
-A193 676 DR (TERK) COMPILER VALIDTION SUMMARY REPORT 1/1
TELESOFT TELEGEN 2 ADR.. (U) INFORMATION SYSTEMS AN
TECHNOLOGY CENTER H-P AFB OH ADA YALI.. 19 MAR 07

UNCLSSIFIED F/O 12/5 ML

EmIl.lllllll

L2

ugL6 1.1-64

11.25 1111.4 1.6

MICROCOPY RESOLUTION TEST CHART

,_ _~jU BufLtu of STANDOARDS 1963-A

wp Ar vW -M

opW %~w~
%*%~~ '*1VI,~.

UNCLASSIFID
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entred)IL

REPORT DOCUMENTATION PAGE SDINSRCOM 7rOS

1. REPORT NUMBER 12. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (andSubtitlo) 5. TYPE OF REPORT & PERIOD COVERED
Ad oplrValidation Summary Report: 19 MAR 1987 to 19 MAR 1988

Telesoft TeleGen 2 Ada Compiler, Release 3.13 ____________

MicroVAX 11 5. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)
Wright-Patterson

9. PERFORMING ORGANIZATION AND ADDRESS 10. PROGRAM ELEMENT, PROJECT. TASK
Ada Validation Facility AREA & WORK UNIT NUMBERS

ASDISIOL
Wright-Patterson AFB OH 45433-6503

11 I. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Ada Joint Program Office 19 MAR 1987
United States De artment of Defense TT. NUMEN t PAbLtS
Washington, DC 29301-30 81ASD/SIOL 29

14. MO0NITORING AGENCY NAME & ADORE SS(f dfferent from Controlling Office) 15. SECURITY CLASS (of this report)
Wrgt-Patterson UNCLASSIFIED

15a. REkgEFICATION/DOWNGRADING

7__________N__________I____ N/A

toD 16. DISTRIBUTION STATEMENT (ofthisReport)

(Approved for public release; distribution unlimited.
A0

UNCLASSFIED9ZIELECTE3

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20. if different from Report)) u lI 3 U

18. SUPPLEMENTARY NOTES

19. KEYWORDS (Continue on reverse side if necessary and identify by block number)

Ada Prograrlming language, Ada Compiler Validation Summary Report, Ada
Compiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-
1815A, Ada Joint Program Office, AJPO

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

See 'Attached.

00 1473 EDITION OF I NOV 65 IS OBSOLETE
I JAN 13 S/N 0102-LF-014-6601 UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

Ada.S Compiler Validation Summary Report:

Compiler Name: TeleGen2 Ada Compiler, Release 3.13

Host: MicroVAX 11 under Target: MicroVAX 1i under
MicroVMS, Version 4.2 MicroVMS, Version 4.2

Testing Completed 19 March 1987 Using ACVC 1.8

This report has been reviewed and is approved.

Ada Validation Facility
Georgeanne Chitwood
ASD/SCOL
Wright-Patterson AFB OH 45433-6503

A Validation Organizdtlon Accession For --

Dr. John F. Kramer IS G1RA&I
Institute for Defense Analyses DTIC TAB 1
Alexandria VA tUnannounced

- 13y
Distribut I cn/_

Ada Jo.nt Program Office Availb 11ity Codes

Virginia L. Castor Avai 11 an/or
Director Dist Special

Department of Defense
Washington DC

®Ada is a registered trademark of the United States Government

(Ada Joint Program Office).

87 8

AVF Control Nnber: AV--VSR-63.0587
87-01-21-TEL

Ada® COMPILER
VALIDATION SUAMARY REPORT:

TeleSoft
TeleGen2 Ada Compiler, Release 3.13

MicroVAX II

Completion of On-Site Testing:
19 March 1987

Prepared By:
Ada Validation Facility

ASD/SCOL
Wright-Patterson AFB OH 45433-6503

Prepared For:
Ada Joint Program Office

United States Department of Defense
Washington, D.C.

®Ada is a registered trademark of the United States Government
(Ada Joint Program Office).

-V "+. 'W'" ,N"¢,,%' - " W, ," ,, + ,,'C': "D,'-"++,."VwR.7 ,, + 3.'' ,.' ,.,',, ,,... "v' +,.+ . ,.'p

EXECUTIVE SUMMARY

This Validation Sumary Report (VSR) summarizes the results and conclusions
of validation testing performed on the TeleGen2 Ada Compiler, Release 3.13,
using Version 1.8 of the Ada® Compiler Validation Capability (ACVC). The
TeleGen2 Ada Compiler is hosted on a MicroVax II operating under MicroVMl,
Version 4.2. Programs processed by this compiler may be executed on -a
MicroVAX II operating under MicroVHG, Version 4.2.

On-site testing was performed 15 March 1987 through 19 March 1987 at
TeleSoft in San Diego CA, under the direction of the Ada Validation
Facility (AVF), according to Ada Validation Organization (AVO) policies and
procedures. The AVF identified 2138 of the 2399 tests in ACVC Version 1.8
to be processed during on-site testing of the compiler. The 19 tests
withdrawn at the time of validation testing, as well as the 242 executable
tests that make use of floating-point precision exceeding that supported by
the implamentation, were not processed. After the 2138 tests were
processed, results for Class A, C, D, and E tests were examined for correct
execution. Compilation listings for Class B tests were analyzed for
correct diagnosis of syntax and smantic errors. Compilation and link
results of Class L tests were analyzed for correct detection of errors.
There were 51 of the processed tests determined to be inapplicable. The
remaining 2087 tests were passed.

