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19. ABSTRACT

gigenvalues of the system of equations. Numerical values are given for combinations

of frequency and magnetic field strengths (resouant conditions) that produce instabil-

ities. Calculated results illustrate both the ,frequency window and the amplitude

window that have been observed by others experimentaly. Explanations based on phys-

ical interpretation are given for the fundamental mechanisms underlying both pheno-

mena. --
We have assembled and tested apparatus for making electrical impedance measure-

ments of planar phospholipid bilayer membranes exposed to combined dc and ac magnetic

fields. The impedance is measured with a signal analyzer that is controlled by a

microcomputer, which also sets the parameters such as frequency and magnetic fields

strength and collects and compiles the data. Preliminary data has been obtained for

the plain membrane. We will soon be obtaining data for membranes with channels and

other modifications.
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INVESTIGATION OF RESONANT AC-DC MAGNETIC FIELD EFFECTS

Cod H. Dumsy, JMJinata, Amod A. Petrson, Alle A. Andeson, and Craig K. RushWoMrh

ABSTRACT

Recently reported observations by others indicates that a combination of a weak dc magnetic

field and extra-low-frequency ac magnetic fields can produce resonant effects in biological systems.
We have begun a study of resonant magnetic field effects that consists of two parts: (1) calculations
aimed at identifying the basic mechanisms underlying the resonance, and (2) measurements designed
to determine more specifically how biological systems respond to the resonance condition.

We have used a simple model consisting of one charged particle in a viscous medium to
explain the basic mechanism of biological resonant response to a combination of dc and ac magnetic
fields and ac electric fields. The response is calculated from the Lorentz force equation, which in this
case is a system of linear differential equations with time-varying coefficients. Since closed-form
solutions are not available, trajectories of the particle are calculated using standard numerical
techniques. Conditions for instabilities (unbounded velocity) are calculated from eigenvalues of the
system of equations. Numerical values are given for combinations of frequency and magnetic field
strengths (resonant conditions) that produce instabilities. Calculated results illustrate both the
frequency window and the amplitude window that have been observed by others experimentally.
Explanations based on physical interpretation are given for the fundamental mechanisms underlying
both phenomena.

We have assembled and tested apparatus for making electrical impedance measurements of
planar phospholipid bilayer membranes exposed to combined dc and ac magnetic fields. The
impedance is measured with a signal analyzer that is controlled by a microcomputer, which also sets
the parameters such as frequency and magnetic field strength and collects and compiles the data.
Preliminary data has been obtained for the plain membrane. We will soon be obtaining data for
membranes with channels and other modifications.

1. INTRODUCTION

Much work has been done in the last forty years to determine how electromagnetic fields
interact with biological systems. Particularly in the last fifteen years, researchers have exposed
hundreds of biological systems to various electromagnetic fields to study their responses. By far the

majority of meaningful responses have been attributed to heating of the biological system by the

electromagnetic fields. Although there are some responses that are thought to be nonthermal in nature,
no one as yet has been able to relate responses to a consistent set of fundamental mechanisms of

interaction, and the literature contains inconsistencies and questions about the observations that have
been made. Perhaps this is not surprising in view of the great complexity of biological systems and
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the tremendous number of combinations of parameters that could be included in an experiment. For
example, the frequency of the electromagnetic fields could vary over the spectrum from dc to 300
0Hz. Couple this with the many possible combinations of electric and magnetic field strengths and
configurations, and the number of experimental parameters is unmanageably large. Add to this the
huge humber of biological systems that could be studied, all the way from the simplest in-vitro
preparation to the complex behavioral patterns of whole organisms, and the matrix of possible

experimental parameters is overwhelming.
In view of all this complexity, some recent observations are particularly intriguing for two

reasons: first, they appear to indicate an effect that is perhaps more robust than many other
observations, and second, they may be more readily explainable in terms of basic physical principles
than most other observations. These recent observations are biological responses to combinations of
dc and ac magnetic fields, apparently in some kind of a resonance reaction. Although dc magnetic
fields, particularly that of the earth, have not usually been considered important in experiments
involving electromagnetic radiation of biological systems, several recent publications may indicate a
common underlying magnetic field resonance effect produced by combinations of dc and ac magnetic

fields.

Jafry-Asl et al. [1983] report a resonance effect on the dielectrophoretic yield in in-vitro
preparations of yeast cells. They also found a resonance effect on the permitti . ty of the yeast cells.
Their proposed explanation is a nuclear magnetic resonance (NMR) effect produced by the earth's

magnetic field, but this may not be likely for several reasons. First, a NMR effect would be expected
to be negligible in their dc magnetic field of less than a hundred microtesla because the energy of a
magnetic dipole in that field would be something like nine orders of magnitude smaller than kT, which
means that the applied magnetic fields would have a very small effect compared to the thermal

excitation. Secondly, in their dielectrophoretic cell, only an ac electric field was applied. The NMR
effect requires an ac magnetic field. There would, of course, be an ac magnetic field accompanying

the applied ac electric field in their cell, but it would be negligibly small at those low frequencies (less
than a few kHz).

Delgado et al [19821 and Ubeda et al [1983] exposed fertilized chicken eggs to pulsed
magnetic fields and found strong developmental effects at field strengths of 1.2 microtesla and 12
microtesla when the pulse width was 0.5 ms and the repetition rates were 100 Hz and 1000 Hz.
Although they did not give the information in their original published articles, the authors have stated
in discussions that the effects did not occur unless the eggs were oriented east-west, which in their
configuration meant that the applied ac magnetic field was perpendicular to the earth's magnetic field.
The authors did not propose a mechanism of interaction, and they did not mention the possibility of a
magnetic-field resonance effect, but the fact that the orientation of the eggs in the earth's magnetic field

is crucial indicates that a magnetic field resonance effect could have occurred. According to news
reports [Microwave News, 1984], two investigators in the United States have not been able to
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reproduce the results of Delgado and his colleagues, but a researcher in Sweden has. The effects

found by the Swedish worker were, however, not as strong as those found by Delgado et al. Since
the U. S. investigators did not report having tried to duplicate the dc magnetic field values of the

