This document is the final technical report for work under Air Force Office of Scientific Research Contract No. 82-0232. It is divided into several chapters. The first chapter deals with the specific research areas that were investigated and discusses the accomplishments for each. The areas of research are: (i) Application Generators, (ii) Office Information Systems, (iii) Software Engineering, and (iv) the ScriptWriter Software Development Environment. Chapter 2 reviews the progress of all people who have been supported under the grant. Three people have earned their Ph.D. degrees while performing work supported by the grant. Several others are in various stages of completing their Ph.D. thesis, while others have graduated with M.S. degrees. Chapter 3 lists all of the publications that have been written under grant support.
January 12, 1987

Capt. John P. Thomas, Jr.
Department of the Air Force
Air Force Office of Scientific Research (AFSC)
Bolling Air Force Base, DC 20332-6448

Re: Final Scientific Report
AFOSR 82-0232

Dear Capt. Thomas:

Enclosed are 3 copies of my Final Scientific Report of above mentioned grant. The project was completed through this grant and I thank you for your assistance.

Sincerely yours,

Ellis Horowitz
Professor

cc: Andy Moore - NSF Grant Officer
Harriet Vigoren - USC Contract & Grant Administrator
Hilda Marti - USC Administrator Coordinator

Encl.
Final Technical Report
for Grant No. AFOSR-82-0232
Programming Productivity
Enhancement
by the
Use of Application Generators*
June 1, 1982 - December 31, 1986

Ellis Horowitz, Principal Investigator
Computer Science Department
University of Southern California
Los Angeles, California 90089
U.S.A.
Copyright © 1986 E. Horowitz

December 31, 1986

*Project title also known as, "Investigating the Enhancement of Programming Languages with Multi-Media Capabilities."
Contents

1 Major Research Accomplishments 2
1.1 Introduction .. 2
1.2 Application Generators 2
1.3 Office Information Systems 4
1.4 Software Engineering 5
1.5 ScRiptWriter ... 6

2 Staff .. 7

3 Publications .. 8

1
Chapter 1

Major Research Accomplishments

1.1 Introduction

This document is the final technical report for work under Air Force Office of Scientific Research Contract No. 82-0232. It is divided into several chapters. The first chapter deals with the specific research areas that were investigated and discusses the accomplishments for each. The areas of research are: (i) Application Generators, (ii) Office Information Systems, (iii) Software Engineering, and (iv) the ScriptWriter Software Development Environment. The next chapter reviews the progress of all people who have been supported under the grant. Three people have earned their Ph.D. degrees while performing work supported by the grant. Several others are in various stages of completing their Ph.D. thesis, while others have graduated with M.S. degrees. Chapter 3 lists all of the publications that have been written under grant support.

1.2 Application Generators

When I originally wrote this research proposal, my focus was on the area of Application Generators. Systems such as RAMIS, NOMAD and FOCUS had all proven to be versatile at improving programmer productivity in the business sector. Their emphasis on nonprocedural programming and an interface to a database management system made them interesting candidates of study. My original intention was to examine the degree to which I could extend the Application Generator concepts to other worlds of programming. The first work to come out of this research was the paper [AppGenSur]. This paper made sense out of the various interpretations of nonprocedural programming and organized our understanding of their capabilities. We ex-
CHAPTER 1. MAJOR RESEARCH ACCOMPLISHMENTS

type PERSON_REL is
 relation (key SS_NO)
 SS_NO : string(9);
 NAME : string(20);
 SEX : (F, M):
 SALARY : real;
end relation;

for P in PEOPLE where P.SEX = F loop
 PEOPLE[P].SALARY := PEOPLE[P].SALARY * 1.1
end loop;

PEOPLE := PEOPLE union NEW_GUY;

Figure 1.1: Example of AdaRel

We examined closely several systems and then defined generalized features based upon a generic model.

Our second activity was to see if we could design application generator features into a general purpose programming language. We decided to use Ada as the starting point. To begin we designed an extension of Ada that permits the language to interface naturally with a database management system. We made this a true language extension as opposed to simply a collection of procedure calls. We added a type relation and provided a broad set of operators including select, project and join. In Figure 1.1 you see a small example that defines a relation, shows a for-loop that increases all people's salary in the relation by 10% and a final line that inserts a new person into the database. All of the features of AdaRel are fully defined in [AdaRel].

Our next step was to consider the report generation and graphic display features. This led us to consider the question of designing applications that deal with screens of information. We observed that conventional languages are wholly inadequate as their input/output capabilities are built around the concepts of characters and lines. This led us to further extend the AdaRel model so that it includes a new basic unit called screen. In Figure 1.2 you see the definition of an AdaRel Screen. Briefly, a screen has two parts: a format part and an activation part. The format part permits the definition of the screen, while the activate part performs a set of user determined actions at run-time. A most important aspect of the work was to show how data of type relation can be merged with the screen concept. Given these concepts, we were able to write many application programs and show
CHAPTER 1. MAJOR RESEARCH ACCOMPLISHMENTS

screen <screen name> (<parameter list>) is
format
format definition
end format;
[activate
<activation part>
end activate;]
end screen;

Figure 1.2: Definition of Screen Type in AdaRel

how large volumes of data can easily be accommodated, while at the same
time the user can interact with the screens choosing what he wishes to see.
Complete definitions of the language extension plus examples was reported
on in [HighLevelIO]. Finally, ideas about future directions of application
generators were presented in [APPIDEAS].

