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I. INTROUCTION

7be quality of tomographic images reconstructed from sparse data sets
usually suffers from the presence of artifacts, fuzziness and a loss of
resolution. Sparse data problems arise typically in situations uhere only a few
views are aailable, vhere there is an angular restriction in taking the data,
or where the object of interest is partly obstructed.

Previous attempts at sparse data reconstructions1 have net with varying
degrees of success. Here w present a new algorithm based on the maximmn

2
entropy formalism and formulated as a constrained optimization problem whir-h
is solved by a finite element method. The results show encouraging iaproement
over conuentional sptrse data reconstructions. In particular. the MEIT

2
algorithm of Iinerbo requires that the input density data "falls-off" to zero
tovards the edges of the target grid. The present nethod has no such
restriction on the input data. Of course, in practice, the MENT restriction
heans that the x-ray sources and detector arrays must be pulled back, away from
the object of interest, so that the object is surrounded by sone nedium of
know.n density. This known background density way then be subtracted from the
actual measured data, resulting in modified data indicating zero density near
the edges. Naturally, there is a physical restriction resulting from this
mathe~mtical "edge condition". That is, given a fixed scanning installation,
the MENT algorithm 7ay only be used to reconstruct density profiles of objects
whose size is somewhat snller than that 4iich the machinery itself would
otherwise permit. This restriction becomes particularly severe, then, in the
case of industrial tomography, uhere the objects of interest are already rather
large.

Computational experience at this laboratory and elsewiere has denunstrated
that in cases where data is sparse, i.e. where femer than 180 views are
auailable or 4khere the hunter of detectors per view are less than 100, filtered
backprojection, the algorithm of choice for modern CAT scanners, produces an
image inferior in quality to that obtainable from Mnxiunum entropy. The
explanation seems to revolve around the built-in smuothing of the entropy
approach which was developed on ideas based on Shannon's infornation theory.

In this study the maxinum entropy nethod is reformulated and coupled with
a finite element approach. This new algorithm is described in the second
chapter follow.ed by several examples. An exanple of an object with nonzero
density near the edge of the target grid has been included. We denunstrate both
the MENT reconstruction of this image (which is thoroughly unrecognizable) and
the reconstruction by our new algorithm, using the sae measured input data
The concluding chapter discusses the results. The Appendix lists the computer
program which was developed for this work.

1A.K. Louis, "Afpproximation of the Radon Transform from Samples in Limited
Range." in Lecture Notes in Mdical Informatics, Vol. 8, pp.127-139, 1981.
2G. Minerbo, "A Maximum Entropy Algorithm for Reconstructing a Source from

Projection Data." Comp. Graph. Image Proc. Vol. 10, pp.48-68, 1979.
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II. THE ALORITHM

Computed tonmgraphy enables the determination of density cross-sections of
slices of an object in the plane of a radiation source from the recorded

absorption levels of the transmitted radiation. From the early work of Radon
3

vx know that the problem can be formulated mathemtically as an inverse problem
and a unique solution, i.e. a reconstructed image is guaranteed when data from
an infinite number of vieus is available. If only a finite number of viewis are
available, mathematically the problem becomes ill posed and small changes, i.e.
discrepancies, are amplified leading to inaccurate image representation.

Techniques have been developed, however, to overcome this problem and to
obtain e xcellent images. Of course, image quality also improves with an
increase in the nutmber of views. In this study me look at the case of 21 views
with at least 50 detectors per view. The problem of well posedness, existence,

4uniqueness of our formulation are dealt with in an accompanying report . Here
we present a new algorithm for the reconstruction of the image which for sparse
data sets yields fewer artifacts than conventional approaches.

B. General Formulation

Central to the idea of tonographic reconstruction, given a radiation
source, a detection system and an object placed in the path of the radiation,
(see Fig. la) is thim. fact that data is obtained as a set of integrals. Thus,
let f(x,y) be the x-ray attenuation at a point (x,y) in the plane. Measured
data, G , is available in the form

G. = S m(f) = jm+l r00 rf(s cos 8 - t sin B., s sin B. + t cos B.) dtds
jmm,.m

m = I,...mj); j = l,...J, (1)

where J is the number of projections and m(j) the number of detectors for the
j-th view and & is the scan angle.

