OPTICAL GAIN PHASE SHIFT AND PROFILE IN FREE-ELECTRON LASERS

NAVAL RESEARCH LAB WASHINGTON DC

HAFIZI ET AL 20 JUL 87 NRL-MR-5998

UNCLASSIFIED
Optical Gain, Phase Shift and Profile in Free-Electron Lasers

B. Hafizi
Science Applications International Corporation
McLean, VA 22102

P. Sprangle
Plasma Theory Branch
Plasma Physics Division

A. Ting
Berkeley Research Assoc., Inc.
Springfield, VA 22150

July 20, 1987

Approved for public release; distribution unlimited.
Optical Gain, Phase Shift and Profile in Free-Electron Lasers

Mafizi, E. S., Sprangle, P. and Ting, A. A.

The gain, phase shift, wavefront curvature, and radius of the radiation envelope in a free-electron laser amplifier are obtained in the small signal regime. The electron beam is assumed to have a Gaussian density distribution in the transverse, direction. Numerical calculations indicate that the radius and curvature of the radiation beam envelope will not change, and remain constant values after a finite transition region. However, in the asymptotic region the wavefronts are divergent. Analytical expressions for the gain, phase shift, curvature, and spot size are derived. It is shown analytically that small perturbations of the optical waist and curvature about the matched value are spatially damped out, indicating the stability of the matched envelope. When the electron beam envelope is modulated in space, the optical spot size oscillates with an almost constant wavelength but is dependent on phase. In the case of small-amplitude and wave number modulation of the electron beam envelope, generation of optical sidebands in wave number space is examined and the effect on the dispersion characteristics of the primary wave is found to be negligible for typical experimental parameters.
CONTENTS

I. INTRODUCTION ... 1
II. MATHEMATICAL FORMULATION .. 2
III. NUMERICAL RESULTS .. 6
IV. ANALYSIS OF RESULTS ... 9
V. CONCLUSION ... 12
ACKNOWLEDGMENT .. 12
REFERENCES .. 13
APPENDIX A — Source Term ... 14
APPENDIX B — Sideband Generation .. 16
APPENDIX C — Stability Analysis .. 21
DISTRIBUTION ... 27
OPTICAL GAIN, PHASE SHIFT AND PROFILE
IN FREE-ELECTRON LASERS

I. Introduction

A well-known feature of the free-electron laser (FEL) is that the refractive index of the medium is a complex function and hence the radiation is amplified and to some extent focused in the vicinity of the electron beam.1,2 It may then be possible for the electron and radiation beams to interact over an extended length along the wiggler, with the diffractive tendency being compensated by the FEL interaction, thereby enhancing the efficiency of the process.

Considerable progress has been made in studying this process by several authors.3-8 The purpose of this paper is to apply the formalism of the Gaussian-Laguerre modal source dependent expansion (SDE) of Ref. 8 to examine the propagation and guiding of the optical wave in an amplifier operating in the exponential gain regime, for a variety of operating conditions.

The plan of this paper is as follows. In Section II the formalism of the SDE is employed to obtain the evolution equations for the radius and the curvature for the lowest order mode of the optical beam, along with the relevant dispersion relation for a Gaussian electron beam driving an FEL amplifier in the small signal regime. In Section III numerical solutions of the single-mode equation for the radius of the optical beam are presented and compared to the result from a multi-mode truncation of the radiation field. In this case, and for cases not presented herein, the single-mode and multi-mode results indicate that the radiation beam profile entering the wiggler asymptotes to a unique form after an initial
transient. Additionally, the numerical values of the radius of the radiation envelope and of the wavefront curvature are in fair agreement, irrespective of the degree of mode truncation, indicating the usefulness of the single-mode equations. Limiting ourselves to these equations, the electron beam is then allowed to oscillate at the betatron wavelength and the resulting radiation profile examined. It is found that the optical beam envelope follows that of the electrons with almost identical wavelength, but retarded in phase. Section IV discusses the results, deriving formulae for the matched radiation beam profile (i.e., radius and curvature) in terms of the electron beam and wiggler parameters. It is shown analytically that perturbations of the profile are spatially damped out, consistent with the numerical observations indicating a unique, asymptotic matched radius and curvature. Appendix A presents the necessary details required to derive the source term, for the wave equation, for a planar wiggler and an electron beam with uniform density along the direction of propagation. Appendix B considers the effect of the modulation of the electron beam on the optical wave. Specifically, a simple analysis, taking into account sideband generation, indicates that the dispersion characteristics of the primary wave are only slightly modified for typical experimental parameters. Appendix C presents the details of the stability calculation.