Delgado laboratory, it may be possible that their failure to replicate the work was caused by a different

ac-dc magnetic field combination.
In other work that depends upon dc-ac magnetic fields, Blackman et al [1985] found that

changes in calcium efflux occurred in chick-brain preparations only if the frequency of the applied ac

fields was properly related to the dc magnetic field that was present. The authors suggested some son
of cyclotron resonance as the explanation for the required combination of dc-ac magnetic fields. This
recent data showing the dependence of the change of calcium efflux on the dc magnetic field may

possibly explain why others have not been able to replicate the data of Blackman et al, since apparently

no one expected the dc magnetic field to be an important parameter.
More recently, Thomas et al [1986] have shown a strong behavioral effect in rats exposed to

combined dc-ac magnetic fields. These investigators sudied the effects of 60 Hz electric and magnetic

fields on the abilities of rats to press levers within a narrow time window after a stimulus. They had

found no significant effects in their previous studies in a laboratory ambient dc magnetic field of about

40 microtesla. However, when they adjusted the dc magnetic field to 26 microtesla, they found a

significant effect on the rats' abilities to time the lever pressing. According to the authors, they chose

the 26 microtesla field to correspond to the cyclotron resonance of a bare lithium ion at 60 Hz.
Although the mechanism for this effect has not yet been identified, the effect is certainly a striking

indication of the biological effects of magnetic field resonance.

McLeod and Liboff [1986] showed that the motility of a diatom preparation on a calcium

impregnated agar substrate was highly dependent on the calcium concentration. Then they exposed

the diatom preparation to the combination of a parallel dc and ac magnetic field and showed that the
motility showed a strong resonance with frequency, centered about the cyclotron resonance frequency

of a bare calcium ion. The resonance frequency was directly proportional to the dc magnetic field
strength. These experiments are strong evidence of a biological response that is clearly related to

resonant dc-ac magnetic field conditions.
There are a number of other reports of low-frequency magnetic fields causing significant

biological responses, but with no mention of the possible role of the ambient dc magnetic field that is

always present unless it is deliberately cancelled or shielded against. Since the dc magnetic fields
required for the resonant effects described above are of the same order as a typical laboratory ambient

magnetic field (the 26 microtesla used by Thomas et al [1986], for example), the laboratory ambient

magnetic field could have played an unobserved role in many experiments. For example, Conti et al

[1983, 1985] report that 3 Hz magnetic fields with intensities of 2.3-6.5 millitesla reduced the mitotic

stimulation of human lymphocytes, and reduced the Ca2+ uptake by stimulated lymphocytes. It is

conceivable that the frequency window they found within which ConA-induced blastogensis was
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reduced by magnetic fields is due to a resonance with the dc magnetic. field. This is only speculation,

but since Blackman et al [1984] found that the dc magnetic field resonance signficantly affected their
measurement of calcium efflux, it is not entirely improbable.

Although cyclotron resonance for electrons in free space is familiar, few theoretical studies of

effects of ac-dc magnetic fields on biological systems have been conducted. Chiabrera et al [1985]
made calculations for a model of a charged ligand in the microenvironment of its binding site, which

demonstrated a cyclotron-type resonance. Liboff [1985] made some calculations of cyclotron

frequencies for ion species, and Mc Cleod and Liboff [1986] calculated the response of ions to ac-dc

magnetic fields, but their calculations do not include the ac magnetic field, except in a very limited

approximation.

The purpose of this project is to explore basic mechanisms that might be involved in

biological responses to resonant dc-ac magnetic fields such as those described above. We have made

calculations for a simple model to explain the basic mechanisms that underlie the resonance response

and to guide our experimental work. On the experimental side, we have assembled and tested

apparatus for measuring the electrical impedance of phospholipid bilayer membranes exposed to

combined dc and ac magnetic fields. In this report, the modeling and calculations are described first,

followed by a description of our experimental work.

2. MODEUNG AND CALCULATIONS

Since biological systems are extremely complex, any models that might describe the basic

resonance interactions will be very complicated. In searching for basic mechanisms of interaction in

such complicated systems, we believe it fruitful to begin with the simplest model that may describe the
interaction, learn from it the fundamental characteristics of the interaction, and then improve the model

and develop more complex analyses. In line with that reasoning, we have studied a very simple model

consisting of a single charged particle in a viscous medium exposed to a combination dc-ac magnetic
field. The magnetic fields are uniform in space with an arbitrary angle between their direction (the

equations are derived for an arbitrary angle, but the first calculated data is for parallel magnetic fields).
We included the ac electric field induced by the ac magnetic field, assuming cylindrical or spherical

geometry, such as might exist in a single dielectric sphere that could be viewed as a crude model of a

biological cell. The viscous medium is represented in the Lorentz force equation by a damping term

that is proportional to velocity. We solved the Lorentz force equation to obtain the motion of the

charged particle in the viscous medium. Although this model is very crude compared to any

biological system, we believe it is a valid and indeed appropriate first step in understanding biological

responses to resonant dc-ac magnetic fields because whatever effect the magnetic fields have on the

biological system is through the forces exerted by the magnetic fields on charged particles in the

biological system. Thus the response of one charged particle to the forces of the magnetic fields can

perhaps give insight about how the biological system might be affected by the resonant magnetic
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fields. This insight could prove to be invaluable in analyzing more complicated models and in
designing experiments.

In this section we first describe the model and equations of motion of the charged particle.
Then we discuss qualitatively the response of a charged particle to various simple electromagnetic field
configurations. Next we discuss the differential equations of motion, their characteristics and methods
of solution. Finally, we show calculated responses of a charged particle to resonant magnetic fields
and discuss the meaning of these results.

2.1 Model

The model consists of one charged particle in a viscous medium exposed to a dc magnetic
field, an ac magnetic field, and an ac electric field induced by the ac magnetic field, as shown
schematically in Fig. 1. This model does not represent a biological system, which is obviously much
more complex than one charge in a viscous medium. The purpose of the model is to identify basic
concepts and fundamental mechanisms of interaction involved in resonance response, to provide
physical interpretation and qualitative understanding. The information obtained from this simple
model might then be used as a basis for formulating realistic models of biological systems.

