!lagd4 (11(12(14
unit

»
s
<

A

TP L R Y Yy -lk‘.:l “- v

" o -."._<

2’ r
»_ 8

addition or removal of hidden units. Neither issue was investigated by this study.

The second limitation is due to the manner in which the values for each method’s

parameters were chosen. The experimenter became part of every learning method
by trying a number of different parameter values. The values that resulted in the
best performance for a particular method were used in its comparison with the other
methods. The time required to perform this parameter optimization process is not
taken into account by the performance measures used in this study. A method might
rank very well according to the performance measures but be very sensitive to its
parameter values and require much effort to find optimal parameter values. This
does not appear to be the case for the results reported in this section. The method
with the best performance is Rumelhart’s error back-propagation method modified
to use the sign of the output weight, and it reliably solves the multiplexer task for a

wide range of parameter values.

Some Further Experiments—The Batched Ar_p Method

In Section 3, I discussed the relationship between the operation of Ag_p networks
and the error back-propagation scheme of Rumelhart et al. [44] and mentioned the
result of Williams (61| that the weights in an Ag_p network (with A = 0) move
according to an unbiased estimate of the gradient of the global network reward prob-
ability. This fact suggests that it might be worthwhile to consider a sampling process
in conjuction with the Ag_p method. If the units could obtain a better estimate of a
true gradient through repeated sampling, then the performance would improve and
in the limit approach the performance obtained with deterministic gradient descent
methods. Furthermore, the network would retain its simple character, in that all

units would still receive the same scalar signal.

To investigate this possibility, we considered a modification of the standard
Ag p learning procedure. The standard procedure consists of the following sequence
of events which occurs each time a stimulus is presented: The network determines
its output, this output is evaluated, the evaluation is broadcast to all units, and the

units change their weights. The modification consists simply in allowing this updat-

T NN SREASA Y/ MIITIEE

ing sequence to take place several times during the presentation of a single stimulus.
Furthermore, the weight changes induced by these updates are accumulated in a tem-
porary location; only at the end of the stimulus presentation are the accumulated
weight changes added to the actual weights. Geometrically, this procedure amounts
to obtaining several sample vectors at a given point in weight space, and taking a
step which is the resultant of the sample vectors. In the experiment to be reported
below, the network computed a batch of ten such sample vectors for each stimulus

presentation. We call this procedure the “batched” Agr_p method.

We wished to compare the batched procedure to the standard procedure in terms

of the time needed to learn the multiplexer task. Note that the learning time is

a function both of the direction and the size of the steps in weight space taken

| by the network. Since we were interested in the ability of the batched process to
improve the direction of these steps, it was important to control for the step size.
To do this, we first computed the average step size taken on the first few learning
trials by networks using both the standard Ag-p learning procedure and the batched
procedure. 3 The ratio of these average step sizes was then used to scale the learning
rates. In particular, the learning rate p for the standard procedure was chosen to be
0.5, and the learning rate for the batched procedure was then taken to be 0.079, so
that the step size per stimulus presentation was the same in the two cases. Note that
in the case of a deterministic method, the learning rate for the batched procedure
would have to be 0.05, given that there are 10 samples per presentation; the actual
step taken per stimulus presentation would be the same for the two procedures. For
the stochastic method, however, the steps can be in different directions. The fact
that the learning rate for the sampling procedure was larger than 0.05 indicates that

the sample vectors tend to point in different directions and cancel, which is of course

necessary if sampling is to have any effect. ':.
The architecture used in this experiment was the same as that used in previous n
A

studies of the multiplexer- -two layers of weights, with six input lines, four hid- \‘q
.

den units, and a single output unit (Fig. 10). The hidden units learned using the o

A

\'

Agr p rule, while the output unit learned using the perceptron rule. The evaluation ™
, /
"T'he step size was compnted as the Euclidean norm of the vector Aw. N

o

*

I\l

_"

67 -~

.*-_,

K

SO0

Pl

DT

-, A - - ..
AR A

LAY LA VRTINS BT LW LT AL A 1 LI LN | 7\), "t USRI U LW U LW VoCptaafatate i aty gt t, e gV i, et L L

signal was a deterministic function of the output of the network—if the output was

correct, the evaluation was one, otherwise it was zero.

The results are shown in Fig. 15. The abscissa represents bins of 200 trials,
where a trial refers to a single stimulus presentation. As discussed above, with this
definition of a trial, the two learning procedures are equated in terms of average step
size in weight space. The ordinate shows the average percentage error for passes
through the 64 possible stimuli. This error is a mean over the 200 trials in the bins
on the abscissa. Furthermore, each curve represents an average over 25 replications
of the experiment. As can be seen, there is a substantial improvement in using the
sampling procedure as compared to the standard procedure. If we use a percentage

error of five percent as a learning criterion, then the sampling procedure learns 2.8

times faster than the standard procedure.

Por tormance on Buitiploasr tass

Figure 15: Learning Curves Comparing the Standard and Batched Ag_p Methods

68

.. .. P . PR L o« - e Ut e e Lt - “ A
. ‘.'/",", ‘-'. A '_"’,-.'Jf' W ,. N, e PR L .-".\ oy n ot BN AEN .\. NN DR i
8 . dal a8 . . . sad

b WAt RO © eat * et 4t B . g} Va0 80 0'0.0's 88 8" [] v \ UL o7 a¥ gl “at el Yol v v, v 0 A0 v Vol Wad ¥ U \ 0 NN M) 4 L)

This result shows that it is possible to obtain increasingly accurate estimates of .

! a gradient, without requiring a complex error propagation process. There are both
|

1 practical and biological implications of this result. Suppose, for example, that in

r P
| some learning domain it is costly to obtain stimulus items, but that it is not costly d
3 to update the network and obtain evaluations. In such a domain, it might be practical y
; to use the sampling procedure to speed learning. From a biological point of view, N
i the batched approach emphasizes the point that the agent evaluating the output T
of a network need only be external to the network, and not necessarily external to f—

j' the organism. If some internal agent has sufficient knowledge to be able to evaluate T
actions, in particular if the agent constitutes a model of the environment, then it is '

possible to improve learning through the batched method without going through the e

N~

environment. .

~
A

‘.

"
v 8

=
N
-

69 .\

i'f AT AN T T T Ry NS AR TR 8 RS e A e e e e

AR LR .r‘1-:‘J_LJ_;.;_.-:;.:‘L;.AJ..AL:.:.I_M.J:.AL.{...f..a.m.n.,a. . "

. S T A A R

)
:
i
5
2

L e

W i ke e v i)

SECTION 5

POLE-BALANCING AGAIN

In previous research we used a version of the pole-balancing task (or inverted-
pendulum task] to investigate the capabilities of the learning methods we had de-
veloped [13,47,.5]. The pole-balancing task is an example of what can be called a
strategy-learning task. A difficult temporal credit-assignment problem complicates
this kind of learning—there is no standard with which to compare the system’s ac-
tions on every step. This problem rules out the use of most connectionist learning
methods for strategy learning because most of these methods require knowledge of
the correct, or desired, actions for a training set of input vectors. Learning proceeds
by the presentation of input vectors from the training set and the modification of
weights in a manner that is dependent on the error between the correct action and
the actual action, as was done for the experiments of Sections 3 and 4. For both the
pole-balancing task and the Tower of Hanoi task described in Section 6. the training

information arr'ves in the form of a failure or success signal after a series of actions

Our earlier work with the pole-balancing task assumed the existence of a represen-
tation for the cart-pole system’s state consisting of a large number of non-overlapping
“boxes™ produc>d by a pre-existing decoder. Given this representation, the task be-
came one of filing in look-up tables one to specify an evaluation function and
one to specify control actions. This simplified representation allowed us 1o separate
representation i:sues {rom the issues of temporal credo asagnment oo the <tadne
reported here. the pre-existing decoder v replaced S o Livered adaptice norwar
This network re-etves as mput a vector of o e neohers pnmg the <tate of t
cart pole systen. The network has o dearn fow vo e e s o wtate wo trae
svetem as a whole can successtullv avord i The avered motware oo o

kind of adaptive decoder Tnorder 1o accompach the b Adaptine G b

e L™ . . .
PSS e e . e - . o S . S .
b Ui U, WO, U, T VRS U, DUV, Y, g O N gl W SO ST Y SySP D -) PN SSRGS Y G W

(ACE) and the Associative Search Element {ASL) of previous studies were combined

with the error back-propagation method of Rumelhart et al. 44 . Consequently, the
architecture used consists of two networks: the ervaluation network for learning an
evaluation func:iion, which is an elaboration of the ACE. and the action network for

learning action heuristics, which is an elaboration of the ASE

The networks and learning methods are described first. Since the networks and
the learning methods used in the pole-balancing task and the Tower of Hanoi puzzle
(described in Section 6) are very similar. in this section we describe strategy learning
networks in a wayv that is general enough to encompass the systems used in both
of these tasks. We then briefly describe the pole-balancing simulation and how the
learning networks interact with 1t Fanallv, results of siinulation experiments are
described This section is an edited form of Chapters V' and V1 of . W. Anderson’s

dissertation

Strategy Learning Networks

\- presented the networks have just 1wo Javers. but the learning methods are
casiv extendeda 1o addinonal lavers The evalnation network and action network
dooner necescarth have the came namber of hidden or output units, but since the
cactooiar netaark hemg disonssed s alwavs obvious from the context, the same
“aratdes are aed toandesy i< hath network<. Let there be my hidden units and

Sotpt et tor oy tetal of o e e amits. The hidden units are indexed

cor b e the ot pat aats are indexed fromom, - 1 to m. (The evaluation

Vs oo s oatpat umt o Let I and) respectively denote the sets of

Pt
e e o e et anats The evaivation and action networks do not share
S e e eanted o cond the diithenlnies of integrating the hidden-unit

G g e e e csaeatiog netwaork and the action network.
P . o g 16 e toangles represent the “computation-
co e e ector s e o the detr and “pass throughT their
S et e et epresented b ntersections of horizontal and vertical
" e e g antpt s compited and sent out the output

T

e o

v
.

v

el .

TR SIS

.

L
L4
>
4

X

ERNANANANAFAVAYEVEVE VSV VS VT UVELUJBEUN VN US VW UMsvvle e L o

F To Yo To <o
1 I, Yi I, Zy
. L] . -.
, d *
I'l yn In z'l

— Yn41 Zn4t
= Yn+m, Zn4ma
p ay as am.

Figure 16: Two-Layer Networks for Strategy Learning

lines emanating from the apex of the triangles. Input from the environment at time
step t, denoted by zo|t], T4|t],..., z,]t], s provided to all hidden units and output
units. There is an interconnection weight at every intersection—hidden units receive
n + 1 inputs and have n + 1 weights each, whereas output units receive n + 1 + m,
inputs and have n+ 1 + mj, weights. For the evaluation network, the weight associated
with the 1** input to unit j at time step t is denoted v,,[t|; the analogous weight of

the action network is denoted w;;|t|.

The learving rule for the evaluation network is composed of Sutton’s [47] Adap-
tive Heuristic Critic (AHC) method for the output unit and Rumelhart, Hinton, and
William's [44] crror back-propagation scheme for the hidden units. The AHC rule

results in a prediction of future reinforcement for a given state. Change: in this pre-

i tion are used as heurtstie reinforcement to guide the learning of s arch heuristics
by the action 1etwork. The output units of the action network use an associative
o cecement carnig method identical to the one used in our earlier pole-balancing

e 10T N Other associative reinforcement-learning methods, such as the

s e conid e used for the output unit. The Ag ¢ rule would require

itk aniti ettt

an additional mechanism for restricting the heuristic reinforcement to between 0 and
1. We chose to draw on our previous experience with the single-layer network |13
by employing the reinforcement-learning rule used there. This rule is combined with

the error back-propagation method for hidden units.

Output Functions

Evaluation Network The output of the evaluation network is computed in the
following way. First, the outputs of the hidden units are calculated. The output, p,,
of hidden unit 7 is calculated using the values of its weights, v, at time t,, and input,

T, at time ¢,, as follows:

p,[t,,tu] f (Z Il[tzlvl.]itvi) . for] H,
=0 /

where f is the logistic function f(s) - 1/1 + e *. The multiplication of weight and
input vectors from different time steps is required by the learning rules for reasons

described below.

The input vector, y. for the output unit is composed of the input from the envi-

ronment and the output of the hidden units:

f

Vel o) = Tt for1 - 0..... n,

1

ytltrs'u] - P.,n[t,.t,.j, forv--n+ 1., n o+omy.

The index, m, of the single output unit is dropped from p,, for clarity. Thus, the
output of the evaluation network is p, and is defined as

nem,,

pl’l‘v"" X .'/J’pt':". vn“'"

1 0

Action Network To define the output of the action network we first define the

hidden unit outputs, a,:

ll):[” f(x.r,“vu',v)'ly) . for 3« H.

t O

T TN T T U T NN L T I TN TU RTINS F STl i AN SRR TR Rmasm e R QAR RAE BT R E e S T

These values partly determine the input vector, z, for the output units, along with

the input from the environment:

Jd

z(t] -z, fori—=0,...,n,

zlt] = a, Wlt], fori=n+1,...,n+ my.

For the experiments in later chapters, the output components, a;, 7 ¢ O, of the

' action network are in one-to-one correspondence with the possible actions defined
) for the task.! To select an action for a given problem state, the output of one output
unit is set to 1 and the outputs of other units are set to 0 by the following process.

The output functions of the reinforcement-learning units are stochastic, i.e., their
output depends on a noisy weighted sum of inputs. A competition among the output
units is implemented by assigning the value 1 to the unit with the highest weighted
sum plus noise. This competition is limited to units corresponding to legal actions
for the current state. Let L, <~ O be the set of indices for the output units that
represent legal actions for the state at time {. The determination of L, at each time
step can be implemented by a network and even learned through experience, though
for our experiments we specified L, a priori. The responses of the output units are

calculated as follows.

Let s, be the noisy weighted sum of the input for unit j, j « L, defined as

NIRRT R T

n
~
T~

&

where n,(t| is random variable with distribution function ¥ (for the pole-balancing

task, W is the logistic distribution). The unit with the largest value for s, wins the

J

"Rather than resresenting actions i this locahzed wav, each actiaon can be encoded by a pattern
of output-unit activity. For example. the six possible actions for the Tower of Hanor puzzle could
he represented as patterns of ontput values over three output units This can lead to genevalization
among actions represented by silar ontpnt patterns. which can either benefit or hinder the learning
of eorrect actiong These 1scnes are not addressed by the tepresentation descpthed in the text, although
the remnforcement-learnming method i< capable of dealing with the credit-assignment pmoblem tha

teenlts when output patterns encode actinnes

o 3 e e NN LT e N e T
i’.e.&c\w,.cs-g-:-.t-.-c-.: AT

A R— B . ‘t o . . <o " . N Kp8 &
N a¥h o'k %A oTE LV ¢ ad 278 w4 2V s RN NEN IR AN NN AN Y A A NE NN N AV K] ki + i

competition and is assigned a nonzero output:

1, if s;[t] > sk[t], for k € L, and j # k;
a;t] =
0, otherwise.