II. Mathematical Formulation

The purpose of the present section is to present the salient features of the source dependent expansion method\(^8\) so as to fix the notation and for reference in the subsequent sections.

For a planar wiggler, it is appropriate to assume a linearly polarized radiation vector potential
\[A = \frac{1}{2} A(r, \theta, z) \exp \left[i \left(\frac{\omega z}{c} - \omega t \right) \right] e_x + c.c., \]

with angular frequency \(\omega \) and complex amplitude \(A \). In the slowly varying envelope approximation, the wave equation reduces to

\[
\left(\frac{1}{r} \frac{\partial}{\partial r} r \frac{\partial}{\partial r} + \frac{1}{r^2} \frac{\partial^2}{\partial \theta^2} + \frac{2i \omega}{c} \frac{\partial}{\partial z} \right) a = S(r, \theta, z),
\]

(1)

where \(a = |e| A/m_0 c^2 \), and the source function is given by

\[
S(r, \theta, z) = -\frac{8\pi |e|}{m_0 c^3} \left(J_x(r, \theta, z) \exp \left[-i \left(\frac{\omega z}{c} - \omega t \right) \right] \right)_{\text{slow}}.
\]

(2)

Here \(e \) is the charge on an electron of (rest) mass \(m_0 \), \(J_x(r, \theta, z) \) is the current density and \(\{ \}_{\text{slow}} \) indicates that only the spatially and temporally slow part of the quantity in braces is to be retained.

The basic premise of the work presented herein is that the radiation field is azimuthally symmetric and the vector potential is expressible as:

\[a(r, \theta, z) = \sum_{m=0}^{\infty} a_m(z) D_m(\xi, z), \]

(3)

with \(D_m = L_m(\xi) \exp \{-i\alpha(z)\xi/2\} \), where \(\xi = 2r^2/r_s^2(z) \), \(r_s(z) \) is related to the radiation spot size, \(\alpha(z) \) is proportional to the curvature of the wavefront, and \(L_m(\xi) \) is the Laguerre polynomial of order \(m \).

Now, if the transverse profile of the radiation beam is close to a Gaussian, the lowest order mode is expected to dominate, and, following Ref. 8, it is simple to show that the associated vector potential evolves according to

\[
\left(\frac{\partial}{\partial z} + A_0 \right) a_0 = -i F_0,
\]

(4)

and the spot size and wavefront curvature evolve via
\[
\frac{d}{dz} r_s - \frac{2ca}{\omega r_s} = -r_s \left(\frac{F_1}{a_0} \right),
\] (5a)

\[
\frac{d}{dz} \alpha - 2(1+\alpha^2) \frac{c}{\omega r_s^2} = 2 \left[\alpha \left(\frac{1}{a_0} \right) - \alpha \frac{F_1}{a_0} \right],
\] (5b)

where

\[
A_o = \frac{1}{r_s} \frac{d}{dz} r_s + i \left[(1+\alpha^2) \frac{c}{\omega r_s^2} - \frac{\alpha}{r_s} \frac{d}{dz} r_s + \frac{1}{2} \frac{d^2}{dz^2} \alpha \right],
\]

the F's are given by the following overlap integral:

\[
F_m(z) = \frac{c}{2\omega} \int_0^\infty d\xi S(\xi,z)D_m^*(\xi,z),
\] (6)

and the label R (I) indicates the real (imaginary) part.

Noting that \(L_0(\xi) = 1 \), the normalized vector potential is seen to be given by [Eq. (3)]

\[
a(r,\theta,z) = a_0(z) \exp \left\{ -[1-i\alpha(z)] \frac{r^2}{r_s^2(z)} \right\},
\] (7)

where, in the exponential gain, small-signal regime,

\[
a_0(z) = a(o) \exp \left\{ i \int_0^z dz_1 \left[\Delta k(z_1) - i\Gamma(z_1) \right] \right\},
\] (8)