The Lorentz force equation describes the effect of the fields and the viscous medium on the
particle. Each of the elements of the model is described in detail below.

viscous medium
spatially uniform dc

magnetic field BO
x

E electric field induced by B1

-Ol spatially uniform ac magnetic
V] field B1

Y

particle of charge q and mass mi

Fig. 1. Model consisting of a single charged particle in a viscous medium exposed to electric and
magnetic fields. The magnetic fields are uniform in space; the electric field is not.

2.1.1 Electromagnetic Fields. In this model, the dc and ac magnetic fields are both uniform in space.
We have used "ac" to indicate that the magnetic field is time varying, but not necessarily sinusoidally.

(The calculated data in this report is for sinusoidal time variation, but the equations are derived for

general time variation.) An expression for the E field induced by the time-varying magnetic field can

5
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be easily derived from Maxwell's equation when cylindrical or spherical symmetry is present, as

follows. Maxwell's curl E equation in integral form is

JEl *di ji dS (1)

Assuming that B1 is in the z direction and from symmetry that E has only a * component that varies

only with r, either in cylindrical or spherical coordinates, allows (I) to be integrated to get

2xrE,=- 2r

where bold-face symbols indicate vector quantities and plain symbols indicate scalars and magnitudes

of vector quantities. Solving for E, and transforming to rectangular coordinates gives

E= (y x- x y) (2)

where x and y are unit vectors in the x and y directions, respectively.

Equation (2) represents the E field induced by B1 in any geometry that has cylindrical or

spherical symmetry. This would apply to the configuration shown in Fig. 2, for example, which is a

dielectric sphere in a conducting medium.

An important characteristic of the electromagnetic fields of this model is that the externally

applied B1 will penetrate a highly conducting medium and induce in that medium the electric field

given by (2). In contrast, an externally applied electric field would tend to be shorted out by the

conducting medium and would be quite different in nature from (2). This model may describe,

therefore, a mechanism whereby an externally applied magnetic field could have more effect on

internal charges in a highly conducting medium than an externally applied electric field.

z
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Fig. 2. A sphere of complex permittivity el in a medium of complex permittivity e2 and the E field
(given by (2)) induced by the time-varying magnetic field BI.

2.1.2 Equations of Motion. The basic equation that describes the motion of the charged particle (Fig. 1)

in the presence of the electromagnetic fields is

dvm-+mvv=qE+qvxB (3)

where the first term is the inertial force term, the second is the force due to drag in the viscous

medium, and the terms on the right-hand side are the forces produced by the electric and magnetic

fields, respectively. Since (3) is a vector differential equation that includes a cross product, it is rather

complex. With the geometry as defined in Fig. 1, (3) can be written as three simultaneous scalar

differential equations:

x" + v x'= i EX + h'y + Ccl h y' + coc y'- cocy z (4)
2

y" +vy'=TIE -- h'x-co hx'+,o z'x- x (5)
Y 2 C1 iZ cx Ocz

z" + v z'= TIEz + COCyx' - CO CXy' (6)

where the following definitions have been made:
(x,y,z) is the position of the particle at time t

x' = dx/dt, etc.

ExI Ey, Ez, are the applied electric field

B1 = Bih(t) z (7)

B0 = Bo, x + Boy y + B z z (8)

,oqc = q B1/m (9)

cX = q B0 /m, etc. (10)

i = q/m (11):
Equations (12) and (13) are similar in form to those derived by Chiabrera et al (1985) for a

more sophisticated model that includes a collection of charged particles and describes ligand binding.

After they made some simplifying assumptions, their differential equations reduced to a form similar to

(12) and (13), but their induced electric field is constant in space, in contrast to the variation with x

and y described in (2).
We have included an externally applied electric field in (4) - (6) for generality, but we will

mostly be interested in the case where there is only an E field induced by B1. For the special case

7



when there is no externally applied electric field and the dc magnetic field is in the z direction, (4) - (6)
reduce to the following two simultaneous equations in x and y:

x" + v x'- .#l h' y- (o, h + co) y'= O (12)

y" +v y' + 2E1 hx +(wc, h+c)x'=0 (13)

where tc = q B0 /m. These equations are linear homogeneous differential equations with time varying

coefficients. Since they are homogeneous, x and y can be normalized to any convenient quantities,

such as the beginning resting position of the particle or the diameter of a biological cell. When h(t) is a

sinusoidal steady-state function, t can be normalized to T, the period of the sinusoid, which also

allows v to be normalized to f, where f = 1/1', and oc and Cocl to be normalized to wc, where (o = 2x/T

This provides a very convenient way to calculate and display the responses of the charged particle to

the driving fields. Methods for solving the differential equations are discussed in the next section.

2.2 Solution of the Equations of Motion

The equations of motion are linear differential equations with time-varying coefficients. For

all the cases of interest here, the time-varying coefficients will usually be periodic because the ac

magnetic field will be periodic. With periodic coefficients, the equations can be transformed into an

equation known as Hill's equation [Reinhard, 1987]. Although Floquet's theorem can be used to

show that periodic solutions to these equations exist, no closed-form solution is available. Much has

been written about the solution to Hill's equation and other equations with periodic time-varying

coefficients, but it appears that no method of solution is available except the usual numerical methods

for solving differential equations. We have, however, developed methods for determining regions of
instability. We describe these next, and then discuss the numerical solution of the differential

equations with periodic time-varying coefficients.

2.2.1 Calculation of Instability Criteria. In this section we consider a special case of equations (12) and

(13) obtained by setting h(t) = sin wzt. We further define the state variables

XI(t) = x'(t)

x2 (t) = x(t)

x3 (t) = y'(t)
x4 (t) = y(t)

and write (12) and (13) as the system of first-order equations

8



'(t) =AMt) x(t) (14)

where xT =(x 1, x2 , x3 , x4 ) and

-v 0 (w h + t) clh'/2

1 0 0 0
A = (15)

-(0a) h +)) -h/2 -v 0

0 0 1 0

Systems of linear ordinary differential equations with periodic coefficients, of which (14) is

an example, are frequently encountered in modeling physical systems and have been extensively

studied. Our purpose in this section is to investigate the stability of (14) as the parameters are varied.

