DISTRIBUTION OF MATRIX HOMOPOLYMER IN BLOCK COPOLYMERS
OF SPHERICAL MORPH. (U) MASSACHUSETTS INST OF TECH
CAMBRIDGE DEPT OF CHEMISTRY C V BERNEY ET AL.

UNCLASSIFIED 29 JUL 87 TR-1 N00014-87-K-0517 F/G 7/6 NL
TECHNICAL REPORT NO. 1

Distribution of Matrix Homopolymer in Block Copolymers of Spherical Morphology

by

C.V. Berney, P. Cheng, R.E. Cohen
Department of Chemical Engineering
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Prepared for Publication in
Macromolecules

July 29, 1987

Reproduction in whole or in part is permitted for any purpose of the U.S. government.

This document has been approved for public release and sale; its distribution is unlimited.
Distribution of Matrix Homopolymer in Block Copolymers of Spherical Morphology

Samples made by blending deuterated polystyrene d of three different molecular weights with a polystyrene-polybutadiene block copolymer SB were studied with small-angle scattering techniques using X-rays (SAXS) and neutrons (SANS). The SANS results were sensitive both to the amount of added homopolymer d and to its chain length. Anomalously high SANS intensities and the absence of an intraparticle scattering maximum are consistent with the exclusion of added d from the corona of the SB micelles, resulting in d enrichment of the interstitial regions.
DISTRIBUTION OF MATRIX HOMOPOLYMER IN
BLOCK COPOLYMERS OF SPHERICAL MORPHOLOGY

by

C.V. Berney¹, Paul Cheng¹, and
R.E. Cohen*¹

Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Department of Chemical Engineering
Department of Materials Science and Engineering
Samples made by blending deuterated polystyrene S_d of three different molecular weights with a polystyrene-polybutadiene block copolymer SB were studied with small-angle scattering techniques using x-rays (SAXS) and neutrons (SANS). The SANS results were sensitive both to the amount of added homopolymer S_d and to its chain length. Anomalously high SANS intensities and the absence of an intraparticle scattering maximum are consistent with the exclusion of added S_d from the corona of the SB micelles, resulting in S_d enrichment of the interstitial regions.
Introduction

The study of block copolymers has proved to be a fertile area for the detailed elucidation of polymer interactions; it has been particularly fruitful in the production of information generated through the interplay between theoretical studies (see, for example, papers by Meier1, Helfand2, Leibler3–5, Noolandi6–7, and their coworkers) and experimental work, particularly small-angle scattering studies involving x-rays (SAXS) and neutrons (SANS).

One of the advantages of SANS over SAXS is the possibility of manipulating the contrast (in SANS, the nuclear scattering-length density) by selective deuteration. This technique was exploited in previous studies8–9 by synthesizing a polystyrene-polybutadiene diblock with the polybutadiene segment deuterated (SB\textsubscript{d}) to enhance the contrast between the spherical polybutadiene microdomains and the polystyrene matrix; the SANS signal was increased by a factor of 27, allowing detection of Debye–Scherrer powder peaks characteristic of cubic packing of the B\textsubscript{d} domains8 and accurate assessment of sphere size and interfacial thickness for a number of samples of differing molecular weight8. In another experiment10, deuterated polystyrene-polybutadiene diblocks SB\textsubscript{d} were blended with a normal (hydrogenous) diblock SB in such a way that the scattering-length densities of the S and B phases were matched, eliminating (inter- and intradomain) structural scattering and thus (presumably) leaving scattering from isolated B\textsubscript{d} chains as the dominant scattering mechanism.

The present study is a further attempt to use deuterated probe molecules to gain information about the distribution of polymer chains in a diblock system with spherical morphology -- this time in the polystyrene matrix.
Samples were prepared by adding deuterated homopolystyrene \((S_d)\) to a solution of polystyrene-polybutadiene diblock\(^8\) (SB1); the mixture was spin-cast and annealed to give transparent solid samples approximately 1 mm thick. These samples were then studied using SAXS and SANS scattering.

