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INTRODUCTLON

The tailless delta configuration continues to be of 1interest for
supersonic tactical aircraft designs, mainly in view of its low wave drag
characteristics. This configuration however 1is also known to have poor
short-field landing performance, due to 1inadequate longitudinal trim power
which precludes the use of tralling edge flaps for 1low-speed 1lift
augmentation. In addition, the need to share trailing edge controls between
pitch and roll functions on a tailless delta restricts longitudinal control
capability, particularly in the pitch-down sense for assured recovery from
high-alpha maneuvers.

There 1s considerable interest therefore in investigating novel control
concepts generally to improve the low-speed longitudinal controllability, and
in particular to provide adequate trim power enabling the use of high-lift
trailing edge flaps, without penalizing the inherent high-speed aerodynamic
efficiency of the tailless delta configuration. A deployable “apex fence”
concept proposed to meet these requirements was subjected to preliminary
low-speed wind tunnel investigations, 1in order to verify the underlying
aerodynamics and quantify the longitudinal control potential of the concept
across a range of angles of attack on a 60-degree delta.

This report presents a description of the “apex fence” concept and the
main results of flow visualizations, wing upper-surface pressure surveys and
force/moment measurements performed In two separate wind tunnel test programs.
Also Included are the results obtained on yet another concept, called the

“cavity flap,” investigated for its possible application for

lateral/directional control at high angles of attack.
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: Apex Feace Concept
&
The lee-side tlow tield of highly-swept thin delta wings iIs w=ll knowu to
>
‘$ contain a powerful vortex pair, whose additional suction effect on the wing
AN ]
#ﬁ upper surface contributes substantial 1lift at moderate to high angles of
)
attack until the occurrence of vortex breakdown., At lower angles of attack
;Z appropriate to landing (say o < 10 degrees) however, the vortex system
L
‘™ reimains relatively weak and its Lift potential limited. The “apex fences”
i
comprise a palr of bhighly-swept spoiler-like surtaces hinged to the wing upper
-
X *
;i surtace along the forward part of the leading edges (fig. 1). When raised
L} n’
ﬁ; perpendiculacrly tnese fences experience a considerable flow loncidence in the
o
i lateral plane, consequently generating a powerful counter-rotating vortex pair
- resembling  planar wing vortices corresponding to a much higher angle of
‘..
- dLtack. The fence vortices create a high level of suction over the wing apex
E o
region tesulting in a nose-up moment. This moment can be utiiized to balance
N
Q the nose-down moment assoclated with trailing edge 1lap deflection, tuus
}gy augmenting  the trimmed lift coetficient ot the contiguration, at moderdate
angles o1 attack. Some carly cxperiments almed at validating the nypothesized
d]
D "
%j vortex Llow charucteristics of the apex fences are documented in ret. 1.
-“
:Q Lavity Fiap Concept
:ﬁ Ifhe  Scavity flap” may be described as a lower-surfuce hinged vortex tlap,
b
E/ “":
‘al
A "'
*Figures and tables are located at ead ot report.
9
)
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»
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whose deflection opens a frontal cavity underneath the leading edge (fig. 2).

The flap-generated vortex 1s malntained near the mouth of the cavity, its
induced effect assisting the external flow to turn around the wing leading
edge. Consequently, leading edge separation is curtailed and the vortex lift
contribution reduced. At the same time, vortex suction on the cavity frontal
area generates a side force component due to the leading-edge sweep. The
vortex 1lift modulation and 1lateral force characteristics might be utilized
asymmetrically for roll and yaw control functions on a delta wing at high

angles of attack when the conventional controls tend to be degraded.

OQutline of Investigation

The investigation reported herein was performed iIn two phases: 1) a
preliminary assessment of the fence vortex characteristics and its potential
for augmenting the upper-surface suction over the wing apex region, and 2)
force and moment tests to evaluate the pitch capability and trimmed-1lift
increment due to apex fences on a generic model. The wing geometry selected
was a 60-degree swept delta with sharp leading edges and symmetric
double-ciamond airfoil section.

A semi-span model was employed for the initial experiments to facilitate
rapid testing of a number of fences, evaluating certain primary variables
viz., length, height, shape, hinge-line sweep, hinge-line distance behind
leading edge and fence deflection angle. The effect of these variables was

observed via flow visualizations and wing upper-surface pressure surveys over

an angle-of-attack range. Limited tests were also performed with cavity flaps

.l - -
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on this model.

