ST LR e S T Y Y "' |

AD-A183 149

ISIS DOCUMENTATION: RELEASE 1*

Kenneth P. Birman
Thomas A. Joseph
Frank Schmuck

87-849
July 1987

TECHNICAL REPORT

Department of Computer Science
Cornell University
Ithaca, New York

=

\

ISIS DOCUMENTATION: RELEASE 1°

Kenneth P. Birman-
Thomas A. Joseph
Frank Schmuck

87-849
July 1987 _ T

o

Department of Computer Science
Cornell University
Ithaca, New York 14853-7501

LEASE
APPROVED FOR PUBLIC RE
DISTRIBUTION UNLIMITED

*This work was supported by the Defense Advanced Research Projects agency (DoD)
under ARPA order 5378, Contract N00140-87-C-8904, and by the National Science Founda-
tion under grant DCR-8412582. The views, opinions and findings contained in this report
are those of the authors and should not be construed as an official Department of Defense
position, policy, or decision.

URITY CLASSIFICATION OF THIS PA

REPORT DOCUMENTATION PAGE /9.

fForm Approved
=~ | OMBNo.0704-0188
Exp. Date: Jun 30, 1986

1a. REPORT SECURITY CLASSIFICATION

1 Unclassified

1b. RESTRICTIVE MARKINGS

2a SECURITY CLASSIFICATION AUTHORITY

3. DISTRIBUTION / AVAILABILITY OF REPORT
Approved for Public Release

2b DECLASSIFICATION / DOWNGRADING SCHEDULE

Distribution Unlimited

4 PERFORMING ORGANIZATION REPORT NUMBER(S)

S. MONITORING ORGANIZATION REPORT NUMBER(S)

Kenneth P. Birman, Assist. Prof}

6a. NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL
(If applicable)

7a. NAME OF MONITOR!ING ORGANIZATION

CS Dept., Cornell Upiversity
6¢c. ADDRESS (City, State, and ZIP Code)
4105 Upson Hall
Cornell University
Ithaca, NY 14853

7b. ADDRESS (City, State, and 2IP Code)

Defense Advanced Research, Project Agency
Attn: TIO/Admin, 1400 Wilson Blvd.
Arlington, VA 22209-2308

8a. NAME OF FUNDING / SPONSORING 8b. OFFICE SYMBOL | 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (f applicable) ARPA Order 5378
DARPA/ISTO Contract N00140-87-C-8904
8c. ADDRESS (City, State, and 2IP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
See 7b. ELEMENT NO. NO: NO. ACCESSION NO.

11. TITLE (Include Security Classification)

ISIS Documentation: Release 1

12. PERSONAL AUTHOR(S)

Kenneth P. Birman, Thomas A. Joseph, Frank Schmuck

13a. TYPE OF REPORT 13b TIME COVERED
Technical (Special) FROM

TO0

14. DATE OF REPORT (Year, Month, Day) 5. PAGE COUNT
July 1987 89

16. SUPPLEMENTARY NOTATION

V7 COSAT) CODES
FIELD GROUP SUB-GROUP

18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

20 DISTRIBUTION/ AVAILABILITY OF ABSTRACT
UNCLASSIFIED/UNLIMITED [TJ SAME AS RPT

O oTIC USERS

21. ABSTRACT SECURITY CLASSIFICATION

22a. NAME OF RESPONSIBLE INDIVIDUAL

22b. TELEPHONE (Include Area Code) | 22¢ OFFICE SYMBOL

DO FORM 1473, sBamar 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete.

RIS
N,
SN VOIS W

.\ ;.\ ‘.i
e

ISIS DOCUMENTATION: RELEASE 1.*

;'. Kenneth P. Birman

/ Thomas A. Joseph

‘ Frank Schmuck

K

p

K Department of Computer Science

Cornell University
Ithaca, NY 14853

‘ July 1987
. ‘

. Accesion For J———-‘

B NTIS CRA&I

B DTIC TAB 8

', . Uiannouced U]

' Justibeation

y i —m e T

4 BY o e

: Oisteibrtion] :

k] | VDI |

v Avehabini s Coajos ‘

.': Di::t ! ' bv:.‘,‘}."l:.\,},;}; -

) { [

N i t

N A -/ ;

' S S U

13

:: ¥ This work was supported by the Defense Advanced Research Projects agency (DoD) under ARPA
N order 5378, Contract N00140-87-C-8904, and by the National Science Foundation under grant
:!,) DCR-8412582. The views, opinions and findings contained in this report are those of the authors
o and should not be construed as an official Departrhent of Defense position, policy, or decision.

¢

y

[}

L o e A TR (6 T Al A A AL NIRRT
R AN M PGIRIG IR U TATATCHY

+ . PR
RO 1 Ay by 2)
‘ ’g'(‘:l,‘:,-.‘t":'.“ DO "‘-”4.,3"" ."5°=3’«'i’w'k,; RN s

INTRO(TK) DISTRIBUTED SYSTEMS TOOLKIT INTRO(TE)
" e

1. List of Documents

The available documentation is as follows:
Mmmg-hawmmnﬁmuedmm
amm—umlmwwmwmwwmm;
Bboards -- a very high level “bulletin board” fadility.

Beast -- how to do broadcasts in ISIS.

- Config - configuration structure manager;

- Compile ~ how to compile ISIS dlient programs under UNIX
Coord - coordinator-cohort routines.

Entries - how to define the entry points to a program.

‘ﬁb-ﬁlud:esymmm,lndhowmmdnmmup;

Filter - & technical discussion of message filters, not for novices.
Init - how to call the isis_init() routine. ¢

M«S@emﬁmmhmobﬁnwe"wﬁmeddm

Messages -- all you need to know about messages in ISIS.
Msg - the actual message editing routines, summarized.”
News — a bulletin board facility.
m-:ll}lbmnmmumimm“m

m-mmmfmmm,

Am-:_mmex-nphmuﬁngtbmmm.

. Rephahmua.malptnpounphmdthnmmmd.
Rexec - remote execution fadility. o -
ngr-rewvaquu(ratuﬂyw:ﬁunu'uh).

Rmupdate -- utility for use with the recovery manager.

~ Sema -- semaphores for synchronization.
‘Stanup~alongmplemmﬁngupnlSISm
State_xfer ~- a state transfer utility, very useful. <
Sview - site views.
Tmh-aﬁghtwa‘glntnkmnd:mismthntymumﬂyhlntom.

~Transactions -- a transaction fadility. .
Vsync—acﬁsmsn‘onofvimmsyndnonyandbowtouploitit.
Wltdl-nfu’ﬁtyforwm:lingfmadedmd(wfwed)evm.

§E
8B
ga
H
E
-egj .
|
|
8
g
;
2
g

4
b
i
ji
i
Ui
i
5%
i
4

i
3
|
¥
i
§-
?
:
:

i

v
|
L

|
' 1 . Sl . S
gkmmmmmmcwx@uﬁfcva . O R D T, 60) & G (G P % 5 B0 P D e 1 1o T oS (U L LS ST S O, |

Client processes

Group view database

_— Recovery actions database

client tasks

< pgroup view >
L]

< pgroup view>

cache:
<pgroup view >
[

< pgroup view >

I (XXX]

Broadcast tasks and
address resolution tasks

<site view>
®
®

L ® . Intersite layer
<site view >

UDP packets

ISIS at a site

e 2

. AR A P u ' TR WY L .* 0 .\. [-\ ¥ o, , ‘ »y -‘.-n_-_\ S \'..F
ERRRMIRGAEAO i ol SR DTN Tt 1 L O S e NN RS MK R A e O DD e S o

o

hL

' ADDRESSING(TK) DISTRIBUTED SYSTEMS TOOLKIT ADDRESSING(TK)

1. Syvopsls
A discussion of addressing in the ISIS system.

2. Include flles
#include <isis/d.h>

3. Type definitions

: From the bottom up, ISIS knows about sites, site lists and views, process addresses, group

¢ addresses, and group views. There is also a notion of remote sites, processes, and groups, which

can only be accessed using special protocols.

1. Currently, ISIS only supports local sites. A local site is identified by a two-byte sequence
consisting of a site-number, in the range 1-127, and a site-incarnation, also in the range 1-

o 127. This sequence is referred to as a site-id in the ISIS system. In future versions of the

3 system, site-numbers will be expanded to include a concept of local sites, long-distance sites,

K and remote sites. In this extension, site-id’s will be 4 bytes long. Two bytes will represent

2 the cluster number, one byte the site-number, and one byte the site incarnation number.

. - Local sites will have a cluster number of 0. Long-distance sites are intended to represent

sites within the same geographical area but accessible at somewhat higher cost, e.g. through

" a gateway. The cluster oumber for these sites will be in the range 0-127. Remote sites are

by : assumed to be accessible only over genuinely long-distance conmections and will use a

hierarchical numbering scheme. A remote site number will be represented by custer

4 number in the range 128-255 and must be mapped through a mownz table to obtain remote -

' addressing information, using a method that is at present unspecified. In most cases special

protocols will be used to communicate with remote sites. Process groups will not be allowed

W mlmdsmmmhﬁmm,hnmtammgdam
¥ that lives on both sides of such a boundary will be provided.
By The number of sites in a cluster is intentionally kept small to control the costs of the ISIS

g protocols. The actual decomposition of sites into clusters is transparent to the ISIS user, but
can affect performance: whenever possible, processes that interact heavily with one-another
should be located within the same cluster. In addition, it is undesirable for clusters to “parti-

k> tion” in such a manner that communication between two subgroups of the cluster is tem-
% porarily impossible. For example, if a cluster contsins a single gateway, ISIS may block
o, (hnng)dmn;pmodswhmthegatewayndown. This problem can be circumvented by
4 introducing redundant communication gateways whenever possible.

Several pre-defined macros allow one to extract the fields from a site_id sid: SITE_NO(sid),
‘g SITE_INCARN(sid) and SITE_CLUSTER(sid). The macro MAKE _SITE_ID(site-no,

incarn) can be used to creste a local site-id.
\ 2. Ajitelist is a list of site-id’s terminated by a null site-id. Note that SITE_NO(sid) is null
only for a null site-id. This is useful when scanning the elements of a site-list.

3. Aite view consists of a list of site-id’s and associated information maintained by the system
failure detection module for a single ISIS cluster. In pearticular, 8 view has a view-id
number, and all sites in a cluster observe the same sequence of views. It can be assumed
that the sites in a site-view are listed in order of age (oldest first) and that all observers see
the same sequence of site-views. See SVIEW(TK) and VSYNC(TK) for details.

A process address in ISIS consists of a site-id, a type field containing the constant ISAPID, a
unique process-id number which is a short integer used by the operating system at that site
to identify 8 process running on its site, and an entry point within that process, which may
be mull. The procedure MAKE_ADDRESS(site,incarn,pid,entry) can be used to make a
process address. The corresponding field names are site, incarn, process, entry. The site

PR -
> = - w -

>

- o - " -

‘4 ‘7»‘.\ -l‘ -'
WA ..;.,, nvh,c ’

l"‘ .'

e o R K DXL IR RS AN A IR
R L GG SR e 0"“‘& i 'n 'l‘»t‘ JOLRKAR L RR AN UUR OGN K R X LN M " Cheheig]

Rl
N R ke aa AaL Sam by Mok g- s A e i St Sl itk sind Skt el Ak iiet g o o ta s B ga-oui aas otk oaa- sl a.e aio aca ALl A moh Aok de A tbadodad Aod Snkosaftakel 'T

Ehind Bl Pod anh hod nal el

<

ADDRESSING(TK) DISTRIBUTED SYSTEMS TOOLKIT ADDRESSING(TK)

field will never be null, hence this is sometimes used to detect the end of a list of addresses.
Certain predefined id-numbers are used to identify system processes. For example, the
defined symbols PROTOCOLS, REXEC, RMGR, and NEWS are automatically mapped to
the process-id for the corresponding service at a given destination site. Additional system-
wide process numbers will be added as the ISIS system evolves. These addresses are defined
in generic_address.h.

The function cmp_address() is provided to fadilitate address comparisons. Invoked as
amp_address(al,a2), where al and a2 are pointers to addresses, this returns O if al and a2
are the same, a negative number if al and a2 differ and al is “smaller”, and a positive
number if al is larger. Thus, although most users would just compare the result with 0,
cmp_address() is compatible with the standard UNIX quicksort() utility. The caller of
cmp_address should be aware that an address with the entry field specified as 0 is treated
specially: such an entry is a wild-card that will match any other entry value. Two addresses
with non-zero entry numbers must match exactly, however.

S. A group address is an address used to identify a process group in ISIS. Such an address con-
sists of a site-id for the site, a type field containing the constant ISAGID, a 16-bit group id,
and an entry point that must be the same for all members of the group. Notice that group and
process addresses both have the same format; if desired, a process address may be thought
of as a group containing one member. Group addresses are created using the pg_create()
request, but because of subsequent join, leave and failure events the group may subsequently
migrate to other sites in the system. Consequently, group addresses are usually obtained
using pg_lookup(). This implies that the site-id in the group address is not necessarily useful
for determining where members of the group reside (but see also PGROUPS(TK)).

4. Entry points
Each process in the ISIS system is understood to accept messages at a variety of eatry points. An
entry point is a one-byte unsigned integer.. Some entry points have standard values:
GENERIC_RCV_REPLY is the entry point to which a reply message can be sent,
GENERIC_TK_CHKPT is the entry point used by the checkpoint toolkit routine to trigger a
checkpoint, etc. These are defined in generic_address.h, which is automatically included when
"cl.h” is included into a program. In addition, each process can define additional entry points of
its own. To avoid accidental conflict with these generic addresses, these user-defined entry points
should be assigned entry numbers greater than or equal to USER_BASE, a constant also defined
in that file. Notice that different processes can interpret the same entry “number” in different
ways.
A process declares its entry points by calling the routine

isis_entry(entry-point-number, routine, "printable name");
Many of the toolkit routines install their own handlers (for the GNEERIC entries) when isis_init()
is called. On arrival of a message, the corresponding entry will be invoked as:

routine(m;:)

;nemae mp;

}

The message is automatically deleted after the routine terminates, unless msg_increfcount() has
been called prior to returning. If a message arrives in a process and the process has not specified)
a routine to handle messages to the spedified entry point, the message is discarded and an error
message is printed on the stderr output channel.

See PGROUP(TK) for information on manipulating process groups, ENTRY(TK) for more infor-
mation on entry points, MESSAGES(TK) for more information on messages, and BCAST(TK)

’c;".‘

j«j;: ADDRESSING(TK) DISTRIBUTED SYSTEMS TOOLKIT ADDRESSING(TK)
:'Qf‘:"
d for information on sending messag s to the members of one or more process groupe.

;l'k;

s 5. RPC interactions

;.:": An RPC style interaction occurs when a process sends a message to another process then awaits a
_v:d, reply. ISIS supports this mode of interaction, and will even provide stub generators to compile
R from a “nice” looking RPC syntax into the message generation and unpacking mechanisms needed
, to map this into the above fadlity. To identify the RPC “session”, a session-id number is placed
'tfr.i in the message at the time it is sent (see MESSAGES(TK)). The sending task then blocks await-
A ing a reply with this session-id number; session-id numbers are 32-bit integers and should not be
K re-used. Thus, a pending RPC has an address consisting of the address of the caller process
R together with the id of the session. To send a reply, the replying task creates a message contain-
i ing the reply value (field name FLD_ANSW), the length of this field (FLD_ALEN) and the
session-id number identifying the session (FLD_SESSION), and then transmits this message to the
'e:;"'-- sender of the RPC. In general, ISIS does not assume that it is an error to send the same reply
‘a‘;! more than once or to send multiple replies to a task that expected just one reply. In these cases,
;‘:3 the superfluous replies are discarded silently.

L

e 6. Printing an address

G The routine paddr(addr) will print the address pointed to be addr; paddrs(alist) will print the
W members of a null-terminated address list, and paite(sid) will print the sitc name and incarnation
B> for a site=id. Whenever possible, entry numbers are printed in their text form, but if paddr() is
*;}' called in a place that just doesn’t know the text form for an entry point, the numeric version is)
Mg printed instead. This is true for process-id’s too. :
s 7. Site names

f'.': The array site_names{] gives, for a site-id, the printable name of that site. These names are actu-
;:.o ally tzken from a file used during startup of the system (see FILES(TK), STARTUP(TK)).

e

G

J

o""

&

o

"‘}i:'

O

i

A

ot

!ty

o

s

25

b

!

bR

i

Go: 5

v WL

. . Y p O e S e ‘-._'\ S o
DR & ML N < oty o

N “r RIS S P L N .y \ te N L
-P , -(' ('
"‘.!,A,.'._‘ .,0“'-‘... K "{ (F ’J'f .('. . r.» .(Ay - al

oy

0
t'l' AUTHEN(TK) DISTRIBUTED SYSTEMS TOOLKIT AUTHEN(TK)
) 1. Synopsls
s A mechanism for restricting access to a group.
L X
: 2. Interface
s #include <isis/d.h>
" uuu!uest_venfy(mm::e)
" int (*routine)(;
"
: au_permit(who)
ot mm;
. au_revoke_perm(who)
:: address who;
i
!
' 3. Discussion
B Normally, any process in possession of the address of a group can issue calls to that group. Some
&‘ applications will need more protection than this, however, and the authentication tool gives them
o that option.
& To enable the tool, call su_request_verify(routine), giving a routine that will verify the legality of -
*) requests from unknown callers. The routine is invoked as:
o message “mp;
{
)
! }
R and should return 0 if the request is legal. A reply(mp,0,0,0) is sent by the suthentication service
if the routine returns -1. No reply is sent if the routine returns some other value. To avoid
4 unnecessary work, the routine au_permit() can be called to indicate that the designated caller is
i permitted to send arbitrary requests to this process. All messages from that process will be
b allowed through. au_revoke_perm() removes an address from the privilaged caller list; subsequent
:' messages from that process will be passed through the verification procedure.
5
i 4. Raestrictisn
o~ The verification procedure is permitted to call t_fork_delayed, t_fork urgent, t_sig_delayed and
. t_sig_urgent, but may not call t_wait or try to do an RPC or broadcast. This is because it is run
k- from the main thread of control - not as a task.
e,
ll'
O,
W
[
,0‘
Li‘ . e ‘ _’F..]f_‘.’ A A) e L AT AL LT AT W A \.Pﬁ~->.~.~-
"“","5..""" h" ,0‘ Q?";’i.,q.‘l‘,‘a ’. ‘.V~ 'uv""*"“.hrl ,\&.‘. ..Q“‘”‘..‘ .9\ ..i.v. .oe l‘&"g. N |o W\, A‘e 4, .‘\. N LR AR

¥ . E @Y AT 2Wa fvg Do BRe AV, giYe Ség iy Big pte - Beg fia fén S, oo Aa Ria Ata hle lhod L. a dla e 4 T
RES

s

vy .
o v

¢

.

L

N

.“l(
gy

By BBOARDS(TK) DISTRIBUTED SYSTEMS TOOLKIT BBOARDS(TK)
§7

.

1. Synopsis

i::::{ A package of routines implementing distributed bulletin boards as described in our technical
:;"',: report. These routines will be implemented during the summer or fall of 1987. The interface will

o be a subroutine one but otherwise very similar to the one discussed in the paper. Initially, only C
N0y will have access to the bboard fadility, but versions for other languages (espedally LISP) will be
provided eventually.

’l 4 . -.r-'n I 03 3 ol S
NI Lt S D T Dt] e L DM A RO LTINS - LB)

»

Rl N T et Mt g™
!"‘.‘){‘: KAn '-‘\'i."\ G
& A, A ATE AR, »

Mo I T,
Vind ey

BCAST(TK) DISTRIBUTED SYSTEMS TOOLKIT BCAST(TK)

1. Synopsis

A package of routines implementing distributed broadcasts of various flavors, and with a variety
of destination addressing modes.

2. Interface
#include <isis/cl.h>
isis_init(0);
/* Broadcast to a list of addresses */

nresp = BCAST(alist, msg, nwanted, answ, atype, alen, rlist)
address *alist, *rlist;
message *msg;
char *answ;

/* Broadcast to everyone on a list except the sender */
nresp = BCAST_EX(alist, msg, nwanted, answ, atype, alen, rlist)

address *alist, “rlist;

message *msg;

char *answ;
/* Reply to a broadcast or RPC request */
fePIY(mss: value, type, len)

message *msg;

char *value;

/* Reply, sending a copy to other processes */
reply_cc(msg, alist, value, type, len)

message *msg;

address *alist;

char *value, *fvalue;

/* Flush any asynchronous messages */
FLUSH()

Above, BCAST is an unordered (but reliable) protocol, and is not actually used very often in ISIS.
You can substitute CBCAST to obtain the causal broadcast, ABCAST for the atomic broadcast,
and GBCAST for the strongly ordered group broadcast protocol. Section 4, below, discusses the
way this choice would normally be made.

3. Discussion

In each case, the addressing information is used to determine a set of destination processes (an
address list) to which the message is delivered. On reception of a message, this information will
be present in its dests field (see msg getdests() in MSG_EDIT(TK)). The protocol waits until
nwanted replies are collected, or until it has as many replies as possible, and then returns the
number of replies and a vector containing the replies themselves. The address of the sender who
supplied the i'th answer will be saved in rlist[i) if rlist is non-null, and is discarded otherwise.

If nwanted is 0, the message will be sent asynchronously. That is, the caller can continue execut-
ing before the message is delivered, although there will be a delay even in this case while the mes-
sage is passed to the ISIS protocols process. A message is said to be synchronous if the caller

BCAST(TK) DISTRIBUTED SYSTEMS TOOLKIT BCAST(TK)

blocks waiting for one or more replies, although obviously there is a range of degrees of syn-

chrony: a caller that waits for one reply will be running much more asynchronously than one that

waits for replies from all destinations. Asynchronous execution is always much faster than syn-
chronous execution; the more synchronous, the higher the performance cost.