We begin with a definition.

The resolvent 0(ts) associated with (14) is the unique matrix satisfying

a. O(tt)= I for all t.

b. O(t,s) = 0(t,u) O(u,s) for all s, t, u.
c. cO(t,s)/&t = A(t) O(t,s)

d. c)O(t,s)/ s - -O(t,s) A(s)

As the followi..g tleorem shows [Reinhard, 1987], the resolvent plays a fundamental role in

determining the stability of (14).

Consider (14) under the assumption that A(t) is periodic with period T.

a. The system described by (14) is uniformly asymptotically stable if and only if all the

eigenvalues of O(T,0) have magnitudes strictly less than 1.

b. The system described by (14) is uniformly stable if and only if all eigenvalues of 0(T,0) are
less than or equal to I. with all eigenvalues of magnitude I having index 1.

c. In all other cases, the system described by (14) is unstable.

In view of this theorem and the preceding definition, we arrive at the following procedure for

determining the stability of (14):

1. Select values for the parameters

9
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2. Solve the equation 0'(t,0) = A(t) O(t,O) on the interval [0,T] with initial condition 0(0,0) =

I.

3. Calculate the eigenvalues of 0(To).

4. If any eigenvalue has magnitude greater than 1, or if any eigenvalue with magnitude 1 has

index greater than 1, the system is unstable.

In terms of our model, instability means that the displacement and velocity of the charged particle

would increase without bound as t increases. We cannot solve the equation in step 2 analytically, and

therefore must rely on numerical methods. We solved this equation for a wide range of parameter

values using a numerical routine developed by Shampine and Gordon [1975], and the predicted

conditions for instability agree with results of the numerical calculations described in the next section.

Since this technique allows us to determine whether the system is unstable for a given combination of

parameters, it is an important complement to the numerical solutions, which cannot predict instabilities

as such, but can only give indications of possible instabilities. The numerical solutions, on the other

hand, can give other useful information and much insight about the response of the system. The

combination of the two methods is a powerful tool for investigating the response of a charged particle

to the EM fields.

2.2.2 Numerical Solution. To explore the nature of the response of a charged particle to the fields of our

model, we have solved (12) and (13) by several methods and compared results to ensure the validity

of the solutions. These methods include the numerical routine developed by Shampine and Gordon

[19751 a Runge-Kutta routine, a predictor-corrector method, and a power series solution. The

solutions obtained by all these methods have been consistent and numerically very close to each other,

indicating that we have valid solutions.

2.2.3 Numerical Determination of Rcsonance Conditions. To check the instability predictions described in

the section on solution of the equations of motion, we made some additional numerical calculations

using the following steps:

1. The particle is assumed to be initially at rest.

2. The position of the particle is calculated as a function of time for various

combinations of w, wc1, and co, for a total time equal to a specified number of

periods of wo. Thus for lower frequencies, the calculations were made for a

longer time.

3. The maximum distance of the particle from its resting point at any instant during

that total time was recorded and plotted.

The resulting calculated maximum displacements are consistent with the predicted instabilities,

which show strong resonance behaviors. Before describing the results of the instability calculations in

10



a later section, we discuss the general qualitative nature of the response of charged particles to

combined dc-ac electromagnetic fields next.

2.3 Response to Psont Electramagneuc FeMl
In this section, we describe in qualitative terms the response of a charged particle to some

specific combinations of electric and magnetic fields to illustrate the basic characteristics of such

response, in particular, the nature of resonance response.

2.3.1 Response to E Alone. The response of a charged particle initially at rest at the origin of a

coordinate system to an ac electric field alone is shown in Fig. 3. Since the forces on the particle

always lie along the direction of E, the particle retraces the same path, oscillating in direction with E.

This response results in no net charge transport, since the particle merely oscillates about a point

midway between its initial resting point and its maximum excursion from that initial point.

Y

Starting point

Fig. 3. Response of a charged particle at the origin to a spatially uniform ac E field with no magnetic

fields present. The direction of E is at 45 degrees to the x axis in the fourth quadrant. The particle

continuously retraces the path shown.

2.3.2 Response to E and B0 . Figure 4 shows the significant difference in response when a static

magnetic field is added to the E field of Fig. 3. The addition of the v x B force in (3), which is always

perpendicular to both v and B, causes the particle to travel in a spiral path perpendicular to the B field.

11



In contrast to the response in Fig. 3, this resonant response could result in a net transport of charge

because the particle would not return to its starting position. This spiral path results at resonance, that

is the ac frequency of the electric field is equal to the cyclotron frequency of the charged particle, as

defined by (10). When this condition is met, the reversal of the forces due to the change in direction

of E as it oscillates always occurs at just the right time in the orbit of the particle to enhance its motion

along the spiral path. When this condition is not met, the reversal in the forces due to E will tend to

oppose the particle's motion, and the velocity of the particle will therefore not build up. This

nonresonant response is illustrated in Fig. 5.
Y

Fig. 4. Response of a charged particle initially at rest at the origin in the presence of the same E field

as in Fig. 3 and a spatially uniform static magnetic field in the z direction. Co = Cwc - 62.8 radians/sec.
where Co is the frequency of E and Coc is the cyclotron frequency (see (10)), and v = 0 (no viscous
damping). The position of the panticle is plotted for four complete cycles of E.
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Fig. 5. Response for the same conditions as in Fig. 4, except co = 2 c .

The effect of viscous damping is shown in Fig. 6. With viscous damping respresented by a
collision frequency of 25 Hz, the motion of the particle for four cycles of E is highly damped, as
compared with the response without damping in Fig. 4.
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Fig. 6. Response of the charged particle for the same conditions as Fig. 4 except that v =25 Hz.