Follow-up tests were performed with a complete configuration duplicating
the semi-span model geometry, measuring six-component forces and moments. The
main objective of this phase was to acquire trimmed lift data using apex
fences 1in conjunction with trailing edge flap deflection. The angle-of-attack
range was extended to o = 48 deg. Limited oil flow visualizations were also
conducted, The force model tests included asymmetric (i.e. deployment on one
side only) fence and cavity flap arrangements to evaluate lateral-directional
characteristics, as well as sideslip tests with some symmetric fence
configurations.

The available documentation on the results of this investigation is

listed in references 2 through 6.

MODELS AND TEST DETAILS

Pressure Test

Facility and Instruments: The test was conducted in the North

Carolina State University Merrill Subsonic Wind Tunnel. Two Scanivalve
pressure transducers with a total capacity of 96 ports were utilized to read
95 of the pressure taps provided on the wing upper surface.

A Sage Action, Inc. Model 3 Helium Bubble Generator was used for flow
visualization. A Nikkon F3 camera with a 50-mm lens and polaroid Poloapan 135

film were employed, the latter allowing Instant slides to be produced for

making the "negative” prints presented herein.
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o] Model: The pressure model was a generic 6U-degree semi-span delta
L
) 3
g wing-body configuration, shaped from 1o 1b/fte urethane foam and
- covered with two layers of 6-oz fiberglass cloth lmpregnated with polyester
<.
N i
o resin. A double-diamond symmetrical airfoil section with a thickness ratio of
o 5.7 percent was employed. Ihe major model dimensions are shown in figure 3.
et
35 A total of UV pressure taps in four spanwise rows on the upper surface
[ ..'
}k were provided on the wing. The locations of Y5 connected taps are presecnted
L
. in Table I[. Tne eighth port of the tirst Scanivalve was bad and hence was
)
.
Qﬁ omitted from the plots herein.
J The fences and cavity flaps were cut from an .u4U-inch-thick aluminum
Ty
3; sheet. Fence deflection angle (measured from the wing center plane) was Yu
\l
K9
\}j degrees unless otherwlse stated. The six fences investigated and their major
\",
- dimensions are shown in figure 4. The ditferent fence locations on the wing
L)
. are shown in ffgure 5. <Cavity flap dimensions and mounting location are shown
" -
<
‘:- in filgure o. The complete pressure study test matrix is giveu in Tabire 1Ll.
T
,\- The angle ot attack measured relative to the wing chord plane ranged trom
iy
&) cero Lo s5U  degrees. The pressure tests and helium bubbie flow visualization
' g
. a
) studies were conducted at mean aerodynamic chord Reynolds numbers ot U.ub and
n?
R U.ll milid tvel
A . m on, respectively.
>
)
) Force Test
N -
fji Facility and Llustruments: Tne Lest was conducted in the Air Force
e
:}9 lnstitute ot Techonology 5-foot Subsonic Wind Tunncel. Forces and moments were
I
‘%’ measured  using a  six-component straln gauge balance. 1ue sting used had two
F.‘
0 positions, one tor low-alpha and the other for nigh-aipha range.
.
e
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b
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O0il flow studies were conducted utilizing a template to obtain a

reproducible matrix of oil dots on the wing surface. The model was painted

black and the oil was whitened using Titanium Dioxide (Tioz) to produce a

good contrast for the photographs.

Model: The force model was a full-span, 6U-deg. delta wing-body
configuration, geometrically similar to the pressure model, fitted with a
vertical tail (fig. 7). Tne wing and body were machined from aluminum, and
the forebody was wood.

Tne fences and cavity flaps, were cut from .040-inch-thick aluminum
sheets. lwelve fences were tested, their major dimensions are shown in figure
8, and their mounting locations in figure Y. The five cavity flaps are shown
in figure 10, and their corresponding mounting positions are shown io figure
11, Tables 111 and 1V coantain the complete test matrix for the apex feaces
and cavity flaps, respectively.

Angle of attack was measured relative to the win centerplane and ranged
from -b deg. to 3U deg. and from 20 deg. to 48 deg. in the low and high alpha
sting positions, respectively. The test Reynolds number was 1.1l million
based on the wing mean aerodynamic chord.

