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SECTION 1

INTRODUCTION

This report describes progress made by our research group over the period

September 1983 to September 1986. Although we explored a range of issues in

connectionist learning, the major focus was the study of learning nonlinear associa-

tive mappings by layered networks. In earlier research we obtained some preliminary

results with an approach to this problem based on reinforcement learning 10,3,151.

However, the specific reinforcement learning rules used in these studies did not pro-

duce rapid and reliable learning in all the learning tasks we tried. During the period

reported on here, we set out to obtain better understanding of this class of methods

through computer simulation and mathematical analysis.

The research direction that proved most fruitful was our effort to develop rigorous

ties between our reinforcement-learning adaptive units and the theory of stochastic

learning automata. Our initial aim was to develop a theoretically tractable learning

rule by developing one that specialized, under one set of restrictions, to a familiar

supervised-learning rule while also specializing, under another set of restrictions, to

one of the simplest of the stochastic learning automaton algorithms. The result, is a

learning rule that we call the Associative Reward-Penalty, or AR - p , learning rule. It

is very closely related to a relatively little-known learning rule presented by Widrow,

(upta, and Maitra 1581 that they called the "selective bootstrap adaptation" rule.

Thus, although it is novel. the AR 1, rile is closely connected to existing tlheory, and

we were able to prove a convergence theorem for a single adaptive unit implementing

the Ap p rule (we call such a unit an Al p unit) iT,. What was rather surprising was

that the AR - unit turned out to perform very well as a network component. Lay-

ered networks of AR p units solve nonlinear associative learning problems with great

reliability. This stirprised us becatuse in devising the Al? p unit we were (oncrned

A -7L



solely with the mathematical tractability of a single unit and not with network perfor-

mance. However, it later became apparent that the learning capabilities that single

AR-p units provably possess are crucial in obtaining reliable learning in networks.

Consequently, as a result of our attempts to shore up the mathematical foundations

of our work, we developed an adaptive unit that performed much better in networks

than any of the others we had tried.

During the period covered in this report, a number of other research groups be-

came interested in the problem of learning nonlinear associative mappings by layered

networks, or more generally, the problem of learning by "hidden units." In addi-

tion to our own method using AR-p units, two new methods were developed: the

Boltzmann learning procedure of Ackley, Hinton, and Sejnowski [11 and the error

back-propagation method of Rumelhart, Hinton, and Williams [44]. These meth-

ods attracted much public attention, especially the backpropagation method which

Sejnowski and Rosenberg [45] used in a system called NETtalk that learns how to

convert text to speech. Unlike Boltzmann learning, which applies to symmetrically

connected networks, the error back-propagation method applies to networks with-

out cycles (acyclic networks). Consequently, error back-propagation is more directly

comparable to the ARp method than is Boltzmann learning.

We invested much effort in performing simulations to compare various methods

for learning in layered networks, including the error back-propagaton method, and

the results are reported here. In the comparisons, we included methods that represent

several different approaches including the most brute-force search method possible.

We chose a learning task that was hard enough to make the brute-force search in-

efficient but not so hard that enormous amounts of CPU time were required. On

this task, the 6 input multiplexer task (see Section 4), the error back-propagation

method proved to be the fastest with a modified AR-p method coming second and

the unmodified Ai_p method third. We did not systematically apply these meth-

ods to a series of increasingly difficult learning tasks in order to assess how they
"scale" to larger problems. Our experience and theoretical understanding suggest,

however, that the ordering of performance observed on the multiplexer task would

be preserved on more difficult tasks. The comparative simulations do establish that

2



both the error back-propagation and the AR-P methods are very much better than

a variety of more conventional search methods.

Although we have not extended the AR-P convergence theorem, which applies to

a single adaptive unit, to a network of AR-P units, much theoretical insight into the

behavior of AR-p networks has been provided by a result proved by R. Williams (one

of the developers of the error back-propagation method). Williams [61,621 has shown

that under certain restrictions on the AR-p rule, the expected change of any weight

within an arbitrary acyclic network of AR-p units is proportional to the gradient of

the probability of reward for the entire network with respect to that weight. This re-

sult means that AR-p networks do something similar to what error back-propagation

networks do, but they use estimates of the gradient which can be determined without

the need for explicit back-propagation.

Because a gradient is estimated by Alp networks, the following modified training

procedure is suggested. Instead of updating weights after a single presentation of an

input pattern and the generation of a single activity pattern, one can hold the input

pattern constant for several time steps and accumulate a gradient estimate during

the generation of several activity patterns. Updating the weights on the basis of this

improved gradient estimate should improve learning rate. We report the results of

simulations designed to test this hypothesis in Section 4.

Also reported here are results obtained from applications of layered-network

methods to two different tasks requiring the learning of problem-solving strategies.

The first task is the pole-balancing task that, we have used in the past to demon-

strate reinforcement, leaning under conditions of delayed reinforcement 131. The

second task is to learn how to solve the 'rower of lanoi puzzle using a method that.

is esentially the sarne as the method used in learning to balance the pole. Our earlier

work with the pole-halanc ing problem asstimed the existence of a representation for

the system's state consisting of a large ntitliiber of non-(overlap)ing ")oxes pro(diced

I. a pre-existing decoder. (;iven this represent at ion, the task becarne one of filling in

look-ip tables. This simtplified represenItat ion allow;I ed tiu to separate represtIta 1iot

issues from the issues of temporal credit-assignmen t. Ii the studies report e, here.

the pre-existing decoder is replaced by a lawered adaptlv network. This netork

l
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receives as input a vector of four real numbers giving the state of the cart/pole sys-

tem. The network has to learn how to represent the state so that the system as a

whole can successfully avoid failure. The layered network provides a kind of adaptive

decoder. In order to accomplish this, the adaptive critic element and the associative

search element of previous studies were combined with the error back-propagation

method for learning in layered networks. The resulting system was able to learn

appropriate mappings for the control actions and the internal evaluation, and it was

demonstrated that the multilayer system dramatically outperformed a s&ngle layer

system.

Much the same approach was taken with the Tower of Hanoi puzzle. The state

of the puzzle was represented as a binary vector that acted as input to two layered

networks, one of which was responsible for forming an informative evaluation func-

tion, and the other of which was responsible for forming the correct mapping from

puzzle states to actions (moving the disks). This system consistently learned to solve

the puzzle using the minimum number of moves. This example allowed us to discuss

the relationship between our strategy learning methods and an adaptive production

system that has been applied to this puzzle 311.

In the concluding section of this report, I place our results in perspective by

discussing their relationship to more conventional engineering methods. I also discuss

directions in which I think it will be profitable to continue the development of these

methods.

A
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SECTION 2

THE ASSOCIATIVE REWARD-PENALTY UNIT

We developed a learning rule that we call the associative reward-penalty, or AR-P,

rule [7,6,9,8]. This rule, which can be implemented by a neuron-like adaptive unit

that we call an AR-p unit, is a refinement of similar learning rules that we had

studied earlier. We devised it by combining aspects of algorithms for stochastic

learning automata with aspects of algorithms for pattern classification or system

identification. As a result of this hybrid nature, this method differs in critical ways

from the methods, such as the perceptron and Widrow/Hoff LMS methods, that have

become widely used in connectionist systems (for details, see Ref. [6]). I first give an

informal description of the AR-p learning rule, after which I specify it more formally

and define the task it was devised to solve.

The AR-p rule is an embellishment of Thorndike's [52] "Law of Effect":

Of several responses made to the same situation, those which are ac-

companied or closely followed by satisfaction to the animal will, other

things being equal, be more firmly connected with the situation, so that,

when it recurs, they will be more likely to recur; those which are accom-

panied or closely followed by discomfort to the animal will, other things

being equal, have their connections with that, situation weakened, so that,

when it recurs, they will be less likely to occur. The greater the satis-

faction or discomfort, the greater the strengthening or weakening of the

bond. (p. 244)

Although a literal interpretation of this "law" has numerous difficulties with respect

to animal learning data, it remains a principle whose basic features have considerable,
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but not uncontested, validity [331. The AR-p rule implements the basic idea of the

Law of Effect, but it was necessary to add a number of refinements in order to make

it work correctly.

Each situation referred to in the Law of Effect corresponds to an input vector,

or key, that is received as input by an AR-P unit. From this input vector, the unit

determines an "activation level" which is the weighted sum of the components of the

input vector, where the weights make up the unit's current weight vector. The unit

then determines its action by comparing its activation level with a randomly varying

threshold, "firing" (action = 1) when the activation exceeds the current threshold

value, and otherwise not firing (action = 0). The noise in the threshold is such that

when the activation is zero, the two actions are equiprobable; when it is positive,

firing is the more likely action; and when it is negative, not firing is the more likely

action. The activation level therefore determines the strength of the bond between

the situation and the actions. As the weights change so as to increase the magnitude

of the activation for specific input vectors, the bond between those vectors and the

various actions increases-positive activation producing a bond between the input

vector and firing; negative activation producing a bond between the vector and not

firing.

The AR-p learning rule causes the weight vector to change in such a way that

if an action emitted in the presence of situation x yields an evaluation of "reward,"

the unit is more likely to produce the same action when x, or situations similar to

x, occur in the future; in the case of penalty, weights change in such a way that the

unit is more likely to produce the other action, when x, or situations similar to x,

occur in the future. In order for this process to converge correctly to the actions

that correspond to the highest probability of reward, it is necessary to change the

weights asymmetrically in the cases of reward and penalty. Changes in the case of

penalty must be much smaller than the corresponding changes would be in the case

of reward. In the following sections, more technical descriptions of these ideas are

presented.

6
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The Associative Reinforcement Learning Task

The AR-P learning rule is designed to solve what we call associative reinforcement

learning tasks. In these tasks the learning system and its environment interact in

a closed loop. At each discrete time step, or trial, t, the environment provides

the learning system with a pattern vector, x[t], selected from a finite set of vectors

X = {x(),... , x(-)}, Z(') E K"; the learning system emits an action, yjt], chosen from

the finite set Y = {Yl,. .. ,Y}; the environment receives y[t] as input and sends to

the learning system a reward/penalty signal r~t] E {reward, penalty} that evaluates

the action y[t]. The environment determines the evaluation according to a map

d: X x Y - [0,1], where d(x,y) = Pr{r[t] = reward I x[t] = x,y[t] = y). Ideally,

one wants the learning system eventually to respond to each input vector x E X with

action y, with probability 1, where y, is such that d(x, y,) = maxvE E{d(z, y)}.

As pointed out in Ref. [7], in the case of a single, nonzero input vector, this task

reduces to the task usually studied by learning automaton theorists (which, according

to the terminology used here, is a nonassociative reinforcement learning task); see

Section 2 and Ref. [36]. On the other hand, in the case of two actions ([ =

2) the task reduces to a conventional formulation of supervised learning pattern

classification (see [10]) if for each x E X, d(x,y) + d(x,y 2 ) = 1. This restriction

(assuming it is known to hold) implies that feedback received from performing one

action provides information about the other action. This makes the task much easier

and allows conventional supervised learning pattern-classification algorithms (slightly

modified) to succeed (see Ref. [7] for details).

The AR-p Learning Rule

The AR-p rule's action selection method is parameterized at step t by a weight

vector wtJ C9:

0 1 , if U t TXt j t -O;(2.1)0~] , otherwise;

I"7



where w~tJTx[t] is the inner product of w(t] and x(t], and the rlt] are independent

identically distributed random variables, each having distribution function 4F.

According to Equation 2.1, the action probabilities at step t are conditional on

the input vector in a manner determined by the parameter vector wtt]. In particular

P O[t = Pr{y[t] = Olz[t] = x} = Pr{wltITX + t1 [t] _< O} = qI(-w[tjTX), (2.2)

and

p Ztj = Pr{y[t] = lxttl = x) = I - p°[t]. (2.3)

If, for example, each random variable r/[tj has zero mean, then when wjt]T X = 0,

the probability that each action is emitted given input vector x is .5; when wltJrx

is positive, action ylt] = 1 is the more likely action; and when w[t]Tx is negative,

action y[t] = 0 is the more likely.' As Iw[t]TZI increases for all x E X, the mapping

Equation 2.1 approaches a deterministic linear discriminate function.

The parameter vector is updated according to the following equation:
C

11 - w[t] = p[tJ(y[t] - pl[t)Xit 1, if rt] =reward;
+] p[t](1 - y[t] - pZ[t)z[t1, if r[t] =penalty; (2.4)

where 0 < A < I and pft] > 0.

In the case of reward, according to Equation 2.4, w changes so that the probability

of the action chosen, conditional on the current input vector, moves toward 1 (if

y[t] -- 1 then w changes so that pl" approaches 1; if y]j = 0 then pIz decreases

toward 0, which means that the probability of producing action 0 increases). In the

case of penalty, on the other hand, w changes so that the probability of the action

not chosen, conditional on the current input vector, moves toward 1. Note that the

parameter A in Equation 2.4 determines the degee of asymmetry in the magnitude

of the weight change for these two cases.

It is shown in 171 that the AR-p rule reduces under various restrictions to more

conventional learning methods. It reduces to the two-action (nonassociative) linear

'This version of the Ap r rule differs from that given in Refs. 17,8,t6 in that the actions are 0 and

1 instead of -1 and 1. The weight-update rule given below is altered so that the two versions are

exactly equivalent. The 0/I form allows the notation to be a bit, simplei.



reward-e-penalty (LR-,p) learning automaton rule (36] when each 17lt] in Equation 2.1

is uniform in the interval [-1, 1], the input pattern is constant and nonzero over time

steps (xft] = $ : 0), and the initial parameter vector will is such that willT1 E

1-1, 1]. If additionally A = 0, then the AR-p rule reduces to the linear reward-inaction

(LR-I) rule 1361. On the other hand, when the AR-p rule is made deterministic by

letting ri[t] = 0 for all t (i.e., the distribution function *I is the step function), then

the AR-p rule becomes the perceptron learning rule 1421. With a slight modification,

the AR-p rule can be reduced to the pattern-classification method introduced by

Widrow and Hoff [59] (the adaline, or LMS, algorithm). Consequently, the AR-p rule

not only extends learning automata capabilities but also occupies the intersection of

important classes of learning algorithms. Section 2 provides some background on

learning automaton methods. The AR-p rule is most closely related to the "selective

bootstrap adaptation" method of Widrow, Gupta, and Maitra [58], to which it is

compared in 17].

A convergence theorem is proven by Barto and Anandan [7] by extending to

the associative case results proven by Lakshmivarahan 128,27]. It holds under the

following conditions: (CI) the set of input vectors X = {(),... ,X(-)}, X:' E Rn,

(C2) for each x c X and t > 1, Pr{x[t] = x} > 0; (C3) the independent, identically

distributed random variables ?l[t] in Equation 2.1 have a continuous and strictly

monotonic distribution function *I; and (C4) the sequence p~t] in Equation 2.4 is

such that p[tj > 0, yi pit] = o0, r, p(t] 2 < co. We can prove the following theorem:

Theorem. Under conditions (CI)-(C4), for each A C- (0, 1], there exists a w' C R"

such that the random process {wjt]}t> generated by the AR-p rule in an asso-

ciative reinforcement learning task converges to w' with probability I (that is,

Pr{lime ., wit] w,} = 1), where for all x e X,

Pr{y -- lw',x} > 1/2, if d(., 1) d (x,O);

1/2, if d(r,1) d(x,0).

In addition, for all x r X,

li- Pr{y = lwJ,x} 1, if d(x, 1) d(x,);

1 -0, if d(x,I) d(x,0).

9
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According to the usual performance criteria for learning automata [361, this result

implies that for each x E X, the AR-P rule is E-optimal. In fact, it implies a strong

form of E-optimality for each x E X. It is highly unlikely that this result is the most

general that can be proved about this class of learning rules (see [7]).

As is often done when using similar pattern-classification methods, in most of

our simulations we hold p[t] constant in order to increase learning speed even though

a weaker form of convergence in this case has not yet been proven. We have not

yet investigated elaborations of the AR-p rule that reduce to recursive least squares

methods based on the Newton's algorithm, but these have the possibility for showing

improved convergence rates. We view condition (CI) that the set of input vectors is

linearly independent as the most serious restriction required for the present theorem.

It is likely that this restriction can be removed and a result proved that involves

some form of operator pseudoinverse.

Simulation of a Single AR-p Unit

In order to illustrate the performance of the AR-P learning rule, we describe

the results of simulating a single AR-P unit in a simple associative reinforcement

learning task that requires discrimination between two linearly independent, but

non-orthogonal, input vectors. We use as a measure of performance the probability

that the unit will receive reward on the average time step given its current parameter

vector. We denote this MjtJ when computed based on the parameter vector will:

Mjt] E C,[Pr{rjti = lhxt = x}]

z'I X

where , is the probability that, input pattern x occurs on any trial. This measure is

maximized when the optimal action for each input pattern occurs with probability

1, in which case it is

),,,, = , m ax fd (x, I), d(x,O0)}

rcx

10
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The distribution function of the random variables used in all the simulations de-

scribed here is the logistic distribution given by *(s) = 1/(1 + e-,/T), where T is

a parameter. This is a sigmoidal function that is similar to a normal distribution

function but is easier to evaluate. It is also used in the studies of statistical coopera-

tivity (e.g., Ref. 124,11), where T is the "computioional temperature" of the system.

As T approaches zero, the distribution function approaches a step function, which

means that the AR-P unit more closely approximates a deterministic system. Given

this distribution function, the probability plz[t) in Equation 2.4 is as follows (from

Equations 2.2 and 2.3):

p1i[t] = 1 - p°ZltI

" = I _ %p(- W lt]rX)

-~~~ 1 I ewtjTx1
i - 1 -ll/1±+ ewlej z/TJ

.(W=tj T X)

In all simulations presented here, we set T = .5.

In the first simulation the input vectors are: x(1) = (1, O)T and x2} = (1, 1)T ,

which are linearly independent but not orthogonal. These vectors are equally likely

to occur on each trial ( .[ = = .5). The weight vector, w, is zero at the start

of each sequence of trials, which makes the actions initially equiprobable for both

input vectors. The reward probabilities implemented by the unit's environment are

given by the following table:

x d (x,0) d(x, 1)

x(1)  .6 .9

X (2)  .4 .2

Thus it is optimal for the learning system to respond to (0, I)T with action I to obtain

reward with probability .9, and to respond to (I, I)T with action 0 to obtain reward

with probability .4. Therefore, in this task Mmx- (.9 1 .4)/2 -- .65, and the initial

overall reward probability is (.6 + .9 + .4 + .2)/A -- .525. Note that any nonassociative

learning automaton algorithm will be able to achieve a reward probability of at most

(.9 .2)/2 .55 by learning to perform the action 1 at all times. Also note that

II
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for each input x, the reward probabilities are either both greater than .5 or both

less than .5, making this task considerably more difficult than one with the reward

probabilities placed above and below .5 for each x.

Figure la shows results of simulating an AR-P unit in this task with three different
values of A: .01, .05, and .25. We held the parameter piti at the value .5 for all

t. Plotted for each trial t is the average of MjtJ over 100 runs, where a run is a

sequence of 5000 trials. The dashed lines show theoretical asymptotic performance

levels for the three values of A (if p[t] were decreasing according to (C4)). Note

that this asymptote approaches the optimal performance level .65 as A decreases

and that the learning rate decreases as A decreases. The average final parameter

vectors for A = .01, .05, and .25 are respectively (2.99, - 4 .0 4 ) w, (2.73,- 3 .0 8 )T, and

(1.91, -1. 7 1)T. Figure lb shows a plot of Mjtl for one of the runs contributing

to the average shown in Fig. la for A = .05. Although this task involves only

two-dimensional pattern vectors, it illustrates the essential difficulties of learning to

discriminate between patterns that are similar by virtue of sharing a subset of feature

values.

ARp Units and Stochastic Learning Automata

The theory of learning automata originated with the independent work of the So-

viet cybernetician Tsetlin f551, mathematical psychologists studying learning 16,191,

and statisticians studying sequential decision problems (e.g., the "n-armed bandit

problem" 1411). Although this theory has an extensive modern literature in engi-

neering (reviewed in 1:361), there has been very little cross-fertilization between this

theory and neural-network research. In this subsection I briefly describe this the-

ory, contrast. it with the theory of supervised pattern classification, and describe

how learning rules like the AR p rule can be seen as a synthesis of aspects of these

theories.

Figure 2 shows a learning automaton interacting with an environment. At. each

step in the processing cycle, the automaton randomly picks an action from a set

of possible actions, Y {Yl, .. ,Yk}, according to a vector of action probabilities,

12
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Figure 1: Simulation Results for a Single AR F, Unit
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Figure 2: Stochastic Learning Automaton Interacting with a Random Environ-

men t.

I' -- p(yi). ,p(yk,)}. The environment then evaluates that action by selecting an

evaluation signal that it, transmits hack to the automaton. Figure 2 shows the case

in which the evaluation. r, is either "success" or "f ilure" anid is selected according

to probabilities {d1 ,. .dk}I, where d, - probfsuccesslig 2} (other formulations allow

a countable number or a bounded continuum of evaluations). Upon receiving thle

evaluation, the autorriaton updates its act ion probabilities as a function of its current

action probabilities, the act ion chosen, arid the environment's evaluation of that,

* act ion. Beginning with no knowledge of thre environmental success probabilities, the

object ive of thle a ut omrat on is to Imiiprove Its ex pec tat ion of success over timne. lIeai lv,

it s hould( event rial ly choose acti~on yj withl probability I . where d, maxjdI . -dk).

Many different, algorit linus have been studied uinder a nm ier of dlifferent performance

mecas ures. arid triany con vergence resutlts hiave ben proven 3:

Theorists h ave b)ecomne Inc reas in gly ie reste (Iin the col lee live behavior of learin-

ing automata. Figure 3 shows collections of N leatrning aiito)nata interacting with Iian

entviron inrt . In F ig. 3il. eaich alInt olNriatoirceve a dlifferentI evalu at ion signal tHIMa

(dependes. in general. on t he act onls of all1 \ witlnit. Ils 1niodlels thle sit mation

in wh ich t lie, atorniat i hav-e (Iiffering, a nt possiblY (oni I(I? nmg, int erests. This IS al

gain( decision problen. III cont rast to t lhe problemis st udiedl in classical ganie I licorY,
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Figure 3: (a) The game problem. (b) The team problem.

the automata operate in total ignorance of the payoff structure of the game and the

presence of the other automata. In the case of zero-sum games (games of pure con-

flict), theoretical results show that when employing certain algorithms, the learning

automata converge to the game's solution (if that solution involves pure strategies;

see Refs. 129,30,561).

Figure 3b shows a collection of learning automata in the team situation, which is

the special case of the game situation in which the automata receive the same evalua-

tion signal. In this case, the automata have a common goal but each automaton only

has partial control over the evaluation. As in the case of games, the learning process

in this case is incompletely understood, but a number of mathematical results have

been proven, the strongest of which shows that certain stochastic learning automaton

algorithms lead to monotonic increases in performance 1371.

Comparing stochastic learning automata and the typical adaptive units used in

theoretical neural-network research reveals several important differences. First, a

typical neuron-like adaptive unit has multiple input pathways that carry patterned

stimulus information. Such a unit might also have a pathway specialized for training,

such as the pathway for the desired response of a Widrow Hoff Adaline or a Per-

-eptron unit. The learning process causes the unit to implement or approximate a

desired mapping from stimulus patterns to responses. A learning automaton, on the

other hand, only has a single input pathway for the evaluation signal. Learning ei-

ther results in the selection of a single opt inal act ion or a suitable action probability

vec t or no (nontrivial) inappi ng is prod iced. On t his dIi ens ion of coin parison, t lien,

the usual adaptive units are doing sonhethling more opliisticated than are learning

aiitolinat a.
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However, the usual adaptive unit requires an environment that directly provides

either a desired response or a signed error that directly tells the unit what response

it should have produced. In contrast, a learning automaton has to discover, in a

stochastic environment, which action is best by sequentially producing actions and

observing the results. Since there are no constraints on the success probabilities,

information gained from performing one action provides no information about the

consequences of the other actions. This can be a non-trivial problem even in the case

of two possible actions and is fundamentally different from the supervised learning

problem [18]. Therefore, in terms of the amount of information required for successful

learning, a stochastic learning automaton implements a form of learning that is more

powerful than the supervised learning performed by most neuron-like adaptive units.

