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INTRODUCTION.

Highly complex behavior in modern VLSI devices is attained by the complex

arrangements of simple elements: transistors are organized into inverters, in-

verters into flip-flops, flip-flops into register banks, and so on up to large cir-

cuits such as microprocessors. Verifying the correctness of complex behavior,

in the device as designed, is one of the greatest challenges facing the indus-

try today. Currently, simulation is the primary method used to verify the

correct behavior of designs. Circuit-level, switch-level, logic-level, and func-

tional (or behavioral) level simulators are used for larger and larger circuits.

Higher-level simulation functional models are important to reduce simulation

times on large circuits. They are also important for comprehensibility: a sin-

gle high-level functional model is easier to understand than many low-level

models and a description of how they are connected.,

Though necessary and desirable, functional models are expensive, diffi-

cult, and time-consuming to develop [10]. Because of the cost and engineer-

ing effort involved, several companies have even begun to produce functional

simulation models commercially [4, 17], producing both component-level and

board-level models. There is, however, a more insidious aspect than time,

difficulty, and expense: that of error in the functional model. The problem

of verifying the correctness of the device to its specifications has been trans-

formed to the problem of verifying the correctness of the functional model to

the device.

We report work on the problem of automatically generating program code

for the higher-level functional simulation model of the device, starting with a

description of its circuit. This will allow a circuit designer to create a design,

abstract it, and simulate it more efficiently at a higher level.

Our approach builds on Al-based ideas of symbolically manipulating mul-

tiple representations, which we applied to symbolic representations of function

and time. Key ideas include:

Ld I-
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0 Multiple representations of knowledge about behavior and time: in LISP

code, in algebraic equations, and in an event formalism.

* Capturing program code semantics in the translation between represen-

tations.

* Symbolic reasoning about behavior and time.

* An algebraic symbol manipulator for temporal equations.

* Simplification of expressions based both on syntactic form and on time

dependencies.

A LISP-based prototype (FUNSTRUX) has been implemented to explore

these ideas, and produces executable simulator program code comprising the

functional model of a circuit. FUNSTRUX is written in LISP and runs on a

Symbolics LISP machine. Input to the system is the SIMMER [21] simulator

functional model (coded in LISP) for each circuit component type, together

with a netlist description of circuit connectivity. Output is a single SIMMER

functional model (also coded in LISP) of the circuit as a whole.

Project goals were primarily intended to demonstrate this basic concept:

* Produce a single abstract functional model for a circuit, from its compo-

nent functional models and its connectivity.

• Accept executable program code as input and produce executable pro-

gram code as output.

* Real functional abstraction must be done, i.e. the abstract model may

not naively re-encode the individual simulations of its components.

* The functional model must be functionally correct, both in signal val-

ues and in time behavior, with respect to the simulator behavior of the

components' functional models.

* The program code must be "reasonable", and must speed the simulation,

but highly optimized code was not a design goal.

4 Appropriate state objects and manipulations must be inferred as neces-

sary to maintain functional correctness, but need not be highly optimized.

, W P P I
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We have used this prototype to automatically generate functional models for

the SCORE [3] standard cell library generator system, as well as a functional

model of a 2901 microprocessor 1-bit slice plus control logic [2], from prim-

itive devices such as latches, clocked inverters, etc. This demonstrates the

prototype capability to produce both a standard cell functional library and a

complex circuit model automatically from design primitives.

BACKGROUND: STAR SYSTEM AND SIMMER.

FUNSTRUX runs as one component of the STAR design system [20], and

continues an investigation into function, structure, and their relationship.

STAR is an integrated LISP-based design system supporting a wide vari-

ety of powerful tools, designed around the Y model proposed by Gajski and

Kuhn [11]. The heart of the system is the data representation schema called

the Y-Database. The Y Hardware Description Language is embedded in LISP

and is similar to DPL, except that it has been extended to model not just

physical layout information but also structure (blocks and connectivity) and

function. The data representaton is object oriented and uses the Symbol-

ics Flavor system. The STAR system integrates functional simulation (SIM-

MER[211), netlist manipulation (CONSTELLATION[22]) and parameterized

cell generators (SCORE[3]) through the Y-Database.