The results of validation are suinarized in the following table:

RESULT CHAPTER TOTAL
2 3 4 5 6 7 8 910 11 12 14

Passed 96 222 298 243 161 97 136 262 107 32 217 216 2087

Failed 0 0 0 0 0 0 0 0 0 0 0 0 0

Inapplicable 20 103 122 4 0 0 3 0 23 0 1 17 293

Withdrawn 0 5 5 0 0 1 1 2 4 0 1 0 19

TOTAL 116 330 425 247 161 98 140 264 134 32 219 233 2399

The AVF concludes that these results demonstrate acceptable conformity to
AtSI/MIL-rD-1815A Ada.

°Ada is a registered trademark of the United States Government
(Ada Joint Program Office).

TABLE OF CONTFNTS

CHAPTER 1 INTRODUCTION

1.1 PURPOSE OF THIS VAL-DATION SUMMARY REPORT 1-2
1 .2 USE OF THIS VALIDATION SUMMARY REPOPT 1-2
1.3 REFERENCES 1-3
1.4 DEFINITION OF TERMS 1-3
1.5 ACVC TEST CLASSES 1-4

CHAPTER 2 CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED 2-1
2.2 IMPLEMENTATION CHARACTERISTICS 2-2

CHAPTER 3 TEST INFORMATION

3.1 TEST RESULTS 3-1
3.2 SUMMARY OF TEST RESULTS BY CLASS 3-1
3.3 SUMMARY OF TEST RESULTS BY CHAPTER3-2
3.4 WITHDRAWN TESTS3-2
3.5 INAPPLICABLE TESTS 3-2
3.6 SPLIT TESTS 3-4
3.7 ADDITIONAL TESTING INFORMAT:ON 3-4
3.7.1 Prevalidation 3-4
3.7.2 Test Method 3-4
3.7.3 Test Site 3-5

APPENDIX A DECLARATION OF CONFORMANCE

APPENDIX B APPENDIX F OF THE Ada STANDARD

APPENDIX C TEST PARAMETERS

APPENDIX D WITHDRAWN TESTS

..

,:.:

bA

CHA.PTER I

INTRODUCTION

This Validation Summary Report (VSR) describes the extent to which a
specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815A.
This report explains all technical terms used within it and thoroughly
reports the results of testing this compiler using the Ada Compiler
Validation Capability (ACVC). An Ada compiler must be implemented
according to the Ada Standard, and any implementation-dependent features
must conform to the requirements of the Ada Standard. The Ada Standard
mus be implemented in its entirety, and nothing can be implemented that is
notn the Standard.

Even though all validated Ada compilers conform to the Ada Standard, it
must be understood that some differences do exist between implementations.
The Ada Standard permits some implementation depend .'cies--for example, the
maximum length of identifiers or the maximum values of integer types.
Other differences between compilers result from characteristics of
particular operating systems, hardware, or implementation strategies. All
of the dependencies observed during the process of testing this compiler
are given in this report.-

The information in tis report is derived from the test results produced
during validation testing. The validation process includes submitting a
suite of standardized tests, the ACVC, as inputs to an ;..4a compiler and
evaluating the results.,-The purpose of validating is to ensure conformity
of the compiler to the Ada-Standard by testing that the compiler properly
implements legal language constructs and tn.at it identifies and rejects
illegal language constructs. The testing alsc Identifies behavior that is
implementation deper&J.et but permitted by the Ada Standard. Six :!lasses of
tests .-e used. These tests are designed to perform checks at compile
time, at link time, and during execution.

"eme.

• ...

A

1.1 PURPOSE OF THIS VAL:DATION SUMLMA RY RFORT

This VSR documents the results of the validatlon testing perform.ed on an
Ada compiler. Testing was carried out for the follo-ing purposeq:

. To attempt to identify any language constructs quppor:e, by the
compiler that do not conform t.D the Ada Standa-d

. To attempt to identify any unsupported language constructs
required by the Ada Standard

. To dete.,mine that the Implementation-dependent behavior is allowed
by the Ada Standard

Testing of this compiler was conducted by SofTech, Inc., under the
direction of the AVF according to policies and procedures established by
the Ada Validation Orgainization (AVO). On-site testing was conducted from
15 March 1987 through 19 March 1987 at TeleSoft in San Diego CA.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO may
make full and free public disclosure of this report. In the United States,
this is provided in accordance with the "Freedom of Information Act" (5
U.S.C. #552). The results of this validation apply only to the computers,
operating systems, and compiler versions Identified in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject compiler has no nonconformltles

to the Ada Standard other than those presented. Copies of this report are
available to the public from:

Ada information Clearinghouse
Ada Joint Program Office
OUS DRE
The Pentagon, Rm 3D-139 (Fern Street)
Washington DC 20301-3081

or from:

Ada Validation Facility
ASD/SCOL%
Wright-Patterson AFB OH 45433-6503

1-2

v.f

Questions regarding this report or the validatlor test results should De
directed to the AVF listed above or to:

Ada Validation OrganIzation
institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311

1.3 REFtRENCES

1. Reference Manual for the Ada Programming Language,
ANSI/MIL-STD- 1815A, FEB 1983.

2. Ada Validation Organization: Procedures and Guidelines, Ada Joint
Program Office, 1 JAN 1987.

3. Ada Compiler Validation Capability Implementers' Guide, SofTech,
inc., DEC 1984.

1.4 DEFINITION OF TERMS

ACVC The Ada Compiller Validation Capability. A set of programs
that evalu.ates the conformity of a compiler to the Ada
language specification, ANSI/MIL-STD-1815A.