Because typical network adaptive units and learning automata excel on different

dimensions, it has been fruitful to study learning units that combine the capabilities

of these two types of systems. The resulting units, such as AR-P units, are able to

learn mappings in the absence of explicit instructional information. This ability has

implications for applications to learning control problems as discussed in Section 5.

Units such as AR-P units can also participate in team or game decision problems sim-

ilar to those in which learning automata have been studied. Unlike nonassociative

learning automata, however, these units can learn to act conditionally on information

from a variety of sources, including other units in a collection. Consequently, collec-

tive behavior more complex than that produced by nonassociative learning automata

can be procuced by networks of units combining associative learning with reinforce-

ment learning. The following quotation illustrates that Tsetlin [55] was similarly

interested in more elaborate forms of collective behavior:

We have discussed very simple forms of behavior, and for this reason

we limited ourselves to the simplest types of automata. The exchange

of information among these autoinata. takes place in the language of

penalties and rewards. Although this language sWeems universal enough,

it would, however, be interesting to also look at inore complicated ai-

tomata that possess some specialized language to communicate to othAer

automata. Such autoniata are needed to describe more complex forms

16
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of behavior. These more complex behavioral forms necessitate the use of

much more diverse information. (p. 125)

To the best of my knowledge, there has been no systematic attempt to study the

collective behavior of learning automata that communicate in this way.' Some of

our research represents the beginning of this type of study as described in the next

section.

