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Abstract

The generality of the decision analysis methodology
permits its application to decision problems regardless of
the particular discipline or setting in which the problem
occurs. Consequently, thé decision analyst may be unfamiliar
with the relationships of the variables in the problem. One
device for communicating those relationships is a diagram
identifying the existence of influences between the variables.
This research contribhutes a general mathematical characterization
of the influence between random variables. The influence can

be characterized by a matrix that is null if and only if no

F
)
F
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b of influence by its nonzero elements.

influence exists and otherwise indicates the degree and type

? An electrical engineer uses the schematic diagram of a
circuit to conceptualize and communicate the relationship
between the voltage at different points of an electronic
device. The definition of ..fluence can serve the decision
analyst in an analogous manner, helping him to conceptualize
and communicate the relationship of the probability distribu-
tions on different variables in a probabilistic decision
model. The definition of influence supports a calculus of
k influences that allows one to compute the total influence

of one variable on another even when there are several inter-

mediate variables. Using this influence calculus, the impor-

‘ tance of a particular variable to the decision model can be

determined. An immediate consequence is a recommendatior for
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which variadbles to include in the model and whether th2 un-
certainty about a variable is important. These recommenda-
tions include a new interpretation of deterministic sensitiv-
ity. S

An important, philosOphical result of this research is
the demonstration that which variables should be included in
the decision model depend on the decision maker's risk atti-
tude. Two decision makers with the same state of informaticn
but different risk attitudes should model the same decision
problem differently.

Finally, the theoretical basis for the influence defini-
tion is different from that of the conventional discretization
or decision tree representation for solving decision problems.
Since the acceptability of the influence method depends on its
accuracy and ease of implementation relative to discretiza-
tion, the theoretical bases of the influence method and dis-

cretization are compared.
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"My master is s0 great because he eats when he is
hungry and drinks when he is thirsty."
« « «» part of a Buddhist Proverb

“Uncertainty makes me nervous, and certainty makes

me unnervous."

e ¢« « Mary Hartman, Mary Hartman

vi




-
[
Fo
s

e e e

Table of Contents

ADSEFACE « « « o« o + o o o o o 4 8 2 o o 0 et e e e
Acknowladgements .« « « ¢ ¢ &+ ¢ o v ¢ s s s o8 s e 8 e s s
List Of FPigures .« . « ¢ ¢ ¢ ¢ o o o s o o o = o o o o &
Chapter 1. Introduction and Overview . . « . « « « ¢«
| 1.1 Decision Analysis Theoretical Structuring . .
1.2 Practical Considerations in Structuring
ASSeBImONt . . . . . . ¢ e e e e e e e e 0o
1.3 Summary and Contribution of this Research ., .,
Chapter 2. Toward a Theory of Influence . . . . . . . .
2.1 Introduction . . . . . ¢« ¢ ¢ ¢« ¢ o s 4 o o .
2.2 Continuous kandom Variables Influencing
Either Continuous Random Variables or Discrete
Random Variables . . . . . . . ¢ ¢ o ¢ s+ o« o« .
2.3 Discrete Random Variables Influencing Either
Continuous or Discrete Random Variables , ,
2.4 Approximation to Obtain Finite Influence
Matrices . . . . . . . ¢ ¢ 000 0.
Chapter 3. Developing Decision Models from Influence
Matrices . ., . . . . . . . .+ . ¢ .
3.1 Introduction * e s s e s s e e s e e s
3.2 Influence Calculus . . . . ¢ ¢ + « o « s « &
3.3 Influence Vectors . . . .. . . . . ..
3.4 An Example Introducing the Influence
Consequence Matrix . . . . . . ¢« ¢ ¢« o « o & &
3.5 The Influence of Deterministically Related
Varjables , ., ., . . .. ... ...

vii

Page
it

ix

16

19

19

20

35

38

44

44

44

57

61

75




| Chnpeirfq,f_pVCOuplrison of thi.Qnadrntic
*Apﬁroxlmition with Discretization . . . . .

4.2 An Overviewv of Two‘Propoldd‘Aisi‘npont
Procedures . . . ... « e e e s e e e
4.3 An Example Demonstrating the Two.
Quadratic Procedures . . . . ¢« « « « o+ 4 o
4;4 Comparison of Discretization with
the Quadratic Approximation . . . . . . . . .
Chapter 5. Summary and Suggestions for Further
E RES@AXCh .+ ¢ ¢ ¢ ¢ v o ¢ ¢ o ¢ o o o o o o
Referencas e e e e e e e e 4 ¢ % e s e e e e
Appendix A. A Series Representation and Approximation
for the Covariance C e e s v ae e e s
Appendix B. A Proof that the Change in Certain

Equivalent of {w|s} . . . . . .. .. ..

‘ol Intl‘od\lation e & & & e @ oApAO_ « o o 0;.-;0 o

<107

.116
121

lA-l

.A-‘




List of Figures

Page

e 1=-1 A representation of the expansion equation

S showing the sets 8, of state variables . . . . (¢
1-2 Deterministic sensitivity for two variables . , 6
1;3 Communication paths required for struc-

turing a complex decision problem . . . . . . . 10

1-4 The correspondence between influence dia-
grams and assertions of probabilistic in-
dependence -+ ¢ ¢ ¢ ¢ v ¢ 0 s s s e s e a e e 11

1-5 Multiplication of interaction matrices . . . . . 14
; 1-6 An example demonstrating ambiguity about
{ the relative importance of two influences . . . 15
N
i 2-1 A comparison of our respresentation of
i influence with the conventional repre-
; Sentltion [ [ [ . . - LY [ [ 3 [ 3 L ] - [ 3 [ 3 [y ° - . 3 3

2-2 An influence diagram suggesting an influence
calculus s 4 a4 4 s s s s s s e e e e s e s =« 34

2-3 The effects of approximations on the in-
fluence matrix e s s s s s s s s s s s e e s . 41

2-4 The elements of the approximate influence
matrix for the influence of {x|S} on

{y'S} L d L * L] L A4 » L A L ] . L 4 L * L) L] L] L] L . L] 43

3-1 Examples of the influence calculus using
the procedure of Table 3-1 ., ., ., . . . . .

3-2 An influence diagram with a direct and an
indirect influence e s s a4 s s s e s s s o « . 48

3-3 The elements of the influence matrices of
Equation (3.2.13) [ ] L ] L] L ] L] L] [ ] L] L 3 L ] L] [ ] L] . . 53'54

3-4 Two independent influences on a variable. . . . 56
3-5 An influence diagram with a direct and two

indirect influencea . « « « « « « o « o« « s « « 56
3-6 The elements of selected influence matrices

of Equation (3.2.16) . . . . « ¢ ¢« ¢ ¢« s+ . . . . 58,59

ix




St

Infivence for the modified entreprenuer's
PtOb 1.‘ . . . L] L [ ] L ] L L ] L ] L ] L] » ® L] L ] ] .

Dupendence of the conditional means and
variances for the modified entrepranuar's
pmb 1“ e [ ] L L L J L] L . . L ] L ] L L ] L ] L ] L ] ® L )

The influence matrices for the influences
Ofy.ﬁ.lnde. ¢ 8 3 8 8 s s 8 s s s s

3-10 The influence-consequence matrix . . . . . .
3-11 The approximate influence matrix for deter-
ministic influences . . . ¢ ¢« . ¢ . o0 .
3-12 Deterministic sensitivity for two variables
3-13 Modeling policy diagram for treating fhe

variable x; or x, as uncertain on the
basis of their deterministic sensitivities .

3-14 Deterministic sensitivity for a decision:
.n.ly.i. melﬁ L] L] L] [ . 13 [ ] [ . . L .

3-15 Functional forms for the deterministic
sansitivities of Xgo Xgo and L

3-16 Modeling policy diagram for treating the
variable x5 or x7 as uncertain showing
the location of the transfer price deter-
ministic sensitivity . .« . . . ¢ . .00

4-1 Flow chart for the quadratic approximation
procedure using the conditional mean and
variance L] - L ] - L L] L] . L ] L ] L] L] * L] L] * L]

4-2 The marginal population distribution for
males ages 25 through 64 . . . . . . . . .

4-3 Conditional mean, standard deviation, and
second moment of income given age . . . .

4-4 Flow chart for the quadratic approximation
procedure using three conditional distribu-
tions L ] L] - L] L ] L ] * L ] L ] . L ] L ] L ] L] L] L] L ] L ] L ]

4-5 Three conditional distributions on income
given age . ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ s e e 0 e a0

4-6 . Two slices through the conditional surface
and their quadratic approximations . . , , .

« « 63
* L] 6‘
. 66
« « 10
.« 176,77
. L 78
L L] 80
. . 83
« « B85
L] 88
« « 95
. 96
« .« 98
« « 100
« « 101
+ + 103

Sy U |



Page
Comparison of the quadratic and Aiscrete
approximations with the exact marginal

distribution on income . . . . ¢ ¢ ¢ ¢ ¢ o o . . 104

4-8 Flow diagram for the conventional method

o of discretisation e o o o o s e s s e e v e s o 105

- 4-9 ~ Bvent tree resulting from discretization . . . . 106
4-10 An example showing the dependence of the

;;x; o exrror due to discretization on the con-
S ditional mean aj; and the conditional
..m‘mt‘z ...............112

411 Discretization approximates conditional
moments by a piecewise linear function . . . . . 1ll4

A-1 Graphical interpretation of the covariance
.ppmmtion @ ® & e & ® ® & & & & B & & * = » o A"' 3

i

xi

N Armt Sed - Mraa S e S ot B 02 Srd SROSEN M BF R RN UINE S A BN WM SN




CHAPTuK I

\ Introduction and Overview

‘ \Ssnecision analysis combines the decision maker's uncer-

-tainty about problem variables, his structure relating the

decisions and outcomes, and his preferences over outcomes to

obtain a logically consistent decision. Structuring of the

decision problem is part of the foundation of decision

nnalylis.lgrf
The primary function of the decision analyst

g is to capture the relationships among the many
' variable: in a decision problem, a process
called structuring: -

e e PP g

R L

The purpose of this research is to improve the

decinion analysis structuring methodology. There must be a

decision analysis theoretical foundation for the method-

ology, so that the resulting structure conduc?s to a solution

A
At the same time, -we requiredthat

A

the methodology be useful for communicating the relation-

ships in Q*ESEgiex decision problem. In the~fe}lowing*two~~ﬂ£:>/

of the decision problen.

e OwChor

———
:seetiens—we-discusyﬁghese two requiremepts and reviews Py

/<j ’/h 7’—-’—;/2‘; 3 ;.;--'\""‘-"J}
previous research related to each. Albppdy . "N L
,-l/!.)x:ﬂﬂkf"')‘ /
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1.1 Decision Analysis Theoretical Structuring

To be precise about what is required of the structuring
process, let the random variable v represent the profit and
d the decision variable. Then, a decision model structure
should permit the computation of the conditional profit lottery
{v]d,S}f Eg_the decision maker believes the profit lottery ﬁuxvnﬂf“*?
depends on a set s, of state variables, it may be convenient

to compute the profit lottery through the expansion equation

(1.1.1) {v|a,s} = / {v| 4, 8,,5}(s,|d,5}ds, .
8
=1

The decision maker may believe that some of the variables
included in 8, depend on other state variables. Let the second

set of state variables be denoted as s

-2 . Tl‘&en ’

[ (vlais).sHs,la,s,05H s, 14, 5)as a5

1
1- 52

(1.1.2)  {v]4,s} =f
-]

The most general probabilistic expansion of this form is

(1.1.3) {v|a,s} =./; ./; {v|d,§1,§2,s}{§1|d,§2.S}{_s_zld,s}dslds2 .
1 2

However, since all of the state variables upon which v depends '

are included in 8

{VId'_s_l,EZ'S} = {V|d1'slls} 1

and (1.1.3) reduces to (1.1.2). f

* The notation {v|d,5} represents the probability density
distribution on the variable v conditioned on the vari-
able d . Since we take the subjective view of probability the
symbol S is included to represent conditioning on a particular
state of information.

2
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until the decision maker is comfortable in assessing ’{gnld,S}

The expansion of (l1.1.2) can be repeated to, say, 8,

»and the 6ther required marginal probability distributions. The

.relulting expansion is

(1.1.4) {vld,S}-f f f f (vla,s,,5}s,ld,8,,5) ...
8 8 8 'S'N

=1 =2 -n

{gn-lld'gn's} °"‘ {:S-Nla's}d_s_l d_3_2 LI dgn s s . dEN

and is represented in Figure 1-1.

Generally, the expansion procedure described by equation
(1.1.4) is impractical, becazuse it results in so many dependencies
between state variables. If the expansion above includes a total
of k state variables, then the number of possible dependencies
is (k-1)! For complex decision problems, the cost of including
every dependency in the analysis is prohibitive and unwarrantable.

The decision analyst uses his judgment to ignore some depend-
enciés and to include others in striking a balance between ex-
cersive detail and unreal simplicity. However, once we admit
that the decision model is not going to include every variable
relationship that the decision maker identifies, then we must
require a theoretical basis on which to select the subset of

*
variable relationships that are to be included. Suppose S,
l<n< N, represents a subset of 8,

(1.1.5a) 8) © Byreees8,C 8.ve00s8y < By -

* AN
Which subsets of variables s, used in equation (1.1.5b),




.FIGURE 1l-1. A Representation Of The Expansion Equation
‘ - Showing The Sets S; Of State Variables




(1.1.5b) '{vld,s}:f f f {vld,_s_;,s}{_s_;|d,s;.sl
R w ] [ ]
| o 8; "% 2N

® *

{i. *
. gnld,s}dgl dgz..fégN.

best represents the decision maker‘'s structure, equation (1.1.4),

as‘the total number of state varisbles decreases?

Review of Related Work in the Theoretical Structuring of

Decision Analysis Problems

The purpose of the deterministic phase of the decision
" analysis cycle is to provide a deterministic structure for a
decision problem and, through the deteriiinistic sensitivity, to
indicate the important variables for inclusion in the probabi-
listic model. This procedure is intuitively reasonable and has
proven successful in over a decade of application. [1,6,7,9,17]
However, so far a theory has not been presented to show that
deterministic sensitivity is the best criterion on which to
determine the subsets g; c 8, of variables to be included in
the stochastic decision mcdel. As a result, it is possible to
construct some examples of deterministic sensitivity that could
make the selection of the stochastic variables ambiguous. For
example, consider a decision model with two independent, un-
certain state variables xy and Xy . Suppose the variables
have identical marginal probability distributions and different
deterministic sensitivities shown in Figure 1-2. If the measure
of the importance of a variable to the decision model is its

affect on the expectation of the profit lottery, then it is




Vhfl(xl)

v-fz(xz)

[ 34

FIGURE 1-2

xl -~ e —— a—

Deterministic Sensitivity For Two Variables
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better to fix x, at its mean and allow X, to be represented

}a: uncertain than vice versa. Because of the linearity of i's

deterministic sensitivity, uncertainty about x, affects the
expectation of the profit lottery in the same way as it affects
the expectation of X, . Hence, only the expectation of X, is
reﬁuired to nodel the expectation o) the profit lottery. An-
alytical support for these contentions is provided in Chapter 3.