Here \(a(o) \) is the input signal at \(z = o \), and the two components of the refractive index are given by

\[
n_z = \left[1 + \frac{c \Delta k}{\omega} \right] - i \frac{c}{\omega} \left(\Gamma - r^2 \frac{\partial}{\partial z} \frac{1 - i\alpha}{r_s^2} \right)
\] (9a)

\[
n_r = \frac{2cr}{\omega r_s^2} (\alpha + i).
\] (9b)
Assuming the electron beam profile to be given by

\[n_b(z) = n_{bo} \left[\frac{r_{bo}}{r_b(z)} \right]^2 \exp \left(-\frac{r^2}{r_b^2(z)} \right), \tag{10} \]

where \(r_b(z) \) is the electron beam radius at \(z \) and \(n_{bo} \) is the beam density at \(r_b(z) = r_{bo} \), the source term in Eq. (1) may be readily evaluated (Appendix A), to obtain

\[S(r,z) = f_B^2 \frac{\omega_{bo}^2}{2 \gamma^3 c^2} \left[\frac{r_{bo}}{r_b(z)} \right]^2 \exp \left(-\frac{r^2}{r_b^2} \right) \frac{\omega k w a_w^2}{c(\Delta k - i\Gamma)^2}, \tag{11} \]

where the vector potential of the planar wiggler of periodicity \(2\pi/k_w \) is given by

\[A_w = A_w \cos(k_wz)e_x, \tag{12} \]

\[a_w = |e|A_w/m_0 c^2, \tag{13} \]

\(\gamma \) is the relativistic mass factor, \(f_B \) is the usual difference of Bessel functions, \(f_B = J_0(\zeta) - J_1(\zeta), \zeta = (1/4)a_w^2/[1 + (1/2)a_w^2] \), and

\[\omega_{bo} = (4\pi |e|^2 n_{bo}/m_o)^{1/2} \]

is the plasma frequency of the electron beam with density \(n_{bo} \).

Substituting Eqs. (8) and (11) into Eq. (6) and making use of Eqs. (4) and (5), it is simple to show that the equations reduce to

\[\frac{d\alpha}{d(k_w^2)} = 2(1+\alpha^2) \frac{ck_w}{(k_w^r_s)^2} \frac{1}{(k_w^r_s)} \left[\frac{F_1}{k_w^r_s} \right] - \alpha \left[\frac{F_1}{k_w^r_s} \right], \tag{14a} \]

\[\frac{d(k_w^r_s)^2}{d(k_w^r_s)} = 4\alpha \frac{ck_w}{(k_w^r_s)} - 2 \left[\frac{F_1}{k_w^r_s} \right] \left(k_w^r_s \right)^2, \tag{14b} \]
\[
\frac{\Delta k}{k_w} - i \frac{\Gamma}{k_w} + 2 \left(\frac{k_w}{\omega} \right)^2 \left[\frac{1 - i \alpha}{(k_w r_s)^2} \right] + 2 \left(\frac{F_1}{k_w a_0} \right) \left[1 + \frac{r_b}{r_s} \right]^2 = 0, \quad (14c)
\]

where

\[
F_1 = f_B \left(\frac{a_0}{c k_w} \right)^2 \left[\frac{r_b}{r_b(z)} \right] \frac{a_w^2}{2 \gamma^3} \left[\frac{(r_b/r_s)^2}{1 + 2(r_b/r_s)^2} \right]^2 \left(\frac{\Delta k}{k_w} - i \frac{\Gamma}{k_w} \right)^2. \quad (14d)
\]

The spatial evolution of the system is governed by the differential system (14a) and (14b) along with the dispersion relation (14c), the solution of which yields \(\alpha(z), r_s(z), \Delta k(z)\) and \(\Gamma(z)\).

III. Numerical Results

Having obtained the single mode system of Eqs. (14), it is of interest to determine the extent to which it approximates the general solution in (3). Once it is established that Eqs. (14) provide an adequate representation of the general solution, it is then possible to study a variety of problems of interest by solving a simple set of equations.

Briefly, the numerical procedure for solving an initial-value problem is the following. Substituting Eq. (14d) into Eq. (14c) yields a cubic (algebraic) equation for \(\Delta k - i \Gamma\) which may be solved, at each \(z\), in terms of \(r_s(z), \alpha(z)\) and \(r_b(z)\), thus enabling Eqs. (14a) and (14b) to be stepped forward in \(z\). Since in the absence of source terms an input radiation signal diffracts away on the scale length defined by the Rayleigh range \(z_R\),

\[
z_R = \frac{\omega r_s^2(z)}{2c} \left. \right|_{z=0}, \quad (15)
\]
it is informative to present the numerical results with the distance along the wiggler measured in units of the Rayleigh range. In all the numerical results to be presented, the radiation field is assumed to be in the form of plane waves at the entrance to the wiggler, i.e., $\alpha(z=0) = 0$.