The nature of the E field has a signficant effect on the path of the particle. Fig. 7 shows the
response to an E of the form of (2), that is E is in the direction and proportional in magnitude to
distance from the origin, but there is no ac magnetic field in the v x B term. The electric field strength
also has a large effect on the nature of the particle path.
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Fig. 7. Response to E and Bo, where E is of the form given by (2), that is, E is in the *direction with

a magnitude proportional to distance from the origin, but there is no ac magnetic field in the v x B
term. co = coc = 628 radians/sec, (oc, = 62.8 radians/sec, v = 50 Hz.

2.3.3 Response to E, 60 and B1. Adding the ac magnetic field in the v x B term complicates the nature

of the forces and the resulting response. Figure 8 shows the particle response to the same parameters
as in Fig. 7, but with the ac magnetic field force added. For this particular set of parameters, the

displacement in the radial direction is opposite from that of Fig. 7. In Fig. 8 and all succeeding figures
that represent the solution to (12) and (13), X and Y can be considered normalized to the coordinates
of the initial position of the particle, as described in Section 2.1.2. This is possible because every term

in (12) and (13) contains an x or y. Thus in Fig. 8 if each unit on the axes represents 25 microns, the
particle would have started at 75 microns on the x axis and 75 microns on the y axis, and the

subsequent displacement represented in the figure would also be given in microns as indicated by the
position with respect to the coordinate system.
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Fig. 8. Response of a charged particle to combined ac and dc magnetic fields, with the E field induced
by the ac magnetic field, as described by (2). 0 - (c = 628 radians/sec, 0cl - 62.8 radians/sec, v =
50 Hz. The X and Y are normalized to the starting position of the particle.

Figure 9 shows the striking effect of resonance on the response of the particle. The
parameters are the same as for Fig. 8, except cod has been increased to be equal to c and coc"
Because the response was so much greater, the scale has been changed by a factor of 10 in Fig. 9
compared to Fig. 8 so the path could be shown on one sheet. Thus if one unit on the axes in Fig. 8
represents 25 microns, one unit on the axes in Fig. 9 represents 250 microns. The resulting greater
displacement of the particle from its initial position of rest shows how great the effect of resonance can
be.
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Fig. 9. Response for the same parameters as in Fig. 8 except Icl - 628 radians/sec. The scale here
is tenfold different from that in Fig. 8. For example, if one unit on the axes in Fig. 8 represents 25
microns, one unit here represents 250 microns.

The dramatic effect that the amplitude of the ac magnetic field can have on the response is
shown in Fig. 10, which is the response for the same set of parameters as in Fig. 9, except wcl =
1200. Even though the ac field strength is considerably higher in Fig. 10, resulting in a much stronger
E and therefore stronger forces, the displacement of the particle from the origin is generally much less.
This is like the "amplitude window" (or power-density window) observed experimentally in the
calcium efflux experiments [e.g., Bawin and Adey, 1976; Blackman et al, 1982].
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Fig. 10. Response for the same parameters as in Fig. 8, except icl = 1200. The scale is the same as
in Fig. 8, which means it differs by a factor often from that in Fig. 9.

Figure 11 shows another example of how sensitive the response is to the combination of
parameters. Here co = (% = c I, but they are all lower in value than in Fig. 9. The response here is
not nearly as great as it is in Fig. 9. One reason may be that the ratio of the collision frequency to the
ac frequency in Fig. II is larger than it is in Fig. 9. It appears that the magnitude of the resonance
response becomes smaller as the ratio of the collision frequency to the ac frequency becomes larger.
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Fig. 11. Response for the same parameters as in Fig. 8 except co= Oc = 62.8 radians/sec.

2A Conditions for Resonance

Using the techniques described in the Section 2.2, we calculated the eigenvalues that describe

the instabilities of the response for a wide range of the parameters o, wc 1, v, and wc. As explained

previously, we normalized the differential equations to T, the period of the ac magnetic field, which

allowed normalization of all frequencies to o. The instability data are presented as a function of cocn

= COc/C0, (c In = ccl/o and vn = v/f, where co = 21rf.

Figure 12 shows a plot of the eigenvalues on a grid of ccIn and Ccn for Vn = 0. The plane
where the eigenvalues are equal to unity is clearly evident in the lower right-hand part of the plot. The

larger the eigenvalue, the faster the velocity and displacement of the particle from its rest position

increases. Thus the eigenvalue peaks indicate the conditions for greatest instability. The peaks do not

appear smooth because the grid on which the calculated values were obtained was not fine enough; a

finer grid would require more computer time. Figure 13 shows how the eigenvalues are modified by
increasing the collision frequency v. Figure 14 shows the plots for a finer mesh, and Figs. 15 and 16

show the effect of increasing the collision frequency. It is clear that for this model no resonance

response could occur when the collision frequency is signficantly higher than the frequency of the

applied fields.
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Figures 17 and 18 show contour plots of the eigenvalues, which are like looking down on the

plots of Figs. 12 and 13. Only the contours for eigenvalues greater than unity are shown. These

contour plots make it easier to determine the combinations of (Ocln and mcn that produce instabilities.

For example, from Fig. 17, it can be seen that one peak in eigenvalues occurs when (Ocn = 0.75 and

(Oc In = 1.25. Thus for any co for which the electric and magnetic fields are those of the model,

instabilities are predicted for the conditions Wcn = 0.75 and Wcln = 1.25. Other peaks are located in a

nearly periodic set of positions.
It is important to remember that the conditions for resonance as shown in Figs. 17 and 18

apply only to the model used here, in which the ac and dc magnetic fields are parallel, and there is no
externally applied electric field. Different contour plots would be expected for other field

configurations. For example, if an external electric field were applied, resonant conditions along the

(Ocln = 0 axis would be expected. There are no resonances for Wcl = 0 in our model because that
condition means no ac electric field is present, which means that a particle at rest would remain at rest.

Also, other components of ac and dc magnetic fields might produce other resonances. Furthermore,

electric and magnetic fields with waveforms different from sinusoids would be expected to produce

different resonance conditions. We are presently extending our calculations to include other
waveforms, but only results for sinusoids are given in this paper.