Two early articles by Matheson [8] and Smallwood [16] demon-
strate that one could use decision analysis to decide among
possible decision models. This approach, however, requires the
assignment of a prior probability distribution over either the
possible profit lotteries resulting from a complete analysis
(Matheson) or the space of possible models (Smallwood). While
these studies provide an interesting conceptual tool for under-
standing the structure of a decision problem, they have not been
widely used in practice, probably because of the analyst's reluc-
tance to assign the required priors.

More recently Tani [18] suggested a variation of Matheson's
approach that can be used to quantify the dissatisfaction with a
current model. Rather than encoding a prior over possible profit

lotteries, Tani uses the differences between the current lottery

and an "authentic" lottery, which is still a difficult assessment.

Tani assumes “hat the marginal probability distribution encoded
on state variables are authentic.

Wi?h respect to this dissertation, Tani's most important
contribution is the establishment of a philosophical criterion by

which to judge the "goodness" of a model. He introduces the




concept of authenticity as the metric for decision models.

*"Our ideal in decision analysis is not to construct
the perfect model, but rather to obtain the authentic
profit lottery =-- the one that accurately expresses
cur uncertainty about the future." [18]

An authentic profit lottery is one that accurately and fully
expresses the decision maker's beliefs. We have shown elsewhere
how an otherwise attractive structuring device is unacceptable,
because it is not related to the authenticity of the profit

lottery. ([13)

1.2 Practical Considerations in Structure Assessment

i Three important difficulties oppose our attempts to structure

; a decision problem: unfamiliarity, complexity, and numerous par-

} ticipants. First, by unfamiliarity we mean the analyst's unfamil-
iarity with the political, technical, and economic influences in

| a particular decision problem. The decision analysis profession

‘ emerged from the theory with the conviction that the logical
methodology is equally applicable to all decision problems from

deciding on new business ventures or enacting legislation to

unfamiliarity with the important relationships of the problem

: o o Wt

that helps him to maintain the vitally important professional
detachment. [3] However, because of this unfamiliarity, the

analyst requires tools through which the decision maker can

communicate clearly his perception of the problem structure.
A second difficulty in structuring is the complexity of the
decision problem. As the number of variables in the decision

buying a house. 1In fact, it is the decision analyst's initial
problem increases, the structuring task becomes more difficult for



V‘ewa reasons. PFirst the number of possible relationships between
variables increases as (n-l)!, leading to a corresponding in-

orease in the effort requried for the assessment. Secondly, the

decision maker will not apprehend some of the actual variable
§~ relationships, because prior to the decision analysis methodology
ho‘had no orderly way to address them. By contrast, in a small
d@cilion problem, with few variables, the decision maker is aware
E' | of all the relationships between variables and has often spent
“ considerable time in analyzing them.
If the decision problem is complex, then there are likely to

f be many participants in structuring the problem. Even when there
| is a single decision maker, many experts are likely to be con- |

sulted regarding the relationships between variables, as well as,
i’ for probability assessment. Moreover, several decision analysts
é may be involved. Figure 1-3 depicts the various communication
paths required for structuring a complex problem and again sugge.cs

) the need for a powerful communication tool.

Review of Related Work in Structur: Assessment

! One promising communication tool is the influence diagram. ¥a\,7
) }
Influence diagrams were developed at SRI International as an auto- ﬂ%ﬂﬂ '

mated structuring aid for decision analysis. [10] An influence

between two random variables, x and y , is said to exist when

the variables are probabilistically dependent, and an arrow is

drawn to connect the two variables (Figure l-4a).

Definition l.1l. An influence bhetween two

random variables x and y exists if for 1
l
!

same x with nonzero probability,

P B ame pa s S B ik amodEE AaadEL d - umnyu--uumuugnu-u-.--wan-J
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FIGURE 1-3. Communication Paths Required For Structuring A |
Complex Decision Problem
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{(x,y,2|5) =" &|x,y,s} y|x,s} &|85)

- F—O—°

c. {x;y,z|s) = #&|y,2,5}{zly,S} fy|s}

l
t = n n

d. {x,y,z|s) = «&|z,y,s}&z|s}fy|s?

| G0 0 .

)
{
|
) 3
FIGURE le4. The Correspondencce Between Influence Diagrams |
And Assertions Of Probablistic Independence
] 11
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{y|x,s} # (y|s)

Using ihis definition, some rules for the manipulation of
influence Adiagrams can be derived and are discussed in reference
[10]. Bach influence diagram corresponds to a particular expan-~
sion of a joint distribution. For example, the influence diagram

of 1l-4Fc represents the expansiun
« {x,y.z|8) = {g]x,y,sHyl|x,s}{x|s} .
An al*tarnative expansion, represented by l-dc, is
{x,y,z2|5) = {X|Y;z.S}{z|y,S}{y|S} '

and, therefore, l-4c is an allowable rearrungement of the influences
of 1-4b. Comparing l-44 with l-4c shows that the influence between
y and 2z has been removed, and

{x,y,z|5)} = {x]z,y,s}{z|s}(y|s} .

Another important property of definition 1.1 is that it appears
to coincide with the decision maker's intuitive use of the word in-
fluence. 1In past applications of influence diagrams for complex
decision problems at SRI International, when a decision maker or
his expert identified the existence of an influence between vari-
ables (even though it was not mathematically defined for them as in
definition 1.1), the variables were later determined to be prob-
abilistically dependent. Furthermore, influences that were iden-
tified as being strong represented, roughly speaking, more prob-
abilistic dependence than influences that were identified as weak.

Oéher researchers have demonstrated similar structuring devices,

such 28 the interaction matrix method. [2,15] This method indicates

12

A W B SR SR I R kAT M 2 B T 3 AT AT G W AT AT LA AT L L TN L P L% % LM L U LT L Ve A U LA LA LA LA AT AL




the existence or non-existence of interactions or influences in a
matrix form rather than diagrammatically. Rows represent a set of
variables x, ; and columns Yy - An influence between x, and
Yj is indicated by setting the ij element of the matrix to one,
otherwise it is set to zero. When there are sequential influences,
X, influencing yj influencing T, o the matrices can be multi-
plied to show the existence of influences between Xy and 2y
(Figure 1-5). These interaction matrices may be quite large.

There are several important shortcomings in this approach.
First, the term "interaction" is not generally defined. It may
mean different things to the decision maker and analyst, and no
test is available to compare usage of those words. Secondly, a
ranking of interactions between x4 and 2, is determined by the
number of influences that exist between the two. This ranking com-
pletely ignores the questions of the degree and type of the inter-
action.

A final criticism of the interaction matrix also applies to
the current use of influence diagrams. Both require judgment as
to the relative importance of influences or interactions. The
analyst iaments, "Everything is affected to some degree by every-
thing else," and a limitation exists on the number of influences
that can be analyzed. Since interaction is not defined in its use
with interaction matrices, we see little chance that anyone's
judgment regarding the relative importance of interactions is
meaningful. For influence diagrams, a rough notion of more or less
dependence exists, but it is not precise. Figure 1-6 shows an

example of two possible relationships of x and y . In the first

13
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FIGURE 1-5,

Multiplication of Interaction Matrices

14




5 Y
L . —-' }*Suggests a change in
\ variance

i
{y|x,8} }

>

b 4
'4 L— a change in mean

FIGURE 1-6. An Example Demonstrating Ambiguity Abkout The
Relative Importance Of Two Influences




example the expectation of the dirtribution on y is unchanged
given the value of x . However, the variance of that distribu-
tion changes depending on the value of x . In the second example,
the expectation changes depending on the value of x , but the
variance does not. Which of the two cases represents the most

imporiant influence?

1.3 Summary and Contributions of this Research

The example of Figure 1-6 suggests that definition 1.1 is not
a complete description of influence. While it does define the
existence of influence, it does not describe the influence itself.
Most of Chapter 2 is devoted to the development of a mathematically
precise, general description of influence that is consistent with
the condition of existence given by definition 1.1. This descrip-
tion is applicable to both continuous and discrete influencing
and influenced random variables. 1In the final section of Chapter
2, we introduce an approximate description of influence to reduce
the informational requirement.

Section 2 of Chapter 3 shows that the influence of any vari-
able on the profit lottery can be determined by means of an in-
fluence calculus. The notation for the influence of one variable
on another is carefully selected so that the equations for the
influence calculus can be obtained by inspection of the influence
diagram. The implications for the decision model of the various
degreeg and types of influence are conceptualized in the influence-
consequence matrix, which is presented in éection 3.4. We show how

the influence matrix can be used to estimate the differences between

16
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. thofprofiﬁ lottery from the decision model and the decision maker's

authentic profit lottery. Probably the most important philosophi-
cal result of Chapter 3 is that the selection of variables to com-
pose the decision model should depend on the decision maker's risk
attitutde. Several examples are given.

Chapter 4 compares methods for approximating the profit
lottery from information about the distribution of the profit
lottery conditioned on a state variable and the marginal distri-
bution on the state variable. First, we show that it is the
functional form of the conditional surface as a function of the
state variable that determines the amount of information required
to compute the profit lottery exactly. We also show that the

difference between the quadratic approximation, which is the basis

TN - ST N -

for the practical application of the influence concept, and con-
ventional discretization is the assumption about the shape of the
conditional surface. The quadratic method assumes this surface is
quadratic in the concditioning variable, and discretization assumes
it is piecewise linear. Since the gquadratic method is shown to he
as sound theoretically as discretization and to be ccmparable in
both ease of assessment and accuracy, it should be considered as
an alternate method for the solution of decision problems directly
from the influence diagram.

After summarizing the results of the previous chapters. Chapter
5 proposes extending the influence calculus to include decision
variables in order that the solution to decision problems can be
directly obtained from the influence diagram. We show that the i

influence calculus and influence notation extend in a natural way

17




to accommodate decision variables. Furthermore, the influence
vector deacribiné the influence of the decision variable on the
profitllottery may be closely related to the solution of the
decision problem. These preliminary results lead us to encourage
further research in the application of the influence concept to

decision problems.

18




CHAPTER 2

Toward a Theory of Influence

2}1 introduction

~Influence diagrams are an attractive means for assessing
the decision maker’s structure and communicating it. However,
since only the existence of an influence has so far been
dofincd, the diagrams are only useful for spgpifying the
existence of relationships between variables. That is, the
decision maker can indicate using influence diagrams which state
variables are members of the sets sy, s;, .... 8y of the
equation (1;1.4). The influence diagram does not indicate the
nature of the conditional relationships among the state
variables, {vl|s),d,5} or {8,.18,, S}, and there is no
theoretical basis by which to reduce the potentially large sets
g; of important state variables (expression 1.1.5).

The purpose of this chapter is to present a definition of
influence that will extend the usefulness of influence diagrams.
To that end, influence should be defined so that structuring a
decision model using the variables with greatest influence will
result in a theoretically sound decision model and lead to a
solution of the decision problem. We also want a definition
that is consistent with the intuition of both the analyst and the

decision maker . Finally practical application demands that

19
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the degree of influence be either easily assessable or routinely
assessed as part of the decision analysis procedure.
Some possible definitions of influence do not result in a

useful structuring methodology for decision analysis, because they

do not focus on the authenticity of the profit lottery. For example,

mutual information is a concept from information theory that is
used to measure the dependence of two random variables. The mutual

information for variables x and y denoted by Ix v is given by
’

® o {x,yls}
- f f {x,y|5} log 7L 15T 9% dy .
- 00 -

Constructing a decision model on the basis of a variable's mutual
information with other model variables does not result in a satis-
factory decision model. [13] The reason is that mutual jinformation

indicates the importance of a variable to the system model rather

———— - -

than its importance to the profit lottery. This conclusion is

congruous with Tani's claim that the purpose of modeling in deci-
sion analysis is the attainment of the decision maker's authentic
profit lottery.

2.2 Continuous Random Variables Influencing Either Continuous
Random Variables or Discrete Random Variables

Since this section is rather lengthy and includes several
theorems, lemmas, and their proofs, Table 2-1 outlines the essen-
tial argument presented in this section. Our interest is mainly
in the matrix g{x g} . However, to explain the meaning of the
elemenés of this matrix and to introduce the notation for deriva-

tives of moments of probability distributions, it is necessary to
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Table 2-1

Survey of the Argument Presented in Section 2.2

1. Theorem 2.1 (weak): A particular matrix M = § if and

only if the moments of {y|S] are independent of {x|S}.

2. Lemma 2.2: Suppose {yl|S} has an analytic character~

istic function. Then, if its moments are independent

of {x|S}, the aistribution {y|S} is independent of {x|S}.

E 3. Theorem 2.4 (strong): Suppose {y|S} has an analytic
E characteristic function. Then, M = ¢ if and only if
{yls} is independent of {x|S}.

4. Lemma 2.5: The matrix M = 8 if and only if another

S} =
matrix afxls 0.

5. Theorem 2.6: Suppose {y|S} has an analytic charac- -

teristic function. Then g%ﬁ ) @ if and only if

{yls} is independent of {x|S}.

6. Corollary 2.7: Suppose {ylS} has an analytic charac-
teristic function. Then, the condition g{x!s} ¥ 0

is equivalent to probabilistic dependence and the

existence of an influence according to Definition 1.1.
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first consider the matrix M , which will presently be defined.
We also use the matrix M to explain the necessity of probability
densities that have analytic characteristic functions.
The main results of this section are theorem 2.6 and corollary
} 2.7. They show the close relationship between the influence matrix
; and our previous use of influence and justify our interpretation
of the influence matrix as a description of the influence.

To begin our development of a description of an influence, we
consider a limiting case of the influence between two variables:
no influence. In this case, the authenticity of the profit lottery
i or ay other influenced state variable is unaffected by the authen-
E ticity of the influencing variable. What is the mathematical char-
t acterization of the nonexistence of an influence?

Let the influenced variable y , have a probability density
function or probability mass function {y|S} . Our development in
the rc.iinder of the chapter will not depend on whether y is con-
tinuou or discrete. If y is the value function, then ({y|s}

r is calied the profit lottery, and the profit lottery may be con-
ditioned n a setting of the decision variable. However, the
develop: ‘'t that follows can easily be modified to include the
conditioning by a decision. Let x be the influencing state
variable with probability density distribution {x|S} . Again,
this state variable could be conditioned by a setting of the deci-

sion variable. We begin with the expansion equation,

(2.2.1). <y"|s> = f <ym|x,S> {x|S}dx .
x
m=1,2,...