Case I

To begin with, Fig. 1 shows the results for the following parameters: beam current, $I_b = 270$ A, $r_{bo} = 0.01$ cm, $\gamma = 2000$, $2\pi/k_w = 10$ cm, $a_w = 6.15$ and $r_s(z=0) = 0.02$ cm. Noting the factor of $2^{1/2}$ difference between the definition of a_w in Eq. (13) and that in Ref. 4, it is clear from Fig. 1(a) that after a transient oscillation over a distance of about 20 Rayleigh ranges, the radiation spot size approaches a value quite close to that obtained with the two-dimensional FEL code FRED at the Lawrence Livermore National Laboratory (LLNL). We also find that for all the numerical cases examined, a unique, asymptotic spot size is obtained irrespective of the initial optical waist. Figure 1(b) shows the spatial evolution of α, indicating that it, too, approaches a constant value after an initial transient behavior.

The solid curve in Fig. 2 shows the evolution of $1/e$ width of the radiation amplitude with a five mode ($m=0,1,2,3,4$) source dependent expansion calculation using the same set of FEL parameters. The radiation field is represented by Eq. (3) and the source term is given by Eq. (11). With the assumption that the fundamental mode dominates, only the Δk and Γ of $a_o (r,z)$ are involved in the source function and they are obtained from Eqs. (14c) and (14d). It is found that the fundamental mode remains dominant over many Rayleigh lengths. For comparison the dashed curve in Fig. 2 shows the fundamental mode spot size of Fig. 1(a), and the asymptotic results are seen to differ by about 10%. This suggests that the
single-mode system of Eqs. (14) may be regarded as a reasonably accurate simplification of Eq. (3). Henceforth the results presented pertain to Eqs. (14).

Case II

Figure 3 presents the results for a case where the electron beam is not matched; i.e., the envelope of the electron beam is modulated:

\[r_b(z) = r_{bo} + \delta r_b \sin(k_B z), \]

(16)

where \(\delta r_b \) is the amplitude of the modulation and for simplicity \(k_B \) is chosen to be equal to the betatron wave number \(k_{\nu w} a_w/(4\gamma^2 \beta_z) \), neglecting self-fields. \(\beta_z \) is the beam speed along the wiggler axis normalized to \(c \). The parameters, typical of the Advanced Test Accelerator experiment at LLNL, are \(I_b = 2 \) kA, \(r_{bo} = 0.3 \) cm, \(\gamma = 100 \), \(2\pi/k_w = 8 \) cm, \(a_w = 1.72 \), \(r_s(z=0) = 0.35 \) cm. (The reader is referred to Refs. 9 and 11 for details.)

In Fig. 3, where \(\delta r_b/r_{bo} = 0.1 \), it is observed that the optical spot size follows the modulations in the electron envelope apparently identically. Specifically, a number of cases were examined with \(\delta r_b/r_{bo} \) up to 0.4. In all cases the electron and optical beams oscillate with almost identical wavelength, although the radiation beam appears to lag behind in phase.

Defining the modulation depth \(\Delta = [(r)_{max} - (r)_{min}]/[(r)_{max} + (r)_{min}] \), it is found from Fig. 3(a) that \(\Delta_s = 0.087 \) whereas, from Eq. (16), \(\Delta_L = \delta r_b/r_{bo} = 0.1 \). Although the modulation depth of the electron beam differs from that of the radiation beam, it is found that \(\Delta_s \) increases with \(\delta r_b \).

More generally, allowing for the defocusing effect of self-fields, there is always the possibility of a small amplitude ripple on the electron beam envelope and hence on the radiation beam envelope. In Appendix B,
generation of sidebands is considered in a simplified model and found to have, for typical cases, an insignificant effect on the linear dispersion characteristics of the primary optical wave, as implicitly assumed by employing the source term in Eq. (11) in the present case.