SIMMER [21] is a LISP-based functional simulation system which mod-

els functionality in the well-known discrete-event-driven framework. Events

(a value transition at some port or state object) invoke the circuit objects

involved to execute their functional models, possibly spawning new events

as these propagate new values. SIMMER was designed primarily as an ex-

perimental simulation framework to facilitate explorations into function and

structure such as described in this paper.

VW1
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FUNCTION FROM STRUCTURE.

FUNSTRUX employs three different representations of the same functional

behavior, each useful for a different task: code-based, event-based, and equation-

based (see figure 1). The program code comprising the low-level functional

models is converted to an event-based representation, using the circuit connec-

tivity information. The events are converted to an equation-based temporal

algebra, and then merged by performing the indicated substitutions. One

global equation is generated for each external port, and one for each internal

state variable referenced by the port equations. Simplifications are performed

by syntax-based transformations. The resulting global equations are con-

verted back to the event-based representation. State objects are created and

value references resolved between state objects and I/0 ports. Finally, the

event-based representation is converted back to one large functional program

for the entire structural network.

•• 
[ b t raC t Ev et T

SimulatorFCodetracEet empra / qa
[ fal Compotents Representation for Cormpone

Figure 1. The FUNSTRUX system architecture. Program code for the
functional models of the circuit components is converted to equations in

a temporal algebra, substituted and simplified according to the circuit

structure, and converted back to functional model program code for the

whole circuit.

forT* CFigure~~~~wII 1.TeFNTU ytmacietr.Pormcd o h
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Figure 2. A simple latch made from clocked and unclocked inverters. The,
example has been contrived to demonstrate the creation of state object~s "
and the collapsing of intermediate structure.

Code-based Representation of Behavior.

The code-based representation (figure 3) is the executable program code

makin~g up the SIMMIER functional models of the components. (SIMMER

code is essentially LISP code, with some built-in functions which read and

drive busses, and get and put internal state objects.) Together with a netlist

description of component connectivity (generated automatically by the STAR

~system), the code-based representation is the primary input to FUNSTRUX.

It is also the final output, as program code for the whole circuit is produced.

Composing functional models from the program code is difficult. Event

schedulings are buried deeply in the code, usually depending on widely-spaced

conditional assignments to local variables and other complications. The first

transformation is to convert the LISP-based SIMMER code into a description

of the events (the conditionalized signal transitions) it implies.

Events are extracted by symbolically executing the programmatic func-

tional model. At each point in the symbolic execution, a binding stack as-

sociates each symbol (variable) with a symbolic formula which computes its

value at that point from constants, bus values, and state objects. A condition

stack maintains the set of overall conditionalizations which must have held

for that point of the code to have been reached. This allows determination

of what events would have occurred, under what conditions, and howv the val-

EM
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(DEFUN CLOCKED-INVERTER-FCI (SELF 4 A E)
"outputs-NOST A to Q if Eai, else tri-stateol"
(DRIVE-BUS A SELF I'(BIT) (VV : * : Z) )
;; 'a' gate in always high impedance * (C2>
(DRIVE-BUS E SELF '(BIT) (VV :* :Z))
;; to' gate is always high ispedekice < * Z>
(LET* ((DELAY 1.7)

;; worst case E to Q delay
(A-STATUS (READ-BUS A '(BIT)))
;; the 'a' input --- data
CE-STATUS (READ-BUS E '(BIT)))
;; the t' input --- enable
(QSTATUS (COND ((a? 1 E-STATUS)

(TV (NOT A-STATUS)
:DRIVE))

((n? 0 E-STATUS)
(VV :* :Z))

CT (VV :X :DRIVE)))
;drive 'q' with the result to be output

(DRIVE-BUS Q SELF '(BIT) Q-STATUS DELAY)))

Figure 3. The SIMMER code for the clocked inverter. The LET* estab-
lishes variable bindings; the COED selects a value corresponding to the first
true test of I-STATUS. If the enable line (I) is logical one, the input (A) is
logically negated and output (Q). If I is logical zero, Q is high impfedanice
(: * : Z). Otherwise an I is output.

use involved would have been derived. Program code semantics are captured

based on the class of LISP form:

* Binding forms, such as SETQ and LET*, alter the formula symbolically

bound to a symbol on the binding stack.