Experimental Section

Materials

The primary material used in this study was a polystyrene-polybutadiene diblock designated SB1; its synthesis and characterization are described in detail in Reference 9. The number-average molecular weights of the S and B segments are 79 and 11 kilodaltons, respectively, with narrow molecular weight distributions on both cases. When the material is cast from a solvent, microphase separation of the polybutadiene occurs; the B domains are roughly spherical, with an average radius\(^1\) of 117 Å. The SANS pattern of the material\(^1\) shows an interparticle interference peak at 0.0193 Å\(^{-1}\), implying an average domain center-to-center separation of 325 Å.

Deuterated polystyrene \((S_d)\) was obtained from Polysciences, Warrington PA, in three molecular weights: 68, 196, and 385 kilodaltons\(^2\) (\(Z = 654, 1885\) and 3702). Gel-permeation chromatographic runs carried out in our laboratories gave polydispersity indices \((M_n/M_w)\) of 1.07, 1.12, and 1.17, respectively, for these materials, which we shall henceforth refer to as \(S_d1, S_d2,\) and \(S_d3\).

Blends of SB1 with the \(S_d\) polymers were prepared by dissolving them in toluene, then forming thin films (-0.1 mm) by a solvent spin-casting technique\(^3\) (the films were stacked and annealed to provide specimens of suitable thickness). Six samples were cast: a "dilute" series in which \(S_d\) of each molecular weight was added to SB1 so that 11 per cent of the polystyrene
content was homopolymer, and a "concentrated" series in which the S_d fraction was 26 per cent.

Structural Analysis

Electron micrographs were obtained on a Phillips 200 electron microscope operated at 80 kV and calibrated against a diffraction grating carbon replica (21,600 lines/cm). Samples were stained with osmium tetroxide and cut into sections (-400 Å thick) on an LKB ultramicrotome fitted with a freshly prepared glass knife.

Small-angle x-ray scattering (SAXS) experiments were carried out at the Rosenstiel Research Center at Brandeis University, through the courtesy of Dr. Walter C. Phillips, using an instrument developed there. Photons were supplied by an Elliott rotating-anode generator operating at 35 keV with a Cu target. The beam was focused and monochromated ($\lambda = 1.54$ Å) by a double-mirror camera with Ni-coated mirrors. Beam size at the sample was -0.3 x 0.4 mm. Detection of scattered x-rays was carried out by an image intensifier placed (for this experiment) 368 mm from the sample. Samples were run for 30 min each. The isotropic two-dimensional scattering patterns were then examined, corrected for detector sensitivity, and subjected to a radial average routine.

Small-angle neutron scattering (SANS) experiments were performed on the 30-m instrument at the National Center for Small-Angle Scattering Research (NCSASR), Oak Ridge National Laboratory, employing neutrons of wavelength $\lambda = 4.75$ Å and sample-to-detector distances of 6 and 14 m. Scattering data (collected in runs of 30 min each) were corrected for background scattering and detector sensitivity, then radially averaged. Scattering intensities
were reduced to absolute values by comparison with a specimen of irradiated aluminum of known R_g run under the same conditions.

Results

Electron Microscopy

Figure 1 shows representative micrographs of the 11% and 26% blends of S_d3 with SB1, designated $SB1(S_d3)_{0.11}$ and $SB1(S_d3)_{0.26}$ (compare with micrographs of unblended SB1 and SBd1, Figs. 1 and 2 of Ref. 9). The micrographs confirm that the morphology is spherical in all cases. The 11% blend is almost as well ordered as the pure SB1, but the 26% blend looks significantly different -- the B domains are farther apart, and they seem to line up in strings, rather than retaining the isotropic packing pattern of the other two.

SAXS Analysis

Figure 2 shows the SAXS results for the 11% and 26% blends of S_d1 with SB1 (results for the S_d2 and S_d3 blends were virtually identical). The dominant features are the interparticle interference peaks around $Q = 0.02 \text{ Å}^{-1}$. In the 26% blends, this peak is shifted to lower Q, reflecting the greater separation between B domains as the amount of added homopolymer is increased. Quantitatively, the peak occurs at $Q = 0.0200 \text{ Å}^{-1}$ for the 11% blends (implying a correlation length $d = 2\pi/Q = 313 \text{ Å}$) and at 0.0180 Å^{-1} for the 26% blends ($d = 350 \text{ Å}$).