IV. Analysis of Results

One interesting feature of the numerical results is that in all cases the radiation spot size has a unique, asymptotic limit irrespective of the initial value. The asymptotic value of r_S and of α is determined by the fixed points of Eqs. (14a) and (14b); i.e., at the fixed point

$$2(1-\alpha^2) \frac{ckw}{\omega} - \frac{1}{(kwr_S)^2} + 2 \left[\frac{F_1}{(kw a_0)^2} \right] - \alpha \left[\frac{F_1}{(kw a_0)^2} \right] = 0, \quad (17a)$$

$$4\alpha \frac{ckw}{\omega} - 2 \left[\frac{F_1}{(kw a_0)^2} \right] \left(kwr_S \right)^2 = 0. \quad (17b)$$

Combining Eqs. (17a) and (17b) one obtains

$$(1 - i\alpha)^2 \frac{ckw}{\omega} + (kwr_S)^2 \left(\frac{F_1}{(kw a_0)^2} \right) = 0,$$

which, upon making use of Eq. (14d), yields

$$\Delta k = \frac{k^2 r_b \eta^{1/2}}{1+2f} \frac{\alpha}{1+\alpha^2}, \quad \Gamma = \Delta k / \alpha,$$

where

$$\eta = f^2 \left(\frac{\omega}{ckw} \right) \left(\frac{\omega_b}{ckw} \right)^2 \left(\frac{r_b}{r_b} \right)^2 \frac{a_w^2}{2\gamma^3},$$

and $f = (r_b/r_S)^2$ is the filling factor. Substituting the expressions for Δk and Γ into the dispersion relation (14c), one obtains
\[\alpha = \left[\frac{f}{(3f + 2)} \right]^{1/2}, \]
\[r_s = \frac{(\gamma/\nu)^{1/4}}{2^{3/4} k_w^{\gamma B}/2^{1/2}} \frac{(1+a_{w/2})^{3/4}}{a_{w/2}^{1/2}} \frac{f^{1/4}(1+2f)^{3/2}}{(1+3f/2)^{3/4}}, \]

where \(\nu = (\omega_{bo} r_{bo}/2c)^2 \) is Budker's parameter. These expressions may be used to obtain the asymptotic spot size for a given filling factor, and then one obtains the corresponding electron beam radius via \(r_b = r_s f^{1/2}. \)

To avoid complications arising at the outer edges of the optical beam, where the field amplitude is small, typically a filling factor \(f < 1/2 \) is appropriate. It is also possible to rearrange the expression for \(r_s \) to obtain
\[f^3 + f^2 + \left(\frac{1}{2} - \frac{3}{2} q \right) f - q = 0, \]

where
\[q = \left[2 \frac{2 f_B^2}{(\nu/\nu)} \left(\frac{y r_B k_w}{2} \right)^4 \right]^{1/3} \frac{1}{1+a_w^{2/2}}. \]

The cubic equation for \(f \) may be solved to obtain an explicit expression for \(r_s \). Noting that the sum and the product of the three roots of the cubic equal \(-1\) and \(q \), respectively, it follows that there is a unique, real value for the asymptotic spot size \(r_s \).

To examine stability, it is convenient to define
\[\gamma \equiv \frac{\Delta k}{k_w} - i \frac{\Gamma}{k_w}, \]

and substitute Eq. (14d) into Eq. (14c) to obtain the local dispersion relation:
\[y^3 + 2 \left(\frac{c k_w}{\omega} \right) \frac{1-i\alpha}{(k_w r_s)^2} y^2 = -2 \frac{c k_w}{\omega} \eta \left(\frac{r_b}{r_s} \right)^2 \frac{1+(r_b/r_s)^2}{1+2(r_b/r_s)^2} \]

which may be solved iteratively. It turns out that for the parameters of Case I, at the lowest order, the right-hand side balances the quadratic term on the left. The relevant root, with \(\Delta k, \Gamma > 0 \), may be substituted into Eq. (14d) to obtain, for \(\alpha > 0 \),

\[
\frac{F_1}{k_w a_o} = \frac{-c k_w}{\omega} \frac{1-i\alpha}{(k_w r_s)^2+(k_w r_b)^2} - \frac{1}{2} \left[\frac{\eta}{2(1+\alpha^2)} \right]^{1/2} \frac{\alpha-i \left[1+(1+\alpha^2)^{1/2} \right]}{[1+(1+\alpha^2)^{1/2}]^{1/2}}
\]

\[
\frac{(k_w r_s)^2}{(k_w r_s)^2+2(k_w r_b)^2} \frac{(k_w r_s)(k_w r_b)}{[(k_w r_s)^2+(k_w r_b)^2]^{1/2}}
\]

Perturbing Eqs. (14a) and (14b) about the fixed point and making use of Eq. (19), it is simple to show that the perturbation is spatially damped, thus indicating the stability of the fixed point. The algebraic details are relegated to Appendix C.

