EFFECT OF IONIZING RADIATION ON PROSTAGLANDINS AND GASTRIC SECRETION IN RHESUS MONKEYS

Andre Dubois
Etienne Danquechin Dorval
Linda Steel
Nancy P. Fiala
James J. Conklin

Research was conducted according to the principles enunciated in the "Guide for the Care and Use of Laboratory Animals" prepared by the Institute of Laboratory Animal Resources, National Research Council.

Digestive Diseases Division, Department of Medicine, Uniformed Services University of the Health Sciences, and Radiation Biochemistry Department, Armed Forces Radiobiology Research Institute, Bethesda, MD.

The opinions and assertions contained herein are the private ones of the authors and are not to be construed as official policy or as reflecting the views of the Department of Defense.

Three copies included
Fifteen pages
Two tables
Running head: Radiation and prostaglandins in monkeys

Correspondence and reprint requests to:
Andre Dubois, M.D., Ph.D., Department of Medicine
Uniformed Services University of the Health Sciences
4301 Jones Bridge Road, Bethesda, MD 20814-4799, U.S.A.
Telephone (301) 295-3606
Abstract

DUBOIS, A., DORVAL E.D., FIALA N., AND CONKLIN J.J.. Effect of Ionizing Radiation on Prostaglandins and Gastric Secretion in Monkeys. Rad Res

The radiation induced prodromal syndrome is characterized by nausea and vomiting. We have previously shown that gastric emptying, gastric motility, and gastric secretion were suppressed after total body exposure to irradiation. In the present studies, we evaluated the relation between vomiting and gastric function, and explored the possible role of prostaglandins (PG) in these phenomena. We determined the concentration of PG in the plasma and gastric juice using standard radioimmunoassay and concurrently measured gastric acid output using a marker dilution technique in 9 rhesus monkeys. The animals were studied in the basal state and after total body exposure to 800 cGy Cobalt-60 delivered at a rate of 500 cGy/min. Acid output was abolished from 40 min to 2 hrs after irradiation but had returned to preirradiation levels 2 days later. Plasma PGF$_2$ and PGI$_2$ (as measured by 6-keto-PGF$_{1α}$ determination) were not significantly modified by irradiation. In contrast, irradiation produced an immediate increase (p<0.05) in gastric juice concentration of PGE$_2$ (318±80 to 523±94 pg/ml; mean±SE) and PGI$_2$ (230±36 to 346±57 pg/ml); both had returned to basal levels 2 days later. Thus, both PGE$_2$ and PGI$_2$ may be responsible for the immediate suppression of acid output. Furthermore, our observations suggest that measurement of PG concentration in the gastric juice is useful to examine the role of prostaglandins in gastric function.
Introduction

Emesis is the most obvious and the best documented prodromal symptom of the acute radiation sickness which occurs immediately after whole body irradiation (1,2). We and others have recently shown that these symptoms are accompanied by a suppression of gastric emptying and gastric secretion (3-5). This radiation induced prodromal syndrome is clearly different from the condition observed during the intestinal syndrome which occurs 7 to 15 days after irradiation and is characterized by bloody diarrhea (6).

The chemoreceptor trigger zone and the vomiting center in the brain appear to play a pivotal role in irradiation-induced vomiting (7-9), but the role of peripheral mediators is not yet completely elucidated, and the mechanism of the suppression of gastric emptying and secretion remains unclear. Prostaglandins could be involved as a paracrine mediator released peripherally and acting directly on the gastrointestinal tract, as they can produce vomiting (10-12) and their concentrations are increased in the small bowel of the rat after irradiation (13).

The present studies were performed in monkeys, an animal model which appears closest to man in term of brain organization and gastric function. We produced vomiting and gastric suppression with a single dose of total body irradiation and we measured prostaglandins and gastric function before, during and after the acute radiation sickness. We determined the concentration of prostaglandins E\(_2\) (PGE\(_2\)) and 6-keto-Prostaglandin F\(_{1\alpha}\) (a stable metabolite of PGI\(_2\)) in the plasma and in the gastric juice. In addition, we examined the relation between these prostaglandin levels and radiation-induced vomiting and stomach function.
Materials and Methods

Nine conscious, chair-adapted rhesus monkeys were studied on 3 separate days after an overnight fast: control day, irradiation day and 2 days after irradiation. Studies were performed in the morning and started 20 min after either sham irradiation on control day, or after real irradiation on irradiation day. On control days, the animals were brought to the exposure room and the doors were closed for 3 min. On irradiation day, each monkey was exposed to 800 cGy (800 rads) total body irradiation delivered at 500 cGy/min by two large, 10^5 Ci 60Cobalt irradiators placed anteriorly and posteriorly. Phantom studies demonstrated that the midline abdomen received 800 cGy and that the head received 600 cGy.