Additional details of the force and moment investigations and results are

documented in references 5 and 6.
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RESULTS AND D1SCUSSION

Apex Fences
Flow Visualization: Typical helium-bubble photographs taken at O =

10 deg. with & large gothlc fence deflected to 75 deg. are presented in fig.
12. With the leading-edge mounted fence, the planar wing vortex |{s
essentially suppressed and the lee-side flow is dominated by the fence vortex.
With the fence hinge-line swept at 70 deg., both the leading edge and the
fence vortices can be seen. The example presented shows the two vortex cores
remaining apart up to the trailing edge, with no apparent tendency of
fnteraction.

The effect of {increased angle of attack using the small cropped-delta
fence for 1{illustration 1is shown in fig. 13. At a = 10 deg. the leading edge
and fence vortices, while remaloing apart, now tend to approach one another
with increasing downstream distance, and the fence vortex begins to show signs
of breakdown. At o = 20 deg., the two vortices interact stroogly and merge,
followed by a pronounced breakdown of the merged vortical flow.

Typical upper-surface oil flow patterns obtained on the force model with
aud without a small gothic fence at a = 9.5 deg. are compared in fig. l4. o0n
the basic wing the leading edge vortex footprint is clearly seen; whereas in
the fence-on case the fence vortex dominates the surface flow over most of the
wing span, with a sharply reduced leading edge vortex starting aft of the
fence.

Overall the flow visualization studies supported the hypothesized vortex
generation due to the fence, and indicated that a strong and stable fence
vortex could be wmaintained over wmost of the wing upper surface at low and

moderate angles of attack. A pronounced vortical activity was evident between
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13\ the fences, decaying with increasing downstream distance on the wing.
K}
at
14 Wing Upper Surface Pressures: A typlcal set of spanwise pressure
:% distributions showing the effect of gothic fence vortex on the semi-span wing
*."
' upper-surface flow, representative of the “low-alpha” case (a = 5 deg.), is
‘Qr i
:b presented 1in fig. 15. The stations (A) and (B) which are contained within the
KT
:f fence length show a pronounced increase of the suction level. At the
|‘;e
downstream stations (C) and (D), the fence vortex can be distinguished by a
-,
5\ local suction peak; and although some modification of the basic wing flow
' field 1is indicated, there appears little change in the overall suction level.
: Essentially similar effects are noted in the case of a delca fence, shown in
,~\.
-;: fig. 16,
I.\
,: At higher angles of attack, represented by the data for « = 20 deg. shown
Pd
5
in fig. 17, the fence effect over the wing apex region is opposite of the
T
'J: low-alpha case, i.e. now the suction levels are depressed. Evidently the fence
< 3
-
o prevents development of high suction peaks from the leading edge vortices as
' on the basic wing. The average suction over aft stations, however, remains
W
QQ relatively unchanged as in the case of low alpha.
¥\ A measure of the local normal force increments on the wing due to
1%\
fence-induced vortex suction characteristics can be obtained by integrating
y the - . i
s\: ¢ upper-surface pressure data The resulting CN,LUCAL is plotted versus
}: angle of attack for each of the four pressure stations in fig. 18, comparing
?I

*

several fence-on cases with the basic wing. These plots conveniently

summarize the typlcal fence-induced effects over the length of the delta wing:

relatively large normal force Increments occur over the apex region, with

f"‘..v.r.f 4-.4-.4'""".(".(“‘.- Do e e
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little change over the aft sections.

Additional fence cases are presented {in fig. 19, which also show the
typical effect of deflecting the fence to 90 deg. or less from the plane of
the wing. The apex-region normal force increment i{s seen to be effectively
controlled by varying the fence angle, indicating the possibility of

generating a nose-down moment at high angles of attack by unloading the apex

region.