2 f?# re I,, work hy 'rhathao ar attd Sastry 151 uIses std(Ila ¢i ' .tttting aultolliala ilt at. ; thl i tlt

* ~~~for supIer-Vised pattertn clatssificationt AlthIoligh ( his aIlgorithln ('Wrtitll.' pat tern lsioa i .tt a

learning autoIata ill a very interesting iraniter, it d,-es noIt iiV" ve mutlly )Ilnltltti(;It tIg leam Iltg
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SECTION 3

COOPERATIVE BEHAVIOR OF ARP UNITS

In this section, I present an overview of our studies of cooperating collections of

AR-p units. Since details of the simulations are provided elsewhere [61, I mainly dis-

cuss the significance of these results and their relationship to other lines of research:

the collective behavior of stochastic learning automata, game and team decision the-

ory, and other methods for learning in layered networks. In Section 7, I briefly discuss

problems with scaling this approach to larger problems and suggest how they might

be solved by means of modularity and local reinforcement.

Associative Search Networks and Team Decision Problems

Our early work with the networks we called associative search networks, or ASNs,

stressed the ability of these networks to learn associative mappings in the absence

of explicit instructional information [14,11[. Figure 4 shows an ASN. It differs from

the usual single-layer associative memory networks discussed in the connectionist

literature (e.g., Ref. [231) because instead of having reference channels for specify-

ing desired outputs of the units, it has a single channel for broadcasting a scalar

evaluation signal to all of the network's units. We studied ASNs in associative re-

inforcement learning tasks [14,12,111. The object of such a task is to construct, the

mapping that associates each key with the action (recollection) that yields the best

possible evaluation from the environment. A basic assumption is that the network

has no a priori knowledge about the environrient's evaluation function. If a network

can solve this task, then the associative niapping it, constructs has exactly the same

properties as the mappings learned by the usual associative memory networks. In this

o ' o ' o o ° . J - - mo , . . . ., ," . ° ." o" o° o" . o . o . , , ' . ° ,, _: x
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Figure 4: Associative search network.

case, however, the mapping would be formed in the absence of explicit instructional

information. The scalar evaluation signal contains much less information than the

reference vector required for storing information in the conventional case-it can be

generated by an environment that can evaluate the behavior of the network, that is,

the collective behavior of the network's units, but cannot specify the desired behavior

of each individual component.

In addition to relating ASNs to associative memory networks, one can relate them

to the teams of stochastic learning automata mentioned in Subsection 2 and shown

in Fig. 3. An ASN in an associative reinforcement learning task is a generalization

of a set of learning automata in a team decision problem. If one were to hold the

input pattern to the ASN fixed for all time, the result would be the same as a team

of nonassociative learning automata facing a team decision problem. Since all units

receive the same reinforcement, they have no conflicts of interest. Consequently,

the ability of an ASN to search for optimal patterns can be seen to arise from the

cooperative activity of the adaptive units as each attempts to maximize its own

performance. The ability of the adaptive units of an ASN to do this conditionally on

information provided by the input patterns implies that the units cooperate to form

associative mappings.

19
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Layered Teams of AR-P Units

A natural extension to the single-layer ASN is to add additional layers of

AR-P units. In these networks, units learn to act conditionally on information pro-

vided by other units in the network as well as information provided by the network's

environment. As a result, layered networks can learn to implement nonlinear asso-

ciative mappings. Suppose the network's environment presents stimulus patterns to

the network by making the patterns' components available as input to some subset

of the network's units. We call the units that receive this external stimulation the

input units. The output signals of another subset of units are received by the envi-

ronment, and patterns of these signals constitute the "overt" actions of the network.

These are the output units, or to use the term of Hinton and Sejnowski (241, "visible

units." The units that are not output units (including any input units that are not

output units) we call the "hidden units" after Hinton and Sejnowski [24J. ' Suppose

that the environment evaluates the activity of the visible units and broadcasts a

reinforcement signal to all the units of the network.

How can a hidden unit improve its reward probability when its output cannot

directly affect the environment? The only possibility is for it to assist visible units

in increasing their reward probabilities; and this might be possible only by assisting

intermediate units. For example, a hidden unit might adjust its weights in order

to produce a signal A that another hidden unit combines with other information to

produce a signal B, where signal B, in turn, allows a visible unit to make a required

discrimination. The adaptive units must be able to discover how they can contribute

to the common goal. We regard the linking up of units tinder these conditions to be

a form of cooperation by which units coordinate their activities for mutual benefit.

'Note that our use of these terins differs slightly from their usage by Hiuton and Sejnowski and

others. They replace each of our network input pathways with a specialized unit whose activation calI

be clamped to specific values by the network's environment, and they call these units visible units

too. I have always preferred not to do this given my background in switching and auto|at a theory.
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A Minimal Layered Network of AR-p TUnits

Figure 5 shows a network of two AR-p units, ul and u2. Only ul receives stim-

ulus patterns from the environment, and only the action of u2 is available to the

environment (u, is hidden; u2 is visible). Suppose this network faces an associa-

W11

Figure 5: A Minimal Layered Network of AR-P Units

tive reinforcement learning problem in which the network's output, the output of

U2 , affects the reward probability in a manner that depends on the stimulus pattern

presented to ul. Both units receive the same reinforcement signal. If there were no

means for ul to communicate with u2 , the units would be capable of achieving only

limited reward frequencies. The action of u2 influences the reinforcement of both

units, but in the absence of a communication link, u 2 remains blind to the discrimi-

native stimulus and therefore cannot learn to respond selectively in a discrimination

task. On the other hand, in the absence of a communication link, ul can sense the

discriminative stimulus but cannot influence the reinforcement received. The com-

plementary specialties of the two units have to be combined in order for each to

attain optimal performance. In simulating this situation, we arranged for the action

of ul to potentially influence u 2 by providing an interconnecting pathway with an

initial weight of zero. If this weight can be adjusted properly, the network can re-

spond correctly. However, the correct value of the interconnecting weight depends

on how u, has learned to respond to its input. Conversely, the correct behavior of ul

depends on the value of the interconnecting weight, that is, on how u 2 has learned

to respond to its input signals. Thus the two units riust, adapt simultaneously in a
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tightly-coupled cooperative fashion in order to maximize reward frequency.

To be more specific, we set up the simulation in the following way. Each unit is

provided with a constant input (equal to 1) to allow its threshold to vary and one

other input pathway. We regard only this second stimulus component as the stimulus

pattern x, treating the constant input as part of a unit's internal mechanism. Each

unit of the network in Fig. 5 can therefore receive the input "pattern" 0 or t, where

for ul it is generated by the network's environment, and for u2 it is the output of

ul. The reward probabilities implemented by the network's environment are given

by the following table:

x d(x,O) d(x, 1)

0 .9 .1
1 .1 .9 1

Table entry d(x,y) is the network reward probability given that ul receives x as

input and u2 responds with y as output, that is, given that the network as a whole

responds to x with y. Thus it is optimal for the network to respond to x -- 0 with

action 0 to obtain reward with probability .9, and to respond to x = 1 with action I

to obtain reward with probablity .9. In this task Afax r (.9 + .9)/2 = .9, and the

initial overall reward probability (with all weights zero) is (.9 -- .1 + .1 + .9)/4 - .5.

Note that if the network fails to discriminate by responding identically to all input

patterns, the overall reward probability is (.9 + .1,/2 .5.

There are two ways the network can solve this problem. Let, us denote the weights

associated with u,'s (nonconstant) input pathway uy', 1 1,2. In the first solution,

ul learns to fire only when stimulus x -- 1 is present by setting its threshold high

(i.e., setting its threshold weight negative) and setting u,' positive. Unit 112 does

the same thing- sets its threshold high and w 2 positive so that it, it fires only when

stimulated by ul's firing. (onsequently, the tnetwork as a whole fires only when X I.

In the second solutioni, ii learns to fire at all liittes .rcrt; whien stimulus x I is

present, and u2 learns to fire at all tinines c.rccp1 wher / fires. "l'hen when i, is silent

in response to Y I, r.2 is disinhibited and (o lires.

In simulating a trial with this network, and with all the ntworks to e (les(rihe,

the environmrlelt first lpr(,sents a stimulus pattern to the ieet work, and thenr pro(eed-
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ing from the input side of the network, we sequentially Com)ute the output of the

successive units so that their actions are available as input to "downstream" units.

This is possible because the networks described here do not have recurrent con-

nections. When the network's overt action is generated, the environment produces

the reinforcement signal, and all the units update their weights. We view the weight

modifications as occurring simultaneously for all units, although this is actually done

sequentially by the computer program.

Figure 6 shows the behavior of the network for a typical sequence of 500 trials

with A = .04 and p = 1.5. Figure 6a shows the evolution of the behavior of ul in

terms of two graphs. The first shows the conditional probability that ul fires (y, = 1)

given that its (nonconstant) input is 0, and the second shows the same thing for input

I. Both of these probabilities start at .5 since the weights are initially zero, and they

change in approximately the same way for about the first 50 trials. This means

that during these trials the unit is experimenting with firing and not firing in the

presence of both input signals. At this point the two conditional probabilities show

the beginning of differentiation between the two cases, which becomes unequivocal by

about trial 80. From then on, with a few brief exceptions, u1 has a high probability

of firing in response to an input of 1 and a low probability of firing in response to

an input of 0. Figure 6b shows the evolution of the mapping implemented by ul

and u 2 acting together by showing the probability that u 2 fires (Y2 2- 1) for the

different values of the network input x (not for the values of u 2's local input). Since

the network learns to respond correctly, u2 learns to remain silent unless excited by

ul's activity; that is, the first solution is formed in which both w, and w2 become

positive and both units set high thresholds. Figure 6c shows the evolution of the

overall performance measure Mt. Figure 6d is a histogram of the number of trials

required to reach a criterion of 98% of Max for each of 100 sequences of trials. In

all sequences the network reached this criterion before 1500 trials. In 45% of the

sequences, the network produced the first solution; in the remainder it, produced the

second.

A series of two units in a discrimination task provides one of the simplest examples

we could devise to demonstrate statistical cooperativity of self-interested units. It is
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clear that the Al 1, units effectively form a link that permits them to obtain higher

reward rates than they could attain if they were to act independently. Moreover,

a unit contributes to the formation of this link only because doing so furthers its

interests. We interpret this as a form of cooperativity in the literal game-theoretic

sense. One may regard the link as a "binding agreement" by which the units form

a coalition for mutual benefit. We have simulated series of 3, 4, and 5 units with

appropriate connections being made in all cases, although learning slows considerably

as the depth of the network increases. Although the discrimination required in

these tasks is not difficult, the necessity to construct a long chain of connections

that faithfully transmits the discriminative stimulus is quite difficult. The correct

behavior for any unit depends on the behavior implemented by all the other units so

that the solution cannot be constructed from stable solutions to subtasks.

The XOR Task

In the task just described, cooperative learning is required only because the net-

work lacks a direct pathway from input to output. The task itself is easily within

the capabilities of a single unit. Here we illustrate the simplest example of a task

that cannot be solved by a single linear threshold unit, or any single-layer network of

them. In this problem the hidden unit is needed not just to transmit a discriminative

stimulus to the visible unit; the hidden unit must learn to respond to particular con-

figurations of its stimulus components in order to create a signal that the visible unit,

needs to behave properly. In our simulation, a network of two AR-P units is placed

in a task requiring it to form the two-component exclusive-or mapping. The network

has a single hidden unit, ut, and a single visible unit, u2 , which are connected as

shown in Fig. 7. The stimulus patterns are all the two-component binary vectors:

X 1 ) (0, 0), T () (0,1 ), (2) (1,0), T3) (1,1). These patterns are equally likely

to occur on any trial. Each unit also has a constant input and a threshold weight.
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The reward probabilities are given by the following table:

[--X- - d-(xO) d

(0,0) .9 .1
(0,1) .1 .9

(1,0) .1 .9

(1,1) .9 .1

Table entry d(x,y) is the reward probability given that the network receives z as

input and responds with action y. The optimal reward probability is Mmm.x = .9,

which is obtained when the action of the visible unit is the exclusive-or of the pattern

components, that is, when u 2 fires when one or the other, but not both, stimulus

components are present. It must also not fire when both components are absent. A

single AR-P unit can be correct for at most three of the four cases, yielding a reward

probability of .7, since weights do not exist that allow a single linear threshold unit

to respond correctly to all four stimuli (see Duda and Hart, 1973, or Minsky and

Papert, 1969). However, the performance of the network of Fig. 7 can approach

M,,,,x if the hidden unit learns to respond only to the fo-rth case and the visible unit

takes advantage of this signal to "debug" its responding. This can happen in several

ways depending on whether the hidden unit learns to turn on or off for the fourth

case.

r

X,

Figure 7: Network for the Exclusive-Or Task.

Figure 9 shows performance of the two-tinit network for a typical sequence of 5000
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trials with p -- 1.5 and A = .08. In Fig. 8a are graphs showing how the output proba-

bilities of the visible unit develop for each input pattern; Fig. 8b shows the analogous

information for the hidden unit; and Fig. 8c shows the overall performance of the

network as a function of the trial number. The visible unit quickly learns to respond

correctly to all patterns except x(l) = (0, 1) (Fig. 8a), causing the network perfor-

mance to level off near .7 (Fig. 8c). Eventually (t z 1400) the hidden unit comes to

respond reliably to P1) and to reliably not respond to any other pattern (Fig. 8b).

At the same time, the visible unit begins to be excited by the hidden unit's signal

so that its output tends to be correct more frequently for all four patterns (Fig. 8a).

Once this mutually beneficial relationship between u1 and u2 begins, it quickly devel-

ops until almost perfect performance is achieved (the theoretical asymptote is .892

for this value of A). It is clear that this is a cooperative process.

Figure 9 shows a histogram of the number of trials until a criterion of 95% of

M,n,,) is attained for each of 100 sequences of trials. The average number of trials

until criterion is 3501, or about 875 trials for each stimulus pattern. In all of the

sequences the network reached this criterion before 15,000 trials.

The Multiplexer Task

The network shown in Fig. 10 has six input pathways and a single principal output

pathway (from unit 5). There are 39 weights to adjust: one associated with each

of the pathway intersections and one threshold weight for each unit. The reward

contingencies implemented by the network's environment, force the network to learn

to realize a multiplexer circuit in order to obtain optimal performance. A multiplexer

is a device with k address input pathways and 2 k data input pathways (here k 2),

each of which is associated with a distinct, k-bit address. Given a pattern over the

address pathways, i.e., an address, a multiplexer's output is equal to whatever signal

(0 or I) appears on the data pathway associated with that address, It therefore

routes signals from different input pathways to a single output pathway depending

on the "context" provided by the pattern over the address pathways. If we call the

address components a, and a2 and the dala coMponents d, d 2 , d., and d4, a minimal
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Figure 9: Histogram of Trials to Criterion for 100 Sequences of Trials in the

Exclusive-Or Task.
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Figure 10: Layered Network for the Multiplexer Problem.
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logical ex)ression for I.li l( 11111ltiexer fiinction is

ala2d, V dja2 d2 V ajd2 d3 V aja 2 d4.

There are a total of 2', or 64, input patterns.

For each of the 64 possible input patterns, we rewarded each unit of the network

with probability 1 if the visible unit (unit 5) produced the correct output, and we

penalized each unit with probability 1 otherwise. The input patterns were chosen

randomly for presentation to the net. All of the units implement the AR-P algorithm

with T = .5 except for the visible unit (unit 5) which uses T = 0 (and therefore

essentially uses the perceptron algorithm; see Section 2). Fig. 11 is a histogram

of the number of trials required for the network to respond 99% correctly for 1000

consecutive trials in each of 30 sequences of trials with p - 1 and A - .01. The

average number of trials required is 133,149, or about, 2080 presentations of each

stimulus pattern. In every sequence the network reached the criterion before 350,000

trials.

OHoo Hioo in 0oo Moo Dsoo 0oe n no'oo
WO00 1600 ,Seooo 20000, 2IO16e 311411 ,3.O9

V J 4-11 O(m4 (U Uf*

Figure /11: Histogram of Trials to Criterion for the Multiplexer Task.

This task illustrates some of the computational sophistication that can arise with

the formation of nonlinear functions. Linear threshold functions can exhibit only a

very restricted form of context sensitivity: contextual information can bias activation

one way or the other, effectively raising or lowering a threshold. Nonlinear context

sensitivity, on the other hand, can result in the complete alteration of behavior as

a function of contextual information. The exlusive-or task described in Section 3
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illustrates this in the simplest form, where one stimulus component can be regarded

as switching the processing of the second stimulus component between the identity

and inversion functions. The multiplexer illustrates a more extreme form by which

the contextual information provided over the address pathways completely alters the

set of signals to which the principal unit is sensitive.

Discussion- AR p Networks and Gradient Descent

Not long after we began experimenting with networks of AR-P units, Rumelhart,

Hinton, and Williams 1441 presented an error back-propagation method for learning

in layered networks that has since become well-knowr This method is described

in Section 4, where its performance is compared with that of several other methods

including the AR-P method. This error back-propagation method is now deservedly

popular since it is simple to understand and outperforms other methods for learning

in layered networks, including ours based on AR-P units. What is most interesting

here is that the error back-propagation method together with a theoretical result of

Williams (61,62J sheds much light on the collective behavior of AR-P units in layered

networks. In fact, it is not too misleading to regard AR-p networks as performing a

kind of stochastic approximation to the back-propagation method (although this is

not strictly true for several reasons to be discussed).

The error back-propagation method is a gradient descent procedure in weight

space. The remarkable result is that information about how to step in weight,

space to minimize (or maximize) a global network performance criterion can be

obtained locally in the networks. In the case of the back-propagation algorithii,

this information the partial derivative of the performance criterion with respect

to each weight is obtained through a coinplex process in which error signals are

transformed and passed backward through the network. Another way for a unit to

determine what steps to take in weight space is for it to determine the derivative

of the performance criterion with respect to its activity b.\ varying its output an(

observing how the global performance changes as a result. (;iven this estimate, lhe

iinit. can then correctly determine how to change its weights.
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More specifically, suppose the units arft deterministic, and that a given hidden

unit can vary its output around its current value while the outputs of all of the

other units are frozen at their current values. By observing the consequences of this

variation on the performance criterion, the unit can determine the gradient of the

criterion with respect to its output at the current point in weight space. From this

it can easily determine the criterion's derivative with respect to its weights, and so

can alter them appropriately. Now each unit in turn can do this with the other units

frozen. If a unit's new weights are not put into place until all the units have varied

their outputs, the result will be a step in weight space according to the gradient of the

criterion. This process, which is reminiscent of, but different from, the Boltzmann

relaxation process, would work but has obvious shortcomings since some outside

agency would have to orchestrate the process and it would be quite slow.

- But can the units vary their outputs simultaneously and observe the consequences

to achieve the same result? This could be made to work if the units independently

influenced the criterion function, but it is difficult to see how it could be done if these

influences are not independent, which is the only case of real interest. It turns out,

however, that it is possible for interacting units to simultaneously vary their outputs

to obtain an estimate of the appropriate gradient. This is essentially what happens

in networks of A- p units. Williams has shown [611 for an arbitrary acyclic network

of AR p units that if the parameter A in Equation 2.4 is zero for each unit 2 , then

the expected direction of each weight change is proportional to the gradient of the

global network reward probability. Consequently, each weight changes according to

an unbiased estimate of the partial derivative ol the global criterion function with

respect to that weight. On any particular trial, the step in weight space actually

taken may or may not amount to an improvement, but the trend will always be in

the correct. direction.

Thus, Aj 1, networks (with A 0) provide a way of locally computing gradient

information withoui the need for a complex back-Ipropagation process. We have

found that in practice such networks actutally requmire A to be nonzero (in fact. a

2 We rall ,Iit+s with A 0, Ap I tinit-, fnr .,-,,'t,,,' r , ir -I,,r ,tw,, i llits: ilpoti jw iall , 110
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positive value much smaller than p) in order to converge properly. Although the

average direction of weight change is correct when A = 0, the process can get stuck

at suboptimal points in weight space because the units become deterministic too

soon. Setting A nonzero seems to prevent this from happening by eliminating all

absorbing states from the stochastic process. Consequently, even after learning is

complete, all the units retain a small amount (depending on the size of A) of random

variability in their behavior.

This view of AR-p networks provides a link, albeit an approximate one, to the

gradient descent procedure implemented by the Rumelhart et al. back-propagation

method. The link is not exact for two reasons: 1) since ARP units are binary

whereas back-propagation units have continuous outputs, the activity spaces in the

two cases are different, and 2) the criterion functions in the two cases are different--in

the AR-P case it is the network reward probability whereas in the back-propagation

case it is the total mean-square-error of the visible unit's activity. Nevertheless, the

relationship between these two methods is useful in understanding the cooperative

interaction that occurs in AR-p networks. As one would expect from this relationship,

the AR-P method is slower than is the back-propagation method in terms of the

number of stimulus pattern presentations. This is borne out in the comparative

studies described in the next section. However, the ARP method does not require a

back-propagation process to assign credit to the units. This could have advantages

in terms of hardware implementation and in terms of biological plausibility. The

relationship of the AR.P method to gradient descent also suggests a modification of

the AR-P learning scheme, which we call the batched AR-P method, that is described

in Section 4.
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SECTION 4

COMPARATIVE STUDIES OF LAYERED NETWORK LEARNING METHODS

In assessing any new approach to an old problem, it is necessary to compare

the new method with ones that have been tried before. We therefore conducted

simulation studies designed to compare a number of methods that have been proposed

for learning in layered networks. We compared eleven such methods by applying each

to the same learning task. We chose the multiplexer task (see Section 3) because it

is difficult enough to show the advantages of the more sophisticated methods, but it

is simple enough that reasonable amounts of CPU time are required for statistically

significant comparisons. In this section I review the results obtained. Complete

details are available in Ref. 141 from which this section is abstracted.

In the experiments to be described, the hidden-unit learning rule is the primary

variable. The learning rule for the output unit is the same for most experiments. %

The perceptron learning rule [421 is used for the output unit since it is well-known

and is relatively insensitive to the learning rate parameter p (so p would not have to

be varied to optimize performance).' The network structure is as in Fig. 10. A step

in the simulation of this system consists of the following. An input vector is selected

by choosing one randomly, without replacement, from the set of all input vectors.

Upon receipt of an input vector, the outputs of the hidden units are calculated,

followed by the calculation of the output of the output unit. The output, of the

output unit is subtracted from the desired output. This error controls the percept.ron

learning rule as it is applied to the weighls of the output, unit, after which the

particular learning method being tested in the hidden units is applied to the hidden

Tihe application of the error back-propagation method 1441 to tie hidden inits requires the use of

a differentiable output function in the output unit, so a semilinear output. function and learning ru1le

were used in the output init. for the experiments with the error back-propagation method.
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units' weights (although some methods, such as the direct-search methods, do not

change the weights of the hidden units on every step). This completes one step in

the simulation. Every input vector is presented once during the first 64 steps, and

once again for every subsequent set of 64 steps, where the order of presentation is

determined randomly.

The direct-search methods are presented first. These methods require no knowl-

edge about the network other than the number of hidden-unit weights and their

ranges of values. Following the direct-search methods, several error back-propagation

methods are presented that involve the propagation of the output unit's error to the

hidden units. Several reinforcement-learning methods are then presented, inc luding

the AR-p method. A modification of one reinforcement-learning rule is considered

that generates localized reinforcements to the hidden units by propagating infornia-

tion from the output unit back to the hidden units. Finally, a mechanism is consid-

ered that treats hidden units that have not yet acquired a substantial influence on

the output unit differently from those that have developed influence.

The behavior of each method depends on several parameters. A comparative

study should guarantee that parameter values are used that are optimal for a given

method to ensure the absence of bias in favor of one method over another. However,

the time required to simulate the learning process in these experiments prohibited a

thorough optimization of the parameter values. We were able to test an average of six

different values over a broad range for each parameter, arid when a method depends

on more than one parameter, only one parameter was varied at a time. Note that,

this attempt to compare methods, where each is operating with optimal parameter

values, does riot address the important issue of the relative degree of robustness of

the methods. Since the parameter values that are optimal depend on the learning

task, it is possible that a learning method rmay excel at a particular task when tising

specific parameter values and yet, perform badly oi another task when using those

same parameter values. On the other hand, a nmet.hod that learns more slowly than

other methods on a specific task may have a speed advantage over the other methods

when applied, with the same parameter settings, to a class of tasks. The coniparative

studies reported here do not. address this important issue.
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Another important issue that is not addressed by these studies is the issue of

scale-up. How do learning times grow as tasks get larger or more difficult? We did

not apply the battery of learning methods to a series of increasingly difficult learning

tasks.

Direct-Search Methods

Unguided Random Search

The simplest possible brute-force random search was included to provide some

idea of how difficult the test learning task is. This method consists of randomly

choosing new weight values for all of the hidden units in the network (using uniform

probability density function); evaluating these weights by allowing the network to

interact with its environment for a number of steps (denoted n); and remembering