Ada Standard ANSI/MIL-STD-1815A, February 1983.

Applicant The agency requesting validation.

AVF The Ada Validation Facility. in the context of this report,
the AVF is responsible for conducting compiler validations
according to established policies and procedures.

AVO The Ada Validation Organization. In the context of this
report, the AVO is responsible for setting procedures for
compiler validations.

Compiler A processor for the Ada language. in the context of this
report, a compiler is any language processor, including
cross-compilers, translators, and interpreters.

Failed test A test for which the compiler gr- erates a result that
demonstrates nonconformity to the Ada Standard.

Host The computer .n which the compiler resides.

1-3

irnpplicable A test that uses features of -"he .anguage that a compiler Is
test not required to support or may legitimately support in a way

other than the one expected by the test.

Passed tes" A test for which a compiler generates the expected result.

Target The computer for which a compiler generates code.

Test A program that checks a compiler's conformity regarding a
particular featuLre or features to the Ada Stanzard. In the
context of this report, the term is used to designate a
single test, which may comprise one or more files.

Withdrawn A test found to be incorrect and not used to check conformity
test to the Ada language specification. A test may be incorrect

because it has an Invalid test objective, fails to meet its
test objective, or contains illegal or erroneous use of the
language.

1.5 ACVC TEST CLASSES :4

Conformity to the Ada Standard is measured using the ACVC. The ACVC
contains both legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name identifies .

the class to which it belongs. Class A, C, D, and E tests are executable,
and special program units are used to report their results during
execution. Class B tests are expected to produce compilation errors.
Class L tests are expected to produce link errors.

Class A tests check that legal Ada programs can be successfully compiled
and. executed. However, no checks are performed during execution to see if
the test objective has been met. For example, a Class A test checks that
reserved words of another language (other than those already reserved in
the Ada language) are not treated as reserved words by an Ada compiler. A
Class A test is passed if no errors are detected at compile time and the
program executes to produce a PASSED message.

Class B tests check that a compiler detects illegal language usage. Class

B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that every syntax or
semantic error in the test is detected. A Class B test is passed if every
illegal construct that it contains is detected by the compiler.

Class C tests check that legal Ada programs can be correctly compiled and
executed. Each Class C test is self-checking and produces a PASSED,
FAILED, or NOT APPLICABLE message indicating the result when it is
executed.

Class D tests check the compilation and execution capacities of a compiler.
Since there are no capacity requirements placed on a compiler by the Ada
Standard for some parameters--for example, the number of identifiers

1-4

permitted in a copilation or the number of units ir. a library--a compler
may refuse to compile a Class D test and still be a conforming compiller.

Therefore, if a Class D test fails to compile because the capa.-ty of tne
compiler is exceeded, the test is classifled as inapplicable. -f a Ciac! D
test campiles successfully, it is self-checeing and produces a PASSFD or

FAIMED message during execution.

Each Class E test iS self-checking and produces a :4OT APPLICABLF, ASSF.D,
or FAILED message when it is compiled and executed. However, tne Ada

Standard permits an Implementation to reject programs contairning some

features addressed by Class E tests during compilation. Therefore, a Class

E test is passed by a compiler if it is compiled successfully and executes
to produce a PASSED message, or if it is rejected by the compiler for an
allowable reason.

Class L tests check that incomplete or illegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
execute. Class L tests are compiled separately and execution is attempted.
A Class L test passes if it is rejected at link time--that is, an attempt
to execute the main program must generate an error message before any
declarations in the main program or any units referenced by the main
program are elaborated.

Tw library units, the package REPORT and the procedure CHECKFILE, support
the self-checking features of the executable tests. The package REPORT
provides the mechanism by which executable tests report PASSED, FAILED, or
NOT APPLICABLE results. It also provides a set of identity functions used
to defeat some compiler optimizations allowed by the Ada Standard that
would circumvent a test objective. The procedure CHECK FILE is used to
check the contents of text files written by some of the Class C tests for
chapter 14 of the Ada Standard. The operation of these units Is checked by
a set of executable tests. These tests produce messages that are examined
to -verify that the units are operating correctly. If these units are not
operating correctly, then the validation is not attempted.

The text of the tests in the ACVC follow conventions that are intended to
ensure that the tests are reasonably portable without modification. For
example, the tests make use of only the basic set of 55 characters, contain
lines with i maximu length of 72 characters, use small numeric values, and
place features that may not be supported by all implementations in separate
tests. However, some tests contain values that require the test to be
customized according to implementation-specific values--for example, an
illegal file name. A list of the values used for this validation Is
provided in Appendix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformity to the Ada Standard by eitner meeting the pass
crIteria given for the test or by showing that the test is inapplicable to
the implementation. Any test that was determined to contain an illegal
language construct or an erroneous language construct is withdrawn from the
ACVC and, therefore, Is not used in testing a compiler. The tests
withdrawn at the time of validation are given in Appendix D.