2The object of interest lies in a finite region M3 contained :. R .The
entropy of the image can be defined as

3J. Radon, "Ueber die Bestinvmz von Funktionen dutch thre Inteqralwerte laengs
gewisser !annigfaltigkeiten.'" Ber. Verh. Saechs. Rkad. Wiss. Leipzig, Math.
Phys. K1. Vol. 69, pp. 262-277, 1917.

4R.T. Smith, C.K. Zoltani, "An Application of the Finite Element Method to
Maxium Entropy Tonmgraphic Image Reconstruction." ERL Report (in
preparation ).
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17(f) =-fill fr(x'y)j I r (nf(xiy) fi dxdy (2)

vbhere A is the area of M3 and £ E £2 (M), the set of square integrable functions

in 23, i.e.

2

,%,f < h .

Detviating from prev.ious approaches, instead of maximizing the entropy with
the measured values as constraints, we minimize minus the entropy plus a

penalty term subject to some known, a priori bounds. That is, f can be

determined as the solution of the constrained optimization problem

inf Ef ) : in£ -Rif) + V (G jm- S jm(f)) 2  (4)

f E E f E Z j,m

.4kwere the constraints set E is defined as

2' 2

= E f 2 ( M2 ): a f _ b, and f = 0 in R \ Z) (5)

where we usually require a ) 0 and b ( o.

S21
From the theory of penalty fuitions, we know that if ue take E = M) ,3

then as v-4 ca, the solution of the unconstrained minimization problem conterges

2
to the solution of the equality constrained problem solved by Minerbo
By taking a sufficiently large value of the penalty paraneter Y, the residual

2
error, (G - M) can be nude sufficiently swall to achie,.e th,* de-.irpd

fidelity in the reconstructed image. In practice, of course, the alues of GJm

are degraded by noise and me wish only to obtain a total residual error within

some tolerance determined by the known accuracy of the masureents. Also, we
have incltded a priori information in the problem formulation, by choosin.j a
and b so that the attenuation lies within sone knovhi physical limits.'

8.'
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The solution of (4) can be approximated by solvling the problem in a finite

dimensional subspaoe of 2( M ), S h Let (+,(X),...,(X) be a basis h

and for any c = (c1 ,c2 1..,cn ) in elet

n

rl 2 ciX(). (6)
i=l

It is shoun in [4] that, for a certain class of approxinting subspaces

(inciuding the one used in the present mrk), the solution of (4) out of Sh

con._eryes to the solution of the infinite diensiunal optimization problem, as
i tends to zero. Precise estimates of the deviation of the reonstructed inge
from that of the true phantom are out of xhe question at this tine, as an
analytic relationship between the n ix., entropy solution and the true ine.ue
i s tkno.-n.

Thv finite dimensional constrained optimization problem then, is to
determine f .hich minimizes

c

E(C ) ()c.. (G,.- S.( c~hl_ ., ( jm - S.j,( J if)) ( )

s Lbject to

a i i(m) <- b, for ,ll x E T and. a j 0.

To solve this nonlinear, convex programming problem, a Lnifort o sh i
superinposed on the region 7) with step size h in both coordinate d.rections. k
product of piecewise linear funotions, 4.j(x,y),

S= ((x)CF(y, -

'ki ,y) =i )4'i j(y), i .... 1 8)

is used as a basis for Sh . Here, +i denotes the usual linear finite elenent

basis funotion

0, if it ! xi-I or x i+l

'i(X) = (x - X -,)/h if x,-, x x (9)

(xi+,- x)/h if x, . x - F.

I0
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i..
,here x. = ih. %

For conveniences, me 'rite

=(HY) = 4i(x)4(y), k i + - 1)m, (10)

then

X,

f~,y)k=i

-,-iere 11 - ,

kvt inrj the compact suppcrt of the . t can he sho., that

a £ (x,y) <. b for all (x,Y) T

it and only if a _c < b, for all k = ,.. M.
k_

The optimization problem reduces to one .ith linear ineqLualify
constraints, i.e. determine c %4hich minimizes

E(fC) = -R(f) + y 3jm s( f) ((11

j ,

sub~ject to a - c k . b, k= ,..