22




Bxpanding <y"|x,5> in a Taylor's series about <x|s> and in-
tegrating, we obtain

(2.2.2) <yn'S> - <ym|x = X,5> +

| n,.m
1 | F1'_ d <yJ:,S> <(x- %8>
' n=2 ° dx =
x
m=1,2,...

Equation (2.2.2) shows the dependence of the mth

moment of the prof-
it lottery on the central moments of the marginal distribution of
the state variable {x|s} , and on the conditional distribution

of y given x , {y|x,5} . This equation includes ordinary

monments of a distribution,

L]
<" s> -j x™{x|s}ax

) and central moments,

0

<(x-x)"|s> =I (x - x){x|5}ax .

-00
These two equations are related, since (x- x)n may be expanded
| and then the expectation operator applied, e.g.,
|
|
2) 2-2x§+§2|s>

<(x-X)°ls> = <x

= <x?|s> - <x|g>2

Sometimes we denote expectation with a bar over the variable, as
for example
<x|S> = x .

th

The m~ moment of y is a function of eve-y moment of the

state variable distribution according to equation (2.2.2),

(2.2.3) <yPIS> = £(<x|S>,<(x-%) 2|55, <(x-x)3|5>,...)

23
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The functional form of f£(¢) is determined by the functional

form of the conditional distribucions <ym|x,s>. If the mth

moment of the profit lottery is unaffected by a small perturbation

th

in the n central moment (n = 2,3,...) of the state variable dis-

k, tribution, then it must be true that

| a<yn|s> - 3f
a< (x=-x)" |5>| _ 2 < (x=%) "] 5>
e X,<(x=%)“|8>,... n=2,3,...

Differentiating (2.2.2) gives

: m n__m
| (2.2.4) by Is> | o1 derdxsy| .,
% < (x=x)" |5 3 * dx z
i’ n = 2’3'00'
f Similarly,
| m m n+l_m
@ <y |s>| _d<y |x,S> 1 4" ¢y Ix,5> =.n
| (2.2.5) 575" '—Lglﬁ"_— + 2 AT nFl <(x-x)"|s>
} b = n=2 a %
= Q .

; Both (2.2.4) and (2.2.5) are functions of the expectation of the
marginal distribution of x and both are evaluated at the nominal

value <x|$> . Equation (2.2.4) shows that the rate of change of
th

the m moment of the profit lottery is independent of the magni-
b tude of the nth

central woment of the state variable <(x-®" |s> ,
th

n=2,3... However, from (2.2.5) the rate of change of the m

moment with respect to <x|S> may depend on the magnitude of every
nmoment of the state variable distribution.

Now, suppose that the marginal distribution of the state vari-

able x is changed in such a way as to perturb its mean and central
moments slightly. If the profit lottery is unaffected by the change,
then equations (2.2.4) and (2.2.5) must hold for

24
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(2.2.6)

¢ >

o
5<x|s> -

'

n = 1.2....

In matrix form this condition is N = 0 where

2yl s>

<xls>»

]

L I Y
-

a<y™]s>

!

The authenticity of the profit lottery can only be affected

<yls>
3<(x-x) |s>

a< (x=x |5>

X

-

by the authenticity of a state variable distribution when the

profit lottery is altered as a result of changes in the state

variable distribution. Hence, the development of the last few

pages suggesi:s the following:

Theorem 2.1 (Weak Form). The moments (if they exist) of

the marginal distribution {y|S} of a variable y are
independent of the marginal density distribution ({x|S}
of a variable x if and only if M = 0 , where M is

defined by equation (2.2.6).

rroof: First, assume M = 0 ., Then, by (2.2.6),
b n_.m
(2.2.7) & ¢ ‘Yf'§'3> =0 forallm and n > 1 .
’ ax’ =
x
. m m m
b Hence, <y |x,5> is not a function of x , <y |x,$> = <y |$> ,
and the roments of {y|S} are independent of ({x|S} . Next,
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assume the moments of {y|S)} are independent of {x|S} . Let
{x|S} be an arbitrary probability density function on x .

By equation (2.2.2), we have

aPey®

ax®

(2.2.8) <Yn's> - <y‘|x = §'3> + 2 311_ X,5>

<(x-x)"|s>
n=2 -

X

sSuppose {x| s}' is another probability density distribution

th

that differs from (x|S} only in its n~ central moment. Then

since the moments of ({(y|s)} are unatfected by ({x|s} ,

n,_m
(2.2.9) <yPls> = <yPlx = X 5>+ 3 glr d< ° 22
ax

]
<(x-x)"|s>
n=2 ° -

t

Bquating (2.2.8) and (2.2.9) and noting X = §. yields,

n__m
qa <2H£x,s>| < (x=%) " 5> =

d"kiylx,s>l
ax x

[ ]
< (x-x)n|s>

1
n?

1
n’

% E
which is only true if

1l dn<2wlx,s>
[]
n - dxn

I = (0 .
|z

Ll
If the two distributions {x|s} and (:}S} differ only in

their means, equating (2.1.8) and (2.1.9) gives

(2.2.10) <yx = X,8> = <y™|x = I,5>
&«
Since {x|S} and therefore x are arbitrary, equation (2.1.10)

requires that,

"Theorem 2.1 as presented above falls short of claiming that

distribution {y|S} is independent of {x|S} . That claim
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requires that independence of all of the moments implies in-
dependence of the distribution itself. Under certain conditions
on {y|S)} , one can show that this independence implication

! holds, and these conditions lead to a stronger version of Theorem

2.1.

Lemma 2.2: Suppose {y|S} has a characteristic function

f(is) that is analytic in a neighborhood of s = 0 , where
8 1is a complex variable. If
<y"|5> = <y®|x,5> , n=1,2,...
then
{y|s} = {ylx,s}
Our proof depends on a theorem proven by Neuts [12]

and restated here.

Theorem 2.3 [Neuts]. If the distribution {y|S} has a

characteristic function fy(is) that is analytic in a

neighborhood of 8 = 0, then

-k
(2.2.11) £, (is) = 3 5¥-£¥L§3(is)k

k=0 *

Proof of Lemma 2.2:

Using the hypothesis of this lemma with equation (2.2.11)

we obtain,

® _ k
(2.2.12) £, (is) = kzo 5¥—{§4§3(is)k

The right-hand side of (2.2.12) is the Maclauren's series for

the characteristic function of ({y|x,S} , fy]x(')' Hence

£,(i8) = £ (is)

Y|
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Since the characteristic function has a unique inverse,

{y|s} = {y|x,s} .
while our lemma is concerned only with independence, Theorem 2.3
addresses the broacder issue of when a distribution is determined
by its moments. A distribution is not generally determined by
its moments, and there are several examples that demonstrate
the :I.ndetemi.mncyx[nl )‘rb these same examples sdga& prohibit
us from claiming in Theorem 2.1 that the distribution {y|S} is

independent vhen M = 0 . However, with the aid of Lemma 2.2,

we introduce another theorem.

Theorem 2.4. (strong form). Suppose {y|S} has a

characteristic function f(is) that is analytic in a
neighborhood of 8 = 0 . The marginal distribution
{y|S} on a variable y is independent of the marginal
density distribution {x|S} on a variable x if and
only if M= 0 .,

Proof:

First assume M = 0 . By Theorem 2.1 the moments of {y]|S}
are independent of {x|{S} . By Lemma 2.2 {y|s} = {ylx,s} .
Next assume {y|S} is independent of {x|S} . Then the moments

of {y|S} are independent of {x|S} . According to Theorem 2.1,
M=20.

We defer discussion of the importance of the matrix M and its
connection with influence since there is a more useful form of

Theorem 2.4. By writing




(2.2.13) <(y-9)®|5> = <y®|5> + ... + (-1)"\((!“‘.‘_‘”) sy" T |g><y|s>T

+ oe. + <y|S>®,

m=2,3,...

and differentiating we obtain, oO<r<m
< (y-§) 0| 8> a<y"| s> '
| 3¢ (x-2)"| 5> |- 3< (x-x)"|5> |+
3<y™ Fls> m-r
(2.2.14) + -1)‘( m ) leyls>t + rey 5>
. ( {m-r) YI 3<(x-§)r|5’> - |
<y‘3>r-l 8<yLS>

+ oo, + mey|s>™L 3<Ylf>n
- 8< (x-x) " [S>|_
X X

3<(x-§)n|S>

m=2’3’ooo
n=2,3,..0
O < r <nm

Each of these terms can be evaluated with the help of (2.2.4)
and (2.2.5).

Now consider a matrix denoted by g{x 3 and defined by

iyl S a. 3y=yI® s>
iKx | 3 Kx|s> 3
S} o ' i
(2.2.15) G : .
<KylS> ‘ L. < y~y) Mg >
K (x~X)" 5> i% < (x=x)|5> | =
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_5)m m .. fmf=r ‘A<y™F|s>
.2.16) SSEIIer Ldglle L ot (e Sl

Lemma 2.5. The matrix M = 0 if and only if the matrix

al -%% = 0 , where M is defined by equation (2.2.6) and

i 5

%— by (2.2.15).
. - _ d{yls}
For convenience of notation let N = x15T °

Suppose M = § , then we must show that N =0 for

all n,m . By equation (2.2.14)

m=-r_ =r-1l d<y|s> -m~]1 d<y]|s>
+ y" fr §f a;¥+§;$+ ceo + my™ E?¥+§§

where d<-+|S> represents d<(x-x)%|s> for n = 2,3,...

Sy
Since the m'P® column of N , d<é¥.%;>13> is a linear

combination of the columns of M according to (2.2.16),
M=g¢g implies N=§ .
Now, suppose N = § . We show by induction that M = ¢ .,

Comparing eguations (2.2.6) and (2.2.15),

Mn,l = Nn,l all n .
Let
= 1 < .
Mnrj Nnrj J m

By hypothesis,

(2.2.17) M, =0 j<m.

n,J

{

B



E
|
y

Since Nn n - 0 for all n, equation (2.2.16) becomes
’ R

d<y™| s> r (myi-r a<y"™ s>
(2.2.18) 0= St + ... + (-1) (r)gy d<- 15>

m-r =-y-]l d<x|S> -m-1 d<y]|S>
+ y I'y d<‘ S>z+ esse + my a<. 5>

However, by (2.2.17)

d<yj s> -
d<e [ 5>

and (2.2.18) reduces to
0= g§¥?£§i .
Consequently
Mn,j =0 j<m.

o L d

By induction, N = 0 implies M

Using Lemma 2.5 with Theorem 2.4, we immediately obtain:

Theorem 2.6. Suppose {y|S} has a characteristic

function £(is) that is analytic in a neighborhood

of s =0 . The marginal distribution {y|S} of a
variable y is independent of the marginal density
distribution {x|S} of a variable x , if and only

e diyls} _ di{yls} . :
if Fritsy = 0+ where ET%]S is defined by (2.2.15).

When an influence exists between two variables, a matrix

diyls} , .
of the form of 3T§+§T characterizes the influence., It is a
particular representation of how the authenticity of one dis-

tribution depends on the authenticity of another distribution.
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'ijmﬁi n,m olement (n > 1, m > 1) is the effect on the m

th

central moment of the influenced distribution of a unit change

in the nth central moment of the influencing distribution
(Equation 2.2.14).

Since £h§ matrix is null when no influence exists and
indicates the type of dependency when an influence does exist,
we call that matrix the "influence matrix" or simply the
"influence" of {x|S} on ({ylS} . We denote the influence
matrix describing the influence by %%§+%% .

Many distributions of practical interest, such as the
uniform, exponential and normal, do have analytic character-
istic functions. However, it is not really necessary that the
marginal distribution {y|{S} have an analytic characteristic
function. By using Lemma 2.5 with Theorem 2.1, a weak version
of 2.6 can be obtained that gives d{x g} = 0 if and only if
the moments of {y|S} are independent of {x|S} . 1In all the
work that follows we are only concerned with the moments of the
influenced distribution. Furthermore, we use the influence
matrix to describe influences when they are known to exist, not
to discern their existence.

One implication of the matrix definition of influence is
that an influence diagram should be drawn as in 2-la rather than
2-1b. An influence is the impact of one marginal distribution
on another. Looking back to definition 1.1, it is clear that

the existence of an influence means that the dist;;bution is

influenced rather than the variable. However, definition 1.1

o 1 e ——— e <

is ambiguous about what the influencing factor is.
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a.

- &[5}

b,

FIGURE 2«1, A Comparison Of Our Representation Of Influ-
ence With The Conventional Representation
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While the difference between 2-la and 2-1lb is not essen-

tial, it distinguishes influence diagrams from other structuring

co
devices. By emphasizing that an influence relates two prob- } .

o

ability distributions, the users of the diagrams are reminded 47

that the relationship may be probabilistic as well as deter-

ministic and noncausal as well as causal.

Influence Matrix Notation is Conducive to
An Influence Calculus

d{y|s}
x|S

because it leads to a framework for conceptualizing and analyzing

The notation for the influence matrix was selected
the influences represented by a complex influence diagram. 1In
particular, it supports a calculus of influences.

Suppose three variables x, y, and 2z are related as

shown by the influence diagram below:

FIGURE 2-2. An Influence Diagram Suggesting
An Influence Calculus

Given the influence of {x|S} on {y|s} , as described by the

. d{y|s}
matrix ITx| s

by %%§+§%, how can the influence of {x|$} on {z|$} be com-

, and the influence of {y|s} on {z|s} , described

puted? Recalling Equation (2.2.3)

{
1
!
i
!
1
'
!
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(2.2.3) <y®|S> = £(<x|5> , <(x~%)2[5> , ..., )

every moment of {y|S} depends on every central moment of
{x|S} and its expectation. By equation (2.2.13), every central
moment of {y|S} must also depend on every central moment and

the expectation of {x|Ss} ,

\2.2.19) <(y-§"|s> = £ (<x|5> y<(x=%) 2|85, ...)
Similarly,
(2.2.20) <z|$> = g, (<y|s> < (y=-) 2|85, ...)

<(z-z)5> = g_(<y|s>, <y-7121s> ...)
By the chain rule of differential calculus,

(2.2.21) 2z=B) 715> | 3<(z=n)T]s> acy|s> 3<(2-8) 5| 5> a<(y-3)3ls>

+
a< (x=-x) 7| 5> a<y| s> 3< (x-x) 05>  3<(y=-9) 25> a< (x~x)T 5>
+ L BN J
Since (2.2.21) is the matrix product of the rth column of g{; g} ’
and the nth row of d{x g} , We can write

d{z|s} di{y|s} d{z]|s}
(2.2.22) d{xls'} = atxllsI d{ylsI

which is analogous to the chain rule of differential calculus.
We pursue the culculus of influences and its form for complex

influence diagrams more thoroughly in a later section.