To simplify the determination of the unit with the largest s; for the Tower of Hanoi

task, the following exponential probability distribution is used for ¥:
V(g)=1—¢€".

The output function can be simplified for tasks with only two possible actions
for every state, such as the pole-balancing task. A single output unit is used whose
binary output values encode the two actions. Let this unit be unit k, i.e., O = {k}.

The specialization of the output function for this case is:

1, if sgft] > 05
arlt] =
0, otherwise.

Learning Rules

Output Layer of Evaluation Network—The change in p plus the value of the

external reinforcement r is called the heuristic reinforcement, or :
Fle) = rlt] + aplt,t - 1) - plt 1t 1],

where (0 - 5 - 1, called the discount rate. The use of 7 in updating the weights of
the evaluation network’s output unit results in a prediction of future discounted rein-
forcement for the current state, with reinforcement farther in the future discounted
more than earlier reinforcement [47,46]. States for which p is relatively large are
favorable, while those with relatively low p are to he avoided. Once this mapping

is correctly formed, changes in p can be used to indicate whether recent actions are

leading toward favorable or unfavorable states.

The double time dependencies of variables in the equations for the evaluation

network are needed for the following reason. In comparing one value of p with a

75

"

b ‘.._-H 5

R PO

5,

B VARARAALL T LS

- \' - -" "

L
oo
(ALY

5y

. F

P
sty 40, T,

¢

x f
.

YO0

=
L

>
.
o

“ e

s
o
o

VIR AR N

previous value, care must be taken to avoid instability in the growth of weight values
(equations for changing weight values are presented shortly). If the computation of
p for step ¢t — 1 uses v[t — 1] whereas p for step ¢ uses v[t], then a change in p from
one time step to the next could be caused by a change in weight values rather than
the encounter of a state with a different expectation of reinforcement. To avoid this,
the pair of subsequent p’s is based on a single set of weight values, i.e., the difference
between p for step ¢t — 1 and for step ¢ is due only to the change from z,[t — 1] to z,]t],
because both p’s are calculated using v;[t — 1]. If weights are known to change by

small magnitudes on each step, then this precaution may not be necessary (as done
in Ref. [13]).

Sutton [47] specialized the AHC rule by redefining # for several classes of tasks

involving distinct trials, where a trial consists of the following steps:
1. setting the state of the problem to a start state,
2. letting the learning system and environment interact, until

3. a goal state or failure state is encountered, signaled by a particular external

reinforcement value.

Following Sutton, 7 for trial-based tasks, such as those considered here, is defined to

be:
0, if state at time ¢ is a
start state;
Fle] = ¢ e[t plt- 1t~ 1], if state at time t is a goal (5.1)

or failure state;
rit + yplt,t - 1] --plt -1,t - 1], otherwise.
L
. <
The weights of the output unit, unit m, of the evaluation network are updated]
1

by the following equation:

{

4

1

1

~ 1

Vemlt] vem[t L4 BFH Y 1t 1], \

for1 - 0,....,n + my and § > 0. A positive change in state evaluations, indicated i

by a positive f, results in an increase (decrease) in weight values proportional to 1

L]

1

1

76 i

|

A

A

1

N A N N N A A A A A B N S A R R I & R Pk R TR R R L G R AN L R (RO TR
SN 5 L LS LIRS L I S R N X A R N Yt S L AT T T R, T, SEPD TR W 00, 08, DO TR R T

the corresponding positive (negative) input values on the preceding steps. In this
way, the evaluation of the preceding state is altered, effectively shifting evaluations

to earlier states.

The above expression is a simplification of Sutton’s learning rule: in its general
form, y;[t - 1,t — 1] is a trace of previous values of y,, called an eligibility trace.
An example of an eligibility trace is a weighted average of past values of y, with
recent values weighted more heavily. This generally results in faster development
of good evaluation functions. Eligibility traces can also be used in the weight up-
date equations of the action network. We chose not to implement eligibility traces
primarily for the following reason. Preliminary experiments with the pole-balancing
task showed that a one-layer action network functioning with eligibility traces and
without an adaptive evaluation network, i.e., learning only from the external rein-
forcement, could learn to perform relatively well. However, our interests were in
studying learning in hidden units, which are required for the development of a good
evaluation function for the pole-balancing task as it is formulated here. We removed
the eligibility traces from both networks to force a greater reliance on the evaluation
function and to increase the number of failures early in a run, providing more exter-
nal reinforcement and thus more opportunities to improve the evaluation function.
Thus, our primary goal was not to achieve the fastest possible learning on this task

but to investigate learning in hidden units.

Output Layer of Action Network Output unit j, 5+ L, of the action network

updates its weights according to:

w,,[t] = w,lt 1)+ pF

U(a,ft 11 E{alt 1liwiz})alt 1

fort 0,....n + my, where E{a,lt 1]lu:z} is the expected value of a,it 1! con-
ditional on the current values of v and z. Weight values are not changed for output
units corresponding to illegal actions. The value of a0 1 F{a,it 1wz} can
be viewed as a measure of the difference between action a1t 1 and the action that
is usually taken for the given values of =it 1 and w,, 't 1. Thus, the results of an
unusual action have more of an impact on the adjustment of weights than do other

actions. Since a, « {0.1}, the expected value of a, is equal to the probability that

~1

-1

, W

a,is l, e,

Efa,it|lw;z} - Pr{a,t] - 1}.
See Ref. [4] for derivations of this probability for the caie of three actions the only
cases that arise for the formulation of the Tower of Hanoi puzzle used in Section 6.
The calculation of this probability is easy for the pole-balancing task because there

are just two possible actions. In this case, Pr{a|t| 1} is just W(q), where ¢ is the

weighted sum of the unit’s input.

Hidden Layer of Evaluation Network From the results of the comparative
experiments described in Section 4, we concluded that the error back-propagation
method of Rumelhart, Hinton. and Williams usually learned most rapidly (for the
particular multiplexer task used in the experiments). However, this method cannot
be applied directly because it requires knowledge of the correct output. Here we do
not know the correct action or the correct evaluation for a given state, which would

he needed in order to calculate an error to be back-propagated.

To apply an error back-propagation scheme to the hidden units of a network whose
output layer is learning through reinforcements, a way of translating a reinforcement
into an error must be found. This can be done in a heuristic manner by extracting
from the reinforcement-learning equations the terms that govern weight updates in
a fashion similar to the error terms in the gradient-descent rules. However, it is not
obvious how to incorporate the eligibility traces often used in reinforcement-learning
methods into a back-propagation scheme (this is another reason for not including

traces for the experiments reported here).

For the evaluation network. 7 plays the role of an error in the update of the output

unit’s weights. Therefore, we define the error of the output unit, &2 to be:
, .
ot | rt.

where the superseript denotes the association with the evaluation network that gen-
erates output po The error that is back-propagated from the output unit to hidden
unit s just 7oand Rumelhart ot al’s 44 expression with Sutton’s (48] modification

for the error of hidden unit . called bl’“ hecomes:

AIiE 1 Hsgn(ryamit D)yt L Lyl 1 1),

V¥ "

PR IO

® e e e

. .
D

I

and their method for updating the hidden units’ weights can be applied:
vt = vi,t = 1] + Ba 8]t — 1] zift — 1] + Bm Av, 5[t — 1],

for units j € H and inputst = 0,...,n. Note that the sign of hidden unit j's output

the results of the comparative study reported in Section 4 suggest that the method’s
sensitivity to the value of the learning rate parameter, here 3,, is decreased by the

\
weight rather than the weight value itself is used. This variation is used because
|
| use of the sign of the weight.

Hidden Layer of Action Network —The equation for updating the weights of
the action network’s hidden units is a bit more complicated. Once # becomes a good
evaluation of the previous action, the role of an error is played by the product of #
and the difference between the previous action and its expected value. The sign of
the product is an indication of whether the action probability should be increased or
dec-eased. So the error in the output of output unit k, k € L,, of the action network
is defined as:

olit 1 Flt) (et 1] E{ailt 1]|w;z}).

The back-propagated error to hidden unit j is used to compute the hidden unit’s

error:

st 1 3T (el tisgn(w caklt - 1)) 2l - 1(1 - 2]t - 1)),

and the weights are updated by the following equation:
w, it w [t 1 4 pa 67(t - Uzt 14 pm Aw,, [t 1],

for units 3« H and inputs ¢+ 0....,n. Disregarding the different errors that are

back-propagated by the two networks, the learning rule used by the hidden units of

the two networks are identical. The sum over the products of output unit errors and
weights is not included in the expression for a hidden unit’s error in the evaluation

network because there is only one output unit.

ettt

Parameters The equations for the evaluation network are governed by the follow-

-

-
-

79

I AL L LS

- . . L. ~ et et ey e vl e T g e N e e e SO R
o G L N PN CA T - ..r..._. PR RSN A N . S . K
*s S N A A A T S AR LS

. . - - e . .. Cte e L te te et . .«
. - - . - M e e e, - P . I T S L e e
v 4 - . C .. e A | P T T NP LSS I S TR S FCIRT R . « et T
F A e l”l.’._'.'AJ._.‘iLIM P WP TN et v e Attt At atatatatatatalaa st e Al al
N A R o

V. &, 4 At 8t - Vo B's #%. Bla Bl 0. #'a @%e @1 A'a Bo A1, #ig 4V, A1l pbo gt At 4% aV. Bt eFo e gt

ing parameters:

A learning rate for the output unit (8 > 0);
Br = learning rate for the hidden units (Br > 0);
B, = momentum factor for the hidden units (8, > 0);

v = discount rate (0<y<1).

Similar parameters appear in the equations for the action network:

p = learning rate for the output units (p > 0);
pn = learning rate for the hidden units (pr > 0);
pm = momentum factor for the hidden units (p,, > 0).

In applying this system to a task, it is important to test a number of values for
each parameter to investigate the sensitivity of the methods with respect to the

parameters. This was done for all experiments described in this report.

The Pole-Balancing Task

In this section we describe the pole-balancing task, our computer simulation of
it, and how this simulated system interacts with the adaptive networks. Additional
details can be found in Ref. [13|. Learning to solve the version of the pole-balancing,

or inverted-pendulum, task that we have studied is nontrivial for two reasons:

1. the evaluation function to be learned is nonlinear and therefore cannot be

formed by a single linear unit, and

2. a performance evaluation in the form of a failure signal appears only after a
sequence of actions has been taken, making it difficult to identify which actions

are good and which are bad.

The pole-balancing task involves a pole hinged to the top of a wheeled cart that
travels along a track (as described in Ref. {13]). Both pole and cart are constrained

to move in a plane. The state at time 7 of this dynamical system is specified by four

RO

Ta 8t

at

&t

SRR,

o T T

F
£y

PRITA T U TS S % P RN ETSLIRA LN N URA RN W W N\ o R T a'h V2GR i) i) a8 270 2 Y t 3, X NENE] A gth g PN) s gt g'h p'¢ A . Al

¢
.I
.
4
1 L)
real-valued variables: ¢
o
T, the horizontal position of the cart, relative to the track; o
z,; = the horizontal velocity of the cart;
0; = the angle between the pole and vertical, clockwise being positive;
6, = the angular velocity of the pole. 3
N
The goal is to exert a sequence of forces, F;, upon the cart’s center of mass such \
that the pole is balanced for as long as possible and the cart does not hit the end ;
of the track. More abstractly, the state of the cart-pole system must be kept out of N
certain regions of the state space, making this an avoidance control problem. There)
is no unique solution—any trajectory through the state space that does not pass g
,
through the regions to be avoided is acceptable. A minimal amount of knowledge B
-
about the task is assumed in our experiments. The only information regarding the .
-
goal of the task is provided by the external reinforcement signal, r¢, that signals the 2
occurrence of a failure caused either by the pole falling past a prespecified angle, or N
hS
the cart hitting the bounds of the track. r, is defined as N
b
h)
0, if -0.21 radians < 8, < 0.21 radians and - 24 m < z, < 2.4 m; oy
re — '
-1, otherwise. :
Note that r, does not depend on 6, or z,. e
We simulated the cart-pole system using a numerical approximation of the system -
of nonlinear differential equations that models the system. Details are provided in .
. \ :.r
Ref. 113].
.d‘
From successful experiments with two-layer systems, we found that good evalua-
tion and action functions look like those sketched in Fig. 17.2 For clarity, let us limit
attention to projections of the functions to the (0.8) subspace. Figure 17a shows the .
kind of function one might expect the evaluation network to learn. Failure is likely ;'
to occur in the upper right and lower left portions of the (00) state space. We want b
2Due tn the nature of our formulation of the learning task as an avoidance control problem, one ':
cannot gay that these functions, or any others, are the unique optimal functions. There are very many h
ways that the system can avoid the failure regions of state space. o
o
:-’
81 -
..
~
~
. T m T a " A R A" e e A" "e . - “ - - e W - .-\
v AV 1 W Y A R o, i s B A Ty o A At W R AL AT, 0, VAWV s VG,

N .
| - 3 : 8 P \\nght Push
8 0l- . R 0" & . 0 \\
- -) =1 N
_ - - ; Left Push \\
- - - \
~0.2) 0.2 ~0.2 9 0.2
a. b.

Figure 17: Good Functions for Pole-Balancing Solution

the learning system to shift this failure signal to states that precede failure states,
then to states that precede failure by longer time intervals, with the strength of the
shifted prediction indicative of the average number of time steps until failure. Past
states and actions, or weighted averages of previous states and actions, could be used
to apportion blame for the failure to previous actions, but the tradeoff between a)
the need for a long history to blame actions many steps in the past, and b) the need
for a short history to avoid blame being spread too thinly (resulting in slow learning),
is difficult to optimize. These temporal credit-assignment issues are stucdied in detail -
by Sutton [47,46|, who developed the AHC learning rule used here in the output unit -

of the evaluation network.

The map from (r.) to a prediction of failure also looks like Fig. 17a. In the lower
left corner, the cart is moving to the left and is near the left border of the track, and

in the upper right corner it is approaching the right border of the track.

Figure 17b shows an action function for generating a push on the cart. For
small angles, such as 0.21 - 8 - 0.21 as used in our experiments, the surface
that separates states requiring diflerent actions, called the suitehing surface, can be
linear. States in the upper right region require a push to the right, while states in
the lower left require a left push. The linear switching surface is an appruximation to
the nonlinear switching surface of the time optimal bang-bang controller. The linear
approximation works well for the small range of angles used in the experiments. The

position and slope of the linear surface varies for different values of r and 7.