Lift and Pitching Moments: A series of lift and pitching moment

characteristlcs versus angle of attack 1is presented In figs. 20 to 23,
comparing different fence-on cases with the basic wing. The effect of varying
tence area is shown for four fence shapes, viz.,, gothic, delta, cropped delta,
and double gothic. In general, the fences produce a lift increment together
with a nose-up moment {ncrement relati{ve to the basic wing characteristics,
fucreasingly with {ncreasing fence area. These effects are consistent with
the upper-surface pressure measurements already discussed. It is worth noting
that the nose-up moment {ncrements remaln practically constant up to nearly 20
degrees angles ot attack. At higher alphas, the moment Iincrements
conststently show a downtrend, whose extrapolation would lead one to expect
nose-down moments above : = 3U deg. (depending on the fence area and shape).
The etfect ot moving the fence hinge llne parallel to and inboard of the
leading edge, ftor the cropped fence, 1Is shown In fig. 4. A progressive
reduction 1{n pitchlng moment {ncrement is indicated with increasing hinge-line
distance (d) from the leadlng edge, lthouph the cttect on Litt curve |s

negligible. A small distance (in relation to tence height) trom the leading




‘ edge seems permissible for structural reasons without seriously degrading the
fence effectiveness.
o Variation In the fence angle from a nominal 90-deg. position indicates

potential for pitching moment control, as shown 1in fig. 25 for the

double-gothic fence. A relatively large and smooth change 1in the
M pitching-moment {increment for only a small variation in fence angle on either
A/
1)
I : = . .
! side of FENCE 90 deg. is obtalned
The effect of trailing edge flap deflect{on on the basic model is shown
X in fig. 26. The resulting nose-down moments can be seen to be of the same
- order as the nose-up moments due to apex fences on this configuration. Thus,
D)
) simultaneous fence deployment and tralling edge flap deflection will provide
-
, substantial trimmed-lift increments, over a broad angle-of-attack range.
; All fence configurations were not tested in conjunction with trailing
edge flaps. Therefore, using the lift and pitching moment increments produced
3 by trailing-edge-flap deflection on the planar wing, trimmed Lift coefficients
3 for the planar wing and tence-deployed configurations at a specified angle of
attack ( - = |2 deg.) were calculated of the purpose of comparing the various
Ny fence coufigurations. These results are presented as a bar chart in fig. 27.
N The ftlrst bar indicates the l{ft coetflcient ot basic model using up-deflected
t
trailing edge ftlaps tor trim, Other bars indicating the CL at the
g T
; same  angle ot attack obtained by the use ot tences are grouped according to
;' the tence-shape tamlly and in the order of decreasing fence to wing area ratio
i
fn  cach  proup. lThe  peneral  efttect ot reducing tence area Is to decrease
d
¢ Lo’ regardless ot the tence shape.
g 1
: In an ittempt to sceparste out  the tence-shape  etftect, it any, trom
'«
1)
.
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J
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3%
) fence-area effect the percentage Increment of CL (at o« = 12 deg.) has
",
o T
) been plotted versus fence area as a percentage of the wing area in fig. 28.
0
;} This plot generally shows the CL to increase in proportion to the
208 T
N ."
{&- fence area, with only the double-gothic fence having a
concave-tapered-trailing-edge standing out as the “best” shape. Although no
15
:- conclusions can be based on the single data point available for this shape, a
y : detailed investigation of this fence geometry with respect to its area
efficlency seems warranted.
>
;;: The high suction level observed on the wing apex region would also be
[¢
ﬁ; expected to act on the inside of the fence surfaces, generating a sizeable
)
g
A drag increment. The L/DT characteristics comparing fence-on and fence-off
»;: cases in flg. 29 indicate the considerable fence drag incurred. Controlled
e
o drag capability 1Is desirable as a means of reducing the touch-down speed of
modern fighters, which approach and land with a relatively high engine thrust
{s: setting. The drag generated by apex fences can be readily controlled by
e
.: varying the fence deflection; the assoclated flow field being
'l
') vortex-stabllized should produce a low buffet level.
0
f: [t was observed in the pressure results that at high angles of attack the
>
.
:4 tence e¢ftect on the wing apex was opposite to the low-alpha case, viz., a
R ™
reduction ot the suction level compared to the planar case. This 1s borne out
- by the lift and plitching moment measurements In the range 23 deg. < t < 45
. .‘_
v,
, deg. shown In flg. 3U0. The results are for the gothic fences and typlcal ot
a
)
[
. all  the feuces Investigated, indicating the potential ot fence deployment Lo
1,4
j- accelerate recovery trom high-alpha maneuvers.
v,
bl An  example ot apex fence asymmetric deployment, {.e¢., with only the left
\.‘
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b
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:j fence on, 1s presented in fig. 31. The asymmetric fence would be expected to
generate useful 1lateral/directional coantrol moments. The side force on the
! left fence produces a nose-right yawing moment over most of the
) angle-of-attack range. However, the accompanying rolling moment is adverse,
i.e. left wing down between ; = 5 deg. and 20 deg. In this range, an inboard
shift of the center-of-lift on left wing panel appears to be the dominant
effect of the fence vortex. From the observed trends, the asymmetric fence
may be more useful for roll control at higher angles of attack.