Also apparent in the SAXS data (Fig. 2) is a broad peak around 0.05 Å^{-1}. We attribute this to the first maximum of the single-particle form
factor16 for the polybutadiene spheres, and we can thus calculate the average radius of these spheres as \(R_a = \frac{5.765}{0.05} = 115 \text{ Å} \), in close agreement with a previous estimate 11 (117 Å) for \(R_a \) in SB1.

In summary, the SAXS data are sensitive to the amount of homopolystyrene added (indicated by the position of the interparticle interference maximum), but are insensitive to its molecular weight.

SANS Analysis

Fig. 3abc shows the neutron-scattering patterns obtained from the 11% blends and Fig. 3def those from the 26% blends. The most prominent feature in these spectra is again the interparticle interference peak, located (in agreement with the SAXS data) at 0.0200 Å\(^{-1}\) for the 11% blends and at 0.0180 Å\(^{-1}\) for the more concentrated samples. This time, however, there are marked changes with the molecular weight of the added homopolymer \(S_d \): the intensity at minimum \(Q \) rises as \(M_w(S_d) \) increases, and it rises faster for the 26% samples than it does for the more dilute series.

In an attempt to obtain a more quantitative understanding of the scattering in these samples, we have developed a preliminary modeling scheme for the coherent scattering which incorporates three mechanisms: (1) scattering from single chains of labeled polystyrene \(S_d \), (2) interparticle interference, and (3) intraparticle scattering from the B domains. As in our studies of SB/SB\(_d\) blends10, the single-chain scattering was modeled with a Debye function.

\[
I(Q) = \frac{2I_0}{R^2 \xi^4} \left[R^2 \xi^2 - 1 + \exp(-R^2 \xi^2) \right] \quad (1)
\]
where Q is the magnitude of the momentum-transfer vector (equal to $4\pi\lambda^{-1} \sin\theta$, where λ is the wavelength of the incident radiation and θ is half the scattering angle) and R^2_s is the mean-square radius of gyration of the chain.

In modeling the effects of interparticle interference, we have used the treatment described by Kinning and Thomas17, which utilizes the closed-form solution for the Percus-Yevick18 correlation function developed by Wertheim19 and Thiele20. This solution is based on the assumption of hard-sphere behavior for the interacting particles. The calculation is parameterized mainly in terms of the hard-sphere volume fraction η

$$\eta = \frac{4\pi R^3_{hs}}{3} n$$ \hspace{1cm} (2)

where R_{hs} is the effective radius of the hard spheres and n is the number of spheres per cm3. Auxiliary variables α, β, and γ are defined in terms of η:

$$\alpha = \frac{(1 + 2\eta)^2}{(1 - \eta)^4}$$ \hspace{1cm} (3)

$$\beta = -6\eta(1 + \eta/s)^2/(1 - 3)^4$$ \hspace{1cm} (4)

$$\gamma = 4\eta(1 + 2\eta)^2/(1 - 3)^4$$ \hspace{1cm} (5)

Following Kinning and Thomas17, we then write the interference factor

$$S(Q, R_{hs}) = \frac{1}{1 + 24\eta(GA)^2/A}$$ \hspace{1cm} (6)

where $A = 2QR_{hs}$ and
\[
G(A) = \frac{A}{A^2} (\sin A - A \cos A) + \\
\frac{\beta}{A^3} (2A \sin A + (2 - A^2) \cos A - 2) + \\
\frac{\alpha}{A^3} (-A^4 \cos A + [93A^2 - 6] \cos A + (A^3 - 6A) \sin A + 6))
\] (7)