A reply is specified as a pointer to the data in question (it will be copied to a safe place during the

call), the type (see MESSAGES(TK)), and the length of the data item in bytes. Replies to a mes-

sage are sent using reply() or reply_oc() (which sends copies of the reply to some other set of
processes). If the caller has specified ALL for mwanted it is still possible for a recipient of the
message to refuse to reply; this is done by calling a reply with a null answ pointer and a 0 alen.

The reply is also permitted to be shorter than the length specified in the broadcast.

For example, the fancy twenty-questions program described in the XFER(TK) documentation uses

a reply(mp,(char*)0,0,0) when one of its hot standby processes gets a request message.

The addressing rules used by the broadcasts are relatively subtle. The basic idea is this:

a) BCAST() sends to the processes and process group members listed in the null-terminated
address list. It is assumed that the “entry” field of each address in the list has been set to
the entry number to which the message should be delivered (see ADDRESSING(TK)). If
this is a standard entry and hence the entry number will always be the same, the routine
set_entry(alist,value) can be used to set all entry numbers in the alist to the designated value
(for convenience, set_entry returns its alist argument).

b) BCAST_EX() is like BCAST(), except that if the sender is a member of the address list it
will be excluded from the actual delivery. This is useful when an asynchronous broadcast is
to be sent to the remote managers for some distributed resource after the local copy has
already been updated.

‘What makes addressing complicated is that ISIS makes a distinction between process groups that

are directly accessible by a process and those that it can only access indirectly. A group is directly

accessible by any of its members, plus any additional processes that a group member has added to
the group view using pg_adddlient() (see also PGROUPS(TK)). Alists as described above can
only be used if all the process groups in the alist are directly accessible (other processes may be
explicitly listed too). If a message is to be sent to a process group that is not directly accessible, the
alist must only contain one entry - the group address. Thus, broadcast addressing is far more flexi-
ble in the case of directly accessible addresses. To make matters worse, CBCAST() doesn’t work
correctly if invoked asynchronously from a process that can only access the destination indirectly.

Thus, in the case of indirect access, CBCAST should only be used synchronously (waiting for

responses from one or more destinations). This limitation will be eliminated in a future release of

ISIS.

If a broadcast is invoked with nwanted equal to 0, or if several broadcasts are done concurrently
by different tasks within a single process, the issue arises of how to ensure that they have ter-
minated before taking some action that might leave an externally visible trace. Otherwise, should i
a failure cause one of these protocols to abort, the external state of the system might be incon- !
sistent with the state left by the failure. The FLUSH() primitive should be invoked for this pur- :
pose. It blocks until all pending broadcasts are completed and then permits the caller to resume

i:;'i computation normally.

e 4. Picking the right fisvor of broadcast.

i In most cases, CBCAST should be specified as the broadcast primitive; this is the cheapest proto-
col in ISIS and it is highly advantageous to use it whenever possible. However, some replicated
W data structures and algorithms need the stronger ordering that ABCAST and GBCAST provide,
Aol and there is no very simple way to explain how one identifies these applications. The basic rule is:
oM CBCAST is used when messages from other processes that happen to arrive at the same time as
5 your broadcast will be serviced the same way regardless of whether your message arrives first or

B e B B AT L R R

. WS W Y ST W W EPTH VS KYTEDTIETY Y T OETT W TR ORI IR T TR TR T T T T T T T T T T TEaa TR T ve TR e T e e e m e o e o m m m m em

:.3 BCAST(TK) DISTRIBUTED SYSTEMS TOOLKIT BCAST(TK)

second. For example, requests to read a replicated database or for some other simple service
g would be transmitted using CBCAST: these have no effect at all, and databases are usually locked

Xy to prevent reads while they are being updated. ABCAST is used when requests will be queued or

S5 otherwise applied to a replicated data structure that would return different results after a sequence

W of updates depending on the order in which they were done. A FIFO queue has this behavior, but
" a B-tree or a file normally would not. Thus, one would normally use ABCAST when talking to a

FIFO queue and CBCAST when talking to a B-tree manager. GBCAST is used to obtain a con- ‘

Uyl sistent cut across the system, an operation that is only needed in certain highly sophisticated algo- |
W rithms. If you are concerned that your application may have an order sensitivity, it should still |
& suffice for you to use ABCAST. ABCAST, however, is slower than CBCAST. More discussion

o of this choice appears in VSYNC(TK).

N

5. RPC mechanism

f’ ISIS does not currently support the sort of argument packaging that is common in RPC services

2«; such as the SUN RPC service or the CEDAR-MESA one. However, it will shortly. In the mean-

\': time, to do an RPC, the arguments should be packaged in a message, and then one of the broad-

o casts used to transmit this message to its destination (that is, the alist should specify a single desti-

b nation). Set mwanted to 1 and wait for the answer. It is easy to generalize this to a group-RPC

.0 (set nwanted to ALL) or a quorum-oriented RPC (set mwanted to the quorum size). The RPC will

Aag return when nwanted responses are received and any extra responses will be discarded. Within

*:: ISIS itself, we use a combination of these methods.

S 6. What can you conclude sbout a fallure? -

i If a broadcast routine is asked to wait for a reply from some process, but it returns without that

Ny reply, the process has failed or simply doesn’t exist. You can actually conclude a bit more about

8 the system state than this, however, and understanding what you can assume will simplify your

“u

\3 First, it is safe to assume that you won't see any more actions or messages initiated by the failed

Wt

process. For example, if it was supposed to send a reply (or a reply_cc), either the reply gets
through first, to all destinations in the reply_cc case, or the reply just won't arrive anywhere, ever.

e This is also true when the process might have been using a toolkit routine at the time it crashed.
W For example, if a process may have failed while pg_addmemb() was running, either the new
) member will have been added before the failure is detected, or the failure will be detected first in
' which case the pg_addmemb() will not take place -- this is because the addmemb() algorithm in
U ISIS is based on GBCAST, and either the GBCAST is delivered before the failure is announced,
or not at all.

'.f-i Thus, if you didn't get some message and the process that is supposed to send it is observed to
N fail, you won’t get it — and will did any one else who would have received a copy. This is a pro-
.‘;: perty called broadcast atomicity.

X Also, the failed process will vanish from any process group views in which it was listed, and if the
. broadcast used one of these groups as a destination, the failed process drops out before the broad-
Ty cast returns to its caller. The process may not, however, have been dropped from other groups to
a0y which the message was nor sent. This is becsuse there could be a delay between when view one
;g‘.-:-. gets changed and when another does.

AR

For example, assume that process 'p’ is a member of groups g1 and g2. Some other process, 'q’
broadcasts to g1 and waits for replies from all its destinations. If 'p’ fails, process 'q’ will defin-
itely find that 'p’ has dropped from group gl. On the other hand, 'p’ may still be listed as a
member of group g2, which was not a destination of the broadcast.

S

R

% %
C4 8

A W - . w-
.- .-,,Jr Y .r".r -r r.k-r,‘ e “.,-".- > ,r.. N \"'\'*' o -I‘

oooooooo

i)
5
\

......

BITVEC(TK) DISTRIBUTED SYSTEMS TOOLKIT BITVEC(TK)

1. Synopsis
Some simple routines for manipulating vectors of bits.
2. Interface

#include "dl.h"

define MAXBITS 32 /* Multiple of 32 */

bis(vec, b)
bitvec vec;
int b;

bic(vec, b)
bitvec vec;
int b;

bit(vec, b)
bitvec vec;
int b;
bisv(vecl, vec2)
bitvec vecl, vec2;
int b; i

bicv(vecl, vec2)
bitvec vecl, vec2;

bandv(vecl, ve?)
bitvec vecl, vec2;

bitv(vecl, vec2)
bitvec vecl, vec2;

beir(vec)

bitvec vec;
bugt(vec) {
bitvec vec; |
3. Discussion

These routines support vectors of bits of arbitrary length and are used by ISIS to implement the
’ sv_failed and sv_recovered parts of a site-view. They implement 32-bit vectors as long integers
s and longer vectors as character arrays. They can be used for other purposes, but you may be

o forced to use the same value for MAXBITS as the remainder of the system if you include cl.h in
N the file that employs the bitvectars. The routines will set/cir/test a single bit, set/clear/and/test bit
* by bit between two vectors, clear an entire vector (set bits to 0), or set an entire vector (set its bits
e to 1).
0
)
e
o
[
3"",“ R e R 4 1 £ S e A AR

COMPILE(TK) DISTRIBUTED SYSTEMS TOOLKIT COMPILE(TK)

1. Synepsls
How to compile an isis client program.

2. Synopals
) In -s “isis/client/libl.a 11
ln -8 “isis/client/lib2.a 2
In -3 “isis/msg_edit/mlib.a I3
| cc - -[isis/client client_prog.c
cc -0 dient_prog dient_prog.o 1?

3. Warnings

ISIS uses a number of global variables, and it is obviously a bad idea to re-use the same variable
names for some other purpose. We try to use names like cl_... or pr_.... to avaid likely conflicts,
and to declare our varisbles to be static whenever possible, but some care is certainly required.
Many of these global variables are declared in d.h. Eventually, we plan to clean this up and will
also provide a list of global varisbles and what they are used for below.

Shortly, the library called mlib.a will be merged with lib2.a. The use of two libraries is an una-
voidable consequence of the way RANLIB works. The first (libl.s) contains toolkit routines, and
the second contains the remainder of the client->isis interface code.

TR Wiy

3.1. Temporary SUN versien

We have some ideas on how to reorganize the system, but for now the various libraries come in -
’ two versions. The one shown above is for the gould. On the SUN, everything is the same except

for the client directory, which is renamed “klient”, and the message edit library, which is renamed
K sun_mlib.a. This situation will go awsy very soon.

- e

§ w-_m)

- . TR 3 n" e -{ —¢ A, {..“I.'I d, 'q’$! -'1 \ .ﬂ. [k X \I“"l
‘ b “' "‘ '.‘ "': U II'.:!J.' 1t DRy Q.""‘. ':.!':..'i !‘:“JI o * $ \i ¢ ' o M " ~ e & LA '- "‘“ A "‘h"" ’. "(-"“ ()

CONFIG(TK) DISTRIBUTED SYSTEMS TOOLKIT CONFIG(TK)

1. Synopsh
A toolkit routine for managing configuration information

2. Interface
#include <isis/d.h>

config_update(gid, namel, datal, typel, lenl, name2, ... , 0);
address gid;
char *namel, *datal;
int typel, lenl;

char “config_get(gid, name)
address gid;
char *name;

3. Discussien

Some spplications will need to divide up tasks using application specific rules that change dynami-

cally. The configuration tool makes this easy, requiring only that the configuration updates be

done by members of the group to which the configuration spplies, not outside “dients”. The rule

3 should be represented using one or more data structures; multiple structures would be used in
i mec-abecnpeotthenudmspeafy W"MMMMMWW

side if you plan to look at them after doing something that could block (an RPC or broadcast, a
t_wait(), etc); these values can change while a task is asleep. Configurstions are maintained on a
per-group basis; the same field may have different values and meanings for two different groups
even if the some program belongs to both groups.

It is costly to update configurations, especially if the same configurstion is updated concurreatly by
multiple group members. Therefore, such behavior must be avoided whenever possible.

Cratih l. x

.‘

o - hginad - TWow e L L AP ARSI TRV TR T e R T WY W TR '--T
|
il

COORIXTK) DISTRIBUTED SYSTEMS TOOLKIT COORIXTK)

1. Synopsls
A routine implementing coordinator-cohort computations.

2. Interface
#include <isis/cl.h>

isis_init(0);

/* Run a coordinator-cohort computation */
coord_cohort(msg, gid, alist, action, rtype, rlen, got_reply)
message *msg;
address gid, “alist;
char (*action)();
int (*got_reply)(;

/* Figure out who the coordinator should be */
address coordinator(gid, sender, alit) ’
address gid, sender, *alist;

3. Discussicn

Many ISIS algorithms are based on the idea of having one process (the coordinator) take some
action while others (its cohorts) monitor it and take over in the event of failure. Although this
can be implemented several ways, we picked a simple scheme and provided it in the coordinator-
oohort toolkit fadlity. Since the notion of picking a coordinator for a task is somewhat more gen-
cral than the notion of running a coordinator-cobort computation, the routine we use to pick the
coordinator is also documented here.

and the sites in a site-list (sl_getview()->sl_slist) have the same values in all of these processes
when the message arrives. See VSYNC(TK) if this concept confuses you. Basically, the idea is
that messages in ISIS seem to arrive simultaneocusly at all destination processes.

The coordinator site will be the site where the message was sent if one of the processes in the alist
resides at that site, and randomly chosen otherwise. The other processes are cohorts and are
ranked using a fairly random algorithm based on site-id oumbers. The processes in the alist must
all be members of the group designated by gid.

At the coordinator, the action routine is invoked as action(msg,gid,bow), where gid is the group id
from the coord-cohort request and Aow will be the constant OC_COORD, defined in <isis/cl.h>.
The coordinator routine should execute the request and compute a result, storing it in an area of
memory allocated with malloc. It should then return a (char *) pointer to this area. This result
will be sent to the caller using a reply() mechanism but will also be transmitted to the cohorts,
where the got_reply routine is invoked as: got_reply(msg, result, rlen). The type field is used in
generating the reply message, but is not passed as an argument to the got_reply routine. The msg

.........

1
[

AP AN Aan -r ._‘ “atete -‘» > W W '\n)
. ;’.-. s..g‘.!?. ?‘j." ""‘;!‘ 5 A% ﬂs-. .i!h '.l.!'\ %l ‘p.\:‘ it

o e e WU W Trw—w had ek dad

r‘ COORIXTK) DISTRIBUTED SYSTEMS TOOLKIT COORIXTK)

~ argument is the one to the original coord_cobort call. The memory that the result occupied is 1

. automatically freed when no longer needed.

In the event of a coordinator failure, one of the cohorts will take over and restart the action. The

X restart invocation is identical to the initial action invocation except that how will now be equal to

N CC_COHORT. No clean-up actions will have been taken; the cobort is responsible for this if any

are needed. If all of the processes in the alist fail, the caller receives a failure indication from the
original BCAST() that triggered the execution of the algorithm ~ specifically, the BCAST()

& returns 0 (no replies) instead of 1 (the single reply the caller wanted).

s The routine coordinator(gid, sender, alist) picks a coordinator and returns its address. It returns

»fj NULLADDRESS if every process in the alist is down. The coordinator will be an operational

X member of alist in the current view of gid subject to the following rule:

1. If some process in the alist is at the same site as the sender, the coordinator will be picked

" relative to this process.

b 2. Otherwise, the coordinator is picked relative to process alist{k] where k = sender.site mod

o length(alist).

- 3. Now, given a starting point, entries in alist are evaluated one by one, and the first one that

R is listed in the current view for gid is returned. NULLADDRESS is returned if all processes

- in alist are tested and none is operational.

Bt

A

'

D

)

%

N

:t:

!l

0

)

L

b

i

’0

AT Ox

15 _
LT S ' PRI PR - & LY"E) e " X 0
K &) B ‘{'. ‘ S ”0 L .C.c q“"‘.‘t . .l .0

PRl R T oy IR Ty

N4
4 18,9 AU

AW a o
K dX

V" « O
A I LR e "

VT W T WTE WY W B W R WS WY W T W T Eomme omm T T W e w Wt

ENTRIES(TK) DISTRIBUTED SYSTEMS TOOLKIT ENTRIES(TK)
1. Synopsls
Declaring the routine that will service requests to a given entry point.
2. Interface
#include "d.h"
isis_entry(code, routine, rname)

int code;

int (*routine)();

char *mame;
3. Discussion

When starting up, a program should bind routines to the entry codes that it will accept in mes-
sages it receives. The toolkit routines do this for the generic addresses when isis_init() is invoked.
Once defined, it is illegal to redefine the generic entry points, although user entry points can be
rebound as desired. This is to prevent users from unintentionally screwing up the toolkit routines.
Entry points are bound by calling isis_entry and specifying the numeric code, the routine address,
and a printable name corresponding to this routine. 'Ib.enaicmyoodumdeﬁnedin
generic_address.h; these are standard for all ISIS clients. Other entry codes can be defined on a
per-client basis starting with the number USER_BASE. Codes need not be allocated sequentially
and different applications can use the same entry code for totally different purposes.

4. Intercepting s message

It is possible to intercept and examine messages befare they reach the entry handling routine. See
FILTER(TK) for details.

16
o
PR Y .-.-\.’ K \.‘- Y \" '\. LA LS S v Y '\‘\,&_’\).\
N0,

.

ol -' s Wre

FILES(TK) DISTRIBUTED SYSTEMS TOOLKIT FILEX(TK)

1. Synopsis
Description of files used when starting ISIS up at a site and the program used to start the system
up.

2. Flle summary

sites: Lists the sites that are running this time
restart: Tells what programs to restart automatically

3. Starting lsis up at 2 site

To run isis at a set of sites, first create a "sites” file in the following format: a '+’ or a ’-’ (lines
with a minus are ignored), mmber(mustsm'twithl),amlon,ﬂ:reemmbmmdnungthe
internet ports for the isis sites to talk to each other, to use when restarting, and to talk to clients,
the site name, and if multiple isis systems are run on one site, a '/ followed by a number. The
port numbers can all be 0 if the /etc/services file is set up to support isis for your system. The
third of these numbers is the one isis_init() expects to be passed. For example, a typical sites file
ig} .

+ 1:1250,1251,1252 bullwinkle.cs.cornell.edu

+ 2:1250,1251,1252 kama.cs.cornell.edu
This file says that isis will be run with two sites operational, bullwinkle and kama. The port
numbers used are the same in this case, because bullwinkle and kama are two different machines.
To run two instances of isis on bullwinkle use a sites file like this one:

+ 1:1250,1251,1252 bullwinkle.cs.cornell.edu/1

+ 2:1253,1254,1255 bullwinkle.cs.cornell. edu2

Here, the port numbers had to be different becsuse all the ports are to be used at one site.
The restart file tells what programs to restart when isis comes up at a site. These are mostly sys-
tem services, like the remote exec service. Here is a typical restart file:
Hs/moose/b/isis/protos/protos <isis-protos> -p
Hs/moose/bisis/client/rexec <isis-rexec>
fs/moose/bisis/client/rmgr <isis-rmgr>
This tells the system to run the protocols process (protos), the rexec program (rexec), and the
recovery manager. Theurgm“-p"totheprowtpromureqmredwhmmunmthisway

Extra arguments may be supplied by the isis startup program: in the case of the protos program,
Snnnenfthentaﬁlenmnnotthemndudone,-W#xfthentehnamb-mnnba and in the
case of the other programs, a port number if the sites file spedifies something for the client-isis
connection port. For example, using the second sites file and the above restartfile, the protocols
program for bullwinkle/2 will be invoked as

<isis-protos> -H2
and the rmgr for bullwinkle/2 will be invoked as
<isis-rmgr> 1255
The latter command is telling the rmgr program to call isis_init(1255) to connect to isis-protos.
To run isis at a site, type
isis [-Sname] [-Rname] + &
If the sites file name is not given, “sites” is assumed. If the restartfile name is not given, ‘‘restart-
file" is sssumed. The “+" argument tells isis to bypass the site-failure detector, which is not yet

fully debugged; in this case, all sites must be brought up more or less at the same time (so, if
using bullwinkle and kama, you would have to run isis on both machines at the same time, by

” atn”

! A4 . g <
Ayttt .Ht % N.c X ’H.oi.‘,.o Hit W

w T TR o - - Y —r—

K FILES(TK) DISTRIBUTED SYSTEMS TOOLKIT FILES(TK)

-

"

)

hand!). This command will bring up as many instances as are needed for the local host, so using

N the second site file it will automatically start isis up twice. A SUN/2 begins to perform poorly

‘;" when it must support more than 2 isis sites at a time, the gould somewhat more (4 to 6 max-

:;.;\ imum).

::E A typical program, say 20-questions, would be run as

twenty client-port

¢ giving the client port-number to use to connect to isis, or just

3

:‘:. twenty

ol if the /etc/services file is set up correctly to know about isis. Note: It sakes about 30 seconds to res-

“ tart isis at a site. If a program tries to connect to isis before restart is finished, various errors can
result.

» To kill isis at a site, do a

:; psx o

u and kil the protos process(es) that are listed. If the system crashes, the reason it crashed is usu- ,4

5 ally given in the file isis.log (1.log, 2.log, etc if several run on one system). After killing isis, a

: UNIX bug can cause the ports it was using to linger for 30-seconds to a minute. If you wait long

N enough before restarting the system, these will normally go away. If they don't there is nothing

- to be done except to change the ports isis is using or to reboot the machine. (This is obviously a

N UNIX bug.) N

L)

4. Resiart sequence

The figure below outlines the stages of restarting isis at a site. As seen in the figure, “isis” starts
by scanning the sites file and then trying to contact isis processes elsewhere in the network. If it
finds any, the system restarts by joining them. Otherwise, it assumes the restart is from a total
failure. Next, all the standard system programs are run, and then the recovery manager restarts
user programs (see RMGR(TK)).

B X S

18
e T S R Y M TSRO O

KR

v ;I,

t

.

\‘f‘ -

3 Recovers, site = 3
iy

: l -Q Broadcast: Is ISIS out there?
N
; % Yes

.:‘ <total restart> Run recovery protocol

e

K

!

) Site 3, incarnation 7 Site is now up -
o l

1

]

' For (each process group)

% { yess total failure action

X Last to fail? Scan recovery database
)

b } 1 "\ partial failure action

r

?