LA LY PR

IR A)

T CYOY 338030 Vol a0 R e a2 et et atat af et 420 121§, 0 8 82 8% 80 0% 2% 2%2'8% 48 Ak -2t *af *

The pole-balancing task frequently has been used to illustrate standard control
techniques due to the inherent instability of the pole and the task's similarity to
many balance-control problems. For example, Cannon {17| shows how the root-locus
method is used to analyze the stability of a “lead compensation-network™ controller
that exerts a force proportional to the derivative of an error signal in this case
the pole’s angular velocity. His analysis is confined to small angles and angular
velocities and does not include the goal of avoiding the bounds of the track. These
control-design techniques require a model of the system to be controlled in the form
of differential equations that define how the state variables change over time. A
good deal of time must be spent by the control engineer in determining a model
that approximates the behavior of the system to the desired degree of accuracy.
Control systemns that learn without a predefined model, or that acquire internal
models through observation of the system’s behavior, would obviate this potentially

difficult analysis.

An alternative to expressing a control law as an analvtical equation is to represent
the function in tabular form. Michie and Chambers [35] took this approach for
their learning system as applied to the pole-balancing task. Their table consisted
of approximately 162 “boxes™ - nonoverlapping. rectangular regions of the cart-pole
svstem’s state space containing average counts of the number of steps before failure
for a push to the right when the system’s state addresses the corresponding box. and
an analogous count for a push to the left. When a box is entered, the push with the
highest count is applied. Their system successfully improved its performance with
experience.

Our previous learning system for this task 13 integrated the table look-up ap-
proach with connectionist learning methods, Separate tables were used to store
predictions of reinforcement and probabilities of generating actions, each indexed by
the state of the cart-pole system. The tables were implemented as two units, cach
receiving 162 binary-valued input components. When the state was ina particula
box, the correspending input component was <et to | and all other components were

set to 0. Therefore, the weighted sum of the unmit’s input was equal to the value o1

the weight associated with the nonzero input component.

e aRd.SE i SX oMk e oa 4 ucd o f LR ot 40 g g0 ov gt bog £od s gtios mop ol bap ol Sal Vol Sl tel el ot tale el At gt Al gte 0o B ol ol Al Al AL b Al Al T i

An obvious problem with the table look-up approacivis that the size Shape and
placement ol the regions ito which the state space i« divided greativ anfluence the
abiity of the systerm to learn the desired mappings A region nght be oo Larg,
meaning that different states inside the region require diflerent output values, e g
different pushes on the cart. Converseh. regions are smaller than optunal when
many regions require the same output. If these regions are instead subsumed by one
large region, then what is learned for one state i generalized correctly 1o all other
states in the region. Wiath many small regions, learning must occur i all regions
independently - Michie and Chambers proposed a <olution 1o this problem: regions
for which one output 1« not clearly better than any other despite repeated experience
shonld be “split™ into several, smaller regions, and regrons with the same output
vatue <should be “lumped”™ into a single. larger region. Politis and Licata 39 have
pursued this possibihity with Baito, et al s 13 learnimg sv<tem and a technique fo
penodically splitting every region umiformls mmto a mnmber of cimaller regions

In the expertments described here, the hixed “decoder™ of the system deseribed
m Ref 13 1o transfate the cart-pole <tate to a region address is replaced by a
faver of hidden nnits that learns features useful in solving the pole-balancing task.
This “adaptive decoder”™ view s closely related to current research topics in control
theory involving the application of multiple controllers to one task. For example, the
control of a full 360-degree pole requires a complex control law in order to he useful
for all states. An alternative i< to use a collection of less-complex control laws, and
activate one at a time, based on the current state and an ordering of the control laws
according to their ability to deal with that state. Learning when to switch from one
controller to another is analogous to learning how to classify the state into one of a

set of hoxes,
A\nother example of a4 connectionist-atvle vstemn apphed to the pole-balancing
taxk comes from the work of Widrow and Sunth 60 Theyv present results of using

a supervised-learming <cheme to train a network of Adaline units to duplicate the

responses of a teacher . For their experiments the teacher was a predefined linear

.

-

4
o
‘d

control Taw . A huan conld play the role of the teacher by manually controlling the

I"l

1

T AT

pole through an interface, such as a jovstick, and the Adaline network could use the

X1

-

LN R I

- . P I O R I L
L% 2t P g ,‘A}anﬂ:-'l}l\-ﬁ-‘ o o

-

e e T m A e ah aem el el

““-"““UEU'.'C"mn"““nﬂ“'v'.'CW'CICWUU POWIRKI TUIW. W TN UL TLU L FEINE P UL AN AN YN BN AR BA BB w mm—

hman's responses as training examples. Learning to mimic a teacher is much casier
than learning [rom delayed reinforcement as is required for our formulation of the
pole-balancing task, but the work of Widrow and Smith has been very useful to us

in showing how adaptive units can be applied to control problems.

Interaction between the Network and Cart-Pole Simulation

The components of the networks’ input, z,|t], are scaled versions of the state

e nt] = Flz[t] + 2.4),
ot] = M(#[t] + 1.5),
mslt] = Ga;(00t] +0.21),
Taft] = L(]t] + 2).

An additional input, zo[t|, with a constant value of 0.5 provides a variable threshold.
Inputs z,[t| and z3]t| range from O to 1, while z3[t| and z,[t| are primarily within the
0 1 range, but can fall outside these bounds. This scaling accomplishes two things.
Since the learning rules involve the input terms, z;[t], as factors in the equations
for updating weight values, terms with predominantly larger magnitudes will have
a greater influence on learning than will other terms. To remove this bias all input
terms are scaled to lie within the same range. Secondly. since the values of the <1,

variables are centered at zero, if these values were used directly as network inpore
correct action for positive 8 and § would transier to negative 8 and 0 11 v v -
right way, i.e., the correct action for negative ¢ and B 18 Uhe negatin

action for positive 8 and] {see Figure 17h) The o corvnes pa
make the task much casier. cireumventing the veed o0

network. Thus, scaling the tave variable: o

hidden nnit< in the case of the action v

PR A N
k\‘}u\,_ BRI VP —— -

.-
"
\
AN
Ay
\ﬂ
<
‘.'!
[
|
N
d
S
b Y
a
AL
<

~AD-A183 762 MULTILAYER NETWORKS OF SELF-INTERESTED RDM’TIVE UNITS
(U> MASSRCHUSETTS UNIV AMHERST DEPT OF COMPUTER AND

INFORMATION SCIENCE R G BARTO JUL 87 AFWAL-TR-87-1052
UNCLASSIFIED F33615-83-C-1078 - F/G 12/7

EEEEE
mmumu < -

Bm—m—.Nuun:

2 =} =

= ==

i —
]

MICROCNPY RFSOLLTION T£ST CHAR1

e ————

RO IR N N O W O U I O U U P U I D LN T U I U IO O R O R NG

The force exerted on the cart’s center of mass at time { is given by:

10 nt, if aft] = 1;
F, =
—10 nt, if a[t] =0,

where a[t] is the binary-valued output of the action network at time t. The sampling
rate of the cart-pole system’s state and the rate at which control forces are applied

are the same as the basic simulation rate, i.e., 50 hz..

Results

The experiments consisted of a number of trials, each starting with the cart-pole
system set to a state chosen at random, and ending with the appearance of the failure
signal. A series of trials constitutes a run, with the first trial of a run starting with
weights initialized to random values between —0.1 and 0.1. We want the learning
system to learn to generate actions, F|t|, that maximize the number of time steps
between occurrences of r{t] = —1. The only information available to the system is

given by the sequences z,{t], 1 = 0,...,4, and r[t].

One-Layer Experiments

We experimented with one-layer networks (no hidden units) to obtain perfor-
mance measures with which the performance of the two-layer system could be com-
pared. The learning rules for the one-layer networks depend on the three parameters,
p, B, and . The value of v was fixed at 0.9, while different values of p and 3 were
crudely optimized (simulation time prevented an accurate optimization) by perform-
ing 2 runs of 500,000 steps each for approximately 25 different sets of paramecter
values. Two performance measures were used to select the best parameters. The
number of trials, averaged over runs with one set of parameter values, provides a
rough measure of performance over the length of a run. To judge how well the so-
lution had been learned by the end of the run. the number of steps in the last trial,

or the previous trial. whichever is larger, is averaged over all runs. In this way. an

R6

abnormally short final trial caused by the termination of a run on the 500, 000" step

does not enter into the average of final trial lengths.
Performance did not vary considerably for the parameter values that were tested.

The best parameter values were used to obtain a more statistically-significant result

by performing 10 runs of 500,000 steps each. The following parameter values were

used:
S = 0.05,
. p = 0.5,
4 = 0.9,

resulting in the number of failures for the 10 runs shown in Table 14. The average

Table 14: Results of One-Layer System

Run Trials Last Trial
1 | 33,977 14
2 | 61,888 4
3 | 24,795 16
4 | 22,717 130
5 | 28,324 28
6 15,218 100
7 | 31,594 15
8 44,903 9
9 | 16,115 72

10 26,402 14

nuinber of trials for each run is approximately 30,593. In addition, the number of
steps in the last trial is shown for each run. As explained above, this value is actually
the larger of the last trial length and the previous trial length, in case the last trial

had just begun when the run was terminated ai step 500,000.

The number of steps per trial versus the number of trials is plotted in Fig. 18.
The plotted values are averages over the 10 runs and over bins of 100 trials, i.e.,
the trials for a run are grouped into intervals of 100 trials, the number of steps per
trial is averaged for each interval, and the results are averaged over the runs. The

learning curve shows that performance improves with experience—the trial length

is approximately equal to 10 steps initially, and after 30,000 trials approximately 30

. g V. b7 e @Y B
a0 s Kg - . 3r gl R R R TR II FLITTL AN TN TUECE P SN PUN PR YN YL A P L LIS S N T MU WA FUR LTS YA A

40 f] '

T

~ o

2z r—t
—

20

= -
(el =]

YECC O

RANDOM RCTIONS

0L, A . o
0 10000 20000 30000
TRIALS

Figure 18: Balancing Time versus Trials for One-Layer System

—— gy

Pl i

steps occur per trial. Even wiih little experience, the learning system performs better
than a fixed controller that selects pushes on the cart at random. The large variance
from trial to trial is due to the initialization of the cart-pole system to random states
upon failure. The starting state of each trial might be very similar to a failure state,
or it might be near the state of perfect balance where (z:,a':,ﬂ,é) = (0,0,0,0). This
method of restarting after failure differs from that used in our earlier work described

in Ref. [13], where we started the cart-pole system at state (0,0,0,0) after every

failure. !

The values of the weights at the end of each run varied considerably. The best of
the 10 runs, resulting in 15,218 failures, resulted in the weights that are displayed on
the network schematic shown in Fig. 19. Positive weights are drawn as hollow circles
and negative weights as filled disks. The magnitude of a weight is proportional to
the radius of its circle, or disk. From the size of the weights we see that the output \
of the evaluation network (Fig. 19a) is rather insensitive to the values of the state N
variables, and the value of the output is always negative. The output of the action ;
network (Fig. 19,b) does depend on the system’s state. A large 8 has a positive effect,
producing a push on the cart to the right, and a large value for z has a negative effect,

pushing the cart to the left.

P IR

A better understanding of what these weights mean is obtained from a graph

>

of the output of the networks versus the state. To display these functions of four

PV o8 AN

K8

-
\,
[~

P S W S e e o
i’:‘.”.‘.l.% SR A N AR A 'J:'A "o 0 11‘:. R .L .1- 1_ l

Zo —‘ o

ot

T =
Y

Figure 19: Weights Learned by One-Layer Network

variables, we generated graphs of the functions’ values versus 8 and 6 for nine different
pairs of £ and z values. Fig. 20a and Fig. 20b contain such graphs for the evaluation
network and the action network, respectively. The insensitivity of the evaluation
network to the state is evident from the flat surfaces of its graphs. The base plane
in these graphs does not represent a value of 0; the surface is actually at a small
negative value. Obviously this function serves no useful role as an evaluation function
for states. It is for this reason that the one-layer system could not improve its
performance over 30 steps per trial. Credit is assigned by the external reinforcement
signal only to actions that push the cart-pole into a failure state in one step. These

actions may not be responsible for the failure and may even be correct.

Fig. 20b shows that the action network has learned a function with approxi-
mately the desired shape (Fig. 17b). The height above the base plane represents the
probability of generating a push to the right. The level of the base plane is at zero
probability, so for states where the surface lies near the base plane, a push to the left
is generated with high probability. The middle graph, where z = 0 and z = 0, shows
a smooth transition from a high probability of pushing left to a high probability of

pushing right as 6 and 8 go from negative to positive. This transition is shifted in

N

Il

Figure 20: Functions Learned by One-l.ayer Networks

$'s ¢4

-16

1.6

>,
L2 L LAA
|V orrvsans

-

(12212

DY A

NG HNEN

90

B

Ly t'e 4'g &,

NN

the direction of negative # for negative values of z and in the positive @ direction
for positive values of z. In relating these graphs to those for the two-layer networks,
we will see that this relationship between the transition line and the value of z is
the opposite of what is needed to balance the pole while avoiding collisions with the

track boundaries.

Results of Two-Layer Experiments

Two-layer networks were formed by adding 5 hidden units to each of the evalua-
tion and action networks. The learning methods for the two-layer networks depend
on seven parameters: O, On, Bm, P, Pr, Pm, and . As was done for the one-layer
system, sets of parameter values (approximately 10) were each tested in 5 runs of
500,000 steps. Performance varied significantly for small changes in parameter values

(v was not varied). The values giving the best performance are:

3 - 0.2, -
Bn = 0.2, .
»Bm = Oa ;.
p = 0.5, 1
-
ph - 05. ,:_:
Pm = 0» ';-:‘
vy = 0.9. :-
A

& *

Notice that 3,, = p,, — 0. Results suggest that nonzero momentum in the learning
rules for the hidden units hinders performance on this task. These values were used

for 10 runs of 500,000 steps, resulting in the total number of trials and final trial

lengths shown in Table 15. The average number of trials over ali runs is approxi-
mately 10,983, compared to 30,593 trials for the one-layer system. Even after much
learning experience, a nonzero probability of selecting the wrong action exists for
every state, as suggested by the relatively small number of steps in the last trials of
Runs 1 and 10.