Another aspect of the results which is of interest pertains to the nature of the phase fronts and the flux of optical power in the asymptotic region. From Eqs. (7) and (8) it is simple to check that, in differential form, the surfaces of constant phase are given by \((\omega/c + \Delta k) \delta z + (2r\alpha/r_S^2) \delta r = 0 \), and hence, noting that \(\Delta k, \alpha > 0 \), the wavefronts are divergent in the direction of propagation. Consistent with this, there is a nonvanishing transverse component of the Poynting flux. Specifically, for \(r/r_S \leq 1 \) the ratio of flux of optical energy in the transverse direction to that along the z axis is \(-\alpha/r_S^2 \ll 1 \).
V. Conclusion

Based on the results presented herein, the simplicity and accuracy of the single-mode Gaussian-Laguerre approximation to the solution of Maxwell's equations has been demonstrated. It is shown that, in the exponential gain regime of operation of an FEL amplifier, there is a unique, asymptotic spot size for the radiation beam irrespective of that at the entrance of the wiggler. There is, however, a transverse flux of optical power. It is shown analytically that the asymptotic profile (i.e., the radius and the curvature at large z) is stable to small amplitude perturbations. With a spatially modulated electron beam envelope, that of the optical beam is found to oscillate on the same spatial scale.

Acknowledgment

Discussions with Dr. W. P. Marable and Dr. C. M. Tang are gratefully acknowledged. This work was SPONSORED BY U. S. ARMY STRATEGIC DEFENSE COMMAND.
References

Appendix A: Source Term

In this appendix, the details of the evaluation of the source term S in Eq. (11) are presented.

The FEL source current, $J_x(r,\theta,z)$, in a linear wiggler is given by

$$J_x(r,\theta,z) = -e|\delta n_b(r,\theta,z)v_x$$

$$= \frac{-|e|^2 \delta n_b e^{-ik\psi z}}{2\gamma m_0 c} A_w + c.c.$$

where δn_b is the perturbed beam density and the relation $v_x = v_w = |e|A_w \cos(k_w z)/\gamma m_0 c$ has been used. Equation (2) can then be written as

$$S(r,\theta,z) = \frac{4\pi |e|^2 \delta n_b a_w}{\gamma m_0 c^2} e^{-i(k + k_w)z - \omega t}$$

(A1)

where $k = \omega/c$.

The perturbed beam density can be evaluated from the continuity equation,

$$\frac{d\delta n_b}{dt} = -n_b \frac{\delta v_z}{\delta z}, \quad (A2)$$

and the equation of motion in the z-direction,

$$\frac{dv_z}{dt} = -\frac{|e|}{\gamma m_0} \left[v_x^2 - \frac{v_z^2}{c^2} \right]$$

(A3)

where electron self-field effects are neglected. Taking the convective time derivative of Eq. (A2), and incorporating the linearized version of Eq. (A3), one can arrive at the following equation for the perturbed beam density,
\[
\frac{d^2 \delta n_b}{dt^2} = - \frac{|e| n_b}{\gamma m_0} \frac{2}{\partial z} \left(\frac{\partial}{\partial z} + \frac{v}{c^2} \frac{\partial}{\partial t} \right) \phi_{\text{pond}}
\]

\(\phi_{\text{pond}} = - \frac{|e| A^A_\nu}{4 \gamma m_0 c^2} e^{i(k + k_w)z - \omega t} + \text{c.c.}\)

With the assumption that \(A(r, \theta, z)\) is a slowly varying function of \(z\), i.e., \(|\partial \ln A/\partial z| \ll k_w \ll k\), Eq. (A4) becomes

\[
\frac{d^2 \delta n_b}{dt^2} = \frac{|e|^2 n_b A^A_\nu}{2 \gamma^2 m_0^2 c^2} k_w k e^{i(k + k_w)z - \omega t} + \text{c.c.}
\]

where the resonance condition, \(\omega = v_z (k + k_w)\) is used.