Intraparticle scattering was handled as before6,16, using the Bessel function \(J_{3/2} \) to describe the form factor

\[
f^2_{\text{sphere}}(QR_b) = \frac{9\pi}{2} \frac{\left[J_{3/2}(QR_b) \right]^2}{(QR_b)^{3/2}}
\] (8)

where \(R_b \) is taken as 117 Å, the radius of the B domains. Total scattering was then represented as

\[
I(Q, R_{bs}, R_b) = I_{\text{chain}}(Q, I_o, R_b) + KS(Q, R_{hs}) f^2_{\text{sphere}}(QR_b) + I_{\text{inc}}
\] (9)

Here \(I_{\text{chain}} \) is the scattering from labeled polystyrene chains \(S_d \), calculated from the Debye expression, Eq. 1. The factor \(K \) includes the contrast factor \((\rho_p - \rho_m)^2\), where \(\rho_p \) and \(\rho_m \) are the neutron scattering-length densities of the particle and matrix, and \(I_{\text{inc}} \) is the incoherent scattering, which for these samples was constant at 0.85 cm\(^{-1}\).

Given the molecular weight and isotopic composition of the labeled homopolymer chains, it is possible to calculate expected values for the forward scattering \(I_o \):
\[I_0 = (s_B - s_D)^2 Z N_0 \phi X (1 - X) \]

Here \(s_B \) is the sum of coherent scattering lengths\(^{21} \) for the normal repeat unit, \(s_D \) the corresponding sum for the deuterated repeat unit, \(Z \) the polymerization index, \(N_0 \) the number of repeat units per cm\(^3 \) in the bulk, \(\phi \) the volume fraction of polystyrene in the sample, and \(X \) the fraction of polystyrene which is labeled. Expected radii of gyration \(R_g \) are easily calculated\(^{22} \) from the expression

\[R_g = (K/\phi)^{1/3} N_0^{1/2} \]

The quantity \((K/\phi)^{1/3}\) for bulk polystyrene has been determined\(^23\) to be 0.27. Expected values of \(I_0 \) and \(R_g \) for the samples used in this study are listed in Table 1.

Fig. 3abc shows the SANS data for the 11% samples together with the results of the calculations described above. The hard-sphere diameter \(R_{hs} \), the volume fraction \(\eta \), and the contrast factor \(K \) were varied to secure agreement between calculation and experiment for the position and intensity of the interparticle interference peak at \(Q = 0.02 \) Å\(^{-1} \), and the Debye parameters \(I_0 \) and \(R_g \) were varied to fit the points at lowest \(Q \) and the general falloff of intensity as \(Q \) increases. \(Q \) values used in the calculations were those for which experimental points were available, and calculated spectra were run through several iterations of a Pascal 7-point smooth (in which adjacent points are averaged using the normalized
coefficients of a sixth-power binomial expansion) to simulate instrumental broadening.

Inspection of Fig. 3 shows that in general, the algorithms used do a remarkably good job of accounting for the experiment. Two discrepancies, however, are immediately apparent. The first is that the observed inter-particle interference peak is broader about the base than the calculated peak. We take this to imply that there are ways in which the arrangement of B domains in the matrix does not correspond to a hard-sphere distribution, and it may be that the existence of "strings" of spheres, as seen in Fig. 1, is responsible for this discrepancy. The second discrepancy is the complete absence in the observed spectra of the broad peak around 0.05 Å^{-1} due to intraparticle scattering from the polybutadiene spheres, present in the calculated spectra and clearly seen in the SAXS data (Fig. 2). We will discuss this discrepancy in more detail later.

Discussion

Clustering of S chains

Values of I_0 and R_s required to fit the observed spectra for the 11% samples (Table 1) are reasonably close to the expected values, but for the 26% samples, highly inflated values of these parameters are required (Fig. 4, Table 1). We attribute this (as in our earlier study10) to clustering of the deuterated chains, which of course would be more pronounced in the samples more concentrated in S_d. Note that for the 26% samples, the ratio (obs/calc) for R_s is close to the square root of the ratio for I_0, in accord with Equations 10 and 11.
Intraparticle Scattering