Monitor ISIS at this site

: '

ISIS failed

7. Signal clients: ISIS has crashed
! |
The ISIS Recovery and Monitoring Sequence
%
)

X . . - w a m - . N - u
| ORISR o " s ' 0 ,‘."[* ".r'-r".(_f"\' '\(‘,1‘-\-?\ Tu o W ~
"'\’ WY, u i l‘a \‘; l" T T USN \‘f.l‘n I ",\';!t‘;,\‘\. Yy, "(. p Nt) \

o S N AT T
- N--‘" ‘ ",-f ‘

o
MRS ‘»“\5“1:‘\,

FILTER(TK) DISTRIBUTED SYSTEMS TOOLKIT FILTER(TK)
) 1. Synopsis
:; A mechanism for intercepting arriving messages, used internally by the system.
: 2. Interface
N #include <isivcdl.h>
) typedef int ifunc();
c: ifunc *isis_setfilter(), old_filter;
A
': old_filter = isis_setfilter(routine);
(void)isis_setfilter(oldfilter);
4 3. Discussion
- ISIS has several tools that “filier” the stream of messages arriving at a process. For example, the
% state transfer tool spools messages of several types during transfers, the suthentication tool vali-
) dates the legality of arriving requests, etc. A filter works by interposing itself between the arriv-
> ing message queue and the next “lowest” level filter, down to d_local delivery, which is the
lowest level of all. A filter is called as a message arrives, and can inspect it: ;
E routine(rmp)
, ;nmase *mp;
; })
r< Actions available to a filter are to reject the message (usually by sending some sort of reply,
perhaps a reply(mp,0,0,0), or to pass it to the next level by calling old_filter(mp). A filter may
K fork off a new task or issue a signal, but must not try to wait or do an RPC or broadcast. This is
R because a filter does not run as a normal task.
i
ﬁo 4. Example
\ The state-transfer utility spools some messages by setting itself up as a filter. Its filter routine
- looks like this:
- xfer_filter(mp)
, ;euma message *mp;
- if(<let mp through>)
3 old_filter(mp);
i else
?_ if(xfer_queue == (queue®)0
> dler_queue = qunull);
o qu_add_mp(xfer_queue, 0, mp, nullroutine);
. }
::' When a transfer finishes, messages are despooled by restoring the old filter and then replaying the
iy messages into it:
5 xfer_despool()
.

...............
* MESERER - -

» P O
P W th ~"I*...|".‘|';’\'JA'! \J

o FILTER(TK) DISTRIBUTED SYSTEMS TOOLKIT FILTER(TK)

i register queue *gh, *qp;
:ﬁ". ifunc filter;
ol (void)isis_setfilter(old_filter)
filter = old_filter;
AN gh = xfer_queue;
xfer_queue = (queue®)0;
b zvhle(qp = qu_head(qh))

e filter(qp->qu_mp);
o qu_free(qp);

}

} qu_free(qh);

R Notice how the replay mechanism “steps to the side” by using a copy of the queue pointer and
Y reseting the old value to null, and also by reseting the isis filter before despooling any messages.
Ky This is necessary to ensure that a reinvocation of the state transfer tool (or some other entry point
- : that changes the filter) can set up the filter again and create a new transfer spool. If this idea (a
o reentrant procedure) is unfamiliar to you, it is probably not a good idea to try and use message
. filters in your application: the sorts of bugs that you may run into are pretty bizarre!

[AN]
A.l. I -

4 . e e I Y R e T R Y. " Jd ! D
OO0 OO C 4,0 S SRR TSI WSS, I S W O) Ch YO (o 20 he (0)
T.”~" I?"J‘?"'a?""‘..‘?""3’&:‘!‘."’9»“""’é‘.ln !h‘.' "‘.{ 0. 047,840, 0y .J ST ML !’l " > n ‘(.\ TN K‘f‘l‘;’. -'l. IS WU . ‘r"‘."- Nl u'O.!‘Q‘J'O n'i.t'ﬁ.!'lln'l v

)

P Y e YY

2%

R b Tt ol Sai Salh med 28 .8 8.8 3 0 & 8 S 0 0t & 0 AAA At A4 st ah ais sk abh abiali-abdaid aldabiiabioabieakiiaibisaidhel T PO W WO TN

INIT(TK) DISTRIBUTED SYSTEMS TOOLKIT INIT(TK)
1. Synopsis
Isis initialization routine.
2. Interface
#include "d.h"
isis_init(port-number);
3. Discussion

This routine connects the caller program to ISIS and initializes both the data structures used by the
task and toolkit facilities and various constants, such as my_process_id, my_address, my_site_no,
my_site_incarn, and the site_names[] table (site_names[i] is a printable name for site i). The
port-number may be given as 0, in which case the value in the system-file /etc/services is used, or
as a non-zero number in which case the spedified port is assumed to be the one to connect to ISIS
on. See ADDRESSING(TK) for a discussion of the sites file which contains the port number
specification. STARTUP(TK) gives some examples of programs that call isis_jnit, and FILES(TK)
talks about where these port numbers come from.

System services like REXEC, RMGR, etc. should set the variable my_process_id to their “name”
before calling isis_init.

The task routines may crash if called before isis_init() is called.

S ARG S T e e e e N WL

o '. “ .- .I -- .. \‘\. N\ ; ‘ ‘F .. -" " '\~ '.
1 WV, 0 U TN TV IR TN e b n‘h,h "

e U

LOGMTK) DISTRIBUTED SYSTEMS TOOLKIT LOGXTK)

1. Synopsis

How to manage replicated data structures that can be recovered after total failures (all process
group members die).

2. Discussion

One problem confronted by the ISIS programmer relates to the recovery of a replicated data struc-
ture after a failure. In a situation where someone survived the failure, this is easy: the state
transfer tool can be used, with the recovery manager giving advice on when to do the transfer.
But, what if everyone crashes? The recovery manager will wait until all the relevant sites come
back up, then restart the failed processes, but exactly how should the missing data structures be
rebuilt?

In many systems, the solution to has been to resort to transactional files on disk. You can do this
in ISIS too (see TRANSACTIONS(TK)). Transactionally updated files survive failures and are
updated atomically, hence anything damaged by a crash will automatically be restored. In ISIS,
however, the entire idea is to move away from nested transactions and towards less costly, less
A simple way to deal with recovery, and the one we recommend, is as follows: Replicated data is
maintained in core, in a volatile form, using tools like the replicated update tool to query and
update it. When an update changes the structure in & significant way, however ~ a way that needs
tobemdmufﬁlm-hupdnemwd"og”ﬂnwinnwen-mﬁhin
a well-known place. For example, you could create a file called “/usr/spoollogs/my_prog.log”.
Use a simple file format (ascii is nice) and keep appending to it and doing a flush (fsync(2)) after -
each write. On recovery, you will need to reread the file and rebuild the data structure one
change at a time.

One thing to be aware of is that when several processes die at once, they could leave their logs in
slightly different states. Since the recovery manager arranges for all the last processes to fail to
recover at the same time, your recovery mechanism should avoid a situation where these processes
recover independently from logs that could have different lengths or contain non-indentical infor-
mation. Some ways to do this are: have a coordinator recover from one of the logs and then use a
state transfer to copy this information to other processes, or maintain the logs in a cannonical
order and reach agreement on what the last record is, or maintain identical logs and reach agree-
ment on what the length is. To reach agreement, use a group RPC that queries the other
processes with copies of the log and take the minimum length that is returned as the answer.
Frankly, unless your application uses ABCAST whenever an update to the in-core storage occurs,
which makes it trivial to keep the logs in a csnnonical order, we recommend that you go with the
coordinator-cohort solution. It just isn’t worth going to so much trouble to deal with a situation
that almost never happens anyway. Even this solution won't be trivial, because you have to cover
two cases: one where the coordinator succeeds in loading its log and other processes just do state
transfers to join, and one where the coordinator dies while loading the log or during a state
transfer, forcing a cohort to restart from its own version of the log. A tool that does this will be
provided as part of the recovery manager later this summer, and an example that uses it will be

N included in the next edition of this documentation. The code isn't nearly as complex as it prob-
ol sbly sounds.

oy If your logs are likely to get very long, a periodic checkpoint might be a good idea. You can
Lo create one by supporting a “checkpoint” log record, which would always appear at the beginning

b of a log. To make a new checkpoint, first write it into a temporary file, then rename the file in
== one shot 30 as to atomically switch from the old log to the new one. (See rename(2) in the 4.2bsd
N UNIX manual).

L aal ARa AR ana aie ado di. sbe dhe dhe bte Ade stk i Ab AbE e kA b ‘T

& MESSAGES(TK) DISTRIBUTED SYSTEMS TOOLKIT MESSAGES(TK)
Y

1. Synopsls
An overview of messages as they are used in ISIS.

2. Inciude flle
#incdlude <isis/cl.h>

3. Discussion

In ISIS, communication is via messages. Basically, a message is a container for some amount of

data, organized as a vector of “fields”, and possessing certain standard attributes. Specifically,

each message has a sender, which is the address of the process that semt it (see

ADDRESSING(TK)), a list of destinations, which is a null-terminated address list, and a set of

fields containing data. The message editing system (see MSG_EDIT(TK)) provides a variety of

routines t0 create and manipulate messages. Here, we confine ourselves to a summary that
focuses on concepts rather than detail.

The type of a message is “message”, and is predefined in c.h. The data structure used is quite

complex. An empty message is created by the routine msg_newmsg(), which returns a pointer to

the message but doesn’t fill out any of its fields. The sender field of a message is automatically
set by the system in most cases, 30 spplications can assume that this information is “secure”. The
routine msg_getsender(msg) returns a pointer to this field or ((address®) 0) if it is undefined.

Similarly, the routine msg setdests(msg,alist) sets the destination list of a message and

msg_getdests(msg) returns a pointer to it. These can often be left undefined, for example if the

message is to be broadcast: in such situations, the alist is computed by the ISIS communication -
subsystem and filled in automatically. (If the sender field is not filled in, the message subsystem

uses the address of the process that called msg newmsg() by default). The routine

msg_getdests(mp,len), however, is quite useful: it returns a list of the destinations to which copies

of a message were to be delivered. For example, this would be a good value to provide to coord-

cohort() as an alist. If you use the destination list for any other purpose, be aware that your pro-

cess group view should be checked to confirm that these members are still operational, see

pg_getview() in PGROUK(TK) for details.

A message has no upper size limit, but ISIS tends to get sick when messages exceed a few

hundred-thousand bytes in length. Some parts of the system break messages into 4k chunks for

transmission, so 4k is 8 good upper limit. Since messages have overhead, the user-space available
in a 4k message is only about 3.9k bytes. &

Message fields are used to store data in a message. A field has a name, represented by an integer

in the range 1-127, a type, a value, and a length. There are currently three types of fields,

although more may be supported in the future:

1. Character fields are sequences of bytes having the designated length. These are not inter-
preted by the message subsystem. Users who employ a stub generator such as the UNIX
XDR mechanism should think of the XDR output as a character field even if it represents
multiple arguments or data items. The type of a character field is FTYPE_CHARS.

2. Long integers have different byte orders on different machines. Within ISIS, many data -
structures consist of vectors of long integers. A field containing long-integers will automati-
cally be byte swapped on arrival at a remote machine if necessary, but the message editing
system must be told that the field is not just a field full of characters. To do this, the type
field should be specified as FTYPE_LONGINTS. The length of the field should be given in
bytes. The message editing subsystem knows about byte orders automatically and will swap
bytes as needed.
3. Other messages. The idea is that a message can be stuffed into another message, which is
convenient when multiple messages need to be piggybacked to a single destination, or when
extra fields need to be added to a message without risk of banging into fields already in the

- " . H

- - - K3
Pt Foses | =
R 5 .

RN
X :lr"‘:l;‘l ‘IJ

.‘.
RS, -

e
'

..
K
>

l

R T
AL

MESSAGES(TK) DISTRIBUTED SYSTEMS TOOLKIT MESSAGES(TK)

message. The type of a message field is automatically set to FTYPE_MSG.

4. Note: ISIS currently uses an address format that is machine independent. Lest this change,
a field type FTYPE_ADDRS is supported.

5. The following addition field types are support: FTYPE_SHORTINTS, FTYPE_SIDS (site-
id’s), FTYPE_PGVIEW (process group view).

The routines used to manipulate message fields are as follows:

msg_addfield(mp,fname, ptr,ftype,len)
Adds a field named fhame to the message having a value copied from the place the pointer
points to and length given by len. The field name need not be unique. The type is as
described above.
msg_getfield(mp,fname,inst, lenptr)
The message is searched for the inst'th instance of the designated field name (the first
instance is number 1). If found, a pointer to the value is returned and if leaptr is non-zero,
the integer variable it points to is set to the length in bytes (or elements) of the character
field (or long integer field).
msg_deletefield(mp,fname,inst)
Deletes the i’th instance of the named field.
msg_addmsg(mp,fpm,pu)]
If ptr is a pointer to a message, creates a field with the given name containing this message.
msg_getmsg(mp,fname, inst) . . .
Returns a copy of the message in the inst’th field having the given fname.
There are additional routines that can be used to retrieve muitiple values or messages at once
when a message is expected to have several field instances with a single field name. Also useful is
a procedure called msg_create() that creates a message and initializes a number of fields at the
same time; it takes a list of field names, values, and lengths terminated by a field name of 0. See
the MSG_EDIT(TK) documentation for details.

4. Fleld names

Some field names are standard in ISIS. These have 128-255 and are defined n msg.h, they can be
fetched using msg_getfield but not set. Field numbers 1-127 are available for general use, and dif-
ferent applications will tend to use the same numbers for different purposes. Number 0 is not
used. It is generally a good idea not to reuse field numbers within any single application; this
avoids confusion. ’

5. Sending a message

A number of routines facilitate the transmission of messages. The most commonly used routines
are the BCAST() routines; see BCAST(TK). In ISIS clients, the procedure isis_send(dest,msg)
can be used to transmit a message to a destination given by the address dest. This routine is used
heavily within the system. A second routine, isis_rpc(dest,msg), sends the message, waits for a
reply, and then returns the reply message to the caller. The amswer itself will be in the field
FLD_ANSW. If the answer was given a8 a null pointer, this field will not be defined. If no reply
will arrive because of a failure, isis_rpc returns a null pointer. Broadcasts are sent using any of a
variety of procedures documented in BCASTS(TK).

6. Deleting a message; mnitiple coples of 3 message

Each message has a reference count which can be incremented by the procedure
msg_increfcount(). The reference count is initially O and need only be incremented when the mes-
sage is placed on a queue or otherwise passed to some task other than the original creator. Later,
the message reference count is decremented by calling msg delete(). If the count was O,

L Lol el o n L b LR

MESSAGES(TK) DISTRIBUTED SYSTEMS TOOLKIT MESSAGES(TK)

msg_delete() will free the measage for reuse. While a message has a non-zero reference count, it
isillegaltoaddordeletefields:mdummgeisuidtobeimutable,andopﬁmizatiomtaking
mmugedﬂﬁsmhvebmindudedmmemgm'oandmumgouﬁﬁﬁa.

7. Byte swapping and addresses

DwaddrwfommusedinISIShmbeendedpedwmnminmmvaiomofthesystun,
thaewm&mneedwbyt&wupaddrmwhmtheympssed&omprmwmm

8. Forwarding a message
Somesystemsaﬂowapmmfmdammeumﬂy:tod:emdrea‘pientitloobs
if this message came directly from the recipient. ISIS doesn’t allow you to do this, although it
would be easy enough to support if desired. The problem is that such a mechanism appears to
break our security model. To forward a message using the current system, you would need to
pad:itinmwmeoﬂmmaugeuﬁn;mg_nddmgowﬂmmvinmtheduﬁmﬁmbw
the message and deliver it locally, by calling c_local_delivery() on it.

MSG_EDIT(TK) DISTRIBUTED SYSTEMS TOOLKIT MSG_EDIT(TK)

1. Measage editing routines and thelr arguments
/* msg_addfield : Add a new field to a given message. Only non-negative */

lad field names are accepted. Rm.pomutothe */

r field.

char °

msg_addfield (msg, field, data, type, len)

message ‘msg;

int ﬁdd"mth;

char *dats;

/‘ms;_addmsg Insert a msg?2 into msgl as a field ‘/
(hlym-mmveﬁeldnmmm

/° Returns pointer to field

char *
msg_addmsg (msgl, msg2, field)
message “msgl, *msg2;

int field;

/* msg_copy: Make a copy of the given message */

message
msg_copy (msg)
message ‘msg;

l‘mg_delete If the reference count of the given message is zero, */
relesse the space allocated to it. Else, decrement */
the reference count. Canedbyt!nmmnethn */
allocated the message and by any routine that called */
msg_increfcount on the message */

i: RIS

msg_delete (.m;)
message msg;

* msg_deletefield : Delete the given instance of a field */

void

msg_deletefield (msg, field, inst)
message *msg;

int field, inst;

/* msg_genmsg: Generate a message containing the fields passed a8 */
r urgumm,wb‘d:mofﬂ:eformﬁeldme */
r pointer_to_data, field_length, ... , followed by 0 */

—var v -r Bl St AGh B ded A M-S A & h B A 0 d-s kBl sk aad aie asd abd st add bl adkh shet ol S lelabe Atk Saf i 'wwv-"vv"“v-T

MSG_EDIT(TK) DISTRIBUTED SYSTEMS TOOLKIT MSG_EDIT(TK)

e ®
msg_genmsg (field1, datal, typel, lenl, field2, data2, type2, len2, ..., 0)
int fieldx, typex, lenx;
char *datax;

/* msg_getdests: Return a pointer to a null-terminated list of the */

/* destinations of a given message (null pointer, if none) */
I Hnmwongmentupmfmmdan,ﬁnmmba
/® destinations is returned.

address *

msg_getdests (msg, n_dests)

message ‘msg;

int *n_dests;

/* msg_getfield: Return a pointer to the data in a given instance of a */
r ﬁddlnddnlmthoftheﬁddlfdnlatuguman */
r* is non-zero.

char ¢

msg_getfield (msg, field, inst, len) .
message “msg;

int field, inst;

int *len;

/‘msuetfieldl Return an array of pointers to the data of up to the first */
n instances of a given field, and their lengths (if the */

/‘ argument is non-zero). Return value: number of fields */

/*° actually found. ¢/

msg_getfields (msg, field, pointers, lengths, n)
message °msg;
int field, lengths[], n;

/* msg_getiovec : Return a pointer to an arrsy of iovec structures for */
T of a given message. See write(2) and read (2). ¢/

/* msg_getiovien: Return the length of the iovec array. */
/* (These should really be macros). ¢/

struct iovec *
msg_getiovec (msg)
message °msg;
msg_getiovien (mag)
message °msg;

/* msg_getlen : Return the length of the transmittable part of a given message */

Lo L

R MSG_EDIT(TK) DISTRIBUTEL SYSTEMS TOOLKIT MSG_EDIT(TK)
V'
: msg_getlen (msg)
g message ‘msg;
X
R /* msg_getmsg : Create a message from the contents of a given instance */
' r of a field. (It is assumed that the field has a proper */
r message header.) */
;;' message °
" msg_getmsg (msg, field, inst)
h message “msg;
int field, inst;
': /* msg getmsgs : Rm.molwamed&ommwtheﬁm‘/
' r n instances of a given field, and return the actual ¢/
X r n\mhudmdlw (It is assumed that each */
' r field has a proper header.) */
" msg_getmsgs (msg, field, messages, n)
p message “msg, (“messages)(];
y int field, n;
/* msg_getreplyto : Mnhadﬁuw:adhrq:lyfmapvmw
v r Caution: this may not be the sender!
' address *
e msg_getreplyto (msg)
' message “msg;
)
" /* msg getsender : Return the address of the sender for a given message */
; r Caution: this may not be the place to send replies! */
l‘ m.. -~
A msg_getreplyto (msg)
X message “msg;
N
A /* msg_increfcount : Increment the reference count of a given message */
’ r Caution: A message with multiple refs cannot be changed */
. void '
X msg_increfcount (msg)
‘ message ‘mag;
. I* msg_newmsg: Create an new message with sender field filled in */
N message °*
‘ msg_newmsg ()

" A LT, * Bl A L o n S .-""’\.'; """"" ' ""‘.\-.(.-
["-""‘--‘.“".‘n COLCKS ‘\";- f b! RO ¥ «' f - £ v *- M—A.‘A—o“-- RS WA LMJ;-XJL-A\

oo TR TR e TR TN T e e R T T T

T

N 1 L4 ¥
k.a, N

MSG_EDIT(TK) DISTRIBUTED SYSTEMS TOOLKIT MSG_EDIT(TK)

/* msg_read: Read and return a message from a file descriptor */
” Second argument gives length if known, 0 otherwise */

message °

msg_read (sd, len)

int sd;

int len;

/* msg_reconstruct: reconstruct the argument into a message and return a ptr */

message
msg_reconstruct (ptr)
char ‘ptr;

msuecommn_mpln reconstruct the in place and return a ptr to its header */
Caution: assumes the ptr points to a malloc region; will be freed °/

/‘ automatically later by the message editing system */
message °

msg_reconstruct_inplace (ptr)

char “ptr;

/* msg_setdest : Set the destination field to the given destination */

void
msg_setdest (ms', dest)
messaze *msg;

*dest;

/* msg_setdests : Set the destination field to the given null-terminated */
r list of destinations ¢/

void

msg_setdests (msg, dests)
message °msg;
address dests{];

/* msg_setreplyto: Set the reply-to field to the given address */
" Note: Users cannot set the sender address ~ this is sutomatic */

void

w (msg,who))
message °msg;

address who;

/* msg_write: Write the given message on the given file descriptor */
msg_write (sd, msg)
iat

message “msg;

o '*(

OQ.‘

MSG_EDIT(TK) DISTRIBUTED SYSTEMS TOOLKIT MSG_EDIT(TK)

1. Synopshs
The News Service allows an isis client to possr messages which will sutomatically be forwarded to
other processes that are subscribers of the news service.