Some interesting observations can be made from Figs. 17 and 18. First, a comparison of

Figs. 17 and 18 seems to indicate that the position of the peaks are not affected much by the collision
frequency. A more detailed study of the effects of the collision frequency shows that indeed the

positions of the peaks are not affected much by the value of v, but the magnitude of the peaks is

signficantly affected by v. Second, resonances can occur even when there is no dc magnetic field
present, that is, when (0 cn = 0. These resonances occur only for specific values of (Ocln, again

indicating the presence of an amplitude widow. A third observation is that the linewidth of the

resonance does not seem to be affected much by the value of v. It might have been reasonable to

expect from experience with other resonant systems that when the damping went to zero, the linewidth
would also go to zero. Figure 17 indicates that this is surely not the case.

All of these observations are explained in terms of physical concepts of the interaction

between the charged particle and the applied electromagnetic fields in the following section.
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Fig. 12. Magnitude of the cigenvalues as a function Of WOcn = O\/Ci) and (ca)ln cif/ fo
an 2xrv/w = 0. Each division on the vertical axis equals 1 unit.
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Fig. 13. Magnitude of the eigenvalues as a function of Co., COcCO and oc In WcIC fOr

Vn= 2icv/co = 1. Each division on the vertical axis equals 0.5 units.
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Fig. 14. Magnitude of the eigenvalues as a function of cOO = mc/co and COcln = *I/w for

vn = 2xv/€o = 1. Each division on the vertical axis equals 0.5 units.
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Fig. 15. Magnitude of the eigenvalues as a function of C0cn - c/co and Cocln I/ aci/ for
vn = 2xv/a) = 5. Each division on the vertical axis equals 0.2 unit.
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Fig. 16. Magnitude of the cigenval ues as a function of wOc = c/o and (Oc In C0c 1/ for
Vn= 2rv/co 100. Each division on the vertical axis equals 0.2 unit.
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Fig. 17. Magnitude of the cigenvahies as a function of wcn - w/o and cocln - coc/W for

v0 - 2xv/co - 0. This contour plot is like looking down fran the top in Fig. 12. Only
contour lines for cigenvalues greater than or equal to unity arm shown.
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Fig. 18. Magnitude of the eigenvalues as a function of COon -€ CO/ and (Ocln - COOl/W0 for
vn - 2xv/o - 1. This contour plot is like looking down from the top in Fig. 13. Only
contour lines for eigenvalues greater than or equal to unity a shown.
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2.5 P a Mchuamns of RuOmnMM
In this section, the three prominent features of the resonance response described above are

explained in terms of physical concepts.
The first important concept about the interaction between the fields and the charge is that the

magnetic fields do not impart any energy to the charged particle. This can be shown in the standard
way by taking v • with both sides of (3). Only the electric field transfers energy to the charge. The
magnetic fields do have a significant effect, though, because they bend the path of the particle around
the magnetic field lines. This bending occurs through the v xB force term, in which the force is
always perpendicular to both the velocity and the magnetic field. Thus when the particle begins at rest
in the presence of an E and B field, the E field starts it moving, and as soon as it has acquired some
velocity, the B field begins to bend it around. The particle then moves in a sort of curved path that
tends to bring it back around to the vicinity of its beginning place, similar to the paths shown in Figs.
4 and 5. How long it takes the particle to make one "revolution" (loosely speaking) depends on the
magnetic field strength and the velocity.

A second important concept about the physical mechanism of interaction is that the E field
imparts energy to the particle when v and E have a component in the same direction, and the E field
takes energy from the particle when v and E have a component in the opposite direction. With these
two concepts, the resonance response can be thought of in terms of the synchronization of the particle
with E. The particle, intially at rest, begins to move in the direction of E. Since E is a time periodic
field, after some period of time, the direction of E reverses. If, when E reverses, that reversal makes
E and v in opposite directions, E will begin to slow the particle down. But if the magnetic field has
bent the path of the particle in just the right way so that when E reverses direction, the velocity of the
particle is still in the direction of E, then E will continue to give energy to the particle and speed it up.
Fig. 4 shows just that situation. The magnetic field strength is exactly right to make the particle get
around to the other side of its orbit at just the right time for its velocity to be in the same direction as E.
Thus the B field can be thought of as synchronizing the position of the particle so that its velocity is in
the same direction as E as much of the time as possible. If the magnitude of B is such that
synchronization occurs, maximum energy is imparted to the particle, and its velocity increases rapidly.
If the magnitude of B is such that synchronization does not occur, in the sense that the velocity of the
particle is not in the same direction as E much of the time, relatively less energy is imparted to the
particle, and its velocity does not increase much. Thus synchronization results in resonance.

The idea of synchronization explains the three prominent features of the response described in
the previous section. First, the position of the peaks in Figs. 17 and 18 are not drastically affected by v
because the basic synchronization is not affected much by v. The damping represented by v takes
energy from the particle and thus slows it, but the magnetic field still provides synchronization because
the particle still gets around to the other side of its orbit at the right time to be in synchronization with
E, but the radius of the orbit is smaller because the velocity is lower. Thus the basic mechanism
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depends mostly on the synchronization, which is not strongly affected by the damping. If v is too
high, of course, the energy extracted from the particle will be so great that its velocity will not build
up, even if synchronization occurs, and no resonance will occur, as indicated by Fig. 16.

The concept of synchronization also explains why the linewidth is not zero when v is zero, as
indicated by Fig. 12. The linewidth depends mainly on the synchronization. When the
synchronization is very high, the velocity will build up very rapidly, corresponding to a peak in Fig.

17. When there is some synchronization, but less than that possible, the velocity will still build up,

but not as rapidly, corresponding to points near, but not at, a peak in Fig. 17.
The concept of synchronization also explains why resonance occurs with an ac magnetic field

present, but no dc magnetic field. The ac magnetic field has the same effect as the dc field in bending
the particle's path and synchronizing it with the electric field, but in a more complicated way because

the direction of the magnetic field is also reversing periodically. Thus resonance occurs because of the
synchronization of v with E by the ac magnetic field, even when no dc magnetic field is present.