Each monkey was visually monitored for 3 hours on control days and for 6 hours on irradiation days. In addition, bipolar electrical potentials were recorded from 2 abdominal disposable skin electrodes on a multichannel recorder (Beckman R612, Beckman Instr., Schiller Park, IL). Abdominal bipolar recordings displayed periodic waves in the 3/min range which have been shown to correlate with gastric electrical control activity when gastric serosal electrodes are used in conjunction with skin electrodes (16,17). Each tracing was examined blindly by one of us (EDD), the total duration during which gastric waves could be counted was determined, and the mean gastric frequency was determined by visual inspection as previously reported (5). Vomiting was defined as a succession of strong and brief contractions of thoracic and abdominal muscles leading to the expulsion of gastric contents through the mouth; retching was defined as a non-productive vomiting (18). During both events, recordings displayed a succession of brief bursts of high potential spikes (5), clearly different from the movement artifacts which were sometimes
superimposed.

A 12 French double lumen nasogastric tube was placed in the stomach, and a sample of gastric juice was obtained for measurement of prostaglandins. The water recovery test (19) was then used to verify the position of the tube, which was satisfactory in all experiments. Starting 45 min later, a previously described and validated marker dilution technique (20,21) was used concurrently to calculate gastric secretion and gastric emptying as previously reported (5). This procedure was performed once a week for 1 month in order to habituate the monkeys before initiation of the studies. The subsequent studies were performed with the same frequency.

Before each of the studies, blood was drawn and placed in tubes containing 2% EDTA (0.08 mg/ml blood) and 1.6% solution of indomethacin in NaHCO$_3$ buffer (0.005 mg/ml blood) for determination of levels of 6-keto-PGF$_{1\alpha}$ (a stable metabolite of PGI$_2$), and PGE$_2$ in the plasma. Samples of gastric juice were placed in tubes containing 1.6% solution of indomethacin in NaHCO$_3$ buffer (0.005 mg/ml). Samples of plasma and gastric juice were immediately centrifuged and the clear supernatants were frozen at -80 C for subsequent analysis. At the time of the analysis, samples were thawed and then applied to individual C18 solid phase extraction columns (Bone-Elut C18, 200 mg sorbent mass, Analytichem International, Harbor City, CA) previously washed with methanol and equilibrated with H$_2$O adjusted to pH 3.2 with citric acid. When the supernatants had passed through the columns, each was sequentially washed with 2 ml of H$_2$O (pH 3.2), 2 ml 12.5% methanol and 2 ml benzene. Prostaglandins were eluted off the C18 column with four 0.5 ml aliquots of ethyl acetate. Slight vacuum pressure was applied to capture the remaining solvent from the columns. Ethyl acetate extracts were dried under N$_2$ and subsequently reconstituted in assay buffer (phosphate buffered saline pH 6.8
containing 1% bovine gamma-globulin and 0.05% sodium azide). Prostaglandin \(\mathrm{E}_2 \) and 6-keto-PGF\(_{1\alpha} \) levels were determined by radioimmunoassay, employing \(^{125}\!\!\!\mathrm{I} \)-radioimmunoassay kits (New England Nuclear, Boston, MA).

Samples of plasma and gastric juice (1.0 ml) were acidified to pH 3.2 by the addition of approximately 0.1 ml 2 M citric acid. Centrifugation for 10 min at 100 \(\times \) g (4 C) did not result in a precipitable protein pellet. Acidified samples were applied to individual C18 extraction columns (500 mg sorbent mass), sequentially washed and PGs recovered from the column as previously described. Following \(\mathrm{N}_2 \) evaporation of the ethyl acetate, extracts were reconstituted in 0.1ml assay buffer and PG levels determined by radioimmunoassay as previously described (22).