1-5

CHAPTER 2 Ok

CONFIGURATION INFORMATION
,

2.1 CONFIGURATION TESTED

The candidate compilation system for this validation was tested under the

following configuration:

Compiler: TeleGen2 Ada Compiler, Release 3.13

ACVC Version: 1.8

Certificate Expiration Date: 2 April 1988

Host Computer:

Machine: MicroVax II

Operating System: MicroVMS, Version 4.2

Memory Size: 10 megabytes

Target Computer:

Machine: MIcroVAX ii

Operating System: MicroVMS, Version 4.2

Memory Size: 10 megabytes

EU

.. }

2-1

2.2 P

One of the purposes of validating copilers is to determine the
Denavlor of a compiler in those areas of the Ada Staniard that
permit implementations to differ. Class D and F tests specifically

check for such implementatlon differences. However, tests in other

classes also cnaracteri ze an Implementation. This corpiler is

character-lzei by the following interpretatfons of the Ada Stariiard:

• Capacities.

The compiler correctly processes tests containing loop %

statements nested to 65 levels, block statements nested to 65
levels, and recursive procedures separately compiled as
subunits nested to 17 levels. it correctly processes a
compilation containing 723 variables in the same declarative
part. (See tests D55A03A..H (8 tests), D56001B, D64005E..G (3
tests), and D29002K.)

" Universal integer -. aleulatlons.

An implementation is allowed to reject universal integer

calculations having values that exceed SYSTEM.MAX INT. This
implementation does not reject such calculations and processes

them correctly. (See tests D4AOO2A, D4AOO2B, D4AOO4A, and
D4AO04B.) a

" Predefined types.

This implementation supports the additional predeflned types %

LONG INTEGER and LONG FLOAT in the package STANDARD. (See -
tests B86001C and B86001D.)

• Based literals. '

An implementation is allowed to reject a based literal with a
value exceeding SYSTEM.MAX INT during compilation, or it may
raise NUMERIC ERROR or CONSTRAINT ERROR during execution. This
implementation raises NUMERIC ERROR during execution. (See
test E24101A.)

Array types.

An implementation is allowed to raise NUMERICERROR or a,

CONSTRAINT ERROR for an array having a 'LEN5TH that exceeds
STANDARD. INTEGER'LAST and/or SYSTEM.MAXINT.

2-2

a'%~% * .A~.*..**~~*'a.'a.*,-,~~ -,, I

No exceptizn is raised by this iLmpienertatIorn for a pa , ,
BOOLEAN array having a '.FNGTH exceeding :NTFGE', LAST. ee
test C52103X.)

A packed two-dimensional BOOLEAN array w!th Moe than
INTEGER'LAST components raises CONSTRAINT _ERDR when .e lengtn
of a dimension is calculated and exceeds INTEGER'!1.&A. (See
test C52104Y.)

A null array with one dimension of length greater than
INTEGER'LAST may raise NUMERIC ERROR or CONSTRAINT ERROR eitner
when declared or assigned. Atermatively, an fmplementation
may accept the declaration. However, lengths must match in
array slice assignments. This implementation raises no
exception. (See test E52103Y.)

In assigning one-dimensional array types, the expression
appears to be evaluated in its entirety before CONSTRAINT ERROR
is raised when checking whether the expression's subtype is
campatible with the target's subtype. In assigning
two-dimensional array types, the expression does not appear to

be evaluated in its entirety before CONSTRAINT ERROR is raised
when checking whether the expression's subtype is compatible

with the target's subtype. (See test C52013A.)

Discriminated types.

During compilation, an implementation is allowed to either
accept or reject an incanplete type with discriminants that Is
used in an access type definition with a compatible
discriminant constraint. This implementation accepts such S.

subtype indications. (See test E38104A.)

In assigning record types with discrimina:-ts. the expression
appears to be evaluated in its entirety befort CONSTRAINTERROR
is raised when checking whether the expression's subtype is
compatible with the target's subtype. (See test C52013A.)

Aggregates.

in the evaluation of a multi-dimensilonal aggregate, the order
in which choices are evaluated and index subtype checks are
made appears to depend upon the aggregate itself. (See tests
C43207A and C43207B.)

In the evalu-tion of an aggregate containing subaggregates, all
choices are not evaluated before being checked for Identical
bounds. (See test E43212B.)

2-3

'

All 2noices are evaluated before C0NSTRA:NT 7RROF is ra'_ e: tf

a bound in a nonnull range of a nonnull aggregate coes rot
belonj to an Index -btype. (See test F43211B.)

-unctlons.

An implementation may allow the declaration of a parameterless
function and an enuneration literal having tne same profile in
the same immediate scope, or it may reject the functior.

declaration. If it accepts tne function declaration, the use
of the enumeration literal's identifier denotes the function.
This implementation rejects the declaration. (See test
F66001D.)

Representation clauses.

The Ada Standard does not require an implementation to support
representation clauses. If a representation clause is not
supported, then the implementation must reject it. While the
operation of representation clauses is not checked by Version
1.8 of the ACVC, they are used in testing other language

features. This ':plementation accepts 'SIZE and 'STORAGE SIZE
for tasks and 'SMALL clauses. it rejects 'STORAGE SIZE for
collections. Enumeration representation clauses, including
those that specify noncontiguous values, appear not to be
supported. (See tests C55B16A, C87B62A, C87B62B, C67B62C, and
BC1002A.)

Pragmas.

The pragma INLINE is not supported for procedures or functions.
(See tests CA3004E and CA3004F.)

• Input/output.

The package SEQUENTIAL iO cannot be instantiated wi:.
unconstrained array types and record types with discriminants.
The package DIRECT _O cannct be instantiated with u.constrained
array types and record types with dlscrlminants without
defaults. (See tests AE2101C, AF2101H, CE2201D, CE2201E, and
CE2401D.)