* Conditional forms, such as COND, IF, UNLESS, and WHEN, push their con-

ditionials onto the global condition stack in an implicit AND.

* SIIMIMER input forms, such as READ-BUS and GET-MY-STATE, return val-

nee.

* SIMMER output forms, such as DRIVE-BUS and PUT-MY-STATE, create
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events.

" The SIMMER conditional DEPENDS-ON form, which is ignored by FUN-

STRUX.

* All other (unknown) forms are treated as "black-box" functions according

to the semantics of pure LISP.

This approach allows most standard unknown forms (such as special-purpose

functions coded by a designer for a particular purpose) to be handled correctly,

though simplification may not be possible. Forms that perform side-effects

(e.g., reading or setting a global variable) are not handled correctly.

Following the substitution process described below, the resulting global

circuit events are converted back to program code. Events which schedule

I/O ports generate DRIVE-BUS calls, while events which schedule state ob-

jects generate PUT-MY-STATE calls. The enablement predicate (:EP, below)

is translated into the appropriate conditionalization, and the input variable

names (:CV) are used to generate the DEPENDS-ON forms. Any "black-box"

functions are simply inserted where they appear.

FUNSTRUX is not a simulation language, and so does not attempt to

capture the semantics of the hardware directly. Instead, it models the seman-

tics of the underlying simulation language, to produce an abstract functional

model which remains faithful to the component-wise simulated behavior of

the circuit.

Event-based Representation of Behavior.

The event-based representation (figure 4) highlights signal transitions. It

details which values will be output by the functional model at any invocation,

conditionalized by which predicates must be true to enable the events. It

captures the implied value transitions, specified implicitly by the program

code, in an explicit, quasi-canonical, easily-manipulable form.

Each event clause represents a conditionalized signal transition at some

port or state object. and so each circuit object's program code potentially

.'W',C , ,-,V. , ,. .,,. ::-' /:," .,',.,;.',:::,'. ':.,,....,','.''.'..'...,..,....', . .: -..- ; - , - .. --. .. - -- . ;- - -. ;.) ,



((EV (:CV (INV TN- INVJNA :EP T)

(:SCHEDULE INV.IN._Q :AT 1.7
:IgUAL-TO
(COND ((-? 1 INV..IN..E)

(VV (NOT INVINA) :DRIVE))
((AND (-? 0 Iv.IN..E)

(NOT (-? 1 INV.IN.E)))
(VV :* :Z))

((AND T A

(NOT (-? 0 INV..IN.E))
(NOT I? 1 INV.II.E)))

(VV :X :DRIVE))

(T NIL))))
(:EV (:CV NIL :EP T)

(:SCHEDULE INVIN.E :AT 0.0
:EQUAL-TO (VV :* :Z)))

(:EV (:CV NIL :EP T)
(:SCHEDULE INV-INA :AT 0.0
:EQUAL-TO (VV :* :Z))))

Figure 4. The events generated for the clocked inverter. The meaning of
each field is described in the text.

generates several event clauses. The idea is that when either the enablement

predicate becomes true or the input variables' values change while the en-

ablement predicate is true, the value assigned to a port or state object is

re-calculated and re-assigned. Accordingly, each event clause defines (where

a variable represents a port or state object value):

0 The enablement predicate (:EP) on whose leading edge the event occurs;

0 A list of the input variable names (:CV) which can trigger the event when

their values change;

* Some variable name (:SCHEDULE) which is the recipient;

* The non-negative delay (:AT) associated with the event;

* A symbolic formula (:EQUAL-TO) for the value.

N
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Equation-based Representation of Behavior.