after each evaluation period the weight values receiving the best evaluation so far.

Here we want to evaluate the current values of the weights by measuring how well the

network can solve the task using the given weight values. The output unit continues

to learn while the weights of the hidden units are held constant. The weights of the

output unit are set to zero whenever new values for the hidden units' weights are

generated.

The unguided random search was tested on the multiplexer task for several values

of n. For each value of n, the results from 10 runs of 300,000 steps were collected.

The final performance level of a run, v, is the number of input vectors for which

the network is incorrect when using the best set of weights found on that run (so

0 v -- 64 and a purely random strategy of generating outputs would result in an

average value of 32).

In addition to the performance level at, the final step of each run, we determined

the value of a measure of cumulative performance, p, which for a single run is t lie sum

of the number of errors made on every step. For a nonlearning, random stralegy,

errors would occur on an average of haIf of the steps, producing a va-lue for /I of

I 50.000.

36



,..i . . -n. ..,. -, oR1,- , - . . . , u.- ,. ., . -
, 
- .. . U U. . U U . .;

The results of the experiments are listed in Table 1, including the 99% confidence

intervals of v and p. The unguided random search performed better than a nonlearn-

ing, random strategy for all values of n that were tried. The value of p consistently

declines as the parameter n increases. Recall that after every n steps, a new weight

vector is generated that does not depend on previously-tested vectors, so there is no

gradual improvement in performance as a run progresses. However, since the output

unit is learning throughout each n step period, larger values of n result in better

performance at the end of the n step period and better average performance over

that period, which explains the inverse relationship of 1 and n.

Table 1: Unguided Random Search on the Multiplexer Task

n1 V /A

50 25.6 ± 2.78 140, 228 ± 263
100 22.7 ± 2.88 134, 397 ± 128
200 23.4 ± 3.80 127, 913 ± 237
400 18.0 ± 3.21 122, 209 ± 176
800 16.5 ± 2.66 117, 899 ± 342
1600 15.7 ±3.22 115, 099± 324
3200 18.4 ± 5.23 112, 848 ± 462
6400 17.0 ±4.29 112, 577 ± 803
12800 16.9-± 3.96 111,477 ± 1,064

25600 17.7± 3.71 110,654 ± 1,535

The values of v do not show that any one value of n is optimal. When n is 200

or less, significantly higher values of v are obtained than when n is 400 or greater.

In fact, for n < 200, performance is not significantly different from that of a single

layer, for which v-, 24.

A learning curve for the unguided random search on the multiplexer task was

obtained by choosing the best, value of n. which is 1600, and performing 30 runs of

300,000 steps each. This resulted in performance measures of vi 17.0 1 2.93 an d

It 115,062 + 229 and the learning curve in Fig. 14 (the upper-most curve). On

I his and all subsequent graphs, an initial rapid drop appears from 0.5 errors per step

to approximately 0.37 or 0.38. This is caused by lie output unit learning as many

correct responses as possible without, using hidden units; a single unit given the input
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vectors for the multiplexer task can learn the correct output for 40 of the 64 input

vectors, resulting in an average of 0.375 errors per step.

Guided Random Search

There are obviously many ways of improving the unguided random search, all of

which involve generating weight vectors that depend on the currently-best vector (or

on a series of best vectors). We studied two methods: a guided random search and

the polytope method described below. The guided random search differs from the

unguided random search only in the manner of generating new weight vectors. Rather

than being chosen according to a uniform probability density function, weight vectors

are chosen from a unimodal probability density function (defined below) centered on

the weght vector that is currently the best. This density function is symmetric

about the currently-best vector, and the probability of selecting vectors decreases as

the Euclidean distance from the currently-best vector increases. We used a density

function based on the logistic distribution (see Ref. 14] for details). The method

depends on two parameters: the number of steps between the generation of weight

vectors, n, and the spread of the density function, r.

As stated earlier, the amount of computer time required to perform these exper-

iments prevented a systematic search for the optimal values of n and T. lowever,

we did perform two unidimensiorfl searches by holding r 2 while varying n, then

varying '- while holding n at the value resulting in the best performance. For each

parameter setting, results were averaged over 10 runs with each run lasting 300,000

steps. The results in Table 2 show that intermediate values of n are required to

achieve good performance. However, unlike the results for the unguided random

search, the cumulative performance measure, p, also has a U-shape as n increases,

providing evidence of a tradeoff between learning in the output unit (large n) and

optimizing the weights of the hidden tnits by making rthore trials (snal 1).

lPerformanceas a function of T also has a It-shape there appears to be an optitnal

value of r in the range of 0.5 to 2 (as the value of r increases, the probability density
function approaches a uniform density function, and tihe behavior of guided random

search approaches that. of the unguided random search. The learning curve in Fig. 14
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Table 2: Guided Random Search on the Multiplexer Task

n II r . /

50 27.2±3.76 138,978± 898 0.1 18.9 ±4.91 106, 894-±6,204
100 24.1 ± 3.61 131,957 -2,102 0.2 17.1 ± 2.53 109,454± 4,897
200 18.4 ± 3.94 124,089+ 1, 345 0.5 14.9 ± 4.13 105, 343 ± 6,124
400 13.8 ± 3.76 115,390 3, 271 1.0 11.4 ± 3.58 102, 583 ± 6,128
800 13.3 ± 4.73 111,205 3, 851 2.0 12.5 ± 3.94 106, 818 ± 2,524

1600 13.1 ± 4.21 106,544 3, 314 4.0 15.6 ± 2.83 108, 128 ± 2,797
3200 12.5±3.94 106,818±2, 524 8.0 15.0±4.06 108, 498±3,066
6400 16.5 ± 4.48 108,225 2, 413

12800 17.6 ± 5.29 108,620± 3,615

r=2 n = 3200

was produced by averaging 30 runs of 300,000 steps each, using n = 3200 and r = 1.

The resulting performance levels are v - 13.1 ± 2.36 and p = 103,866 ± 3420.

The Polytope Algorithm

Another method for directly searching the weight space is the Polytope Algorithm

1211. This method is often called the "simplex" method, not to be confused with the

simplex method for linear programming. The polytope algorithm is a deterministic

hillclimbing method that maintains a list of m weight vectors, ordered according

to their evaluations. The m weight vectors are treated as vertices of a polytope in

m - I -dimensional space, and new vectors are generated in a fashion designed to shift

the polytope towards an optimum weight vector, taking large steps when progress

is being made in improving the evaluation and taking smaller steps when it appears

that the optimum has been approached. Since this is a deterministic hillclimbing

method, it can get stuck at a local optimum, but it is good at, following ravines. We

included it in our study as an example of a reasonably sophisticated, deterministic,

direct-search algorithm to complement the random methods presented above.

The polytope algorithm depends on the parameter my, the number of weight

vectors maintained as vertices of the polytope, and the parameter n, the number

of steps over which each weight vector is evaluated. Other parameters are p,, pC,
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and p,, which determine the lengths of reflection, expansion, and contraction steps,

respectively. Valid ranges for these parameters are p, > 0, p, > 1, and 0 - p, - 1.

To reduce the number of experiments to a practical level, we did not attempt to find

optimal values for p,, pe, and p,, but set them to reasonable values. We did vary m.

and n, as shown in Table 3. The value of m was fixed at 20 while n varied, after

which n was fixed at 1600, which gave the best value of v, while m was varied. The

results are again averages over 10 runs at 300,000 steps per run.

Table 3 suggests that the optimum value of n is between 400 and 3,200. The

results are even less conclusive about the optimum value of m; additional runs must

be made to obtain performance averages with less variance. The values n = 1600

and m 1 0 were used in 30 runs of 300,000 steps to obtain the learning curve in

Fig. 14, resulting in v = 14.2 ± 2.09 and t 94,977 ± 3079.

Table 3: Polytope Algorithm on the Multiplexer Task

nt t _ /1 TiP t/

200 20.8 1 4.04 118, 780 ± 6,537 3 17.4 ± 2.78 100, 046 ± 6,767

400 17.8 - 4.33 105,624 ± 4,442 5 17.6 ± 4.51 96,223 ± 4,441

800 13.0 ± 3.82 99, 575 ± 5,319 10 12.1 ± 1.97 94, 157 ± 4, 165

1,600 12.6± 2.70 102,449 ± 3,654 15 15.91 6.15 102, 793 ± 4,071

3,200 14.2 - 2.76 109,711 ± 1,460 20 12.6 f 2.70 102, 449 ± 3,654

6,400 15.7 ± 3.74 110,860 ± 2,058 25 14.7 ± 4.24 107, 972 ± 2,447

12,800 19.0 ± 3.93 110,866 ± 2,488

m - 20 - 1600

None of the direct-search methods were able to solve the multiplexer task within

the allotted 300,000 steps. The unguided random search showed no improvement

over time because the weight vectors being tested were not dependent on previous

search steps. Its fina, performance level is slight lY better I hl i t hat, of the single-layer

system (v - 17 versus v 24). The guiided random search does show irnprovereniii

over time, though its learning curve beconies a plproxi nately flat early in the, runs.

Averaged over the last 3,000 steps of every runii, tIhe rruml)ter of errors per s lep is

approximately 0.35. The polytope algorithm T)erfornlis )etter than both raii(on

search rnethods, reaching an average over the last, 3,000 sleps of 0.28 errors per step.

.40
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Error Back-Propagation Methods

Next we discuss some error back-propagation methods for learning in hidden

units, starting with a method studied by Rosenblatt 1421.

Rosenblatt's Back-Propagation Method

Rosenblatt is known for his work with the perceptron-family of learning rule,

but his error back-propagation method has received little attention. Since this was

proposed early in the history of research on learning in multilayer systems and seemed ,.

to work reasonably well for the experiments Rosenblatt performed, we wished to

include it in our study. Rosenblatt's back-propagation method is a nondeterministic

way to assign errors to hidden units based on the errors of output units. The following

is our specification of Rosenblatt's back-propagation method:

1. Initialize all weights to zero.

2. Receive input vector, calculate the output of all units using a linear threshold

function, and receive error signals for the output units.

3. Apply the perreptron learning rule to the output units.
d..

4. Calculate the error, 6, passed back from output unit, k to hidden unit ,

(probabilistically based on the output unit's error, the weight connecting unit

j to unit k, and the output of unit j).

?'kItI random variable from a uniform probability density
function over 10, 1, where k ( ) takes the values of the

indices of the output units,

I, if y,tj - I and (d~it! Y, t) ?,'k f . 0 and vkIt I p ;

I, if M) IfI 0 and t mItj) ?IkItI 0 and vkilI P2

kY, or

if lb [t Ir 0 and (d [t T yI f t) ni ,ht " 0 and ?,k[h 1,3;

0, otherwise.
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5. Apply the perceptron learning rule to each hidden unit j, using the sign of the

sum of the back-propagated errors from the output units as the error signals:

6. Repeat, starting at Step 2, until the prespecified number of time steps has

elapsed.

Rosenblatt's back-propagation method depends on the parameter p, a factor de-

termining the magnitude of change for each weight, and the parameters Pl, P2, and

P3, which are probabilities affecting the frequencies with which the back-propagated

error signals take the values +1 and -1. Rosenblatt performed a number of ex-

periments and determined that the values pi = 0.9, P2 = 0.3, and p3 = 0.1 were

reasonable values. Rather than attempting to optimize all four parameters, we used

these values for pi, P2, and P3 for all experiments, only varying the value of p.

The results are in Table 4. There are few significant differences for different

values of p, although values from 0.125 to 0.5 resulted in slightly lower values of

v. The values of v and u show no improvement over a single-!ayer system. Indeed,

the learning curve for Rosenblatt's method in Figs. 14 and 4 shows no improvement

over time and is always worse than the single-layer level. The learping curve is

averaged over 30 runs of 300,000 steps each, giving values of 1' 23.9 i 1.58 and p

121, 115 + 92. To judge the performance of Rosenblaft's back-propagation inwthod

fairly, additional values of P1, P2, and p3 must be tested.

Riiielliart, Hinton, and Williams

Another approach to the back-propaga tioni of' errors was taken by limelhart,

linton, and Williams 'II. Our specializat ion of this mlethod to the two-layer iulti-

plexer network is as follows:

1. Randomly inilialize all weights to be In Ilie interval I .1,0.1

,12
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Table ~ ~ ~ ~ ~ ~ w~ww 4: Roeblt' BakPopgto Meho on the MuliplxerTas

Pl
0.03024.7± 3.4 12,085± 23

0.030 24.7 ± 3.54 121,0851± 238

2.000 23.1 ±3.18 121, 132 ± 134

0. 5

0. 4 ~~WtT

Pv[Pr~E 0. 3

IME STEP 0.?2

0. 1 R NL A TS~

RUNN1HARY

0.
0 100. 000 200. 000 300. 000

TIME STEPS

Figiire 12: Learning (.ti rves for FLrror liack-propagatin Niefhodis
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2. Receive input vector, calculate output of all units, and receive error signals for

the output units. All units use the semilinear output function:

- >i ~jIt] x1(tJ
1 +e i=o

3. Calculate 6 k for each output unit k C 0:

bk~t] = (d[tj - Ykltj) YkjtI (0 - yktj)

where dk is a modified version of the desired output, defined as

- fj 0.9, if dk{t - 1;
0.1, if dk[tj -0.

4. Apply the learning rule to the weights of each output, unit k:

AWjklt] = p bk[t] x1 [tj + p. AWklt - 11,

where xjjtj is an input component received by output unit k. Recall that the

output units receive the original input terms to the system plus the output, of

the hidden units.

5. Calculate 6j for each hidden unit j:

] (z-W6kwtw y[t] (1- yj[t])

6. Apply the learning rule to the weights of each hidden unit j:

Aw 1 It] p= pbj[t][t] p pA/ 1+, 1It 1].

7. Repeat, starting with Step 2, until the prespecifiedI number of time steps have

elapsed.
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By adding a fraction of the previous Aw to the current weight change, (Steps 4

and 6), it is hoped that the weight values will be more likely to follow the slope of

the error function at the bottom of steep valleys, by canceling opposing steps up

one side or the other. Rumelhart et al. consider this additional term as affecting the
"momentum" of the trajectory of weight values. The method has two parameters:

the rate of change parameter p and the factor p, that controls the magnitude of the

momentum ter n. Table 5 shows the values of p and p, that were tested and the

results averaged over 10 runs of 100,000 steps each.

Note the modification of the desired output value in Step 3. Rather than values

of 1 and 0, values of 0.9 and 0.1 are used. Without this modification, weight values

can grow in magnitude to the point where truncation errors due to the particular

computer implementation can cause weight values to become frozen-the value of

y(1 -- y) in the weight update equation becomes equal to zero.

Table 5: Rumelhart et al. Error Back-propagation Method on the Multiplexer
Task

0.05 15188 6 "3 19.8 1 0.84

0.10 31716 1 1602 11.7 t 3.30
0.25 14144 ± 1426 0.3 ± 0.55

0.50 6966 1 1052 0.3± 0.39

1.00 4944 ± 1224 0.7 ± 0.39
2.00 3289 ± 935 0.2 1 0.52
4.00 3294 1 836 0.2 t 0.52
8.00 13446 ± 4097 6.6 ± 2.93

16.00 32422 ± 5497 18.3 f 3.12
p,, 0

P V _ _ - /-- _ /1 I __ __ V

0.05 34976-f 496 18.9 f 1.97 0.0.5 61 30O- 1:349 0.1 ± 0.26
0.10 33218 f 1671 15.9 1 4.57 0.10 3207 f 454 0.0 0.00
0.2.5 26245 f 7354 9.3 ±7.79 0.25 1747 1 480 0.0- ±0.00
0.50 11287 f 2562 0.1 E 0.26 0.50 1492 - 844 0.2 ±0.52
1.00 3836 ± 869 0.2 1± 0.52 1.00 5802 4, 2686 1.9 ± 1.86

2.00 3267 1 1229 1.0 0.86
4.00 8905 f 221H 3..5 1 1.55

ip,,, 0.5

-, 0.9)

%,5
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The output value of a semilinear unit is a real value between 0 and 1. To compare

with the other methods that use binary-valued, linear threshold units as the output

unit, the output of the output unit k was set to 1 if Yk > 0.5 and was otherwise set to

0 while calculating p and v and the learning curve. This is only done in measuring

performance, not in actually running the learning method.

From Table 5 one can see that this error back-propagation method reliably solved

the multiplexer task within 100,000 steps, for p = 0.1 and 0.25 and p, = 0.9. For

p = 0.25 only 1,747 errors were accumulated over 100,000 steps (it = 1,747). Best

performance (considering both v and p.) resulted when p = 0.25 and pm - 0.9.

These parameter values were used to generate the learning curve shown in Fig. 4

and in Fig. 14, averaged over 30 runs of 300,000 steps each. The curve shows that

extremely good performance is achieved very early in the runs; as early as 6,000

steps the average number of errors per step is below 0.06. The performance measures

associated with this learning curve are v = 0.00 ± 0.00 and A = 1,962 ± 148.

The third curve in Fig. 4 shows the results of an experiment designed to test a

modification to Rumelhart et al.'s method proposed by Sutton [48]. He suggested

that it is the sign of the weight value appearing in the expression in Step 5 above

that is the important contribution of the weight, and that the magnitude of it might

hamper the method's progress, particularly when the magnitude is very small. We

tested this hypothesis by replacing Wjk with the sign of wjk, resulting in a new

expression for 6,jt]:

621t]i - 6bkt] sgn(wik[t)) yjt] (I -- y2t]).

As before, we varied p, with the results shown in Table 6 which are averaged over

10 runs of 100,000 steps each. The best value of p is still 0.25 and for p, it is 0.9.

The results averaged over 30 runs of 300,000 steps, tising these parameter values, are

i- 0.00 f 0.00 and t- 1,354 ± 575, and the learning curve is shown in Fig. 4.

The modification appears to retard the method's initial progress, but the task is still

reliably solved. The cumulative error measure, p, is riot significantly different, from

that of the unmodified Rurnelhart method. The modified method does appear to be

46

• . .. . . . . . . . . .. ' . ... " .. . . . .. . ' ' ' . , . + ' ., + ' . , ' , .,' , - 'Uj , . " ... , ' .' j , , - ., - . . " .



more robust than the unmodified method; the task is reliably solved (V - 0.00) for

a wider range of parameter values.

Table 6: Sutton's Modification of the Error Back-propagation Method on the
Multiplexer Task

P(

p LI/

0.10 27759± 3438 7.2 ± 3.74
0.25 11594 ±958 0.1 ± 0.26
0.50 5846 ± 1370 0.0 ± 0.00
1.00 3013 ±573 0.1 ± 0.26
2.00 2336 ± 355 0.1 ± 0.26
4.00 4378± 1179 1.0 ± 0.86

p,. = 0

p /1 p LI

0.10 16447 ± 2504 1.6 ± 1.45 0.05 5091 ± 538 0.0 ± 0.00
0.25 5427 ± 447 0.0 ±0.00 0.10 2411 ± 310 0.0 ± 0.00
0.50 2742 ± 369 0.0 ± 0.00 0.25 1310 ± 404 0.0 ± 0.00
1.00 1536 ± 192 0.0 ± 0.00 0.50 1353 ± 796 0.2 ± 0.00
2.00 2173 ± 767 0.1 ±0.26 1.00 2968 ± 1309 0.7 ±0.77
4.00 8524 ± 1175 3.6 ±0.96

P,,I = 0.5

p.. = 0.9

Associative Reinforcement Learning

Four associative reinforcement-learning methods were studied, two being vari-

ants of one of the others. Barto and colleagues have developed several associative

reinforcement-learning methods 17,6,14,47]. Sutton [47] compared a number of these

methods. For tasks most similar to those faced by hidden units in the networks ap-

plied to the multiplexer task, Sutton found that a particular learning rule, which we

will call "associative search with reinforcement prediction," or AS-RP, rule performed

better than others.

47

' -. ,-". . ..", --..--- ...-."," - .".".'.'_-.,'_< ..-' - <,-'." -,% €-.. 7 ,'-.-'- ., -',.,' ¢ : . , -''-.''..''" '..'.' ''



Associative Search with Reinforcement Prediction

The AS-RP method employs an additional unit that adjusts its weights, v, in order

to match as closely as possible the value of the reinforcement expected for acting in

the presence of each input vector. This provides the hidden units with a "reference"

signal to which the current reinforcement can be compared to determine whether

it is greater or less than the reinforcement usually received when given the current

input vector. One can think of this extra unit as a predictor of the reinforcement to

be received. The AS-RP method is defined as follows:

1. Initialize all weights to zero.

2. Receive input vector, calculate output of all units, and receive error signals for

the output units. The output, yj, of hidden unit j is given by:

* 6

1, if Ywij[t) xi[tI + ?7j[t o > 0;
*yjlt i=o

0, otherwise,

where the r,1tl are sequences of random variables with density function

3. Apply the perceptron learning rule to the output units.

4. Calculate the reinforcement signal for the hidden units:

r~t]-- 1 01 Z ld,[tl - yltlH.
1 1jEO

where m is the number of output units. Since m - 1, rltj E {0, 1}.

5. Calculate the prediction of reinforcement, r,, as follows:

n

where n is the number of input components to the system and v,1lt is the

predictor-unit's weight associated with input component xi[t.
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6. Apply the associative search rule to hidden unit j:

Aw :jt] p (r[t ] - rpit]) (yjltI -- irjltl) xitb

where

7r[t] = E (y,[t]Iw,[t]; x[tJ} ,

which is the expected value of the output y, of unit j, given its current weight

values and input. Since yj C {0, 1}, 7rj is the probability that y= 1.

7. Update the predictor's weights.

Av,[t] pp (rtJ - rp]t]) xi]t].

8. Repeat, starting with Step 2, until the prespecified number of time steps have

elapsed.

Two parameters control this method: the rate of change in modifying the hidden

units' weights is p, and the rate of change in modifying the reinforcement predictor's

weights is pp. Five values of p were tried while pp was set to one of three values. For

each set of parameter values, 10 runs were made of 300,000 steps each.

The results in Table 7 show that the AS-RP method did not completely solve

the multiplexer task, but for p = 0.16 and pp = 0.01 the value of v was about

2.8, meaning that after 300,000 steps an average of only 2.8 out of 64 input vectors

resulted in an incorrect output. The performance of the AS-RP method over time is

shown by its learning curve in Figure 13. The learning curve is averaged over 30 runs

using p = 0.16 and pp = 0.01, and resulted in , = 3.36± 1.98 and -- 48,754 ±8,662.

Better performance might be attainable by testing additional parameter values.

Another way to improve this method's performance is to include the output. of

the hidden units in the set of input components to the reinforcement-predictor unit.

It may be impossible for a single unit to implement an accurate mapping from input

vectors to reinforcement values, just as it is impossible for a single unit to implement,

a multiplexer function. This possibility was not tested.
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Table 7: Associative Search with Reinforcement Prediction on the Multiplexer
Task

p u i p Li

0.01 23.7 ± 3.56 121,756 ± 131 0.01 24.3 ± 3.51 121, 867 ± 224
0.04 11.6 ± 4.70 95,602 ± 8,825 0.04 10.2 ± 5.29 90,639 ± 14,970
0.16 2.8 ± 3.12 42, 149 ± 16,354 0.16 5.7 ± 3.11 61,708 ± 15, 2F1
0.64 4.6 ± 4.86 46,453 ± 21, 080 0.64 9.3 ± 4.13 65, 222 ± 16,051
1.28 12.1 ± 5.56 75,454 ± 20,789 1.28 5.4 ± 4.18 40, 169 ± 20, 829

P= 0.01 P, 0.03

p i A
0.01 24.6± 2.78 121,436± 270
0.04 13.7 ± 4.61 95,407 ± 8,819

0.16 3.5 ± 2.04 48, 320 ± 13, 120
0.64 4.7 ± 3.87 50, 817 ± 24, 206
1.28 13.2 ± 4.59 79,975 ± 21,263

P, = 0.1

0.5

0. 4

0.3PVERPGE
ERROPS
PE P

TIME STEP 0. 2 As-AP

0.
il ~~~~~PNOOMT \"-- .. .RP -LOCAL R[ I#F ORr [ININT

0 RP PfMAL I T P RE 0 1 C100 oo,00 200. ooo 300. 000
TIME STEPS

Figure 13: Learning Curve for Reinforcement Learning Methods on the Mul-
tiplexer TI'a-s k
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Associative Reward-Penalty

The second method from the reinforcement-learning class that we studied is the

Associative Reward-Penalty, or AR-p , learning rule described in Section 2.

1. Initialize all weights to zero.

2. Receive input vector, calculate output of all units, and receive error signals for

the output units. Output functions are those used for the AS-RP method.

3. Apply the perceptron learning rule to the output units.

4. Calculate the global reinforcement signal for the hidden units.

r[tj = 1 - 1 1o Idil t ] - yjItII.

_ For the multiplexer task, 101 = 1, so rItj E {0, 1), but in general r[t) rE [0, 1J.

S. 5. Apply the AR-P rule to each hidden unit.

6. Repeat, starting with Step 2, until the prespecified number of steps have

elapsed.

The AR-P method depends on two parameters. The rate of weight change is

controlled by p and A. If A = 0, no change is made to the weight values when the

"penalty" signal rjti = 0 is received. See Section 2.

Table 8 contains the results of the AR-P method on the multiplexer task, averaged

over 10 runs of 300,000 steps each. Of the parameter values tested, p = 1 and

A - 0.004 resulted in the best performance, solving the task with a final number of

errors over all input vectors of 0.02.

The learning curve in Fig. 13 shows that the AR-p method performed much better

than the AS-RP. Averaged over 30 runs of 300,000 steps each, and using p - 1 and

A - 0.004, the ARp rule resulted in v 0.01 10.01 and p = 15,72513,129. The

value of 0.01 ± 0.01 for Ll indicates that the solution to the multiplexer task was

reliably found.
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Table 8: AR-P Method on the Multiplexer Task

A A p 1/

0.001 0.52± 1.30 24,960 10,347 0.1 1.30±2.02 51,109 10,157

0.002 0.33 ± 0.80 25,234 + 7,486 0.2 0.08 ± 0.03 25,377 - 5,479

0.004 0.02 ± 0.01 14,493 - 5,557 0.4 1.80 ± 4.63 20,301 - 7,050
0.008 0.01± 0.01 20,046± 5,918 0.8 0.71± 1.53 17,320± 7,553

0.016 18.80 ± 6.65 107,729 ± 7,101 1.0 0.02 ± 0.01 14,493 ± 5,557
0.032 23.00±3.26 118,806 ± 185 1.6 0.01±0.00 15,167± 3,908

3.2 11.60± 8.63 81,798± 16,013

p= 1 A = 0.004

Local Reinforcement

The AS-RP and the ARP methods function in a "global" reinforcement paradigm

in which each hidden unit receives the same reinforcement signal. However, hidden

units in a multilayer system can be provided with more informative evaluation infor-

mation than that provided by the global reinforcement signal. We investigated one

possible way of using this information to construct a unique "local" reinforcement

signal to each hidden unit. The approach is similar to Rosenblatt's back-propagation

method in its division into several cases according to units' outputs and weight values,

but differs in that reinforcements are propagated rather than errors.

Steps 1 through 3 are identical to those of the AR-P method.

4. Let rikit be a reinforcement based on the output value of output unit k and

the weight connecting hidden unit j to output unit k, defined as:

0.5, if wjk[t] 0;

1, if W, [tj $0 and d1t I - Wll
or

rkIl- y,[tJ = 1 and ukjtlt(dkjltl Yktj) > 0;
or

yj~tj = 0 and t,.Iktl(dkjtj YkIt) < 0;

0, otherwise.
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Calculate the local reinforcement signal for hidden unit j as:

kEO

though, for this task 0 = {5}, so rj = rj,5.

5. Apply the AR-p rule to the hidden units, now using separate reinforcements

for each:
2

AwijtJ= p rj[t] (yj[t] - rj[t]) xi[t]
+A p (1 - r[t]) (1 - yjt] - 7rj[t]) xi[t].

6. After the prespecified number of steps have elapsed the final-step performance

measure v is calculated.

The motivations for the cases in Step 4 is as follows. When a hidden unit has no

influence on the output unit, i.e., wjk = 0, then no preference in its output should be

revealed. To accomplish this, rjk is set to 0.5 regardless of the output of the hidden

unit, the output unit, and the correct output. The second case is composed of three

situations. First, if the hidden unit does have a nonzero output weight, i.e., wjk $ 0,

and the output unit generated a correct response, then the hidden unit is "rewarded"

by being assigned a reinforcement value of 1, increasing the probability of the output

value that it just produced. The second part rewards the hidden unit if its output

value is I and its output weight has the same sign as the output unit's error. The

third part rewards the unit when its output value is 0 and its output weight differs

in sign from the output unit's error.

This modification to the AR-p rule does not add any new parameters. We tried

a number of values for p and A and averaged the results over 10 runs of 300,000

steps each. From Table 9 we see that p = 0.5 and A - 0.0001 resulted in the best

value of v, which was 0.55 errors over the 64 input vectors after 300,000 steps. The

cumulative measure, p, was lowest for A : 0.0005.

2Thiq can be called the "S-model" An. r rule following the terminology used in the study of

stroch' tic learning automata 1361. It is applicable if the reinforcement va hue, r, is a real number in

the interval (0, 1i. Note that it specializes to the version of the Ap -p method given by Equation 2.4

if the reward and penalty values of r are respectively represented by I and 0.
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Table 9: AR-p with Local Reinforcement on the Multiplexer Task

A V A p V A
0.0 1.32 ± 2.24 16,069 ± 10,750 0.01 23.72 ± 3.05 12, 2127-± 116
0.00001 3.07 ± 2.84 28,822 ± 15,678 0.25 2.84 ± 3.61 40,581 ±16,852
0.0001 0.24 + 0.52 12, 512 ± 4,937 0.50 0.55 ± 1.27 17, 109 7,221
0.0002 1.07 ± 1.72 17,830 ± 7,706 0.75 1.31 ± 1.69 23,290 10, 555
0.0005 0.39±0.55 10,418± 1,973 1.00 0.24 ±0.52 12,512± 4,937
0.001 0.76 ± 0.87 14,539 ± 1,997 1.25 1.44 ± 2.66 22,467 ± 12, 298
0.002 4.64 ± 5.51 21,145 ± 2,279
0.004 6.53 ± 4.69 34,506-± 1,613
0.008 10.30 ± 3.18 64,436 ± 1,644

p= 1 A =0.0001

A learning curve for the AR-P with local reinforcement, again averaged over 30

runs of 300,000 steps each, is included in Fig. 13. The values p - 0.6 and A

0.0001 were used for the method's parameters. This modification to the AR-P method

performs slightly better that the original ARp method before approximately the

2 0 , 0 0 0 th step, and thereafter its performance is worse than that of the AR-P.

The local reinforcement addition seems to help during the early stages, but is a

hindrance throughout the remainder of a run. Perhaps this indicates that using the

information about the hidden units' output weights and the output units' errors is

only beneficial while the hidden units have minor effects on the output unit through

output weights of small magnitudes. When output weights are near zero, learning

according to the AR-P method with global reinforcement is very slow because there

is very little correlation between a hidden unit's output and the global reinforcement

signal. But as the output weights increase in magnitude they acquire more of an

influence on the global reinforcement and can begin to optimize their weight values.

A more complex task-one requiring more than a single output unit--might demon-

strate a greater potential for using this scheme for calculating local reinforcement.
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Penalty Prediction

The plight of a hidden unit that has not yet acquired, or has lost, a substantial

influence on the output units is to learn very slowly if it is modifying its weights

through efforts to increase the reinforcement value. Is there some way to put such

an "unused" unit to better use? We applied a second extension of the AR-P method

to the multiplexer task to investigate this question. This extension is based on the

assumption that poor performance is caused by the lack of an appropriate represen-

tation. Situations for which incorrect outputs are generated need to be represented

differently, perhaps with additional components, giving the output units more de-

grees of freedom with which they can alter their outputs.

To realize this idea we divide the learning rule for the hidden units into two parts,

each part coming into play at different stages. When a hidden unit has a substantial

effect on units "downstream," then the normal AR-P learning rule is followed. But