In SANS experiments, the intensity of the intraparticle scattering depends on the square of the difference between the scattering length densities of the contrasting regions. Using scattering lengths21 for carbon and hydrogen of \(0.665 \times 10^{-12}\) and \(-0.374 \times 10^{-12}\) cm and densities of 1.05 g/cm\(^3\) for polystyrene and 0.89 g/cm\(^3\) for polybutadiene, we calculate scattering-length densities \(\rho(S) = 1.414\) and \(\rho(B) = 0.412\) (units are \(10^{10}\) cm\(^{-2}\)), the difference being due to the higher C/H ratio and greater density of polystyrene. In deuterated polystyrene (S\(_d\)), the substitution of deuterium (scattering length \(-0.667 \times 10^{-12}\) cm) for hydrogen raises \(\rho(S_d)\) to 6.47. Thus, when S\(_d\) homopolymer is blended with diblock SB the scattering-length density of the polystyrene matrix is increased. This is shown graphically for a typical micelle of SBI in Fig. 4a, where scattering-length density is plotted against position with respect to the B domain (for simplicity, interfaces are represented as being sharp). In a homogeneous polystyrene blend which is 11\% S\(_d\), \(\rho\) is raised to 1.97; if the S\(_d\) content is increased to 26\%, \(\rho\) becomes 2.73 (dashed lines, Fig. 4b and 4c). However, if we assume that the added S\(_d\) is excluded from the corona, the interstitial regions are necessarily enriched in S\(_d\). If we take the size of the corona to be the same as the hard-sphere radius determined from the Percus-Yerick model, we can calculate that for the 11\% samples \((R_h = 117, R_{h_s} = 200\) A\), the volume fraction of S\(_d\) in the interstices is 0.337, and the corresponding \(\rho\) is 3.12 (Fig. 5b). For the 26\% samples \((R_h = 117, R_{h_s} = 215\) A\), the interstitial fraction of S\(_d\) is 0.705-- the interstices are now mostly deuterated -- and \(\rho = 4.98\) (Fig. 5c). Using the known value of \(\rho(B)\) given
above the values of K (Eq. 9) required to fit the interparticle interference peak in each of the spectra can be used to deduce an apparent value of ρ_s. These derived values vary from 2.6 to 3.4 for the 11% S_d samples, and from 5.3 to 5.6 for the 26% samples (see Fig. 3). The striking fact is that these "observed" values far exceed the values of ρ_s calculated for a homogeneous dispersion of S_d in the S matrix, and are much more nearly in accord with the values of ρ_s derived from the assumption that homopolymer S_d is restricted to interstitial regions between the SB1 micelles (B core and S corona). An interesting additional trend is the slight reduction in ρ_s as $M_w(S_d)$ is increased, perhaps due to a "fuzzing" of the boundary between coronas and interstices with increasing chain length.

We now return to the question of the missing intraparticle peaks. They were expected to appear because we implicitly assumed that the S_d chains were distributed more or less evenly through the polystyrene matrix. Their absence forces us to take seriously the idea of the "hard spheres" used in the calculations described above. As has been pointed out before (see, for example, Refs. 4, 7 and 17), the B domains in an SB diblock are surrounded by a corona of the S segments attached to the phase-separated B segments; this corona separates the B domains and determines the effective hard-sphere radius used in the calculations.
Figure 4 demonstrates why the intraparticle scattering maximum appears in the SAXS spectra (where the B spheres are the only source of contrast, as in Fig. 4a) and does not appear in the SANS data, where the S-B contrast is overshadowed by the contrast between (labeled) interstitial and coronal regions which is not abrupt, as pictured in Fig. 4. This preliminary analysis assumes total exclusion of the homopolymer from the corona; a gradual depletion of homopolymer chains from regions spatially closer to the B domains is physically more reasonable. Thus, it is probable that the concept of a sigmoidal smoothing function \(^2\) can be applied in characterizing the coronal-interstitial interface, and we intend to attempt such a characterization in a future study.