The learning curve for the two-layer system is shown in Fig. 21. The large, stair-
like jumps in the curve are due to the way in which performance is averaged over runs,
described as follows. The axis for the number of trials is labeled from 0 to 30,000

trials. so runs for which less than 30,000 trials occurred were handled in a special

91

W LW, ol " Fe E Lo
2 W2 e '.A\J\l"\.l-h\

PRI R R A 2 N RN RSN
PR AT S A A MR DS VAT R

Table 15: Results of Two-Layer System

Run Trials Last Trial
10,123 88
7,790 2,011
5,814 14,535
8,466 5,753
7,212 28,407
6 | 23,539 20,328
7 | 19,401 14,302

G W N e

8 | 8,804 4,674
9 | 9,756 20,889
10 | 9,645 154
|
12000 e T T ‘_ :
10000t 1 -
2 LRAYERS \
8000 >
TRIAY |] Ny
LENGTH 6000 .}:
4000} 1 >
2000 1
) A,_ . T
0 10000 20000 30000
TRIALS

Figure 21: Balancing Time versus Trials for Two-Layer System

92

T FuE Tt N S MO S S S S R R
k\h.{..\'.-‘(L(.cr,.-t..&'{';ﬁ{..u.\.muﬁ~

a2t g B A h b 2 g L 4 2 B o R 4

way. The learning curve for such a run is extended to 30,000 trials by assigning
to trials that didn’t occur a value equal to the larger of a) the number of steps in
the last trial, and b) the number of steps in the previous trial. In this way, a very
short final trial is disregarded and the length of the previous trial is used to extend
the curve. The large jumps in the curve occur when the last trial of a particular
run is very long and the run is terminated when 500,000 steps have elapsed. If the
experiments were to be run for more steps, the final performance level would have
been higher. This large number of steps is then averaged into the performance curve
from that trial through trial 30,000. For example, the jump at trial 20,000 is due to
the last trial of run 7, which was approximately 14,000 steps in length. All 10 runs
were terminated before 30,000 trials elapsed, resulting in a final performance level
of about 11,000 steps per trial. Recall that the final level achieved by the one-layer

system was only about 30 steps per trial.

The large number of weights, 35 in each network, makes it difficult to interpret
the solutions found directly from the weight values. The relative magnitudes and
signs of the weights are shown in the network schematics of Fig. 22. Figure 22a
shows the final weight values for the evaluation network of run 6, and Fig. 22b shows
the weights for the action network. Units 1, 2, 4 and 5 of the evaluation network are
similar, having all positive weights. (In the figure, the small size of the corresponding
circles make them appear to be filled-in disks.) Unit 3's weights differ, and it is also
distinguished by having a large positive connection to the output unit. It appears
that only unit 3 has developed a new feature that is useful for the prediction of

failure.

The function implemented by the evaluation network appears in Fig. 23a. The
height of the surface ranges from approximately 1.5 and 0.1. Its shape is just what
is needed for the action network to receive an immediate evaluation of an action. At
the center of each base plane, representing the (0()) subspace, the cart-pole is in a
state where the pole is vertical and not falling. The evaluation has its highest value
for these states, therefore forming an evaluation function that decreases as the cart-

pole system moves away from this state. Any action that takes the system toward

cither the positive or negative (8,0) corner results in a negative evaluation change,

923

R 2 A S T i L L S e L L L R

i T . L T N R UYL L AT Y T 5 3

A1 DA) -~
4 A 4 m.
2
<
S——1—10 =
&— ux & - 3
<
J aVaal =
A 4 /J\f\ &
e o N D a E3
RN 74 A 4 " %4 <
—<h a -
A %4 N =
§ g&&w
<
wm
LlAaAl] ~ <
v
=
- "~
o~
X : N
3 ¢
11 :
D M
K =
3
S

S

--L

r.L

2

I.A

o

g

LA

)

IR ST oa

R

e
A4
o
rssasss”,
ssr s s /]

RS QIR

TRRROIANIY

Figure 23: Functions Learned by Two-Layer Networks

P PTE ‘.._--__.r‘,‘;_,‘._..:,._..:‘.‘:_.

i.e., a negative 7. The tilt of the surface as z and = change is also correct. Positive

(8,8) states are more likely to result in failure when the cart is heading toward the
right border of the track, where = and z are positive. Similarly, negative (0,0) states
are likely to precede failure when the cart is heading to the left border, where r and

T are negative.

Before discussing the features learned by the hidden units, let us look at the

solution learned by the action network. From Fig. 22b we see that again hidden

unit 3 differs from the other units in its weight values: 8 and 6 have large positive
effects on unit 3’s output, and z and £ have smaller positive and negative effects,
respectively. Unit 3 is connected positively to the output unit, whereas the other
units are connected negatively. The fact that the unit 3s of both networks play
significant roles is fortuitous; for other runs useful features are learned by different

sets of units.

These hidden-unit influences in combination with the direct effects of the net-
work’s input on the output unit result in the action function displayed in Fig. 23b.
Two observations can be made about the contrast between this action function and
that learned by the one-layer network (Fig. 20b). First, the transition from a high
probability of pushing left to a high probability of pushing right is much quicker, as ¢
and @ vary. This probability function implements a much more deterministic control
than does that of the one-layer network. Due to the good evaluation function learned
by the evaluation network, actions near the transition line are credited or blamed
appropriately. A second observation is that the shift in the transition line as r and
x vary is in the right direction. The pole should be balanced slightly to the right of
vertical (positive 8) when the cart is near the left track boundary (negative r), and
to the left of vertical when near the right boundary, resuiting in a net action over
several steps of a push towards the center of the track. To see that this is indeed
what happens, note that the point at which the pole is balanced is roughly indicated
by the location of the transition line. This line shifts toward positive § when r is
negative, and toward negative § when r is positive,

Now we continue with the analysis of the hidden units. Unit 3 of both networks ac-

quired significant effects on the respective output units. The functions implemented

96

W W . S

.
g
J

R
N
.1
‘:l
\l
v
.

'C
:I
N
N

R R A O N A R R R R R AR A AN R AR R AN AT AN KR AR AR AN KN AL KRV R YW 4% 10 g% §'"

by their weights can be visualized by graphing them as functions of 4 and 0 for dif-
ferent values of z and 7, as done for the functions implemented by an entire network.
Figure 24a shows these graphs for unit 3 of the evaluation network and Fig. 24b
shows the graphs for unit 3 of the action network. The outputs of these units varies
between 0 and 1. Very similar functions were learned by the two units. They both
produce a fairly constant value of 1 for most states, with lower values approaching
0 when 6 and become more negative. However, the contribution of unit 3 of the
action network is very small—its output weight is small in comparison to the larger
weights on the output unit, unit 6. This is not surprising, since the desired mapping
from state to action can be implemented with a single unit. In fact, setting unit 3’s
output weight to 0 and adding its magnitude to unit 6’s constant-input weight causes

little change in the state-to-action mapping.

To test the significance of the new feature learned by unit 3 of the action network,
further experiments were run with a one-layer action network and the two-layer
evaluation network. The one-layer action network did learn the desired function,
but it learned it more slowly than did the two-layer action network. Perhaps the
feature learned by unit 3 facilitated the learning of a good action function, and
with additional experience the output unit developed the appropriate weights for its
state-variable inputs. This must be verified by observing the evolution of the action

function both as a function of the state variables and as a function of the hidden

units’ outputs.

The role of unit 3 in the evaluation network is much more important. The hill-
shaped evaluation surface cannot be implemented without the hidden units, as shown
by the results of the single-layer experiments. Through its positively-weighted con-
nection to the output unit, unit 3 generates the positive gradient in the evaluation
surface as one moves [rom negative fandd to G 0. At this point, the gradient
in the response of unit 3 effectively becomes zero. and the output unit's negative

weights from its state-variable inputs provide the negative slope as one moves in the

positive 0.0 direction.

a7

N - M Palin . IS PR . . , .
T R T W U G ST N AR
TR PP AP NPT IS A AT AT A V. 0. P TSP R G,y o

-'.-" —1. --‘-.'. - J
et o’ A Al

"

. A e~ e a_ .

L 2 ALY

»

e e,
L. -

N s

R/ LR
- x g a s

O T

A

... vl
o LT

AR

(T LA
MLLLLLLLLLE

b.

Figure 24: New Features Learned by Two-Layer Networks

Conclusion

It is immediately apparent from the learning curves of Figs. 18 and 21 that the
two-layer learning system far outperformed the one-layer learning system. New fea-
tures are required for representing a good evaluation function and, although they are
not required for representing a good action function, new features facilitate learning
the action function. Thus, the synthesis of the error back-propagation scheme of
Rumelhart, Hinton, and Williams [44] and reinforcement-learning techniques pro-
duced an adaptive network that successfully deals with delayed reinforcement and
the initial lack of an adequate representation. The learning method resulted in a
controller that balanced the pole for 9 minutes (simulated time—28,000 steps at 0.02
seconds per step) and probably would have balanced it longer if the experiments had

been run for a greater number of steps.

Comparison with the single-layer system of Barto et al. [13] is made difficult
by the differences in how the experiments were conducted. The difference with the

greatest effect is that in the experiments described in Ref. [13], the cart-pole system

was always restarted in the same state, (z,i,O,é) = (0,0,0,0), following failure,
whereas here the start state was selected randomly. Average performance is kept
low by start states that are very close to failure states. Disregarding this difference,
comparisons show that the previous system achieved a higher average trial length
after 500,000 steps, 80,000 steps per trial, while the experiments here resulted in
approximately 30,000 steps per trial. This difference reflects the fact that the two-
layer system learned good solutions later in the runs than did the system of Ref. [13].
We conclude that a considerable number of steps are required for the hidden units
to learn the necessary features. It is not until good features are learned that a useful
evaluation function can be formed, and until the evaluation function is learned, the

action network cannot improve beyond a low level of performance.

99

CRANRAI "R

.

b4

ap s .

s

LA & S o

'l"-
¢ e el

e ‘af n gRa¥ .V
¢ 4

".’%' ..A .

AN

W B, s
u"‘l/_'.'."

W4

S LS
(Al

SECTION 6

LEARNING TO SOLVE A PUZZLE

Described in this section are experiments in applying a strategy learning network
as described in Section 5 to the Tower of Hanoi puzzle. Because the state-space
concept underlying the learning system for the pole-balancing problem also applies
to problem-solving tasks that have been studied by Artificial Intelligence (AlI) re-
searchers, it is possible to use the same kind of learning methods for both types of
problems. Applying this kind of learning method to a problem like the Tower of Hanoi
puzzle is very different from applying one of the more knowledge-intensive learning
methods of Al, and the results may not really be comparable. The knowledge-
intensive approach is probably closer to how a human might learn to solve a puzzle
like this, whereas the network method seems more similar to the acquisition of a
motor-skill. The primary purpose in applying the network method to this puzzle
was to provide a good test of the multilayer strategy learning network. Nevertheless,
we still make some comparisons of methodology with Langley’s [31] adaptive produc-
tion system, called SAGE, which learns heuristics that improve the performance of
an initial weak search strategy. To facilitate this comparison, we selected the three-
disk Tower of Hanoi puzzle for our experiments, one of the puzzles that Langley used

to demonstrate SAGE.

The Tower of Hanoi Puzzle

The Tower of Hanoi puzzle is popular for research in problem-solving because the
number of states is small, but the puzzle is still difhicult to solve. Human strategies

for solving the Tower of Hanoi have been analyzed |32] and modeled [5

. Amarel [2]

100

w P W ey e .'.'c'-..' T

N AR TN ORI
AN S AN AR AN OAA A Y

used the Tower of Hanoi puzzle as a vehicle for studying shifts of representations to
forms of increasing efficiency for the discovery of a problem’s solution.

The state of the Tower of Hanoi puzzle can be represented in a number of ways. A
common representation is one used by Nilsson (38|, in which the pegs are numbered
1, 2, and 3, and the disks are labeled A, B, and C, where disk A is the smallest disk
and C is the largest. A particular state is represented by the peg numbers where
each disk resides, listed for disk C, then disk B and disk A. As pictured in Fig. 25,
the initial state of the puzzle is (111), and the objective is to achieve state (333) by

applying a sequence of actions. The legal actions are movements of the top-most

Initial State Goal State

[

(111) (333)

Figure 25: Initial and Goal States of the Tower of Hanoi Puzzle

disk from one peg to another, with the restriction that a disk may never be placed
upon a smaller disk. An action may be represented as a source peg and destination
peg, so the transformation of state (111) to state (112) is performed by the action of
moving the top-most (smallest) disk from peg 1 to peg 2, represented by action 1-2.

For the three-peg puzzle, six actions are needed: 1-2, 1-3, 2-1, 2-3, 3-1, and 3-2.

The states of the puzzle plus the transitions between the states corresponding
to the legal actions form the puzzle'’s state transition graph shown in Fig. 26. To
evaluate ability to improve search strategies on the Tower of Hanoi puzzle, we measure
the number of actions in the solution path, with the minimum length path being the
objective. For the three-disk puzzle, the minimum-length solution path has seven
actions and is the straight path down the right side of the state transition graph.
Finding the shortest solution path is confounded by the large number of possible

solution paths and by the presence of loops in the state transition graph.

The Tower of Hanoi puzzle is a good test of the multilayer network described in

Section 5 for the following reason. A useful evaluation function must map states to

101

SRR

LYY

.
“)"J"ll 'J i :\Ll_"

Initial St§te
1\
0

(nDd—(13)

-2

ANVA NS

)= (21— (1220
(n/ss)._(n) 02'? U\.‘3

23 (322)
/X
(30— (@3 (33—
/ \1-3
@2 (2125 (313) (33
NVATNAWAS
/
Q1) — 2D @ @W-_D— () (333)
Goal State

Figure 26: State Transition Graph for Three-Disk Tower of Hanoi Puzzle

(Adapted from Nilsson [38])

102

.....

U
i
values that indicate the states’ closeness to the goal node. For the state representation g}
described above, this mapping cannot be formed by a linear threshold unit, or other .:;
unit based on a weighted sum of its inputs. For the experiments described in this o~
section the representation was simplified somewhat, as described later, to reduce the r'
time required to learn the solution. The fact that new features are still required is ::'-
shown by the inability of a one-layer system to learn the minimal solution path. o
The formation of useful search heuristics for the Tower of Hanoi puzzle is less '
complicated. A small set of rather simple heuristics can constrain the search to ;-
exactly the correct actions [5,31]. For example, many alternatives are removed by :’
a rule stating that it is undesirable to apply the inverse of an action. The action :
network used to learn search heuristics in our experiments is single-layered, and did s,
successfully learn the minimal solution path. However, it did not do this by learning ,::
the simple set of heuristics. We discuss this point later when we compare the network X
method to Langley’s production system [31]. 5
AL
7
Representation of States and Actions N
N
As mentioned above, the state representation consisting of three peg numbers :.
corresponding to each disk results in a very complex mapping from states to eval- ::::
uations. Although in principle the networks used here should be able to learn this P
mapping, we wished to simplify the task somewhat to reduce the simulation time '_:.:
required for the experiments. The state representation used in the following experi- E:‘_
ments is composed of nine binary digits. The first three digits encode Disk C's peg :.
number, the second encode Disk B’s peg, and the third set of three digits encode \
Disk A’s peg. Peg 1 is encoded as 100, Peg 2 as 010, and Peg 3 as 001. For example,
state (111) is represented as (100 100 100), and state (123) is represented as (100 S_
010 001). We also use a constant input of value 0.5 so the threshold can be varied. ..
b
%
R
o
103 .::_:
£
P e e e e T A T e P T O \:.