TThe problem then is to calculate the ,ector c (c1 ,.. .cM) for given ,,altes of

Y, a and b.

5 .

For the optimization step of the algorithm we used MINOS , a FORTRAN code
developed for constrained optimization problems. The user supplies the function
to be optimized, the constraints and some ancillary files.

The calculation proceeds as follows: a preprocessor program (see Fig. 2a)
reads the number of nodes in the vesh geometry, the number of projection angles

5B.A. Murtagh, NI.A. Saunders, "MINOS 5.0 User's Guide." Systems Optimization
Laboratory, Department of Operations Research, Technical Report SOL 8320,
Stanford University, Stanford, CA, December, 1983.
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and their values (the ANG.DIT file), and the ntnber of detectors for each
projection angle (view). The preprocessor creates a weights file SJN.DT, ,11ich
indicates the contribution of each particular finite element (geometry cell) to
each detector at each angle.

The wmain program is the optimizing routine MINOS (see Fig. 2b). A first
guess at the coefficients ck is read into MINOS. On the first pass through, the

subroutine FUNOBJ reads the neasurements file GJM.DAT, which contains the
attenuation values indicating how nuch of the incident beam ws absorbed by its
traverse through the target. These measurements values are scaled such that the
maximum attenuation is set to 1.0. On each successive iteration, FUNOWU
accesses the weights file SJM.DAT in its calculation of the entropy ENT for the
present values of the coefficients ck and the terms

M

EH(k) = I{fv XiY) in[ ck4kjx,y)] dxdy (12)

M k=l

w'hich are used in conputing the gradient of the object function. For the

quadrature of the equation (12) the adaptive grid routine QUPMCB6 ws used.

With the value of ENIT and E4(k), FRNOBJ will compute the vralues of the object
function F(c) and the gradient ftction G where

F(c) = - ( Ck4(x,y)) + YQ [G.- ckSJm(4k)]2

k=1 j,m k=l

and

G(c) = V F(c) = k (h2 + k(x,y) ln[ck0(xy)] ddy
k=1 Ekk=k--, k--i

- 2Y [Gjm-., CkSjm(,)]Sjm(+k) (14)

jm k=l

6 G.E. Forsythe, N .A. Malcolm, C.B. Mbler, Conputer Methods for Matheaetical

oIjutations, Prentice Hall, 1977.

12
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MINOS
MAIN GJM DAT

PROGRAM MEASUREMENT

EFILE

FILE MINOS

OPTIMIZATION - FUNOBJ

SJM DAT

WE I GHT-
FUNCTION VALUE F FEI

COEFFICIENTS Ck

SPREPROCESSOR GEOMETRY
ANG DAT MAIN INPUT

PROGRAM

F SJM DAT

Figure 2. Flow Chart of the Algorithm
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%Eov ek is the k-th unit vector, i.e. ek = (0 ,0,...1....0 )T a E is the

support of the k-th basis ftnction, 4k(x,y). The values of F and G are then

passed back to KINDS for the next step in the optimization. The value of the
penalty parameter Y is problem dependent and some experimentation is needed to

determine the best value.
7

The solution can be nude arbitrarily close to the optimal solution by choosing
a large enough value for V. An analytical method for determining the optimal
penalty is not available. Also, some caution needs to be exercised in picking
the value to avoid ill-conditioning or slow convergence. In this problem the
penalty parameter was increased gradually and it was found that Y = 75 yielded
the best result, i.e. the smllest error in the reconstruction.

III. IMLE2M]TATICK OF TIE TEMIQUE

A. Mthematical Phantoms

The co-#After code GOLEP? was used to generate the x-ray absorption data
from natheutical phantoms for input to the reconstruction algorithm. For this
study, three examples were generated, assuming a parallel mode of scanning,
using a technique described in Ref. 8. Physically, the target objects are
placed betwen a source of monochromatic parallel beam x-rays and a straight
line of detectors perpendicular to the x-ray transmission. For each of the
examples, the phantom were set within a square target grid of 30 unit cells on
each side. The x-ray source was placed 69 units from the center of the target
grid. A line of 25 detectors was placed 16 units from the center of the target
grid, opposite the x-ray source. Data ws produced from five projection angles
equally spaced around the target. A square reconstruction grid of 30 unit cells
on each side spans the width of the 25 detector bins.