Conclusions

Addition of polystyrene homopolymer to a diblock consisting of polybutadiene spheres in a polystyrene matrix increases the average separation of the B spheres in a way which may be locally anisotropic, especially with homopolymer of longer chain length. The added homopolymer is not uniformly dispersed through the matrix, but is excluded from the S corona surrounding the B spheres and is thus forced into the interstitial regions between the micelles (B sphere plus S corona).

Acknowledgments

This research has been supported by the National Science Foundation, Division of Materials Research, Polymers Program, under Grant DMR-8300446 and by the Office of Naval Research, under Contract Number: N00014-77-C-0311.
SANS experiments were performed at the National Center for Small-Angle Scattering Research, which is funded by NSF Grant DMR-7724459 through interagency agreement 40-636-77 with the US Department of Energy under contract DE-AC05-84OR21400 with Martin Marietta Energy Systems Inc. We thank Dr. George Wignall of NCSASR for his help. We also thank Dr. Walter Phillips of Brandeis University for access to his SAXS instrument and for his help in obtaining the data. Assistance with the calculations was provided by Goldy Cheng and by Peter Kofinas, with support from the MIT Undergraduate Research Opportunities Program.
REFERENCES AND NOTES

12. Molecular weight values quoted were determined chromatographically

15
Table 1.

<table>
<thead>
<tr>
<th>Sample</th>
<th>(I_0) (cm(^{-1})) calculated</th>
<th>(I_0) (cm(^{-1})) observed</th>
<th>ratio obs/calc</th>
<th>(R_s) (Å) calculated</th>
<th>(R_s) (Å) observed</th>
<th>ratio obs/calc</th>
</tr>
</thead>
<tbody>
<tr>
<td>SBl(S(d)1)({0.11})</td>
<td>22.9</td>
<td>35</td>
<td>1.53</td>
<td>70.4</td>
<td>87</td>
<td>1.24</td>
</tr>
<tr>
<td>SBl(S(d)2)({0.11})</td>
<td>66.0</td>
<td>105</td>
<td>1.59</td>
<td>119.5</td>
<td>130</td>
<td>1.09</td>
</tr>
<tr>
<td>SBl(S(d)3)({0.11})</td>
<td>129.6</td>
<td>120</td>
<td>0.93</td>
<td>167.5</td>
<td>190</td>
<td>1.13</td>
</tr>
<tr>
<td>SBl(S(d)1)({0.26})</td>
<td>47.4</td>
<td>97</td>
<td>2.0</td>
<td>70.4</td>
<td>100</td>
<td>1.42</td>
</tr>
<tr>
<td>SBl(S(d)2)({0.26})</td>
<td>136.6</td>
<td>600</td>
<td>4.4</td>
<td>119.5</td>
<td>250</td>
<td>2.09</td>
</tr>
<tr>
<td>SBl(S(d)3)({0.26})</td>
<td>268.2</td>
<td>10,000</td>
<td>37.0</td>
<td>167.5</td>
<td>960</td>
<td>5.73</td>
</tr>
</tbody>
</table>
FIGURE CAPTIONS

Fig. 1. Electron micrographs of polystyrene-polybutadiene diblocks. (a) SBl blended with 11% deuterated polystyrene homopolymer. (b) SBl blended with 26% deuterated polystyrene homopolymer. Samples have been stained with OsO₄, which preferentially darkens the polybutadiene.

Fig. 2. SAXS data for Sbl(S₄₁)₀.₁₁ (full curve, typical of 11% samples) and Sbl(S₄₁)₀.₂₆ (dashed curve, typical of 26% samples).

Fig. 3. SANS data for samples containing 11% S₄ in SBl; (d,e,f) SANS data for samples containing 26% S₄ in SBl. Circles represent experimental points, full lines are calculated from Eq. 9 using parameters given in the figure. Molecular weight of added homopolymer S₄ (in Kilodaltons) is given as a left superscript.