For a near Gaussian radiation field in the exponential gain regime,

\[
A(r, \theta, z) = A_\nu (r, \theta, z) = A_\nu (0) \exp \left[\int [\Delta k (z_1) - i \Gamma (z_1)] dz_1 - [1 - i \alpha (z)] \frac{r^2}{r_s^2 (z)} \right]
\]

and assuming \(\Delta k, \Gamma, \alpha\) and \(r_s\) are slowly varying functions of \(z\), Eq. (A5) can be integrated immediately to give

\[
\delta n_b = \frac{|e|^2 n_b A^A_\nu k k_w}{2 \gamma^2 m_0^2 c^4 (\Delta k - i \Gamma)^2} e^{i(k + k_w)z - \omega t} + \text{c.c.}
\]

When Eq. (A6) is substituted into Eq. (A1), taking into account the usual difference of Bessel functions for a planar wiggler, and Eq. (10) for the beam profile, the source function in Eq. (1) is then given by Eq. (11).
Appendix B: Sideband Generation

In this appendix generation of sidebands to the primary optical wave, due to the spatial modulation of the electron beam, is analyzed. It is to be emphasized that the following analysis is intended merely to show that the dispersion characteristics of the primary optical wave are only slightly modified \[\sim \left(\frac{\delta N_0}{N_0} \right)^2 \] for typical experimental parameters, as implicitly assumed in applying the results of Appendix A to the case of a modulated electron beam in Section III.

The development of the linear theory herein generalizes that of Sprangle et al., 12 to which reference should be made for further details.

The form of the vector potential of a planar wiggler employed in this appendix is slightly different to that given by Eq. (12):

\[A_w = A_w \left[\exp(ik_w z) - \text{c.c.} \right] e^x, \]

where \(A_w \) is purely imaginary, and that of the linearly polarized radiation field is taken to be of the form

\[A = \left\{ A_+ \exp(ik_+ z - i\omega t) + A_- \exp(ik_- z - i\omega t) \right\} e^x, \]

where it is assumed that the electron density, modulated at the betatron wavelength \(2\pi/k_B \), has the simple form

\[n_0 = N_0 + \frac{\delta N_0}{2} \left[\exp(ik_B z) + \text{c.c.} \right], \]

with \(k_B \ll k_w \ll k \), and \(k_+ = k + k_B \), \(k_- = k - k_B \).
Following Ref. 12, the wave equation is found to be

\[\left(\frac{\partial^2}{\partial z^2} - \frac{1}{c^2} \frac{\partial^2}{\partial t^2} - \frac{\omega_b^2}{\gamma_0 c^2} \right) A = \frac{4\pi |e|^2}{\gamma_0^2 m_0 c^2} \delta n A_x, \]

where \(\gamma_0 \) is the relativistic factor in the absence of the radiation field, \(\omega_b = (4\pi n_o |e|^2/m_0)^{1/2} \), and \(\delta n \) is the density perturbation caused by the radiation. Note that the velocity \(v_z \) along the wiggler axis is not affected by the betatron oscillation and hence \(\gamma_0 \), to lowest order in \(|eA_x/\gamma_0 m_0 c^2|^2 \), is not a function of \(z \). Defining the ponderomotive potential

\[\phi_{\text{pond}} = \frac{|e|}{\gamma_0 m_0 c^2} A_x \cdot A_x, \]

the momentum, continuity and Poisson’s equations may be combined to obtain

\[\frac{d^2 \delta n}{dt^2} - \frac{v_z}{n_0} \left(\frac{\partial n_0}{\partial z} \right) \frac{d \delta n}{dt} + \frac{4\pi n_o |e|^2}{m_0 \gamma_0 z^2} \delta n + \frac{|e|^2}{m_0 \gamma_0 z^2 \partial \gamma_0 / \partial z} \frac{\partial \phi}{\partial z} = \frac{-|e|}{m_0 \gamma_0} \frac{\partial}{\partial z} n_0 \left(\frac{\partial}{\partial z} + \frac{v_z}{c} \frac{\partial}{\partial t} \right) \phi_{\text{pond}}, \tag{B1} \]

where \(\gamma_z = (1 - v_z^2/c^2)^{-1/2} \), \(\phi \) is the scalar potential, and terms such as \(\delta^2 n_0 /\partial z^2 \), which are on the order of \(k_B^2 \), have been neglected.