2. Interface
#include <isis'd.h>

news_post(slist, subject, mp, beck)

news_posta(slist, subject, mp, back)
site_id slist{];
char “subject;
message “mp;
mt

news_clear(slist, subject)

news_clear_all(slist, subject)
site_jd alist(];
char “subject;

nback = news_subscribe(subject, entry, back);
int nback;
f:hlr *subject;

3. Discussicn

To post a message, a process calls news_post. Slist is a list of sites to which the message will be
forwarded; if a null pointer is given instead, the message will be forwarded to all operational sites.
Subject is an arbitrary string of up to SUBJLEN characters. For every subject the news service at
cach site keeps a list of recently posted messages which new subscribers may look at. When a
message is posted, the parameter back determines how long the message will be held as a "back
issue”. If back = 0, the message will be forwarded only to current subscribers and will be deleted
immediately afterwards. If back is greater than zero, for example back = $, the message will be
held until five new messages have been posted to the same subject.

News_post uses CBCAST to broadcast the message to the news services at other sites. If it is
important that all subscribers receive news messages in the same order, then news_posua should be
called, which will use an ABCAST to post the message.

Messages kept as back issues on a certain subject may be deleted explicitly by calling news_clear
ge;ummqapamdbyhana),amsjbaﬂ(mmmpaudbym-
A process that wishes to subscribe to 8 news subj2ct calls aews_subscribe, specifying an eatry point
(declared by isis_entry(), see ENTRIES(TK)) to which the news service will send messages posted
to that subject. The parameter back specifies how many back issues the subscriber wants to
rea:ve News_subscribe returns the actual number of back issues available, that will be sent to the

: m
|
¥
\ NEWS(TK) DISTRIBUTED SYSTEMS TOOLKIT NEWS(TK)

'
L]
! When a message is posted, the news service automatically adds the two fields FLD_SUBJ and
HD_BACKmtainingt!n’mbjad’@'back’pum&omthem_pathﬂ. A subscriber
4 may inspect these fields simply by calling msg_getfield().
K News_cancel cancels a subscription for a given subject.
k 4. Diagnostics
All routines return a nonzero value in the case of an error, except far news_subscribe, which indi- i
N cates an error by returning a negative value. Note that news_post and news_posta do not wait for
, replies when broadcasting 8 message. Mmaamsfulmdoanotyetgwmteethat
" the message has been delivered to remote sites.
k 5. Bop
A site crash wipes out all back issues held by the local news service. The news service does not
save messages on stable storage, nor does it attempt to get back issues from some other site after
a recovery.
b This version of the news service does not provide any form of security. Any isis client can post
2 mdreceivemesuguonmymbjea;itandelcteuybackisuuitmto(news_dw_ull).
: News uses a linear search to find subjects in its tables. Hashing should be used instead.
.
j Hhmmmmwbehuvﬂymed,hnﬁmmnkemwmehimothem
" process.
> -
.
J
'.'
LY

::.

Y
q

‘-’ 32 ') o L

BT o0t AT A ot 0 s RO e O S T S T G

—_—— ————— e —— - - -————-—“*'——-—-——-v-——w-j

N PGROUK(TK) DISTRIBUTED SYSTEMS TOOLKIT PGROUF(TK)

1. Synopsis
" Apxkageofmﬁnuimplmﬁngprmmmdmupadd:uﬁng.
\. 2. m
g #include <isiv/el.h>

" isis_jnit(0);

R pg-init(Q);

' address pg_create(name,incarn)
" char *name;

2 int incern;
‘KB
; address pg_lookup(name)
B char *name;

g
L

DREARUALES
. ®
-

R s Vi Fadh

8

;
1

N pa_signal(gid, signo)
: address gid;
'+ int signo;

pg_monitor(gid, routine, arg)
address gid;

& int (*routine)();

- char “arg;
. pgmonitor_cancel(gid, routine, arg)
£

-

e

P N N S B SE GRE - .y S T e A et e T .
W, AL 2oty o BT AR RO Sh Yy A AT -."-.'-.'-. ."'-»_s'-"x NS ." o "V’-.."'\"\ 1.\.'."\"\

PGROUK(TK) DISTRIBUTED SYSTEMS TOOLKIT PGROUP(TK)

address gid;
int (*routine)();
char ®arg;

ps._join(gid, mp)
address gid;
message *mp;

pg_join_verifier(routine)
int (*routine)(Q);

pg_dump()
3. Discussion

This package maintains process group membership information. There are two ways a process can

relate to a group:

1. As a client that sends requests to the group. Due to a restriction on addressing modes, we
distinguish between the case of a client known to the group, with unrestricted permission to
use the group address in its address lists (see BCAST(TK)), and the case of a client that the
group doesn’t know about in this sense, who can only broadcast to the group in a restricted
manner (se¢ BCAST(TK) again). Groups can promote a client to the more powerful form
of addressing using pg_addclient(), but this must be done by a current member. The routine
is idempotent, so calling it a few times won’t crash the system or snything, but it might be -
slow. A client can monitor group membership changes, but will not receive broadcasts sent
to the group and cannot initiate membership changes or add other clients on its own.

2. As amember. Group members receive messages sent to the group and have unlimited free-
dom to call the routines defined above. Group members implicitly have unlimited address-
ing freedom with respect to their group.

We now describe the various routines available to group members and their dlients. See also the

discussion in PROTECTION(TK), where the mechanisms for preventing unauthorized use of a

group are documented.

a) pg create() creates a new process group; its only member will be the caller process. The
group may be given a symbolic name (if none is desired, a null pointer should be passed for
the name). The system will not verify that the name is unique. It may also be assigned an
incarnation number; this is done by and used by the recovery manager (see RMGR(TK) for
details; this may be specified as 0 if the rmgr is not being used). The group will continue to
exist until deleted with pg_delete unless all its members fail, at which time it will be deleted
automatically. See BCAST(TK) for details concerning group addressing. A process can be a
member of an unlimited number of groups.

b) pglookup(name) looks for a group with the given symbolic name and returns its group id.
The search is done in all sites that are “local” and “long distance”, but not those that are
“remote” relative to the caller (see ADDRESSING(TK) for definitions of local and remote).
If the name is not found, NULLADDRESS is returned. In the future, pg lookup() will be
extended to support some form of pattern matching and a permission scheme under which it
will only be possible to lookup a name if one has ‘“‘permission” to access it. If several
groups match, the first address found is returned to the caller.

c) pg-addmemb() adds a new process to a preexisting group. It can only be done by a group
member; this is to allow the group members to validate new potential members. It fails,
returning an error code, if the group does not exist, the caller is not a member, or the pro-
cess is already a member. Since this call can only be done by a member, pg_join() is pro-
vided as a convenient way to ask a group to let a potential member join.

PGROUKTK) DISTRIBUTED SYSTEMS TOOLKIT PGROUK(TK)

d) pgleave() deletes the caller from the designated group.

¢) pgmigrate() simultanecusly adds process “newpname” and deletes the caller process from
the group. The discussion of pg_addmemb applies. It fails if the group does not exist, the
caller is not 8 member, or newpname is not spedified correctly. This routine has 1ot yet been
implemented.
pg_delete() deletes the designated group even if it still has members. The caller must be a
member of the group. It fails if the group cannot be found or the caller is not a member.

8) pg-addclient() makes the group directly accessible by the designated client, but without mak-
ing the client a member of the group. This is necessary if the client is to use some of the
more sophisticated addressing modes identified in the BCAST(TK) routines. Should the
client fail, it will automatically be deleted from this list.

h) pg_delclient() deletes a direct access client.

i) pggetview() returns the current membership of a group as a pgroup data structure, defined
in pr_group.h and automatically included by c.h. The caller need not be a member and the
group need not be directly accessible. The view is not guaranteed to remain unchanged. It
is, however, guaranteed to have the same value when different recipients of a message all
call pg_getview() when the message first arrives (but without doing a t_wait() first). A null
pointer is returned if the group is not found.

) pglockview() locks the current view against changes and returns the view, which the caller
can use to compute an action that depends on the current membership. The lock is automat- 1
ically released the next time a broadcast is done to the group by this process, or if the pro- -
cess fails. It returns a null pointer if the group is not found. This routine is not yet imple-
mented.

k) pgsignal() sends a UNIX signal to the members of the designated groups and processes,
which are identified by a null-terminated address list. It fails if the caller is not a member of
the group or the group does not exist.

) pg_monitor() monitors the designated group for membership changes. The caller must be a
member, the request fails if this is not the case. Should the membership change, the call-
back routine is invoked as: routine(pg, arg); where pg is a pointer to a pgroup data structure
containing the new view and the argument is the one givea in the monitor request.

m) pg_monitor_cancel() cancels a pg_monitor request. The arguments must match those for the
pg_monitor. It fails if the monitor request is uaknown.

n) pgjoin() is a toolkit routine that does sn RPC to the designated group, passing the desig-
nated message. The message pointer can be null if the group doesn’t do verification. The
message is delivered to the join verification routine (see below). If this routine is undefined
or returns 0, the join is permitted. If it is defined and returns an error code (a negative
number), the join is aborted and pg_join() returns this error code. If the caller is added to
the group successfully, pg_join() returns 0. A process can be a member of an unlimited
number of groups.

m) pg_join_verifier() is a toolkit routine with which the members of a group can specify a rou-
tine that will validate new join requests. The routine is later invoked a3

routine(mp)
register *mp;
{
}
where mp is the message sent in the pg_join() request. The id of the group being joined is avail-

able in the system field SYSFLD_GID of this message. The join verifier is only called at one of
the members of the group, but the actual member that will be asked to do the

Pl

- - -. hnd --A
L ENIRLY e

rrrrrr

-t S Al aaa st adf aas _an 2af mat ga- St ad~ Bac fat rho Rat tat st ol ek Salefhdinhiebfibdoinshbatidbiediibtiiadiadndd hada-a ah a b o s A A B . e h A Rl dod dof Lok ied

PGROUK(TK) DISTRIBUTED SYSTEMS TOOLKIT PGROUK(TK)

vary. All members should therefore define this routine if any does and all should use the same
verification rule.

Except when otherwise indicated, all the routines return 0 in the event of normal termination and
-1 if an error occurs.

-— TP LT LT O T T T o e e W IV TVN FFTIETTE MEFTTrEFTTEH N R FTE TEE =R W o es e ey

7-

& ,' ‘;
‘:” "
?' 5 PROTECTION(TK) DISTRIBUTED SYSTEMS TOOLKIT PROTECTION(TK)
> ‘
1. Synopsis
:::'1: Some thoughts on protection in ISIS.
18 Y
S 2. Relevant Interfaces
g pg_join(...)
" pg_migrate(...)
by pg_ng;?al(...)
“:s : au_venf):(...)
\'.' N au_permit(...)
w > au_revoke_perm¢(...)
i beast(..
e 3. Discussion
o Because ISIS will operate in large networks with multiple protection domains present, protection
~‘,‘,' withinI.SISitselfposaditﬁmltdesignissues. Two basic approaches have been considered in this
Qe connection.
anle The first approach is to encrypt capabilities (group and process id’s) and use the encrypted capabil-
L2 ities to mediate access to groups. This approach has been rejected because the size of the
encrypted capability would have to be very large, hence address lists (which are common in ISIS)
:;: could get very big.
e The alternative, which we implemented, treats authentication as an application-level problem, but
;;.-'_; provides a reasonable degree of support for authenticating access. The approach is as follows. -
* First, members of a process group are given a chance to check the credentials of a process wishing
nay to join the group. See pg join() for details. The idee is that the group members specify a
N join_verifier routine and it checks the legality of the join request. ISIS provides the sender’s
)‘3; address in a secure form, but leaves it to the recipient processes -- the group - to check the
_.}i‘ sender’s user identification. This is because many operating systems simply do not provide ISIS
? with a mechanism for securely deducing any more information than this,
) A reasonably secure mechanism, if security is your goal, would be to use public key encryption as
Joy part of these authentication procedure. If a clieat wishes to join, it would be required to present
I credentials to the group, obtaining these from a file that only it can access, and encrypting the
o information to prevent eavesdroppers from learning anything useful. =
’ ‘521 We also support a mechanism for authentication, of individual requests. See AUTHEN(TK) for |
. details. The interface is very similar: the group specifies a routine that authenticates individual !
e messages, although in this case (to avoid extra work), it is also possible to permit all messages |
".‘-Z from a particular caller to be processed or to revoke a previously granted permission. The
_\f.'; mechanism uses the filter concept outlined in FILTER(TK).
L
I; _’
e
7
9%
”o
i\
e
o
04
S 3
.;E;.' , 3.7
R A A T ST AT AT N A S S R Sy

470,008, P RO, PSRN, ey

T T R T T TR T P T T W T T T TR -mmmm"T

RECOVERY(TK) DISTRIBUTED SYSTEMS TOOLKIT RECOVERY(TK)
1. Synopsis

A simple program demonstrating the use of the recovery manager routines.

2. Program Source

I.‘.“‘..“...“‘..“‘.“‘.."‘...l‘....‘..‘.......l‘.‘.."....O...O..‘........‘

rdemo.c -- a simple demonstration on how to use the rmgr routines

What this program does:
The program creates a process group named “recovery-demo” (or joins this
group if it exists), prints the message "rdemo: startup complete, waiting
for command messages”, and (you guessed it) waits for ‘command’ messages
to arrive from some mysterious source. The purpose of this program is to
demonstrate how to use the recovery manager routines to have the program
restarted automatically and to create or join a process group after a crash.

How to run this program:

1. Start up isis on all sites.
2. Install an entry in the recovery manager restart database by typing:
rmupdate 1 rdemo-program rdemo rdemo 1252
This command creates an entry in the restart database for site 1, with
key = "rdemo-program”, program = rdemo, and argv = {rdemo 1252}. 2
The rdemo program expects argv(1] to contain the internet port number
for talking to isis. Replace 1252 by the correct number for that site. See
INIT(TK), FILES(TK), RMUPDATE(TK) for details. You have to repeat
this command for every isis site on which you want to run the demo.
3. Start the demo program at one of the sites (e.g. site 1) by typing
rdemo 1252
4. Start the demo program at the other sites.
5. Now you can experiment to see what happens if you crash one of the
programs (with catrl-C or "kill") or one of the sites (by killing
the isis protocols process).

The program should be restarted automatically each time it is killed,
or after a site recovers from a crash. If you crash all sites and then
bring them up again, the process group will be recreated on the site
that died last. The rdemo programs at the other sites will wait until .
rdemo is restarted on the "last surviver’ site.

To remove the rdemo entry from the restart database type
rmupdate 1 rdemo-
at site 1, and similar for the other sites.

L I I B 0 2 B N BN JNE DK BEE NN JEY JER NEY NN NN N Y RN NN NN T S SN N N N RN R N R N

‘...‘..‘..“O‘..‘..‘.‘.“...‘..“O.‘...‘O.'..“..‘..‘O."...‘..“.‘.‘.‘.O..‘.../

#include <stdio.h>
sinclude "d.h"
s#include "d_rmgr.h"

#define MSG_COMMAND (USER_BASE+0) /* isis entry number for command message °*/
#define FLD_TEXT 1 /* message field for command text */

RECOVERY(TK) DISTRIBUTED SYSTEMS TOOLKIT RECOVERY(TK)

/‘..“‘“".“‘..‘....‘......‘.‘“."...‘.‘.‘..'.‘.‘...‘...“..‘.....l
[]

* main_task -- starts up the process group

......‘...“‘........‘0..‘........O...'.‘........‘...“‘.....‘.‘.O‘..l
void main_task()
address gid; /* process group address */

/‘
® Register this process with the recovery manager.
* This is only necessary if the program was not started by the recovery
* manager (i.e. the first time, when it is started 'by hand’). However,
® it does not hurt to always call rmgr_register().
*/
/r:nsrﬁsisw(”rdemom");
® Restart the process group.
® Rmgr_restart() will call rmgr_getinfo() and based on that information
*® dedde whether to just join the group, create the group, wait for another
* site to create it, ... See RMGR(TK) for details.
*/
gid = rmgr_restart("recovery-demo”);
if (gid.site == 0) {
printf("rdemo: rmgr_restart failed\n™);
exit(-1);
/.
¢ Start recovery manager view logging.
® After this call the latest pgroup view is automatically
¢ save on stable storage.
*/
rmgr_start_log(gid);

printf("rdemo: startup complete, waiting for command messages\n");

/.....‘.O..“““‘.“...“.‘...‘.O‘.‘.O'..‘.......“.‘.“‘.‘.‘...‘.‘..
]

* msg _command - message handler for command messages
[]

.....‘.‘.‘...‘O...................‘........‘..‘.......‘..‘.‘.....‘..‘/

void msg_command(mp)
message “mp;

char “text;
text = msg_getfield(mp, FLD_TEXT, 1, (int *)0);
if (stremp(text, "quit™) == 0) {

. ‘ ———————— - -)

o RECOVERY(TK) DISTRIBUTED SYSTEMS TOOLKIT RECOVERY(TK)
. o
. ‘Cal]rmgr_unregistertot'eﬂt.bereoov'exymmathnt
N * the program wants to exit without being restarted.

4 ./

:. rmgr_unregister();

K exit(0);

; }el/suf(stmnp(text “crash™) == 0) {

E} ¢ Commit suicide. The recovery manager will notice that the
o ptogramhasdedmdwmmmnmommany

ent(O).

;:‘. } else if (strncmp(text, "echo”, 4) == 0) {
e r
& * Echo the message text to the screen.
i */

- printf("rdemo: %s\n", text+4);

2

: } else {

‘j printf("rdemo: unknown command: %s\n", text);

e * /........“.“‘...“..“.““..“.“.“‘0.“‘....“‘.0.....‘..‘...‘...
-. .
» o .
"ﬂ: main
" [
.‘.‘...‘......‘0......‘.“...........‘.‘...“‘.".‘..‘.....“.......‘/
» main(argc, argv)
b int arge;
] char *argv(];
* int client_port; /* port number for talking to isis */
]
-l fAd
f 3 :/ get client_port from argv
‘ if (arge = 2 | (client_port = atoi(argv(1])) == 0) {
: fprintf(stderr, "usage: %s port\n”, argv[0]);
- }
- r”
. ® set up isis stuff
" isis_init(client_port);
) rmgr_init();
14 isis_entry(MSG_COMMAND, msg_command, "msg_command™);
Y "
h ¢ fork main task

NG R e Dty

LA)
5 '\ it
"* ORI "*!""" '3."" "- Ho'l's'le l"c e, T NI R

00 RECOVERY(TK) DISTRIBUTED SYSTEMS TOOLKIT RECOVERY(TK)
o
o tfork_delayed(main_task, 0, 0);
‘Q! 1
i for (;) {
o run_tasks();
ol | isis_read();
. }

I\l
1"

he 41
~ . - e s . ; P T e e Tt T e e - et (AN S LW e 2
. R R Sy T S .o s e N U S R L N S .
! l,._f_,.r ‘. J' PN Nt R A " e T AT S AL e o W L
TR, A gAML ¥ kY Bl - -

PP WU T W

REPLICATION(TK) DISTRIBUTED SYSTEMS TOOLKIT REPLICATION(TK)

1. Synopsls
A toolkit routine for managing replicated data.

1. Interface
#include <isis/d.h>

In the service:
isis_jnit(0);
r_init(item_name, opener, sizer, reader, writer, fsyncer, default)
char ®item_name;
int (*opener)(), (*sizer)(), (*reader)(), (*writer)();
int (*fsyncer)0), (°default)();

In the client:
isis_init(0);

fd - r_open(alist, item_name, how, fmode)
char ‘*item_name;

r_lseek(fd, offset, mode)

nbytes = r_read(fd, buffer, len)
char *buffer;

nbytes = r_write(fd, buffer, type, len)
char *buffer;

nbytes = r_xwrite(fd, buffer, type, len)
char *buffer;

r_fsync(fd);

r_close(fd);
3. Discussion
A simple interface to replicated data is presented. The i
UNIX file system interface, although replicsted data need not i
managers of the replicated data item specify the routines that will read, write, etc. and the type of
broadcast to use by “defsult” when updating this data; in the xwrite() (“‘exclusive mode write’)
case CBCAST is always used regardless of the default. Normally, the default routine will either
be CBCAST or ABCAST (see VSYNC(TK)). CBCAST would be used for structures that are
insensitive to the order in which updates are done to different data items; ABCAST when a struc
ture might behave differently for different update orders. The type field should be set a for a
msg_addfield (see MESSAGES(TK)).
In the service, the routines are invoked as follows:

opener(item_name,how,fmode)
The service should “open” the designated item_name, the arguments can be defined by the
service but are intended to mimic the argument to the unix open system call. The opener
routine should return -1 on an error, setting the global variable "r_errno” to the error code,
and it should return O if the open succeeded. No state is saved on an open. The designer
should be sware that the file descriptor returned to the dlient will nct be determined from
the code returned by the open routine. The dient file descriptor is allocated from a per-

B o A i h A A o o' s o o 8 o & ko i ad o i g s d Aok Al el Sed it desndbe ol il S s
T T Tw g

REPLICATION(TK) DISTRIBUTED SYSTEMS TOOLKIT REPLICATION(TK)

client table of open "files”, corresponding to the various successful opens that have been
done. In fact, it is not required that the number returned by different representatives of the
service be the same. If some representatives return error codes, the request is assumed to0
have failed and one of those codes is returned to the caller. If all return success, the request
succeeds. The designer of the system may assume that the same sequence of r_open
requests is seen by all members of the service, but that the sequence of r_close invocations
may differ from representative to representative. The designer should arrange that the
representatives are left in equivalent states after the open call returns, which normally means
that all representatives should do the same thing on an open.

sizer(item)
The service should return the size of the file. The return code and error number are as
above.

reader(item,offset, buffer,len)
The service should do a read at the designated offset. The number of bytes read should be
returned, or -1 if an error occurred with the error code stored in r_ermo.

writer(item,offset,buffer,len)

The service should do a write at the designated offset. The number of bytes written should
be returned, or -1 if an error occurred with the error code stored in r_errno.

fsyncer(item)
The service should do the equivalent of an fsync(), returning only when the outputs previ-
ously done on the item have completed.