Specifically, the input terms, z,[t|, for the state at time ¢ are given by:

x()[t] = 0.5,
1 = 1, if Disk C is on Peg 1 at time t;

T - 0, otherwise,

zlt] = 1, if Disk C is on Peg 2 at time ¢;
LU 0, otherwise,

zslt] = 1, if Disk C is on Peg 3 at time t;
st = 0, otherwise,

and similarly for z,[t], zs(t], zs[t] and Disk B, and for z;(t], zs[t], zo[t] and Disk A.
After the goal state is reached and at the start of every run, the state is set to (111),

so the input becomes (100 100 100) disregarding the constant input.

Both the evaluation network and the action network receive the representation of
the state. This completely defines the input to the evaluation network, but additional
terms are presented to the action network. We wished to investigate the ability of
the network to learn search heuristics similar to the rules developed by Langley’s
SAGE system. As mentioned above, one such rule is to never apply the inverse of
the previous action. In order to learn such an association between the previous action
and the current action, the previous action must be provided as input to the action
network. Another rule learned by SAGE is to not apply an action that returns the
puzzle to a state that was visited two steps ago. This avoids the three-step loops
around the smallest triangles in the state transition graph (Fig. 26). Rather than
providing past states as input, we chose to present the action taken two-steps ago, in
addition to the previous action. The previous two actions along with the current state
provide enough information to identify the state visited two steps ago, although our
results suggest that hidden units are needed to overcome the linearity of the output
unit, perhaps by forming a conjunction of the previous two actions. This possibility
was not investigated.

The output of the action network represents an action by a six-component, stan-
dard unit basis vector, where the components correspond to actions 1-2, 1-3, 2-1, 2-3,
3-1, and 3-2, respectively; Action 1-2 is encoded as (100000), Action 1-3 is (010000),

and so on.

104

Letting the action at time ¢t be denoted by (a,|t], az[t],...,as[t]), the input terms

that the action network receives in addition to those also received by the evaluation

network are:

zolt] = aslt -2,
.‘Bls[t] = al[t - 2],
and
.'Em[t] = aclt - 1],
.’l,'zl[t] = a,[t - 1]
Reinforcement

The most significant reinforcement occurs whenever the goal state is entered. A
reinforcement value, labeled r|t], of 1 is presented for the time step at which the
goal state (333) is entered. Recall that for the pole-balancing task, the goal is to
avoid certain states for as long as possible, and r{t] was set to —1 upon entering
those states. The Tower of Hanoi task could be solved (by a two-layer network) with
only this final reinforcement, but two additional reinforcements are provided for the
following reasons. If the action probabilities converge too quickly, due to a large value
for the parameter p, a solution path of longer than minimum length will probably
be learned. For example, say the learned solution path is of length eight, one step
longer than the minimum number, due to the incorrect Action 1-2 being taken from
the starting state (111). If this action is always chosen over the correct Action 1-3,
then an evaluation function tailored to this particular solution path will be learned.
To avoid this, a second reinforcement signal is presented having a constant value
of 0.1 for all non-goal states. In this way, a shorter solution path results in a
higher total reinforcement than does a longer solution path. This parallels the role

of Langley’s heuristic for judging shorter paths between two states as more desirable.

The third reinforcement is a value of -1 presented whenever a two-step loop

occurs, i.e., when the current action reverses the effect of the previous action. The

105

[OF NRS

oS e S N P

.8

o & A a o

_-"-""-

.
Y

". '- s -

AL ISR TP, WAT UL IR WL WA TR L TR DR Y WA 4 e 4 pt g gt 9t 9.t g% pob gy g P gt PO INTTUYUTOWN Y

random search initially followed by the action network results in many two-step
loops (and longer loops), thus many steps elapse before the goal is discovered. The
large negative reinforcement results in a significant decrease in the probability of
selecting the action that is the inverse of the previous action. As shown later, this
must be learned for each action—the concept of inverse actions is not known to
the system, so generalizing across actions is not possible. This reinforcement is
not presented to the evaluation network, enabling a large negative reinforcement to
be used without decreasing the evaluation for the corresponding state. The large
negative reinforcement is not meant to indicate that a state is bad, only that the
action was bad. The selection of the inverse action should be discouraged, but not

necessarily the visitation of the state.

This third type of reinforcement is not necessary for the system to learn the puz-
zle’s solution. It was included for two reasons. First, it does significantly reduce the
number of search steps during the early stages of learning. Second, it demonstrates
how domain knowledge, such as the undesirability of one-step loops, can be added

by altering the reinforcement function.

The value of r(t] includes just the first two kinds of reinforcement, while the one-
step loop penalty is given by r),.p|t| to distinguish between the reinforcements that

are and are not presented to the evaluation network:

rlt] 1.0, if state at time ¢ is (333);
—-0.1, otherwise.
Fooplt] = —1.0, if state at ¢ equals state at { — 2;
loop) 0.0, otherwise.

The learning methods are very similar to those used for the pole-balancing task,
with small modifications to the network structure and the learning rules. The only
modification to the learning rules used for the pole-balancing task involves the equa-
tion for updating the weights of the action network. The reinforcement signal for

one-step loops, 7ionp, is added as follows:

wiy[t] = wi[t = 1] + p (nooplt] + #(t]) (a,t = 1] - E{a,t - jw;z}) zft 1],

106

A A O "' - N N S A B S AR A Y

-cu_

‘\\\

Results of One-Layer Experiments

As was done for the pole-balancing experiments, the performance of a system
with a one-layer evaluation network was compared to the performance of a system
with a two-layer evaluation network. The systems with the one and two-layer eval-
uation networks are shown in Figs. 28 and 31 respectively. As in the pole-balancing
experiments, two performance measures were used to select the best values for the
parameters of the weight-update equations. A measure of cumulative performance
throughout a run is provided by the number of trials (achievements of the goal state)
averaged over all runs for a given set of parameter values. The second performance
measure is the average over all runs of the number of steps in the last trial, or the

preceding trial, whichever is smaller.

The final performance level averaged over 5 runs of 50,000 steps each was used
to select the best of approximately 20 sets of parameter values, differing in p and 3,

leaving ¥ = 0.9. The best of these values are:

8 0.100,
p = 0.01,
4 = 0.9

These values were used in a longer experiment of 10 runs of 100,000 steps each,

resulting in the number of trials and last trial lengths shown in Table 16. The

Table 16: Results of One-Layer System

Run Trials Last Trial

1 2,911 28
2,877 23

3 2,884 19
4 - 2,893 65
5 2,686 651
6 2,028 25
7 4,48] 0
& 2902 25
9 3,951 38
10 2,940 41

107

07 ok

s a4

(e] ﬁ:\ﬁ_‘t_‘v A

PN

- vy > > .

» e g gy ot e o'
y 2'3 ™ Vi TN ONONG €6 28h ath B'9 o % o8 48 279 3% 0020 270 a%) 4°h a* 4 ¢ *s g’ M d s WL

average number of trials is 3,145. From the lengths of the last trial for each run
we see that the minimal solution path was not learned in any run—all trials are
longer than seven steps. Run 7 resulted in a last trial of length nine, but it wasn’t
determined whether the path taken on the final trial would be reliably followed for
subsequent trials. The low number of total trials for Run 7 indicates that paths

longer than nine steps are likely.

The trial length versus the number of trials is plotted in Fig. 27, showing how the
length of the solution path varies with experience. The horizontal dotted line in the
figure is at a trial length of seven, the length of the minimal solution path. The values

plotted are averages over the 10 runs and over bins of 100 trials. The length of the

50 f]
40F]
ONE_LAYER
30}]
TRIAL
NGTH
LENGTH |
W ... LENGIH OF WINIMAL SOLUTI]
0k A . ‘
0 2500 5000 7500 10000
TRIALS

Figure 27: Length of Solution Path versus Trials for One-Layer System

solution path decreases quickly from an average of 50 steps to approximately 30 steps,
but performance is never much better than 30 steps per solution. A non-learning
strategy of random action selection was found to result in an average of 140 steps
per solution path, so the one-layer system significantly improves the initial random
search strategy. Note that all runs were terminated before 5,000 trials elapsed—-the
learning curve was extended as was done for the pole-balancing experiments. The
curve might have continued to decrease slightly if the one-layer experiments had been

run longer.

The weights learned by the end of Run 7 are shown in Fig. 28. The evaluation

network has acquired only three weights of significant magnitude, and they are all

108

X N 3 - . N Cut e o W T et e e T - e e e e e e
TR R A N P AR N AN T S S S S S N e Y T
- L 3 .. N R . R B s o g

Iy Io
I, I z
-9 I2
-
. Fa N
L i hd 4

Iy Iy

Iyo

//// Zis

o
A %4

11
= T

One Step Delay

- Zie
a A 4 I7
g .
r In
One Step Delay (/{7 {7
L
L~
/ i
8, G2 -+~ Q¢
b.
Figure 28: Weights Learned by One-Layer Network
109
E* .&.A.A L" .. 'l: ;::‘; ettt aa st A -A.Ixilt\l =y .';’:‘::'.4. :’A _-;:’:;:_;\".';-';' e SO "':"""

e
7

Ay g AL

S Y

= .o P

Dt
aos 0t d .

NAA IR
.

[
roe
4 A4 2

o 0
s

- - - -

A A ae s s

-

AR RN R N T N T YUY U UL TECEVATYY RN RN NN TN VLN IO AU AN USRI TP WU Jru

associated with the encoding of Disk C’s peg. The weights’ signs result in high eval-
uations for states with Disk C on Peg 3, the goal peg, and low evaluations for other
states. The weights of the action network are more difficult to interpret. Let us post-
pone the discussion of these weights until the results of the subsequent experiments

with a two-layer evaluation network are presented.

We can visualize the learned evaluation function by drawing at each node in the
state graph a circle with radius proportional to the state’s evaluation. The evaluation

function learned in Run 7 is shown in this manner in Fig. 29. As determined from the

Initial State

Goal State
Figure 29: Evaluation Function Learned by One-Layer Network

signs of the weights, the evaluation function indeed produces high values for states
for which Disk C is on Peg 3, which are the states in the large, lower right triangle
of the state transition graph. There is very little additional information provided
by this evaluation function. We can describe this function as a credit-assignment

heuristic, viz., states with Disk C on Peg 3 are desirable.

Results of Two-Layer Experiments

Our two-layer experiments involved a two-layer evaluation network with 10 hidden
units, but with the same one-layer action network as above. We suspected that with
the delayed actions as input terms, the one-layer action network could find weight

values that result in the minimal solution path. This is verified by the results of the

experiments.

110

C B 9.8 Sk &

cat taY T pta abat AN et At Yatat et et AN el N, a2t *al. 74t el YAl "al a8 2t ‘gl fa¥ (ap TR W gtbad S o0 €up Top a0 S0 R g vop 008 1 8 can VR et b

Approximately 20 sets of parameter values were tested by performing 5 runs of

50,000 steps each. The values resulting in the best performance are:

3 = 0.1
ﬂh = 2.0
Bm = 0.9
p = 0.02
v = 0.9

Momentum was discovered to facilitate learning in this case, though interestingly
it retarded learning for the pole-balancing task. Applying these values in 10 runs

of 100,000 steps produced the results in Table 17. For all but one run the length

Table 17: Results of Two-Layer System

Run Trials Last Trial
1 | 11,809 7
2 11,418 22
3 | 11,584 7
4 11,559 7
5 | 11,967 7
6 | 12,003 7
7 11,856 7
8 | 11,636 7
9 | 12,432 7

10 | 12,041 7

of the last trial was seven steps, equal to the length of the minimal solution path.
The average number of trials is 11,839, roughly 10 steps per trial averaged over the
100,000 steps. So in 9 out of 10 runs the minimal solution path was learned, and
judging from the number of trials in Run 2, the minimal solution path was probably
reliably followed in that run, also. There is always a nonzero probability of trying

an alternative path, which could explain the last trial of Run 2.

The learning curve of Fig. 30 shows that the two-layer system quickly learned
solution paths averaging about 15 steps in length, and gradually reduced this to the
minimum of -even steps. The learning curve for the one-layer system is superimposed

on this graph to highlight the performance increase resulting from the hidden units

in the evaluation network.

L A ot

' -{.\- X

[AR

N

.
LA,

L T
o,

P S]

[t P AL et ¥ §

A

2% a2

aTe W &4 R A

A ‘e ‘g YR bad ep W

TR INEN LR R AN A XX RSN WY WO O Mg ot w€h a®h 3T o0d a¥a L Ngt WA LY et byt Ga¥ et RO U O

e e

|

\

a0p .
v A ONE _LRYER

_——— o e o E—— e — o — — —— —

0 2500 5000 7500 10000
TRIALS

Figure 30: Length of Solution Path versus Trials for Two-Layer System

The weights learned during Run 1 are displayed in Fig. 31. First we focus on the
weights of the evaluation network. The hidden-unit weights are more varied than they
were for the pole-balancing task. Most of the units appear to have acquired useful
new features. Units 1, 2, 5, 6, and 9 have weights of large magnitude, though they
are by no means the only units of significance. As is usually the case, it is difficult to
comprehend what role the units play by studying individual weight values. However,
by encoding their output values by the size of circles on the state transition graph,
as done earlier for the evaluation function itself, we can learn exactly what the new
features are and can gain some intuitions about their contributions to the overall

evaluation function. First, we analyze the evaluation function learned in Run 1.

The value of the evaluation function learned in Run 1 is represented in Fig. 32.
In comparing two states, the state with the larger circle would be evaluated as being
more desirable. Notice that a consistent progression from small circles to larger
circles results as one moves from any state toward the goal state by the shortest
route, thus this evaluation function is extremely informative. Any search strategy,
in addition to the probabilistic method used to generate actions, would benefit from

this evaluation function.

Now let us see how this evaluation function is constructed. Figure 33 shows the
output functions for the 10 hidden units, i.e., the features acquired during learning.