The first phantom consisted of a tube 6 units in dia t" , with unit
density on a 0.1 density background, whose center ws placed on the axis of the
field of scan. For the second sample problem, three identical, solid cylinders
were placed at arbitrary positions within the target area. In the third
problem, a solid cylinder was placed inside a thick-walled hollow cylinder,
with both cylinders centered at the target origin. For all the examples, the
cylinders wre given a density of I while the remainder of the target grid was
assigned a backgroumd density of 0.1. A cross-sectional view of the sample
problems is given in Figure 1.

7?.S. Bazaraa, C.H. Shetty, Nonlinear Progranming, John Wiley, New York, 1979.
8N.D. Altschuler, T. Chang, A. Chu, -Rapid Computer Generation of Three
Dinunsional Phantoms and Their Cone Beam X-Ray Projections." Medical Imge
Processing Grot-, Technical Report No. MIPG 16, State University of New York at
iffalo, Noventer 1978.
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B. Results

The sample phantoms were reconstructed using our new algorithm and then
coiwpared with the results of the currently preferred sparse data technique

PENT2 . Figure 4a shows the reconstructed density plot of the first example
using the new technique, while the adjoining Figure 4b illustrates tIe MEKr
results for the sane problem. These figures are both three-dimensional grid
representations of the reconstructed density (with hidden lines removed). The
31x31 grid used for the reconstruction (the actual finite element grid
for Figure 4a) is shown in the middle of the 51x51 grid, with points outside
the 3131 grid being given density zero. One should note the high degree of
correspondence between the reconstructions of Figures 4a and 4b.

Figure 5a gives the reconstructed density plot of the second exanple. The
three solid cylinders of unit density stand out vividly against an undulating
background of density 0.1. The five projection angles can be picked out as the
"ridges" or "humps" which stretch through the object space in Figure 5a. One
should notice from Figure 3b that one of the three cylinders is rather close to
the edge of the target grid. The MT algorithm has difficulty with nonzero
density near edges. In Figure 5b one can see the MM]XT reconstruction of the
second sample problem using the sane projection data as that used in Figure 5a.
Of course, the reconstruction is conpletely unrecognizable. In Figure 5c me
demonstrate the results of a IENT run in which the data from the three cylinder
geometry case is reconstructed in a larger area (a 51 x 51 grid). Mtving the
cylinders away from the edge of the reconstruction grid allows the MM T code to
smooth its results to zero at the boundaries of the reconstruction grid. In
particular, the PENT algorithm artificially forces the density to zero near the
edges of the target grid, while the new method correctly shows a nonzero
lens i ty.

The results for the third sample problem are given in Figures 6 and 7.
Figure 6 gives density surface plots, comparing the new algorithm with 12,IT.
Finally in Figure 7, a vertical slice through the center of the density plot is
shown for both methods. In this case, note that there is very good agreement
between the two methods. However, as with the second example, MET has forced
the density to zero near the edges.

The new algorithm was run on the CRAY EM112 computer at the Naval
Research Laboratory in Washington, DC. The results shown were obtained using
approximately 100 iterations of the MINOS optimization code and required
approximately 10 minutes of cpu tine. The MENT algorithm was run on the CDC
CYBEX 70/76 computer at the Ballistic Research Laboratory, Aberdeen Proving
Ground, MV. These results required only a few seconds of cpu time.