1.3 Office Information Systems

This work was undertaken between the principal investigator and Bal-
aji Narasimhian. By studying the programming needs of offices, which are
often data intensive, we hoped to be led towards new programming lan-
guage facilities that support and enhance the database interface described
previously. From this study we concluded that there was a major area of
software development which is inadequately supported by current program-
ing languages. This is the area of software that interacts with users, the
user interface. Programming user interface applications is becoming a stan-
dard activity and yet, conventional programming languages have operators
that deal with characters and lines and not with screens or sequences of
screens. A second point of inspiration that resulted from the study is that
the most common form of paper-user interaction is with a form. Therefore
we concluded that a computer-based form seems a natural basis for an office
information system. Pursuing such an environment, we have defined the
basic properties of a form and the operations that must be supported by a
forms-based system. These include: 1. form template definition; 2. form
template instantiation; 3. specifying actions on form instances such as mail-
ing, copying, saving and triggering; 4. validation of forms; and 5. storage
and retrieval of forms and their contents. This work was summarized in the
paper The Design of Office Information Systems, [OIS].
1.4 Software Engineering

This area of study was done jointly with Ronald Williamson and the principal investigator. In its most general terms it is concerned with improving the overall productivity of the software development process. The approach is to try and capture all of the elements of this process as it is being produced and to place them in a database management system in a uniform way. This permits one to query the database of elements and to answer questions that concern these elements over the entire software life cycle.

Other researchers have taken the approach of defining a formal language into which requirements and design can be phrased. Our belief was that such formal methods, though attractive from the point of view of tool creation, expected too much from the programmer. Our work captures the life-cycle information without requiring knowledge of a special language. The developer enters his text as if it were an editor and only points to key elements. These are then automatically translated into data items for the dbms. By capturing the data in a way that requires little or no additional effort, we believe that our approach will be practical. A second aspect of our design was theoretical. We had to model the information in the database. This was done in terms of a graph model that has a special structure, namely a collection of trees with cross connections. Using the formal model, we then defined abstractly basic notions for retrieval of information across elements of the life-cycle.

Our design was followed by an actual prototype that was built and is running on a Xerox 1100 under the SMALLTALK environment. The use of the system is summarized in [SODOS:USE]. The definition of the programming concepts and the use of an object-based methodology is given in [SODOS:Definition]. The actual implementation is discussed in [SODOS:Implementation].
CHAPTER 1. MAJOR RESEARCH ACCOMPLISHMENTS

1.5 SCriptWriter

The path of true love and research is often not straight. To understand the SCriptWriter Software Development Environment, it is useful to consider how we arrived at such a project. We were led to SCriptwriter from two directions: one being our research on Application Generators and the other being the particular computer systems we purchased. From the Application Generator work we realized that better systems could only be built if the domain of application was well focused. A second conclusion was that there was a great need for tools to design systems that involve interactive screens of information. Our second influence was the work being done on our IBM PC/ATs and the observation that they represented a delivery system upon which computer-based instruction could be run for large numbers of people. Thus we set ourselves the goal of devising a software development environment that would be suitable for the task of producing interactive, screen-based applications on microcomputers.

SCript Writer is a software development environment that supports the development of multi-media productions. Its hardware consists of a dual monitor IBM PC/AT attached to a digitizer, sound chip and laser disk.

The software consists of 4 basic components: a command interface, a disk manager, an object-based programming language and a collection of editors. The editors are available for handling text, graphics, animation, laser disk, and font definition.

Though I cannot discuss all of the features encompassed in the system in this summary, I will point to two main features. One is the metaphor that is used. Creating a production can be quite complicated. The author needs some mental model so he can be guided as he creates his production. The metaphor employed in SCriptWriter is that of a play. Just as a play has actors, scenery, director and stagehands, so does SCriptWriter. A second major feature is the IQ programming language. This is an object-based programming language that includes the notion of player and lines as high-level concepts in the language. One goal we have attempted to achieve is to make the environment commands consistent with the language. By this I mean that all operations that can be performed at the environment level can also be performed in the programming language.

Over the past year of the grant we have designed the SCriptWriter system and begun its development. It is the activity that has dominated our time and collectively we are all quite excited about the research. The current design of the system is described in [SC REF]. A study of the design of the user interface is discussed in [SC UI].
Chapter 2

Staff

The following people have been supported on this grant during its duration.

- Horowitz, Ellis: Principal investigator
- Kemper, Alfons: Graduated 8-1-84 with his Ph.D.
 Currently Research Assistant Professor at University of Karlsruhe
- Williamson, Ronald: Graduated 10-1-84 with his Ph.D.
 Now Research Scientist at Hughes Aircraft Corp.
- Narasimhan, Balaji: Currently a graduate student in Computer Science
- Papa, Marco: Currently a graduate student in Computer Science.
 Expected graduation June 1987.
- Bills, Mark: Currently working on the development of the IQ language,
 a part of SCriptWriter, while working on a B.S. degree in Computer Science. Graduated with M.S. program in June ’86.
- Anderson, David: Currently working on the development of the IQ language,
 a part of SCriptWriter. Graduated with B.S. degree in June ’86.
- Garg, Pankaj: Graduate student in Computer Science just starting to work
 towards his Ph.D. degree
Chapter 3

Publications

CHAPTER 3. PUBLICATIONS

SC-UI "Design Considerations for Hierarchical, Keyword-Based Menu Interfaces".
END
8-8
DTIC