The equation representation (figure 5) facilitates composition, simplification,

and reasoning about the code. Behavior is described in an algebraic notation,
using temporal operators, which states relationships between port values. This
is useful because algebraic equations can be easily composed, and the time

behavior of components easily chained together and reasoned about.

inv.int2(t) = (cond ((=? 1 inv-in..E(t - 1.7))

(vv (not invin..A(t - 1.7))

* drive))

((=? 0 invin..E(t- 1.7))

(Vv :* :z))

(T (vv : x :drive))))

inv.in.E(t) = (vv : z))

AU- invinA(t) = (vv , z))

Figure 5. The equations generated for the clocked inverter. Each port
is shown as a time-dependent function of the time-varying values of the
other ports. Note the use of forms like COND, which are well-defined
mathematical functions as well as LISP language forms.

We use a continuous model of time, and so there is no "smallest" timestep as

in discrete time models. The specification of the value of a variable (a port or

state object) as a function of time is a timeline. We view devices as mappings

on timelines (1, 191. The -= ("left arrow") operator allows reference to the

most recent time that a condition (predicate) was true [1, 23, 261. Thus

{ (u) (=? I Y(u)) (t -6)

returns the most recent time, u (a formal variable), that Y(u) was equal to

logical one, but prior or equal to the time (t - 6).

'-SNL
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We represent function by LISP-like algebraic expressions involving no

side-eflfect. Thus, a zero-delay inverting D-Flip-Flop could be represented as

Q(t) = (NOT D((4- (u) (=? 1 CLOCK(u)) (t)})).

This says that the value of the output Q(t) is the logical negation of the input

D(u), where u is the most recent time that CLOCK(u) was logical one, but

prior or equal to the time t.

Though this facilitates substitution and composition, much needless re-

dundancy and unused code is introduced by these operations. This results in

a combinatorial explosion in expression size unless simplification is performed

at each step. We have a database of simple, syntactic simplification rules

which are very fast to use. For example, (NOT (NOT X)) simplifies to X.

We also have a reasoner which is capable of time-based logical reasoning

for simplification. For example,

(=? 0 X({4= (u) (=? 1 X(u))(t)})) L..

simplifies to FALSE: because X was not logical zero at the most recent time

that it was logical one.

Equations may be converted to and from event representation. The key

insight for converting events to equations is that a value does not change

between events, so the value at time t is just the value of whichever event

expression has occurred most recently. By constructing a predicate which

indicates when a variable's value last changed, we are able to reason about

the last time an event would have triggered. The key insight for converting

equations to events is that state objects may be created to conditionally delay

the values of inputs to an equation.

There are a number of other issues involved in time-based reasoning,

simplification, and the handling of multiple representations, which cannot be

presented here due to space limitations. Interested readers will find these

discussed more fully in 116].

'1 # • • . d- , € • sr ir , , . • . , . . . ,a .. , ... . . . .. ° . o.%
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AN EXAMPLE.

Consider the simple example shown in figure 2, contrived to demonstrate

the creation of state objects and the collapsing of intermediate structure. For

this example we will model two drive strengths, :DRIVE and :Z. (:Z means

"undriven".) We will model four signal values, 1, 0, :X, and :*. (":*" means

"no-value", and is used to model a high-impedance gate.) The transmitted

signal is a value vector "(vv <value> <drive>)".

The SIMMER (LISP) program code for the clocked inverter functional

model is shown in figure 3. This code is converted to the event representation

as described above. The events are an explicit standardized encoding of the

transitions implicitly specified by the program code, as shown in figure 4. Each

variable name represents a bus port or a state object. Events are described

from the point of view of the circuit object generating them, and represent

its response at any invocation.

Next the event representation is converted to an algebraic temporal equa-

tion-based form, as shown in figure 5. Variables now represent (port or state %s

object) timelines indexed by time-points. Automatic simplification performed

prior to substitution has removed the extraneous clauses (such as "(AND T

.)" in figure 4) introduced by the symbolic execution.

The equations from all the blocks and busses in the circuit are succes-

sively composed, alternating with simplification to reduce the combinatorics

of intermediate forms. The resulting code produced for the example circuit is

in figure 6.