when a hidden unit does not significantly influence other units, the hidden unit

adjusts its weights in an attempt to match them to input vectors that result in

low reinforcement values, in effect becoming a "penalty predictor." In this way,

new features are introduced that represent inputs for which the performance of the

system is low. This is related to the data-directed method of Reilly, Cooper, and

Elbaum 1401, who dedicate new hidden units whenever an error is encountered by

their system.

The implementation of this strategy depends on a measure of the degree to which

a hidden unit has an influence on other units. Since in this task a hidden unit can only

influence one other unit, we simply used the magnitude of the hidden unit's single

output weight as an indication of influence, though, as Klopf and Gose 1261 showed,

other measures might lead to more accurate indicators of influence. The magnitude

of a hidden unit's output weight is squashed into the range [0, 11 by passing it through

a logistic function. Some method of combining the measures from different output

weights must be employed when the network has more than one output unit. The

AFp method is modified as follows:

Steps 1 through 4 are identical to those of the Ali _p method.
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5. Apply the AR-p rule with penalty prediction to the hidden units:

(a) Calculate the influence, aj, of hidden unit j on the output units:

Wjk t- - -

l+e a

(b) Update the weights:

p r~t (y,[t - rjtl) Xilt-
AwIitJ alltj Ap( ~j Iy~j-7jt tt

+(1 - ajt])p (1 - rftj 7-rlt]) xt].

6. Same as Step 6 of the AR-P method.

The equation in Step 5b is composed of two main parts. The first part is the

expression for the S version of the AR-P rule. Its contribution to the update of

weights varies inversely with that of the second part of the equation. The second part,

is only significant when a1 is small, meaning that hidden unit j has little influence

on the output unit. It serves to push the weight vector in the direction of the current

input vector when r is small and it pushes the weight, vector away from the input

vector when r is large.

In addition to the parameters p and A of the AR-P method, this modification

depends on the values of pa, w,, and 7,, which have their strongest effect when o,

the influence on the output units, is small. The variable a) is a function of unit, I's

output weights, defined in such a way as to scale its value between 0 and 1; (t) -

when unit j has a very strong influence on an output unit, and a, = 0 when it has no

influence. The scaling function for a is controlled by the parameters w, and T,, and

its form is that of the logistic function, where r, is the "spread" of the function and

w(, is the value of its argument such that a - 0.5 when w,- vkit l. For example, if

w, = 1.5 and T, = 0.1 and there is one output unit, then at will have the following

values for the given values of unit J's output weight:

output weight (Wk) (5
0 0.000

1 1 0.007

f2 0.993
13 1.000
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For the multiplexer task, the output unit learns under the perceptron learning

constant with a learning constant of p = 1. Therefore, the output unit's weights,

which are the output weights of the hidden units, will always be integer-valued. For

w, = 1.5 and r, = 0.1, the AR-P with penalty prediction method will approximate

the original ARp method except when the value of the output weight is 0, as it is

initially, or 1.

Table 10 shows the results of testing this method for various parameter values

over 10 runs of 50,000 steps each. Using the values p I and A = 0.004, which gave

the best performance for the original AR-P method, we found that p, = 16, U'a -- 1.5,

and ra 0.1 were the best parameter values tested. Not reported here are further

experiments in which p and A are varied, again finding p = I and A - 0.004 to be

the best of a small set of alternative values.

The best parameters were used to generate the learning curve in Fig. 13, averaged

over 30 runs of 300,000 steps each. The learning curve shows that this method

performed much better than the original AR-P . The ARP with penalty prediction

resulted in performance measures of v = 0.08 ± 0.17 and t = 7,411 ± 1,773. Roughly

twice as many errors on average were made during the runs of the AR-p method

7, 411 versus p - 15,725).

The fact that, large values of pa result in better performance than small values

suggests that the advantage of the penalty prediction modification is due to the size

of the large jumps in a hidden unit's weights when the unit has a small output

weight, an(l not in the direction of the weight change. This hypothesis was tested

through further experiments, as follows. The method was modified in a way that

preserved the size of the large weight changes while removing the dependence on the

reinforcement signal to direct the weight, change. Instead, a random signal guided

the changes in weight values when the out put weight is of low magnitude. Thus,

Step 5b of the ARp- with penalty prediction )ecorues

I ( r p r+ (!,t T3 I) .,! )
ere ,te ,+r sAec of r lI ruidn ,I l (p7T.i.l

S( ,, t!) p, t t').,. t:

where the . t are sequences of lHernotilli raiinloi va ri, 1) h s (p~ossib~le values are 0 anid
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Table 10: AR-P with Penalty Prediction on the Multiplexer Task

),, w,, v /A T,, v -
0 0.5 7.30 ± 5.06 11, 246 -t1,965 0.01 2.78 ± 2.66 7,695 ± 2,304
1 0.5 23.50 ± 3.11 20,009=± 223 0.1 0.26 ± 0.52 4,761 ± 2,225
2 0.5 19.90 ± 6.85 18,004 ± 2,032 0.2 0.48 ± 1.05 8,698 ± 3,030
4 0.5 4.70 ± 5.51 10, 795 + 3,324 0.4 18.00 ± 5.89 18, 542 ± 2,108
8 0.5 0.54 ± 1.21 4, 682 = 1,498 0.6 23.80 ± 2.90 20, 242 ± 100

16 0.5 3.20 ± 3.06 6, 143 ± 2, 389 0.8 23.20 ± 2.27 20, 340 ± 64
32 0.5 7.10 ± 5.29 7, 712 ± 2,734 1.0 23.70 ± 2.13 20, 243 ± 74
4 1.0 22.60 ± 3.35 19, 786 ± 325
8 1.0 6.20 ± 6.75 10, 142 ± 4,136

16 1.0 0.37 ± 0.52 6, 779 ± 1,626 p = 1.0, A = 0.004
32 1.0 3.80 ± 3.85 8, 253 ± 1,723 p,, =0.1, w,, = 1.5
4 1.5 14.70=±7.79 17,297 ± 2,781
8 1.5 4.20 ± 5.51 8, 301 ± 2,403

16 1.5 0.26 ± 0.52 4, 761 ± 2,225
32 1.5 5.20 ± 5.52 8, 140 ± 3,714
4 2.0 25.00 ± 3.66 20, 209 ± 53
8 2.0 19.40 ± 6.28 19, 185 ± 1,477

16 2.0 12.70 ± 6.68 14, 733 -4,688
32 2.0 4.00 ± 3.84 10,030 ± 3, 328
4 4.0 23.80 ± 1.32 20, 234± 5.5
8 4.0 22.10± 3.19 20, 252± 66

16 4.0 23.70± 3.12 20, 254± 66
32 4.0 23.00+ 3.21 20, 240± 72

p - 1.0, A = 0.004
r,, -0.5
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rhe learning curve for thle AR-p with randlor prediction is shown in Fig. 13.

Its performance is worse than that of the AR-P with penalty-prediction method,

suggesting that there is an advantage in predicting penalties. However, it performis

better than the simple AR-P method. Thus, there is also an advantage to taking

undirected, large steps in the search for weight values for unused units. The increase

in performance of the AR-p with penalty prediction method over the simple At p is

probably due to both effects.

Summiary of Comparative Simiulations

To facilitate the comparison of the learning methods' performance onl the mul-

tiplexer task, most of thle learning curves are superimposed in Fig. 14. Recall that

the errors per time step are plotted by averaging over .30 runs and over bins of 3,000)

step intervals. A non-learning, random strategy of selecting outputs would result in

an average of 0.5 errors per time step.

It. is easilv seen that the classes of miet hods in order of decreasing performnance

are

1. error back-propagation (excluding Rosenblatt's niet hod).

2. reinforcement learning, and

3. direct search.

Th'Iiis ranik i ig is sutp ported ly the valutes of t he perfor ritarice rieasutres. shomvii M r Ta-

b)le 1 1 , w here thle mnethods are ran ked accordi rig to t heir resuilt irig values of p. 'I'hfre

is nio statist irally-sigriificaiit differenice het wevri thle vahiie', 4~ ii [(or the i%%o i~ot

of the l~tirrlhart et al. iriethod. howver. thle 'hiflvifr,~ IwI' v l~t4et Ihesf, iiteltok

and the best, reiriforcerniei-leariiing ryiet hod, the, A14 ri Ii piialt prelip tofIl. is

signiific ant.%

Atiiong the reiniforcemnt i-learning met hind-S. some70 'dfierenll v, iii p are sigrifin atit.

while others are riot. Ini part icujlar, the reoults oif the AS- li P mnethod are siathcwrt '
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Table JUL: Performance Summary for Multiplexer Task

method v parameters

Rumelhart 0.00 ± 0.00 1,354 ±575 p 0.25, pm, 0.9
sign or output weight

Rumelhart 0.00±0.00 1,962 ±148 p -0.25, Pm, 0.9

AR -P with 0.08±0.17 7,411±1,773 p 1, A =0.004,
penalty prediction p,, 16, Wa, 1. 5, r,, 0. 1

AR- p with 0.01±0.00 10,695±2,690 p =1, A =0.004,
random prediction p, 16, w,,a 1. 5, Ta - 0.1

AR-.P 0.01±0.01 15,725±3,129 p =1, A =0.004

AR- p with 0.65± 1.08 20,467±6,923 p =0.6, A =0.0001
local reinforcement

AS-RI' 3.36± 1.98 48,754±8,662 p =0.16, pp = 0.01

polytope 14.2±2.09 94,977±3,079 n =1600, m =10,
cr 2, ce 2, cc 0.2

guided random 13.1±2.36 103,866±3,420 n =3200,r I

tinguided randomn 17.0±2.93 115,062±229 n = 1600

RosenblattL 23.9±1,58 121,115±-92 p -0.5,

p,0.9, p2 -0.3, P30.
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worse than all other reinforcement-learning results. As discussed earlier, another

version of the AS-RP method should be tested: the output of the hidden units

should be included as input to the reinforcement predictor, thus not restricting the

reinforcement prediction to be a linear function of the input as originally represented.

All other differences are significant. The direct search methods are significantly worse

than others and their relative ranking is also significant.

Now we can ask what new features actually developed during successful runs of

multilayer learning methods, that is, to what sets of input patterns did the hid-

den units tune? For a partial answer to this question, we analyzed two runs, one

with Rumelhart et al.'s method and the other with the At-p with penalty prediction

method. Each run was interrupted at three points to determine the features that the

hidden units had acquired at various stages. Fig. 14 shows that a single run using

the Rumelhart et al. method is very likely to have solved the multiplexer task by

the 10,000' step, so the run was analyzed after 2,000, 5,000, and 10,000 steps. The

results of this analysis appear in Table 12. A unit's state is specified by a logical

expression for the union of all input vectors for which the output of the unit is 1.

For example, unit I on the 2 , 0 0 0 th step responds with output I for input vectors

(0, 0, 0, 0, 0, 1)T and (0,0,0, 1,0, 1)T (disregarding the constant component of the in-

put vectors). Labeling the components of the input vectors as (al,a 2,dl,d 2,d3 ,d 4),

for address lines al, a2 and data lines dl, d2 , d3, d4 . A minimal logical expression for

the union of these vectors is dld 2d1ld 3d4. Included with each hidden unit expression

is the approximate value of the unit's output weight, indicating how that unit affects

the activation of the output unit.

In addition to the hidden-unit analysis, expressions were determined for the out-

put unit, both with and without the features generated by the hidden units. Let us

start our discussion of Table 12 with these expressions, by first studying the last row.

At step 2,000, a relatively complex expression developed for the output unit, but by

step 10,000 the unit's expression is exactly the multiplexer expression, as expected.

The expressions for the output unit without hidden units show that at, step 10,000

the new features learned by the hidden units are necessary for the generation of tile

correct output for input, vectors containing three of the four possible addresses; for
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Table 12: New Features Developed by the Error Back- Propagation Method

Step 2,000 Step 5,000 Step 10,000

Unit 1 d1d2dIJ3d4  ald2(d1j3 v djd 2d4)V ?i~d2(d1j 3 v Jjd4 )V
aia2(didAd v d1d3 d4 ) a I 2 (d,d 3 v di d4 )

(-2) (-7) (-7)

Unit 2 d~d2d~d3d4  d~d2 dI did2di

Unit 3 null dila 2 d2 d3 d4 V dad
daIa2 (d2d4 v d2 d3 v d, d2)

Unit 4 null C10 2(did 3d~fv d2d3d4)V aZi2d3
ajd2(djd3d4 v d2d3d4)

output dI4 2(d3d4 vd 2d3  iiI 2Vda 2V

unit vd2d4 v did2d4  d1a2V dIa2V
without vdld 3d4 v dd 2 CJ3 )V a, 1 2V d
hidden dia2 (djd2 d4 v djd 3d4  ala2 (d4 V d2 d3 ) aja2d4
units vdid2d3 V d2 d3 d4 )v

ai2ddiv d2d3
vd2d4)V

aja2(d~d2d4 v djd3d4
vdld2d3 v d2d3d4)

output d1d2(didA 4 v djd3d4  tija 2 div Zild 2div
unit vd2d3)v'/ C2a2d2V dia 2d2V
?Vith dia 2(djd 2d4 v djd3d4  a Iii2(W3 v d Id2 d)'.' aid 2d.v

hidden v d2 d3)v aja 2(d4  d2d.1) al"A~
units aia72(djd 2d4 v djd3d4

vd2d3 )V
aja2(d,d 2d4 v dld3d4

vdld2d., v d2d3d4)
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address (1,1) the output unit itself is capable of prodtcing the correct output.

Given the expression for the output unit without hidden units at step 10,000, it

is clear how the terms formed by units 2, 3, and 4 are being used. All have negative

influences on the output unit, effectively carving out of the output unit's expression

those input vectors for which the output unit produces a 1 when the correct. output

is 0. The role played by unit 1 is much less clear, and would require a careful analysis

of exact weight values for us to understand.

Table 13 shows the results of a similar analysis of a run with the AR-P with

penalty prediction method. The run was interrupted at 10,000, 20,000, and 50,000

steps, a larger total number of steps than was used for the analysis of the Rumelhart

et al. method. The expression for the output unit with hidden units at the 50,0001

step is indeed the multiplexer expression.

The manner in which the hidden units interact with the output unit to produce

the correct output is not as straightforward as it was for the previous example. It

is clear that unit 4 has acquired the same role here as it did in the other run. This

is purely a matter of coincidence, since there is no a priori bias among the hidden

units; initially, each unit is equally likely to develop a particular feature.

In conclusion, this section presents the results of several methods for learning in

multilayer networks on a particular learning task. The task is of sufficient scale that

direct, search methods perform poorly, never solving the task within the allotted time.

Several error back-propagation methods were studied, of which Rumelhart et al.'s

method readily dealt with the difficulties of the task, reliably solving it within sev-

eral thousand steps. Reinforcement-learning methods were also tested, with various

degrees of success.

In comparing the performance results described in this section, it is important to

keep in rnind two critical lirmitat ions of t his stii ld. The rimost obvious limit at ion is that

a single task was used. 'rhe results provide no indication of how the relaliv ranking

of the rriethods would change if different tasks, vither sinrnpler or more complex, are

used. Answers to the q uestiori of hlo % cll the rret hods scale-tip to harder tasks

require further expenirientrs on tasks of varOng (-ornl(hxitY. A related issie is how

a rmethod's perforrrianc, is affected k\ altering the nl ork architecture, such as the

i (ii



Table 13: New Features Developed by AR-p with Penalty Prediction Method

I Step 10,000 Step 20,000 Step 50,000

Unit 1 d~a2djd2d4V null 7~~j~T

a, i!2d~d2d3d4V
aia2(d1j 2J4

vdjJ2d3 J4)

Unit 2 dId 2(dId2d3 v d1d2)V ddV aialdAV
aot2djd 2  ajd 2djd ajd2Jtd2

Unit 3 aia2 d4 V d024Vda 2 d 4 V

di a2d2d4V dja 2ddv dja2JT2d4V
ajxd~c14  ald2(d2d4 V d2d3d4) ajd2d2d4

Unit 4 null ajdAd aid2-d3

output dlG2V d~d2V d2
unit dia2(d2d.- V d4)V dja 2d4V dja 2(d3 v d2d4)V

unthout alnd 4v d3d4)V a1d2V d2
hidden ala 2d4  aja 2d4  ala 2d4
units

output d012(d1 -'did 2d3)V dld 2d~v a 1 2d~v
unit aja2(d2d3 v d~4i,' aa 2d2d4 \/ ata 2d2V
upith ala2 0A~d / d2d~jd4  (11 a2d3. aja 2d3v

hidden ~djd2d4 v dld2d3) aja 2d4  aja2d4
unit
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addition or removal of hidden units. Neither issue was investigated by this study.

The second liritation is due to the manner in whichl the values for each rnel.Iiod's

parameters were chosen. The experimenter became part of every learning method

by trying a number of different parameter values. The values that resulted in the

best performance for a particular method were used in its comparison with the other

methods. The time required to perform this parameter optimization process is not

taken into account by the performance measures used in this study. A method might

rank very well according to the performance measures but be very sensitive to its

parameter values and require much effort to find optimal parameter values. This

does not appear to be the case for the results reported in this section. The method

with the best performance is Rumelhart's error back-propagation method modified

to use the sign of the output weight, and it reliably solves the multiplexer task for a

wide range of parameter values.

Some Further Experiments-The Batched AR-p Method

In Section 3, I discussed the relationship between the operation of AR-p networks

and the error back-propagation scheme of Rumelhart et al. 1441 and mentioned the

result of Williams 1611 that the weights in an AR-p network (with A = 0) move

according to an unbiased estimate of the gradient of the global network reward prob-

ability. This fact suggests that it might be worthwhile to consider a sampling process

in conjuction with the AR -P method. If the units could obtain a better estimate of a

true gradient through repeated sampling, then the performance would improve and

in the limit approach the performance obtained with deterministic gradient descent,

methods. Furthermore, the network would retain its simple character, in that all

units would still receive the same scalar signal.

To investigate this possibility, we considered a modification of the standard

AR p learning procedure. The standard procedure consists of the following sequence

of events which occurs each time a stimulus is presented: The network determines

its output, this output is evaluated, the evaluation is )roadcast to all units, and the

units change their weights. The modification consists simply in allowing this updat-
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ing sequence to take place several times during the presentation of a single stimulus.

Furthermore, the weight changes induced by these updates are accumulated in a ten-

porary location; only at the end of the stimulus presentation are the accumulated

weight changes added to the actual weights. Geometrically, this procedure amounts

to obtaining several sample vectors at a given point in weight space, and taking a

step which is the resultant of the sample vectors. In the experiment to be reported

below, the network computed a batch of ten such sample vectors for each stimulus

presentation. We call this procedure the "batched" AR-p method.

We wished to compare the batched procedure to the standard procedure in terms

of the time needed to learn the multiplexer task. Note that the learning time is

a function both of the direction and the size of the steps in weight space taken

by the network. Since we were interested in the ability of the batched process to

improve the direction of these steps, it was important to control for the step size.

To do this, we first computed the average step size taken on the first few learning

trials by networks using both the standard AR-P learning procedure and the batched

procedure. ' The ratio of these average step sizes was then used to scale the learning

rates. In particular, the learning rate p for the standard procedure was chosen to be

0.5, and the learning rate for the batched procedure was then taken to be 0.079, so

that the step size per stimulus presentation was the same in the two cases. Note that

in the case of a deterministic method, the learning rate for the batched procedure

would have to be 0.05, given that there are 10 samples per presentation; the actual

step taken per stimulus presentation would be the same for the two procedures. For

the stochastic method, however, the steps can be in different directions. The fact

that the learning rate for the sampling procedure was larger than 0.05 indicates that

the sample vectors tend to point in different directions and cancel, which is of course

necessary if sampling is to have any effect.

The architecture used in this experiment was the same as that used in previous

studies of the multiplexer-- two layers of weights, with six input lines, four hid-

den units, and a single output unit (Fig. 10). The hidden units learned using the

A?, rule, while the output unit learned using the perceptron rule. The evaluation

The step size wa-s cornpi ed as the Euclidean norin of the vector Aw.
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signal was a deterministic function of the output of the network-if the output was

correct, the evaluation was one, otherwise it was zero.

The results are shown in Fig. 15. The abscissa represents bins of 200 trials,

where a trial refers to a single stimulus presentation. As discussed above, with this

definition of a trial, the two learning procedures are equated in terms of average step

size in weight space. The ordinate shows the average percentage error for passes

through the 64 possible stimuli. This error is a mean over the 200 trials in the bins

on the abscissa. Furthermore, each curve represents an average over 25 replications

of the experiment. As can be seen, there is a substantial improvement in using the

sampling procedure as compared to the standard procedure. If we use a percentage

error of five percent as a learning criterion, then the sampling procedure learns 2.8

times faster than the standard procedure.

| *. ..

Figure 15: Learning Curves Comparing the Standard and Batched AR-p Methods
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This result shows that, it is possible to obtain increasingly accurate estimates of

a gradient, without requiring a complex error propagation process. There are both

practical and biological implications of this result. Suppose, for example, that in

some learning domain it is costly to obtain stimulus items, but that it is not costly

to update the network and obtain evaluations. In such a domain, it might be practical

to use the sampling procedure to speed learning. From a biological point of view,

the batched approach emphasizes the point that the agent evaluating the output

of a network need only be external to the network, and not necessarily external to
the organism. If some internal agent has sufficient knowledge to be able to evaluate

actions, in particular if the agent constitutes a model of the environment, then it is

possible to improve learning through the batched method without going through the

environment.
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SECTIO0N 5

POLE-BALANCING AGAIN

In previous research we used a version of the pole-balancing task (or inverted-

pendulum task' to investigate the capabilities of the learning methods we had de-

veloped [13,47,151. The pole-balancing task is an example of what can be called a

strategy-learnirg task. A difficult temporal credit-assignment problem comiplicates

this kind of learning-there is no standard with which to compare the systeni's ac-

tions on every step. This problem rules out the use of most connectionist learning

methods for strategy learning because most of these methods require knowledge of

the correct, or desired, actions for a training set of input vectors. Learning proceed.-

by the presentation of input vectors fromt the training set and the modification of

weights in a manner that is dependent on the error between the correct action arnd

the actual action, as was done for the experimients of Sectitons 3 and 4. For bot It the

pole-balancing task and the Tower of lianoi task described in Section 6. the training

information arrves in the formy of a failuire or snccess signal after a series of act jotis

Our earlier work wit h the pole-blala nc ig t ask assui c thle existenre f it rep re~'rt -

tation for the cart-pole system's state consist ing of it large tiiiter of non-overila)I)i ng

"boxes" produc,,d by a p~re-existing decoder. (ent hi represent at ion, the( task he-

ca rne one of fil Inirg in look-titp t ab)les one to q v(1fi, ani eva liin fit n tiort andi

otie to specif Ycontrol actitons. This '.tlri1f1,, ;1 I~- t 'll i n lloII0ei I], toh ip i

represent atilon I ;slies 1,totin the I-,uit- of t I pi. )III f' r It I-- Igtitc~ IIII it'l l . IIf

reported here. Ithe pre-i'\it trg dveodoet *pla 0, L, I i Iiap

'This network re.oi~ - it, itip i a #, tcit r if t i ri'', I)-, VI% nl th,

trart 1polV stent.ll Tl. rTIVt\%Nrk hia, - i I,j ,. , ,, -i?

s%,teni as a wit )1v ar ; ill 954If"fj1% a ild jaK *'

kid of adapIi t, i dci1 oile Il Ill oyilr to, Af I. * '

% %* ' :x*



(ACl) and (thle A ssoc [at, IVe Search HleirinIt ( ASICV) of p to-% I() IIs N"t I (IetsA feroe ("I I IhII,iu

with the error back-propagation methodI of urneihart et al. 44 . Conspquerit R. the

architecture usod consists of two network,;: the fv'aluotio" rictutork for learning arn

evaluation func ion, which is an elaborationi of the ACE'I. and] the action nettrork for

learning action heurist ics, which is an elaborat ion of the A SE1

The networks anid learning met hods are described first. Since the networks an(]

the learning miethods used in the pole-balanicing task and the Tower of Hanoi puzzle

(desir ribed lin S ctlion (;) are verv simillar. lin this sect ion we describe st rategy learning

niet works lin a wvay that is general eniough to enw(ol pass t he systemns used] in both

of thiese tasks. We then briefly describe the pole-balancing simulation and] how the

Iwar nliig net works nt er at I AIt h it11,~ results )f simnulat ion experimlents are

dves r bed ThIis sect loll is all edited formr of Ch1apt ers V and V I of C . W. Anderson's

St rategv- Lea rning Networks

ir lcitTXot k, Ila\ v 1 1 twNO layers, hit the learning methods are

'1i~l , (rj rilIaI i a.I eT liE #%aiiat ion nietwork arid action network

.'~''i'. .'a ha%# th, sairre iiiir of idd~err or (out put iinits, but since the

!I.T T10I. qk kvtii~li iedr'a4~a obviolus4 fromi the context, the same

(I *'..' itd- i~. n i itr ill hothI tict %ork- .Let t here bje vnlh hidden units arid

* ~ ~ ~ - 111r ni ' 0iitt. [Ilie hidden units are indexed

* '~ r i t ;,; it imiit, arc inuVNOi frori ??I,, I to in. (The evaluation

*0 jr l * "1*-1.'t pi? t p11 Lcri ar id respectively denote the sets of

w~tl't iii x*r'a tiiior and artilon networks do not share

* .~*p ' ' 0, diffif lilio 1)i m egratirig tlh i ildder-init

*~~i 1.'T l '. , j i f Ie \k i Ii tir lol tiermxv rk.6

* . . <..' I IV, 10 1 i t ttlir.le lere'ir'e tit( "corirplit at.ioii-

IT %- ~ - m in1 10, ;111( "pass I broluglh 11heir

p ile * 11itt-e k" 111 i ,lojii of iiorizout.al and vertical

if ~ 1. T.j all ~ (11 jpit (' ad sefit onl Olt e oultp1)11

T 1'



___ Y13/ lol __

Y"+-t _ _ _ _ _ _

p a, a2 a..

Figure 16: Two-Layer Networks for Strategy Learning

lines emanating from the apex of the triangles. Input from the environment at time

step t, denoted by xolt), xijt),. .. , x.jt), is provided to all hidden units and output

units. There is an interconnection weight at every intersect ion-h idden units receive

n + I inputs and have n + 1 weights each, whereas output units receive n + 1 + mh

inputs and have n + 1 + mh weights. For the evaluation network, the weight associated

with the I'h input to unit J at time step t is denoted v, 2 [tJ; the analogous weight of

the action network is denoted wq1ti.

The leareing rule for the evaluation network is composed of Sutton's [471 Adap-

tive Ileuiristic Critic (AIIC) method for the output unit and Rumeihart, Hinton, and

'i 11arri's 14,11 orror hac k- propagation scheme for the hidden units. The AHC rule

rit Ini a pre~lictiort of fuiture reinforcernent for a given state. Changez. in this pre-

di t irm av ied a., Iir:.qti reinforcernrrd to gi ide the learning of E arch hetiristics

,tv 1lof t et work. The outpuit uinit of the action network use an associative

* . 'inerti j ftnin rrie hod ident.ic al to the one uised inr ott r earl ier pole-balancing

* . IT . (11 thur uism. calive reiniforc erteni- learn inrg methods, s tic ii as the

* . ~ ~ 1 id. ho, trf. fn''1  r t F14  otit pwi iif nit Aliw 1 p rule would reqIiiiire
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an additional mechanism for restricting the heuristic reinforcement to between 0 and

1. We chose to draw on our previous experience with the single-layer network 1131

by employing the reinforcement-learning rule used there. This rule is combined with

the error back-propagation method for hidden units.

Output Functions

Evaluation Network The output of the evaluation network is cornputed in the

following way. First, the outputs of the hidden units are calculated. The output, p,,

of hidden unit I is calculated using the values of its weights, v, at time t,, and input,

x, at time t , as follows:

n2 t'!t

p,[t,,t - f X v,,itj' , forj , H,

%

where f is the logistic function f(s) i,' i , r The multiplication of weight and %

input. vectors from different time steps is required by the learning rules for reasons %

described below.

The input vector, y, for the output unit is composed of the input from the envi-

ronment and the output of the hidden units:

yt,,. X t, for , 0 .. n,

y ItIf,t t, - p, . for z n .... , m h.

The index, m, of the single output unit is dropped frorn p, for clarity. Thus, the

output of the evaluation network is p, and is defined as

n mh

Action Network To define the output of t he action network we first define the
hidden unit outputs, (1,

( f .- rr 7. . f'or II

73 I,

- . .- .. . -.. : . ' .' . ". . . -,. - .' . ... -. ,-. . -. -.' ' -.'.. . .. . - . . ". a . . .. '., -, ..... .. .. ' ,. ... . .. .. • .. ".. -



These values partly determine the input vector, z, for the output units, along with

the input from the environment:

z,ltj x,j, for 1' 0,.. ., n,

z,It1 a, rati, for:'= n ± 1,... ,n + mh.

For the experiments in later chapters, the output components, a,, J C70, of the

action network are in one-to-one correspondence with the possible actions defined

for the task.' To select an action for a given problem state, the output of one output

unit is set to I and the outputs of other units are set to 0 by the following process.

The output functions of the reinforcement- learning units are stochastic, i.e., their

output depends on a noisy weighted sum of inputs. A competition among the output

units is implemented by assigning the value t to the unit with the highest weighted

sum pius noise. This competition is limited to units corresponding to legal actions

for the current state. Let Lt r-~ 0 be the set of indices for the output units that

represent legal actions for the state at time t. The determination of Lt at each time

step can be implemented by a network and even learned through experience, though

for our experiments we specified L1 a priori. The responses of the output units are

calculated as folows.

Let S, be the noisy weighted sum of the input for unit j, .iLI, defined as

where ?7, Ill is random variab~le with distribution fiunct ion 4'(for the pole-balancing

task, *I is the logistic distribution). The unit with the largest value for s, wins the

'Raitiet (11,a11Ie:)re,4eiitiIig ;I~tirlitz III tliS l' J ls"Ijet W;dV. ic .tPh 1i b eucd lIw ;pa en

of t mIi~pia-it ilt artivjiy. Fm examhple.. I lie six(I~.ll affv''n f'sv uset lw',e jfF~~ plIZdl

be iepre'"enlted aq patterit ''4 o)ut pt ValeS ovt's Illtie'' mlpill 1t1t1 Tis~ (;I lead to Reuuei ;lizait p'i

;kutig a' I is reJpreseiltfol I), siiiildl mi111p)11 paittferii. %01ls(11 (.111 I'lfl lie', f'ij (,I Iliiides I Jlie It-;uilluii
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competition and is assigned a nonzero output:

{ 1, if sj[t] > sk[tJ, for k E Li and j $k;
O, otherwise.

To simplify the determination of the unit with the largest s, for the Tower of Hanoi

task, the following exponential probability distribution is used for "4r:

4F (q) 1 e- .

The output function can be simplified for tasks with only two possible actions

for every state, such as the pole-balancing task. A single output unit is used whose

binary output values encode the two actions. Let this unit be unit k, i.e., 0 {k}.

The specialization of the output function for this case is:

1, if sk[t] > 0;
akjt] -Z=-

0, otherwise.

Learning Rules
S-

Output Layer of Evaluation Network-The change in p plus the value of the

external reinforcement r is called the heuristic reinforcement, or f:

Jt] 7- r~tj 4 jp jt,t - 11 p it 1, t 11, .