4. What about recovery from falinres?

After a failure, a member of the recovery service may want to rejoin the service. It should do this
using the state transfer tool described in STATE_XFER(TK). To have a restart initiated automat-
ically, use the recovery tool described in RMGR(TK). In the case of a recovery from total
failure, the service should take the following actions to recover its state: Save checkpoints of the
replicated data periodically in a file, using fsync to verify that it has been fully flushed to disk. It
is best to write a temp file and then rename it to avoid the risk that a crash will leave you with a
partially updated checkpoint. Or, you could update a stable copy of the file on every write.
Using the recovery manager, you can determine whether to rejoin the group (if it survived you or
someone else recovered first) or to reload your checkpoint.

S. Transactions on replicated flles

You can use this tool in conjunction with the ISIS transaction fadility to obtain transactions on
replicated files.

. L. . e Lo N R
TR PR L Y L AR 3 S W e .

. & R K K S 3 A " ‘" . o -_‘-".“Q‘-u. ------- _‘\' _~' .\‘.‘.‘.-‘ Al
SR OV R VPN, BN IS RPN e nt A e e et T e at Rt e a aad it Dl e Sade Jal Snlh

REXEC(TK) DISTRIBUTED SYSTEMS TOOLKIT REXEC(TK)

1. Synopab
A package of routines for remote execution of a program.

2. Interface
#include <isis/d.h>

isis_jnit(0);

r_exec(sites, prog, args, env, user, passwd, alist)

site_id “sites;

char *prog, *“args, **env, *user, *passwd;

address °alist; :
3. Discussion '
This toolkit routine is provided as an alternative to using the UNIX “‘rexec” facility. The specified
program is executed at each specified site. The file descriptors that are initially open (stdin,
stdout and stderr) point to the system console of the machine on which the rexec is done, so be

careful what you print. You should use the normal UNIX fadility if you prefer for these to point
to the console of the machine where the program was run from.

Unfortunately, the UNIX architecture makes it impractical to return an definite indication of
whether the exec actually succeeded. However, for the cases where it was apparently possible to
do the rexec and it was attempted, the alist will contain a null-terminated list of process addresses

ing to the processes that were created to do this. For cases where the rexec could not
be done but some detectable error occurred the alist entry for the corresponding site/incarn will
have process-id number 0 and the entry field will be equal to the value of the UNIX errno vari-
able at that site. If a site/incarn is not operational, no alist entry will be made. The number of
entries in the alist is returned, or an error code if the CBCAST to the rexec processes failed for
some reason.

Rexec encrypts its message to prevent unauthorized access to the user name / password.
Remotely, it encrypts the password and then compares this with the version in the local password
file. This mechanism is a bit awkward, but it does provide at least a modicum of security. The
remote program will be executed in the home directory of the designated user.

4. BUGS

It is unfortunate that rexec() cannot indicate whether the exec actually succeeded. The user-id and
password are currently ignored. Everything runs under the isis account.

" -y :
AR

1%

COTYYY
AP

DR YMEE

‘ -
-
4--'
<
.
T~
l‘.
s

.

RMGR(TK) DISTRIBUTED SYSTEMS TOOLKIT RMGR(TK)

1. Symopals

A toolkit routine for assisting in recovery from failures. This tool is still under design. The
current version of the recovery manager consists two independent parts: Aigomatic Process Reswart-
ing, and Process Group Logging/Ressarting.

1. Interface: Antomatic Precess Restart
#include <isis/cl.h>

rmgr_update(key, program, argv, envp);
char *key;
char °program;
char *argv{], *envp(};

isia_jnit(0);

rmgr_register(key);
char *key;

rmgr_unregister();
3. Discussion

The recovery manager keeps s database of programs that it will restart after a site recovers from s
crash. The function rmgr_spdate atomically updates the restart databsse. Xey is an arbitrary
string of up to RMLEN characters that uniquely identifies an entry in the restart database. Pro-
gram is a program name, and argv and envp are vectors of argument and environment strings as in
execve (2). Rmgr_update searches the database for an existing entry with the given key. If such
an entry is found, program, argv, and envp will be replaced by the new values; otherwise a new
entry will be created. Rmgr_update may be used to delete an existing entry by specifying pro-
gram as 8 null pointer. The utility program rmupdate (see RMUPDATE(TK)) provides a simple
user interface for rmgr_update.

The recovery manager keeps "watching” all processes that it has started up. Should any of them
abort, say due to a software error, it will sutomatically be restarted. A process that was not
started by the recovery manager may add itself to the list of processes being watched, by calling
rmgr_register(key), where key must refer to an existing entry in the restart database. A process
that wants to exit without being restarted has to call rmgr_unregister before exiting.

4. Diagnostics

All routines return a nonzero value in the case of an error. For rmgr_update the following two
error codes are defined:

RM_ELOCKED: The restart database is Jocked because another process is currently updat-
ing it. The call should be retried.

RM_ENOTFOUND: Rmgr_update was called to deletc an entry (program = NULL), but
no entry with the given key exists in the restart database.
Rmgr_update returns a negative value if it fails for any other reason.
It is no exror to call rmgr_register if the process is already registered. This may be used to change
the restart database entry associated with the process. Rmgr_register does not check whether the
given key exists in the restart databsse. The recovery manager will print a message on stderr if it

T . m
D
'0
: RMGR(TK) DISTRIBUTED SYSTEMS TOOLKIT RMGR(TK)
;
is unable to restart a process because it cannot find the entry in the restart database.
3 S. Imterfuce: Precess Greup Legging/Restarting
» #incdude <isivd.h>
! isis_init(0);
rmgr_init();
1
rmgr_start_log(gid);
S address gid;
rmgr_stop_log(gid);
address gid;
N
» rmgr_info °*rmgr_getinfo(pgname, noblock);
5 char *pgname;
’ int noblock;
u pid = rmgr_creste(rmi)
::- mgzr_info *rmi;
gid = rmgr_join(rmi, mp)
rmgr_info *rmi;
. message °mp;
- §id = rmgr_sestart(pgname)
" char *pgname;
M Defined in isiv'd_rmgr.h (included in isis/d.b):
N
X typedef struct {
b int rm_mode; i
>, }WJIIfO;
& #define RM_LOG _ 0201
A #define RM_RECENT 0x202
o #define RM_SURE 0z04
6. Discussics
The recovery manager also assists in recresting & process group after all its members have
. cashed. When restarting & process group after a total crash, it is desirsble to find out out which
2 process was the last one to fail. For this purpose a log of changes in the process group view is
b kept on stable storage.
) (At lesst) one member of a pgroup at each site should call rmgr_start_log (the process has to be
¢ member of the group). This call saves the current pgroup view in a file on disk, and arranges for
> the file to be updated whenever the view changes. The function rmgr_swp_jog disables automatic
- updates to the view file.
)
q
>
‘o
2 AR
4"{-'.-" _'- AN "\$4 “v',, '.. ', J. '_5."_.'.;;..1.:‘1.-1-;";'4 - o

< »
&Ry

>

) n'l’i‘.'".’ L 5

. g™ 1 e 3
Wl R)

WYY WY PN NN NN TN RV v v TV AT e T RS T R T e e e R T T T e

RMGR(TK) DISTRIBUTED SYSTEMS TOOLKIT RMGR(TK)

When a program is restarted after a site recovers from a crash, the program can call rmgr_getinfo
to get information about the state of a process group before the crash. Rmgr_getinfo reads the
last pgroup view that was stored on disk into the field rm_view and sets some flags in rm_mode,
which are to be interpreted as follows:

1. RM_LOG not set: A pgroup view file does not exist or it is empty. Interpretation: This is
the first time that a process at this site becomes a member of the group.

2. RM_LOG, RM_SURE set, RM_RECENT not set: A view has been read from disk; how-
ever, this view is not the most recent one among the views stored in view files at other sites.
Interpretation: A process (or processes) at this site was a member of the group when the
site (or just that process(es)) cqashed. Other members of the group at other sites were still
alive after this crash.

3. RM_LOG, RM_RECENT, RM_SURE set: A view has been read from disk; no other site
has a more recent view recorded on disk. Interpretation: All members of the group have
crashed. This site was one of the last sites up before the crash occurred. Rm_view contains
the list of last survivers before the crash.

In order to set RM_RECENT correctly, rmgr_getinfo may need to access view files at other sites.
Therefore rmgr_getinfo might block, waiting for other sites to recover, before it can dedde
whether the local view file contains the most recent pgroup view. In perticular, if rmgr_getinfo
retwns with all flags set (case 3.), the programmer can assume that all sites mentioned in rm_view
have recovered from the crash. This fact may be used to start a coordinator-cohort style protocol
among those sites for application specific recovery.

If this behavior is not desired, rmgr_getinfo should be called with a non-zero value for the param-

eter noblock. In this case rmgr_getinfo will not block, but it may return with RM_LOG,

RM_RECENT set, and RM_SURE not set, indicating that none of the sites thar are currently up

has a more recent view stored on disk.

The interpretation given above is only valid, if the recovery manager routines are used according

to the following rules:

1. A program should call rmgr_start_log as soon as it has joined the group and has completed
local initialization actions. If the program is restarted after a crash, rmgr_start_log should be
called after rejoining the group and performing local deanup/recovery actions.

2. After a total pgroup crash one of the last survivers should create the group again by calling
pg_create(pgname, rm_view.pg incarn+1). It is important that the incarnation number of
the new group is grester than the one recorded last on disk. Rmgr_start_log should be
called after global cleanup/recovery actions have been completed.

The routines rmgr_create and rmgr_join may be used to restart a process group after a total crash.
Rmgr_create crestes a new incarnation of the process group (based on the rmgr_info obtained by
rmgr_getinfo) and announces the new gid on the news (see NEWS(TK)). This routine must be
called by one of the last survivers. Other recovering group members should call rmgr_join, which
will wait for the news announcement, and will then join the new group incarnation. Rmgr_join
checks to see if the group stil/already exists before it blocks waiting for news announcements; so it
can also be used to rejoin a group after a local crash. The perameter ‘'mp’ is passed to pg_join (see
PGROUK(TK)).

Rmgr_restart provides a simple, minimal interface to rmgr_getinfo, rmgr_ , and rmgr_join. It
sssumes that there is only one member of a process group at each site. The code for rmgr_restart
is given below; it illustrates the use of rmgr_getinfo, rmgr_create, and rmgr_join:

.“f.r

s“' s.‘\x\-*.-u

OLT 2K el

3+

»

XX)
PR

NN

IR A

J’;‘.’?i’:‘f

b .‘-., PSR et T e e e T ISR . L Pt T K S

b Sl 2ok Salh Mok Bal dadh Suh Sak Bak Sk VT

RMGR(TK) DISTRIBUTED SYSTEMS TOOLKIT RMGR(TK)
int create_flag;
address gid;
message *mp;
/.
* Find out whether to create or join the group
*/

rmi = rmgr_getinfo(pgname, 0);
if (! (rﬁ:i->rm_moch & RM_LOG)) {

* No previous view logged at this site: assume this is the first time
* the group is started up. Check if the group already exists. If not,
® create the group.

*/

§id = pg Jookup(pgname);

create_flag = (gid.site == 0);

} else if (rmi->rm_mode & RM_RECENT) {]

This site has a copy of the most recent group view in its view log file:
assume that all group members have crashed and that this site was one
of the last survivers. 1f this site is the first one in the list of last
survivers then create the new group incarnation; otherwise wait for
somebody else 1o create the group, and then join it.

...Q.}

*/
create_flag = (rmi->rm_view.pg_alist{(].site == my_site_no);

} else {
/‘
* The group view stored at this site is not the most recent one in the
* system: assume that this is 8 recovery from a local crash. Simply
* rejoin the group, but use rmgr_join in case the group has crashed
* in between.
¢/
create_flag = 0;

/°** create or join group ***/
if (create_flag) { .
return rmgr_create(rmi);
} else {
mp = msg_pewmsg();
gid = rmgr_join(rmi, mp);
msg_delete(mp);
return gid;

}

7. Disgnostics

In case of an error rmgr_start_log and rmgr_stop_log return a nonzero value, rmgr_getinfo
returns a null pointer, and rmgr_create, rmgr_join, and rmgr._restart return NULLADDRESS.

-t
...................... »

- - - - - - - - - -
~ et ® - c . R PR} A R S L -
T e e d S A ittt il 8t e B e B . A A RIERE A A G .V

. v

“

Y RMGR(TK) DISTRIBUTED SYSTEMS TOOLKIT RMGR(TK)
‘!.

. 8. Bug

K Entries in the restart database are stored in the following format:

b, "key" prograza {argl, arg2, ..., argn} {envl, env2, ..., envn}

R The rmgr will not work properly if the key contains quote characters, or if one of the argument or
" environment parameters contains curly braces or commas.

A much fander recovery manager will be introduced eventually. The functions of this one will be
preserved, but perhaps not the interface it supports.

2 i

.«
2 a8 N s P S

..
o
<
4
o
b

v
K - [P L e, - - . [T “ .. I S N L R PRI =,
~ N e Y L AP L .'y"...._-\.'”&,.’ . '-’;‘,I"{'I‘v'-f"l‘f-’-’-’.f e e AT A S L T A IS

¥ s A L T R R S i S St . ¥ Ao ; X
'!.Q-h,l..!'l.!'l«.- o‘.’l.’\-- ATy R ; p . L araxatlal LAY : Al

‘.
P

e .] i [of e
'.-.sf‘w. A ATRAA

,..rf

N

)
\

\
SN
|
~-
o
l"
.

WA W T PP ‘2 a4 o s ahad s g s Ll a Bal SaB gL Sl el dad <ol vab oul call el ball Sl Akt aliet ol lhatalia sl Alat Ahatife Rta e Ria Rbaiita gha g |

RMUPDATE(TK) DISTRIBUTEL SYSTEMS TOOLKIT RMUPDATE(TK)
1. Name

rmupdate - update the restart database used by the recovery manager
2. Synopsis

rmupdate site_no key
rmupdate site_no (-E] key program arg0 argl ...
3. Description

Rmupdate is a utility program for updating the restart database used by the recovery manager. It
calls rmgr_update (see RMGR(TK)) with the arguments supplied on the command line. Site_no
specifies on which site the database should be updated. It refers to the site-id of the site as it is
found in the sites file (see ADDRESSING(TK), site table). The parameters key, program, arg0,
argl, ... are passed to rmgr_update without change. If the -E option is used, rmgr_update is
called with the environment from which rmupdate was started; otherwise rmgr_update is called
with an empty environment.

4. Examples

Assume that the restart database at site 2 does not yet contain an entry with the key "test1”. The
command

rmupdate 2 testl /isis/test/testprog testprog 1461 -v
creates the following entry in the database: J
"testl” /isis'test/testprog {testprog, 1461, -v} {}

If later the command
rmupdate 2 -E testl /sis/test/testprog testprog 1464
is issued, the entry will be replaced by something like

"testl” /isis/test/testprog {testprog, 1464}
{HOME=/isis/schmuck, PATH=. /usr/local/usr/bin, TERM=vt100, USER =schmuck}

Finally, the command
rmupdate 2 testl
deletes the entry from the restart database.

S. Bup
It is currently not possible to specify environment values expliditly.

-

-

<,
N

| 4

By 0
SRR P SLLrgH

)
Pl "J‘
-':.J":."r‘-

nd - -
)
" \ >, o >
0% oy

AR

»

?ﬁf’

Il

h.

LR
I‘ *
...'. g

sty
R

_l" :' .l- -

*

I~

kﬂa(?k-‘
‘JJJ}}‘-’

SEMA(TK) DISTRIBUTED SYSTEMS TOOLKIT SEMA(TK)

1. Synopsis
A package of routines implementing distributed semaphores.

2. Interface
#include <isis/cl.h>

isis_init(0);

Pb(alist, sname, free_on_failure)
address “alist;
char *name;
address free_on_failure;

Pg(alist, sname, free_on_failure)
address “alist;
char *name;
int free_on_failure;

Vb(alist, sname)
address “alist;
char *name; <

Vg(alist, sname)
address “alist;
char *name;

sema_xfer_out(addr, len)
char **addr;
int *len;

sema_xfer_in(addr, len)
char *addr;
int len;

sema_dump()
3. Discussion
The semaphore tool is used for synchronization in a process group setting. By employing it, a
process can obtain mutual exclusion with respect to some set of other processes that know of the
semaphores it is using. The argument “alist” is a null-terminated address list that identifies the
processes and process groups where the semaphore lives. All semaphore routines return 0 in the
normal case and -1 if the processes corresponding to the alist have all failed.
The tool provides both binary (true/false) and general (integer valued) semaphores. Each sema-
phores is identified by null terminated character string, which need not be declared prior to the
first use. A general semaphore will block if the number of Vg() operations done since the sema-
phore was first referenced is smaller than the number of Pg() operations done so far, including the
current one. A binary semaphore will block unless a Vb() was done subsequent to the last Pb().
That is, a general semaphore is initially O and a binary semaphore is initially false.
'Ihesemapbore:d:aneisn“fair”one:POréquuumuﬁsﬁedinﬂuordatheymreceived.

SEMA(TK) DISTRIBUTED SYSTEMS TOOLKIT SEMA(TK)

The argument “free_on_failure” indicates how the semaphore subsystem should handle the failure
of a process which has done a P() and has not yet done a matching V(). If this argument is null
(actually, NULLADDRESS), the semaphore subsystem will not worry about failures. If the argu-
ment is a group id, the semaphore system will watch the caller by monitoring that group, to which
the semaphore holders must also belong. If the holder fails, a V() of the appropriate type is per-
formed automatically. Semaphore users must either employ this mechanism or some mechanism
with equivalent functionality to avoid deadlocks when a semaphore holder fails. Use of an alter-
nate mechanismn might be more appropriate if some deanup actions must be taken on behalf of
the semaphore holder before the mutual exclusion it held can be released.

4. Comment
Semaphore synchronization is compatible with all tools that maintain replicated data.

&, State transfer

To generate a block containing the semaphore “state”, mllsan&xferout it will assign values to
addr and len as required by XFER(TK). The block can be read in using sema_xfer_in(). Only
omblockunwdedfmthesamphomsme,ﬂnlmgthwmdepmdmthenumbaofsamphom
in active use.

6. Bugs and restrictions

To make use of the free on failure option, a semaphore operation must be applied to a process

group to which the caller belongs. This is because free on failure uses the watch tool, and the -
watch tool currently only supports watching process groups to which one belongs. This restriction

will eventually be eliminated.

- ‘J
I‘J&-'-’Jo
LGA T Yy

»
)

Yy Y X1
”- 5 -
2 4‘:')?}_-’3-

i ™ A4

e
e
L

-

R I L e N LI e .. AT ERTE TR IO
...‘4 oy L a o -, Wy o

STARTUKTK) DISTRIBUTED SYSTEMS TOOLKIT STARTUK(TK)

1. Synopsis

Startup sequence. for processes using the TASK mechanism. Non-TASK use of ISIS is not yet
supported, so you MUST use this interface.

2. Interface
#include "d.h"

/* Entry code by which eat_msg() can be called */
#define EAT_MSG (USER_BASE+0)

main(argc, argv)
char **argv;
{

int foreground(), eat_msg();

/* Initialize connection to ISIS */
isis_init(0);

/* Initialize toolkits ¢/
... toolkit init calls ...

/* Initialize entry points this client will support */
isis_entry(EAT_MSG, eat_msg, "eat_msg"); ;

/* Fork off the foreground task, if any */
t_fork_delayed(foreground, 0, 0);

/* Main loop: run tasks and receive messages °/
forever

{

run_tasks(); .
} isis_read(); /* This blocks, but see below */
}

/* This task is the “main" procedure of the program */
fc?'egrwndo
.. stuff ...
}

/* Routines to process received messages */

eat_msg(mp)

?nmce‘mp;

.. stuff ...

}
/* Soft recovery from an ISIS system crash that left me running */
isis_failed()

{

/* In fact, I prefer to print a message and die °*/

DL IR I PN SR ~‘-'...'.“.'_\..‘
P AT S A A AT N TR N

2T

\.'_‘I
<.