Although the new method requires substantially more computer time and
memory than the IT algorithm, we believe that it still represents a
significant advanoe. Very sparse data is all that is available in many
industrial applications. One can employ no nthevatical trickery to change this
fact. In some of these cases, mhere the data fails to fall off to zero near the
edges, the currently preferred method MEWT will not produce an even remotely
recognizable reconstruction. Our new algorithm has removed this "edge
condition" restriction and although a costly process (in terms of computer
tine), it will yield a reasonable reconstruction. We believe that the computer

15
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tine and vemory requirements may be redtued by developing mre efficient codes
for the computation of the cost functional and gradient terms in (13) and (14)
and possibly by the developnent of a customized optimization routine.

a. Sawple Problem One.
xc yC rad density

background 0.0 0.0 15.0 0.1
1 0.0 0.0 3.0 1.0

'C.

a..

b. Sanple Problem Tuo c. Sanple Problem Three
xc yc rad density xc yc rad density

background 0.0 0.0 15.0 0.1 background 0.0 0.0 15.0 0.1
1 -7.0 -7.0 3.6 1.0 1 0.0 0.0 2.0 1.0
2 0.0 10.7 3.6 1.0 2 0.0 0.0 5-8.0 1.0
3 7.2 0.0 3.6 1.0 ".

Figtrwe 3.a. Object Geonetry Sanple Problem One
b. Object Geometry Saiiple Problem Tun
c. Object Geonetry Sample Problem Three
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b.

Figure 4. a. Saiple Problem One: 3D Density Plot using FEM Code
b. MW Results from the Sane Data

17
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a. b.

16

ca

Figure 5. a. Sawple Problem Nuwler TuD: 30) Density Plot Using FE11E Code
b. PEXT Results
c. IMX1' Results with Edge of' Object Displaced from Edge of

Computatijonal (kid
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a.

b.

Fiqii'e 6.a. Density Surface Plot, Problem Three: FE2E Results
b. Density Surface Plot, Problem Thre. IIXT Results
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APPE )DIX

A listing of the conputer code follows. Note that the MINOS subroutirwe arr= not
ircluded.
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SUB&ROUTINE RJNOBJ (MODE, N, C, F, (0, NSTATE, NPROB, Z , NWCORE)
C
C THIS SUEPROC3RAI WILL COfI'UTIE THE OBJECT FUNCTION4 (F)
C AMD ITS GRRIENT (G(K)) CORRESPONDING TO niE CURRENT
c ViPUES; OF THE COEFFICIENTS, C(E) COM PUTED BY MIINOS,
C
C THESE VAiLUES ARE TIEN4 PASSM BACK TO MIE TO
C CONTINUE THE OPTIMIZATION PRC2ESS.
C
C

LOGICAL FIR~ST
DATA FIRST/.TRUE../
.WRIE(6,37)

37 IFORIMAT(, THE COEFFICIENTE C(IE)l)
WRIITE(6,35) (C(INDEX),INDEM:A1,289)

3 5 FORMAT (I7F?. 3)
IF (FIRST) THEN

UaRITE(6, 22)
22 FORIMT(' PERFORM1ING SEI7-IIP OPLIATIONS IN FUNOBLT')

OPEN (4, F ILE-~ 'SJE)AT" , AiCCESqS= I'SEQUENITIAL I, FGRM ='l-WF0Pl~l JTE11"J
READ (4) SJII)AT
OP'EN~ (7, FILE='IoJr'vAr)
REWJI D (7)

Jn=5
IHD=(2*t4+I )**12
H=' ./4

N = NU13E OF GRID POINTS ON EITHER SIDE OF THE ORIGIN
C M1 NU?13E OF PROJECTION STRIPS
c J = THE NU1E OF PROJECTION ANGLES, I.F. #$ OF UIIW.
C IND!) NUMBE OF FINITE ELEMENTS
C H = M~ESH WIDTH
C
C THE GJII(N)'S ARE THE IMEASUREM'ENS OF THE J{-Rk.Y TNTIIJUITY.
C THESE MRE STORED IN THE FILE GJMi.DAT.

DO 492 JJA=I,Jfi
DO 492 !I,fl

492 READ(7,493) ciJI((JJh-I)*Htdm)
493 FORM'T(El.5.3)

CLOSE (7, STWIUTS='DELErE')
I.IITE(6,38)

38 FORMAT(' THE ?lERSUREl]fT FILE')
DO 33 Ni=i,I1

495 FOfIMUT(P5EI5.3)



C R EN ANM ABSER AIRE THE RtELATIVE AND ABSOLUTE
C ERRORS ALLOIED IN THE NWMICfLt IMECIATIONS
C

RELERR=5E-6
ABmRR8.