where 0 - - - 1, called the discount rate. The use of 9 in updating the weights of

the evaluation network's output unit results in a prediction of future discounted rein-

forcement, for the current state, with reinforcement farther in the future discounted

more than earlier reinforcement 147,461. States for which p is relatively large are

favorable, while those with relatively low p are to be avoided. Once this mapping

is correctly formed, changes in p can be used to indicate whether recent actions are

Ilading toward favorable or unfavorable states.

The double time dependencies of variables in the equations for the evaluation

network are needed for the following reason. In comparing one value of p with a
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previous value, care must be taken to avoid instability in the growth of weight values

(equations for changing weight values are presented shortly). If the computation of

p for step t - 1 uses v[t - 11 whereas p for step t uses v[tJ, then a change in p from

one time step to the next could be caused by a change in weight values rather than

the encounter of a state with a different expectation of reinforcement. To avoid this,

the pair of subsequent p's is based on a single set of weight values, i.e., the difference

between p for step t - 1 and for step t is due only to the change from xlt - 1] to xlt],
because both p's are calculated using vi[t - 1]. If weights are known to change by

small magnitudes on each step, then this precaution may not be necessary (as done

in Ref. [131).

Sutton 1471 specialized the AHC rule by redefining 9 for several classes of tasks

involving distinct trials, where a trial consists of the following steps:

1. setting the state of the problem to a start state,

2. letting the learning system and environment interact, until

3. a goal state or failure state is encountered, signaled by a particular external

reinforcement value.

Following Sutton, 9 for trial-based tasks, such as those considered here, is defined to

be:

0, if state at time t is a
start state;

Fit - rit pit I,t- 1], if state at time t is a goal (5.1)
or failure state;

tt I  I p[t, t - 1 -- pit - 1,t - 1 , otherwise.

The weights of the output unit, unit m, of the evaluation network are updated

by the following equation:

If, [t[ I ,,, t 11 4 3 PItjyjt 1t,

for t - 0,... n f- mnh and 13 > 0. A positive change in state evaluations, indicated

by a positive 9, results in an increase (decrease) in weight values proportional to
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the corresponding positive (negative) input values on the preceding steps. In this

way, the evaluation of the preceding state is altered, effectively shifting evaluations

to earlier states.

The above expression is a simplification of Sutton's learning rule: in its general

form, yit - 1,t - 11 is a trace of previous values of y,, called an eligibihty trace.

An example of an eligibility trace is a weighted average of past values of y, with

recent values weighted more heavily. This generally results in faster development

of good evaluation functions. Eligibility traces can also be used in the weight up-

date equations of the action network. We chose not to implement eligibility traces

primarily for the following reason. Preliminary experiments with the pole-balancing

task showed that a one-layer action network functioning with eligibility traces and

without an adaptive evaluation network, i.e., learning only from the external rein-

forcement, could learn to perform relatively well. However, our interests were in

studying learning in hidden units, which are required for the development of a good

evaluation function for the pole-balancing task as it is formulated here. We removed

the eligibility traces from both networks to force a greater reliance on the evaluation

function and to increase the number of failures early in a run, providing more exter-

nal reinforcement and thus more opportinities to improve the evaluation function.

Thus, our primary goal was not to achieve the fastest possible learning on this task

but to investigate learning in hidden units.

Outpti Layer of Action Network Output unit ., L1 , of the action network

tIp(lates its weights according to:

u,,,,t w - i,t 11 + p ltj (a,[lt I ) {a, t I ti,; z}) z, It 1.

for 1 0 .... n f rn, where E{a, t I 11w: z} is tite expected value of at, I , (on-

ditional ott the curren t, values of it, and z. \Veigh t vahI 's are not changed for owtput

units corresponding to illegal actions. The valie of (/,,/ I '{ a, It I w'; } (;n

be viewed as a measure of the difference between act ion a) t C. and the action that

is ustially taken for t lhe given valties of z,!t I a id ud,, I 1 Thus, the results of an

untusual action have more of an impact ot tlihe adjust menlt of weights than do ot her

actions. Since a) , {0. I }. the expected value of t, is equal to the probability that
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a, is 1, i.e.,

E{a,jtJJw;z} -- Pr{a,tli - 1).

See Ref. 141 for derivations of this probability for the ca:4e of three actions the only

cases that arise for the Formulation of the Tower of llanoi puzzle used in Sectioi 6.

The calculation of this probability is easy for the pole-balancing task because there

are just two possible actions. In this case, Pr{alti I } is just 1(q), where q is the

weighted sun of the unit's input.

Hidden Layer of Evaluation Network From the results of the comparative

experiments described in Section 4, we concluded that the error back-propagation

method of Rurnelhart, hlinton, and Williams usually learned most rapidly (for the

particular multiplexer task used in lihe experiments), Hlowever, this method cannot

be applied directly because it requires knowledge of the correct output. llere we do

not know the correct a I ion or the correct evaluation for a given state, which would

be needed in order to calcilate an error to he back-propagated"

To apply ai error hack-lpropagat ion scheme to I t, hidden units of a network whose

out put layer is learning through reinforcements, a way of translating a reinforcement

into an error must be found This can he done in a heuristic manner by extracting

from the reinforceaent-learning equations the teris tIiat govern weight ul)dates ill

a fashion similar to the error terns in the, grad ient -descent rules. tlowever, it is not

obvions how to incrorporate the eligibility traces often ri-ed in reinforcement -learni rig

methods into a back-propagation schenre (this is ariother reason for not in(luding

traces for the experirents reported here).

For the evaluation network. i plays the role of an error in the update of the output

init weights. Therefore, we define the error of thw ort jlut 11r11, 6' to be:
~,ip/ ,

r~ I ~

wheref the superm ript ,1 t'." t h ais.l( , ,, t oini w.it h th, ,vnal , t in network tli gen-

crates output 1 'he error that is ha(k-prOp)iiK;ied frori the output rinit to hidden

llnit is iust i, and rNrlelhdrt e.0 alis 44. 0 ,xpresiorn ,ith Sulttcn's A't1 mrodili(atloin

for O.t, error of hiddern unit /. alhed mill (ra's:

Isgin(v]
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and their method for updating the hidden units' weights can be applied:

v,,,t- V,, It - 11 + Oh 61pt - 11 xlt - 11 + m Av,,,,it- 11,

for units j E H and inputs i = 0,... ,n. Note that the sign of hidden unit j's output

weight rather than the weight value itself is used. This variation is used because

the results of the comparative study reported in Section 4 suggest that the method's

sensitivity to the value of the learning rate parameter, here ih, is decreased by the

use of the sign of the weight.

Hidden Layer of Action Network -The equation for updating the weights of

the action network's hidden units is a bit more complicated. Once f becomes a good

evaluation of the previous action, the role of an error is played by the product of F

and tht difference between the previous action and its expected value. The sign of

the product is an indication of whether the action probability should be increased or

dec,'eased. So the error in the output of output unit k, k E Lf, of the action network

is defined as:

k'It II ,[ti (ak It 11 E{ak[t I11w; z}).

The back-propagated error to hidden unit J is used to compute the hidden unit's

error:

V it I1  (&j'[t llsgn(uw ,,it - 1)) z,[lt 11( z,It- 1),
k, L,

aUi1 I lhe weights are tiipdated by the following equation:

?,.)t ,, 4 P X, I xt 11 4 p, Aw,,,t 11,

for units .1 1 I/ an(l inputs I 0,...,n. [)isregarding the different errors that are

ha( k-propagated by the two networks, the learning rule used by the hidden units of

I he two networks are identical. The sum over the products of output unit errors and

weights is not included in the expression for a hidden unit's error in the evaluation

network because there is only one output, unit.

Paramttrs The equations for the evaluation network are governed by the follow-
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ing parameters:

13 learning rate for the output unit > 0);

Oh learning rate for the hidden units (Oh > 0);
f,,, =momentum factor for the hidden units (61. _ 0);

-y discount rate (0 < -Y < 1).

Similar parameters appear in the equations for the action network:

p learning rate for the output units (p > 0);

Ph learning rate for the hidden units (ph > 0);
p, = momentum factor for the hidden units (Pro _ 0).

In applying this system to a task, it is important to test a number of values for

each parameter to investigate the sensitivity of the methods with respect to the

parameters. This was done for all experiments described in this report.

The Pole-Balancing Task

In this section we describe the pole-balancing task, our computer simulation of

it, and how this simulated system interacts with the adaptive networks. Additional

details can be found in Ref. 1131. Learning to solve the version of the pole-balancing,

or inverted-pendulum, task that we have studied is nontrivial for two reasons:

1. the evaluation function to be learned is nonlinear and therefore cannot be

formed by a single linear unit, and

2. a performance evaluation in the form of a failure signal appears only after a

sequence of actions has been taken, making it diflicult to identify which actions

are good and which are bad.

The pole-balancing task involves a pole hinged to the top of a wheeled cart. that,

travels along a track (as described in Ref. I :1). lhoth pole and cart. are constrained

to move in a plane. The state at time I of this dytiamical s.stem is specified by four
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real-valued variables:

2*t the horizontal position of the cart, relative to the track;
S--- the horizontal velocity of the cart;

Ot = the angle between the pole and vertical, clockwise being positive;

it = the angular velocity of the pole.

The goal is to exert a sequence of forces, Ft, upon the cart's center of mass such

that the pole is balanced for as long as possible and the cart does not hit the end

of the track. More abstractly, the state of the cart-pole system must be kept out of

certain regions of the state space, making this an avoidance control problem. There

is no unique solution-any trajectory through the state space that does not pass

through the regions to be avoided is acceptable. A minimal amount of knowledge

about the task is assumed in our experiments. The only information regarding the

goal of the task is provided by the external reinforcement signal, rt, that signals the

occurrence of a failure caused either by the pole falling past a prespecified angle, or

the cart hitting the bounds of the track. r, is defined as

{ 0, if - 0.21 radians < Gt < 0.21 radians and -2.4 m < xt < 2.4 m;
rt -

- 1, otherwise.

Note that rt does not depend on Ot or it.

We simulated the cart-pole system using a numerical approximation of the system

of nonlinear differential equations that models the system. )etails are provided in

Ref. 113i.

From successful experiments with two-layer systems, we found that good evalua-

tion and action functions look like those sketched in Fig. 17.' For clarity, let us limit

attention to projections of the functions to th, (0, 0) sub)space. Figure 17a shows the

kind of function one night expect, the evaluation network to learn. Failure is likely

to occur in the upper right, and lower left, portions of the (0, 0) state space. We want

2 1)iie to the natnre of mr form,,ulation of the lealnill task as i, avf,idance roltiol prohlem. ,mle

cannot say that these furi ions, or any others, are the unique optinlal fh itioits. There are vei y 111,1V

ways that, the systeri ran avoid the failure regions tf state Space.
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a. b.

Figure 17: Good Functions for Pole-Balancing Solution

the learning system to shift this failure signal to states that precede failure states,

then to states that precede failure by longer time intervals, with the strength of the

shifted prediction indicative of the average number of time steps until failure. Past

states and actions, or weighted averages of previous states and actions, could be used

to apportion blame for the failure to previous actions, but the tradeoff between a)

the need for a long history to blame actions many steps in the past, and b) the need

for a short history to avoid blame being spread too thinly (resulting in slow learning),

is difficult to optimize. These temporal credit-assignment issues are studied in detail

by Sutton 147,461, who developed the AHC learning rule used here in the output unit

of the evaluation network.

The map from (xri) to a prediction of failure also looks like Fig. 17a. In the lower

left corner, the cart is moving to the left and is near the left border of the track, and

in the upper right corner it is approaching the right border of the track.

Figure 17b shows an action function for generating a push on the cart. For

small angles, such as 0.21 0 0.21 as used in our experiments, the surface

that separates states requiring different actions, called the switching surface, can be

linear. States in the upper right, region require a push ito the right, while states in

the lower left require a left push. The linear switching surface is an approximation to

the nonlinear switching surface of t he t ime optimal |anrg- bang controller. The linea

approximation works well for the small range of angles used in the experiments. The

position and slope of the linear surface varies for different, values of x and j.
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The pole-balancing task frequently has been used 1.o illustrate standardl control

techniques duie to the in herent instability of the p~ole anid the tas;k's similarity to

many balance-conttrol problems. For example, Cannion 1171 shows how the root-louts

method is used to analyze the stability of a "lead compensation- network" controller

that exerts a force proportional to the derivative of an error signal in this case

the pole's angular velocity. His analysis is confined to small angles and angular

velocities and does not include the goal of avoiding the bounds of the track. These

control-design techniques require a model of the system to be controlled in the forrin

of differential equations that define how the state variables change over t.ime. A

good deal of time must be spent by the control engineer in determining a model

that approximates the behavior of the system to the desired degree of arcctrac..

Control systems that, learn without a predefined niodel, or that ac-quire, iternal

m~odlels th rough ol)serwit ion of the systemn's behiavior * would obv'iate this pot enli all v

dlifficult analysis.

An alternative to expressing a control law as ant arnalytIical equation is to re'presenlt

the function in tabular form. Michie and Chambers 1351 took this approach for

their learning system as applied to the pole-balancing task. Their table consisted

of approximrately 162 "boxes" -- nonoverlapping. rectanguilar regions of thte car - pole

svstei'ms state space containing average counts of the numiber of steps before fa litre-

for a push to the( right when the( system's state add resses thle corresponiding b'oxa ;id

arn analogous ( ournt for a push to the left . \\ hen at box is entered. I he pits i wit Ii tlie

highest count is applied. TIheir systemu sticcessillY irrprov*'i its perfortarne wit Ii

e xp;erie nc e.

Ou)iir prev ious leair ti ng systemi for 116 is task 1 3 ittegra te~d t he table look -ii p ap-

proac Ii wit 0i con nectlon ist learn inrg nive ii ods. Sepa ra re tabldv's were nsedl to ;tore

predict ions of rettiforcentt'nt antd prolbi)iie, of geni.r;itig a( tI i,,~ ea i I ntre'\f' b%

the state of the rail-pole Tvtni lhe %Nh~' er, MripIerriviitid as t%%() iittt. ;t( h

receiving 162 Innar.N-valtl Input coiipiil N% lient Ire t iatewas Mit pati 1 ilar

box. I lie corre'sponing in put coiriporiu ii u st to I aw rid ll wt hr (oipifottnt % ere

set to) 0. Therelore. I lie weighted sun (d tlie, unit ip III I equal tf) thet valun' I

I lie weight aissociated wit Ii I lie niori'/ero itipit conripmirt.
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Art obviotis p~robilem wit h tihet, lale look-rip apfproar It v'. tha idlt, sizi' 'liatlw, al

tpla( enient of I lie- regions tlit() %% Im tilt, lie tIc spav 1, (it rlil ider KWea! inie" 111101 I h,

ablillt ri, of lie s5i, s i t 1v;HI1 t lit, dei 41E Ililapiiigs N reiollIIIIlit bf, toi iatg.

mecaning that iliffereuit states Inside tili, region rerpiiri hifflrerit out put %aluies. v p,

(liflerent pushes oil the, (art. (*onrversel\. regirni' atrc Straller thaon optirmal %%lini

mn\i region~s require-q he samte output. If these regimil- art- irsteacl sulesurned i ( )lit

large tegion. then %-,hat 1is learned fitor- t 1t i genlt-nAI1' al i0 TrVCet l' 0 all ot her

states Ii tite region. %\ ItI it mranv sit iaitIl reKIonIt4. Ic-arrtIimg muirst o(it ur itIii all rf-gioliS

inidependent IN \IchIt 1 and (I armiber,, propoErsedl at smnlit Ion t to I hIts Jprohlenti- rc'gl(ioNu

for wh-it( h one out put s; riot clearly better than mii rut her despitv repeatedi experuelir e

Omil d be4 "splIt" tilt o sevf-ralI. smaller rf-giois. , andr rc-gions wit It theit same out pilt

\all)( should be, "liirripedV Into it 5Inglcr. lirgc'r- region lPohl, t it( rdLicata 30 hla ve

I Irulicul t 11is possh1lut 111 it % hIa to. et11 1 l () v 1 lea rn Ing s'. sternl anId a tehIv(11 qiic l

tuft ir'vd 1 it \ ht I tig c),e-r\ rvgion uruu f trrrl I% I114I) ;I urirrirfI r oif sirIralleIfr re-g IoIII

Innt Ihe v i'prier it itesI v r I ed Iiu'r f,. t he fei "dlco nnf vr" of I lie, svstet de(I sc ri1bed

t it I? e 13 to Iraislite t lie- ca rt -pole ; tatIc t o ;I regioni addflress Is replaced bN a

Id it4 of ht td, 14'n Ii I it t l t le iar ts (vat uire' tie lu I I% solv Ii~g Ihe poli-balam- Ing task.

TIt I- ilit I \ decou'r- v ivw Is ( lose I Y reaI t Ied t Io c IIr-rentI resea rchI t opics Iin oilI roil

hiennr% irivolxifig the a pplir atiori of muinltiple cortrollers to one( task. For example. tite

(outtO rof a fill] 36~-ele-grec pole, reqfuires aI compilelx coritrl law li order IC) be useful

lot a111 \ta' ri allrativ is to, ris a r ollectilon of* les s-comnplex control laws, anid

af t i tit it I it IIIirri. batsed oni theI( c tr rent IstIaII t id anitI order ing of thle -otilt rol laws
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Iiiiiain" res poinses as t ralinaiirg exanipies. Learning to Irlirlic a teacher is nuch easier

1han, learrning Iron delaved reinlorceinent as is required for our formulation of the

pole-balancing task, but the work of Widrow and Smith has been very useful to us

in showing how adaptive units can be applied to control problems.

,3

Interaction between the Network and Cart-Pole Simulation

The components of the networks' input, x,[t], are scaled versions of the state

variables:

xzItl (x t + 2.4),

X2t'3( itj + 1.5),".

X311 -1- (ojtj + 0.21),0) 42

(Ott + 2).

An additioral input, xojt], with a constant value of 0.5 provides a variable threshold.

Inputs silt j and x3 tk range from 0 to 1, while x 2 [ti and x4[tJ are primarily within the q

0 I range, but can fall outside these bounds. This scaling accomplishes two 11fiirgs.

Since the learning rules involve the input terms, xi[t], as factors in the equal oiis

for updating weight values, terms with predominantly larger magnitudes will hao(.

a greater influence on learning than will other terms. To remove this bias all irrpil

terms are scaled to lie within the same range. Secondly, since the values of Ih, -,1

variables are centered at zero, if these vakues were used directly as network i,

corre(t action for positive 0 and 0 would transfer lo n'iegativc 0 Id 0 IT! \,I,

right way, i.e., the correct actior, for negative 0 ar(w! 0 1., 11, ,T~H i ,f I i. .

a(tion for positive 0 and 0 (see F'igir(, IT7,) I .

make the task rniich easier. (ir imur r ,,itr ,.. .

rietwork. Thus. scali , Ilh,, fa c a i;i+,;, ,,

hl Iirl() i -it ) i h, lii. , ,,~f CI )It, ,d, I , ... .,,
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The force exerted on the cart's center of mass at time t is given by:

J 10 nt, if aft]= 1;

I -_10 nt, if aft] = 0,

where alt] is the binary-valued output of the action network at time t. The sampling

rate of the cart-pole system's state and the rate at which control forces are applied

are the same as the basic simulation rate, i.e., 50 hz..

Results

The experiments consisted of a number of trials, each starting with the cart-pole

system set to a state chosen at random, and ending with the appearance of the failure

signal. A series of trials constitutes a run, with the first trial of a run starting with

weights initialized to random values between -0.1 and 0.1. We want the learning

system to learn to generate actions, F[tJ, that maximize the number of time steps

between occurrences of r~t = -1. The only information available to the system is

given by the sequences xi[t], i = 0,... ,4, and r~t].

One-Layer Experiments

We experimented with one-layer networks (no hidden units) to obtain perfor-

mance measures with which the performance of the two-layer system could be corn-

pared. The learning rules for the one-layer networks depend on the three parameters,

p, j3, and -y. The value of -y was fixed at 0.9, while different values of p and 13 were

crudely optimized (simulation time prevented an accurate optimization) by perform-

ing 2 runs of 500,000 steps each for approximately 25 different sets of parameter

values. Two performance measures were use(d to select the best parameters. The

number of trials, averaged over runs with one set of parameter values, provides a

rough measure of performance over the length of a run. To judge how well the so-

lution had been learned by the end of the run., the number of steps in the last trial,

or the previous trial, whichever is larger, is averaged over all runs. In this way, an
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abnormally short final trial caused by the termination of a run on the 5 00 , 00 0th step

does not enter into the average of final trial lengths.

Performance did not vary considerably for the parameter values that were tested.

The best parameter values were used to obtain a more statistically-significant result

by performing 10 runs of 500,000 steps each. The following parameter values were

used:

-- 0.05,
p 0.5,
-Y 0.9,

resulting in the number of failures for the 10 runs shown in Table 14. The average

Table 14: Results of One-Layer System

Run Trials Last Trial
1 33,977 14
2 61,888 4
3 24,795 16
4 22,717 130
5 28,324 28
6 15,218 100
7 31,594 15
8 44,903 9
9 16,115 72

10 26,402 14

number of trials for each run is approximately 30,593. In addition, the number of

steps in the last, trial is shown for each run. As explained above, this value is actually

the larger of the last trial length and the previous trial length, in case the last trial

had just begun when the run was terminated at step 500,000.

The number of steps per trial versus the number of trials is plotted in Fig. 18.

'rhe plotted values are averages over the 10 runs an(d over bins of 100 trials, i.e.,

the trials for a run are grouped into intervals of 100 trials, the number of steps per

trial is averaged for each interval, and the results are averaged over the runs. The

learning curve shows that performance improves with experience-the trial length

is approximately equal to 10 steps initially, and after 30,000 trials approximately 30
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Figure 18: Balancing Time versus Trials for One-Layer System

steps occur per trial. Even with little experience, the learning system performs better

than a fixed controller that selects pushes on the cart at random. The large variance

from trial to trial is due to the initialization of the cart-pole system to random states

upon failure. The starting state of each trial might be very similar to a failure state,

or it might be near the state of perfect balance where (x,, 0,G) (0,0,0,0). This

method of restarting after failure differs from that used in our earlier work described

in Ref. 1131, where we started the cart-pole system at state (0,0,0,0) after every

failure.

The values of the weights at the end of each run varied considerably. The best of

the 10 runs, resulting in 15,218 failures, resulted in the weights that are displayed on

the network schematic shown in Fig. 19. Positive weights are drawn as hollow circles

and negative weights as filled disks. The magnitude of a weight is proportional to

the radius of its circle, or disk. From the size of the weights we see that the output

of the evaluation network (Fig. 19a) is rather insensitive to the values of the state

variables, and the value of the output is always negative. The output of the action

network (Fig. 19,b) does depend on the system's state. A large 0 has a positive effect,

producing a push on the cart to the right., and a large value for x has a negative effect,

pushing the cart to the left.

A better understanding of what these weights mean is obtained from a graph

of the output of the networks versus the state. To display these functions of four

l .:€:. , t .. . - . - ,,: r ,:',,''.. .',,..''.-:'.-;' .-:":'-....-,'.-. -: ."." ::,"..".".'," -.-. .-._ X.1
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Figure 19: Weights Learned by One-Layer Network

4.

variables, we generated graphs of the functions' values versus 0 and 0 for nine different
pairs of x and i values. Fig. 20a and Fig. 20b contain such graphs for the evaluation

network and the action network, respectively. The insensitivity of the evaluation

network to the state is evident from the flat surfaces of its graphs. The base plane

in these graphs does not represent a value of 0; the surface is actually at a small

negative value. Obviously this function serves no useful role as an evaluation function

for states. It is for this reason that the one-layer system could not improve its

performance over 30 steps per trial. Credit is assigned by the external reinforcement

signal only to actions that push the cart-pole into a failure state in one step. These

actions may not be responsible for the failure and may even be correct.

Fig. 20b shows that the action network has learned a function with approxi-

mately the desired shape (Fig. 17b). The height above the base plane represents the

probability of generating a push to the right. The level of the base plane is at zero

probability, so for states where the surface lies near the base plane, a push to the left

is generated with high probability. The middle graph, where x - 0 and i = 0, shows

a smooth transition from a high probability of pushing left to a high probability of

pushing right as 0 and 0 go from negative to positive. This transition is shifted in
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the direction of negative 0 for negative values of x and in the positive 0 direction

for positive values of .. It relating these graphs to those for the two-layer networks,

we will see that this relationship between the transition line and the value of x is

the opposite of what is needed to balance the pole while avoiding collisions with the

track boundaries.

Results of Two-Layer Experiments

Two-layer networks were formed by adding 5 hidden units to each of the evalua-

tion and action networks. The learning methods for the two-layer networks depend

on seven parameters: j3, 3 h, flm, p, Ph, p,,, and -1. As was done for the one-layer

system, sets of l)ararnel,er values (approximately 10) were each tested in 5 runs of

500,000 steps. Performance varied significantly for small changes in parameter values

was not varied). The values giving the best performance are:

/3 0.2,

h- 0.2,
0,= 0,
p 0.5,
Ph 0.5.
pM 0, 

%

0.9.

Notice that /0,, p,- 0. Results suggest that nonzero momentum in the learning

rules for the hidden units hinders performance on this task. These values were used

for 10 runs of 500,000 steps, resulting in the total number of trials and final trial

lengths shown in Table 15. The average number of trials over al; runs is approxi-

mately 10,983. compared to 30,593 trials for the one-layer system. Even after much

learning experience, a nonzero probability of selecting the wrong action exists for

every state, as suggested by the relatively small number of steps in the last trials of

IRns 1 and 10.

The learning curve for the two-layer systeimi is show ii in Fig. 21. The large, stair-

likej~mrps in the curve are due to the way in which perfO irmiance is averaged over rims,

dlescribed as follows. The axis for the nitirnber of trials is labeled from 0 to 30,M()O

trials. so runs for which less than 30,000 trials occ urred were handled in a special
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Table 15: Results of Two-Layer System

Run Trials Last Trial
1 10,123 88
2 7,790 2,011
3 5,814 14,535

4 8,466 5,753

5 7,212 28,407
6 23,539 20,328

7 19,401 14,302

8 8,804 4,674

9 9,756 20,889
10 9,645 154

1 21000

10000
2 LIYERS

8000
T6000

L[ENGIH 
4

4000

2000

0 10000 20000 30000
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Figure 21: Balancing Time versus Trials for Two-Layer System
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way. The learning curve for such a run is extended to 30,000 trials by assigning

to trials that didn't occur a value equal to the larger of a) the number of steps in

the last trial, and b) the number of steps in the previous trial. In this way, a very

short final trial is disregarded and the length of the previous trial is used to extend

the curve. The large jumps in the curve occur when the last trial of a particular

run is very long and the run is terminated when 500,000 steps have elapsed. If the

experiments were to be run for more steps, the final performance level would have

been higher. This large number of steps is then averaged into the performance curve

from that trial through trial 30,000. For example, the jump at trial 20,000 is due to

the last trial of run 7, which was approximately 14,000 steps in length. All 10 runs

were terminated before 30,000 trials elapsed, resulting in a final performance level

of about, 11,000 steps per trial. Recall that, the final level achieved by the one-layer

systemn was only about 30 steps per trial.

The large number of weights, 35 in each network, makes it difficult to interpret

the solutions found directly from the weight values. The relative magnitudes and

signs of the weights are shown in the network schematics of Fig. 22. Figure 22a

shows the final weight values for the evaluation network of run 6, and Fig. 22b shows

the weights for the action network. Units 1, 2, 4 and 5 of the evaluation network are

similar, having all positive weights. (In the figure, the small size of the corresponding

circles make them appear to be filled-in disks.) Unit 3's weights differ, and it is also

distinguished by having a large positive connection to the output unit. It appears

that only unit, 3 has developed a new feature that is useful for the prediction of

failure.

The function implemented by the evaluation network appears in Fig. 23a. The

height, of the surface ranges from approximately 1.5 and 0.1. Its shape is just what

is needed for the action network to receive an immediate evaluation of an action. At.

the center of each base plane, representing the (0,0) sibspace, the cart-pole is in a

state where the pole is vertical and not falling. The evaluation has its highest. value

for these states, therefore forming an evaluation function that, decreases as the cart.-

pole system moves away from this state. Any action that takes the system toward

either the positive or negative (0, ) corner results in a negative evaluation change,

9 ) 3" "
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i.e., a negative i. The tilt of the surface as x and i change is also correct. Positive