.o e i add il AR aau B0 odl - uba- da- e ded Bh-afs-odaoda- dad et Aen st bl Aud Al Aeh ol _Aeh Dok Aok ek I"'T"v'x‘#-v‘v‘\.’"\."k"’"

2
e,
o STARTUP(TK) DISTRIBUTED SYSTEMS TOOLKIT STARTUR(TK)
»
return(-1);
&
p- 3. Discussion
,,.:‘-: The above program executes a typical st ~..1p sequence by initializing a connection to ISIS, declar-
N ing the messages sent to entry number EAT _MSG will be handled by a procedure called
’ eat_msg(), and then spawning a foreground task that acts as the ‘main procedure’ for the pro-
N gram. The actual main procedure then loops running tasks and reading messages; it may also
W want to do non-blocking IO on other /O channels. Messages from the ISIS protocols process and
*- other remote processes are received over the file descriptor called isis_socket (a global integer).
; The routine isis_read() will read a message over this socket, blocking until one is received. It then
& spawns a task to deal with the arriving message.
The reader should refer to INIT(TK) for information about the mysterious argument to isis_init().
i To do non-blocking 10 from ISIS it would be best to change the main loop to do a select. For
«3 example, the following code either reads from isis or from the file descriptor “spcl_fdes”, depend-
},-_u ing on which one has data available.
' #include <sywvtypes.h>
i #include <sys/time.h>
::':'_f forcvcr B
fd_set in_mask;
.’ extern isis_socket;
SY! run_tasks();
.4 FD_ZERO(&in_mask);
N FD_SET(isis_socket, &in_mask);
K FD_SET(spcl_fdes, &in_mask);
) /* Block until input is available */
it select(32, &in_mask, (fd_set*)0, (fd_set*)0, (struct timeout®)0);
o /* Read from ISIS and create associated task to run later */
> if(FD_ISSET (isis_socket, in_mask))
N isis_read(); <
W /* Read from spedal file descriptor */
if(FD_ISSET(spcl_fdes, in_mask))
;
T }
- The above code works as follows. Within a single address space, the foreground task and any
active message-processing tasks will co-exist, switching off using a coroutine mechanism styled

after monitors, as described in TASKS(TK). In this particular case, arriving messages with entry
> number EAT_MSG will be passed to the eat_me() routine, which should process the message and
]y reply if necessary. Meanwhile, if data becomes available on spcl_fdes the routine spcl_read will be
e called; it should either do the read immediately or fork off a task to do it when run_tasks is next
run (in fact, one might simply fork off the task directly, as in t_fork_delayed(spcl_read, spd_fdes,
" 0)).
_ Unless some task explicitly calls “‘exit”, this program will run until an error communicating with
ISIS occurs or the site fails. In particular, if the foreground procedure returns, the program just
becomes a passive service responding only to new requests. If the foreground procedure remains
active, blocking periodically or doing calls to other processes, messages will be received while it is
blocked. If it enters an infinite computational loop, it will not be interrupted. In addition, if it

.' 4“' l.‘ l...l

<,
-’.
-,
v Y
L J

4

4
'

e _ Question servers Hot standbys
o client

o

¥l Operational with 2 hot
» q U 4n b1 hy standbys
\)

; , Process q4 fails
P) B X dn @
‘.-A:.)

' Process hg takes over for q4
;.0 \ " qr .. dn q4 h2
L

-

b Process q; migrates to hg to
3

s hy q2 Qn Q4 qI adapt to changing load.

W Proces hj started as a new
:: { (........ dn q4 @ standby3
)

Client uses group RPC to query a 20-question
program while it dynamically reconfigures after failure

35

D LI ety e R s e S A AT LS
,‘I?:"';' “ A e ';"-’\-’\ YRy '\'-'v"‘; "'.NF\ = ..\.

. “w

~

'-.":',‘/l' P

.
ot w e

N C I .(-"
PN '_'-':I?J' '.'_'-‘ N .'J \ > [

T TR y— —

STARTUK(TK) DISTRIBUTED SYSTEMS TOOLKIT STARTUKTK)

reads from a blocking IO device like the keyboard, messages will NOT be accepted until the 10
terminates.
A more useful foreground procedure would be the following: it creates a group:
foreground()
{
gid = pg_create("group_name”);
if(gid.site == 0)

panic("create of group <group_name> failed\n");
}

A more complex mechanism might start multiple group members up using the isis remote exec
fadlity (REXEC(TK)) and verify that each member is allowed to join the group. An example of
this is given below.

Here is a second example: a process that wishes to act as a client to the example_group defined
above

foreground()
{
/* Example of process group creation and a broadcast */
static address addrs(2}];
static char answ{8};
message “mp;

addrs{0] = pg_lookup("group_name");

if(addrs[0).site == 0)
panic("pg_lookup <group_name> failed™);

mp = msg_newmsg();

addrs[0].entry = EAT_MSG;

if(CBCAST (addrs, mp, ALL, answ, 8, (address®)0) != 1)
panic("Got unexpected number of replies from CBCAST™);

printf("After CBCAST: reccived <%s>\n", answ);

exit(0);

}

It should be noted that this client doesn’t obtain *direct access” to the group. To give it direct
access it would be sufficient for the group member to call pg_addclient(sender) in the eat_msg()
routine. The termination of the client would automatically trigger a pg_delclient().
The code below consists of a twenty-questions program and a question/answer program that acts
as its client. The twenty questions program assumes that its remote representatives will start
themselves up. More realistic would be to use the 'r_exec’ fadility for this purpose, but this would
make the example a bit too complex.
Both programs reference the following include file:

#define TWENTY_QUERY (USER_BASE+0)

#define TWENTY_DB_INIT (USER_BASE+1)

#define TWENTY_CAT 0
#define TWENTY_CLASS 1
#define TWENTY_QUES 2
#define TWENTY_DB 3

The question databese program is as follows:

S S T S BTN SN TV SN S] W W =
..
.........

- e W T
N R R W T IR Sk P S R NS
................ L I I AP - - ’ R .- AR AT S » A AT
SHYVISRIAR I RS ‘:l‘;".'-i' o ps VAR ."-J..'.;.'t::‘-t':u"ig'- RGOV .?L.'r'ilfb,‘«i)_;\d.n.\ RGN, S

e
s
s
W STARTUK(TK) DISTRIBUTED SYSTEMS TOOLKIT STARTUK(TK)
&]
:l:‘a
h ¢ A twenty questions program
ey o
s"'o
: 2 #include "clL.h”
Yy #include "twenty.h”
gt
. main_proc(), join_proc(), twenty_db_init(), twenty_query();
R addrw gid, atoaddr(), pg_lookup();
!
N int main_prog;
"‘:,P imt verbose;
B int my_number;
int CLIENT_PORT;
o |
A9 main(arge, argv)
s char *“argv;
e {
“u while(arge-- > 1)
o switch(** + +argv)
pet s {
2 default:
AN badarg:
A0 panic("Bad argument: <%s>\n", *argv); N
.l."- |.
case -’:
& :wiwh((‘m)lll)
1A
o case 'm’: ++main_prog; continue;
K- case 'v': ++verbose; continue;
N default: goto badarg;
J
) case '0": case '1’: case "2": case "3": case '4":
b case 'S’ case '6": case "T": case '8": case '9":
s, a.m_yon'r atoi(*argv);
NS continue;
> L4
arn }
N /* Connect to ISIS, then fork off appropriate procedure */
A ‘ isis_init(CLIENT_PORT);
£3% Pg.initQ;
poiv isis_entry(TWENTY_DB_INTT, twenty_db_jnit, "tweaty_db_jnit");
<a) isis_entry(TWENTY_QUERY, twenty_query, "twenty_query");
I"’-
5
o if (main_prog)
o eh‘ucrk.dr-‘-yed(lmin.woc, 0. C);
- t_fork_delayed(join_proc, 0, 0);
Ve
o /* Now enter ISIS main loop */
- forever

R VRN R

N
0y
Qe

YT m-'-v--w--v-w-—mmmm‘T

STARTUK(TK) DISTRIBUTED SYSTEMS TOOLKIT STARTUP(TK)

run_tasks();
} isis_read();
}

condition mceount;
int nmembers;

/* Monitor changes to view */
tmon(gid, pg, arg)
address gid;
Pgroup °pg;
{dm' *arg;
?‘(pg->pg_mnanb == nmembers)

t_sig_delayed(&mcount, 0);
pg_monitor_cancel(gid, tmon, 0);
}
#define NMEMBERS 5 -
#define NCAT 10
#define NLINES 200

#define NFIELDS 10
#define STRLEN 10

char db{NLINES)[NFIELDS)[STRLEN);

char *cnames[NCAT];

int nfields, nlines, ncat; -

/* Startup of the main program */

: . 0
register FILE *file;
char answ{NMEMBERS];
register c;
i{f((file = fopen("questions.dat”, "r")) == Q)
perror("questions.dat™);

} panic("can’t read the questions database™);

zdn’le((c = fgetc(file)) > 0 && c = "\n")
register char *fp = db{0][nfields+ +];
do
*fp++ = ¢

while((c = fgetc(file)) > 0 && c = "\n’ && ¢ != \1');
*tp=0;

) v e Y v Lale Aow o o Maia oaa a0 L _ - b da Aol o fintdnd ek Ak intodnd e |

> N STARTUK(TK) DISTRIBUTED SYSTEMS TOOLKIT STARTUP(TK)
0
) nlines = 1;
L ?'hile((c = fgetc(file)) > 0)
.Y
f-: register n;
‘;: for(n = 0; n < nfields; n++)
Ty {
_ register char *sp = db{nlines][n];
. while(c != "n' && c 1= ¢’ && ¢ > 0)
o, ‘ipr+ =g
O *sp = 0;
e }
054 ++ﬂﬁ”;
}
A gid = pg_create("twenty_questions™);
L3 if(gid.site == 0)
K- panic("can't create the process group!™);
s nmzmbus = .NMRS;
pg_monitor(gid, tmon, 0);
il L wait(&mcount);
00 tw_init();
Y- begin
\ ‘:_. {
address addrs[2);)
o register message “mp;
register arep;
o printf("[%d]: %d members, %d fields, %d lines in db, ncat %cha”,
T my_number, NMEMBERS, nfields, nlines, ncat);
o addr{0] = gid;
¥ addrs{0].entry = TWENTY_DB_INIT;
J addrs{1] = NULLADDRESS;
A mp = msg_genmsg(TWENTY_DB, db, FTYPE_CHARS, nlines * STRLEN * NFIELDS);
o nrep = CBCAST_EX(addrs, mp, ALL, answ, 1, (adddress®)0);
o msg_delete(mp);
4
Py \ printf("%d members acknowledged initialization\n", arep);
" }
2
:._ /* Startup of a sub-program */ |
o P{m-P'OGO
x> register message *mp = msg_newmsg();
e pd.- pgJookup("twenty_questions”);
. if(gid.site == 0)
- __ panic("pg_Jookup failed”);
" if(pg_join{(gid, mp) != 0)
' panic("pg_join failed™);
e msg_delete(mp);
oA }
\‘_. /* sub-program reception of s database °*/

e tweaty_db_jinit(mp)

LA A AN
Aahaiatala. o

STARTUK(TK) DISTRIBUTED SYSTEMS TOOLKIT

;edsw message “mp;

/.

int dblen;
char *dbinit;

dbinit = msg_getfield(mp, TWENTY_DB, 1, &dblen);
beopy(dbinit, db, dblen);
for(nfields = 0; db{0}[nfields][0]; nfields+ +)
continue;
for(nlines = 1; db{nlines}[0][0]; nlines+ +)
continue;
tw_init();
printf("[%d): %d fields, %d lines in db, ncat %d0,
my_number, nfields, nlines, ncat);
reply(mp, "+", FTYPE_CHARS, 1);

Compute various stuff from db and from view:

nfields = fields in db
nlines = length in lines of db
ncat = number of query categories

my_number = internal ‘id’ of this process: 0.. NMEMBERS-1

STARTUP(TK)

* In 'H' query mode, process my_number=m is responsible for lines] s.t. Imod m = 0

¢ In 'V’ query mode, this process is responsible for rowrs.t. rmod m = Q

* Program will not function at all with fewer than NMEMBERS instances running.
e/

tw_init()

/.

*/

register n, ;

register pgroup °pg = pg_getview(gid);

if(pg == 0)
panic(“pw_init");

ncat = 1;
=1,

:or(n =]:n < nlines; n++)
lf(stmnp(db(nllol db{c}(0]))

cnames{ncat+ +] = db{n][0];
c=n;
}
for(n = 0; n < pg->pg_nmemb; n+ +)
if(mp.‘dﬁ'ﬂ'(mol’!-‘“"(n]. &my_address) == 0)

my_number = n
break;
}

LY
-
\ - STARTUK(TK) DISTRIBUTED SYSTEMS TOOLKIT STARTUK(TK)
) twenty_query(mp)
V.. ?:gxstcr message *mp;
)
oy register cat, class, f, n;
:';; register char *query, *heading;
>
= *(int*)msg_getfield(mp, TWENTY_CAT, 1, (int*)0);
~ cat %= ncat;
o class = *(int*)msg_getfield(mp, TWENTY_CLASS, 1, (int*)0);
ﬁ query = msg_getﬁdd(mp, TWENTY_QUERY, 1, (int*)0);
o = query;
e while(*query 1= *=")
+ +query;
‘query++ = 0;
o for(f = 0; f < nfields; f++)
o f(sremp({0]1], heacing) == 0
> /* In H mode, everyone answers. In V mode, only one answers */
{ switch(class)
char *answ;
int count;
. case 'H':
answ = Q;
count = 0;
o if(f == nfields)
answ = F;
- else for(n = 1; n < nlines; n++)
Z if(stremp(db{n][0], cnames[cat]))
continue;
> elsezf(cmm++ % NMEMBERS == my_number)
: if(stromp(db{n][f], query) == 0)
answ = (answ && *answ != "Y')? "7 Y™
._-f else
-, amsw = (angw && *answ != 'N')? "7 "N™;
. reply(mp, amsw, FTYPE_CHARS, 1);
break;
case 'V
f if(f % NMEMBERS != my_number)
‘e break;
o if(f == nfields)
answ = "F;
o else for(n = 1; n < nlines; n+ +)
% (sromp(bfa]0], coamesfat))

else tf(stmnp(db(n][fl query) == 0)
asw = (gnsw && ®answ '= "Y)? "7": Y™,
else
asw = (answ && ‘answ !'= N)? 7" "N™;
brrep;l‘yk(mp, answ, FTYPE_CHARS, 1);

‘ -I‘. ‘I-.'
s

TP T IR W O TR T TR O

S o i A ol ol el on ban ad aah aad e don uad Sad Aek and dnd s A Sad Sk tnhheie el Aiel At il A Aol A A Ak

STARTUK(TK) DISTRIBUTED SYSTEMS TOOLKIT
default:
reply(mp, "*", FTYPE_CHARS, 1);
} 2
}
Here is the question-answer program that the user sees:
/‘
* Front end program for playing twenty questions
¢/
#include "cl.h”
#include "twenty.h”
int verbose;
int CLIENT_PORT;
main(argc, argv)
char **argv;
{
int ask_questions();
while(arge- > 1)
switch(** + +argy)
{
case -
;witdl(‘+ +*argv)

case 'v': ++verbose; continue;
default: printf("-%c: unknown option\n”, **argv); continue;

case '0’: case '1’: case "2': case *3’: case '4":
case 'S": case '6”: case *7’: case '8’: case '9":
CLIENT_PORT = atoi(*argv);
continue;
}

/* Connect to ISIS */
isis__jx!it(CLIBﬂ'_PORT);
pg-init();

/* Runs as a task */
t_fork_delayed(ask_questions, 0);

forever

{

run_tasks();
isis_read();

STARTUP(TK)

-y — e S bl Sade doe aa 2o Lom ool Ao B 4 3 b on o B Mo o g il ALl oo a el A et S B S bV el Al A R Al Al Atleb b A A AR AAd AL A A SRR

>
3t
) \'
R

" STARTUN(TK) DISTRIBUTED SYSTEMS TOOLKIT STARTUP(TK)

2
- int cat, class;

: char string(120};

g register char *sp;
- register c;
A address addrs{2];

addrs({0] = pg_Jookup("twenty_questions™);

R if(addrs{0].site == 0)
panic("twenty-questions asker — can’t connect to database program™);
7 addrs[0].entry = TWENTY_QUERY;

5 addrs(1] = NULLADDRESS;

" printf("Welcome to... twenty questionsh\n");

print("Enter a random number: ");

" 3p = string;
¥ while((c = getchar() 1= "n’)
) -; *sp++ =¢;
v .Sp = 0;
: cat = atci(string);
{ printf("Enter H:query or V:query...\n");
2N forever
k.- {

c o print("Question? ");

N c= .

" if(c <= 0)

A class = c;
o while((c = getchar() != \n")
o if(c == ")

< break;

sp = string;

_ while((c = getchar() != \n’)
B~ ifc!=""&& c!=\t")
- ‘sp++ = c;

< *sp = 0;

.y if((class != "H && class != V") | strien(string) == 0)
'S printf("Enter H:cat=value or V:cat=value...\n");
Q { |

- register message *mp;

- register nwant, nrep;

g char answ{20];

owant = (cass == 'H')? 1: ALL;
- mp = msg genmsg(TWENTY_CAT, &cat, FTYPE_LONG, sizeof(int),

TWENTY_CLASS, &dass, FTYPE_LONG, sizeof(int),

- TWENTY_QUES, string, FTYPE_CHARS, strlen(string)+1,
) 0);

y nrep = CBCAST (addrs, mp, nwant, answ, 1, (adddress®)0);

S e Sl fa 8 A £08 & & g ok o Lo ook hoit Aadk Al dad tak Callotalbalcallakifinled

STARTUK(TK) DISTRIBUTED SYSTEMS TOOLKIT STARTUP(TK)
exit(0);

3.1. Getting fancy

The above twenty questions program is not really very fancy: it doesn't restart itself very automat-
ically. Here is a8 much improved version that automatically starts up NMEMBER + NSTANDBY
copies of itself and brings up a new standby after each failure. A standby takes over as a member
instantly, so the number of members in this example should never drop below NMEMBERS. (If
it does, however, the twenty questions program shown below would abort itself and ga would get
0 responses to all its queries — a better solution to this is proposed below, but it involves changing
qa too).

We made a slight change to the ga-twenty-questions interface in this version: it returns a two-byte
answer to queries indicating “who" gave the answer (a number 0..NMEMBER-1) and what the
answer they give was. The idea is that even though the task assignment may vary, a caller would
always get exactly one answer from cach virtual member.

/‘

* A fander twenty questions program
¢/

#include "d.h”
#include "twenty.h”

int main_proc(), join_proc(), twenty_query(), hello();
int start(), next_line(), restart_xfer();
address gid, atoaddr(), pg_lookup();

int must_join; /* Flag: this process must join */
int my_number; /* Virtual member number, see below */
int CLIENT_PORT,;

#define NMEMBER 5 /* Wants this many members */
#define NSTANDBY 2 /* This many hot standbys */

while(arge- > 1)
switch(®* + +argv)
{

default:
badarg:

panic("Bed argument: <%s>\n", *argv);
case '-":

:Witdl((‘lrl")lll)

case 'J: + +must_join; continue;
defsult: goto badarg;

. g - o o Ty hebdied Aak Aok Bh Aok -2
T N R N T N O N N P U i T P O vayer O (" ata) A=

425 4

o STARTUK(TK) DISTRIBUTED SYSTEMS TOOLKIT STARTUK(TK)

}

case '0’: case '1": case "2": case '3": case '4’;
v case '5': case '6": case '7’: case '8": case '9";

k" CLIENT_PORT = atoi(*argv);
continue;

}

/* Connect to ISIS, then fork off appropriate procedure */
isis_init(CLIENT_PORT);
allow_xfers(start, next_line, restart_sfer);

isis_entry(TWENTY_QUERY, twenty. qusa; ety quéy™); ~ ~— ~~ " = "= "=~
isis_entry(TWENTY _HEL1 £;-islio, "hello™);

¥
et

if(must_join == 0)
tlsct.!orlLdelnyed(umin.::rc:c. (char®)0, (message*)0);

tfork_delayed(join_proc, (char*)0, (message*)0);

/* Now enter ISIS main loop */

forever

{ -
run_tasks();
isis_read();

}

RO

.'-x;\l.‘tr'

}

static pgroup cur_pgview;

/O

* Monitor changes to view... all members see

* the same view, so the coordinator can be selected

* as the first (= =oldest) listed member. The coordinator

* does restarts as needed. The first view is passed

¢ in manually after pg_create() but treated just like .
* any other. Only starts one process (if any) per :
* invocation, but since each start will change the view,
‘keepsdoingtlﬁsunﬁlmghmunbasmmnning.

*/

tmon(pg)
pgroup °pg;

{
address gid;
gid = pg->pg_gid;
cur_pgview = °pg;

/* Repartition the database based on new view */
work_partition(pg);

/* Coordinator is the oldest member of the group */
if(cmp_address(pg->pg_alist, &my_address) == 0)

F——- o~ T T TR T T TR TR T TR W TR TR WTWWWWWW\'WW
o
X
¥
-
e STARTUKTK) DISTRIBUTED SYSTEMS TOOLKIT STARTUK(TK)
o if(pg->pg_nmemb < NMEMBER +NSTANDBY)
j' start_one();
: }
’ #define TWENTY "/fs/'moose/bisis/client/twenty”
i char *jargs]
) ={
b "mt)'", "‘i"] 0; 0
ISR, };
X /®
Y, * Start new program. If a failure takes place during this call, it
4 * either completes first and the member is seen to join before the
7 * failure is seen, or the failure is seen first but the join won't
" * occur -- a nifty use of virtual synchrony to avoid a complicated
{ * mess of figuring out if a restart was in progress and how it
* terminated!
o */
- start_one()
& { .
- static sno;
static site_id sid(2];
address pname;
v register site_id *sp;
: register nsites;
28 sview °v, *sv_getview();
! char client{30];
\J /.
C
o * Pick a site to start the thing at, try to distribute processes
./ ® over sites in a reasonably uniform manner so all won't run at
b * the same place. v->sv_slist{sno] is the site we settled on.
- ./
v = sv_getview();
" for(sp = v->sv_slist; °sp; sp++)
. continue;
L~ nsites = sp-v->gv_glist;
- if(sno > = nsites)
y mo = 0;
*sid = v->sv_slist{sno);
A sprintf(client, "%d”, CLIENT_PORT +3*sn0);
: jargs{2] = dlient;
r_exec(sid, TWENTY, jargs, (char®*)0, "isis", "nullpass”, &pname);
< if (pname.site == Q)
< panic("Can’t rexec 'twenty’ at site %d/%d\n",
\ SITE_NO(*sid), SITE_INCARN("sid));
¥ }
?
" /* In case of an interrupted state transfer, restart where it left off */

I {’J*J FASAID: -f .' T e B

ey ‘w'n'\- P
W, s Ofa i >

s Lo
) s " ,";l ’4"

L4

»

SRS NAN

o5

. ._E - -1-- _ﬂ‘ﬂ"'

A"
<,

L4

[
.