Finally, the idea of synchronization explains the "amplitude window," which is an element of
all the above explanations. The amplitude window occurs because synchronization occurs at a given
frequency only for certain combinations of dc and ac magnetic field strength. The requirement of a
certain value of ac magnetic field strength for synchronization to occur, and therefore resonance to
occur, is equivalent to the amplitude window.

2.6 Summary and Conclusions About Modeling
The examples given in this report show calculated trajectories for only a few of the possible

combinations of parameters for which calculations could be made, but they indicate how strong

resonance effects can be, and what the nature of the basic response to combinations of ac and dc

magnetic fields and ac electric fields is. The eigenvalue calculations clearly define the conditions

necessary for resonance to occur.

The sensitivity of the response to the values of co, oc, and oclis striking. The displacement

of the particle from its initial resting position after a given number of cycles of the ac frequency can

differ by orders of magnitude with the values of co, coc, and coc l" This dependence of the response on

the resonant conditions leads to four main conclusions from this model that are important in biological

effects:

1. "Frequency windows" exist. That is, for fixed values of the other parameters, strong

response will be expected only for certain values of frequency.

2. "Amplitude windows" exist. That is, for fixed values of the other parameters, strong

response will be expected only for certain values of ac magnetic field strength ( oc l).

3. When excitation is primarily due to an electric field alone, net charge transport will not occur.
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When magnetic fields ae present, net charge transport can occur.

4. The resonance response is strongly affected by viscous damping. Any biological effect
attributed to these resonance effects would be expected to occur only in places where the

effective damping is low, that is v is smaller than co.

The prominent features of the resonant response predicted by this model have been explained
in terms of the magnetic field synchronizing the particle's velocity with the electric field so that
maximum energy is transferred from the electric field to the particle. Numerical values for
combinations of dc magnetic field strength, ac magnetic field strength, and frequency that produce
resonance for this model are given in the plots of Figs. 17 and 18.

This model provides a basic physical explanation that could apply to some of the experimental

observations that have been reported in the literature (see Section 1). The model does not represent

any specific biological system; it is much too simple for that. The physical explanations derived from

the model might, however, be important to further understanding of resonance phenomena in

biological systems that result from the application of magnetic fields. For example, periodic

endogenous fields produced by an array of molecules would be expected to cause additional resonance

characteristics superimposed on the synchronization effects described above. Careful experimentation

will be required to pinpoint the site of the resonance response in biological systems and relate it to

fundamental physical principles. Calculations for this simple physical model could serve as a first step

in that process, since it provides a possible physical explanation for the so-called amplitude window.

3. EXPERIMENTAL WORK

3.1 Rationale

The experimental observations described in the literature (see Section 1) are for resonant

responses in biological systems. Because of the complexity of these biological systems, identifying

the site of the basic interaction may prove to be very difficult. We have taken the approach, therefore,

of beginning with the simplest, stablest system that might exhibit resonance response, and then

proceeding systematically to more complex systems. Accordingly, we began with a simple planar

phospholipid bilayer membrane preparation, as described below. After we obtain data for that system

and find out whether it shows a resonance response, we will extend the measurements to modified

membranes that include for example, channels. If we do not observe resonance response, we might

be able to conclude that the preparation upon which the measurements were made does not contain the

elements that are responding in the biological systems. This should be important in further identifying

the basic sites of interaction in biological systems.
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3.2 Phoepholpid Membmne prmpartion
The system being used is a bilayer lipid membrane (BLM) in which a bilayer of lipid is

formed across a small hole (<1 mm diameter) in a sheet of plastic separating two compartments of

aqueous solution. This setup allows electrical measurements across a single membrane, and for
materials to be added individually to the solutions on either side of the membrane [Finkelstein, 1974;

Mountz et al, 1978].
3.2.1 Methods. The BLM is formed by the paint-brush technique. Lipid in n-decane (50 mg/ml) is
brushed over the hole, separating solutions of 150 mM KCI (or NaCI) and 1mM CaCI2 . Directly after

painting the lipid-decane mixture across the hole, there is a period of "thinning" (about 45 min) in
which decane and excess lipid diffuse out of the mid portion of the membrane to the surrounding

annulus, leaving a thin (6nm) bimolecular leaflet (the BLM) across the aperture. Once formed, BLMs

made by this method are stable for 6-24 hours at transmembrane voltages of <250 mV.
3.2.2 Lipid Characteristics. The lipid system used (Asolectin) is derived from plant membranes and

is composed of a mixture of phospholipids, predominately phosphatidylcholine, phosphatidylserine,

and phosphatidylethanolamine with smaller amounts of phosphatidylinosital and phosphatidic acid.
The fluidity of the acyl chain region of these lipids at room temperature (the temperature for these

experiments) is comparable to biological membranes under physiological conditions. The high
percentage of negatively charged phospholipids in the mixture gives the membrane an overall negative

surface potential. Negative lipids have typically been found necessary for full activity of membrane
proteins and interactions with cations [Brotherus et al, 1980; Wojtczak and Nalecz, 1979]. Cations,

especially divalent cations (Ca+ 2 ), regulate many properties of negatively charged membranes
(thickness, fluidity) [Leventis et al, 1986] and their attraction for the negative charges draws them near

to the membranes, increasing their concentration at the membrane surface where they may interact with

proteins or channels.

Although this is a model system, conditions have been chosen to mimic physiologically

relevant systems (buffer composition, lipid mixture). Asolectin has been found to be an excellent lipid
mixture for reconstituting membrane proteins [Labarca, et al, 1984]. It has approximately the correct

surface charge, acyl chain mobility, and bilayer thickness.
In the initial experiments, the conductance of ions (K+ , Na+, and Ca+ 2 ) across the lipid

bilayer, and changes in Ca + 2 binding to phospholipid headgroups (affecting membrane thickness and

thus capacitance) will be measured. The next step will be the addition of valinomycin, a protein that

shuttles K+ across membranes, to note the effect of ion interactions with a membrane protein ion

shuttle. Finally, ion channels will be incorporated into the BLMs to note changes in ion conductance

through a protein channel.