As an experiment in functional abstraction, functional models were writ-

ten for the primitive devices of clocked and unclocked inverters, Nand and _4

Nor gates, non-inverting tri-statable drivers and latches, and a one-bit RAM

cell. These were used to compose SCORE cell library functional models, and

also assembled into a full 2901 bit-slice plus control logic. Table 1 details some

results of abstracting netlist-level circuits (netl) to a single functional model

%.-.r.,',,,-,
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(DEFU PAPER-EIANPLE-FCN (IN OUT EMi)
"generated by conputer from circuit structure-,
(DEPEND-ON1 'NIL 'NIL

(DRIVE-BUS IN SELF '(BIT) (VV : :Z) 0.0))

(DEPEDS-ON 'NIL 'NIL
(DRIVE-BUS EVA SELF '(BIT) (V: :Z) 0.0))

(DEPENDS-ON '(DiA) 'NIL
(COlD ((NOT (LOGZERI (READ-BUS ENA '(BIT))))

(PUT-NY-STATE SELF '(ERA-483)
(R EAD -BUS Eli '(BIT)) 0.0))))

(DEPENDS-ON1 '(DiA 15) 'NIL
(COlD ((NOT (LOOZERO (READ-BUS EVA '(BIT))))

(PUT-NY-STATE SELF '(I1-486)
(READ-BUS IN '(BIT)) 0.0))))

(DEPENDS-ON 'NIL '(MEA-482) (15-484))
(DRIVE-BUS OUT SELF '(BIT)
(VV (COlD ((LOGONE

(GET-NY-STATE SELF '(ERA-482)))
(LOG-NOT

(GET-NY-STATE SELF '(IN-484))))
(T :X))

DRIVE)
0.0))

(DEPENDS-ON 'NIL '((11-485))
(PUT-NY-STATE SELF '(IN-484)

(GET-NY-STATES SELF '(111-485)) 2.7))
(DEPENDS-ON 'NIL 0((EDA-483))
(PUT-NY-STATE SELF '(ENA-482)

(GET-NY-STATE SELF '(ENA-483)) 2.7)))

Figure 6. The program code generated for the example circuit of figure 2.
The clocked inverter delay is 1.7 and the unclocked inverter delay is 0.5,
yieldinig 1.0 for the final unclocked inverter pair. DEPENDS-ON sup-
presses activity unless one of the bus list or state list value. has changed.

(fCal). Simulation data is for identical inputs during the same simulated time

period, running SIMMER on a Symbolics LISP machine. Because the project

goa&s were mainly to demonstrate the concept, not to optimize the perfor-

mance of the code module produced, the data should bo' taken as indicating
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trends only. Even so, the performance improvement is clear and substantial.

Since the functional models were generated only from the structure of

component primitives they are guaranteed to be true to the device as designed;

and since the process can be completed in a day, it is inexpensive and available

quickly.

No. of No. of FUNSTRUX
Circuit Blocks Busses Time

Example of figure 1 (netl) 3 2

(fcnl) 1 0 10 sec.

D-Flip-Flop w/S, R (netl) 7 5

(fcnl) 1 0 85 sec.

2901 OP 1-bit slice (netl) 370 365

(fcnl) 1 0 7 hrs.

SIMMER Events Function

Circuit Time Processed Invocations

Example of figure 1 (netl) 47 sec. 1412 606

(fcnl) 11 sec. 873 413

D-Ffip-Flop w/S, R (netl) 50 sec. 5883 1404

(fcnl) 34 sec. 2432 846

2901 uP 1-bit slice (netl) 1083 sec. 16303 6376

(fcnl) 287 sec. 2055 690

Table 1. Some timing results for netlist (netl) and abstracted (fcnl) cir-
cuits.

DISCUSSION: MULTIPLE PARADIGMS OF FUNCTION

AND BEHAVIOR.

Every attempt to model the real world is necessarily an approximation, and

every approximation rests on a number of underlying assumptions. Let us call

if
S

- ~ ,*Q,~.: z~z~ ~
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the set of assumptions underlying a related group of device functional models,

a "functional paradigm". Often the functional paradigm is imposed by the

execution semantics of the simulator on which the device models are run.

One of the first realizations of our research was the great multiplicity

of distinct, but coherent and conceptually adequate, functional paradigms.