. The directional and 1lateral stability characteristics with a pair of
gothic fences deployed symmetrically are presented in fig. 32. Note that the
basic delta wing becomes unstable at angles of attack above 25 degrees with
5 fences off, Both lateral and directional stability are improved with the
? fences deployed. The data shown was derived from sideslip angles of + 3

deg.; the fence effect on lateral/directional characteristics at high sideslip

»

\

» angles needs investigation.

v

"’

Lo

: Cavity Flaps

\ Flow Visualization: 011 flow studies were conducted on the force

i
model with some of the cavity flap configurations. The main purpose was to

; confirm the presence of a steady vortex flow inside the flap/wing cavity.

'? Selected oil-flow photographs highlighting the patterns on the upper surface J
of the cavity flap mounted under the left wing panel are presented in fig. 33.

_: The two photos at the top are for a cavity flap hinged along the root chord,

3 at angles of attack 9.5 deg. and 20 deg. In both cases a vortex can be
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inferred to exist in the cavity, as indicated by the outflow of oil streaks
until they merge into a common ray representing secondary separation. The oil
patterns indicate that the cavity vortex is enlarged and strengthened with
increasing angle of attack. The bottom photo is for the case of cavity flap
hinge line swept at 7U deg. at o = 20 deg., which also indicates a

well-defined vortex flow pattern on the flap upper surface.

Wing Surtace Pressures: The effect of a cavity flap can be observed in the

wing upper and lower surface pressures at the first two statioms, i.e., A and
B, presented 1in fig. J4 (the aft stations C and D showed little change from
the basic wing pressures and were omitted from the figure). At o = lU degrees
the spanwise Cp,L distributions are relatively unchanged uacross the hinge

line, indicating the d4bscnce of a cavity vortex (or perhaps a very small
vortex on the fiap surface whose intluence does not extend across the cavity
to the wing surface). The corresponding upper-suctace pressures on the wing
also are esseutially unaltered. At o = 15 degruves, however, the spanwlise
Lp,L jumps discontinuously across the ninge line to negative values

indicat{ng the presence of a substantlal cavity vortex (fig. 35). In this

case, the wing upper surface suction at station A {s significantly reduced in

the lecading edge reglon, Indicating a diminished apex vortex.

Force and Moment: Ine primary interest in applying the cavity flap

coincept in  the present study wuas to generate yaw and roll control at high

angles of attack when the conventional rudder and alleron surfaces begin to

lose their cffectiveness. Thus, the yawing and rolling moment capabiliLy of

asymmetric cavity flaps would be the muain tocus of this discussion. However,




one case of symmetrically-deflected cavity flaps is considered, in view of the

foregoing pressure measurements. The lift and pitching moment characteristics
presented 1in fig. 36 show that while the effect on Lift is negligible, a
significant nose-down increment in the pitching moment appears starting

at a = 15 deg. This eftect is consistent with the reduced suction observed
over the wing apex region when a vortex is captured inm the flap cavity. These
results are indicative of the cavity flap potential in controlling the vortex
characteristics of a delta wing. This nose down increment is maintained

toa = 4U deg. where the cavity flap begins to produce a nose up increment
(tig. 34). 7This is believed to be the effect of fliup vortex spilling from the
cavity on to the wing upper surface.

fhe high-alpha rolling moment and yawing moment characteristics with an
asymmetric cavity flap (i.e. deployed on the left side only), at two alternate
positions, i.e. hinged at root-chord and along a 70U deg. swept ray, at a
constant detlection of 00U degrees, are compared with the basic wing in tig.
38. goth the «cavity flaps show a substantial left-wing-down rolling moment,
which is consistent with a reduced vortex l1ift over the left wing panel, i.e.,
the side on wulch tne cavity flap is deployed. The rolling moment is also
accompanied with an adverse yawing moment over a part of the alpha range.
Between the two flup positions considered, the /U deg. swept hinge line
gencerates conslderably higher roll power as well as a minimum ot adverse yaw.