Representative samples of plasma and gastric juice were spiked with 10,000 CPM \(^3\!\!\!\mathrm{H}\)-PGE\(_2 \) or \(^3\!\!\!\mathrm{H}\)-6-keto-PGF\(_{1\alpha} \) and processed with other samples, in order to determine extraction efficiency. Recovery of all four PG tracers was greater than 95% in plasma samples and greater than 90% in biopsy samples. Similarly, samples were analyzed for non-specific interfering materials. Samples of plasma and gastric juice were depleted of PGs by charcoal adsorption (Norit A, Fisher Chemical Co., Fairlawn, NJ) (22). One ml plasma samples and 3 ml gastric juice samples were incubated for 2 hr at 4 C with 0.15 or 0.45 ml, respectively, of a 100 mg/ml charcoal-saline solution. (Tracer amounts of labeled PGs added to the samples revealed this procedure to completely adsorb the radioactivity.) PG-depleted plasmas and gastric juices were processed on C18 extraction columns as described. Evaporated ethyl acetate eluates, reconstituted in assay buffer and analyzed by radioimmunoassay, revealed less than 5% decrease in binding of all three radiolabeled ligands to their respective antibodies. A number of plasma and gastric juice PG extracts were analyzed at two dilutions. The results, when
corrected for the dilution factor, yielded sample values within 10% of one another.

All calculations were performed using locally developed programs and a PDP-10 computer (Division of Computer Research and Technology, National Institutes of Health, Bethesda, Maryland). The statistical significance of differences observed for each measurement of prostaglandin concentrations and gastric function (i.e., fractional emptying rate, acid output, etc...) was evaluated using a three-factor (treatment, time, and monkey) analysis of variance with repeated measures on the last two factors (20,21), the program LDU-040 (K.L. Dorn), and an IBM 370 computer (Division of Computer Research and Technology, National Institutes of Health, Bethesda, MD).

Results

Two hours after irradiation, plasma PGE$_2$ and 6-keto-PGF$_{1\alpha}$ were not significantly different from control day or from 2 days post irradiation (table 1).

In contrast, a significant increase (p<0.05) of the concentration of PGE$_2$ and PGI$_2$ was observed in the gastric juice 30 min after irradiation; both concentrations had returned to basal levels 2 days later (table 2).

The increase of the concentration of PGE$_2$ and PGI$_2$ in the gastric juice occurred concurrently with radiation induced vomiting, suppression of acid output, and suppression of gastric motility as previously reported (5). However, there was no significant correlation between gastric acid output, gastric emptying, and gastric motility on one hand, and the concentration of PGE$_2$ or PGI$_2$ in the gastric juice on the other hand.
The present studies demonstrate that, in monkeys, total body irradiation produces an increase of the concentration of \(\text{PGE}_2 \) and \(\text{PGI}_2 \) in the gastric juice in monkeys. This increase occurs concurrently with the vomiting, suppression of acid output, suppression of gastric motility (5) and increase of gastric mucus production (23,24) that are observed after exposure to irradiation in the same animal model. Therefore, it is tempting to propose that the local release of PG is responsible for the gastric effects of radiation. This hypothesis is supported by the observation that exogenous administration of sufficient doses of prostaglandins produce vomiting (10-12), inhibits gastric acid secretion (10,25-28), and stimulate gastric mucus output (29). In addition, since gastric emptying is increased by \(\text{PGE}_2 \) (26) and decreased by \(\text{PGI}_2 \) (27), \(\text{PGI}_2 \) may be responsible for the suppression of gastric emptying. However, the absence of correlation between the concentration of PG in the gastric juice and the gastric parameters suggests that additional factors play a role in the gastric effects of irradiation.

In contrast to the clear effect of radiation on the concentration of PG in the gastric juice, plasma \(\text{PGE}_2 \) and \(\text{PGI}_2 \) remained unchanged during vomiting and suppression of gastric secretion and emptying. This observation agrees with absence of changes in plasma PG reported in human radiation-induced enteritis (30). It could mean that these circulating PG are not involved either in radiation-induced emesis or in the suppression secretion and emptying. This, however, would not exclude that the effect of radiation is mediated by a local release of gastrointestinal PG which would not be reflected by circulating PG. Alternatively, an increase of plasma PG could have occurred during or immediately after irradiation, and could have
initiated vomiting and/or suppression of gastric functions but is no longer detectable two hours post irradiation because of the short half life of PG in the plasma (27, 31).