The radii of the circles for a feature are calculated by scaling the 27 output values for

112

T . e e e A e SRR SN
[. - A A A N I R A I VR A AL P U I A T %,

[S
LR
P A

-
A‘u’l

o . - is
Bl 3

. e ase:

’ -T ’_f Zio

/ In
- f//, I‘u
[One Step Delay

- Zie
- 4 Iy
= o
. g 2
Y One Step Delay 1/ VYV

) 4

Figure 31: Weights Learned by Two-Layer Network

Initial State

A
e
A

Goal State

Figure 32: Evaluation Function Learned by Two-Layer Network

113

-
PP

- .
Fmla h

- v

o DA L. USIT CNE LOUT LI A) A L L A L L LY LA D L L L N LW L T LY L Y LI L OO U UT o twLoTronrm

b ah &b £a

Feature 1 Feature 2 Feature 3 Feature 4
1.0 04 0.2 0.2
Feature 5 Feature 6 Feature 7 Feature 8
03 -0.5 0.1 0.1
Feature 9 Feature 10
- 1.1 -03

Figure 33: New Features Learned by Two-Layer Evaluation Network

114

MRS EREN NN [T IS SN P BTG I I UL S MR TSR,] WPLT 2LT ST St TU) .

the corresponding hidden unit to be between 0 and a maximum radius. So circles of
extreme size do not necessarily indicate that the output is 0 or 1, but only that the
output is a minimum or maximum of the values for that unit. We will not attempt
to explain every feature, but will consider the contributions of several. We refer to a
feature by the corresponding unit number, such as Feature 1 for the function learned

by Unit 1.

Feature 1 has a positive effect on the evaluation. Figure 33 shows that Feature 1
roughly represents three states near the bottom of the graph just outside of the
lower right triangular region where Disk C is on the goal peg. Feature 1 boosts the
evaluation of these states, thus directing a search from states in the lower left part
of the graph toward the state through which the search must pass to get Disk 3 onto
the goal peg. This part of the graph is a “bottleneck”, and similar bottlenecks exist
at the other two junctions of the three largest triangles. The values of the evaluation
function are critical near these bottlenecks—the choice of an incorrect action can
result in many additional moves to return to the bottleneck to try a different action.
Features 1 and 2 seem to be particularly helpful in evaluating the lower bottleneck

and the bottleneck on the right, respectively.

Feature 9 has a very strong negative influence on the evaluation function. The
value of Feature 9 is high for all states except the first four states on the minimal
solution path, plus one nearby state. The evaluations of the first states in the solution
path are raised in relation to the evaluations of the other states, thus Feature 9’s
role is to make the first few states of the minimal solution path more desirable than

states next to the path.

Feature 10 also has a negative effect. Mainly the evaluations of states along and
next to the minimal solution path are lowered by Feature 10, with the exception of
the very last state before the goal state. It appears that this feature guarantees that

the difference in state evaluations is positive as the last state is reached.

Other features also have important contributions. Perhaps a good way to under-
stand their roles is to observe changes in the evaluation function as each feature is

removed and then restored. From the small amount of analysis done here, it is clear

that a variety of new features were developed for this task. The initial representation

4 %

- s

e

FRE R S

Tl o

of the state is far from ideal for forming the evaluation function, but the combination
of the error back-propagation algorithm with Sutton’s AHC algorithm successfully

learned sufficient new features for the state representation.

We now discuss the action function that was learned. When the two-layer eval-
uation network was used, the single-layer action network was able to constrain the
search to the minimal solution path. Figure 31b shows that this was accomplished
mainly through the development of weight values for the previous-step’s action and
for the current state. The two-step delayed action did not acquire a significant effect

on the selection of the current action.

The large negative weights on the previous action components stand out. Note
that there is one large negative weight for each component. These weights have the
same effect as did Langley’s heuristic for preventing the application of the inverse of
the previous action. By tracing the delayed output of each unit to the corresponding
negative weight, we find that the negative weights are on the intersections of actions
and their inverses. In other words, Action 1-2, or a,|t - 1], has a negative connection
to Action 2-1, or as|t|, Action 1-3 is negatively connected to 3-1, etc. A negative
weight lowers the probability that the corresponding action will be generated, and
these weights are of such high magnitudes that the probability of the previous-action’s

inverse is effectively zero.

There are other weights associated with the previous-action inputs that are
positive-valued. Through these weights, the generation of an action on one step
results in a high probability for a particular action on the next step, thus forming
two-step sequences. For example, Action 3-2 will be followed by Action 1-3. Referring
back to Fig. 26, this two-step sequence can change the puzzle from the third state
on the minimal solution path to the fifth state. Other sequences exist for other two-

step transitions along the minimal solution path, and for moving onto the minimal

solution path.

The weights on the delayed action components are not sufficient in themselves
for limiting actions to movement along the minimal solution path. The current state
must at least play a role in selecting the first action. Consider the values of the input

terms when in the start state (111). All of the delayed-output terms are 0, since

116

,‘.

FRRARLFLNEA RN G e < PR I T s T TWTIWE

this is the first step in the trial. All other input terms are 0, except for the first
term of each of the three triples encoding the state. The first of these is connected
positively to Unit 2 and negatively to the rest, except for Unit 6, whose action is not
legal for the start state. The other two non-zero input terms have small or negative
connections to units having legal actions, so Unit 2 will be the unit to respond to the
start state. Unit 2 represents Action 1-3, the first action along the minimal solution
path. Langley’s system was not required to learn the correct action for the initial
state, because both states (333) and (222) were goal states—two minimal solution

paths exist, and both actions from the initial state (111) move along one of the paths.

Transfer of Learning

It is desirable for a learning system to be able to improve its performance on a
single task, called tmprovement, and also to improve performance over a set of tasks,

called transfer. Langley [31] lists the following four kinds of transfer between tasks:
1. Transfer to more complex versions of the task.
2. Transfer to different initial states or goal states.
3. Transfer to tasks of similar complexity with different state-space structures.

4. Transfer to tasks of little similarity, perhaps requiring some of the same actions

(referred to as learning by analogy).

The ability of the network of this chapter to perform the first two kinds of transfer

are discussed below.

Langley showed that the heuristics learned by SAGE for solving the three-disk
Tower of Hanoi puzzle were directly applicable to the four-disk and the five-disk
versions of this puzzle, solving these more complex puzzles with no additional search.
The representation of the rules’ conditions and actions inade this possible: disk, peg,
and action names are generalized to variables, therefore the rules could be applied
to the new task having an additional disk, since its name could be bound to a

variable. In addition, the concept of an action’s inverse is included in the system's

117

- ""‘.-(-: Ry "-‘.-1".-"...'- -'-"-‘- RN Ly .".- -"‘\‘(-"’-’" '-'..‘-'!"f' AN -‘f el “"...'r-."- 4 "‘-;". ‘I!F'- -"'-"‘;' . .\

. e

[S e

[P TR

representation, enabling a situation where an action is followed by its inverse Lo result

in a rule discouraging the use of the inverse of any action.

The connectionist representation used here does not permit such generalizations,
although some learned knowledge is transferred to Tower of Hanoi puzzles having
more disks. If the input representation of the networks is augmented by adding
components to encode the position of the fourth disk, then some of the resulting
action heuristics are wrong and some appropriately transferred. The negative weights
preventing the selection of an action that is the inverse of the previous action are

still very helpful for the four-disk puzzle. Some of the two-step sequences might also

adjusted, since it is very tailored to the three-disk version. Therefore, the solution of
the four-disk puzzle would require additional learning, although probably less than

would be needed by a naive system that has no experience with the three-disk puzzle.

,
:
|
l
|
|
|
.
.
)
|
! be applicable. To learn the four-disk solution, the evaluation function must also be
5
]
! The second form of transfer concerns different initial and goal states. Langley’s
i system was not capable of transferring to Tower of Hanoi puzzles with different initial
' and goal states, but he has shown on another task how the inclusion in the system
of a representation of the goal can lead to strategies that are goal-dependent. The
action function learned by our system might generalize correctly to different initial
states, particularly those close to the minimal solution path, but this was not tested.
The evaluation function does generalize correctly to different initial states. As shown
in Fig. 32, the evaluations increase for states closer to the goal, whether or not the
states are on the minimal solution path. Therefore, learning would be facilitated if

the initial state were changed from its original position after the evaluation function

had been learned.

As for different goal states, both action and evaluation networks have learned
inappropriate functions. In fact, generalization to a puzzle with a different goal state
would retard the learning of a new solution path. As Langley suggested, to learn
evaluation and action functions for different goals. some representation of the goal
must be included as input to the networks. This could be done very simply by
duplicating the terms of the current state representation and using them to encode

the goal state. Different evaluation and action functions would then be learned for

1R

e R e W N A S P Lt et e e ST e e e e e
l'.r_'.-:"-'."n":'v':'-'.\f?-'}f:({:f.f. F S AR O S N N VI

CEEB LN TEIN St LI) @ L tad) ko gr b AL TSN Y LAY LN L] PaR. al at. gt 1] Py SR

different goals, though a multilayer action network would probably be required.

Conclusion

In Section 5, a connectionist learning method was applied to a task having a large
search space, delayed reinforcement, and requiring non-trivial (nonlinear) combina-
tions of features. In this section, essentially the same method was applied to a task
with a small search space, requiring non-trivial feature combinations, and for which
reinforcement is delayed and infrequent. We have shown how some of the credit-
assignment techniques that have been developed for learning rules while doing can

be incorporated into a reinforcement scheme.

The adaptive network was able to learn the solution to the three-disk Tower of
Hanoi puzzle. The time (amount of experience) required to solve it is much greater
than that required by Langley’s [31] adaptive production system, but fewer assump-
tions are incorporated into the design of the connectionist learning method. A very
limited input representation is used, consisting only of the current state and the
two-previous actions. Comparisons of this connectionist approach with symbolic
approaches highlights some of the limitations of connectionist representations. For
example, the connectionist system used for the Tower of Hanoi experiments is not ca-
pable of doing variable binding in the way that Langley’s [31] production system can.
Langley’s system was able to learn a single symbolic rule that uses action variables to
prohibit actions that are the inverses of the previous actions. Langley's production
system was able to learn such rules using built-in knowledge of what “inverse” means
and how particular actions and states can be generalized to variables. In our imple-
mentation, actions are not generalized to variables; distinct negative weights from
each action to its inverse had to be learned. Touretzky and Hinton discuss issues of

this kind and present some connectionist approaches to these problems |54,53

119

T

NIl

SECTION 7

SUMMARY AND CONCLUSIONS

The major focus of the research reported here was the study of layered networks
for learning nonlinear associative mappings. We continued our approach to this
problem based on the cooperative interaction of self-interested, goal-seeking network
components, but we also looked at other approaches. The major results of this
research are presented in this report and summarized here in this section. | also
include discussion of how the learning methods we have studied relate to existing

methods and what avenues appear promising for future research.

The Associative Reward-Penalty Unit

The Associative Reward-Penalty Unit, or Ag_p Unit, is a neuron-like adaptive
unit that implements a learning rule which is a synthesis of two types of learning
methods that have usually been studied separately. Under one set of restrictions, the
ARr_p learning rule specializes to a stochastic learning automaton algorithm that has
been widely studied in the past; under a different set of restrictions, the Ag_p rule
specializes to a supervised pattern classification method that has also been widely
studied (the perceptron learning rule). Consequently, the Ag _p rule falls in the inter-
section of important classes of learning methods. Although the “selective bootstrap
learning” rule of Widrow et al. [58] is a very close relative of the Ag .p rule, we beleive
the Ap_p rule is novel. The recent pattern classification method of Thathachar and
Sastry (51| utilizes stochastic learning automaton methods but is not directed toward

solving the same kind of tasks as is the Ag p method.

In Section 2 [discussed what is to be gained by the kind of synthesis represented

- e iy ' a-
" A{A sl-it .‘:\i nf: n:. . :_1.. L;h.lih‘l‘h

.:».a.-'.t‘*\ s [T E X NN IS s ¢ AR AR AN AN AN AR} “a 8'p BVa $%2 2¥g %2 A%, 27 ta¥.cpb cpl iaf cuf L} 0 5,8 g b s g b s v g A g'S 4 i 2tk ah al

by the Ag_p rule. Units employing this rule do not need explicit instructional infor-

’5‘ mation in order to learn associative mappings and, in fact, are able to learn under
) extreme uncertainty. This ability has implications for enriching the type of game
:‘ and team problems that can be studied (as illustrated by our layered-network simu-
N lations of Section 3) and for applications to control problems (as illustrated by vur
;‘ . pole-balancing and Tower of Hanoi examples of Sections 5 and 6).

. Work that remains to be done regarding the theory of single Ag_p units concerns
‘ their behavior in problems in which the input vectors are not linearly independent.
The Ag_p convergence theorem applies only to the case of linearly independent input
‘ vectors, but the utility of the Agr_p rule is not restricted to this case, and it is
: likely that the convergence results can be extended. The asymptotic behavior of
.3 a single Ar_p unit needs to be examined in cases in which the input vectors are
: linearly separable and not linearly separable. Preliminary simulations suggest that
y Ap _p units maximize reward probability in these cases, which is not what the usual
~ methods do. This behavior could have interesting implications that we have not
'.‘_: vet explored. We placed higher priority on studying the cooperative behavior of
- interconnected Ag_p units. Although this research direction makes it more difficult
e to obtain mathematical results, we pursued it because of our basic interest in studying
E collective behavior.

>

. Cooperative Behavior of Ag_p Units

N

:: In the same way that the Ag_p learning rule can be viewed either in terms of
od adaptive pattern classification or in terms of stochastic learning automata, networks
'_:: of Ag p units can be viewed either in terms of connectionist adaptive networks or
in terms of the collective behavior of stochastic learning automata. In Section 3,
2 . I discussed layered networks of Agr p units from both perspectives. The examples
X described in that section show how these networks can learn to solve nonlinear dis-
:2 crimination problems. Networks of Ag p units. or layered teams of Ag_p units. are
N therefore examples of systems that can adaptively develop representations in order
7 to form nonlinear associative mappings.

-

&

.

- 121

.

e e e A R U A N N A N R T o

P MO et

. Tl e

.......

. vk 4 o gBin o t e s w bbb S et e dint 8 e G ak o) Cag vl ? CRTORL I R2% R T LR O O YL PO U LR L R

The method for doing this that is most closely related to Ag_p networks is the
error back-propagation method of Rumelhart, Hinton, and Williams [44], which was
presented at about the same time that we first published results of Ag_p network sim-
ulations. Since then, Williams [61,62] has shown that there is a strong relationship
between these methods: They are both gradient following procedures. Whereas gra-
dient information is directly computed via the backward pass in the back-propagation
method, in Ag_p networks it is estimated via the sampling procedure realized by the

stochastic units.

It is therefore not surprising that the back-propagation method is faster than
the Agr_p method (confirmed by our comparative studies summarized next). So
what advantages might the Agr_p method have over back-propagation? First, the
Agr_p method provides a link to a wide body of literature (the learning automata lit-
erature) that has not yet been explored by connectionists. I think that a number of
interesting consequences may arise from this connection. Second, the Agr_p method
does not require the complex back-propagation computation. Consequently, it
may have some advantages for implementation by parallel hardware and might be
more plausible than back-propagation from a biological perspective. Third, the
AR .p method might be extensible to the case of recurrent networks with asymmet-
ric connection matrices in ways that back-propagation is not (some recent results by
Williams [61.62] are relevant in this regard). Additional research is needed to explore

these possibilities.