A set of results at varyling flap deflection angle ftrom >0 geg. to 75 Jdeg.
is presented in tig. 39. The flap angle is found to have relatively little
etfect on the rolling and yawing moment characteristics; therefore, this type
of cavity tluap appears unsuitable as a proportional control surface.

A third flap position representing the other extreme, f.e., hinged ualong
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A
~$ the leading edge, was also investigated. In this case, the deployed flap
o
) would rotate outwards forming a reversed cavity. The results in fig. 40 show
Ay
)
! that this type of flap produces high-alpha rolling and yawing moment
o ~'
:: characteristics quite similar to the flaps previously discussed; however the
st
roll power appears somewhat more responsive to flap angle.
)
,ﬁ In the results pertalning to cavity flap effects at high angles ot
‘;S attack, it is observed that the flap-on rolling and yawing moment
characteristics appear remarkably as mirror images of the basic model (flap
Qj off) «characteristics. The basic model develops lateral/directional moments
;j following the onset of asymmetry in the forebody vortex shedding, which in the
]
{ present case occurs at o - 3V degrees. Thus, it is possible that the cavity
cr
r; flap essentlally fixes the orientation of baseline asymmetry, rather than
Pd
!: generating a distinctive flow fleld of its own., The relatively weak effect of
N
[ X
flap angle variation tends to support this possibility. In order to obtain
‘h
'ﬁ definitive results characterizing the cavity flaup concept, therefore, a
-
" baseline configuration having relatively innocuous high-alpha asymmetcy
s
) characteristics may have to be employed.
3
.
;. CUNCLUDING REMARKS
. Apex Fences
¢
.i Flow visuallzation and upper-surface pressure surveys on the delta wing
Xa
u: have veritied the basic premise of this coacept, viz., ot forcing a powerful,
L
stable wvortex pafr at low to moderate angles of attack which considerably
f: enhances the suctlom level over the wing apex reglon. Force aud moment
.: mcasurements show that Lhils results in 3 nose-up momeat which, when trimmed
L
with trailing edge ftlaps, yields a considerable increase in the usable lLift
-
O
k¢ 15
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N
q
.
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coefficlent plus a drag increase, both of which can be utilized to improve the
short-field landing capability of tailless delta configurations. At high
angles of attack, fence deployment permits partial unloading of the wing apex
region, thus generating a nose-down moment useful for acclerated recovery from
a high-alpha maneuver while fence angle variation provides a smooth pitch
control. Asymmetric (i.e. one sided) fence deployment generates a yawing
moment with adverse 1induced roll. Symmetrically deployed fences improve tLhe

directional/lateral stability at small sideslip angles.

Cavity Flap

The objective here was to explore the lateral/directional control
potential at high angles of attack. Although substantial rolling moments were
generated by deploying asymmetric cavity flaps, these occurred in the alpha
range where the baseline configuration itself was dominated by asymmetries
Induced by forebody vortex sheddiug. The present results suggest the
possibliity that one-sided flap deployment altered the flow on that wing panel
just enough to switch the orientation of the baseline asymmetry. From this
highly interactive flow, 1t 18 not feasible to extract the cavity flap
characteristics per se. Accordingly, any further investigation of the cavity
flap concept, and any high-alpha lateral/directional aerodynamic control
concept, should be performed on a baseline configuration which has relatively

{nnocuous nigh-alpha asymmetry characteristics.
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TABLE 1

PRESSURE TAP LOCATIONS

STATION 1 STATION 2 STATION 3 STATION 4
X/Cq = 0.2 X/Cq = 0.4 X/Cqp = 0.6 X/Cq = 0.8
TAP 2Y/8B TAP 2Y/B TAP 2Y/8 TAP 2Y/B
1 0.124 18 0.079 41 0.052 68 0.033
2 0.180 19 0.117 42 0.084 69 0.061
3 0.224 20 0.158 43 0.118 70 0.092
4 0.276 21 0.196 44 0.151 71 0.126
5 0.320 22 0.231 45 0.185 72 0.157
6 0.372 23 0.269 46 0.218 73 0.190
7 0.432 24 0.342 47 0.251 74 0.222
8 0.485 25 0.377 48 0.286 75 0.253
9 0.532 26 0.415 49 0.319 76 0.285
10 0.580 27 0.451 50 0.353 77 0.316
11 0.632 28 0.488 51 0.386 78 0.349
12 0.684 29 0.526 52 0.418 79 0.381
13 0.732 30 0.563 53 0.453 80 0.445
14 0.780 31 0.613 54 0.487 81 0.477
15 0.832 32 0.638 55 0.555 82 0.509
16 0.880 33 0.680 56 0.588 83 0.542
17 0.940 34 0.713 57 0.623 84 0.574
35 0.761 58 0.657 85 0.606
36 0.787 59 0.690 86 0.638
37 0.824 60 0.723 87 0.672
38 0.862 61 0.756 88 0.703
39 0.897 62 0.788 89 0.735
40 0.935 63 0.822 90 0.301