2.3 Discrete Random Variables Influencing Either
Continuous or Discrete Random Variables

There are many discrete events, such as whether or not it
rains tomorrow and the number of senators voting for a particular

treaty. Sometimes the probability mass function for these discrete
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events influences a probability density function of a continuous
random variable or a probability mass function. To extend thé
influence matrix concept to include this situation, let {x|s}

be the influencing probability mass function, and let ({y|s} be
either a probability mass function or a probability densiti func-
ﬁion. The quantity x takes on the values X for 1 <k <K
with probability Px(xk). Our approach is to fit a continuous
curve through the points <ym|xk,s> at each point X, - Then,
these curves can be used to derive equations for <ym|S> in the
same way as in the previous section. Let the function £ (x)

satisfy the following conditions:
(2.3.1) £7(x,) = <y'Ix 5> k= 1,2,...,K

The function f£"(x) is not unique, and such a function always
exists. ¥or example, polynomials of degree greater than K-1
can be found which satisfy (2.3.1). Writing the Taylor'c series

for f"(x) about x = x gives

(2.3.2) F) = ® 43 3 G x-0n .
n=1 """
where M = a"e™ (x) .
n dxn

This expression leads to,

nl'._.>

<y <ym|xk.S> P (%)

L ! IS

- -1 - -
(2.3.3) = (£™(x) + nz_ln—: f‘r‘:(x) (xk—x)n] P ()

= R+ nzz L < x-x)" s>
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Equation (2.3.3) allows us to define the elements of the

influence matrix for a discrete influencing variable with egna-
tions similar to those we use when the influencing variable is

continuvous., In particular, we can write

a<y"|s> L M(x
2.3.4 “n (x)
( ) ac(x-x) s> PP
3<y™| s> £ 1 ™ (x) <( -x)"| s>
(2.3.5) D = 1(x) + 422 ar Enep (X X=X
and
< y-Pls>) L2l |,
a< (x—;)nl S> § 3< (x-i)n|S>|;(
)
| a<y™ ©|s> | m-x
2.3.6 + (=¥ m ) feyls>t S| T Ty s>
( ) -1) ((m—r)) { < (x=-%) Tis> - |

<yls>r-l 8<z|s>

2 + ...+ m<y|S>m--1 9<ylg>
a<(x—xf1s> _

< (x-%) P | 5>

X X

| m=2,3,...

n=2,3,.-.

Equations (2.3.4) and (2.3.5) differ from (2.2.4) and (2.2.5)

only in the replacement of the conditional moment <ym|x,s> by

the function fm(x). Equation (2.3.6) is identical to (2.2.14).
The similarity of these sets of equations means that the

theorems and corollaries presented earlier for the case of a

continuous influencing variable are applicable to the case of

the discrete influencing variable. No essential changes are

required in the proofs. Hence, the influence matrix g{x g} .

with its elements appropriately defined, can describe the

CY o g % S W W 00 Q. %
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influence of one random variable on another, whether the

variables are continuous or discrete.

2.4 Approximation to Obtain Finite Influence Matrices

One difficulty with the influence matrices presented so
far is that they require specifying an infinite number of
elements. To obtain the information necessary to compute the
elements, the decision analyst would need to assess the marginal
distribution on the influencing state variable and the entire
conditional surface. Table 2-2 shows that all of the moments
of the state variable distribution are required. Obtaining
all of the derivatives of the conditional surface practically
necessitates assessing the entire conditional surface. The
moments or probability densities of the influenced variablc
are also required, but in Chapter 4 we show how to obtain
these moments from other information. B

Since our intention is to use the influence matrix fé ‘NW
structure the decision problem, an approximation to the in-
fluence matrix may be sufficient and desirable. The analysis
of the influence matrices is likely to show that some state
variables are unimportant to the problem. If a variable is
determined to be unimportant, then most or all of the informa-

tion obtained about the unimportant variable will be irrelevant

to the remainder of the decision analysis. Hence, it is im-
portant to determine the structure of the decision problem i

with as little information as possible.

The numbers of nonzero elements of the influence matrix

can be reduced to four by making the following approximations:
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Table 2-2

Information required to specify the Complete Influence

Matrix.

e All derivatives of every conditional moment,

dn<¥mlx,3>

dxn

x
e All moments of the state variable distribution.

<x|s> , <(x-x)nls> n=2,3,...
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1) . The profit lottery can be adequately described by

its mean and variance.
2). Every conditional expectation and second moment
- is quadratic in the conditioning variable.
The severity of the first approximation depends on the
- intended use of the profit lottery. With only the mean and
- variance, one can adegquately represent the mean and the dis-
peraion about the mean. In many instances the certain equiva-
lgnt can be determined to within a few percent using the approxi-
mation, [14]

| (2.4.1) <y|s> = <yls> - %- Yeyls> .

This equation states that the amount the decision maker

would accept for certain, rather than face the uncertainty of

the profit lottery, is aprroximately equal to the expectation

of the profit lottery less an amount proportional to the variance
of the lottery. The constant of proportionality Y is a measure
of the decision maker's attitude toward risk, and it is called

his risk attitude. Questions about the cumulative probability,

which are sometimes important, however, can only be crudely
answered using these approximations.

By the first approximation, the influence matrix of Figure
2-3a simplifies to a matrix with only two nonzero columns (Figure
2-3b) . Approximation 2 is not an approximation of a probability
distribution by a quadratic function. Rather, it is the approxi-
matioﬁ of two functions of the conditioning variable by two

different quadratic functions,
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a. axis) |raidr|s
eyl8>

b. ﬂ.ﬂﬂ-

a{x|s)

e (x=H)2|S>)

<y]8>

3cixn=-x)"|S>

.

L .

.'<z|5.~|
x

1ex|S>

ttzlS»

dc(x-%)“|S>
deylS»
e (x-¥)"|8>

ayls}) .

.acy‘8>

C. d(x]S)

aex|S> 5

i<y]S>]

.
_x.I_T_|;

Ve (n=x)“|8>

< {y= bk
-

de (x-x)"|S>

< (y=y 2 S
1ex|S>
de ke S»

d< (x=x)“|S>
< ly-3) 3]5>
v (x-x)"|S>

1< ty-3) 2|5 >

< » 3 S»
yex|3»
1ely-3) ]8>

1< (x=X) lS"

3¢ !!-!—I 3 |3>

< (n=x)"|S>

0 .
0 .
0 .

1< (y-3) s>

I<x|S>

< (y=-3) 3Is >

<x|S>

2< (y-3) ]S>

1< (x-x) “ IS >

FIGURE 2-3.
Matrix
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The Effects Of Approximations
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] . .
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(2.4.2) <y®|x,5> = ko + k‘(xﬁx) + Xk, Bx-x)2 m=1,2

Using oaly this approximation, the influence matrix of 2-3a
sinplifies to the ﬁatrix with zero elements as shown in Pigure
2-30. Applying both approximations gives the four element matrix
of Figure 2-4.

Approximating the influence matrix with a 2x2 matrix
considerably reduces the informational requirement. The approxi-
mate matrix only requires four derivatives that describe the
conditional surface, and the mean of the state variable distribu-

tion.
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d<y|S dv<x|s> T
. di|s) | d<x|s|; a <x|s>|3 o
: a <vyls> Q¥ <ylss
v v
; a’ <x|s> |- a” <x|s>|<
L 4
: - *
| ) h, h ~2y|s>h
| #
N
Sy gyl
h o
where ) 2
- X Y X,5> . d%«< ylx,5>
e e |
x X
hx*=’d<2xs> h*_d2<2x,S>
ax - xx dx |;{-‘

Mm“

FIGURE 2-4. The Elements Of The Approximate Influence

Matrix For The Influence Of {x|S} On {y|35}
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CHAPTER 3

Developing Decision Models from Influence Matrices

3;1 Introduction

The influence matrix, as developed in Chapter 2, provides

-a new way to conceptualize the influence of a variable's proba-

bility distribution on the profit lottery. 1In this chapter, we
show how this conceptualization can be used in the development
of a decision model. Though judgment still remains an essential
part of the decision model, intuition about the importance of

influences in the model is not required.

3.2 Influence Calculus

Chapter 2 demonstrates that an influence calculus exists for

ceneral influence matrices. The simple example of {x|S} influencing

{y|s} influencing {z|S} suggests that the influence calculus
could be used to reduce complicated influence diagrams to simple
diagrams involving only a few variables. This simplification
would allow one to describe the total influence of any variable
in the diagram on the profit lottery.

These possibilities motivate the more thorough development
of the influence calculus presented in this section. We begin
by demonstrating a general procedure for computing the total in-
fluence of a variable on any other variable appearing in the

influence diagram. The total influence is the sum of its direct
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influence on the variable and its indirect influences, through
intermediate variables. Next, we derive the mathematical forms
for the elements of the influence matrices for several basic in-
fluence diagrams.

In the computation of the elements of the influence matrices,
we sacrifice the generality of the infinite, exact influence
matrix for the reduced complexity of the 2 x 2 approximate
matrix, though a more general and mé;e complicated development
is possible. The influence calculus is deriveda for influencing
variables that aré continuous. However, it is also applicable
for discrete random variables and mixtures of discrete and con-

tinuous random variables.

An Influence Evaluation Proceiure

If each of the arrows of an influence diagram is labeled

with the proper influence matrix, then the equation for the total
influence of one variable on another can be easily determined

directly from the diagram. The rule for labeling influences is

very simple. An influence is labeled as a partial influence,

for example 2{z|5}) if the influenced state variable is in-
31x|5T .

fluenced by more than one state variable. If it is influenced

by only one other state variable, then it is labeled as a total

d{y|s}
xS °

illustrates a procedure for determining the total influence equa-

influence, for example Table 3~1 presents and

tion that uses the influence diagram and is applicable to com-
plicatéd diagrams. The results of the procedure for several

complex diagrams are shown in Figure 3-1.
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TABLE 3-1

Procedure for Determining the Equation for the
Total Influence of One Variable Upon Another

1. Label all arrows with the proper influence matrix. An arrow
is labeled as a partial influence if the influenced state
variaple is influenced by more than one state variable.

3{2]5}
3{x|5}

2, Determine the direct and indirect influence paths between the
two nodes

a{2]5}

@ 2 s
~

3. Compute the path influences by taking the product (in the
direction of the arrows) of all the influences on the path

3{z g} d {x's} 3{2'3}
3{x|s d{x|g} aly|g}
4. The total influence is the sum of the path influences

d{z|g} _ 3i{z|g} | d{xla} 3{z|g}
dix|g 3{x|g} dlx|gs} 3iy|g
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4(z]s) _ dix|s) wa|s} , dix[s) diyls) 2 iz]s)
| ~diw|s) diw|s) Bils} diw|s) dix|s} s {y|s}
S | L dix|s) d@]s)

' d w|s)} d&x|s})

* b.
a(zls) _a tyls} 3 {z]s)
diw|st 3 wls} 3 {y|s}
L c.

diz|sy _ dix|sy o {zfg} , dix|g} 3 fylg) 23 {z|g)
diw|s) diw|s} 3 {x]s? dlw|g} o {x|s} 3 fylg}

2 ivls)l 3 fzls)
3 wls) 3 fyls)

o Qixls) éiz|s} o tyls? 3 {z]S}
diw]s) dix|s} 2 (wls} 3 {y|s}

FIGUPE 3-1. Examples Of The Influence Calculus Using The ;
Procedure Of Table 3-1
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The only difficulty in evaluating the influence of one
variable on another is that all of the elements of every inter-

mediate influence matrix must be assessed.

Expressions for those elements for several common influence

configurations are derived next.

A Direct and An Indirect Influence

Consider the problem of determining the total effect of a
change in the marginal distribution of a state variable on the
distribution of another state variable. Suppose that the in-
fluencing state variable has both a direct influence and an in-
dir;ct influence, through another state variable. An example of

this problem is calculating the total influence of {x|S} on

{z|5} in Figure 3-2.

{x|s}

FIGURE 3-2. An Influence Diagram with a Direct
and An Indirect Influence

To compute the total influence, we begin by expanding
<zlx,y,S> in a Taylor's series, multiplying by {x,ylS} , and

integrating. The result is

- = 1 v 1
(3.2.1) <z|8> = <z|x,y,5> + 3 fex <x| s> +7fyy !qu>+fxyCov(x,y),
where
. 2
9<2 | X 9 ¢z
£ = X 24, fex = __";l§dbéE » etc.
- - X - .
X,Y X,y
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Taking the partial derivative with respect to <x|S> gives
9<2|S5 > - 9 Cov(x,vy)
(3.2.2) m-l-'s—) fx + fxy ——8—2;'—%-

/
x ' fyy , and fxy

tions made in Chapter 2. Equation (3.2.2) is the direct influence

X,y
Notice that fx are constants by tne assump-
of <x|S> on <z|S> . To evaluate it, the change in the co-
variance due to a change in the mean of {x|S} must be determined.

First, we can express Cov(x,y) in terms of the moments of

{x]|S}, according to Appendix A,

a< x,S>

= < (x-X)

(4
(3.2.3) Cov(x,y) = 3 x% n+1|S>

n=1 dx v

A similar expression could be derived for terms of the form
<(x—§)n(y-§)m|s> . which would arise if terms of greater than
order two were included in equation (3.2.1). Hence, a more gen-
eral development of this type is possible.

If the conditional surfaces are approximated with a quadratic
function in the conditioning variable (approximation 2 of Chapter

2), then

3|S>

v 1 =,
(3.2.4) Cov(x,y) = h, <x|S>*‘§hxx<(x-x;

where

h = 3<x|x,S> and h - 32<X|xrs>
= x

X o x o X 5 x

X

Equation (3.2.4) expresses Cov(x,y) in terms of <x|S> , and

v<x|S> . However, Cov(x,y) can be written as a function of
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<x|8> and <y|S> using
(3.2.5) <y|S> = <y|x,5> + + h__ V<x|5>
e Yi%. 2 Txx .

Solving (3.2.5) for v<x|S> and substituting into (3.2.4) pro-

duces,

2h
= =3
(3.2.6) Cov(ix,y) = ﬁx—: (<y|s>=-<y|x,8>) +%—hxx<(x-X) |s>

In this equation <x|S> and <y|S> are independent variables.

As a result, the required derivatives of Cov(x,y) can be

evaluated,
h2
(3.2.7) aCov(x,vy) - X
-—-—zj- = 2(<y|8>=<y|x,5>) - 2 —=
a<x|5> hxx
2
2h
v b4
= hxx <X|S> Kx—
and
h
aCov(x,y) X
(3.2.8) TY'-é%— 32-}1—}-‘; .
Again, hxx is constant by our approximations in Chapter 2.
Substituting (3.2.7) intc (3.2.2) yields,
2
. 2h
(3.2.9) <z [8>| _ v - _X
5?§+§; z fx ¥ fxy Prx <x|s> B )

A similar expression for the partial derivative with respect to

<y]|5> can be obtained with the help of (3.2.8),
(3.2.10)  3<z|s>] | . . x
a<y|S> Yy Xy hxx *

X
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This squation givaes the direct influence of <y|s> on <z|s> .