One of the most important questions regarding network learning methods is how
well they scale up to larger, more difficuit problems. The research covered by this
report does not address this question. What we have learned about the Ag_p network
method, however, suggests that a straightforward scaling up of the method will not
be effective. By a straightforward scaling up of the method I mean that the single
reinforcement signal is just broadcast to a larger number of Ag_p units. As in the
case of the error back-propagation method. as networks get larger, the number of
possible solutions can increase so that learning can occur faster for bigger networks.
However, in the Ay p method, as networks get larger. the amount of noise that

contaminates the gradient estimates increases. a problem that is not present in the

122

‘aby B

4 L, PPN

back-propagation method. Thus, while both methods probably scale poorly, the

straightforward scaling up of the Ag_p method is likely to be worse.

One can, however, consider ways of scaling up the Ag_p method that are more
interesting than just adding more units and uniformly broadcasting a single reinforce-
ment signal to all of them. It seems clear that the only way to move toward large,
complex learning tasks is to use modular or hierarchical networks with local forms
of reinforcement. I envision networks in which superordinate modules learn how to
provide different levels of reinforcement to different subordinate modules. This ap-
proach will involve game decision problems in addition to the team decision problems
discussed in Section 3. Consequently, the ability of units employing stochastic learn-
ing automaton principles to learn in game situations may be an important factor in
implementing these more sophisticated forms of structural credit assignment. This

is an important topic for future research.

Comparison of Methods for Learning by Layered Networks

Eleven hidden-unit learning methods were compared by applying them to the task
of learning a multiplexer function. The methods were tested in the hidden units of
a two-layer network. Two kinds of performance measures were used: the number of
errors accumulated throughout a training run and the total number of input vectors
for which the final weight values of a run result in an incorrect output. Care was
taken to try different parameter values for each method and to present performance

measures as averages and confidence intervals over repetitive training runs.

The learning method with the best performance of the algorithms compared was
the error back-propagation algorithm of Rumelhart, Hinton, and Williams [44]. The
next best performing methods were the reinforcement-learning methods based on the
Agr p rule. Best among these methods was a modification of the Ag_p rule designed
to combine reinforcement learning with a method to create features to represent input
patterns present when the network is receiving low reinforcement. A less successful
modification of the Ag p method is based on the idea of providing each hidden unit

with a more informative evaluation signal than is provided by a reinforcemnt signal

123

- . .

W R R N T P A O . S S S S T U T P S T S S R DT L LA P g, Sy, Ly

broadcast to all the units. In this method, reinforcement values are back-propagated
based on the weight with which the hidden units are connected to the output unit
(unlike the back-propagation method of Rumelhart et al., reinforcement is back-
propagated instead of error). This modification produces faster error reduction early
in learning runs, but later in runs the rate of error reduction slows and is surpassed

by that of the unmodified Ag_p method.

Some more conventional optimization techniques were also applied to the problem
of finding weight values for the multiplexer task. These methods perform a direct
search in the space of all possible value assigments to the weights of the hidden units.
They do not use any knowledge of the network’s structure. Such a large search space
and the ignorance of the network’s structure results in very poor learning performance
compared to the other methods tested. We included these methods primarily to serve
as control simulations. One of these methods, for example, is probably the simplest
possible search technique. To be of any interest at all, a method must perform better

than this method.

We also experimented with the idea of improving the accuracy of the gradient
estimate produced by the Ag_p method by letting each hidden unit try several ac-
tions while each of the training vectors is present. We call this method the batched
Agr-p method. The results of these simulations show that it is possible to obtain
increasingly accurate gradient estimates without requiring a complex error propa-
gation process. Letting the hidden units obtain 10 samples for each training vector
presentation, we obtained learning in the multiplexer task several times faster than
the unbatched method (1 sample per presentation) in terms of the number of presen-
tations of each training vector. Of course, the amount of processing required for each
presentation is greater than in the unbatched method. and the actual time required
will depend critically on how the ~vstem is implemented. If in some learning domain
it is costly to obtain stimulus vectors, but it is not costly to update the network and
obtain evaluations, then it might be practical to use the batched method to increase

the speed of learning,.

As in all empirical studies, it is important to stress that the results presented in

Section 4 are valid only for the particular task and training regime that was used

124

[

fet e
TV O Y VU

RS

-
PO B Y

.

£l ORI

ER AR ERE

PR R

Rt L 2 S e QA 2F)

L
L4
<
U

during the experiments. For example, a task requiring a smaller network might be
most readily solved by a random search of the entire weight space. In fact, in selecting
a task for the comparative study, a small task with two input components was tested
and it was discovered that a random search solved the task faster than the error back-
propagation and reinforcement-learning algorithms. The multipicxer task was chosen
because the weight space is sufficiently large that direct optimization methods are
slow but not so large that a prohibitive amount of simulation time would be needed
to gather significant performance statistics. Time also prohibited the extension of
the comparative study to other, more complex tasks as would be required to address

issues regarding how well the algorithms scale up to harder tasks.

Strategy Learning with Multilayer Networks

Strategy learning can be characterized as the acquisition of a2 method for gen-
erating actions that cause desired transitions among the states of a problem. The
desirability of particular transitions is often indicated by an evaluation that imposes
a preference ordering on the possible transitions from a given state. [n previous
research, we have shown that reinforcement-learning methods can be used to learn
to select the best action under these conditions, whereas most connectionist learning

methods require knowledge of the correct action.

For some tasks, an evaluation is not immediately available but occurs only after
a sequence of actions has been generated. Sutton [47,46| has developed the AHC
lcarning rule for dealing with this temporal credit-assignment problem. Hampson |22
has developed a similar method. Barto, Sutton, and Anderson {13,47,15] combined
the AHC rule with a reinforcement-learning method into a single-layer network for
strategy learning. In the research reported here, we extended these learning methods
for single-layer networks to methods for learning strategies with multilayer networks.

We chose the error back-propagation method to update the weights of the hidden
units in networks because it was shown to be fastest by our comparative simulations.
Consequently, the strategy-learning networks we studied consisted of the following.

For each task. there is an evaluation network and an action network. The evalua-

.

. gt ¥ U o U At BN A%t AP LYW \J USSP UYUN UY “ataata als 392 8% AVa @' AY2TA% s 8's £%2 8% BFa ' A%, 0! [P N

tion network consists of an AHC unit as output unit and a layer of hidden units.
The AHC’s error term is back-propagated to the hidden units in exactly the same
manner that the error term of the delta rule is back-propagated in the Rumelhart
et al. method. The action network consists of an associative reinforcement learning
unit as output unit and a layer of hidden units. This unit’s “error term” is back-
propagated to the hidden units. This hybrid system was applied to the pole-balancing

and Tower of Hanoi tasks.

Pole Balancing

The major difficulty in the pole-balancing task is due to the use of a very uninfor-
mative evaluation signal. Task-specific information, such as the dynamics of the pole,
were assumed to be unavailable to the design of the learning system. The evaluation
signal was supplied only when the pole fell or the cart hit the end of the track. Other
information concerning the task objective, such as the advantage of maintaining the
pole near the vertical, was not assumed. Of course, if such information is available
it should be incorporated into the initial design of the learning system or used to
provide a more information evaluation or error signal. Our interests, however, are in
developing learning methods for those parts of a task for which a minimum amount
of information is available. For example, we were not attempting to design a learn-
ing control method for the pole-balancing task per se—much more information is

available for this task than we were willing to use.

The combination of the error back-propagation method with the AHC and
reinforcement-learning methods was successful: the two-layer system balanced the
pole for many more steps than did a one-layer system receiving the same represen-
tation of the pole’s state. The hidden units learned features with which the output
units could overcome the limitations imposed by the representation of the pole’s state
and the linearity of the output functions. In analyzing the new features that were
formed, it was discovered that only a small number of new features were needed to
solve the task. Some runs resulted in the formation of a single new feature, while
others resulted in up to three features that developed significant influence on the

system’s output.

126

W T, - B P T
B - ‘, . LT N - -

N Ty e . TS s A g S R N S S A N
PPN I Y Y R T T P Y T T T T AT RS T T T S S YW A AT Y AT I A N N O W Ny

.
PSP P P W Wy

NN ETY

dg1 ¢

Our previous experiments [13,47,15| with the pole-balancing task involved a
single-layer network for which the continuous state space was discretized into 162
distinct, 4-dimensional rectangles to allow the system’s units to learn appropriate
functions. The networks whose study is reported here differ in the absence of this
“decoder” and the addition of hidden units that learn features that decode the state
into an appropriate form. Another difference, which makes performance comparisons
with our earlier pole-balancing studies difficult, is that after every failure the state of
the pole is set to a random state instead of the zero state (vertical, stationary pole),
as was done in the previous experiments. For this reason, many more failures were
generated in the current paradigm, because some reset states were very near failure
states. After the same number of training steps, the current system had not attained
as high an average balancing time as had the previous system. This is due to either
a) the additional experience needed to learn useful new features, or b) the lack of
experience in critical states (such as the zero state) for which nearby states require

opposite actions.

Tower of Hanoi

The learning methods used in the pole-balancing network were applied with few
modifications to the Tower of Hanoi puzzle. Similar restrictions on the amount of
a priori knowledge were assumed. A final reinforcement at the end of a successful
sequence of actions (as opposed to an unsuccessful sequence for the pole-balancing
task) provided information regarding the objective of the task. The state of the
puzzle was presented to the network as a binary vector representing the peg on which
each disk resides. The two-layer network again performed better than a single-layer
network. The two-layer network reliably found a minimum-length solution, i.e., the
network applied a sequence of actions consisting of the minimum number of actions
required to achieve the goal state. In solving the puzzle, an evaluation function was
learned that ranked states according to the smallest number of moves between the

state and the goal state.

In learning the evaluation function. a number of new features were developed by

the network. In the state-transition graph for the Towers of Hanoi puzzle there are

127

L Vg eq At gl atian et bt taeat a4t g aW o ab avs ats 4ti gt A% #%s 4%y 00 4% 804 8'p A%4 %0 $'0 B'a 8 m Gp $° 8's 80 0% BV E 840 0 gk b $'a e b e 0 e 8 0 0 00 400 8.0 g b gl gty

several bottlenecks—parts of the graph are interconnected by :i. single path. New
features were formed that discriminate states in the bottlenecks from other states.
The output unit of the evaluation network could not learn a monotonically-increasing
function through the bottlenecks with the original features, but the new features

resulted in a good evaluation function.

Langley [31) developed an adaptive production system that learned to solve the
Tower of Hanoi puzzle. The connectionist system that we applied to the Tower of
Hanoi puzzle has few similarities to Langley’s production system. It is instructive to

analyze the differences and to question whether or not they represent fundamental

distinctions between symbolic and connectionist approaches. One difference is that
Langley uses a full history of past states and actions to aid the assignment of credit,

whereas the connectionist system relies on the learning of a good evaluation function

Gl NS P A

to solve the credit assignment problem. This difference is not fundamental to the
representations involved; evaluation functions can be used for symbolic systems and
a history of states and actions can be of use in training a connectionist system. A
history could be used much as it is for the symbolic system, by retrieving the events
as training instances. A separate issue is the association by a connectionist system

of past events with current action probabilities in order to base decisions on previous

states and actions. In our experiments, the connectionist system does receive the
two previous actions as input, so two and three step sequences can be learned; the
X inclusion of all past events as input to the system is not feasible. An alternative is

to collapse the history into a weighted average of past events.

Another difference is that a breadth-first search is not performed by the connec-
tionist system. In its initial, naive state, the connectionist system chooses actions
-\ randomly and as the evaluation function develops, the action probabilities become

increasingly biased towards actions that result in state transitions producing positive
2 changes in the evaluation function. Breadth-first search control can be added to the
connectionist framework by disregarding the probabilistic generation of actions and
presenting state-action pairs as training instances after some process has assigned
credit to every pair. Learning an evaluation function in this case requires the ex-

traction of desirable paths from a state history. One attraction of the connectionist

128

-'. NG ” . .
.J!._.P'.~ -\J}.n .A:.P}"_"L,LA_)& - e, .A,'.r-".(\.&.n PRI A S

U AU AR RN AN RS R RN AN RFOU KN KR AN AR X .0 2ap B Bd cuB 90 . e a8 0.2 9.0 0,80, 8 8.0 ¢ .0 0.0 a0 A0 .20 40 a'8 oY “2 2% a'i a"35 2t o' p'e al

o
approach demonstrated here is its ability to learn with minimal resources for search :
control and history maintenance. :

A very important distinction that is currently a topic of debate is the use of .
vartables. A single symbolic rule can be applied to many situations through the E
binding of variables. For example, Langley’s system learns a rule that, through 5
variable binding, can be used to avoid the application of the previous action’s inverse ‘.
for all possible actions. With one training instance and knowledge of what an action’s
“inverse” means, a single rule is learned that generalizes to all other actions. It is “
not clear how knowledge of an action’s inverse can be used in a connectionist system ;
to either a) learn the connectionist analog of a generalized rule with variables, or A
b) duplicate the weight changes due to experience with one action to the weights of E
other actions. Touretzky and Hinton [54] have shown how variable binding can be N
performed in a particular connectionist system. E

Related to the issue of variables is the issue of the transfer of learning. After f-'
learning strategies for solving one task, an efficient learning system must be able to it:
exploit common aspects between this task and subsequent tasks by applying in similar .
situations the strategies that worked well for the first task. Langley’s production rule
having a variable action and state can be immediately applied to other, more complex ,'.
Tower of Hanoi puzzles. This is not possible for the connectionist system and the '5',
state and action representations used here. Learning is transferred but not to the 2
degree possible with variablized rules. The strategies learned from the 3-disk Tower "
of Hanoi are specifically dependent on the 3 disks—the addition of another disk does i
not affect the strategies until further learning occurs. Different representation of \
states and actions would result in different amounts of transfer. : ‘

Further Developments of Strategy Learning Networks <
i
Our strategy learning networks can be viewed in the context of two theoretical _._‘

traditions, and future research can take two directions depending on which tradition
is followed. One tradition is that of control theory—adaptive and learning control.

The learning methods employed by our networks are related to some discussed in the

129 .
NS
P A N A T A e S Y R T ke Attt e et e e e e e e ool
"!:‘.':\':5::'!i'!i'r;ﬁﬂ\‘:'!:.\i\ﬁﬁﬁi’n’-‘n_:';i."l.'lﬁ;h“ﬂ'u‘h"Ai'u\.'::.'a::' R A T R N T L Y ot R S R LA R A, WA N WY

ACM YRS S fatelaral et er O latan an SR ES F . o o 20 S0 2l

past by control theorists, e.g., Refs. [20,34,57,60]. These methods differ substantially

from the more orthodox adaptive control techniques that involve the identification
of unknown plant parameters in that they can be applied with fewer assumptions
about the structure of the plant to be controlled. However, these methods do not
lend themselves to rigorous convergence results and so have not been actively pursued

by modern control theorists.