5

z,'-j‘

L 'd

-

, " “. A -
-,,\.(\-
. i L2

STARTUK(TK) DISTRIBUTED SYSTEMS TOOLKIT

r?tart_xfer(bno)

return(bno);

/* Startup of the main program */
main_proc()

{

A ﬁ\'ﬁ Lo

pgroup *pg_getview();
register FILE °file;

char answ[NMEMBER];
register ¢, n;

}f((ﬁle = fopen("questions.dat”, "r7)) == 0)

perror("questions.dat™);
} panic("can’t read the questions database™;
?o
register char *fp = db{0][nficlds+ +];
while((c = fgetc(file)) > 0 && c != \n' && ¢ I= \t")
*fp++ =¢;
\ *fp=0;
while(c != \n’ && ¢ > 0);
nlines = 1;
{do
:‘or(n = 0; n < nfields; n++)
register char *sp = db{nlines]{n};
whtle((c= fgetc(ﬁle)) I=\n"&&c!=\t'"&& c> 0)
‘sp++ =¢;
*sp = 0;

}
if (*db{nlines]{0])
+ +nlines;
}
while(c > 0);
ncat = 0;
¢c=0;
for(n = 1; n < nlines; n++)
}f(smmp(db[n][O]. db{c]{o]))

strepy(caames(ncat + +], db{n][0]);
c=n;
}
/* Now start things by creating the group... */
gid = pg_create("twenty_questions”, 0);
if(gid.site == 0)
panic("can’t create the process group!™);

BT B N A T P
,(-\"‘-_p,-\""" . RO S VRN

o
"‘” P AT AN

STARTUP(TK)

W w-—y

. WP T OrerTeT ML A aie ath
> o D and Bak s ke e al L o s il i As Al L us o o a L e aia aaAie i Ade abl aao b o dbook ok A gl o |

b STARTUPK(TK) DISTRIBUTED SYSTEMS TOOLKIT STARTUK(TK)
i)
- /* Set up to monitor changes */ h
I~ pg_monitor(gid, tmon, (char®)0);
‘. /* First view won't get sent to pg_monitor, so send it manually */
| tmon(pg_getview(gid));

* This sets up to start a state transfer; all current members participate
* Since all see the same current pgroup view (copied to the side in the

. * tmon routine), just copy the site list from the view into the alist
t ¢ provided; all do this in parallel and all see the same view, so all
® use the same alist. This is the simplest way to generate the alist.
2 * we could also have copied msg_getdests(mp). There is no obvious reason
y * to favor one over opposed to the other here. (The dests field will have
\ * been expanded by now, of course.)
] ./
- start(mp, who, gid, ap)
a register message *mp;
N register address *ap;
- address who, gid;
~ {
o address °pg = cur_pgview.pg_alist; .
5 do
‘sp = ‘pgt++;
& while(ap+ +->site);
- }
‘.. /‘
* Send one line at a time, which is pretty inefficient (too small), but for

* purposes of the demo illustrates a multi-block transfer. Actually, should
* send the whole db at once, since it is really not very large.

N, *
Y next_line(line, buffer, type, len)
L char **buffer;
N int *type, *len;
{
- if(line > = nlines)
& return(-1);
- *buffer = dbf{line][0];
. *type = 0;
5 *len = nfields*STRLEN;
- return(0);
: }
\ /* Get a line, sent above */ ‘
"~ gotline(line, buffer, len) 1
char *buffer; |
!
Wmﬂo db[hm]. len); ‘

/* QA uses this to find out how big the database is */ j

L Ao T \ Ml e A d o d o a b o aua Sk A sk o8 Sad g

D)

] STARTUP(TK) DISTRIBUTED SYSTEMS TOOLKIT STARTUK(TK)
bello(mp)

';ii' Zesum message *mp;

iy ! if (my_number)

} reply(mp, db, FTYPE_CHARS, NFIELDS*STRLEN);

'.!
/* Startup of a sub-program */
NS JO(ln.per

T register message *mp = msg_newmsg();
register rv,c, n;

.::,s int gotline();

e

I ol A" .

gid = pg Jookup("tweaty_questions™);
20 if(gid.site == Q)

G _ penic("pg_Jookup failed™);
R if((rv = pg_join_snd_xfer(gid, mp, gotline, X_BIG)) != 0)

pr panic("pg_join failed: rv %d”, rv);
- msg_delete(mp);
;'_:::: for(afields = 0; db{0][nfields](0]; nfields+ +)
e for(nlines = 1; db{nlines][0}[0]; nlines+ +) i
continue;
ncat = 0;
_:-' c= 0;
e for(n = 1; n < nlines; n++)
o Htremp(o], {0D)
R ot
) strepy(cnames{ncat + +], db{n][0]);
s c=n,
~a }
A
o /®
I ® same trick as above, although this process is unlikely to be the
"W * coordinator yet.
¢/
2 pg_monitor(gid, tmon, (char®)0);
S tmon(pg_getview(gid));
b }
A
o, .
i A, IAd
* Each time the group view changes, divide up the work.
;‘:{ ® Crash the program if the number of members drops too low
_,:; ® (shouldn’t happen)
Yy ® The idea is to have each process know a “virtual” number
N ® that defines its responsibility for some chunk of the database
& * if my-number is i, this process handles "V mode queries for
* columns that, mod NMEMBERS, have index i, and H mode queries for
: * rows that, mod numbers, have index i.
& : 7]
5 work_partition(pg)
' register pgroup °pg;
>
F‘;‘ a;,;.:_':_.; e ‘ ', - m-‘:',::;.%'_.‘.; ,'-,-‘-.r;"-(:.'";' L ;. ‘.‘;.r L I A -.."' ‘_-'-"‘-"\'"." o

STARTUNTK) DISTRIBUTED SYSTEMS TOOLKIT STARTUPK(TK)

Ty oy

register address “ap;
static was_up;

if(was_up && pg->pg_nmemb < NMEMBER)

panic("Can't tolerate more than %d simuitaneous failures!”, NSTANDBY);
else if(pg->pg_nmemb >= NMEMBER)

++was_up;
for(ap = pg->pg_alist; ap->site; sp+ +)

if(unp.-ddml(-p. &my_address) == 0)

my_number = ap-pg->pg_alist;
if(my_number >= NMEMBER)
/* Standby’s get negative numbers */
my_number = NMEMBER-my_number-1;
v return;

.
2l NN

}
panic("work_partition -- I'm not in the alist (never happens)”);

N }
/.
¢/
twenty_query(mp)
register message °mp;
{
register cat, cass, {, n, comp;
register char *query, “heading;
query = msg_getfield(mp, TWENTY_QUES, |1, (int*)0);
if(query == 0 | ncat == 0)
{

v, print("BAD);

pmsg(mp);
snd_reply(mp, '*");
return;

ats

¢ wngelvly

}
cat = *(int*)msg_getfield(mp, TWENTY_CAT, 1, (int*)0);
cat %= ncat;

class = *(int*)msg_getfield(mp, TWENTY_CLASS, 1, (i*)0);

il

: query;

v, Whlle(.quﬂy |m "=’ u oquay (= '’ u oqua.y 1= '’ u .quﬂ'y)
+ +query;

comp = *query;

‘query++ = 0;

for(f = 0; f < nfields; {++)
tf(suunp(cb(ol[f] heading) == 0)

/‘InHmode everyone answers. In V mode, only one answers */

’ switch(class)
| : char "answ;
\ int count;

[}

e L L e e WY W WY WY N U W W W Irw e w

STARTUKTK) DISTRIBUTED SYSTEMS TOOLKIT STARTUK(TK)

case 'H':
:f(my_numba <0)

Hot standby’s don't send responses */
reply(mp, (char*)0, 0, 0);
} break;
answ = 0;
count = 0;
if(f == nfields)
answ = “F;
{elsefor(n-l n < nlines; n+ +)

(tramp(o]0), commes{cat))
:lse .f(eoum++ % NMEMBER == my_number)

if(compare(comp, db{n](f], query) == 0)
msw = (amsw && *answ != 'Y")? "7": "Y™:
else
} msw = (answ && *amsw != N')? "?": "N™;

}
if(answ = = ()
amsw = "°7,

md.reply(mp, *answ);

case 'V
xf(my_numhu <0)

nf(f % NMBm |= my_number)
break;

answ = (;

if(f == nfields)
answ = "F;

eise for(n = 1; 8 < nlines; n++)
f(stromp(dbfal[0] coames{cat])

clse lf(me(wmp o{n][f], query) == 0)
asw = (answ && “amsw != 'Y")? "7 Y
else
amw = (answ && *answ != 'N")? "?": "N™;
if(answ = = Q)
asw = ",

Mfeply(m ‘amw);

defsult:
and_reply(mp, '*");
break;

.. - . S
VY RN T Y WSy & Y '._‘.A_j

e -y U a A Mra i hod aas ad aa a0l od ah aa A Al ene Sie Ak Adte dbe Ade dld bt A Ahididhd i e A aiad o |

T w—w

paep

LI L B g

o Y = Y

.

DNADNEE

PrLr S

.
.

STARTUKTK) DISTRIBUTED SYSTEMS TOOLKIT STARTUKTK)

/.

* This version sends two-part replies: the index of the respondent and

* the answer from that respondent. Caller will get exactly one answe

* from each respondent as long as the number of processes runming is

* at least NMEMBERS. See discussion below for the case of too many
* failures to tolerate.

¢/

snd_reply(mp, rep)

;epstermme‘mp;

char answ{2);

answ{0] = my_number;

answ(l] = rep;

reply(mp, answ, FTYPE_CHARS, 2);

/* String comparison, implements numeric scaler comparisons too */
mpare(ov. s1, 2)
char *s1, °s2;
{
register nl, n2;
if(op != '<’ && op != '>’)
return(stremp(s1, 82));
nl = atoi(sl);
n2 = atoi(s2);
if(op == '<")
return(nl >= n2);
return(n] <= n2);
}

We promised to explain how we could have handled the number of members dropping below
NMEMBER a bit more gracefully. Notice that all the members would detect this situation, its
jmtthatthcypmicint!ﬁsenmpleimwado(doin;mytﬁn'. A better solution is for the group
to reply ‘‘unavailable” One member would have to do “double duty” and cover for the missing
member(s) in the single-reply query mode, or the QA program would hang in that case.
Meanwhile, the coordinator is frantically bringing up new members, 30 with luck the situation
wouldn't persist for long. A qa program that gets an unavailable response would have to wait a
few seconds and retry.

Ky
P,

-
!

-
s

l" L

l.f

¥

g

» 'y %
."Lz‘a,_?

«

By
4

'

o o [
..- ."4"... - {-‘

-
2
o b v,

’
2

a4
WY

»

y — e

CXRs
BAPY

STATE_XFER(TK) DISTRIBUTED SYSTEMS TOOLKIT STATE_XFER(TK)

1. Synepsls
A toolkit routine for transferring state from a process group to a process that is joining it.

2. Interface
sinclude <isis/cl h>

/* Client side */
isis_init(0);

join_and_xfer(gid, mp, routine, size)
address gid;
message “mp;
int (*routine)();

/* Server side */
allow_xfer(start_routine, data_routine, restart_routine)
int (°start_routine)();
int (°data_routine)();
int (°restart_routine)();
3. Discumsica

The state transfer tool is normally used by a process that wishes to join an existing process group
without preventing clients from using the group, but aeeds a copy of some state information to
begin functioning normally. The tool “hides” the join and state tranafer event so that' clients see
this as an instantaneous transition.

4. Whats s state?

The tool assumes that processes can represent the state of their computation in some number of
blocks, which can have arbitrary and variable size. The programmer must somehow write code
that lets the tool “read” this state, one “block” st a time. For example, in the twenty questions
program, the state is basically the contents of the ‘db’ data structure - everything else can be com-
puted or obtained from things like the process group view. In a transactional application, on the
other hand, the state should indude locking information and output of uncommitted transactions.
So, if you use transactions you either have a difficult state packaging problem to overcome (since
that tool won't give you this information!) or must do the transfer when nothing that matters is
running -- for example, by scquiring read locks on the transactional files before starting the
transfer.

S. How to uss the tesl

The process wishing to join the group invokes join__and_xfer(), spedifying the group to join. a
message for the join_verifier (see pg_join() in PGROUPS(TK)) and a state reception routine. The
size argument indicates if the transfer will be a big one (X_BIG) or a small one (X_SMALL). A
large transfer is done using A TCP stream chamnel for high performsnce and would normally
require that multiple data blocks be computed and copied. A small state tranafer is assumed to fit
into a single message, which could be fairly large. In this case, the overhead of a connection set-
up is avoided, but on the other hand, the data is tranaferred by ISIS and hence the throughput is
quite a bit lower than using TCP.

Join_and_xfer operates much like pg_join(gid, mp). Assuming that the join succeeds, however,
the tranmsfer tool runs a coordinator-cohort algorithm in which the action routine repeatedly
requests blocks of state from the generation routine and delivers them to the reception routine.
The client’s reception routine is invoked as routine(bn,data,blen); where bn is the block number

1. New process @ s
triggers migration —— h

using GBCAST \
@ (messages spooled)
2. TCP transfer used
to copy state, if
large

3. Old member drops out,

with another GBCAST spooled messages
:j_@ processed

spooled msgs. discarded

State transfer is actually a 3-step algorithm

Client

Clients view state transfers and migration as an instantaneous event

R R N N S 2 P N M BTN T S P A M NN T 0 S O 8 P W T T £ TR U TUA P P PR LA T 0 P

STATE_XFER(TK) DISTRIMUTED SYSTEMS TOOLKIT STATE_XFER(TK)

beingu-mfen'ed,dmisapoimertothedatn,mdblenismelmgthinbytaofth:’sblock. If a
faﬂmmnmdﬂwtramfumm.thediuﬁwﬂ]wetheblodnumbusmtoﬂ(aﬁxm
reﬁnementwﬂlanowthetmnfatommwithmemblockinsequm,butthisi.-.notyct
implemented). Whmtheumfabmpleted,j&in_mdjaOmanifitume@dandm
error code from pr_errors.h otherwise.

invoked as follows.
stnn,rwﬁx.n(mp, who, gid, alist)
message "mp;
address who, gid, alistMAX_PROCS];
Ifthejuin_veﬁﬁuhmvaﬁdatedﬂnjdnmempt(ncPCROUP(rK)),lhesunmmineismlledto
mputethemofmxpmpmthnwiﬂparﬁdpueinﬂﬁsm. The routine should fill
int!n'ulist.forenmplebycopyhupgapg_aﬁnﬁunﬂ:emmtviawdmpoupgﬂ. All
manbuswmoblavethcmepgrwpviewwhmthesmmnimhaned. The argument mp is
apdmum&emﬁmﬁeﬁmmdﬁumnﬂﬂnwwmme
address of the process that is joining.
rval = data_routine(bno, data, type, len)
int bno, *type, *len;
char **data;

Aftetafaﬂmntrmfermruumedthcrattheﬁmblock(bm=0)urthenﬂtblod:afterthe
last successfully transferred one or any block number in between. The routine

start_at = restart_routine(bno)

will be invoked with the number of the last transferred block + 1, and should return the next
block number to use. memtlpplicaﬁomﬂisrmﬁneeithurmmbmifitispoaibletojmt
mﬁnuewﬁththenextblock,oro.nyifﬁ:eblockaizuorcommmﬂdhendonthescndcr,
even though several processes can send the state. (The recipient would have to detect the discon-
ﬁmﬁtymddemzpﬁomtheinmmptedumsfuifmelppﬁmﬁmmquhumemofdmup
action before restarting at block 0.)

6. Interactions with other tools

Thisvusionofthemmmfutooldoem'tmtomnﬁanym«thesmoftbetoollu'trou-
tines, such as the semaphare state, The semaphore tool provides a way to generate a “block” of
state information and read it in remotely. The state transfer tool itself will be integrated with the
&umcﬁonMinmd:nmntomﬂmdummtzm&:oﬂyvbmﬂzwuw
write locks active in the participating processes. We plan to provide some sort of state transfer
opﬁonforﬂnmﬁmﬁlemdmdmmmwwokmo,hnﬂmemsﬁn
undergoing design.

T T TR R P A Nk AT AN A

O T R A OO T N A T T R R P e X "
B e R e o e R T T D S A R

Pttty

SITEVIEWS(TK) DISTRIBUTED SYSTEMS TOOLKIT SITEVIEWS(TK)

1. Synopsis
A package of routines for obtaining and monitoring the site status data structure.

2. Interface
#include <isis/cl.h>

isis_init(0);

sview *sv_getview()
sv_monitor(routine, arg)
int (*routine)();
char *arg; 2

sv_monitor_cancel(routine, arg)

int (*routine)();

char *arg;
3. Discussion
Tﬁspackagepaminapmmwmmdmodtmtbeﬁt&ﬁewdmmmﬂmdnﬁmdby
the ISIS failure detector. The fields of a site-view are: sv_slist[] (the site-id’s of the operational
sites, null-terminated), sv_incarn[i] which gives the current incarnation number for site i, sv_failed,
whid:ﬁmpromathmfaﬂedwhmﬂzviewlmd’mpd,mdwmued,wﬁd:ﬁmmme
that recovered. Tbelmmtwoarebothbitvep. The data structure itself is defined in
pr_sviews.h.
The routines are as follows:
a) sv_getview() obtains the most current site view.
b) sv_monitor() causes the specified routine to be invoked as

eadnﬁmetbesiwviewdxmgu.‘_" - '

€) sv_monitor_cancel() cancels an sv_monitor() request. The arguments must match those for
the sv_monitor(). It fails if the monitor request is unknown.

Somethingsth!tyoumnnmeabmnsito-vimindude:thew_;ﬁsﬂ]m'iamorderedmd-

ingtodeueasing“age“:lhnﬁmw_nistﬂmn-yisﬂzsitethat‘hubemuplangmandthclastis

the site that came up most recently. Ihbitveu(seeBl'lfVEC('IK))sv_fqﬂedmdsv_xemvued

ingﬁatewhid:ﬁﬁe'shavemdumnfﬁlmdrmuy(g‘evu‘_h?th).n'methelastviewwpoom-

|

AT DO L i

TASKS(TK) DISTRIBUTED SYSTEMS TOOLKIT TASKS(TK)

1. Synopsis
Anovaviewoftbelightwdgbtmkfndlitypmvidedbyms.

2. Interface
#include <isis/cl.h>

t_fork_urgent(routine,arg,mp);

t_fork_delayed(routine, arg,mp);
int (*routine)();

char *arg;

message “mp;

value = t_wait(cond);

int value; ?

condition “cond;

t_sig_urgent(cond,value);
tsig_delayed(cond, value);

condition “*cond;
int value;

run_tasks();

3. Discussion

Althmghnoma]UND(systamproﬁdeoﬂyaﬁnglemrudofwnudpam,ithmbun
eonvuﬁmtithopretmdMad:promconﬁmofamofﬁght-wdgmtuhdmsharea

severalmpem:evmthmghapromcmhmmmymb,theenﬁrepmmblochifablock-
ing system call is performed. Moreova,tlmeisnotruemnunrenqinﬂnsdnnc.nhboughit
can sometimes look as if there is. Inpuﬁa.du,theprogmmmumustbevcrywaryabmtpmi-
blemmndiﬁomwhenevu.mkmightsuspmd.