Fig. 4. (a) SANS scattering-length density ρ for SBl in the neighborhood of a B sphere. Dashed lines show increase in contrast for 11% and 26% added S₄ homopolymer if the S₄ is distributed uniformly through the matrix. (b) Scattering-length density for 11% added S₄. (c) Scattering-length density for 26% added S₄. In (b) and (c), hatched area shows ρ profile if homopolymer is excluded from the corona; dashed lines show ρ profile if homopolymer is uniformly distributed throughout the matrix.
ABSTRACTS DISTRIBUTION LIST, 356A

Naval Surface Weapons Center
Attn: Dr. J. M. Augl, Dr. B. Hartman
White Oak
Silver Spring, Maryland 20910

Dr. Robert E. Cohen
Chemical Engineering Department
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Dr. T. J. Reinhart, Jr., Chief
Nonmetallic Materials Division
Department of the Air Force
Air Force Materials Laboratory (AFSC)
Wright-Patterson AFB, Ohio 45433

Professor J. Lando
Department of Macromolecular Science
Case Western Reserve University
Cleveland, Ohio 44106

Professor J. Scheinbeim
Department of Materials Science and Mechanics
Rutgers University
Piscataway, New Jersey 08854

PLASTEC
DRSMC-SCM-O(D), Bldg 351 N
Armament Research & Development Center
Dover, New Jersey 07801

Dr. Ivan Caplan
DTNSRDC
Code 0125
Annapolis, MD 21401

Professor H. Ishida
Department of Macromolecular Science
Case Western Reserve University
Cleveland, OH 44106

Professor F. Rodriguez
Department of Chemical Engineering
Cornell University
123 Day Hall
Ithaca, New York 14853

Dr. W. R. Krigbaum
Department of Chemistry
Duke University
Durham, North Carolina 27706

Professor J. T. Koberstein
Department of Chemical Engineering
University of Connecticut
Storrs, Connecticut 06268

Professor J. K. Gillham
Department of Chemical and Engineering
Princeton University
Princeton, New Jersey 08540

Professor L. H. Sperling
Department of Chemical Engineering
Lehigh University
Bethlehem, Pennsylvania 18015

Professor Brian Newman
Department of Mechanics and Materials Science
Rutgers University
Piscataway, New Jersey 08854

Dr. C. E. Hoyle
Department of Polymer Science
University of Southern Mississippi
Hattiesburg, Mississippi 39406

Dr. Stuart L. Cooper
Department of Chemical Engineering
University of Wisconsin
Madison, Wisconsin 53706

Professor Sukant K. Tripathy
Department of Chemistry
University of Lowell
Lowell, Massachusetts 01854

Dr. B. Gordon III
Department of Materials Science
Pennsylvania State University
University Park, PA 16802

Dr. I. M. Brown
McDonnell Douglas Research Laboratories
P.O. Box 516
St. Louis, Missouri 63166

Dr. L. E. Sloter
Code Air 931-A
Naval Air Systems Command
Washington, D.C. 20361-9310
ABSTRACTS DISTRIBUTION LIST, 356A

Professor C. H. Wang
Department of Chemistry
University of Utah
Salt Lake City, Utah 84112

Professor J. H. Magill
Department of Metallurgical Engineering
University of Pittsburgh
Pittsburgh, Pennsylvania 15261

Professor R. Stein
Department of Polymer Science and Engineering
University of Massachusetts
Amherst, Massachusetts 01002

Professor C.P.S. Sung
Institute of Materials Science
University of Connecticut
Storrs, Connecticut 06268

Professor M. Pomerantz
Department of Chemistry
University of Texas
Arlington, Texas 76019

Dr. L. Buckley
Naval Air Development Code 6063
Warminster, Pennsylvania 18974

Dr. Thomas J. McCarthy
Polymer Science and Engineering Department
University of Massachusetts
Amherst, MA 01003

Professor David S. Soong
Department of Chemical Engineering
University of California
Berkeley, CA 94720-9989

Professor Leo Mandelkern
Institute of Molecular Biophysics
Florida State University
Tallahassee, FL 32306-3015

Professor Scott E. Rickert
Department of Macromolecular Science
Case Western Reserve University
10900 Euclid Avenue
Cleveland, OH 44106

Professor Bruce Hudson
Department of Chemistry
University of Oregon
Eugene, OR 97403