3.3 Apparatu
3.3.1 Magnetic Field Coils. We designed two pairs of Helmholtz coils to produce orthogonal

components of magnetic field. Each coil consists of enameled wire wound on a form with a diameter
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of 2.5 cm. The coils of each pair are separated by 4 cm. One pair of coils is placed so as to produce a
vertical component of dc magnetic field that cancels the earth's vertical component of magnetic field.
The other pair is aligned with the horizontal component of the earth's magnetic field so as to produce a
net dc magnetic field of the desired strength. An ac current to produce a horizontal ac magnetic field is
superimposed on the dc current. The phospholipid membrane is placed appropriately in between the
two pairs of coils, with the magnetic field components oriented as desired with respect to the
membrane. Since the superimposing of the ac and dc currents caused some interaction of the ac and dc
power supplies, in retrospect we believe it might have been better to use separate sets of coils for the
ac and dc field components. We solved the problem, however, by designing a dc amplier that isolated
the two sets of currents.

We measured the magnetic fields produced by the Helmholtz coils with two different
instruments, and found the measured values to be very close to the calculated values. At first, we used
a stereo amplifier purchased from an electronics supply house to amplify the ac current produced by a
signal generator as a means of generating desired values of ac magnetic field. We found, however,
that the frequency response of the stereo amplifier at the low frequencies was not good enough, and it
produced strong harmonics that we could not eliminate. So we replaced the stereo amplifier by a dc
amplifier of our own design; that solved the problem.

The most difficult instrumentation problem that we faced was how to eliminate the voltage
induced by the ac magnetic field coils in the leads to the signal analyzer that measured the electrical
impedance of the membrane. After trying a number of ways either to eliminate the induced signal or to
measure it and account for it adequately, we still have not completely overcome the problem, although
we have reduced it to the point that we can get meaningful data. We have concluded that eliminating
the induced voltages is probably impossible, and have concentrated on ways to measure the induced
voltage and properly take it into account.

3.3.2 Measuring Equipment
A block diagram of the apparatus used to produce the magnetic fields and measure the

electrical impedance of the phospholipid membrane is shown in Fig. 19.
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Fig. 19. Diagram of the system for measuring electrical impedance of phospholipid membranes

exposed to combined dc and ac mageicnetic fields.

The computer system sets the ac magnetic field strength, the dc magnetic field strength and records the

amplitude and phase of the voltage across the membrane, then resets the field strengths and repeats the

process, stepping through a wide range of field strengths. Although the signal analyzer has an internal

white noise source that can be used to provide the voltage for measuring the membrane impedance, we
found that we got more stable and more accurate readings if we used a separate, sinusoidal generator

(the HP 3310A function generator) to furish the input voltage. Since we do not have aprogrammable
generator for this purpose, we have had to set the firequency of th esistan AtHe e sby hand. Also,

to eliminate changes due to the voltage induced in the signal-analyzer circuit by the ac magnetic fields,

we set the frequency, set the ac magnetic field strength, and step through values of the dc magnetic

field strength. This makes the induced voltages constant for the entire set of readings. It also allows e

easy interpretation of the data, because if there is no resonance effect, all the readings will remain the

same as the dc field strength is varied. Looking for a resonance effect thus amounts only to looking

for changes in the voltage readings. ta

Measuring the impedance of the plain phospholipid membrane is difficult because the
membrane looks electrically like a capacitance in parallel with a resistance. At 100 Hz, the resistance is

about 10 Mil, and the capacitance of a typical membrane is about 4,000 pF, which makes the

capacitive reactance about 400 k. Since the capacitive reactance is much smaller an t he resistance, .
the capacitive reactance tends to short out the resistance and make it nearly impossible to measure. We ,

did devise some bridge circuits to measure the capacitance and resistance separately, but found that

these circuits caused too much voltage across the membrane, which destroyed it. Our membranes will

rupture if more than about 250 mV is applied across them. Although there are probably ways to

reduce the voltage across the membrane with the bridge circuit, we decided for now to neasure the

impedance directly, even though it is dominated by the capacitance. Later we plan to add valinomycin
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to the solution in which the membrane is placed, which will lower the resistance of the membrane, and
allow us to measure both its capacitance and resistance. This, of course, will be a modified membrane
system, since the resistance is reduced because the valinomycin shuttles K+ ions through the
membrane, but it will be important to see if the resonant fields affect this process as well. If it seems
important later, we will return to the problem of measuring the plain membrane impedance, but it
seemed better now to get some experience with measuring some membranes first and see what other
problems we might encounter.

4. SUMMARY AND CONCLUSIONS
We have completed the initial phases of an investigation of biological resonance reponses to

combined dc-ac magnetic fields. The investigation includes both modeling and experimental work.
To identify the concepts that describe resonance responses and explain the underlying physical
mechanisms, we have written differential equations that describe a very simple model, one charged
particle in a viscous medium exposed to a combination of dc and ac magnetic fields. Solutions to the
equations explain the basic mechanisms of how frequency windows and an amplitude windows, such
as those described in the literature (see Section 1), can be produced by the combined fields. The
fundamental mechanism is based upon synchronization of the velocity of the particle with the electric
fields to maximize transfer of energy from the electric fields to the particle. Although the model we
have used is much to simple to represent an actual biological system, is does promise to provide useful
information about the basic physical mechanisms that produce the resonance reponse. Features of a
biological system not included in our first model would be expected to produce more complicated
responses; for example, periodic endogenous fields of an array of molecules might be expected to
superimpose additional resonance characteristics on the synchronization effects described in Section 2.
Careful experimentation will be required to identify the site of interaction in biological systems and
relate it to fundamental physical principles.

On the experimental side, we have assembled and tested apparatus for making electrical
impedance measurements of planar phospholipid bilayer membranes exposed to combined dc and ac
magnetic fields. The impedance is measured with a signal analyzer that is controlled by a
microcomputer, which also sets the parameters such as frequency and magnetic field strength and
collects and compiles the data. Preliminary data has been obtained for the plain membrane. We will
soon be obtaining data for membranes with channels and other modifications.
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