Atukhathrudofmntdhlvbgiamnnckmdregism,hnshningglowvmiabla
(including static ones) with other tasks. Thestackofatuk'slinﬁtedinsin,menﬂytoak
bytes,nndifdﬁslimitisuaeded,ﬂneﬂorwﬂ]notbedeteaed. However, 8k bytes is really

Ukemﬁnu,mhmanploydmhndmmﬁﬁmvuiablumblockwhﬂewﬁﬁn;fmm
another. The basic interface is as follows:

t_fork_urgent(routine, arg,mp)
m.mn«hnwmlnmblesmuﬂlmmkkmmom&deﬁmmd -

routine as:

L A T G LU GG R Lttt

T A AR A N

P

e ————

- - e T T T T W W T T S

TASKS(TK) DISTRIBUTED SYSTEMS TOOLKIT TASKS(TK)

The new task continues to execute until the routine returns, at which point the task ter-
minates and resources it used (stack, registumvearea)arefreedforusebyotbutasks.
'niemuu_lge pointer should normally be 0. If it i.snon-zcro._tbenmsg_jmefommt(mp) will

t_fork_delayed(routine,arg,mp)
Samemt_fork_urgmt,exwptthatthenewtaskisplacedonthemnq\mandthecanu
continues executing.

value=1t_wait(cond)
Cond must be a - riable of type condition. Itahmﬂdbeinitia]izadtozerocxpﬁu‘ﬂyorano-
cated in a global ur static memory location. 'Iheallerwspendsinawaitingstateuntilasig-
nal is applied to the condition variable,

t_sig_urgent(cond, value)
Theﬁntmkwaiﬁngonmndisawnkmedandpmedthcdaigmtedvaluc. The caller is
suspmdedinanmblemonthemnq\mw.

t_sig_delayed(cond, value)
Theﬁnttaskwaitingoneondismarkedunnmableandplmedonthenmquam. When it
gets to run, it will receive the indicated value.

run_tasks()
Thisrwtinemustbecanedfmmmesystemmktonmmhfornwﬁle. It returns when
there are no more runable tasks available. For example, the isis "main_loop” loops, first cal- o

t_scheck()
msrouﬁnedlecksforltackovmﬂowmdmnsthepm@mﬁneifomisdeteaed. It is
invoked automaﬁcaﬂywbmmdtdﬁngfranmktomk,btnudnnmdetectoverﬂmthm

previomlyifthestackpointahmmwtoasafemwhenthewitdﬁngtaka

S. System task

Thetmkﬂmtnm'mmh"isspedal:itiscancdﬂnsystunmk,andwueittotryandcaﬂ
Lwaititmightwakeupunupeaedlwaﬂnﬁght-wdghtmkfadmymmmschedule
some other task. Comequmﬂy,ﬂzsystemmkmncvuu-ytoblock. It is permitted to exe-
cute t_fork_urgent, t_fork_delayed, t_sig_urgent, t_sig_delayed, but not t_scheck or t_wait,

6. Caution

Itnmmumdmmmmmmw-mmmmmn
expliatlyuﬁnngdtmumLWMmLﬁmebeblo&ed,ﬂﬁsmhmuamﬂt
of calling routines somecne else has coded. The reason this is a major issue is that once a task
mspuxb.inpﬁndﬂemyotbunmblemkcmﬁwakeup,mﬂtﬁsmmm;lowvuiam“
cmdddnngevaluuorthﬂwoe&mcmﬂdbemed,dtbwghuﬁmadiﬂmmckmd
hmwdthacﬁffmmofreg‘stusmdloalvuiabla. Do not use this package if you do not

g - R— . P LS P TR PN N T I T N 7 . ¢
U!Q&h\lﬁéa0,32?.333&;EE:Q.A!:Q:%’:%:,1}:}; \ " Syt ioaty o D .‘ S B i Q‘(V{iﬂ\m nI)QJX\A

wrvewr W W P I T O T O T T O R g R T U T NPT O P e TR g I T AT et e sy w v

TASKS(TK) DISTRIBUTED SYSTEMS TOOLKIT TASKS(TK)

7. Bugs

The stack overflow check should be done automatically on every procedure call, say by using a

modified version of the mcount procedure that gets linked in when a program is compiled with |
P8. ;

TRANSACTIONS(TK)

DISTRIBUTED SYSTEMS TOOLKIT TRANSACTIONS(TK)

1. Synopsis

Nested transaction in ISIS. Thismedmnismisbasedononeﬁ’omlSISl,butdoun'trequethat

you program using “resilient objects”. The code hasn't all been ported yet, but it should be
usable sometime in August.

2. Interface
#include <isiv/cl.h>
------- Transaction control -----—-
/* Start a new (sub)transaction */
t_begin(abort_on_failure)
int abort_on_failure;

/* Commit a (sub)transaction */
t_commit();

/* Abort a (sub)transaction */
t_abort();

———- Accessing files (stable storage)

t_sopen(file_name, how, fmode) -
char *file_name;

t_ssize(file_name)
char *file_name;

t_sread(file_name, offset, buffer, len)
char *file_name, *buffer;

t_swrite(file_name, offset, buffer, len)
char *file_name, *buffer;

t_sfsync(file_name);
char *file_name;

t_sclose(file_name)
char *file_name;

~-——-- Accessing in-core storage transactionally -

t_copen(item_name, how, fmode)
char *item_name;
t_csize(item_name)
char *item_name;

t_cread(item_name, offset, buffer, len)
char *item_name, *buffer;

t_cwrite(item_name, offset, buffer, len)

. . -’ ‘I > f
LGN A

R

}?}11{

-
£ Y

20000

A

P
NV R

-

Q" f ;,' (""" [N A;"{"

,\p
[i e e S]

e

-

.
.3
by

Ty

TRANSACTIONS(TK) DISTRIBUTED SYSTEMS TOOLKIT TRANSACTIONS(TK)

char *item_name, *buffer;

t_cfsync(item_name);
char *item_name;

t_cclose(item_name)
char *item_name;

------- Concurrency control ---——

t_rlock(alist, item_name, offset)
char *file_name;

t_wlock(alist, item_name, offset);
char *file_name;

----—- Internal, to monitor for commit and abort events --ece—-

t_monitor(routine)
int (*routine)();

t_outcome(tid)

trans *tid;
3. Discussion

t_begin, t_commit, t_abort. Although ISIS normally does not run in a transacti mode, the
whole system is compatible with transactions in a way that makes it easy to obtain them, if
desired. To turn on “transactional execution”, a routine simply calls t_begin() and later, when it
terminates, either t_commit() or t_abort(). If a routine is called by another transaction, the result
is a nested transaction. The caller that invokes t_begin() should also indicate whether this
(sub)transaction should automatically be aborted in the event that the process that did the invoca-
tion should crash, or its site should fail. The only case when abort_on_failure should ever be false
(0) is when the transaction is being done in a coordinator-cohort computation and some cobort will
take over and run the request forward to completion, doing exactly what the failed coordinator did
(see the various ISIS papers on roll-forward transactional execution for details). Normally, you
will thus request abort_on_failure by setting this flag to true (1). If abort_on_failure is false but
the transaction is not restarted in this manner, your application is quite likely to hang.

t_open, ... t_close. These routines access a file transactionally, using t_monitor to detect the ter-
mination of each transaction or subtransaction automatically. The t_sxxx versions work with disk
files and the t_cxxx versions with in-core data structures. Checkpoints are needed to recover from
total failures in the latter case; this is automatic when using stable files. They can be called “as is”
(as are?), or can be called from the replication package to implement replicated files (the file
name should refer to a different copy of the file in each replica manager, of course). If used in
this manner, the default broadcast primitive should be CBCAST.

t_rlock, t_wiock. These routines support transaction read (non-exclusive) and write (exclusive)
locking, following the standard 2-phase locking protocol. The alist argument indicates where the
lock in question lives. Both give what seems to be “all copies” locking, but the rlock algorithm
actually is asynchronous, whereas the wlock algorithm is a slower synchronous one. So, read locks
are much cheaper than write locks in the case of replicated data. Lock of either kind will be reis-
sued silently if requested more than once. Note: read locks are never “broken” by failures in
ISIS. Note: when using wlock on replicated data, take care that all callers of wlock do their wlock
calls in the same order, or deadlock can result. For example, you could use ABCAST to

L oan ol aia aad a4 e A n e a B afe aos meh aado Al me casadd e sk ahioabA el ohitatitiolibidiniadintednl b dai e

TRANSACTIONS(TK) DISTRIBUTED SYSTEMS TOOLKIT TRANSACTIONS(TK)

’ implement a group RPC and then have all members call wlock in parallel on their private data, or
i your could use CBCAST to implement the RPC and then employ a coordinator-cohort algorithm,
this time having only the coordinator call wlock and specifying the group's id in the alist argu-
ment.

Semaphores can also be used to control access to files and data, but they ignore the transactional
scope rules and hence could get you into trouble.

. 4. Descriptions of internal routines
) Transaction ids. When running as a transaction, ctp->task_tid is a pointer to a descriptive struc-
X ture characterizing the state of the current transaction. This can printed by calling t_print(ctp-
‘N >task_tid).
t_monitor. This routine is used internally by ISIS to watch for the commit or abort of a transaction
that has taken actions in the invoking process. The routine is invoked as:

n?utine(how)

}
}

where the argument how will be one of T_COMMIT1, T_COMMIT2, and T_ABORT. The com-

mit phases are the usual ones for a two-phase commit. If you plan to implement your own tran-
sactional storage, then during phase 1, records written by the transaction should be forced to

R stable storage. If stable storage is not an issue, take no action during phasel commit. During -
R phase 2, commit records can be written. In a T_ABORT, the effects of the transaction must be
rolled back. This is all automatic in the case of the stable storage routines provided by the sys-

tem.

t_outcome. This routine is used when a site recovers and the stable storage utility discovers that it
: crashed during the second phase of the commit protocol for some transaction. If all the sites that
N know what this outcome was are down, it could take quite a while for this routine to complete,
- and while it is running access to the file the transaction updated is not allowed (both t_rlock and
e t_wlock will block). On the other hand, the updated file can be accessed using t_read and t_write
) without acquiring locks if an emergency need to see the contents arises. One would obtain the
hy contents of the file as if the transaction did commit in this case. Since the odds are overwhelming
. that this is exactly what happened, the behavior that results is probably fine.

= 5. Recovery
v There are several cases:

:f- 1. In the case where you arranged for the stable storage routines to be called from the repli-
o cated data manager, a fadlity is provided that will sutomatically being your copy of the file
: back into “sync”” with any others after recovery. Use the rmgr to determine which of the
following cases applies. If your program is the first to recover from a crash of all members
of the group, it can use its local copy of the file - they will already have been restored to a
consistent state by the tramsaction fadlity. If your program is supposed (o rejoin, we
2 currently recommend that the entire file be copied from some process with a copy. A better
-2 mechanism will be added someday, but meanwhile this will have to do.
2. When using the in-core storage routines, recovery depends on how the failure occurred. If
the failure causes all processes to crash, you must have s checkpoint around in order to
. recover. Assuming that you do, the recovery sequence is as above, but using the checkpoint.
You can make a checkpoint anytime the data is idle, but not during a transaction that has
updated it.

Y DR

e

TRANSACTIONS(TK) DISTRIBUTED SYSTEMS TOOLKIT TRANSACTIONS(TK)

3. In the case where in-core transactional storage is being used and a partial failure takes place,
the state transfer tool should be used to copy the data from some operational process pos-
sessing a replica.

6. Examples
Transactions are easiest to use if you follow very stylized coding conventions. Some examples to
illustrate the most common cases follow.

6.1. Non-replicated data
6.2. Replicated data, reslilent object style
6.3. Replicated data, CIRCUS style

6.4. Replicated data, using quorums

7. Stste transfers
This will look something like the semaphore state_xfer_out/in mechanism.

ki A bt s n'd

VSYNC(TK) DISTRIBUTED SYSTEMS TOOLKIT VSYNC(TK)

1. Synopsls
What's this virtual synchrony business all about anyhow, and what do I need to do about it?

2. Discussion

All of ISIS is built using a collection of broadcast communication primitives that, if used correctly,
provide “‘virtually synchronous” distributed executions. This idea is one we use throughout ISIS,
and it can greatly simplify the design of even very high level software.

Figure 1 shows a conventional distributed execution. Such an execution is characterized by mes-
sage passing and the discovery of occassional ‘“‘unexpected” events, such s crashes, timeouts due
to system overloads and transient communication failures, reception of new ‘“request” messages
while pending requests are still underway, and differences in the perceived system state, from pro-
cess to process, even when a single event is being observed from multiple perspectives. An
environment like this one is difficult to work with — we call it a completely asynchronous one -~
and it provides very little support for the programmer who must implement a distributed applice-
tion program.

In Figure 2, s virtually synchronous execution is shown. Such an execution bas the property that
it looks to an observer (to a program using ISIS, in particular) as if one event takes place at a time
in the system. That is, if a process fails, it looks as if no communication events were active at the
tizne, and everyone monitoring for the failure sees it occur “simultaneously”. When a communi-
cation action occurs (see BCAST(TK)), failures never seem to take place until the messages have
been delivered, and it looks as if no other communication was taking place at the same time. In
fact, each message indicates the processes to which it was delivered, even though the message may
have been addressed using process groups as destinations and process groups have dynamically
varying membership. This has several real advantages from the perspective of the programmer

Ci C2 S, S, S,

T
,—

—
>

h\F.“'-
?
Recovers

I

|

Figure 1: Conventional message-passing picture of a system

B i

o~

“,_
SEERE

VEYNC(TK) DISTRIBUTED SYSTEMS TOOLKIT VSYNC(TK)

who works with ISIS.

One relates 10 algorithm design. In ISIS, it is possible to deduce the actions that other processes
will take by just looking at & message, its destinations, and the “state” of the system at the time
the message arrives. For example, this might include the membership of & process group
(pg-alist]] in & process group view), the sites that are operational (sl alist{] in a site-view), the
contents of the message, or even user-supplied deta structures maintained using the configuration
tool (see CONFIG(TK)). In fact, the addresses in @ process-group or site view are even ordered
according o increasing age, and you can use this in your code. Moreover, all members of a pro-
cess group receive a broadcast message if any does 30 ~ there is 00 need to manually make sure
that everyons has their copy. Finally, actions initisted by a deed process are terminated before
the death is announced... for example, if a process might have been issuing a broadcast or adding
& member t0 a process group or taking some other action when it died, either the sction completes
before the process failure is observed, or the action never happens st all ~ the failure preceded it.
Jointly, these aspects really simplify life: they eliminste the chit-chst normally needed when a
group of processes receive 8 message, and et everyone act in s coordinated fashion without taking
any actions to achieve the coordination. Of course, it may be necessary for group members
monitor one another, but prepackaged tools kke the coordinstor-cohort mechanism
(COORID(TK)) and the monitoring routines (pg_monitor in PGROUPS(TK) and the watch() rou-
tine in WATCH(TK)) make this as casy as possible. Or, one can arrange for the dlient of a group
to take part in getting an action done by simply having all members respond to “their part” of a
request, snd having the client collste responses, decide if the action really got done, and re-issue
the request if necessary.

One imptication of virtual synchrony is that most ISIS mechanisms are orthogonal to each other.
Hence, you can combine semaphores, state transfers, and replicated data without one mechanism
impacting much on the others. Of course, this isn't magical: state tranafers while the semaphore is

C Cj | 51 S:| >

Event

— . ,
T Cg — service

T

VSYNC(TK) DISTRIBUTED SYSTEMS TOOLKIT VSYNC(TK)

in use or while transactions are runmng can be a bit swkward. But, mechamsms to avoid these
problems are provided in most cases, and being added in others.

In addition, several of the data structures that ISIS maintains Lave properties based on virtual syn-
chrony. As noted above, everyone sces the same sequence of pgroup views and site views (see
pg_monitor() and sv_monitor()) and within these views, the sequence of addresses in a pg_alist or
site-id’s in an sv_slist are ordered according to decreasing age. Moreover, the current pgroup view
at the time a message is received is the same for all recipients. Thus, one can receive a message,
check the current view, and then make a dedision in such a way that only one process is responsi-
ble for executing the message and all others are backups - this is how the coordinator-cohort algo-
rithm is built in ISIS. Once you get used to taking advantage of this approach, you will see how it
simplifies your code: rather than design a protocol to discuss who should handle a request, you
design a simple local decision that everyone who receives the request can execute in parallel, in
such a way that all reach the same decision without message exchange.

Another advantage to the ISIS approach is that there are genuinely fewer things to worry about
when designing code. Basically, you can use a finite state approach. In a given state, your pro-
gram may:

1. Bewnnngforarwpomewwmereq\mt(oncveral if concurrent tasks are running).

2. Detect a failure.
3. Receive a new request.

&nmaﬂcopuaofdnprogrmsectheseevmmdn“uneordu and everyone sees every
cventthneomermthan,ﬂu'eunounccnmtymyancodelorud:pmnbleevmt you simply
specify the appropriate actions and you are finished. Unless you omit the case of, say, s failure
occurring while your program is waiting for a response from some process, and this causes a crash
to occur, code that covers the above cases will cover everything necessary for correct performance
in ISIS. In contrast, imagine the uncertainty of executing in a conventional environment! Failures
may be detected incorrectly, messages may fail to reach some destination, or arrive out of order,
and events may be perceived in different orders by different processes in the system. The sim-
plest actions are fraught with danger. Many programs that can casily be written using ISIS are,
for these reasons, nearly impossible to write in any other way!

What does virtual synchrony cost? Well, the cost could be high if you use the most costly broad-
cast primitive (GBCAST) too casually, and this is a major reason for using the toolkit as much as
possible. The tools use the cheapest broadcast they can, and performance will be good when you
stick to them -- at least for things that ISIS is good st. These are things like maintaining reph-
cated or recoverable data structures, synchronizing actions, and sending requests to services. On
the other hand, bulk data transfers are best accomplished using the state transfer mechamsm or
other non-ISIS mechanisms. With careful attention to design, performance of an [SIS-based appli-
cation can be as good or better than for a non-ISIS application.

What is the minimum you need to uaderstand? Basically, the ISIS user has two lands of deauons
to make. One is to deade how to structure the application into process groups and processes and
what data structures will be needed. Often, the ISIS toolkit routines can be used to impliement
this structure, following our tutorial examples, but in many cases you will need to perform “group
RPC" requests. This lcads to the second decision: when sending s message, you will need to
decide whether an answer is noeded, and how many answers are needed (0, 1, 0, or All) You
will also need to determine whether the group is sctually sensitive to the order in winch it recaaves
this type of requests — if 30, you should use ABCAST to send the requests, if not CBCAST 1s pre-
ferred. For example, a service that maintains a replicated queue of some sort would probably be
accessed using ABCAST: queue order will be the same everywhere if requests arrive everyone in a
fized order, and thats exactly what ABCAST provides. On the other hand, a service that main-
tains a database and answers questions out of it could normally be accessed using CBCAST per-
formance will be better, and in this case the order in which queries arrive doesn’t change the

Rk
‘.’-. ., 4

oty

-y
'-v
|’.l ['s

P
L
R PR

. o
e

 of }‘l'l P

[

o

VSYNC(TK) DISTRIBUTED SYSTEMS TOOLKIT VSYNC(TK)

answer that should be given. GBCAST is normally used only in the toolkit routines.

Who should answer a query? The easiest solution might be for everyone to reply (some replies
might be of the form "'l don't know”, indicated by calling reply(mp, 0, 0, 0)). Also, keep in mund
that one can reply with fewer than “alen” bytes of reply information (BCAST(TK)). For exam-
ple, if the reply is a byte string, the the first byte could be a code indicating whether the rest of
the reply contains valid data. If you prefer to receive a single reply the coordinator-cohort tool
should be used. This has some overhead and the amount of work done by the coordinator should
be non-trivial to justify peying this added cost. One situation in which the tool is not recom-
mended anses when the reply will be very large. It might seem like you should use the tool to
avord wasting “‘space”’ on replies from processes other than the coordinator. In fact, however, thus
would be just the situation in which the overhead of the coordinator-cobort algorithm turns out to
be largest! The overhead is almost zero, on the other hand, if the coordinator sends the data
uung a CBCAST to the caller and then replies with a status code, say an integer.

To summuarize: virtual synchrony makes the toolkit possible and makes slgorithmic design supns-
ingly easy in ISIS. The benefits are substantal, but the programmer may be expected to make
some decisions that could affect performance, and to do this intelligently requires some under-
standing of broadcast orderings. We strongly recommend that you read the ISIS papers if thes
spplies to you: documentation has a role. as do tutorials, but tl.e papers are much more systematc
in attacking this sometumes subtle matenal.

ST IR O P AP A --.c_d

W

T D

-,

. —— B CE—

- — e s T R T T WY

WATCH(TK) DISTRIBUTED SYSTEMS TOOLKIT WATCH(TK)

1. Synopsis
A package of routines implementing a watch facility.

2. Interface
#include <isis/cl.h>

isis_init(0);

/* Watch a process */

wid = watch(addr, gid, routine, arg)
address addr, gid;
int (*routine)();
char *arg;

/‘Waitforamtoﬁnlprmmdwtidlunuhlmba'/
wid = watch_for(addr, gid, routine, arg) k

address addr, gid;

int (*routine)();

char *arg;

/* Watch a site */

wid = site_watch(sid, routine, arg)
site_id sid;
int (*routine)();
char *arg;

/* Cancel a watch request of either sort */
watch_cancel(wid)
int wid;

watch_dump()
3. Discussion

Thewatchfadﬁtyisatoolforuiggeringacﬁmsindtcvmtﬁmﬂnsmtmofaproceuorsite
should change. Inﬂ:ecueof.pm,m&d:ﬂisusedtowntd:forfnﬂm,ﬂureuwﬂdxjoro
is used to watch for recovery. 'Ihcargmem“addr"ahmﬂdgivetbldd:mofﬂnmto
watd:(for)and"gid"shmﬂdbeapmptnwhid:boﬂnhewmdwdpmmmdﬂ)emnabdonp.
mmemedwatdao,thegidanbespedﬁeduNIMADDRESS,hwhid:cuethemﬁmm
ammcmﬂydgoﬁﬂmhnmmmymumyﬁwindndmtu. If possible, spedify

site fails. If the incarnation is given as 0, how-
ever,thefadﬁtywmmﬁfytheanuiftheﬁtemnkamymdatmﬁﬁmzfmnupmdown
or from down to up. In all cases, a non-zero unique identifier is returned and can be used to can-
cel the watch later. Wmhmovﬁzmhhwmmmhmdrmdym
place. Waich returns -1 if the caller is not a member of the designated groip.

The callback routines are invoked as follows. In the process watch case:

routine(addr, arg);

SRR ICRERER G CREGE L CRCGECECRRN A R et nh SePh s OU S SRR |

WATCH(TK) DISTRIBUTED SYSTEMS TOOLKIT WATCH(TK)

Nmrhnwhendohgawmhjoro,amnalwudﬂmigmmedwbedommdcteamdhan-
tﬂeﬂnmewhuethewndnd-famfdhkmaddjdﬁngthem. Depending on which
event occurs, the other event would be canceled when the routine is called.

In the site watch case t.e call sequence is as follows:

routine(sid, arg);
Wm@ymwﬁnwmwmmmmam&vﬁwm
mmﬁew&mgemdhmwbdngﬂdwdfm,:aﬂhﬁm&kepluimmedi—
backwﬂlnothappa:"-yndnmnly"dxringoﬂumptmﬁon.

4. Bugs

Wmmmmuhﬂhmyabmw It will be imple-
mented when the transactional facility is added to ISIS later this summer.

|
|
|
|
1

T —