Interactions must be carefully considered to insure that the abstract func-

tional model produced is functionally equivalent to the behavior of the circuit

components in the simulator. For example, many different bus models have

been proposed: global variable, wired OR, RC tree, uni-/bi-directiona trans-

mission line, delay line, and many others. The choice of bus model must be

consistent with the underlying simulator semantics, and the device models

must be consistent with both of these. The process of functional abstraction

must be consistent with all three simultaneously. Examples of other points to

consider include:

* The notion of "function" can be understood in several ways.

* Time might be modeled as continuous (infinitely divisible) or as discrete

(some minimum time-step size).

* The handling of values at the endpoints of intervals on timelines might

adopt a convention of (a, b], or [a, b), or simply encode the transition in

the instantaneous value. (In FUNSTRUX, the event representation uses

a [a, b) formalism and the equation representation uses a (a, b] formalism,

to facilitate manipulation.)

9 There are several different ways that future (pending) event en-/dequeual

might be handled.

• Zero-delay elements can be modeled in any of several ways; they have no

physical reality, but are often convenient.

% There are several rational ways that appropriate state objects could be

inferred.

% Ports and signal flow can be unidirectional or bidirectional.
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Signals might model the signal value only, or value plus drive strength,

or some other combination.

This list is indicative rather than exhaustive. The point is that there are

several closely-related but alternative functional paradigms, each internally

coherent, and each consistent with different underlying simulator behavior.

SHORT-COMINGS, LIMITATIONS, AND FUTURE WORK.

Zero-delay loops in the circuit become ill-constrained, because a component's

behavior can then conceptually contribute to determining its own behavior.

Currently we disallow all zero-delay loops (as do most simulators). Also, in

the case of a pass transistor network (passive steering logic) we currently do

not correctly model global network properties such as drive strength. This

situation does not arise in the standard-cell circuits we considered. The re-

strictions we imposed on the class of circuits considered are:

* Busses connect only to blocks.

0 Busses change state only when directly driven by a block.

* Zero-delay loops are disallowed (this excludes zero-delay bidirectional el-

ements as a special case).

Extensions beyond this restricted case are a very challenging open problem

for future research.

The creation of state objects is still rather unsatisfactory. We have

explored dependency-graph analysis methods, simulated annealing, Markov

walks, and more ad hoc approaches. All tend to result in the creation of more

state objects than strictly necessary. Optimal state object creation is more

general than the problem of deleting the minimum number of graph nodes to

break all feedback cycles, which is known to be computationally intractable (it

reduces to Feedback Vertex Set [12]). So are the subsidiary problems of iden-

tifying the node through which the most simple cycles pass, or even counting

how many distinct simple cycles pass through a given node (both reduce to



16

Kth Shortest Path [13]). Perhaps a careful analysis of how human designers

allocate state objects, or an approach like "plunking" [7], would lead to a

better algorithm.

The code produced has not been optimized for human readability, but

rather is organized in a way that reflects the functional composition. This is

undesirable because we would like to be able to easily inspect the higher-level

code produced in order to help debug faulty circuit designs.

Because a fundamental aspect of this work is that it abstracts function-

ality directly from the structure of the circuit, it can not be used to produce a

functional model of a circuit until after the circuit structure has been designed.

However, if a top-down circuit design methodology is employed intermediate

functional models could be abstracted from intermediate-level components.

We have not yet incorporated error detection and exception reporting

mechanisms. This could easily be done by including dummy components

("monitors") in the circuit, connected to the signals to be checked, with a

functional model which called some function to check the signals and re-

port as appropriate. Because FUNSTRUX simply passes unknown functional

forms directly through as a "black box", any such special-purpose error func-

tions would simply be composed with the overall abstract functional model,

whenever they were encountered in the circuit.

This work is, of course, preliminary. Future work will involve trying to ex-

tend the abstraction mechanisms reported here to encompass a wider range of

functional simulation languages. We intend to attempt at least one commer-

cial (production-quality) functional simulator, and to automatically generate

simulator models for it from primitive elements. We would like to recognize

higher-level roles from low-level implementations. For example, FUNSTRUX

will correctly compose the functional models of the components of an adder

to produce a higher-level model which correctly models the adder, bitwise,

but cannot recognize that a simple integer "+" could be directly substituted.