An existing text file can be opened in OUTFILE mode and can be
created In both OUTFILE and IN FILE modes. (See test
EE3102C.)

More than one Internal file can be associated with each
external file for text I/C for reading only. [See tests
CE3111A..E (5 tests).)

2-4

M.ore than one internal file can be as?oclated wth ea2n
external file for sequential -/3 for reading only. (See tests
CF2107A..F (6 tests).)

More than one internal file can De associated wth each
external file for direct 1/O for reading only. (See tests
CE2107A..F (6 tests).)

Temporary sequential files are given a name. Temporary direct
files are given a name. Temporary files given names are not
deleted when they are closed. (See tests CE2108A and CE2108C.)

Generics.

Generic subprogram declarations and bodies cannot be compiled
in separate ecmpplations. (See test CA2009F.)

Generic package declarations and bodies cannot be compiled in
separate compilations, (See tests CA2009C and BC3205D.)

2-5

9,i

CiAPTER 3

TEST NFORMATION

3.1 TEST RESULTS

Version 1.8 of the ACVC contains 2399 tests. When "alidation testing of
TeleGen2 Ada Ccmpiler was performed, 19 tests had been withdrawn. The
remaining 2380 tests were potentially applicable to this validation. The
AVF determined that 293 tests were inapplicable t.. this implementation, and
that the 2087 applicable tests were passed by the implementation.

The AVF concludes that the testing results demonstrate acceptable
conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RESULT TEST CLASS TOTAL
A B C D E L

Passed 67 862 1IJ 17 11 31 2087

Failed 0 0 0 0 0 0 0

inapplicable 2 5 269 0 2 15 293

Withdrawn 0 7 12 0 0 0 19

TOTAL 69 874 1380 17 13 46 2399

3-i

3.3 S M1MARY OF TEST RESLTS BY CHAPTER

RESULT CHAPTER TOTA?.

2 3 4 5 6 7 8 9 10 11 12 14

Passed 96 222 298 243 161 97 136 262 107 32 217 216 2087

Failed 0 0 0 0 0 0 0 0 0 0 0 0 0

Inapplicable 20 103 122 4 0 0 3 0 23 0 1 17 293

Withdrawn 0 5 5 0 0 1 1 2 4 0 1 0 19

TOTAL 116 330 425 247 161 98 140 264 134 32 219 233 2399

3.4 WITHDRAWN TESTS

The following 19 tests were withdrawn from ACVC Version 1.8 at the time of
this validation:

C32114A C41404A B74101B BC3204C

B33203C B45116A C87B50A
C34018A C48008A C92005A

C35904A B49006A C940ACA

B37401A B4AO10C CA3005A..D (4 tests)

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of features
that a compiler is not required by the Ada Standard to support. Others may
depend on the result of another test that is either inapplicable or
withdrawn. For this validation attempt, 293 tests were inapplicable for
the reasons indicated:

. C34001D, B52004E, B55BO9D, and C55BO7B use SHORTINTEGER which is
not supported by this compiler.

* C34001F and C35702A use SHORTFLOAT which is not supported by this
compiler.

* C55B16A makes use of an enumeraticn representation clause
contairing noncontiguous values which is not supported by this
compiler.

3-2

ON

B. i01D requires a preaefir.ed r.-rer.c type other t.-r.an t nuFe

cefinei y tne Aaa language 't. package STANDARD. There is no such

type for this impleme.tation.

.286001F redefines pacKage SYSTEM, but TEX7 :0 is mace obsolete by

this new definition in this Implae.tat~on and the teqt cannot be

executed since the package REPORT is dependent on the package ,i
TFXT _O.

" C87B6?B uses a length clause 'STORAGE S:ZE for access types wnlch
is not supported by this compiler. The length clause Is rejected
during compilation.

" BAl011C, CA1012A, CA2009C, CA2009F, LA5008A..H (8 tests), LA5008J,
LA5008M, LA5008N, and BC3205D cmpile generic specifications and

bodies in separate compilations which Is not supported by this
compiler.

" CA3004E, EA3004C, and LA3004A use INLINE pragia for procedures
which is not supported by this compiler.

" CA3004F, EA3004D, and LA3004B use INLINE pragma for functions
which is not supported by this compiler.

" LA50081 and LA5008K are inapplicable because, in this p
implementation, a generic unit is made obsolete by the %s
recompilation of a unit on which the generic body (but not the is

specification) depends. Since this implementation does not %

support separate compilation of generic unit specifications and
bodies, a generic specification must be consic>-red obsolete
whenever the body is found to be obsolete. These tests should
report at link time that the body of a generic unit is obsolete. i
However, a compile-time error message reports that the generic is
unit is obsolete. is

* AE2101C, CE2201D, and CE2201E use an instantiati-: of package
SEQUENTIAL 10 with unconstrained array types which is not
supported by this compiler. is

* AE2101H and CE2401D use an instantiation of package DIRECT 10 with

unconstrained array types which is not supported by this compiler.

" CE2107B..E (4 tests), CE2110B, CE2111D, CE2111H, CE3111B..E (4

tests), and CE3114B are inapplicable because multiple internal
flles cannot be associated with the same external file except when

the internal files are open for reading. The proper exception is
raised when multiple access is attempted.