C
C GAHM~ IS THE PENALTY PARAIE1M.
C FOR CONVERENCE TO THE MIIlUD ENTROPY SOUTIONI,
C W~E NE TO TOKE A SEQUENDCE OF VALUES OF GAMi
C TENDING TO INFINITY, OR TAKE A SUFFICIENTLY LAR(E VAUE
C OF C"M~ SO 'I1MT THE RESIDUAL, RES IS SUFFICIENiLY SMU,~.

GffM=50. 8

FIRMT=. FALSE.
URIITE(6, 24)

24 FuraIw(l FINISHED WI1TH SET-UP PROCEDURES IN FRNOBJ )

ENDIF

CA.LL EKM(EN,rff,N,RELERR,ABSMN,C)
C THE SUEKXTIIE ENTR COWU7TES THE VAUES OF THE ENTRPY
C TERM~ EN(K) AMD THE ENROPY O~ff FOM TE CURRENTr VALUES OF C (K)

RES-0. JA1

DO 420 T8 IJ
DO 420 11=1,?! '

SULp.
DO 410 K=1, IND

JJ = (K-1)*M'I(JTA-1)*IND.N.III
32 FIOR'T(l JJ=',Ilo)

C
C 1MII. FOR COWUrlES ThE VAUES OF SJi'( K), Bir STORES 7hESE
C VALUES IN SJM.DAT IN A DIFFRET ORdER FROMI THAT IN IIIICH
C MEY MST BE ACESSED BY FUN. JJ GIVES TIE DESIRED RECORD
C MUMER IN TIE DIRECT ACCESS FILE SJ1I.IRT.
C
410 SUrxSWI+C (I) *SJNJAT ( JJ)
420 RES=M4(GN( (JTA-1, *M4I')-SUI')**2
C
C RSIS TME RESIDUAL ERRORt IN METFING ThE MAURDENEh.
C

F - -ENT + GAMI*RE
IEITE(6, 34) FENT,E

34 FOR1IT Fzl,E14.5,1 Dff=',E14.5,' RES=',E14.5)
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c "MIS SECTION COMPUTES THE GRIADIENT TERM?

DO 440 K=1, IND

DO 460 JTA=1,Jfi
DO 460 11=1,11

sumo0.
DO 450 KI=1,IND

450 SUII=SUN4C(KI )*SJWMAT(JJ)
J2=(K-1 )*N.(JTA-I ).INDWII+J

460 SU2=-SU2I'(GM( (J'rA-1 )*nm) -SUII)*SJIAT(J2)
440 G(K) =-H*HW(1.+ALAJG(4.)) +EH(R)-2.*GAlt1ft*SU2

RETURN
C

8W0 PRINT M~ERRO/FUNOlOJ - ElF ON UNIT 4'
STOP

810 PRINT *,'ERROR/FUNtO6J - ERR ON UNIT 4'
PRINT 9 'IOSTAT ',IGNUJI

STOP

SUBRUTINE ETRm(EH,ENr,N,RaEER,ABSEHR,C)
C
C NUISRICAL COMPUTAT ION OF ENTRIOPY TEMZ

DI1MEION C(*) ,EN(*)
IND--(2*N+I )**2

C
C IND GIVES THE NUIE OF FINITE ELUMX~ IN THE GRID

DO 50 K=1,IND
L-( (K-I)/(2*N+I) )-N
I=K-(L+N).*(2*N+1 )-N-I

C
C I*H AND L*H GIVE THE X AND Y COORDINATES5 OF THE
C CENROID OF 'HE FINITE ELEMET, RESPECTIVEL-Y

C C011PUflE ENTROPY QUADRANF-BY-QUADRANT

C INITIALIZE EN7thOPY

EN (K) = 0.
ENT = 0.