The total influence of ¢x|8> on <z|S> can be obtained

by using (3.2.9) and (3.2.10) in

d<z[S>
d<x

(3.2.11)

Equation (3.2.11) says

- 952(5>
%7 5<x|s>

a<z|s>

_t a-’-}—-"ix 2
X,y v

+ d:;¥!3> 3<z|S>

<z|S> 1is the sum of its direct influence and its indirect in-

fluence. . The factor 35£l§i
9 <y|S>

is found from (3.2.1) to be

X,Y

A similar derivation leads to an expression for the influence

of '<x|S§> on <z|$> :

d<z|S>

aV<x| s>

=
- ..

’

(3.2.12)

where 2<_z_l_‘?_>_

aV<x| s>

L4

A<z|5> |
3<y[S>|

X,y
Equations (3.2.11)

V<z|s>

d<22|S>

8<z|S>

aV<x|8>

+ d<y|S>

- - dv<x|S>
X,Y

9<z|S5>
- J95YS5S> ) _
s -

X,y

4

dv<yis> 3<zl$’|
av<x|s> aV<y|s> |-

X,y
o<z |S>

£ . and
av<y|S>

YY

N~

and (3.2.12), along with expressions for

d<x[5> =

d<x;S>

dezls>
- 2< ———+_
2 z|S> d<st| s>
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and

v 2
dv<zlS> - d;z 1S> _ 2¢z|5> d;z|s>
a'<x|s> a <x|s> d'<x|s>

can be combined in the convenient influence matrix form for the

total influence of ({x|S} on ({(z|s} , d{ZIS}

x|35} °
diz|s} _[a<z|s> dv<z|s> 7
S| - - S|~ -
dix|s x|S X, ¥ dx|S x,¥

aV<z|s>

av«x|s>|=- =

d <2|S>

| @V <x|s>

X,y

_ 9{z]|s} diy|s} 23{z|s}
(3.2.13) - —a{—x-{Tf + d_\'H?T gle
The total influence is the sum of the direct influence, %{§+%% ,

and the indirect influence at g} 3 {= g} . Figures 3-3a and

3.3b detail the elements of selected matrices of this equation. §

A Special Case

A special case of two influencing variables cccurs when <

either of the following conditions holds:

a) Cov(ix,y) =0

aX 3y 3 ;’ X3y

b) 32<z|x,x> 32<zzlx,y>! =0

' X,Y

<z|§> = <z|x,y,5> + £ Vex|s> + fyy Veylss>

from which we find

In that case, Equation (3.2.1) reduces to i
52 §
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a2l [ <:|s>’ a?’<:|.s'>| ]
?» &| 3 <x|s> %y < x| X,

| 3_<a|S> a"<:|s>|
; v v
3. <x|s> X7 3. <x|s .i,.i.‘

v 2 * 7
a[ £ Y <x]s> - mEm) £ -2<2lsot ,
| (e < x5>-20 "/ )
} (" - 2<2|SE, )

*
.5¢ St - <zl

£ = a<zlx,y,5> £ 3_32 - z|x,y,5> fxy=3 ?L@.'Mv_é"_
3 X e .7 X,V
Xy Ix X,y Yxay gy
) 2 | |
» 2 2
fx = a <z x' S> fxx* a < g xl 's> f *ga tzz xiz_f__s__)_
aIx - - 3 x = ¥ axay - =
X,y X,y " XY

FIGURE 3-3a, The Elements Of The Influence Matrices Of
Equation (3.2,13)
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"3 {z|8) _-3<xs> VWer|s ]
? (s} !xﬂ»k& _axﬂ»k_

9. <:|S> a"q S
v
y|3> -i; -3 <Y|3’|§’§

- *
= £y+2£xyhx/h fy ~2<z|5>f_+ ]
29,./9, ., ( yx—2<z|s>£xy)
SF 5f. '~ <z|5>f
Sy Styy YY
where
\ £ = a<zlx.Y,S> £ - 32<z X, Y,5>
Y - - YY - -
3 y x,}' 2 y x'y
£ * 6<zz|x,y,S> £ * 33<22 X,Y,5>
Y oy %y Y Xy

FIGﬁRE 3-3b. The Elements Of The Influence Matrices Of
Equation (3.2.13)
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d<al®> o dcsloy,d>
<xXjo> X

, These conditions produce a simplification in the influence
i mai:rix, which is evident comparing a{: s} as shown in Figure
3-3. with

*
£ £ - 2<z|8>f
(3.2.14) ST'+!J‘3{; S} - x x x

’ )
] 172 ¢ 1/2€,, - <z|S$>E

XY

| The direct influence matrix of (3.2.14) can be determined with-
out information about <y|x,S> . Furthermore, under these condi-

tions we have

£ = 3<2|X,y,5>

x - e
ax .y
- 8<z|x,8>
} - [4
| ax %
] , : * *
z and similar expressions for fxx v fx . and fxx . Hence, the

! elements of (3.2.14) can be determined independently of the in-
%
| fluence of {y|s}

L Of course, condition a) holds for the situation depicted in

F Figure 3-4. In that case there are no indirect influences,

and equation (3.2.13) simplifies to

{z!s}

'} )
aix|s

tlla

' af{z

3{z]S}
where 5Tx |5 is given by (3.2.14).
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FIGURE 3~-4. Two Independent Influences on a Variable

A Direct Influence and Several Indirect Influences

Equation (3.2.13) and Figure 3-3 show the proper definition
of the influence matrices when there is one direct and one in-
direct influence on a variable. The development of the equation
can readily bs extended to a higher number of indirect influences.

FIGURE 3-5. An Influence Diagram with a Direct
and Two Indirect Influences

x19) '
(15
|
|
|

For example, for the influence configuration of Figure 3-5, the

proper influence equation is,
d{z|S} - 3{z|S} d{xls} 3{z|s} d{w|s} a{z]|s}
(3.2.16) x[S alx[87 T alx|[57T 3 yls Y ax[sT w3
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The elements of selected matrices are displayed in Figure

3-6a and 3-6b.

The covariances between each variable that influences {z|5}

hv and all of the other influencing state variables must be con-

sidered in computing the direct influence of that variable.
Evaluation of the elements of (3.2.16) requires that assess-

ments be made of the mean and variance of 2z conditioned on the

three variables x,y, and w . It can be easily extended to the
case of more than three influences on the variable 2z . 7In fact,

the appropriate equations can be written down by inspection of

(3.2.13) and (3.2.16). The practical limitation on the exten-
sions of (3.2.16) is the difficulty of assessing moments con-

ditioned on more than three wvariables.

3.3 Influence Vectors

When the influenced marginal distribution is the profit
lottery, it is sometimes unnecessary to describe the influence
on the entire distribution. Often the certain eguivalent ade-
quately characterizes the profit lottery. In those instances
) a description of the influence on the certain equivalent may be
sufficient.

Howard [5] showed that the certain equivalent could be

represented as a power series:

© K
k-~
Vez|s> = 2 5 (-v) 1
) k=1 '
where
Y = the decision maker's risk aversion
coefficient
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kz = the kth cumulant of the profit lottery.

By trunéating-the series and evaluating the cumulants, one can
" obtain an expression of the form

- X - k k-1

(3.3.1) <z|8> = C1<z|S> + kz C, <(z-2)"|5> v

=2

For example, with K=2 , C1=1 and Cz= - %— . If we let

[
3
)
!
!

2 LUk T
(3.3.2) C = [cl Co¥ Cav™ ovn Cpy o o 0],

then we can define an influence vector
d‘kz!s> d{zls} - [3<z]s>
(3.3.3) dix = dx1er °© [3<x 5S>

According to this equation, the influence of {x|S} on the

T T Ay =

37 <z|8>
5 a<(x-%)%|s>

.

X

certain equivalent of the profit lottery is described by a vector
of changes in <z|S> resulting from changes in the expectation
4 and central moments of {x|S} .

The influence calculus applies to influence vectors as well

as influence matrices. For example, if

d{z|s} _ daly|s} , a{z]|s}
da{x|5 dix|S daiylst '

then
L d <z|s> _ a{z|s) c
dix|S} dix|S}
_ d{yiS} .4 <z]|s>
(3.3.4) = E{xy_ﬂ aﬂ-‘Jg—r- .

A special case of Equaticn (3.3.3) occurs when k=1 in




equation (3.3.1), then (3.3.3) becomes

(3.3.5) %},’;—%}—- g{;’;-g-} L o 0o ...]%
..[d“z s> d<z|s> . ]T
a<x]5> |2 d< (x-%)%|8> |

3.4 An Example Introducing the Influence Consequence Matrix

We ﬁave'shown in preceding sections that the influence
matricés when corbined using the influence calculus establish
how changes in the marginal probability distribution of a state
variable affect the profit lottery. Wz have also suggested
that the relative importance of these changes is measurable by
tlie change in the certain equivalent, e.c. g}%%é%i . In this
gsection we propose a method for combining the theory of influence
with the judgment of the analyst as an aid in developing the
dacision model.

To illustrate the method, we make use of a modified version
of the entreprenuer's decision problem, posed by Howard [5].
mhe entreprenuver musi: decide upon the price of his prnduct P
in the face of uncertainty about demand, g(P), and the cost of

his product C{(P). His preofit function is
n(C,q,P} = Pg(P) - Cq(P)
mhe variables C &nd q are assumed to be uncertain. Letting
AC=¢C - C
bg =g - g

allows definition of Aw (AC, Ag,P) as
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(3.4.1) Aw(AC,Aq,P) = P[q(P) + Aq) - c[q(P) + Aq] - AC - w(C,q,P)

which is the change in profit due to fluctuations of C and gq
ubout their means. Both {Aq|S} and {AC|S} have means of
zero and

Veac|s> = 10000

Veaq|s> = 100 .

a An influence diagram for the original problem with modifica-
| tions is shown in Figure 3-7. The random variables Yy, e, and §
E have been added and the dependencies of the moments of

{ac|y,e,8} and {Aq|é,e,S} are presented in Figure 3-8. For
example, ¢ can be thought of as a general economic indicator.

As € increases both <AC|y,e,S> and <Aql|6,c,S> are assumed

} to increase linearly, but the corresponding variances do not

‘ increase. A similar remark holds for the relationship between

AC and ¢ . The following marginal probability densities have

|

} been assumed:

i (3.4.2) vls} = 45 0 <8 <10

} els} = 3 ~1<ec<1
: {s|st = 26 0 <8<l .

From the original entreprenuer's problem, we find

(3.4.3) AT(0,Aq,P*) = 17.58Aq + .0249{Aq)>
and
(3.4.4) AT (AC,0,P*%) = = AC

where P* is the optimal setting of P whern AC = Aq =0 . All
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Boundary of original entreprenuer's problem
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(3.‘.6)

of the following is conditioned on P = P* .

1f we assume the decisitn maker is risk neutral, then by

(3.3.4) the influence vectors are

'a<An!P*,s> . [3s<m]p+,s> a<n|P*,5> T
(3.4.5)
I<Aw|P*,s> _ [ 3<n|p*, 8> a<n|p*is> T
S L 9<AC|S> 9 <Aqg|sS> ]
L. 8¢
2
The cross-partial aaZégk;"S> is zero according to (3.4.1).

Therefore, (3.4.5) can readily be evaluated, using (3.4.3) and
(3.4.4), s

a<am|B*, 5> _ [ . 1. ]T
3{aq (ST Aq Z “AqAq

T
= 17.6 .025 ]

and ;

a<alp*, 5>  _ ¢ 1, T
aC[s [ ac 2 “acac

The elements of the influence matrices for state variables
¥Y,8, and € can be determined from Figure 3-8. The matrices
are shown in Figure 3-9, along with the computations for the
total influence on the profit lottery.

The influence matrices can be useful in explaining the type
and strength of relationships between state variables and the
profit'lottery. Examining the influence matrices shows that

{v|s)} affects only V<AC|S> , and V<AC|$> does not affect
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&n|S> _3a{ac|S} dc<e]s>
div|sy 3 y|sy diac|s

- 0 3556 -1 - 0
) 0 67 0 | o
‘ dex|S> _ 9 laglS) a <x|S>

d{s]|sy 5|8} a {aqls)

;
@ = |0 356 17 6 8.7
{ =

| 0 267 <025 6.6

da|S> _ 3 {ac|S) & x|S> + 3’ {aq] S} A<x|S>
dic|s) dlelS} diac]|sy ' {ec|s} diaq|s}

100 1334 -1 10 0 17 6
= +
0 1335 0 o 10} | o025
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FIGURE 3-9. The Influence Matrices For The Influences
Of v,§, and e.
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<t |P¥,5> . Consequently, neither <y|S8> nor v<Y!S> affect
tho expectation of the profit lottery. On the cother hand,
<x|p*,5> is affected by v<Aq|s> . Therefore, {6|s} affects
the profit lottery éven though it affects orly v<Aqis> .« The
'cffect of <§|S> on <u[P*,S> is small, becaﬁse it acts though
its influence on v?Aq|S> . <¢|S> has a much larger effect on
<x|P*,5> , beéause it acts thouyh its influence on <Aq|S> .
The effact of <e|$> through <Ag|S> is partially cffset by an
opposing effect through <AC|S> .

Selecting Variables for the Model

Sometimes the influence matrix itself will indicate that
a particular variable is unimportant to the problem and need not
be included in the model. For example, since «<n|P*,$> 1is un-
affacted by the distribution on {8|S} in the exampie, the
decision maker will not suffer if {6|S} is omitted from the
model.

In general, the analyst must use his judgment to interpret
the influence matrix. Figure 3-9 shows that <u|P*,s5> is more
sensitive to the mean of {e|S} than to the mean uof {6§|s}, but
is less sensitive to the variance of {e|S} than to the variance
of {38]|5} . Should the uncertainty of both of these variables
be included in the model, or only one? If one is to be uncertain,
which one should it be?

To clarify the roles of the influence matrices and the

analyst's judgment, we introduce the expression

L
(3.4.6) | g—z—;-‘?gi A<x|s> I
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The factor Q;;§+§; is the first tedm of the influence vector
9;%;+§} of eqguation (3.3.3).

In the context of the influence matrix, we think of it as
the change in the certain equivalent due to a change in the mean
of ({x|5} . However, it may also be interpreted as the deter-
ministic sensitivity of the certain equivalent to a unit change
in the variable x about its mean. The factor A<x|5> expresses
the decision analyst's judgment about the difference between the
mean of the distribution assigned to x and the mean of the
decision naker's authentic distribution on x . This difference
may be Jue to difficulties in the assessment procedure, a hasty
assessment, or the fact that the state variable is irfluenced by
many other variakles. Therefore, the quantity given by (3.4.6)
is the change in the certain equivalent that results from ob-
taining an authentic mean of the state variable distribution.

If the value of expression (3.4.6) for a particular state
variable is a large fraction of the certain equivalent or the
difference between certain equivalents for different decision
settings, additional modeling or more careful assessment of that
state variable is warranted. If the value is small, then other
state variables should be considered for additional work.