I think that the methods illustrated by the results reported here contribute several
new methods to this “unorthodox” approach to learning control. One contribution
is the use of layered networks to learn nonlinear control rules. Second, the AHC
method developed by Sutton for dealing with temporal credit-assignment may be
a significant novel method. Finally, the Agr_p learning rule is applicable to these
types of control tasks (although the strategy learning networks discussed in this
report do not use it). In order to continue the development of these methods within
this framework of learning control it is necessary to develop the theory as much as
possible. Although I do not think one will be able to prove broad convergence results
for these types of methods applied to nonlinear control problems, I think that the
methods need to be developed to the point where they can be applied more routinely.
In order to accomplish this, these methods need to be applied to control tasks that are
simpler than the pole-balancing task studied here so that network design decisions
can be made with the aid of relevant theory and results can be compared with those
obtainable by more conventional methods. Of course, the eventual goal is to develop
learning control methods for problems to which the conventional methods are not

applicable.

The other tradition to which our work can be related is the symbolic artificial
intelligence tradition illustrated by the adaptive production system of Langley to
which we compared the Tower of Hanoi network in Section 6. In order to make
closer contact with this tradition it is necessary to develop more sophisticated repre-
sentational schemes that facilitate the kinds of functions accomplished by variables
and variable binding. It also seemns necessarv to develop a means for networks to
perform something like multistep reasoning processes. Efforts in these directions are

being made by some connectionist researchers (e.g., [54,53|), but I know of no “nat-

130

(s =

3 s s & t

) ¥ BV W s B]

s VA

{3

A Al s A T T P A N o T e
"\"\"'-"'_"'."5‘ >, '*-" NI -.-' RS x" A W \ -4 \ A !

ural” connectionist way of doing these things. I think that a first step toward these

types of capabilities is to develop means for networks to adaptively form internal
models of their environments which they can manipulate for a variety of purposes.
We and others have taken a few steps in this direction (e.g., [49,50,43,25]), but much
progress remains to be made. This direction of research is also relevant for poten-

tial applications of networks to the types of engineering control problems discussed

above.

131

..........................

> T

(1]

2]

3]

4]

5]

6]

7]

8]

BIBLIOGRAPHY

D. H. Ackley, G. E. Hinton, and T. J. Sejnowski. A learning algorithm for
Boltzmann machines. Cognitive Science, 9:147-169, 1985.

S. Amarel. Problems of Representation tn Heuristic Problem Soluing: Related
Issues in the Development of Ezpert Systems. Technical Report CBM-TR-118,
Laboratory for Computer Science, Rutgers University, New Brunswick, NJ,

1981.

C. W. Anderson. Feature Generation and Selection by a Layered Network of
Rreinforcement Learning Elements: Some Initial Experiments. Technical Re-
port 82-12, Department of Computer and Information Science, University of

Massachusetts, Amherst, MA, 1982.

C. W. Anderson. Learning and Problem Solving with Multilayer Connectionist
Systems. PhD thesis, University of Massachusetts, Amherst, MA, 1986.

Y. Anzai and H. A. Simon. The theory of learning by doing. Psychological
Review, 86, 1979.

A. G. Barto. Learning by statistical cooperation of self-interested neuron-like

computing elements. Human Neurobtology, 4:229 256, 1985.

A. G. Barto and P. Anandan. Pattern recognizing stochastic learning automata.

IEEFE Transactions on Systems, Man, and Cybernetics, 15:360 375, 1985.

A. G. Barto, P. Anandan, and C. W. Anderson. Cooperativity in networks of
pattern recognizing stochastic learning automata. In Proceedings of the Fourth
Yale Workshop on Applications of Adaptive Systems Theory., New Haven, €T,
May 1985. An extended version of this paper appeared in Adaptive and Learning

Systems, K. S. Narendra (ed.), Plenum, [986.

132

-~

X

o

XN R TS

(4

-

N

P A A A XA

NAASRSS

IR AREN RN AN U IR YV

19]

10)

[11]

2]

13

[14]

16|

[17]

18]

g Pt RS AN KI "X AN ‘gt) e B2 4.0 6 428 §.9 4.4 2 1A, 8 2.0 5.9 82 $°2 A% 2% £%a 4% 4t

A. G. Barto and C. W. Anderson. Structural learning in connectionist sys-
tems. In Proceedings of the Seventh Annual Conference of the Cognitive Science

Soctety, Irvine, CA, August 1985.

A. G. Barto, C. W. Anderson, and R. S. Sutton. Synthesis of nonlinear control
surfaces by a layered associative search network. Biologtcal Cybernetics, 43:175-

185, 1982.

A. G. Barto and R. S. Sutton. Goal Seeking Components for Adaptive Intells-
gence: An Initial Assessment. Technical Report AFWAL-TR-81-1070, Air Force

Wright Aeronautical Laboratories/Avionics Laboratory, Wright-Patterson AFB,
OH, 1981.

A. G. Barto and R. S. Sutton. Landmark learning: An illustration of associative

search. Biological Cybernetics, 42:1-8, 1981.

A. G. Barto, R. S. Sutton, and C. W. Anderson. Neuronlike elements that can
solve difficult learning control problems. IEEE Transactions on Systems, Man,

and Cybernetics, 13:835-846, 1983.

A. G. Barto, R. S. Sutton, and P. S. Brouwer. Associative search network:
A reinforcement learning associative memory. I[EEE Transactions on Systems,

Man, and Cybernetics, 40:201-211, 1981.

A. G. Barto editor. Simulation Ezpertments with Goal-Seeking Adaptive Ele-
ments. Technical Report AFWAL-TR-84-1022, Air Force Wright Aeronautical
Laboratories/Avionics Laboratory, Wright-Patterson AFB, OH, 1984.

R. R. Bush and F. Mosteller. Stochastic Models for Learning. Wiley, New York,
1950.

R. H. Cannon, Jr. Dynamics of Physical Systems. McGraw-Hill, Inc., 1967.

R. O. Duda and P. E. Hart. Pattern Classification and Scene Analysis. Wiley,
New York, 1973.

133

(19] W. K. Estes. Toward a statistical theory of learning. Psychololgical Review,
57:94-107, 1950.

N T T PSS N TR Y T T AT

'.I-*-{‘-’_,.-.

K. S. Fu. Learning control systems—Review and outlook. [EEE Transactions

on Automatic Control, 210-221, 1970.

P. E. Gill, W. Murray, and M. H. Wright. Practical Optimization. Academic
Press, New York, 1981.

S. Hampson. A Neural Model of Adaptive Behavior. PhD thesis, University of
California, Irvine, CA, 1983.

G. E. Hinton and J. A. Anderson, editors. Parallel Models of Associative Mem-
ory. Erlbaum, Hillsdale, NJ, 1981.

G. E. Hinton and T. J. Sejnowski. Analyzing cooperative computation. In
Proceedings of the Fifth Annual Conference of the Cognitive Science Soctety,
Rochester, NY, 1983.

M. I. Jordan. Personal communication.

A. H. Klopf and E. Gose. An evolutionary pattern recognition network. /EEE
Transactions on Systems, Man, and Cybernetics, 15:247-250, 1969.

S. Lakshmivarahan. ¢-Optimal Learning Algorithms—Non-absorbing Barrier
Type. Technical Report EECS 7901, School of Electrical Engineering and Com-
puter Science, University of Oklahoma, Norman, OK, 1979.

S. Lakshmivarahan. Learning Algorithms and Applications. Springer-Verlag,
New York, 1981.

S. Lakshmivarahan and K. S. Narandra. Learning algorithms for two-person
zero-sum stochastic games with incomplete information. Mathematics of Oper-

attons Research, 6:379-386, 1981.

S. Lakshmivarahan and K. S. Narandra. Learning algorithms for two-person
zero-sum stochastic games with incomplete information: A unified approach.

SIAM Journal of Control and Optimization, 20:541-552, 1982.

134

................

[N P AN LN N PLY LN

d

e NN N Y
L oy

« a

TR

PR S T Y T N I I Y U T T Y Y YUV UV LW U U UST A VR UL UL TR TN UNFLUS

(31] P. Langley. Learning to search: From weak methods to domain-specific heuris-

152]

[33]

[34]

35)

[36]

137]

38

|39)

|40

......

tics. Cognitive Science, 9:217-260, 1985.

G. F. Luger. The use of the state space to record the behavioral effects of
subproblems and symmetries in the tower of hanoi problem. Journal of Man-

Machine Studies, 8:421-441, 1976.

N. J. Mackintosh. Conditioning and Associative Learning. Oxford University
Press, New York, 1983.

J. M. Mendel and R. W. McLaren. Reinforcement learning control and pattern
recognition systems. In J. M. Mendel and K. S. Fu, editors, Adaptive, Learn-
ing and Pattern Recognition Systems: Theory and Applications, pages 287-318,
Academic Press, New York, 1970.

D. Michie and R. A. Chambers. BOXES: An experiment in adaptive control. In
E. Dale and D. Michie, editors, Machine Intelligence 2, pages 137-152, Oliver
and Boyd, 1968.

K. S. Narendra and M. A. L. Thathachar. Learning automata—A survey. /IEEFE
Transactions on Systems, Man, and Cybernetics, 4:323-334, 1974.

K. S. Narendra and R. M. Wheeler. An n-player sequential stochastic game
with identical payoffs. IEEE Transactions on Systems, Man, and Cybernetics,
13:1154-1158, 1983.

N. J. Nilsson. Problem-Solving Methods in Artificial Intelligence. McGraw-Hill,
1971.

D. T. Politis and W. H. Licata. Adaptive decoder for an adaptive learning
controller. In Proceedings of SPIE Applications of Artificial Intelligence 111,
Orlando, FL, 1986.

D. L. Reilly, L. N. Cooper, and C. Elbaum. A neural model for category learning.
Biological Cybernetics, 45:35-41, 1982,

135

$.p et baf Fof 129 2t AU a8, Al gt RV B 'Re 472 8 & 2P £ 48" Go 25 NV 2D ALY TN RV TUP. PUVUVOOC U RO O O T e " N MR W W LW VLRV S

|41

42]

[43]

|44]

[45]

|46]

|47]

48]

[49]

/50

51]

H. Robbins. Some aspects of the sequential design of experiments. Bulletin of

the American Mathematical Society, 58:527-532, 1952.

F. Rosenblatt. Principles of Neurodynamics: Perceptrons and the Theory of
Brain Mechanisms. Spartan Books, 6411 Chillum Place N.W., Washington,
D.C., 1961.

D. E. Rumelhart. Personal communication.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal represen-
tations by error propagation. In D. E. Rumelhart and J. L. McClelland, editors,
Parallel Distributed Processing: Ezplorations in the Microstructure of Cognition,

vol.1: Foundations, Bradford Books/MIT Press, Cambridge, MA, 1986.

T. J. Sejnowski and C. R. Rosenberg. NETtalk: A Parallel Network that Learns
to Talk. Technical Report EECS-8601, Johns Hopkins University, Department
of Electrical and Computer Engineering, Baltimore, MD, 1986.

R. S. Sutton. Learning to Predict by the Method of Temporal Differences. Tech-
nical Report, GTE-Labs, Waltham, MA, 1987.

R. S. Sutton. Temporal Aspects of Credit Assignment in Reinforcement Learn-

ing. PhD thesis, University of Massachusetts, Amherst, MA, 1984.

R. S. Sutton. Two problems with backpropagation and other steepest descent
learning procedures for networks. In Proceedings of the Eighth Annual Confer-

ence of the Cognitive Sctence Soctety, Amherst, MA, 1986.

R. S. Sutton and A. G. Barto. An adaptive network that constructs and uses

an internal model of its world. Cognition and Brain Theory, 3:217-246, 1981.

R. S. Sutton and B. Pinette. The learning of world models by connectionist
networks. In Peoceedings of the Seventh Annual Conference of the Cognitive

Seience Society, Irvine, CA, 1985.

M. A. L. Thathachar and P. S. Sastry. Learning optimal discriminant functions
through a cooperative game of automata. IEFEFE Transactions on Systems, Man,

and Cybernetics, 17:73-85, 1987.

136

W& '\"t.‘ "l ."“"Q‘Q e lle At -.'Q" B T T W N on $'0.2"0 a'0.0"2 20 0"

[52] E. L. Thorndike. Animal Intelligence. Hafner, Darien, Conn., 1911.

(53] D. S. Touretzky. BoltzCONS: Reconciling connectionism with the recursive ¢
nature of stacks and trees. In Proceedings of the Eighth Annual Conference of

the Cognitive Science Socsety, Amherst, MA, 1986. :
L)

: (54] D. S. Touretzky and G. E. Hinton. Symbols among the neurons: Details of a X
connectionist inference architecture. In Proceedings of the Ninth International

Joint Conference on Artificial Intelligence, Los Angeles, CA, 1985.

[55] M. L. Tsetlin. Automaton Theory and Modeling of Biological Systems. Academic
Press, New York, 1973.

[56) R. Viswanathan and K. S. Narendra. Games of stochastic automata. /EEE :
Transactions on Systems, Man, and Cybernetics, 4:131-135, 1974. N

{57) M. D. Waltz and K. S. Fu. A heuristic approach to reinforcement learning
control systems. IEEE Transactions on Automatic Control, 10:390-398, 1965. -~

(58] B. Widrow, N. K. Gupta, and S. Maitra. Punish/reward: Learning with a
critic in adaptive threshold systems. I[EEE Transactions on Systems, Man, and

Cybernetics, 5:455-465, 1973.

[59] B. Widrow and M. E. Hoff. Adaptive switching circuits. In 1960 WESCON
Conventton Record Part IV, pages 96-104, 1960.

(60] B. Widrow and F. W. Smith. Pattern-recognizing control systems. In Computer
and Information Sciences (COINS) Proceedings, Spartan, Washington, D.C.,
1964.

[61] R. J. Williams. Reinforcement Learning in Connectiontst Networks: A Math-
ematical Analysts. Technical Report ICS Report 8605, Institute for Cognitive
Science, University of California at San Diego, La Jolla, CA, 1986. :

|62] R. J. Williams. Retnforcement-Learning Connectionist Systems. Technical Re-

port NU-CCS-87-3, College of Computer Science, Northeastern University, 360

= R A PR

Huntington Avenue, Boston, MA, 1987.

137 .

=U.S.Government Printing Office: 1987 - 748-061/61011 .

LA Sl i |

Fa: 2% Q"