C ENT IS 'THE ENTFROPY. EX(K) IS THE CONTRmIBUTION
C TO THE ENROPY FROMI THE MT FINITE EaEET
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C FIRST QUJADRANTI
C

IF (I.EXQ.N.OR.L.EXQ.N) GOTO 60
CALL QUAD(N,1, L, C, K,ANREfLR, ABSEIR, 1)
EN (K) = EN (K)+AiN

C SECOND QUADRANMT

60IF (I.ExQ.-H.oII.L.ExQ.N) WM~ 70
CALL QURD(N,I,LC,K,AN,RELERR,ABSER,2)
EN(K) = EN4(K)+AN

C
C THIRD QUADRANT
C
70 IF (I.ErQ.-H.OR.L..EQ.-N) Wro 90

CALL QUAD(N, I,L,C,E,AN,RELEiIR,ABSEER,3)
EII(I) = EN(K)+AN

C FOURTH QUJADRANT

Be IF (I.E.N.OR.L.EX).-N) OTO 90

CALL QIJAD(N,I,L,C,K,AN,REMflR,ASEIR,4)

90 ENT = Bff+C(IC)*EN(H)
50 CONTINUE

RETURN
END

C FUNCTION SUBPROGRAM FOR INTEGRAND

FUNCTION RW(X,J,I,K,N,C,H)
DIIPEION C(*)
IF (J.EQ.l.OA.J.EQ.4) GOTO 210
F=X-(I-1. )*H
GOTO 220

210 F=(I+1.)*H-X
C
C 771E VaLUE OF J WILL DVEMINE MlICH QUAiDRANT OF THE
C FINITE ELEMT W.E ARE LOOKING AiT.

* 220 IF (J.EX?.1) GUMO 230
* IF (J..EQ.2) W30T 240

IF (J.EQ.3) GMlD 250
GOTO 260

230 AJ= (C(K+N.I)-C(K+1))*(X-I*H)+(C(K+N)-C(K))*((I+1.)*H-X)
CJ =C(K+1)*(X-I*H)+C(K)*((I+1. )*H-X)
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OGM 300
240 AJ = (C(K+N-1)-.C(K-1))*(I*H-X)+(C(K+t4)-C(Iq)*(X-(I-I.)*H)

CJ = C(K-1)*(I*H-X)+C(K)*(X-(I-1. )*H)
00TO 368

250 AT - (C(K-N-1)-C(K-1))*(I*H-X)*(C(K-N)-C(K))*(X-(I-1.)*H)
CJ = C(K-1)*(I*H-X).C(K)*(X-(I-1. )*H)
Gum 380

260 AJ = ((-+)CKI)(-*)((-)CK)(II)HK
CJ = C(K+1 )*(X-I*H)+C(K)*( (1..)*H-.X)

360 IF (nJ.ExQ.0.) GOTO 310
IF (n96(AJ).LT.IE-6) uar 310
BJ=AJI'CJ
G = BWBJ*OG(BJ)/(2.*AJ*J)-CJ.(AJ+J)LOG(CJ)/(2.*AJ*AJ)

D -CJ/(2.*AJ)
(UMT 320

310 G .?5 + .*L0G(CJ)
320 FN =F G

RETUJRN

C

SUEBOtfFINE QIJAD(N, I,L,C,K,AN,RERR,ABSERR,J)
C
C QUAD SlETS UP TH PARWIMS FOR THE MRIERICAL QIUADRATURE
C QUANC8 PERWflR1 AN 8-POINT ADAPTIVE GID QARATURE.

H=1 . /N
IF (J.EXQ.1.OR.J.EQ.4) MMT 110
A = (I-1.)*H
B = 1*11
GOuM 115

110 A =I*H
B = (I+1.)*Hl

115 CALL QUAWc8(A, B, ABSERR,RaFERR, RESULT, RET,OFU. FLAG,
D J,I,K,NC,H)
IF (FlA4G.NE.O.) IEIITE(*,2) FL.AG

2 FORMA~T (48H WIIMNG..RESULT MY BE UMEELIAE. FLAG = FG.2)
AN = RESULT.(H*H/4. )*(LOG(4. )-LOG(H))-3.*HNH/8R.
RETUJRN
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C
C SUBPROGRAM FOR ADAPTIVE GRID QUAIRA11RE
C

SUBROUTINE QUJANC8(A, B, ABSRR, RER, RESULT, E2REST, NOTN, FLAG,
D J,1, K,H, C, H)

C
C

LEVNIN= 1

LEVCITr=6

NOFIN=NOflX-8* (LEV!MZ-LEVOIJF+2** (LEVOUT+1))
C

WD2=3956./14175.
15=23552./14175.
W2=-3712. /14175.
W=41984. /14175.
W4=-18160./14175.