The number of variables that are treated as uncertain in
a decision analysis problem is usually constrained to six or seven
due to time and budget limitations. Therefore, identifying which
variables should be represented as uncertain is an important

concern. While (3.4.6) can be used to indicate the importance
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of further modeling, a similar expression indicates whether a
particular state variable should be trsated as a random variable

or whether the uncertainty can be ignored and the variable fixed

at ita mean value. The factor 9;55153 in expression (3.4.7),
a'<x|s>| =
(3.4.7) g.ﬁ!lil. v<x|s> .

v
a <xIS> %

is the second element of the influence vector ga%ikg;

We could have multiplied Q:%Eléz_ by a factor Av<x|s> '

the decision analyst's judgment ago;tli;e difference between the
variance of the assigned distribtuion and the authentic distribu-
tion on x . However, by multiplying by the variance v<x|S>
rather than the change in variance, Equation (3.4.7) approximates
the change in certain equivalent that results from fixing x at
its mean and not treating it as a random variable. Appendix B
gives a proof that under the approximations made earlier

9 <z|S> v<x|S> x"'<z|S> - "<z|x = 3-<: S>

(3.4.8) v
3 <x|8>

The influence-consequence matrix of Figure 3-10 conceptu-
alizes the implications of the various combinations of magnitude
for the modeling indicators of (3.4.6) and (3.4.7). The top
portion of each matrix entry recommends an action regarding the
improvement of the authenticity of the distribution assigned to

the state variable. In the lower portion of each entry is a
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The Influence-Consequence Matrix
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recommendation about whether that state variable should be con-
sidered as uncertain or should be fixed at its mean in the
de~ision model.

of part&é%lar interest is the lower left element, which
qorresponds to a large change in the certain equivalent due to
anticipated changes in the expectagzgﬂwgfqgﬁéuééaté variable,
Hut little change when its uncertainty is ignored. In this case,
further modeliig is recommended to more accurately determine the
mean of the state variable. A model of the influences on t e
mean of that state variable might include uncertainty, even
though _he influanced variable itself is not treated as uncertain
in the decision model. To our knowledge, this option has not
bees1 exercised in decision models, ard it is & new result of our
analysis of influences.

Returning to the illustrative entreprenuer's problem, Table
3-2 shows the values of (3.4.6) cnd (3.4.7) for the state vari-
abl-r Y,9, and € . Since a numerical estimate of the difference
between the ausessed mein and authentic mean is required for each

state varia ..e, we have assumed

A<x|s> = .1 Vex|s> .

This expression reflects the feeling that the mean of a broad
distribution is less authentic than the mean of a narrow distribu-
tion. Of course, other functional forms might also be used.

As we mentioned above, vy is irrelevant and may be
ignoreé} m"ceating € as uncertain is not necessary, since its

uncertainty only contributes .08 to the expected value of 200.5
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Table 3-2

The Influence of the Variables y, ¢, and §

and the Modeling Consequence

Y ) €
a<n|s> 0 8.7 76
3<-| 8>
3—;1'—@— 0 6.6 .25
3 <] 8>
xS o g g s 0 .16 4.4
a<e | 5>
daals o Vg 0 .37 .08
3 <] s>
No Further |No Further Further
CONSEQUENCE Modeling Modeling Modeling
Fixed At Uncertain Fixed At
Mean Mean
72




(from the reference [5]). € may be fixed at its mean. However,
} our estimate of the difference between the mean of the authentic
>v distribution and the mean of the assigned distribution on €
leads to a change of 4.4 in the expected value. Though this is
} a small percentage of the expected value, further modeling of
the mean of {e|S} is more important than.further modeling of
either the mean or variance of the othex variables. Of the three
) variables, § should be treated as uncertain in the decision
model. Again, its effect on the expectation of the profit lot-
tery is small.

Estimation of the Error in the Certain Equivalent Using
Influence Matrices

In addition to their application in the influence-consequence
} matrix, the total influence vector can be used to give an estimate
i for the difference between the certain equivalent of the model and

the authentic certain equivalent. If A“<x|5> is that difference,

) then
(3.4.9) Av<m|S> = %H%Aqlw + %fl'JlﬁA"<x|s>
' 9 <x|S5>

where A<x|S> is, as defined above, the analyst's estimate of

the difference in the means of the assigned distribution on x

and the authentic distribution. The factor Av<xlS> is defined
similarly to A<x|S5> as the difference in the variances of the
assigned distribution and the authentic distribution. A more

generél form for (3.4.9) is




A~<n|S> = Z 3"<m|S> A<, |S>4- _<m|S> AY <X, |S> R
9<%, 8>
i aV <x; ls>

where xi are the state variables on which marginal distribu-

tions are encoded. In influence matrix form,

(3.4.10) AT<w|s> = 2 ST %, 18)
i

where A{xils} is the vector of differences between central
moments of the assessed distribution and the authentic distribu-

tion, 8
- v - 3
A{x,;|s} = [A<xi|S> AT<xg|5> A<(xg-x)7|s5> .. L1 .

Equation (3.4.10) relates dissatisfaction with the profit
lottery to estimates of the error in the assessment of state
variable distributions. Other researchers have related that
dissatisfaction to estimates of the error in the profit lottery
itself, which is difficult to estimate. We believe the first
element A<xi|S> of the vector A{inS} can be estimated by
the analyst, though estimating Av<xi|S> is probably too dif-
ficult. As a practical matter, the difference between the cer-
tain equivalent of the modeled profit lottery and the authentic

profit lottery could be approximated as

~ ~ 3"<v|Ss>
(3.4.11) p~<v|s> = é 3o, 155 Aex,|s> .

Using the information in Figure 3-9 for the entreprenuer's

prcblem we estimate the error in the certain equivalent to be
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N 3~<v|s> 3~<v|5> 3~ <v|g>
A <V|S> swr‘é‘;- A<‘Y|S> + a_<6—r'|3‘>—A<6|S> +.FETA_>—- A.<E|S>

0. + .16 + 4.4

N

el

1

4.56

3.5 The Influence of Deterministically Related Variables

Most decision problems involve deterministic relationships
) between some of the problem variables. Usually the value func-
‘ tion is a deterministic function of some of the state variables.
In the entrepreneur's problem, for example, the profit is deter-
) mined by AC and Agq . Because of the frequency of such rela-

tionships, this special case of influence is treated in this

E section.
j The approximate influence matrices for {x|s} ‘determin-
| istically influencing {z|S} and for {x|S} and {y|S} deter-

ministically influencing {z|S} are shown in Figures 3-lla and

the expressions for <v(x)|S> and v<v(x)|S> given as Equations
(4.2) and (4.5) of reference [5]. Using the deterministic in-

fluence matrix we can write the deterministic influence vector,

a~<z|s> _ [, _ v, 1 -1 277
(3.5.1) e T YEf x|e>  Ff f]

Let Xy and x, be two independent state variables that

2
have identical marginal probability distributions, but have dif-
ferent deterministic sensitivities (Figure 3-12). v varies

quadratically with 3 according to v(xl) = fl(xl) and linearly

t 3-11b. These elements can be obtained directly by differentiating
[ 75
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FIGURE 3-1lb. The Approximate Influence Matrix For Determin-
istic Influences
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FIGURE 3-12. Deterministic Sensitivity For Two variables
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with Xy o v(xz)- fz(xz). By expression (3.4.7), the change in
the certain equivalent due to fixing 3% and x, at their means

are, respectively,

- £ .
(3.5.2) L<v|$> Vey s> = - 2 & % £,2 Vex)|s>
dv<xl|S>
~ '
(3.5.3) d—v‘llﬁl Ver,|s> = + £,2 Vex,|8>
d"<x,|s>

Now, suppose that the budget constraint on the analysis
is such that only one of these two variables can be included in
the model as uncertain, and the other must be fixed as its mean.
Policy regions for this decision as a function of the decision
maker's risk tolerance p = % and f£ can be obtained by

equating (3.5.2) and (3.5.3). PFigure 3-13 displays the resulting

diagram.

Rigk Neutral Decision Maker Is Concerned About Nonlinearity

The most surprising feature of the figure is that for risk
neutral decision makers, 3 is the variable that should be
treated as uncertairn in order to minimize the error in the cer-~
tain equivalent of the profit lottery. This result is easily
seen by setting Yy = 0 in Equations (3.5.2) and (3.5.3). It is
surprising because th~ choice between Xy and x., does not de-

plot. Even

(VI

pend on the slope of the deterministic sensitivit
though the change in the ceritain €juivalent beilween extrame
values of X, could be greater than the change between extreme

values of x,, it is x; that should be included as uncertain.
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The linear variations of the functions fl(x) and fz(x)
do not appear in the expression for «<v(x)|S> . Consequently,
the risk neutral decision maker needs to concentrate only on

modeling the nonlinear dependency of the value function on the

state variable Xq o because that dependency alters the expecta-
tion of the profit lottery. However, the linear variations of
fl(x) and fz(x) do affect the variance and risk premium. As
the decision maker's risk tolerance decreases, ne is increasingly
concerned with the risk premium and the linear terms. The risk
averse decision maker must balance the error that is made by
ignoring the effect of fz(x) on the risk premium against the
errors made by ignoring the effects of fl(x) and fl'(x) on

ve
the risk premium and the effect of fl(x) on the expectation of

the profit lottery.

Deg;ndencx of the Decision Model on the Decision Maker's
Rigk Attitude

Perhaps a more important philosophical issue suggested by
Figure 3-13 is the implication that the choice of variables for
the decision model should depend on the decision maker's risk
attitude. Two decision makers with the same information about
a problem but with different risk attitudes may model a decision
problem differently.

Decision analysts have always distinguished themselves
from other modelers by insisting that the specifications of a
model.be determined by a particular decision. Our work suggests

that the specifications of he model must not only be determined
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by a particular decision, but also by a particular decision
f' , maker. For decision models, as for probability, there is no
objectively correct model. The appropriate model depends cn
the praferences and beliefs of the decision maker.

An Example Showing How Risk Attitude Affects the
Decision Mode

i

In order to determine the magnitude of the impact of
risk attitude on the decision model, in this section we apply our
results to a decision analysis of an actual investment, which has
not been published because of its proprietary nature.

The decision problem was to select strategies to maxi-
mize the net present value of a new service venture. Figure 3-14
shows the deterministic sensitivity results for the seven most
important variables: service price, equilibrium plant capacity,
start-up date, governmental restriction, transfer payment, future
competition, and initial plant capacity. A brief explanation
of each variable is given in Table 3-3. The analysis is not sensi-
tive to the cost of the project since the service facility has

E
T X
\
Table 3-4 lists the first and second derivatives of these sensi-
tivities, the means and variances of the state variable proba-
bility distributions, and the values of the expressions
82
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been constructed.

Suppose that a total of five variables can be treated as
uncertain and four of the five, Xyr X0 Xgo and Xy 0 have been
selected. What recommendation can be made regarding the variables
Xgr Xeo and X, ? The functional forms of the deterministic

sensitivities to these variables are presented in Figure 3-15.
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TABLE 3"3 .

Service Price

Equilibrium
Plant Capacity

Start-up Date

Governmental
Restriction

Transfer
Pazment

Future
Competition

Initial Plant
Capacity

Brief Explanation of the State
variables in the Example Problem

Since this service is unique in the U.S.,
a large uncertainty exists about the
demand curve.

Though the plant that provides the service
is constructed, it has not operated, and
new technology is involved.

Even if the owners decide to begin plant
operation as soon as possible, the actual
start-up date is uncertain. Delayed
start-up reduces the present value of the
profit stream.

Because the client is currently the only

company able to provide this service, the
possibility of government restriction of

profit exists.

Part of the service is performed by another
company. The cost of that service is un-
certain.

Competitors may enter the market in the
future.

The plant is expected to start production

at less than equilibrium capacity. Early
capacity is uncertain, however.
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V,net present
value

§i-°< xi|S>

FIGURE 3-15,

|

'§i+° <, |s>

Functional Forms For The Deterministic Sensi-

tivities of xs,xs, and x
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i g;§!+%; (.1)%x]|s> { and Qvleél v<xi|S> .
i 3 : a <xi|s> -
4

Recall these last two expressions approximate, respectively, the
change in the certain equivalent due to a change in thLe mean of
# state variable and the change in the certain equivalent due

to igncring uncertainty in the state variable.

This table reveals that the variable with the largest
deterministic sensitivity Xg is not the first one that should be
treated probabilisticalily. To the contrary, Xq 4 with the
smallest sensitivity would prcduce the greatest change in cer-
tain equivalent if its uncertainty was ignored. As we discussed,
in the previous section this effect is the result of the non-
linearity of the determinis: densitivity of X, , as seen in
Figure 3-15.

As we might expect, obtaining an authentic mean for vari-
able Xg is more important than for variables Xg and Xq .
Upon inspection of the influence consequence ma . (Figure
3-10), of the three variables Xegr Xgo and Xq1 Xg and Xe

should be fixed at their means, but Xg should be carefully

assessed or futher modeled.

Finally, the modeling policy diagram for the decision to

treat Xg Or x, as uncertain is shown in Figure 3-16.
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CHAPTER 4
‘A Comparigcn of the Quadratic

Approximation with Discretization

4.1 Introduction

We begin this chapter by showing what factor determines
the information required to compute exactly the moments of the

profit lottery. If the conditional moments of the profit lcttery

are polynomials of degree k in the conditioning variable, then
thcse moments must be assessed at k+1 values of the state
‘variable. Furthermore, only k moments of the marginal distribu-
tion are required. Hence, it is the functional form of the con-
ditional surface that determines the required information.

OQur use of irnfiuence matvrices depends on approximating the
conditional moments by quadratic functions. 1In Section 4.3 of
; this chapter, we present procedures for assessing the information
| required by the quadratic approximation.

Since current practice for computing the profit lottery is

to discretize the conditional distribution, in Section 4.4 we

,
»
k
|
:
E
compare discretization with the quadratic approximation. We find
; that neither the quadratic approximation nor discretization holds
i a clear advantage. Our sample probliem does demonstrate a defa~
: 2iency in discretization that is not generally appreciated.
l While discretization of the marginal distribution preserves the
mean of the marginal dastribution, it does not generally yield

the correct mean of the profit lottery.

A related result of this chapter is a derivation of dis-

cretization showing under what conditions discretization of a
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state variable will lead to the correct moments of the profit
ér lottery. This derivation is identical to the derivation of the
quadratic procedure. The only difference between discretization
and the quadratic procedure is in the assumption about the con-
ditional moments of the profit lottery given the value of the
sfate variable.
Since the theoretical derivation of the gquadratic method
! differs from discretization in the assumption about the condi-
tional moments and since the quadratic method is comparable tc
discretization in both ease of assessment and accuracy, it should
i be considered as an alternate method for the solution of decision

l problems directly from their influence diagrams.