The exact mechanisms of gastric secretion and emptying suppression (e.g., local gastric release of PG) is not clarified by our study. However, the time of onset of each symptom after irradiation and the transiency of the acute radiation syndrome appears to exclude a direct damage to gastric mucosal cells, to the myenteric plexus, or the smooth muscle similar to the one observed during the late postirradiation period (5).

In conclusion, a local release of PGE$_2$ and PGI$_2$ may play a role in the suppression of gastric function and the emetic episodes observed immediately after irradiation. Furthermore, our observations suggest that measurement of PG concentration in the gastric juice is useful to examine the role of prostaglandins in gastric function.
References

Table 1 - Effects of irradiation on plasma prostaglandins (pg/ml; means±SE).

<table>
<thead>
<tr>
<th></th>
<th>Control Day</th>
<th>Irradiation</th>
<th>2 Days Post Radiation</th>
</tr>
</thead>
<tbody>
<tr>
<td>PGE₂</td>
<td>425.4±29.4</td>
<td>459.8±38.4</td>
<td>397.3±15.5</td>
</tr>
<tr>
<td>N=9</td>
<td>N=8</td>
<td>N=8</td>
<td></td>
</tr>
<tr>
<td>6-Keto-PGF₁α</td>
<td>415.0±59.0</td>
<td>469.1±44.5</td>
<td>379.9±27.1</td>
</tr>
<tr>
<td>N=10</td>
<td>N=9</td>
<td>N=10</td>
<td></td>
</tr>
</tbody>
</table>
Table 2. Effect of irradiation on the concentration of PG in the gastric juice (pg/ml; means±SE; * p<0.05 compared to control).

<table>
<thead>
<tr>
<th></th>
<th>Control Day</th>
<th>Irradiation Day</th>
<th>Irradiation</th>
</tr>
</thead>
<tbody>
<tr>
<td>PGE₂</td>
<td>318±80</td>
<td>523±94*</td>
<td>305±65</td>
</tr>
<tr>
<td>6-Keto-PGF₁α</td>
<td>230±36</td>
<td>346±57*</td>
<td>320±40</td>
</tr>
</tbody>
</table>
AFRRI CLEARANCE REVIEW OF PUBLICATIONS AND PRESENTATIONS

REPORT/PRESENTATION TITLE: Effect of Ionizing Radiation on Prostaglandins and Gastric Secretion

AUTHOR(S): A. Douglas, E. D. Dorval, L. Steel, N. P. Ball, R. G. Willett

PROPOSED JOURNAL OR PUBLICATION: Radiation Research

PUBLICATION/SUBMISSION DEADLINE: N/A

MEETING NAME, DATES, AND LOCATION: N/A

WORK UNIT NUMBER: R3059

SIGNATURE OF FIRST AUTHOR:

REQUIRED STATEMENT OF MISSION RELEVANCE:

The role of prostaglandins in radiation-induced injury should be clarified to improve the treatment of this mission-relevant problem.

STEP	**PROCESSING ACTION**	**DATE**	**INITIALS**	**REMARKS**
1 | Division Chief Review | 9/28/96 | JM |
2 | Department Head/Chairman | | |
3 | ISDP Editorial Section | | |
4 | Head, Veterinary Medicine Department | 12/30/96 | XNM |
5 | Scientific Director Review | | 1958 | JL |
6 | Deputy Director Review | | |
7 | ISDP Editorial Section for | | |

Information to be published or presented to non-DoD personnel/institutions must be cleared in advance. The originator will include copies of photographs and figures with the manuscript/poster when submitting a clearance request for open publication. Abstracts may be submitted without supporting figures and audio-visual materials, but these items must be cleared prior to the presentation date.

INSTRUCTIONS TO ISDP EDITORIAL SECTION:

- AFRRI final clearance is granted. Material may be presented without further review.
- AFRRI clearance is granted. Forward to DNA/OASD as is.
- Make corrections indicated, and perform editorial review prior to DNA/OASD for final clearance.
- Return to originator/rewrite prior to resubmission for AFRRI clearance.
- AFRRI clearance is NOT granted. Return the material to the originator.

AFRRI Form 23

1 July 86 (Previous editions of this form are obsolete)