Professor E. Samulski
Department of Chemical Engineering
University of Connecticut
Storrs, Connecticut 06268

Professor J. W. Doane
Liquid Crystal Institute
Kent State University
Kent, Ohio 44242

Professor A. Argon
Department of Mechanical Engineering
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Professor Paul M. Lahti
Department of Physics
Ohio State University
Columbus, OH 43212

Dr. P. J. Hendra
Department of Chemistry
University of Southampton
Southampton S09 5NH
UNITED KINGDOM

Professor A. Heeger
Department of Physics
University of California
Santa Barbara, CA 93106

Professor Curtis W. Frank
Department of Chemical Engineering
Stanford University
Stanford, CA 94305

Professor John F. Rabolt
IBM K91 8801
Almaden Research Center
650 Harry Road
San Jose, CA 95120-6099

Dr. William B. Moniz
Chemistry Division
Naval Research Laboratory
Washington, D.C. 20375-5000
<table>
<thead>
<tr>
<th>Office of Naval Research</th>
<th>2</th>
<th>Dr. David Young</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attn: Code 1113</td>
<td></td>
<td>Code 334</td>
</tr>
<tr>
<td>800 N. Quincy Street</td>
<td></td>
<td>NORDA</td>
</tr>
<tr>
<td>Arlington, Virginia</td>
<td>22217-5000</td>
<td>NSTL, Mississippi 39529</td>
</tr>
<tr>
<td>Dr. Bernard Douda</td>
<td>1</td>
<td>Naval Weapons Center</td>
</tr>
<tr>
<td>Naval Weapons Support Center</td>
<td></td>
<td>Attn: Dr. Ron Atkins</td>
</tr>
<tr>
<td>Code 50C</td>
<td></td>
<td>Chemistry Division</td>
</tr>
<tr>
<td>Crane, Indiana</td>
<td>47522-5050</td>
<td>China Lake, California 93555</td>
</tr>
<tr>
<td>Naval Civil Engineering Laboratory</td>
<td>1</td>
<td>Scientific Advisor</td>
</tr>
<tr>
<td>Attn: Dr. R. W. Drisko, Code L52</td>
<td></td>
<td>Commandant of the Marine Corps</td>
</tr>
<tr>
<td>Port Hueneme, California</td>
<td>93401</td>
<td>Code RD-1</td>
</tr>
<tr>
<td>Defense Technical Information Center</td>
<td>12</td>
<td>Washington, D.C. 20380</td>
</tr>
<tr>
<td>Attn: CRD-AA-IP</td>
<td></td>
<td>U.S. Army Research Office</td>
</tr>
<tr>
<td>Building 5, Cameron Station</td>
<td>high</td>
<td>Attn: P.O. Box 12211</td>
</tr>
<tr>
<td>Alexandria, Virginia</td>
<td>22314</td>
<td>Research Triangle Park, NC 27709</td>
</tr>
<tr>
<td>DTNSRDC</td>
<td>1</td>
<td>Mr. John Boyle</td>
</tr>
<tr>
<td>Attn: Dr. H. Singerman</td>
<td></td>
<td>Materials Branch</td>
</tr>
<tr>
<td>Applied Chemistry Division</td>
<td></td>
<td>Naval Ship Engineering Center</td>
</tr>
<tr>
<td>Annapolis, Maryland</td>
<td>21401</td>
<td>Philadelphia, Pennsylvania 19112</td>
</tr>
<tr>
<td>Dr. William Tolles</td>
<td>1</td>
<td>Naval Ocean Systems Center</td>
</tr>
<tr>
<td>Superintendent</td>
<td></td>
<td>Attn: Dr. S. Yamamoto</td>
</tr>
<tr>
<td>Chemistry Division, Code 6100</td>
<td></td>
<td>Marine Sciences Division</td>
</tr>
<tr>
<td>Naval Research Laboratory</td>
<td></td>
<td>San Diego, California 91232</td>
</tr>
<tr>
<td>Washington, D.C.</td>
<td>20375-5000</td>
<td></td>
</tr>
</tbody>
</table>
END
9-87
DTic