64 0.854 91 0.833
65 0.899 92 0.865
66 0.922 93 0.896
67 0.949 94 0.927

95 0.955
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;- TABLE I1I
A PRESSURE TEST SUMMARY
e TEST
‘:.'::' .’ NUM. CONF IGURATION
RO
A 1 PLANAR WING
\. ‘-
By 2 BASELINE FENCE
ai‘!
'1: 3 CROPPED 1
3 g
\X
’ 4 CROPPED 1 - PARALLEL TO LEADING EDGE
5 CROPPED 2
>,
P 6 GOTHIC
:, 7 CROPPED 2 - SWEPT 70°
o 2 9 GOTHIC -SF = 75°
: .,;;;; 10 DELTA
: 11 GOTHIC 'Sr = 5g°
ol 12 DOUBLE GOTHIC
o
Y4 13 GOTHIC - SWEPT 70°, & = 75°
B
. 14 GOTHIC - SWEPT 70°
‘:{: 15 CROPPED 2 - PARALLEL TO LEADING EDGE
‘;3:3;- 16 CAVITY FLAP (LOWER SURFACE MEASUREMENTS)
-:\.-_‘
gt 17 CAVITY FLAP (UPPER SURFACE MEASUREMENTS)
'-'.‘:'::’,
:'«:;T: (UNLESS OTHERWISE NOTED, FENCES ARE MOUNTED ALONG LEADING EDGE AND & = 90°)
N
o
o
o
L
LA
.
-
7
3
:’_.-2.
A" 19
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K TABLE 111
i
.‘. «
) APEX FENCE FORCE TEST SUMMARY
N
RANGE SYMMETRY
el o/ —_— SIDE
s FENCE 5 d LOW HIGH SYMM ASYMM SLIP
oty
o AF-1 75 0 X X
o 90 0 x X x x*
N
» AF-2 90 >0 X x X
. AF-3 90 0 X X X x*
o
N
Ls AF-4 75 >0 X X X X
N 90 0 X X X
e AF-5 90 0 x X X
_\,
S AF-6 90 0 X X X
b AF-7 90 >0 x x x
: —
AF-8 30 0 X X X
Y AF-9 90 0 X x X
B
'S AF-10 90 0 x x x
AF-11 75 0 X X X
¥ 82.5 0] X X X
! ¥ 20 0 x x X X !
N — .
= Yy I~
" 37.5 0 X X X
' . . —
4 AF-12 20 0 X X X
-7 L. L R B SN E S S N
-
<5
- *Low ot Only
=
’d
},:
Wy
: o,
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5 TABLE 1V
o —_—
-.I
W
CAVITY FLAP FORCE TEST SUMMARY
et
>
.i."<- G
'_.:_ o RANGE SYMMETRY SIDE
o FLAP/POSITION 8o Low HIGH SYMM ASYMM SLIP
. ' N
[
} CF-1/pP6 90 X X
b
N
! .,':_- CF-2/P3 75 X x
'
o 60 x X
” CF-3/pP1 30 x X x X X
\"'I,'\
o 45 X X X X
0
o 66 X b X X X
g
- 75 x x x
b 4
Moo CF-3/P2 45 X X x X
s
K N 60 X X X X
\ \':‘
._-". CF-3/P3 30 x X x x
60 X X X X
(S
o
e 90 X pe X x
-.:-.
N CF-3/P4 90 X x X
g
N
) ) CF-3/P6 90 x X X
oY
-‘-:; CF-3/pP7 60 X X |
.".\J |
e CF-4/P2 30 x X X X !
‘TN !
: 45 X X X
Sa 60 X X x x |
- 75 x x x :
e
T
A
e
N
AL
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s
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o,
"
N
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