(0,i) states are more likely to result in failure when the cart is heading toward the

right border of the track, where x and x are positive. Similarly, negative (0, 0) states

are likely to precede failure when the cart is heading to the left border, where x and

:i are negative.

Before discussing the features learned by the hidden units, let us look at the

solution learned by the action network. From Fig. 22b we see that again hidden

unit 3 differs from the other units in its weight values: 0 and d have large positive

effects on unit 3's output, and x and i have smaller positive and negative effects,

respectively. Unit 3 is connected positively to the output unit, whereas the other

units are connected negatively. The fact that the unit 3s of both networks play

significant roles is fortuitous; for other runs useful features are learned by different

sets of units.

These hidden-unit influences in combination with the direct effects of the net-

work's input on the output unit result in the action function displayed in Fig. 23b.

Two observations can be made about the contrast between this action function and

that learned by the one-layer network (Fig. 20b). First, the transition from a high

probability of pushing left to a high probability of pushing right is much quicker, as 0

and 0 vary. This probability function implements a much more deterministic control

than does that of the one-layer network. )ue to the good evaluation function learned

by the evaliation network, actions near the transition litii are credited or bla ired

appropriately. A second observation is that the shift in the transition line as x and

x vary is in the right, direction. The pole should be balanced slightly to the right of

vertical (positive 0) when the cart is near the left track boundary (negative x), and
to the left of vertical when near the righl hound(ary, resuiting in anet action over

several steps of a push towards the center of tlie tra(ck. ' o see that, this is itideed

what happens, note that the point at w iih IhI, te pole is hal a riced is roughly indica ted

bYI lie location of the Iransition line. This line shifts toward positive 0 when .r is

negative, andi( toward negative 0 whenl .r is posil iV.

Now we continie with the atnalysis of the hidden liills. IVnit :3 of both inetworks ac-

(1ilired significant effects oi the respective outpulit un1its. The fiinctions iniplennei ed
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by their weights can be visualized by graphing theni as funcions of 0 and 0 for dif-

ferent values of x and -, as done for the functions inipleriented by an entire network.

Figure 24a shows these graphs for unit 3 of the evaluation network and Fig. 241)

shows the graphs for unit 3 of the action network. The outputs of these units varies

between 0 and 1. Very similar functions were learned by the two units. They both

produce a fairly constant value of 1 for most states, with lower values approaching

0 when 0 and 0 become more negative. However, the contribution of unit 3 of the

action network is very srnall-its output weight is small in comparison to the larger

weights on the output unit, unit 6. This is not surprising, since the desired mapping

from state to action can be implemented with a single unit. In fact, setting unit 3's

output weight to 0 and adding its magnitude to unit, 6's constant-input weight causes

little change in the state-to-action mapping.

To test the significance of the new feature learned by unit 3 of the action network,

further experiments were run with a one-layer action network and the two-layer

evaluation network. The one-layer action network did learn the desired function,

tut it, learned it more slowly than did the two-layer action network. Perhaps the

feature learned by unit 3 facilitated the learning of a good action function, and

with additional experience the output unit developed the appropriate weights for its

state-variable inputs. This must be verified by observing the evolution of the action

function both as a function of the state variables and as a function of the hidden

units' outputs.

The role of unit. 3 in the evaluation network is niuch riore important. The hill-

shaped evaluation surface cannot. be implemented without the hidden units, as shown

I. the results of the single-layer experiments. Through its positively-weighted con-

nection to the output unit, unit, 3 generates the positive gradient in the evaluation

surface as one moves from negative OandO to 0 0 0). At iis point. lhe gradi(lnt

in the response of unit 3 eff'ectively l)ecories zero, arld the out put unit's negative

weiglhts from its state-variable in)uts providle tlie inegative slope as one moves ill the

positive 0.0 direct ion.
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Conclusion

It is immediately apparent from the learning curves of Figs. 18 and 21 that the

two-layer learning system far outperformed the one-layer learning system. New fea-

tures are required for representing a good evaluation function and, although they are

not required for representing a good action function, new features facilitate learning

the action function. Thus, the synthesis of the error back-propagation scheme of

Rumelhart, Hinton, and Williams [441 and reinforcement-learning techniques pro-

duced an adaptive network that successfully deals with delayed reinforcement and

the initial lack of an adequate representation. The learning method resulted in a

controller that balanced the pole for 9 minutes (simulated time-28,000 steps at 0.02

seconds per step) and probably would have balanced it longer if the experiments had

been run for a greater number of steps.

Comparison with the single-layer system of Barto et al. 1131 is made difficult

by the differences in how the experiments were conducted. The difference with the

greatest effect is that in the experiments described in Ref. 1131, the cart-pole system

was always restarted in the same state, (x,i,O,6) = (0,0,0,0), following failure,

whereas here the start state was selected randomly. Average performance is kept

low by start states that are very close to failure states. Disregarding this difference, N

comparisons show that the previous system achieved a higher average trial length

after 500,000 steps, 80,000 steps per trial, while the experiments here resulted in

approximately 30,000 steps per trial. This difference reflects the fact that the two-

layer system learned good solutions later in the runs than did the system of Ref. 113J.

We conclude that a considerable number of steps are required for the hidden units %

to learn the necessary features. It is not until good features are learned that a useful

evaluation function can be formed, and intil the evaluation function is learned, the

action network cannot improve beyond a low level of performance.
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SECTION 6

LEARNING TO SOLVE A PUZZLE

Described in this section are experiments in applying a strategy learning network

as described in Section 5 to the Tower of Hanoi puzzle. Because the state-space

concept underlying the learning system for the pole-balancing problem also applies

to problem-solving tasks that have been studied by Artificial Intelligence (AT) re-

searchers, it is possible to use the same kind of learning methods for both types of

problems. Applying this kind of learning method to a problem like the Tower of Hanoi

puzzle is very different from applying one of the more knowledge-intensive learning

methods of Al, and the results may not really be comparable. The knowledge-

intensive approach is probably closer to how a human might learn to solve a puzzle

like this, whereas the network method seems more similar to the acquisition of a

motor-skill. The primary purpose in applying the network method to this puzzle

was to provide a good test of the multilayer strategy learning network. Nevertheless,

we still make some comparisons of methodology with Langley's [31] adaptive produc-

tion system, called SAGE, which learns heuristics that improve the performance of

an initial weak search strategy. To facilitate this comparison, we selected the three-

disk Tower of Hanoi puzzle for our experiments, one of the puzzles that Langley used

to demonstrate SAGE.

The Tower of Hanoi Puzzle

The Tower of Hanoi puzzle is popular for research in problem-solving becaulse Ilh,

number of states is small, but the puzzle is still difficult to solve. lluman !wlralegies

for solving the Tower of Hanoi have been analyzed [321 and modeled [5]. Arnarel 12]

100

.... .. ... 'r L :: "7 'r ." : ; <'""" .'?.%", ;."-""" ",'. ".: :.. " .> }"'- '". "" ; "' ,'"; -



used the Tower of Hanoi puzzle as a vehicle for studying shifts of representations to

forms of increasing efficiency for the discovery of a problem's solution.

The state of the Tower of Hanoi puzzle can be represented in a number of ways. A

common representation is one used by Nilsson [381, in which the pegs are numbered

1, 2, and 3, and the disks are labeled A, B, and C, where disk A is the smallest disk

and C is the largest. A particular state is represented by the peg numbers where

each disk resides, listed for disk C, then disk B and disk A. As pictured in Fig. 25,

the initial state of the puzzle is (111), and the objective is to achieve state (333) by

applying a sequence of actions. The legal actions are movements of the top-most

Initial State Goal State

(iii) (333)

Figure 25: Initial and Goal States of the Tower of Hanoi Puzzle

disk from one peg to another, with the restriction that a disk may never be placed

upon a smaller disk. An action may be represented as a source peg and destination

peg, so the transformation of state (111) to state (112) is performed by the action of

moving the top-most (smallest) disk from peg I to peg 2, represented by action 1-2.

For the three-peg puzzle, six actions are needed: 1-2, 1-3, 2-1, 2-3, 3-1, and 3-2.

The states of the puzzle plus the transitions between the states corresponding

to the legal actions form the puzzle's state transition graph shown in Fig. 26. To

evaluate ability to improve search strategies on the Tower of Hanoi puzzle, we measure

the number of actions in the solution path, with the minimum length path being the

objective. For the three-disk puzzle, the minimum-length solution path has seven

actions and is the straight path down the right side of the state transition graph.

Finding the shortest solution path is confounded by the large number of possible

solution paths and by the presence of loops in the state transition graph.

The Tower of Hanoi puzzle is a good test of the multilayer network described in

Section 5 for the following reason. A useful evaluation function must map states to
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Initial State

// \3-1-

* (333)

p/

2) _ /. 13(C210-( 33)

Goal State

Figure 26: State Transition Graph for Three-Disk Tower of Hanoi Puzzle

(Adapted from Nilsson 1381)
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values that indicate the states' closeness to the goal node. For the state representation

described above, this mapping cannot be formed by a linear threshold unit, or other

unit based on a weighted sum of its inputs. For the experiments described in this

section the representation was simplified somewhat, as described later, to reduce the

time required to learn the solution. The fact that new features are still required is

shown by the inability of a one-layer system to learn the minimal solution path.

The formation of useful search heuristics for the Tower of Hanoi puzzle is less

complicated. A small set of rather simple heuristics can constrain the search to

exactly the correct actions [5,311. For example, many alternatives are removed by

a rule stating that it is undesirable to apply the inverse of an action. The action

network used to learn search heuristics in our experiments is single-layered, and did

successfully learn the minimal solution path. However, it did not do this by learning

the simple set of heuristics. We discuss this point later when we compare the network

method to Langley's production system 1311.

Representation of States and Actions

As mentioned above, the state representation consisting of three peg numbers

corresponding to each disk results in a very complex mapping from states to eval-

uations. Although in principle the networks used here should be able to learn this

Mapping, we wished to simplify the task somewhat to reduce the simulation time

required for the experiments. The state representation used in the following experi-

ments is composed of nine binary digits. The first three digits encode Disk C's peg

number, the second encode Disk B's peg, and the third set of three digits encode

Disk A's peg. Peg I is epcoded as 100, Peg 2 as 010, and Peg 3 as 001. For example,

state (111) is represented as (100 100 100), and state (123) is represented as (100

010 001). We also use a constant input of value 0.5 so the threshold can be varied.
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Specifically, the input terms, x,[tJ, for the state at time t are given by:

z1tJ= 0.5,

zi~tI = 1, if Disk C is on Peg 1 at time t;
1 0, otherwise,

X2 1t] = 1, if Disk C is on Peg 2 at time t;
0 0, otherwise,

Xs1t] { 1, if Disk C is on Peg 3 at time t;
1 0, otherwise,

and similarly for X4 [t], X5 [tJ, x6 1t] and Disk B, and for x 7 [t], x8lt], xg[t] and Disk A.

After the goal state is reached and at the start of every run, the state is set to (111),

so the input becomes (100 100 100) disregarding the constant input.

Both the evaluation network and the action network receive the representation of

the state. This completely defines the input to the evaluation network, but additional

terms are presented to the action network. We wished to investigate the ability of

the network to learn search heuristics similar to the rules developed by Langley's

SAGE system. As mentioned above, one such rule is to never apply the inverse of

the previous action. In order to learn such an association between the previous action

and the current action, the previous action must be provided as input to the action

network. Another rule learned by SAGE is to not apply an action that returns the

puzzle to a state that was visited two steps ago. This avoids the three-step loops

around the smallest triangles in the state transition graph (Fig. 26). Rather than

providing past states as input, we chose to present the action taken two-steps ago, in

addition to the previous action. The previous two actions along with the current state

provide enough information to identify the state visited two steps ago, although our

results suggest that hidden units are needed to overcome the linearity of the output

unit, perhaps by forming a conjunction of the previous two actions. This possibility

was not investigated.

The output of the action network represents an action by a six-component, stan-

dard unit basis vector, where the components correspond to actions 1-2, 1-3, 2-1, 2-3,

3-1, and 3-2, respectively; Action 1-2 is encoded as (100000), Action 1-3 is (010000),

and so on.
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Letting the action at time t be denoted by (a, ltI,a 2 ItI,. .,a1ItI), the input terms

that the action network receives in addition to those also received by the evaluation

network are:

xoltl a [t - 21,

15[t] = a, It - 21,

and
n X, t , aolt- 11,

X21 tJ = a, t - 1].

Reinforcement

The most significant reinforcement occurs whenever the goal state is entered. A

reinforcement value, labeled rit], of 1 is presented for the time step at which the

goal state (333) is entered. Recall that for the pole-balancing task, the goal is to

avoid certain states for as long as possible, and riti was set to -1 upon entering

those states. The Tower of Hanoi task could be solved (by a two-layer network) with

only this final reinforcement, but two additional reinforcements are provided for the

following reasons. If the action probabilities converge too quickly, due to a large value

for the parameter p, a solution path of longer than minimum length will probably

be learned. For example, say the learned solution path is of length eight, one step

longer than the minimum number, due to the incorrect Action 1-2 being taken from

the starting state (1ll). If this action is always chosen over the correct Action 1-3,

then an evaluation function tailored to this particular solution path will be learned.

To avoid this, a second reinforcement signal is presented having a constant value

of 0.1 for all non-goal states. In this way, a shorter solution path results in a

higher total reinforcement than does a longer solution path. This parallels the role

of Langley's heuristic for judging shorter paths between two states as more desirable.

The third reinforcement is a value of I presented whenever a two-step loop

occurs, i.e., when the current action reverses the effect, of the previous action. The
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random search initially followed by the action network results in many two-step

loops (and longer loops), thus many steps elapse before the goal is discovered. The

large negative reinforcement results in a significant decrease in the probability of

selecting the action that is the inverse of the previous action. As shown later, this

must be learned for each action-the concept of inverse actions is not known to

the system, so generalizing across actions is not possible. This reinforcement is

not presented to the evaluation network, enabling a large negative reinforcement to

be used without decreasing the evaluation for the corresponding state. The large

negative reinforcement is not meant to indicate that a state is bad, only that the

action was bad. The selection of the inverse action should be discouraged, but not

necessarily the visitation of the state.

This third type of reinforcement is not necessary for the system to learn the puz-

zle's solution. It was included for two reasons. First, it does significantly reduce the

number of search steps during the early stages of learning. Second, it demonstrates

how domain knowledge, such as the undesirability of one-step loops, can be added

by altering the reinforcement function.

The value of rit] includes just the first two kinds of reinforcement, while the one-

step loop penalty is given by roop0 [tJ to distinguish between the reinforcements that

are and are not presented to the evaluation network:

rft] 1.0, if state at time t is (333);{ -0.1, otherwise.

-1.0, if state at t equals state at t - 2;rloopiti = 0.0, otherwise.

The learning methods are very similar to those used for the pole-balancing task,

with small modifications to the network structure and the learning rules. The only

modification to the learning rules used for the pole-balancing task involves the equa-

tion for updating the weights of the action network. The reinforcement signal for

one-step loops, ro..p, is added as follows:

wijftl = wjj[t - 11 + p(roop[tJ + ,{tI) (a41 - If - E{aft - l1w; }) xi[t 11.
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Results of One-Layer Experiments

As was done for the pole-balancing experiments, the performance of a system

with a one-layer evaluation network was compared to the performance of a system

with a two-layer evaluation network. The systems with the one and two-layer eval-

uation networks are shown in Figs. 28 and 31 respectively. As in the pole-balancing

experiments, two performance measures were used to select the best values for the

parameters of the weight-update equations. A measure of cumulative performance

throughout a run is provided by the number of trials (achievements of the goal state)

averaged over all runs for a given set of parameter values. The second performance

measure is the average over all runs of the number of steps in the last trial, or the

preceding trial, whichever is smaller.

The final performance level averaged over 5 runs of 50,000 steps each was used

to select the best of approximately 20 sets of parameter values, differing in p and/3,

leaving -y 0.9. The best of these values are:

-- 0.100,
p = 0.01,
y= 0.9.

These values were used in a longer experiment of 10 runs of 100,000 steps each,

resulting in the number of trials and last trial lengths shown in Table 16. The

Table 16: Results of One-Layer System

Run Trials Last Trial
1 2,911 28
2 2,877 23
3 2,884 19
4 2,893 65
5 2,686 651
6 2,928 2.5

7 4,481 9
8 2,902 25

9 3,951 38
10 2,940 41
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average number of trials is 3,145. From the lengths of the last trial for each run

we see that the minimal solution path was not learned in any run-all trials are

longer than seven steps. Run 7 resulted in a last trial of length nine, but it wasn't

determined whether the path taken on the final trial would be reliably followed for

subsequent trials. The low number of total trials for Run 7 indicates that paths

longer than nine steps are likely.

The trial length versus the number of trials is plotted in Fig. 27, showing how the

length of the solution path varies with experience. The horizontal dotted line in the

figure is at a trial length of seven, the length of the minimal solution path. The values

plotted are averages over the 10 runs and over bins of 100 trials. The length of the

50
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Figure 27: Length of Solution Path versus Trials for One-Layer System

solution path decreases quickly from an average of 50 steps to approximately 30 steps,

but performance is never much better than 30 steps per solution. A non-learning

strategy of random action selection was found to result in an average of 140 steps

per solution path, so the one-layer system significantly improves the initial random

search strategy. Note that all runs were terminated before 5,000 trials elapsed--the

learning curve was extended as was done for the pole-balancing experiments. The

curve might have continued to decrease slightly if the one-layer experiments had been

run longer.

The weights learned by the end of Run 7 are shown in Fig. 28. The evaluation

network has acquired only three weights of significant magnitude, and they are all
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Figure 28: Weights Learned by One-Layer Network
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associated with the encoding of Disk C's peg. The weights' signs result in high eval-

uations for states with Disk C on Peg 3, the goal peg, and low evaluations for other

states. The weights of the action network are more difficult to interpret. Let us post-

pone the discussion of these weights until the results of the subsequent experiments

with a two-layer evaluation network are presented.

We can visualize the learned evaluation function by drawing at each node in the

state graph a circle with radius proportional to the state's evaluation. The evaluation

function learned in Run 7 is shown in this manner in Fig. 29. As determined from the

Initial State

Goal State

Figure 29: Evaluation Function Learned by One-Layer Network

signs of the weights, the evaluation function indeed produces high values for states

for which Disk C is on Peg 3, which are the states in the large, lower right triangle

of the state transition graph. There is very little additional information provided

by this evaluation function. We can describe this function as a credit-assignment

heuristic, viz., states with Disk C on Peg 3 are desirable.

Results of Two-Layer Experiments

Our two-layer experiments involved a two-layer evaluation network with 10 hidden

units, but with the same one-layer action network as above. We suspected that with

the delayed actions as input terms, the one-laver action network could find weight

values that result in the minimal solution path. This is verified by the results of the

experiments.
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Approximately 20 sets of parameter values were tested by performing 5 runs of

50,000 steps each. The values resulting in the best performance are:

S-0.1

Oh = 2.0
0, = 0.9

p = 0.02
-1 = 0.9

Momentum was discovered to facilitate learning in this case, though interestingly

it retarded learning for the pole-balancing task. Applying these values in 10 runs

of 100,000 steps produced the results in Table 17. For all but one run the length

Table 17: Results of Two-Layer System

Run Trials Last Trial
1 11,809 7
2 11,418 22
3 11,584 7
4 11,559 7
5 11,967 7
6 12,093 7
7 11,856 7
8 11,636 7
9 12,432 7

10 12,041 7

of the last trial was seven steps, equal to the length of the minimal solution path.

h'lhe average number of trials is 11,839, roughly 10 steps per trial averaged over the

100,000 steps. So in 9 out of 10 runs the minimal solution path was learned, and

judging from the number of trials in Run 2, the minimal solution path was probably

reliably followed in that run, also. There is always a nonzero probability of trying

an alternative path, which could explain the last, trial of Run 2.

The learning curve of Fig. 30 shows that the two-layer system quickly learned

solution paths averaging about 15 steps in length, and gradually reduced this to the

ininirrtlrli of -even steps. The learning curve for the one-layer system is superimposed

on this graph to highlight the performance increase resulting from the hidden units

in the evaluation network .
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Figure 30: Length of Solution Path versus Trials for Two-Layer System

The weights learned during Run 1 are displayed in Fig. 31. First we focus on the

weights of the evaluation network. The hidden-unit weights are more varied than they

were for the pole-balancing task. Most of the units appear to have acquired useful

new features. Units 1, 2, 5, 6, and 9 have weights of large magnitude, though they

are by no means the only units of significance. As is usually the case, it is difficult to

comprehend what role the units play by studying individual weight values. However,

by encoding their output values by the size of circles on the state transition graph,

as done earlier for the evaluation function itself, we can learn exactly what the new

features are and can gain some intuitions about their contributions to the overall

evaluation function. First, we analyze the evaluation function learned in Run 1.

The value of the evaluation function learned in Run 1 is represented in Fig. 32.

In comparing two states, the state with the larger circle would be evaluated as being

more desirable. Notice that a consistent progression from small circles to larger

circles results as one moves from any state toward the goal state by the shortest

route, thus this evaluation function is extremely informative. Any search strategy,

in addition to the probabilistic method used to generate actions, would benefit from

this evaluation function.

Now let us see how this evaluation function is constructed. Figure 33 shows the

output functions for the 10 hidden units, i.e., the features acquired during learning.

The radii of the circles for a feature are calculated by scaling the 27 output values for
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Feature I Feature 2 Feature 3 Feature 4

1.0 0.4 0.2 0.2

Feature 5 Feature 6 Feature 7 Feature 8
0.3 -0.5 0.1 0.1

Feature 9 Feature 10
- 1.1 -0.3

Figure 33: New Features Learned by Two-Layer Evaluation Network
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the corresponding hidden unit to be between 0 and a maximum radius. So circles of

extreme size do not necessarily indicate that the output is 0 or 1, but only that the

output is a minimum or maximum of the values for that unit. We will not attempt

to explain every feature, but will consider the contributions of several. We refer to a

feature by the corresponding unit number, such as Feature 1 for the function learned

by Unit 1.

Feature 1 has a positive effect on the evaluation. Figure 33 shows that Feature 1

roughly represents three states near the bottom of the graph just outside of the

lower right triangular region where Disk C is on the goal peg. Feature 1 boosts the

evaluation of these states, thus directing a search from states in the lower left part

of the graph toward the state through which the search must pass to get Disk 3 onto

the goal peg. This part of the graph is a "bottleneck", and similar bottlenecks exist

at the other two junctions of the three largest triangles. The values of the evaluation

function are critical near these bottlenecks-the choice of an incorrect action can

result in many additional moves to return to the bottleneck to try a different action.

Features 1 and 2 seem to be particularly helpful in evaluating the lower bottleneck

and the bottleneck on the right, respectively.

Feature 9 has a very strong negative influence on the evaluation function. The

value of Feature 9 is high for all states except the first four states on the minimal

solution path, plus one nearby state. The evaluations of the first states in the solution

path are raised in relation to the evaluations of the other states, thus Feature 9's

role is to make the first few states of the minimal solution path more desirable than

states next to the path.

Feature 10 also has a negative effect. Mainly the evaluations of states along and

next to the minimal solution path are lowered by Feature 10, with the exception of

the very last state before the goal state. It appears that, this feature guarantees that

the difference in state evaluations is positive as the last state is reached.

Other features also have important contributions. Perhaps a good way to under-

stand their roles is to observe changes in the evaluation function as each feature is

removed and then restored. From the small amount of analysis done here, it is clear

that a variety of new features were developed for this task. The initial representation
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of the state is far from ideal for forming the evaluation function, but the combination

of the error back-propagation algorithm with Sutton's AHC algorithm successfully

learned sufficient new features for the state representation.

We now discuss the action function that was learned. When the two-layer eval-

uation network was used, the single-layer action network was able to constrain the

search to the minimal solution path. Figure 31b shows that this was accomplished

mainly through the development of weight values for the previous-step's action and

for the current state. The two-step delayed action did not acquire a significant effect

on the selection of the current action.

The large negative weights on the previous action components stand out. Note

that there is one large negative weight for each component. These weights have the

same effect as did Langley's heuristic for preventing the application of the inverse of

the previous action. By tracing the delayed output of each unit to the corresponding

negative weight, we find that the negative weights are on the intersections of actions

and their inverses. In other words, Action 1-2, or a,{t - 1], has a negative connection

to Action 2-1, or a3[tl, Action 1-3 is negatively connected to 3-1, etc. A negative

weight lowers the probability that the corresponding action will be generated, and

these weights are of such high magnitudes that the probability of the previous-action's

inverse is effectively zero.

There are other weights associated with the previous-action inputs that are

positive-valued. Through these weights, the generation of an action on one step

results in a high probability for a particular action on the next step, thus forming

two-step sequences. For example, Action 3-2 will be followed by Action 1-3. Referring

back to Fig. 26, this two-step sequence can change the puzzle from the third state

on the minimal solution path to the fifth state. Other sequences exist for other two-

step transitions along the minimal solution path, and for moving onto the minimal

solution path.

The weights on the delayed action components are not, sufficient in thenmtselves

for limiting actions to movement along the minimal solution path. The current state

must at least play a role in selecting the first action. Consider the values of the input

terms when in the start, state (111). All of the delayed-output terms are 0, since
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this is the first step in the trial. All other input terms are 0, except for the first

term of each of the three triples encoding the state. The first of these is connected

positively to Unit 2 and negatively to the rest, except for Unit 6, whose action is not