C
C

FLAG=.
RESULT=.
CORI I --.

AREA=0.
NOFIJN=0-

IF (A. EX?.B) RETURN

LEV=0O
NIN--I

X(16)=B S
QFREV=-0.
F=R4(X0, J, 1, K, N,C, H)
STORE= (B-A) /16.

X(4)=(XO+X(8) )/2.
X( 12)=(X(B)+X( 16) )/2.
X(2)=(XG+X(4) )/2.
X(6)=(X(4)+X(9) )/2.
X(Ie)=(X(S)+X(12) )/2.
X(14)=(X(12)+X(16) )/2.
DO 25 JT=2,16,2

25 F(JT)=FN(X(JT),J,I,E,N,C,H)
dOFlrN=9
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C
30 X(1)=(XO+X(2))/2.

F(1) =FN(X(1), J,1, K, N,C, H)
M) 35 JP=3,15,2

X(JP) = (X(JP-1)+X(JP+1))/2.
35 F(JP)=FN(X(JP)gJ,I,KNgCH)

NO=OFJN+8
STEP=(X( 16)-XO)/16.
QLE~T=(IWO(Fe4F(8) )+WI*(F(1)+F(7) )+12*(F(2)+F(6))
D +U3*(F(3)+F(5))+U4*F(4))*STEP
QRIGHr(LEV+1)=(De(F(8)+F(16) )+UI*(F(9)fF(15))+W2*(F(10)+F(i4))
D +W3*(F(11)+F(13))+Wq*F(12))*STEP
QNoW=-QLEr+QfLIGHT(LEV+ 1)
QIFF--QNou-qPEV
PMRA=AREA+QDIFF

C
C

EMMI=AMS(QDIFF) /1023.
TOLER=iMXI (flBSERR, R MMR*AES (AREM))* (STEP/STON)
IF (LE.V.LT.LEVffN) WMT 50
IF (LEV.G.LEVMtX) WD 62
IF (NOFUN.Gr.NOFIN) WMT 60
IF (ESTEJRR.LE.TOLERR) GOT 70

C
C
50 NIH=2*NIll

LEV=L.EV+ I
C

DO0 52 IT=I,8
FSAVE( IT,LEV)=F( IT+8)

52 XSAVE(IT,LEV)=X(IT+8)
C

QPREV=-QLFT
DO 55 IQ=-I,8

JQ=--IQ
F(2*JQ+18)=F(JQ+9)

55 X(2*JQ+18)=X(JQ+9)
oaM 30

60 NOFIN=2*NOFIN
LEWMX=LEVOUr
FL.G=FtG" (B-XO) /(B-A)
OMr 70

62 FLAG=FL4G+I.
C
70 REBULT=RESUILT+Q4OW

ERETEJETE7
CORI I=-CORI I $QDIFF/ 1023.

C
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72 IF (HIM.EX?.2..(NIM/2)) MMT 75
NIH=KIN/2
LEV=LEV~-
MaM 72

75 NiNNIffli
IF (LEV.LE.e) GOTO 8

qpmEV-Wlaff (LEV)
X=X( 16)
FO=F( 16)
DO 78 IL=1I,8

F(2*IL) =FSAUE( IL, LEV)
78 X(2'.IL)=BAIVE(IL, LEV)

GD1V 38

so RESULT=RESULT+COB1 I

IF (ERREST. EQ.0. ) RETURN
82 TEWM=ABS (R~sMT) +R~T

IF (TEMw.HE. AB6(RESULT)) E~ln=

GOTO 82
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