N
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Another desirable area would be the ability to incorporate simplifying as-

sumptions about the surrounding circuitry or signals.

RELATED WORK.

The critical need to verify the functional correctness of complex designs is

well known. Simulation is an important part of practical correctness verifica-

tion, so much so that there are over 100 languages for simulation and behavior

[9]. Several companies produce functional simulation models commercially [4,

17]. Various temporal-based systems attempt to capture the time behavior

of circuits using logical axioms or equations [1, 18, 23, 25, 26]. Schwartz

and colleagues [25, 26] used the 4= temporal operator to reason about com-

munication protocols. Hunt and Moore (18] used temporal logic to verify a

microprocessor. Amblard et al. [1] proposed an equivalent representation to

our equations for reasoning about circuits, but did not implement the method

and did not relate it to simulation. Meinen [23] used a notation similar to

our enablement predicate (:EP), showed that every group of edge-controlled

transfers can be written as a group of interval-controlled transfers and vice

versa, and proposed that an event-based simulation could be automatically

constructed from an extracted circuit. To our knowledge, however, our work

is the first to produce executable functional model program code for a circuit

automatically from the executable program code of the circuit components.

This research also contributes to systems which try to understand how

circuits work. It is a start at understanding the analytical knowledge necessary

to complement Hall's work on learning [14, 15]. Kelly and Steinberg [19]

explored functional composition using timelines. Mitchell [24] showed how a

functional explanation could be used to learn design rules in a design grammar.

Sussman [28] advanced the notion of multiple representations of sub-circuits

and components.

Several hardware diagnostic systems have combined structure and func-

tion [6, 8]. These systems are usually directed at the board level rather than

4AL
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VLSI circuits. Shirley 127] used structure and behavior information to design

tests for VLSI. Darlington [5] used a transformational approach to optimizing

program code which is conceptually similar to our syntactic simplifications.

SUMMARY AND CONCLUSIONS.

The behavior of a circuit is implicit in the behavior of its parts and their

structural connections. We have investigated the abstraction of function from

structure in VLSI, and mapped out a mechanism for doing this with one

functional simulator. A LISP prototype (FUNSTRUX) was implemented to

experimentally investigate this possibility. Input is the program code for the

functional models of the circuit components, together with a netlist-like de-

scription of their connectivity. Output is the program code for a single func-

tional model of the circuit as a whole. FUNSTRUX was used to automatically

create SIMMER functional models for the SCORE standard cell library. We

also used FUNSTRUX to generate a functional model for a 2901 micropro- A

cessor 1-bit slice plus control.

Some of the key points in this functional model abstraction process in-

clude:

* Knowledge about behavior and time is encoded in specialized represen-

tations suitable for specialized manipulations: in LISP code, in algebraic

temporal equations, and in an event formalism.

* Program code semantics are encoded by the translation to and from the

event formalism.

* The event formalism makes explicit and manipulable the signal transi-

tions implicit in the program code.

* Temporal operators and equations facilitate substitution and composi-

tion, as well as reasoning about time dependencies.

• A rule-based system is used for simplification of expressions, which can

be easily customized for specialized syntax.

• * .%*

"."-
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* Unknown forms and procedures inserted in the code are treated according

to the semantics of pure LISP, easily accommodating special-purpose

functions written by a designer.

* State objects and accessors are inferred as necessary.

* Dependency analysis allows conditionalized suppression of simulator ac-

tivity unless values may have changed.

We hope that this approach captures important features of many event-driven

simulation models, and so will be reasonably general as we go to other sim-

ulators/languages. Ideally, a wide variety of event-driven simulators will be

expressible in an event notation in a way that is largely independent of partic-

ular coding conventions of particular programmatic function-describing lan-

guages and simulators. This would permit much of the system machinery

to be re-targeted at a new simulator by simply re-writing the code-based to

event-based translator, rather than redeveloping a whole new system.
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