* The following 242 tests require a floating-point accuracy that

exceeds the max-mum of 9 supported by the implementation:

C24113F..Y (20 tests) C35708F..Y (20 tests) C45421F..Y (20 tests)
C35705F..Y (20 tests) C35802F..Y (20 tests) C45424F..Y (20 tests)

.3-
3-3 is?

.5

C3;70OtF..Y (20 tests) C4r?4.+F..Y (?2 testc) C4?21 F.. t Z eJ ,
C35707F..Y (20 tests) C45321F..Y (20 tests) CiSo21F.." "21 te-t-,

3.6 SPLIT TESTS

if one or more errors do not appear to have been detected in a Class b te T.
because of compiler error recovery, t!,en the test is split into a set of
smaller tests that contain the undetected errors. These splfts are then
compiled and examined. The splitting process continues until all errors
are detected by the compiler or until there is exactly one error per split. a'

Any Class A, Class C, or Class E test that cannot be compiled and executed
because of its size is split into a set of smaller subtests that can be
processed.

Splits were required for six Class B tests:

BA3006A BA3007B BA3008B
BA3006B BA3008A BA3013A

3.7 ADDITIONAL TESTING INFORMATION

3.7.1 Prevalldation

Prior to validation, a set of test results for ACVC Version 1.8 przduced by
the TeleGen2 Ada Compiler was submitted to the AVF by the applicant for
review. Analysis of these results demonstrated that the compiler
successfully passed all applicable tests, and that the compiler exhibited
the expected behavior on all inapplicable tests.

3.7.2 Test Method

Testing of the TeleGen2 Ada Compiler using ACVC Version 1.8 was condu.cted
on-site by a validation team from the AVF. The configuration consisted of
a MicroVax ii operating under MicroVMS, Version 4.2.

A magnetic tape containing all tests except for withdrawn tests and tests
requiring unsupported floating-point precisions was taken on-site by the
validation team for processing. Tests that make use of
Implementation-spec~fic values were customized before being written to the
magnetic tape. Tests requiring splits during the prevalidation testing
we e included in their split form on the magnetic tape.

The contents of the magnetic tape were loaded onto a MicroVAX Ii and
written to a TK5O from which the tests were loaded onto the host computer.
After the test files were loadet to disk, tne full set of tests was

3-4 :

3.r .

.2 ~ -~

c~ilc, ~ nd executed as approprtate or, tne Xicro', ix
resui.ts were trarnsfe-ed via FTP to a 3ouid mac -irne for prinr.ng.

The ca-.piler das tested using comman~d q cr!pt s provided by TeleSoft ant
re viewed oy the valfdatilon team. The following options were -'r, effect for
testing:

0 p tio r Fffect

/LTST Control the error listing output by the compller.

/MONITOR Display progress messages that allow the user t.,,

monitor the compilation progress.

Test output, compilation listings, and job logs were captured on a TK50
cartridge and archived at the AVF. The listings examined on-site by the
validation team were also archived.

3.7.3 Test Site

The validation team arrived at Tell~f' in San Diego CA on 15 March 1937,
and departed after testing was completed on 19 March 1987.

3A

'Jill
% %

rl
it K"'l

3 ...- ""I'

APPENDIX A

DECLARATION OF CONFORMANCE

TeleSoft has submtitted *.:.e foDwring ~aration of
conformance concerning the Tele~en2 Ada Compier.

A-1.

DECLARATION OF CONFORMANCE

Compiler Implementor: TeleSoft, Inc.
Ada!Validation Facility: ASD/SCOL, Wright-Patterson AFB, OH
Ada Compiler Validation Capability (ACVC) Version: 1.3

Base Configuration

ase Comnpiler Nane: Telejen? Ada Compiler ,'ersicn: Release 3. 3
Host Architecture ISA: MicroVAX II OS&VER #: MicroVMS,

Version 4..
Target Architecture ISA: MicroVAX II OS&VER #: MicroVMS,

Version 4.?

Implementor' s Declaration

I, the undersigned, representing TeleSoft, Inc., have implemented no
deliberate extensions to the Ada Language Standard ANSI/MIL-STD-1815A in
the compiler listed in this declaration. I declare that TeleSoft, Inc. is
the owner of record of the Ada language compiler listed above and, as such,
is responsible for maintaining said compiler in conformance to
ANSI/MIL-STD-1815A. All certificates and registrations for Ada language
compiler lis this declaration shall be made only in the owner's
corporate name.:_

/[__[\ >f ((-. _Date: !/

Tele-Soft, Inc.
Raymond A. Parra, Director, Contracts/Legal

Owner's Declaration

I, the undersigned, representing TeleSoft, Inc., take full responsibility
for implementation and maintenance of the Ada compiler liste: above, and
agree to the public disclosure of the final Validation Summary Report. I
further agree to continue to comply with the Ada trademark policy, as
defined by the Ada Joint Program Office. I declare that all of the Ada
language compilers listed, and their host/target perfor--ance are in
compliance with the Ada Language Standard ANSI/MIL-STD-1815A. I have
reviewed th idatic-n Summary Report for the compiler and concur with the
contents.

,,__..---/Date: / "
TeleSoft, Inc.
Raymond A. Parra, Director, Contracts/Legal

eAda is a registered trademark of the United States Government
(Ada Joint Program Office).

APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to implementation-
dependent praguas, to certain machine-dependent conventions as mentioned in
chapter 13 of MI!-sTD-1815A, and to certain allowed restrictions on
representation clauses. The implementation-dependent characteristics of
the TeleGen2 Ada Compiler, Release 3.13, are described in the following
sections which discuss topics in Appendix F of the Ada Language Reference
Manual (ANSI/MIL-STD- 1815A). Implementation-specific portions of the
package STANDARD are also included in this appendix.

package STANDARD is

type INTEGER is range -32768 .. 32767;
type LONGINTEGER is range -2_147__483_648 .. 2_147_483_647;

type FLOAT is digits 6 range -1.93428E+25 .. 1.93423E+25;
type LONGFLOAT is digits 9 range -2.12676500E+37

2.12676500E+37;

type DURATION is delta 2#1.0#E-14 range -86_400.0 .. 86 _4C0.O;

end STANDARD;

B-i

APPENDIX F

1. Implementation Dependent Pragmas

There is only one implementation defined pragma, COMMENT. It has the
form:

pragma COMMENT((string literal>);

It may only appear within a compilation unit and has the effect of
embedding the given sequence of characters in the object code of the
compilation unit.

2. Implementation Dependent Attributes
".P

There are no implementation dependent attributes.

3. Specification of Package SYSTEM

PACKAGE System IS

SUBTYPE Byte is Natural range 0 .. 255; V,

TYPE Address is ACCESS Integer;
TYPE Subprogram Value is PRIVATE;

TYPE Name IS (TeleGen2);

System Name : CONSTANT name := TeleGen2;

Storage Unit : CONSTANT := 8;
Memory Zize : CONSTANT (2 ** 31) - 1;

-- System-Dependent Named Numbers:

Min Int : CONSTANT := -(2 *- 31);
Max-Int : CONSTANT (2 *, 31) - 1;
Max-Digits : CONSTANT := 9; -- Longjfloat = D-float
Max Mantissa : CONSTANT : 31;
Fini Delta : CONSTANT := 1.0 / (2 .. (MaxMantissa - 1));
Tick- : CONSTANT := 10.OE-3;

-- Other System-Dependent Declarations

SUBTYPE Priority IS Integer RANGE 0 .. 63;

Max Text Io Count : CONSTANT : (2 15) - 1;
Max-Text"Io-Field : CONSTANT := 1000;

PRIVATE
TYPE Subprogram Value is

B-B-2 Z

record
Proc addr Address;
Statc link • Address;
GIcoal-frame : Address;

end record;-END System;

4. Restrictions on Represertation Clauses

This compiler supports the following representation clauses:

Length Clauses for tasks 'STORAGE SIZE (LRM 13.2(c))
Length Clauses for the attribute 'SIZE (LRM 13.2(c))
Address Clauses for objects and entries (LRM 13.5)

This :ompiler does not support the following representation
clauses:

Length Clauses for the 'STORAGE SIZE attribute for access types
(LRM 13.2(b,d)) and the 'SMALL -ttribute for fixed point types.

Enumeration Representation Clauses (LRM 13.3):

--record representation clauses (LRM 13.4)
--address clauses for subprograms, packages, and tasks (LRM 13.5)

5. Implementation Dependent Naming Conventions

There are no implementation generated names denoting implementation
dependent components.

6. Expressions that appear in address specifications are interpreted

as the first storage unit of the object.

7. Restrictions on Unchecked Conversions

Unchecked conversions are allowed between variables of types (or
subtypes) TI and T2 provided that: 1) they have the same static
size, 2) they are not unconstrained array types, and) they are
not private.

8. I/0 Package Characteristics

Instantiations of DIRECT I0 and SEQUENTIAL._I are supported with
the following exceptions:

" Unconstrained array types.
• Unconstrained types with discriminants without default values.
" Multiple internal files opened to the same external file may

only be opened for reading.
" In DIRECT 10 the type COUNT is defined as follows:

t7ype COUNT is range 0 .. 2 147 483 647;
" In TEXT I0 the type COUNT is defined a foTlows:

type COUNT is range 0 .. 22766,
" In TEXT I0 the subtype FIELD is defined as follows:

subtype FIELD is INTEGER RANGE 0 .. 1000;

B-3

UPPENDIX

TEST PARAMETERS

Certain tests in the ACVC make use of Implementation-dependent values, such

as the maximum length of an input line ard invalid file names. A test that
makes use of such values is identified by the extension .TST in its file
name. Actual values to be substituted are represented by names that begin
with a dollar sign. A value must be substituted for each of these names
before the test is run. The values used for this validation are given
below.

Name and Mearing Value

$BIG IDI (1..199 => 'A', 200 => '1')

Identifier the size of the
maximum input line length with
varyinF last character.

$BIG ID2 (1-199 => 'A', 200 => '2')
identifier the size of the
maximum input line length with
varying last character.

$BIG_1D3 (1..100 I 102..200 => 'A',

identifier the size of the 101 => '3')
maximum input line length with
varying middle character.

$BIG ID4 (1-100 I 102.-200 => 'A',
iden tifA' ier the size of the 101 => '4')
maximum input line length with
varying middle character.

$BIG fl4T LIT (1-197 => '0', 198..200 => "298")
An integer literal of value 298
with enough leading zeroes so
that it is the size of the
maximum line length.

c-1

Name and Mearirg "ue

$BIG REAL LIT i 4) "3', i9 .. ?00 :>
A re al literal that can be
either of floating- or fixed-

point type, has value 690.0, and
has enough leading zeroes to be
the size of the maximum line
length.

