Advanced Methods for the Preparation of Preceramic Polymers and their Transformation into Silicon Nitride Fibers

R. Laine, Y. Blum, A. Chow, and K. Schwartz

Supplementary Notation

Subject Terms: Polysilazanes; preceramic polymers; Si-H bond activation catalysis; Si$_3$N$_4$; ceramic coatings; precursor fibers, titanium nitride

Abstract

(Continue on reverse if necessary and identify by block number)
OFFICE OF NAVAL RESEARCH

FINAL REPORT

For

Transition-Metal-Catalyzed Polymerization of Silazanes as a Route to the Preparation of Silicon-Carbide-Nitride Fibers. N00014-84-C-0392 (SRI Project No. 7605)

and

FINAL REPORT

For

Advanced Methods for the Preparation of Preceramic Polymers and Their Transformation into Silicon Nitride Fibers. N00014-85-C-0668 (SRI Project No. 8997)

Richard M. Laine, Yigal D. Blum, Andrea W. Chow and Kenneth B. Schwartz
SRI International, Menlo Park, CA 94025

Reproduction in whole, or in part, is permitted for any purpose of the United States Government.

* This document has been approved for public release and; sale, its distribution is unlimited
Summary of Research Objectives and Significant Results

The primary goal for both projects is to develop synthetic routes to tractable preceramic polysilazanes that can be spun into preceramic fibers and pyrolytically transformed into silicon nitride or silicon carbide-nitride fibers based on novel catalytic processes discovered at SRI. The research program is divided into three separate Tasks. Our efforts, in the first task, are directed towards optimizing the polymer synthesis process(es) through detailed studies of the kinetics and mechanisms of the catalytic reaction(s) that promote polymer formation. Research in the second task focusses on rheological characterization of polymers produced in the first task and development and refinement of polymer spinning procedures. The third task efforts are concerned with optimizing the process whereby the polysilazanes produced in Task 1 and shaped in Task 2 are pyrolytically transformed into ceramic materials and the characterization of the ceramic products.

In the course of our studies, we have detailed the kinetics and mechanisms of the transition metal catalyzed cleavage of Si-H bonds and the dehydrocoupling process whereby Si-N bonds are formed from Si-H and N-H bonds using simple model systems (Technical reports 1, 2, 4-6, 9). We have identified ruthenium as the best catalyst for dehydrocoupling following a survey of potential transition metal catalysts. To date, we find that the best catalyst for this process is the species $(\text{Et}_3\text{Si})_2\text{Ru}_2(\text{CO})_8$. We have also studied the kinetics of the dehydrocoupling polymerization reaction (Technical report 7) as a prelude to fiber spinning efforts. We have learned to control the viscoelastic properties of the polymer through control of the polymerization reaction conditions. As a result of these studies, we have learned how to continuously extrude thick (100-300μm) fibers of the precursor and hand draw fibers as thin as 10 μm (Technical report 8).

Studies of the effects of reaction conditions and the pyrolysis reaction chemistry of a series of related polysilazane polymers have provided us with an understanding of how to optimize the ceramic yields and control the selectivity to ceramic products (Technical report 3). We have also established some understanding of the kinetics of the process(es) that occur during the transformation of the preceramic into a ceramic product. We find that the macromolecular properties control the ceramic yield whereas the molecular properties control selectivity to ceramic product. We conclude that molecular design can be used to control selectivity to ceramic product.

We have learned to use the preceramic polymers to form uniform, corrosion resistant coatings of silicon nitride on steel, aluminum and magnesium. We have also learned to coat glass and graphite with silicon nitride. The process we have developed is a simple dipcoat process which should also be useful in a spin coating process.

The same polysilazane precursors have been found to be extremely useful as binders for silicon nitride powders. Unlike common organic binders, the precursors actually cause densification of powder to occur upon pyrolysis to 800°C. This could eventually permit processsing of silicon nitride powders at much lower temperatures than are currently required.
LIST OF PUBLICATIONS AND SUBMITTED MANUSCRIPTS

Papers Published in Refereed Journals

Papers Submitted to Refereed Journals

Book Chapters Published

Book Chapters Submitted for Publication

Patents

Participating Personnel

- Mr. Robert C. Bening
- Dr. Claude Biran
- Dr. Yigal D. Blum
- Dr. David B. Cotts
- Dr. Andrea W. Chow
- Mr. Alan Dodge
- Dr. Robert Glaser
- Mr. Richard D. Hamlin
- Dr. Richard M. Laine
- Ms. Penni Lundquist
- Dr. David J. Rowcliffe
- Dr. Kenneth B. Schwartz
- Ms. Doris S. Tse
END
9-87
DTIC