4.2 An Qverview of Two Proposed Assessment Procedures

Consider the problems of estimating the marginal probability
distribution on a variable y that is influenced by another vari-

able x .

{y|s} might be the profit lottery and x a state variable that
) influences y through several intermediate state variables, or

y might be another state variable directly influenced by {x]|S}.

In either case, our earlier result, equation (2.2.2), indi-

cates that

n__m
<ym|S> = <ym|x = x,5> + ) 1 d <y [x,S> <(x'-§)nls>

]
n=2 1° ax™” -
X

Now, suppose that <ym|x,S> is approximated by a polynomial of
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degree Xk . Than this equation becomes a finite sum of terms,

k n M
(4.2.1) <ym|S> b <ym|x = x,5> + 2 1 da<y [x,5>

=.n
, <(x-x)"|5>
n=2 0° ax®

x
3 The error in the estimation of <y"|S> due to the approximation
is

‘ aheym

dax

o
| )
. n=k+l

Y
n: n

x

? If <y"|x,5> and {x|S)} are known, this expression can be used
to obtain the value of <ym|S> within any desired degree of
accuracy. It should be clear from equation (4.2.1l) that as one
increases k and the accuracy.of the approximation, more and
more infcrmation is required about the conditional surface. Using
equation (4.2.1) required knowledge of <ym|x,S> at k+1 values

~ . th
| of x in order to determine the k

derivative of <y™|x,s>.
f In the remainder of the chapter we discuss assessment proce-
E dures for the case of k = 2 , in which the moments of y are
| approximated as quadratic functions 6f x . These procedures can
? be extended for higher values of k , though additional assessments
are required.
If we approximate the conditional moment by a quadratic func-

tion of x and restrict our attention to means and variances,

(4.2.1) becomes

2
(4.2.2a) <y|s> = <y|lx = %x,5> + % EX{E:."‘_’ Vex| s>
dx -
| x
2 2 - 1 a%<y?|x,s5| v
(4.2.2p) <y“|s> Z<y“|x = x,5> + 3 y2 L <x|s >
X
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We propose two procedures for obtaining the information

required by (4.2.2). First, by assessing {y|x = x,5} , the

analyst can compute <y|x = x,5> and o<y|x = x,5>. If the
decision maker is familiar with the concepts of conditional mean
and conditional standard deviation, the analyst can then ask for
the shape of <y|x,8> and 0<y|x,s> as functions of x . The
two points <y|x = x,5> and Y<y|x = X,5> are combined with the
respective shapes to obtain <y|x,5> and %<y|x,5> . From these
two curves the required second derivatives can be approximated.
This entire procedure is discussed more thoroughly and demonstrated
in the next section.

A second procedure for less technical decision makers is to
assess {y|x,S} at two values of x in addition to X . For
example, if {y|x+%x|s>,5}, (y|k,s}, ana {y|x - %<x|s>, 5} are
assessed, corresponding values of the conditional mean and second
E moments can be computed. The second derivatives required for
(4.2.2) could be obtained using a three-point approximation.

However, when the entire distribution {y|x,S} is assessed
at three pcints, it is possible to estimate the marginal distribu-
tion {y|S} , rather than just its mean and variance. Instead of

(4.2.2), a similar equation with a similar derivation is used.

2
(4.2.3) {yls} = {y|x = x,5} + % E_LX%ELEL

X

Vex|s>

X

This approximation i3 exact when ({y|x,S} is quadratic in x .

The second procedure, which estimates ({y|S} , is also demonstrated
in the next section.

Notice that both quadratic procedures can be applied
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repetitivaly. That is, for the situation of {x|s} infiuencing

"{yls}ivinflncncing {2]5) , equations (4.2.2) or (4.2.3) can be

used to obtain <y|5> and V¢y|5> . These two moments and the

 appropriate assessments of {z|y,S} can bz used in equations

like (4.2.2) or (4.2.3) to obtain either -<z|S>V and <z2|s> or
the entire distribution ' {z|5).

Using the approximation for the covariance introduced in

include situations where the profit lottery is influenced by more
than one variable. For exampl®, corresponding to the influence

diagram,

{x]|s}

the equation for {z|S} is

2 2
{z|s} = {z|§,§,s}-+% 9 (zlx,¥,3} v<x|s>+% 9 {§J§.Y,S} Vey| s>

X,y

ax 3y

(4.2.4)

82< x,S5>

ox

Vex|s> + < (x-X) 3| s>

2
3¢{z]x,y,5} o<ylx, §>
+ “éxa§ % __Iti____ .
’

Again, this equation can be applied repetitively.

Chapter 3, equation (3.2.4), both equations can be extended to i

The information that must be assessed to obtain the marginal

e A X & )

distribution by (4.2.4) or (4.2.3) or the moments by (4.2.2) is

the same information required to obtain the influence matrices in

those cases. Hence, the assessments required to determine all of
93
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the influerce matrices for a given influence diagram can also be

used to estimate the profit lottery.

4.3. An Example Damonstrating the Two Quadratic Procedures

In a demonstration of the two guadratic procedures for
computing the properties of the profit lottery, consider the age
and income distributions for males ages 25 through 64 according
to the U. S. Census [19]. Suppose that the decision maker is
familiar with the age distribution of that population and the
conditional income distribution given age. Then, two procedures,
based on equations (4.2.2) and (4.2.3) are available to approxi-
mate the marginal income distributions.

Procedure I: Assessment of Conditional Mean
and Conditional Variance

Equation (4.2.2) can be used to approximate the mean and
variance of the marginal distribution on income with the assess-
ment of only two probability distributions. Figure 4-1 is a tlow
chart for this procedure. The marginal distribution on age for
males ages z5 through 64, shown in Figure 4-2, is assessed in
order to compute its mean and variance. According to the figure,
these values are 43.7 and 126, respectively. Aftcr the mean of
the age distribution is determined, the distribution of income
conditional on the mean age is assessed. Then, the mean and vari-
ance of income conditioned on the mean age can be computed.

The mean income at the mean age is used as a benchmark in
obtaining the curve of mean income as a function of age. The deci-

sior maker is asked how his estimate of the mean income would
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Assess

{xlg)

Compute
¢x|s>gv<xjs>

Assess
(le-ios)

v<x|s>

Compute
<X |Ru5>10<X|Tis>

Assess

<I|x,5>

Assess
%x|x,5>

|

Compute

<12|x.s>

- }

Quadratic Fit Quadratic Fit
<I|X,5> =_a (x-%) 2 <I?|x,5> = a (x=%) 4
+b1(x-x) +Cy sz‘*'*) ’52
A 1

I | [ R
Equation (4.2.2a) Equation (4.2.2b)
4
v<I|s> -
<12|5> - <I]5>2
' I
<I|&> v<1|5>

FIGURE 4-1. Flow Chart For The Quadratic Approximation Pro-
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change as the revealed value of age increases and decreases fron
the mean of the age distribution. Similarly, the standard devia-
tion of income at the mean age provides a benchmark for assessing
the conditional standard deviation as 2 function of age. The
curves of conditional mean income and income standard deviation
computed for the census data are presented in Figure 4-3.

Of course, the conditional standard deviation is a difficult
concept, and not all decision makers will be able to draw the re-
quired graph, even with the benchmark. It may be necessary to do
additional assessament in order to help the decision maker estimate
the conditional standard deviation. However, if it is necessary
to assess carefully the entire conditional distribution at several
values of the conditioning variable, then the second procedure,
discussed below, should be used.

Once the curves of conditional mean and standard deviation
have been assessed, the conditional second moment can be computed
as a function of the conditioning variable. The conditional second
moment of income given age <12|x,S> is also shown in Figure 4-3.
Each curve, <I|x,S> and <12!x,s> . s fit with a quadratic func-
tion and, the coefficients are then used in equation (4.2.2) to
compute the moments of the influenced marginal distribution. For

our example, we have

2
<I|S> - <IIX,S> +.]2;d_<_IL§J2

dx

Vex|s>

X

10350 +~% (-17.3) (126)

9260
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2 .2
<12|x,s> + %_ a<x %x,s> Vx| s>
dax -
X
147 x 10° - % (- .494 x 10%) (126)
116 x 10°

Verd|s> = <1?ls> - <1ls>

= 20.0 x 10°

Procedure II: Assessment of Conditional Distributions

Approximating the age distribution using equation (4.2.3)
requires the assessment of four complete distributions. Figure
§-4 diéplays a flow chart for this procedure. The necessary
assessments are the marginal age distribution {x|S} and three
distributions for income conditioned on particular values of age.
The conditioning values of age are selected to give a good qua-
dratic approximation to the age-income surface. For —=xamplie, the

following equation works well

22(1]x,8) ~ {2]x=x + %<x|5>,5}~ {I |x=x,8} {I|x=x,5}-{1|x=% -%<x|5>,5)
ax? " 9<x|s> Yex|s>

g
< 5S>
(4.3.1) x|

Therefcre, the conditioning values of age for the three assessments
of income distribution depend on the mean and standard deviation of
the age distribution.

From the marginal distribution on age (Figure 4-2), the mean
age of .that population is 43.7, and its variance is 126. The three
required distributions of income conditioned on age are shown in

Figure 4-5. These distributions are used in equation (4.3.1) to
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Ausess
(x| 8}

;';' Yex| s>

. Compute S

F'” §;V<x|3>;°§xl3> x

‘ Assess Assesns Assess
{r|x- {1]x, s} {1|%+

) Tex| s> Cex| o

=

i Equation (4.3.1)

az{le,S)

3 x X

F

P Equation

E (4.2.3)

r {1]5} ,

i

- |

b FIGURE 4-4. Flow Chart For The Quadratic Approximation Pro-

cedure Using Three Conditional Distributions
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 closely matches the exact distribution.

2 r

which is used@ along with {I|x=x,$)} in

X
equation (4.2.3) in obtaining {I|S5} . Figure 4-6 displays the

uneveness of the surface {I|x,S] and also shows the quadratic
approximation to the surface. -According to Figure 4-7, the

quadratic approximation for the marginal income distribution

The Conventional Procedure: Discrotization

In contrast to the quadratic methods, Figure 4-8 diagrams
the steés in approximating {I|S} wusing the conventional discrete
method. Again, four complete distribmiions must be assessed: the
marginal distribution on age and three conditional income distri-
butions. Following the assessments, each distribution is dis-
cretized to find the expectation in each interval.

The marginal distribution on age used in the discretization
(Figure 4-2) is the same one used for the quadratic approximation.
It is discretized at the points

<x|x < 275 x,5> = 30
<x| 275 X< X < g0 X,5> = 43.7

<x| X < X,5> = 60

.80

in order to reduce the amount of data interpolation required. The
notation pX refers to the p-fractile of {x|s} . conditional
distributions {I|x,S} are assessed at each of the three ages
given in (4.3.2) and discretized.

In Figure 4-9, the discretization of the age and conditional

income distributions is displayed as an event tree. By taking the
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Assess

*
<I|x-x1.s>

4

|

Discretize

= <x|xg H4X 8

L ]
1
»
2" x| pgXax< pex, 5>
*
3

= x| gex<x, 5

Assess

[
<I|x=x,, s>

Aisess

*
<I|x-x3,5>

9

Discretize
*
<I|x-x1,Ig 251.3>

*
<I|x=xy, 9gT<ls

-7SI'S>

etc.

FIGURE 4-8.

L

Discretize
L |
<I|x-x2115_.25115>

etc.

Discretize
*
<I'x-X3lIi 25115>

etcC.

Roll The Tree
Forward

{x|s}

Of Discretization
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Age Income Product
Probability
I = 2900
.069
.25
x = 30 .5 I = 8000
e .138
25
I = 14200
.069
I = 3500
131
x = 43,7 I = 9250
.263
I = 19400 131
I = 1900 .05
.25
x = 60 .5 I =17000
.10
.25
I =17900 .05
)
) FIGURE 4-9. Event Tree Resulting From Discretizat‘on
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product of the event trua probabilities, "rolling the tree for-
ward®, the marginal distribution on income can be approximated.
The discrets approximation is plotted along with the quadratic
approximation and the exact distributicn in Figure 4-7.

It is evident from Figure 4-7 that the quadratic appro:ima-
tion is quite accurate, and the discrete approximation is less
accurate, However, the tabulation of Table 4-1, comparing the
moments of the approximation with the exact values, shows the
discrete and continuous approximations to ke comparable and
acceptable. In the next section the theoretical basis for dis-
cretization is investigated, and the reason for its overestima-

tion of the expected income is explained.

4.4 Comparison of Discretization With the Quadratic Approximation

The degree of confidence that we have in a model structure
resulting from influence matrices and our use of the associated
estimate of the profit lottery depends on the accuracy of che
quadratic approximation. If the approximation is crude, then the
influence matrices can only provide the analyst with a means to
conceptualize the modeling process. The associated estimate of
the profit lottery would need to be verified by more exact methods.
On the other hand, if the quadratic approximation is sufficiently
accurate, then the influence method would yield a model structure
in which the analyst is confident. Furthermore, additional re-
search to determine how to use the estimates of the profit lottery
to solve the decision problem directly from the influence diagram

would be warranted.
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TABLE 4-1

Comparison of the Discrete and Quacratic NMethods
with the Exact Distribution

Quantity Exmct Discrete

Expectation 9218 9399
<1|s> -

Second Moment 119 x 106 124 x 106
<I2|8> -

Ver|s» 34

108

Quadratic

9256

116 x 10

0%

3%

30
- 12%

&

Pz = me
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The most frequently used method for computing the moments
of a distribution that is dependent on another variable is dis-
cretization of the influencing variable. Discretization means
dividing the range of x into intervals and associatinyg tha
probability weight from an interval with a point within that
interval. For example, if {x|S} is a normal distribution, the
analyst can divide x into three intervals at the 25% and 75%
fractiles of {x|S)} , denoted 5% and  ..x , respectively.
Then, he can assign probability weights of .25, .50, and .25
to the points

x| =@ < x < g0 T )0

x| g% £ X < g% 3

?
*
o
o
]

x| ggx s x <@ > T ggx
This procedure preserves the expectation of {x|S} , since
<x|5> = <x|x < 25X¢S> ‘{.ZSXIS}
+ <x| Jex<x < ox,5> [F{ . ox|s} - REPTIE

+ x| Jex<x,5 (1 -5{ 25%|S}]

Wwhen {x|s} influences {y|s} , the moments of {y|s} can

be approximated by repeating the procedure. At each of the points

given in (4.4.1) the analyst discretizes the conditioral distri-
bution {ylx,s} . The discretization preserves the moments of

the conditional distribution, since,

<Ym|xvs> = <Ym|Y f25Y0x03>${'25ylx,S}

+ <ym|.25y S ¥ € 9gYex, 5> [‘{.75y|x,s} - s{.zsylx,s}]

+ <yml.75Y£leoS> [1- S{.75ylx,8}]
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However, the moments of the marginal distribution, {ylsl , are

only approximated as,

~

18> T <yP|x = <x|x < ,o%0,55 { g4x|8)
. (4.4.3) + <y®x = <x| gg%X < X< 9gx>, (" Hex|5)} - S ,gx|SH
+ <y®ix - <x| ,¢x < X35> - ‘{..,sxls}l

or more generally
? m., - Nl g < .
f (4.4.4) <y '|s> = n%. <y |x = <x|xn_15x<xn>,s>l {xnls} - [xn-lls}]
vhere x, = - ® and ,xN+1 = 4w,
While discretization of (x|S} preserves the moments of the
} state variable distribution {x|S} , it orly approximates the

moments of the profit lottery ({y|s} .