legal for the start state. The other two non-zero input terms have small or negative

connections to units having legal actions, so Unit 2 will be the unit to respond to the

start state. Unit 2 represents Action 1-3, the first action along the minimal solution

path. Langley's system was not required to learn the correct action for the initial

state, because both states (333) and (222) were goal states-two minimal solution

paths exist, and both actions from the initial state (111) move along one of the paths.

Transfer of Learning

It is desirable for a learning system to be able to improve its performance on a

single task, called improvement, and also to improve performance over a set of tasks,

called transfer. Langley 131] lists the following four kinds of transfer between tasks:

1. Transfer to more complex versions of the task.

2. Transfer to different initial states or goal states.

3. Transfer to tasks of similar complexity with different state-space structures.

4. Transfer to tasks of little similarity, perhaps requiring some of the same actions

(referred to as learning by analogy).

The ability of the network of this chapter to perform the first two kinds of transfer

are discussed below.

Langley showed that the heuristics learned by SAGE for solving the three-disk

Tower of Hanoi puzzle were directly applicable to the four-disk and the five-disk

versions of this puzzle, solving these more complex puzzles with no additional search.

The representation of the rules' conditions and actions made this possible: disk, peg,

and action names are generalized to variables, therefore the rules could be applied

to the new task having an additional disk, since its name could be bound to a

variable. In addition, the concept of an action's inverse is included in the system's
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representation, enabling a situation where an action is followed by its inverse to result

in a rule discouraging the use of the inverse of any action.

The connectionist representation used here does not permit such generalizations,

although some learned knowledge is transferred to Tower of Hanoi puzzles having

more disks. If the input representation of the networks is augmented by adding

components to encode the position of the fourth disk, then some of the resulting

action heuristics are wrong and some appropriately transferred. The negative weights

preventing the selection of an action that is the inverse of the previous action are

still very helpful for the four-disk puzzle. Some of the two-step sequences might also

be applicable. To learn the four-disk solution, the evaluation function must also be

adjusted, since it is very tailored to the three-disk version. Therefore, the solution of

the four-disk puzzle would require additional learning, although probably less than

would be needed by a naive system that has no experience with the three-disk puzzle.

The second form of transfer concerns different initial and goal states. Langley's

system was not capable of transferring to Tower of Hanoi puzzles with different initial

and goal states, but he has shown on another task how the inclusion in the system

of a representation of the goal can lead to strategies that are goal-dependent. The

action function learned by our system might generalize correctly to different initial

states, particularly those close to the minimal solution path, but this was not tested.

The evaluation function does generalize correctly to different initial states. As shown

in Fig. 32, the evaluations increase for states closer to the goal, whether or not the

states are on the minimal solution path. Therefore, learning would be facilitated if

the initial state were changed from its original position after the evaluation function

had been learned.

As for different goal states, both action and evaluation networks have learned

inappropriate functions. In fact, generalization to a puzzl, witlh a different goal state

would retard the learning of a new solution path. As Langley suggested, to learn

evaluation and action functions for different goals, some representation of the goal

must be included as input to the networks. This cold be1( done very siniply by

duplicating the terms of the current state represet ati(m\ and using them to encode

the goal state. I)ifferent evaluation and action functons would then be learned for

I i8



different goals, though a multilayer action network would probably be required.

Conclusion

In Section 5, a connectionist learning method was applied to a task having a large

search space, delayed reinforcement, and requiring non-trivial (nonlinear) combina-

tions of features. In this section, essentially the same method was applied to a task

with a small search space, requiring non-trivial feature combinations, and for which

reinforcement is delayed and infrequent. We have shown how some of the credit-

assignment techniques that have been developed for learning rules while doing can

be incorporated into a reinforcement scheme.

The adaptive network was able to learn the solution to the three-disk Tower of

Hanoi puzzle. The time (amount of experience) required to solve it is much greater

than that required by Langley's 1311 adaptive production system, but fewer assump-

tions are incorporated into the design of the connectionist learning method. A very

limited input representation is used, consisting only of the current state and the

two-previous actions. Comparisons of this connectionist approach with symbolic

approaches highlights some of the limitations of connectionist representations. For

example, the connectionist system used for the Tower of Hanoi experiments is not ca-

pable of doing variable binding in the way that Langley's [311 production system can.

Langley's system was able to learn a single symbolic rule that uses action variables to

prohibit actions that are the inverses of the previous actions. Langley's production

system was able to learn such rules using built-in knowledge of what "inverse" means

and how particular actions and states can be generalized to variables. In our imple-

mentation, actions are not generalized to variables; distinct negative weights from

each action to its inverse had to be learned. Touretzkv and Ilinton discuss issues of

this kind and present some connectionist approaches to these problems 154,53 .
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SECTION 7

SUMMARY AND CONCLUSIONS

The major focus of the research reported here was the study of layered networks

for learning nonlinear associative mappings. We continued our approach to this

problem based on the cooperative interaction of self-interested, goal-seeking network

components, but we also looked at other approaches. The major results of this

research are presented in this report and summarized here in this section. I also

include discussion of how the learning methods we have studied relate to existing

methods and what avenues appear promising for future research.

The Associative Reward-Penalty Unit

The Associative Reward-Penalty Unit, or AR-p Unit, is a neuron-like adaptive

unit that implements a learning rule which is a synthesis of two types of learning

methods that have usually been studied separately. Under one set of restrictions, tile

AR-p learning rule specializes to a stochastic learning automaton algorithm that has

been widely studied in the past; under a different set of restrictions, the AR p rule

specializes to a supervised pattern classification method that has also been widely

studied (the perceptron learning rule). Consequently, the AR - r rule falls in the inter-

section of important classes of learning methods. Although the "selective bootstrap

learning" rule of Widrow et al. 1581 is a very close relative of the An-p rule, we beleive

the AR_ p rule is novel. The recent pattern classification method of Thathachar and

Sastry 1511 utilizes stochastic learning automaton methods but is not directed toward

solving the same kind of tasks as is the AR p method.

In Section 2 1 discussed what is to be gained by the kind of synthesis represented
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by the AR-P rule. Units employing this rule do not need explicit instructional infor-

mation in order to learn associative mappings and, in fact, are able to learn under

extreme uncertainty. This ability has implications for enriching the type of game

and team problems that can be studied (as illustrated by our layered-network simu-

lations of Section 3) and for applications to control problems (as illustrated by our

pole-balancing and Tower of Hanoi examples of Sections 5 and 6).

Work that remains to be done regarding the theory of single AR-P units concerns

their behavior in problems in which the input vectors are not linearly independent.

The AR-P convergence theorem applies only to the case of linearly independent input

vectors, but the utility of the AR-p rule is not restricted to this case, and it is

likely that the convergence results can be extended. The asymptotic behavior of

a single AR-P unit needs to be examined in cases in which the input vectors are

linearly separable and not linearly separable. Preliminary simulations suggest that

AR - p units maximize reward probability in these cases, which is not what the usual

methods do. This behavior could have interesting implications that we have not

yet, explored. We placed higher priority on studying the cooperative behavior of

interconnected AR-P units. Although this research direction makes it more difficult

to obtain mathematical results, we pursued it because of our basic interest in studying
collective behavior.

Cooperative Behavior of AR-P Units

In the same way that the AR-P learning rule can be viewed either in terms of

adaptive pattern classification or in terms of stochastic learning automata, networks

of Ap F, units can be viewed either in terms of connectionist adaptive networks or

in terms of the collective behavior of stochastic learning automata. In Section 3,

I discussed layered networks of AR p units from both perspectives. The examples

described in that section show how these networks can learn to solve nonlinear dis-

crimination problems. Networks of AR P units, or layered teams of AR - p units. are

therefore examples of systems that can adaptively develop representations in order

to form nonlinear associative mappings.
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The method for doing this that is most closely related to AR-P networks is the

error back-propagation method of Rumelhart, Hinton, and Williams [441, which was

presented at about the same time that we first published results of AR-p network sim-

ulations. Since then, Williams [61,621 has shown that there is a strong relationship

between these methods: They are both gradient following procedures. Whereas gra-

dient information is directly computed via the backward pass in the back-propagation

method, in AR-p networks it is estimated via the sampling procedure realized by the

stochastic units.

It is therefore not surprising that the back-propagation method is faster than

the AR-P method (confirmed by our comparative studies summarized next). So

what advantages might the AR-P method have over back-propagation? First, the

AR-P method provides a link to a wide body of literature (the learning automata lit-

erature) that has not yet been explored by connectionists. I think that a number of

interesting consequences may arise from this connection. Second, the AR-p method

does not require the complex back-propagation computation. Consequently, it

may have some advantages for implementation by parallel hardware and might be

more plausible than back-propagation from a biological perspective. Third, the

AR p method might be extensible to the case of recurrent networks with asymmet-

ric connection matrices in ways that back-propagation is not (some recent results by

Williams 161,621 are relevant in this regard). Additional research is needed to explore

these possibilities.

One of the most important questions regarding network learning methods is how

well they scale up to larger, more difficult problems. The research covered by this

report does not address this question. What we have learned about the AR-p network

method, however, suggests that a straightforward scaling up of the method will not

be effective. By a straightforward scaling up of the method I mean that the single

reinforcement signal is just broadcast. to a larger number of AR-p units. As in the

case of the error back-propagation method, as networks get, larger, the number of

possible solutions can increase so that learning can occur faster for bigger networks.

However, in the Al 1, iiethod, as networks get larger, the amount of noise that,

contaminates the gradient estimates increases, a problem that is not present, in the
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back-propagation method. Thus, while both methods probably scale poorly, the

straightforward scaling up of the AR-P method is likely to be worse.

One can, however, consider ways of scaling up the AR-P method that are more

interesting than just adding more units and uniformly broadcasting a single reinforce-

ment signal to all of them. It seems clear that the only way to move toward large,

complex learning tasks is to use modular or hierarchical networks with local forms

of reinforcement. I envision networks in which superordinate modules learn how to

provide different levels of reinforcement to different subordinate modules. This ap-

proach will involve game decision problems in addition to the team decision problems

discussed in Section 3. Consequently, the ability of units employing stochastic learn-

ing automaton principles to learn in game situations may be an important factor in

implementing these more sophisticated forms of structural credit assignment. This

is an important topic for future research.

Comparison of Methods for Learning by Layered Networks

Eleven hidden-unit learning methods were compared by applying them to the task

of learning a multiplexer function. The methods were tested in the hidden units of

a two-layer network. Two kinds of performance measures were used: the number of

errors accumulated throughout a training run and the total number of input vectors

for which the final weight values of a run result in an incorrect output. Care was

taken to try different parameter values for each method and to present performance

measures as averages and confidence intervals over repetitive training runs.

The learning method with the best performance of the algorithms compared was

the error back-propagation algorithm of Riumelhart, Hinton, and Williams 144]. The

next best performing methods were the reinforcement-learning methods based on the

AR 1, rule. Best among these methods was a modification of the AR-p rule designed

to combine reinforcement, learning with a method to create features to represent input

patterns present when the network is receiving low reinforcement. A less successful

modification of the AR p method is based on tlhe idea of providing each hidden unit

with a more informative evaluation signal than is provided by a reinforcemnt signal
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broadcast to all the units. In this method, reinforcement values are back-propagated

based on the weight with which the hidden units are connected to the output unit

(unlike the back-propagation method of Rumelhart et al., reinforcement is back-

propagated instead of error). This modification produces faster error reduction early

in learning runs, but later in runs the rate of error reduction slows and is surpassed

by that of the unmodified AR-P method.

Some more conventional optimization techniques were also applied to the problem

of finding weight values for the multiplexer task. These methods perform a direct

search in the space of all possible value assigments to the weights of the hidden units.

They do not use any knowledge of the network's structure. Such a large search space

and the ignorance of the network's structure results in very poor learning performance

compared to the other methods tested. We included these methods primarily to serve

as control simulations. One of these methods, for example, is probably the simplest

possible search technique. To be of any interest at all, a method must perform better

than this method.

We also experimented with the idea of improving the accuracy of the gradient

estimate produced by the ARP method by letting each hidden unit try several ac-

tions while each of the training vectors is present. We call this method the hatched

AR P method. The results of these simulations show that it is possible to obtain

increasingly accurate gradient estimates without requiring a complex error propa-

gation process. Letting the hidden units obtain 10 samples for each training vector

presentation, we obtained learning in the multiplexer task several times faster than

the unbatched method (1 sample per presentation) in terms of the number of presen-

tations of each training vector. Of course, the amount, of processing required for each

presentation is greater than in the unbatched method, and the actual time required
will depend critically on how the s-ystem is i1plernerted. If in some learning domain

it is costly to obtain stimulus vectors, but it is not cost lY to update the network and

obtain evaluations, then it might be practical to use the batched method to increase

the speed of learning.

As in all empirical studies, it is importanit to stress that the results presentled in

Section 4 are valid only for the particular task arnd training regime that was used
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during the experiments. For example, a task requiring a smaller network might be

most readily solved by a random search of the entire weight space. In fact, in selecting

a task for the comparative study, a small task with two input components was tested

and it was discovered that a random search solved the task faster than the error back-

propagation and reinforcement-learning algorithms. The multiptcxer task was chosen

because the weight space is sufficiently large that direct optimization methods are

slow but not so large that a prohibitive amount of simulation time would be needed

to gather significant performance statistics. Time also prohibited the extension of

the comparative study to other, more complex tasks as would be required to address

issues regarding how well the algorithms scale up to harder tasks.

Strategy Learning with Multilayer Networks

Strategy learning can be characterized as the acquisition of a method for gen-

erating actions that cause desired transitions among the states of a problem. The

desirability of particular transitions is often indicated by an evaluation that imposes

a preference ordering on the possible transitions from a given state. In previous

research, we have shown that reinforcement-learning methods can be used to learn

to select the best action under these conditions, whereas most connectionist learning

methods require knowledge of the correct action.

For some tasks, an evaluation is not immediately available but occurs only after

a sequence of actions has been generated. Sutton 47,461 has developed the AHC

learning rule for dealing with this t2mporal credit-assignment problem. Hampson 1221
has developed a similar method. lBarto, Sutton, and Anderson 113,47,151 combined

le All( rule with a reinforcement-learning method into a single-layer network for

st rategy learning. In the research reported here, we extended these learning metlods

for single-layer networks to methods for learning strategies with multilayer networks.

We chose the error back-propagation met hod to update the weights of the hidden

uinits iM networks because it was shown to be fastest by our comparative simulations.

(Conseqieitly, the strategy-learning networks we studied consisted of the following.

Vor vach task. there is an evaluation network and an aCtion network. The evalua-
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tion network consists of an AHC unit as output unit and a layer of hidden units.

The AHC's error term is back-propagated to the hidden units in exactly the same

manner that the error term of the delta rule is back-propagated in the Rumelhart

et al. method. The action network consists of an associative reinforcement learning

unit as output unit and a layer of hidden units. This unit's "error term" is back-

propagated to the hidden units. This hybrid system was applied to the pole-balancing

and Tower of Hanoi tasks.

Pole Balancing

The major difficulty in the pole-balancing task is due to the use of a very uninfor-

mative evaluation signal. Task-specific information, such as the dynamics of the pole,

were assumed to be unavailable to the design of the learning system. The evaluation

signal was supplied only when the pole fell or the cart hit the end of the track. Other

information concerning the task objective, such as the advantage of maintaining the

pole near the vertical, was not assumed. Of course, if such information is available

it should be incorporated into the initial design of the learning system or used to

provide a more information evaluation or error signal. Our interests, however, are in

developing learning methods for those parts of a task for which a minimum amount

of information is available. For example, we were not attempting to design a learn-

ing control method for the pole-balancing task per se-much more information is

available for this task than we were willing to use.

The combination of the error back-propagation method with the AHC and

reinforcement-learning methods was successful: the two-layer system balanced the

pole for many more steps than did a one-layer system receiving the same represen-

tation of the pole's state. The hidden units learned features with which the output

units could overcome the limitations imposed by the representation of the pole's state

and the linearity of the output functions. In analyzing the new features that. were
formed, it was discovered that only a small number of new features were needed to

solve the task. Some runs resulted in the formation of a single new feature, while

others resulted in up to three features that developed significant influence on the

system's output.
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Our previous experiments 113,47,151 with the pole-balancing task involved a

single-layer network for which the continuous state space was discretized into 162

distinct, 4-dimensional rectangles to allow the system's units to learn appropriate

functions. The networks whose study is reported here differ in the absence of this

"decoder" and the addition of hidden units that learn features that decode the state

into an appropriate form. Another difference, which makes performance comparisons

with our earlier pole-balancing studies difficult, is that after every failure the state of

the pole is set to a random state instead of the zero state (vertical, stationary pole),

as was done in the previous experiments. For this reason, many more failures were

generated in the current paradigm, because some reset states were very near failure

states. After the same number of training steps, the current system had not attained

as high an average balancing time as had the previous system. This is due to either

a) the additional experience needed to learn useful new features, or b) the lack of

experience in critical states (such as the zero state) for which nearby states require

opposite actions.

Tower of Hanoi

The learning methods used in the pole-balancing network were applied with few

modifications to the Tower of Hanoi puzzle. Similar restrictions on the amount of

a priori knowledge were assumed. A final reinforcement at the end of a successful

sequence of actions (as opposed to an unsuccessful sequence for the pole-balancing

task) provided information regarding the objective of the task. The state of the

puzzle was presented to the network as a binary vector representing the peg on which

each disk resides. The two-layer network again performed better than a single-layer

network. The two-layer network reliably found a minimum-length solution, i.e., the

network applied a sequence of actions consisting of the nmnini1umr number of actions

required to achieve the goal state. In solving the puzzle, an evaluation function was

learned that ranked states according to the smallest number of moves between the

state and the goal state.

In learning the evaluation function, a number of new features were developed by

the network. In the state-transition graph for the Towers of Hanoi puzzle there are
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several bottlenecks-parts of the graph are interconnected by -. single path. New

features were formed that discriminate states in the bottlenecks from other states.

The output unit of the evaluation network could not learn a monotonically-increasing

function through the bottlenecks with the original features, but the new features

resulted in a good evaluation function.

Langley [311 developed an adaptive production system that learned to solve the

Tower of Hanoi puzzle. The connectionist system that we applied to the Tower of

Hanoi puzzle has few similarities to Langley's production system. It is instructive to

analyze the differences and to question whether or not they represent fundamental

distinctions between symbolic and connectionist approaches. One difference is that

Langley uses a full history of past states and actions to aid the assignment of credit,

whereas the connectionist system relies on the learning of a good evaluation function

to solve the credit assignment problem. This difference is not fundamental to the

representations involved; evaluation functions can be used for symbolic systems and

a history of states and actions can be of use in training a connectionist system. A

history could be used much as it is for the symbolic system, by retrieving the events

as training instances. A separate issue is the association by a connectionist system

of past events with current action probabilities in order to base decisions on previous

states and actions. In our experiments, the connectionist system does receive the

two previous actions as input, so two and three step sequences can be learned; the

inclusion of all past events as input to the system is not feasible. An alternative is

to collapse the history into a weighted average of past events.

Another difference is that a breadth-first search is not performed by the connec-

tionist system. In its initial, naive state, the connectionist system chooses actions

randornly and as the evaluation function develops, the action probabilities become

increasingly biased towards actions that result in state transitions producing positive

changes in the evaluation function. Breadth-first search control can be added to the

connectionist framework by disregarding the probabilistic generation of actions and

presenting state-action pairs as training instances after some process has assigned

credit to every pair. Learning an evaluation function in this case requires the ex-

traction of desirable paths from a state history. One attraction of the connectionist
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approach demonstrated here is its ability to learn with minimal resources for search

control and history maintenance.

A very important distinction that is currently a topic of debate is the use of

variables. A single symbolic rule can be applied to many situations through the

binding of variables. For example, Langley's system learns a rule that, through

variable binding, can be used to avoid the application of the previous action's inverse

for all possible actions. With one training instance and knowledge of what an action's

"inverse" means, a single rule is learned that generalizes to all other actions. It is

not clear how knowledge of an action's inverse can be used in a connectionist system

to either a) learn the connectionist analog of a generalized rule with variables, or

b) duplicate the weight changes due to experience with one action to the weights of

other actions. Touretzky and Hinton [54] have shown how variable binding can be

performed in a particular connectionist system.

Related to the issue of variables is the issue of the transfer of learning. After

learning strategies for solving one task, an efficient learning system must be able to

exploit common aspects between this task and subsequent tasks by applying in similar

situations the strategies that worked well for the first task. Langley's production rule

having a variable action and state can be immediately applied to other, more complex

Tower of Hanoi puzzles. This is not possible for the connectionist system and the

state and action representations used here. Learning is transferred but not to the

degree possible with variablized rules. The strategies learned from the 3-disk Tower

of Hanoi are specifically dependent on the 3 disks-the addition of another disk does

not affect the strategies until further learning occurs. Different representation of

states and actions would result in different amounts of transfer.

Further Developments of Strategy Learning Networks

Our strategy learning networks can be viewed in the context of two theoretical

traditions, and future research can take two directions depending on which tradition

is followed. One tradition is that of control theory-adaptive and learning control.

The learning methods employed by our networks are related to some discussed in the
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past by control theorists, e.g., Refs. [20,34,57,601. These methods differ substantially

from the more orthodox adaptive control techniques that involve the identification

of unknown plant parameters in that they can be applied with fewer assumptions

about the structure of the plant to be controlled. However, these methods do not

lend themselves to rigorous convergence results and so have not been actively pursued

by modern control theorists.

I think that the methods illustrated by the results reported here contribute several

new methods to this "unorthodox" approach to learning control. One contribution

is the use of layered networks to learn nonlinear control rules. Second, the AHC

method developed by Sutton for dealing with temporal credit-assignment may be

a significant novel method. Finally, the AR-P learning rule is applicable to these

types of control tasks (although the strategy learning networks discussed in this

report do not use it). In order to continue the development of these methods within

this framework of learning control it is necessary to develop the theory as much as

possible. Although I do not think one will be able to prove broad convergence results

for these types of methods applied to nonlinear control problems, I think that the

methods need to be developed to the point where they can be applied more routinely.

In order to accomplish this, these methods need to be applied to control tasks that are

simpler than the pole-balancing task studied here so that network design decisions

can be made with the aid of relevant theory and results can be compared with those

obtainable by more conventional methods. Of course, the eventual goal is to develop

learning control methods for problems to which the conventional methods are not.

applicable.

The other tradition to which our work can be related is the symbolic artificial

intelligence tradition illustrated by the adaptive production system of Langley to

which we compared the Tower of Hanoi network in Section 6. In order to make

closer contact with this tradition it is necessary to develop more sophisticated repre-

sentational schemes that facilitate the kinds of functions accomplished by variables

and variable binding. It also seems necessary to develop a means for networks to

perform something like multistep reasoning processes. Efforts in these directions are

being made by some connectionist researchers (e.g., 154,53]), but I know of no "nat-
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ural" connectionist way of doing these things. I think that a first step toward these

types of capabilities is to develop means for networks to adaptively form internal

models of their environments which they can manipulate for a variety of purposes.

We and others have taken a few steps in this direction (e.g., [49,50,43,251), but much

progress remains to be made. This direction of research is also relevant for poten-

tial applications of networks to the types of engineering control problems discussed

above.
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