$BLANKS (1..10 :> '

A sequence of blanks twenty
characters fewer than the size

of the maximum line length.

$COUNTLAST 32766
A universal integer literal
whose value is TEXT IO.COUNT'LAST.

$EXTENDED ASCII CHARS "abcdefghijklmnopqrstuvwxyz" &

A string literal containing all "!$%?[\{}"
the ASCII characters with
printable graphics that are not
in the basic 55 Ada character

set.

$FIELD LAST 1000

A universal integer 1' teral
whose value is TEXT IO.FIELD'LAST.

$FILE NAME WITH BAD CHARS "X}]I/@%#$'s&-Y"

An ilegal- external file name
that either contains invalid
"characters, or is too long if no

invalid characters exist.

$FILE NAME WITH WILD CARD CHAR "XYZ*"

An external file name that
either contains a wild card
character, or is too long if no

wild card character exists.

$GREATER THAN DURATION 86 401.0
A universal real value that les
between DURATION'BASE'LAST and
DURATION'LAST if any, otherwise
any value in the range of
DURA-:ON.

$GREAT'2 THAN DURATION BASE LAST 86 401.0
The universal real value that is
greater than DURATION'BASE' LAST,
if such a value exists.

C-2.'

Name and Meanirng Value

$ILLEGAL EXTERNALFILENAME1 "BAD ZARACTEh%^/ ''

An illegal ext-ernal file name.

$ILLEGAL EXTERNAL FILE NAME2 (1..120 => 'A')

An illegal external file name
that Is different from
$1"LEGALEXTERNAL FILE NA! 1.

$INTEER FIRST -21 47_483 648
The universal integer literal
expression whose value is
INTEGER' FIRST.

$ INTEGER LAST 2147_483_647

The universal integer literal
expression whose value is
INTEGER' LAST.

$LESSTHAN DURATION -86 401.0

A universal real value that lies
between DURATION'BASE'FIRST and
DURATION'FIRST if any, otherwise
any value in the range of

DURATION.

$LESSTHAN DURATION BASE FIRST -86 401.0
The universal real value that is
less than DURATION'BASE ' FIRST,
if such a value exists.

$MAX DIGITS 9
The universal integer literal
whose value is the maximum
digits supported for floating-
point types.

$MAX 3"N_LEN 200
The universal integer literal

whose value is the maximum
input line length permitted by
the implementation.

$MAX INT 2 147 483_647
The universal Integer literal
whose value is SYSTEM.MAX INT.

C-3

x 7u. ..".

Name and Mearnng Value

$ NAIE LONG_L ONG INTFGER

A name of a predefin&d numeric

type other than FLOAT, INTEGER,

SHORT FLOAT, SHORT ::NTEGER,
LONG FLOAT, or LONG _INTEGER

if one exists, otherwise any
undefined name.

$NEG BASEDfINT 16,, FFFFFFFE#I

A based integer literal whose

highest order nonzero bit

falls in the sign bit
position of the representation

for SYSTEM.MAX INT.

$NON ASCII CHAR TYPE (NONNULL)
An enumerated type definition
for a character type whose
literals are the identifier

NON NULL and all non-ASCII I

characters with printable
graphics.

C,

C-"4

'S
4:

~sfV V.~(~ .. ~. . V fdf. . ~ .. : #
S ~ ~.. .*s, ..*., ., ,,.u~%% ~S

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACIJC because they do not conform to the
Ada Standard. The following 19 tests had been withdrawn at the time of
validation testing for the reasons indicated. A reference of the form
"AI-ddddd" is to an Ada Commentary.

• C32114A: An unterminated string literal occurs at line 62.

• B33203C: The reserved word "13" is misspelled at line 45.

• C34018A: The call of function G at line 114 is ambiguous in the
presence of implicit conversions.

" C35904A: The elaboration of subtype declarations SFX3 and SFX4
may raise NUMERICERROR instead of CONSTRAINTERROR as expected in
the test.

. B37401A: The object declarations at lines 126 through 135 follow
subprogram bodies declared in the same declarative part.

" C41404A: The values of 'LAST and 'LENGTH are incorrect in the if
statements from line 74 to the end of the test.

" &45116A: ARRPRI'L1 and AIRPR-T2 are initialized with a value of
the wrong type--PRIBOOL TYPE instead of ARRPRIBOOL TYPE--at line
41.

" C48008A: The assumption that evaluation of default initial values
occurs when an exception is raised by an allocator is incorrect
according to AI-00397.

* B49006A: Object declarations at lines 41 and 50 are terminated
incorrectly with colons, and end case; is missing from line 42.

B4AO10C: The object declaration in line 18 follows a subprogra.
body of the same declarative part.

D- I

'~ -' 'b

" B74101B: The Deglin at line 9 causes a declarative part t- De
treated as a 'equence of statements.

b

• C87B5OA: The call of "/=" at line 31 requires a use clause for
package A.

" C92005A: The "/=" for type PACK.BIG NT at line 40 is not visible
without a use clause for the package PACK.

. C940ACA: The assumption that allocated task TT will run prior to
the main program, and thus assign SPYNUMB the value checked for by
the main program, is erroneous.

" CA3005A..D (4 tests): No valid elaboration order exists for these
tests.

" BC3204C: The body of BC3204C0 is missing.

D

.1

D- 2

AV MW - .4W *~W W -~ W W U V

Jp\~\qW ~A.p w~V~ ~ >v. *'~ S (1%