An Example Showing that the Moments of the Profit Lottery
May Be 8voroat mated or Underestimated by Discretization

Suppose that {x|S} is a normal distribution with standard

oo vTTm e Tr T m T Amm——— e e e e s

deviation O and that

<y |x,8> = quz +bx+c

m
Using equation (4.4.3), the approximate value obtained by dis-
cretization at the points of (4.4.1) is

2

<y™|D,5> = a x° + .82 a, Vex|s> + bmi +cp

2

Since the exact value is ami + bmi + Cp ¢ the error due to

discretization is
(4.4.5) <y®|s> - <y™|D,5> = + .18 a, Vex|s>

where D denotes the value computed using the discretization
procedure. From (4.4.5) the errors in the mean and variance of

{y|s} are found to be
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(4.4.6) <y|s> ~ <y|D,8> = .18 a Vex| s>

Vey|s> =Vey|D,8> = + .18 a, Vex|s> - .36 a Verio> <y|s>

- 097 a? Vex|s>? .
The implication of these e¢cquations is displayed in Pigure
4-10. There will always be an error in the mean of the profit
lottery unless a, = 0, and whether it is overestimated or
underestimated depends on the sign of a, . In either case, the

variance of the profit lottery may be overestimated or underestimated.

Derivation of the Discrete Approximation

These considerations motivate an investigation of the con-
ditions under which discretization, as in equation (4.4.4), is

exact. We begin with the expansion equation

<y®| &> -f <y"|x,8> {x|s}ax ,
x
and divide the integration into regions

x x
(4.4.7) <y™|s> -I 1 <y™|x,5>{x|s}ax + I k <ym|x,S>{x|S}dx +
%o X1

x
+J‘ K <y®|x,8>(x|s}ax
Xx-1

Within each region the conditional moment can be expanded in a

Taylor's series about the expectation of x in that interval,

(4.4.8) <y™|x,5> = <y™|x = <x|xek>,s>

(x - <x|xek>)"
x = <x|xek>

where k = {x: x, _,<x<x ]} . Substituting (4.4.8) into (4.4.7)




Underestimates
: - variance/

- Underestimates
- - mean

Underestimates
, : variance/
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BN
:i:::g::::\\\\
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variance/ variance/
Overestimates Underestimates

mean mean

NN

FIGURE 4-10. An Rxample Showing The Dependence Of The Error
Due To Discretization On The Curvature Of The
Conditional Mean al And The Conditional Variance a,
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“gives

T ’ K
 (4.4.9) <hls> = § [<y.|x = <x|xek>,5 {xek|S?

k=1

1 aey™lx, s>
ne2 n! ax®

+ <(x-%)"| xek, 5> {xex| 5}]

x = <x|xeck>

If all terms of n > 2 are ignored, then equation (4.4.9) is

equivalent to equation (4.4.4), the usual discrete method for

finding the moments of {y|S} . A similar derivation leads to

arn expression for the discrete approximation to {y|s} itself.
For quadratic conditional moments, as in the two earlier

examples, equation (4.4.9) reduces to

K
(4.4.10) <y™|5> = 5 <y"|x = <x|xek>,5>{xek|S}

k=

2. m
s 1 A<y ?IS) Vex|xek, 5> {xek| 5}
2 dx

<x|xek>

Consistent with our earlier observations, the sign and magnitude
of the error due to discretization depend on the curvature of
<ym|x,s> . Furthermore, the error will heve the same sign in
every interval regardless of the marginal distribution ({x|s} .

The usual method of discretization, represented by equation
(4.4.4) approximates the conditional moments <y™|x,S> by a piece-
wise linear functicn of x (Figure 4-11). Equation (4.2.2) pro-
posed in this research approximates the conditional moments by a
quadratic function of x . Which of these approaches is more
accurate depends on the number of intervals in the discrete approx-

imation and the actual shape of the function being approximated.
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FIGURE 4-11, Discretization Approximates Conditional Moments
By A Piecewise Linear Function
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We conclude that discretization is not inherently more accurate

than the quadratic method. The better method should be deter-

ained by tha particular application and the ease of assessment.

%
|
f
;
|
]
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CHAPTER 5

Summary and Suggestions for

Further Research

Our characterization of influence allows the decision
analyst to conceptualize the relationship between the probability
distributions on different variables in a decision model. One
can think of an influence between two probability distributions
{x|5} and {y|Ss} as transforming the moments of one distribu-
tion into the moments of the other. The strength and type of
the influence can bhe measured by a set of derivatives denoted
as
d< (y=y)"| s>

=\
a< (x-x)"| s> z

(5.1)

n>1l, m>1

which extends in an obvious way for n =1 and m=1.
Therefore, the influence of x on y is characterized by
an infinite matrix that has its n,m element given by (5.1),

and is denoted by

This influence matrix has several useful properties. First, the
matrix is null if and only if the moments of {y|S} are unaf-
fected by the moments of {x|S} and y 1is probabilistically
independent of x . Hence, the matrix is null if and only if no
influence exists. Second, when the matrix has nonzero elements,
those- elements specify the type and strenygth of the influence.

Finally, because the elements of the matrix follow the rules of
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]

’ifugdiffixential calculus, a calculus of influences appears possible.

For éxample, in the diagram:

tha influence matrix of x on 2z may be computed as

B xX|S x|S Y|lS

| Using several examples, we have demonstrated that inf..:ance
matrices can be used to structure decision problems. The in-

i, fluence-consequence matrix introduced in Chapter 3 shows that

the elements of the influence matrix can be used to determine

which areas of the decision model require further modeling and

) vhich variables should be treated as uncertain in the decision

| model. These recommendations amount to a new interpretation of

i deterministic sensitivity.

)‘ | We have also used the influence matrix to demonstrate that

there is no single correct decision model. The appropriate

decision model depends on the risk attitude of the decision

) maker.

Finally, we investigated the theoretical basis for discre-~
tizating marginal probability distributions to compute the profit
) lottery. Discretization and the quadratic method, on which in-
fluence matrices are based, differ only in the assumption about
the functional form of tne profit lottery conditioned on the
) state.Variable. Since the two methods are comparable in case of

agssessment and accuracy, we conclude that the quadratic method
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should be considered as an alternate method for the solution
%jkw5 | of decision problems directly from their influence diagrams
without the intermediate step of constructing a decision tree.
To develop this possibility would require extending the
influence theory and influence calculus presented in Chapters
2 and 3 to include decision variables. We illustrate our ap-
proach to this problem with the following example. Consider a
;' decision variable D influencing the profit lottery {y|D,S}:

Both the mean and variance of the profit lottery will

generally depend on D . Limiting our attention to those two

moments, we write

(5.2) <y|p,8> = <y|Do,s> + QSX%%LE& (d - D)
Do
P
1 d2< D,S> ?
+ 3 L (D = Dy "
dap
D
0 |
’ {
v
(5.3) Vey|D,5> = v<y|D0,s> + Q.ilé%;ﬁi (D - D)
Do
)
2y
+ 14 <y?|D,S> 0 - Do)z i
dp
) %0
i
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where D° is an arbitrary nominal setting of the decision vari-

able. Let us define the influence of D on {y|D,5}, analogous

to our earlier definition for the influence between state vari-

ables, as
] = v -
s.e)  yls} . dey[D.s> S
D D
0 0
a2<y|D s> d2V<le,s>
2 2
an dD
e Do DO_

The elements of this matrix can be obtained by ar assessment
@ procedure similar to that discussed in Chapter 4.

Now, the first order condition for the optimum decision

% D* is

f d~<yls> -0

| L

}

E or approximately

: v

g (5.5) d<ylD,s> 1, ax<ylp,s>| .4 |
{ db D* db D*

E

Expressions for the two derivatives are obtained by differenti-

ating (5.2) and (5.3). Upon substitution into (5.5), we obtain

an estimate for the difference between D, and the optimum de-

cision D¥,

(5.6) d<y|D, s> 1_4a'<y|D,s>
. dD b Y™ dp b
D, = - 0 0
0 2 2
d“<vyl|D, s> - le V<X|Dzs>
2 2
ap D, ap Dy
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Equation (5.6) suggests that the optimal decision can be deter-
%;f' nined from the influence of the decision on the profit lottery,
3 ' equation (5.4), and the decision maker's risk attitude. In fact,

the right side of equation (5.6) is the ratio of the elements of

; the influence vector
d" <yl s> - a{ S} - 1 4T
(3.7 -a%l_' p— (1 51" .

X Of course, considerable theoretical development is required

: to show how to solve general decision problems from the influence
diagram. Our simple example assumes a continuous decision vari-

} able, which has derivatives, but in practice decision variables

i are often discrete. Furthermore, our simple influence diagram
consists of a single decision variable and a single state variable.
Research is needed to show how to solve sequential decision pro-

blems with several state variables by the influence method. An-

i ey v g ¢ e

i*rer important related question is how to determine the value of {

) i. *~rmation directly from the influence diagram.

i

Our work with the influence method for state variables,

pres. 1ted in Chapters 2, 3, and 4, and our simple example in this '
) cha. 2r, lead us to believe that additional research and experience

with the influence method will lead to more developments of prac-

tical value and theoretical interest. We encourage further re-

search in the application of the influence concept to decision

problemns.
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Appendix A

A Series Representation and Approximation for

the Covariance

An expression for Cov(x,y) in terms of the moments of

{x|S} can be obtained by writing,

(A.1) Cov(x,y) = JJ (x=x) (y-y) {x,y|S} dydx
(A.2) = ! (x-x)<y|x,5>{x|S5}dx
(A.3) - Ix<y|x,8>{xls}dx - xy

X

Expanding <y|x,S> in a Taylor's series gives

o n
(A4 <y|x,5> = <y|x,5> + 3 L & |x.5>

(x-x)"
n=) ne dxn

X

Upon substitution of (A.4) into (A.2) and completion of the in-

tegration, one obtains

® n
(A.5) Cov(x,y) = 3 1% Q—:X%EEDI <(x-§)n+l|3> .
n=1 """ dx 1%

Wwhen <y|x,S> is linear in x, the covariance is equal to
the first term of (A.5),

d<y|x,S>

. Vex|s>

(A.6) Cov(x,y) =

X

This expression can be interpreted graphically. Equation
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{A.3) shows that the covariance is a comparison of the expected
area <y|x,8> x. with the area xy . Because of the linearity

of <ylx, >, we have

<y|Ss> = <y|x,5> .

The variance of {x|$} can be interpreted roughly as an oscilla-
tion of x about <x|S> , and it induces a similar oscillation
of <y|x,5> about <yl,§.s>. Since the increase in the area
<y|x,5> x is larger when x is greater than x than the cor-
responding reduction when x is less than X , uncertainty in

x increases the expectation of <y|x,S>x. The amount of the
increase of the expectation of <y|x,5>x over yx, which by

Equation (A.2) is the covariance, depends on the slope %—S—)
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Increase in x<y|x,S$>

NN\ when x » &

o ' o ‘ /{/C// Reduction in x<y|x, s>
- . ‘ when x < x

s

xy|x,5>

<y|s> = <y|x=x,s> |

+—— <X|5> *
Variation in x about
its expection

o
E

FIGURE A-1l. An Interpretation Of The Covariange Using The
Approximation Developed In Appendix A




Appendix B

A proof that the change in the certain equivalent of (x|S}

due to fixing x at its mean is approximated by

; lv—c!-l& v<x's> .
F ? <x|s> %
! Taking the first two twerms of equation (2.2.2) for m = ],2
gives
- - 1 v
) (B.1) <n|S> = <m|x = x,8> + 5 h, . <x|5>
(B.2) <«r?|5> = <nf|x = X,5> + § hy Vex|s> ,
) where
dzcn x,5> * d2<~n2 xX,5>
hxx - ' hxx -
dx % dax 2
; Using (B.l) and (B.2), we obtain
f (B.3) Ver|s> = <w2|s> - <w|s>2 !
N <n2|x = X,5> - <n|x = X,5>2
1.* - 2 v
P + (}- hxx - <n|x = x's”‘xx'%hxx <x|S>)V<x|s>
The approximation for the certain equivalent is
(B.4) “<w|s> = <n|s> - } v<w|s> !
!
Using (B.1l) and (B.3) in (B.4) yields
(B.5) Vem|s> = <n|x = %,5> - % (<12|x = X,5> ~<n| x= %,5>%)
1 1, * - |
*Hzh,y - ’I'(!'hxx' <"|x’x's>hxx’%‘hix Vex|s>)1Vex| s>
b A-4
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Uy !@Qifi:‘t two terms on the right of (B.5) approximate the certain

equivalent of 7 when x = X . Hence,

’ ~ - - - = 1 - 1. 2 - -
(B.6) “<w|S$> “<m|x = x,5 = [3h %(Ihxx <n|x=X,5>h_, -

1,2 v v
7 Px <x|85>)] “<x|s>.

According to equation (3.3.3), the influence vector is"
i i ~ - ~ T

‘ d <u|S> - [d <w|8§> d <nlS>]

i x,S d<x|s> dv<x|S>

| d{n]s) 1 T
b = xS [1 -'iY]

The elements of the influence matrix g{: g} can be found in
}

Figure 2-4 and used in this equation:

? arenls> | (h,  hy-2|s>h, | 1 -3v1T
: X

1 1 . *
2 hxx 2 hxx:'-q"g> Ry

= -t

The second element of this product is

: a <m|s> _ 1 oY (1
(B.7) 5;:¥|S> =3 h - % (Fh, - <n|s> h )

Substituting for <m|S5> according to B.1,

J

1

E

|

: d~<ﬂ S> 1 * =

} (B.8) ————l—— hxx - % (7 hxx - <m|x = x,5> hxx

av<x|s>

N~ N

2 v
he, <x|s>

) Multiplying (B.8) by 'V<x|S> and comparing with (B.6), we find,




SR

d”<n|s> v

avVex|s>

2 .~ -
-~

<x|s> - k hix Vex|s> <r|s> - “<n|x, 5>

Consequently, the expression

‘(3.9) m v<x|5>

d <x|s>

approximates the change in the certain equivalent of {#|S} due
to fixing x at its mean value provided the term

% hix Vex|s>2

is small. 1If it is not small it can be added to the expression

(B.9) to improve the -pproximation.
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