Writing \(k_+ = k + k_B \), \(k_- = k - k_B \),

\[\delta n = \left\{ \delta n_+ \exp [i(k_+ + k) z - i\omega t] + \delta n_- \exp [i(k_- + k) z - i\omega t] \right\} \]

\[+ \delta n_0 \exp [i(k + k) z - i\omega t] + \text{c.c.}, \]

noting that, on the left-hand side of Eq. (B1), the ratio of the fourth to the third term is on the order of \(k_B^2/k \ll 1 \), one finds that
\[\begin{bmatrix}
m_{11} + \alpha^2 a_-
\epsilon m_{12}
\epsilon m_{21}
m_{22} + \alpha^2 a_{22}
\epsilon m_{23}
m_{31}
\epsilon m_{32}
n_{33} + \alpha^2 a_+
\end{bmatrix}
\begin{bmatrix}
A_+
A_o
A_-
\end{bmatrix} = 0,
\]

where \(\alpha = (\delta N_o / 2N_o)\), and \(n_{13}, m_{31} = 0(\alpha^2)\). It is then simple to show that, correct to \(O(\alpha^2)\), the dispersion relation is given by

\[m_{22} - \left(\frac{\delta N_o}{2N_o}\right)^2 \left[\frac{m_{32} m_{23}}{m_{33}} + \frac{m_{12} m_{21}}{m_{11}}\right] + \left(\frac{\delta N_o}{2N_o}\right)^2 \left[\frac{m_{22}}{m_{33}} \left[\frac{a_+}{m_{33}} + \frac{a_-}{m_{11}}\right]\right] = 0,
\]

where

\[m_{22} = m_{22}(k) = \left[\left(\omega - (k + k_w) v_{zo}\right)^2 - \frac{\omega_{bo}^2}{\gamma_o \gamma_z^2}\right] \left(k^2 - \frac{\omega^2}{c^2} + \frac{\omega_{bo}^2}{\gamma_o \gamma_z^2}\right)
- \frac{2\omega^2}{3} k \ k_w \ a_w^2,
\]

is the usual matrix element for the primary wave, \(m_{11} = m_{22}(k_+), m_{33} = m_{22}(k_-), m_{12} = m_{12}(k_+, k, k_B)\)

\[m_{12} = \left[\frac{\omega_{bo}^2}{\gamma_o c^2} \left[\left(\omega - (k + k_w) v_{zo}\right)^2 - \frac{\omega_{bo}^2}{\gamma_o \gamma_z^2}\right] \right.
+ \left[k_B v_{zo} \left[\omega - (k + k_w) v_{zo}\right] - \frac{\omega_{bo}^2}{\gamma_o \gamma_z^2}\right]
\times \left(k^2 - \frac{\omega^2}{c^2} + \frac{\omega_{bo}^2}{\gamma_o c^2}\right)
- \frac{2\omega_{bo}^2}{3} k \ k_w \ a_w^2\right].\]
\[m_{21} = m_{12}(k, k_+, -k_\beta), \quad m_{23} = m_{12}(k, k_-, k_\beta), \quad m_{32} = m_{12}(k_-, k, -k_\beta), \]
\[a_{22} = -\frac{2\omega_{b_0}^4}{\gamma_0^2 c^2} + \frac{2\omega_{b_0}^2 k_\beta^2 \zeta_0^2}{\gamma_0^2 c^2}, \]
\[a_+ = \frac{\omega_{b_0}^2}{\gamma_0 c^2} \left(k_\beta \zeta_0 \left[\omega - (k + k_\nu_0) \nu_0 \right] + \frac{\omega_{b_0}^2}{\gamma_0 c^2} \right), \]
and \(\omega_{b_0} = (4\pi e^2 N_0/m_0)^{1/2} \). Note that with the definition chosen for \(A_\nu \) in this appendix, \(a_\nu^2 = (eA_\nu/m_0 c^2)^2 < 0 \).

To proceed along the lines of Ref. 12, it is convenient to write
\[m_{22}^2 = M_{22} + C_{22}, \]
where
\[M_{22} = \left\{ \left[\omega - (k + k_\nu_0) \nu_0 \right] \frac{\omega_{b_0}^2}{\gamma_0 c^2} \right\} \left(k^2 - \frac{\omega^2}{c^2} + \frac{\omega_{b_0}^2}{\gamma_0 c^2} \right), \]
and
\[C_{22} = -\frac{2\omega_{b_0}^2}{\gamma_0^3} k_\nu_0 a_\nu^2 \]
is the "coupling" term. The dispersion relation then becomes
\[\left[1 + \left(\frac{\delta N_0}{2N_0} \right)^2 \frac{a_+}{m_{33}} + \frac{a_-}{m_{11}} \right] M_{22} = -\left[1 + \left(\frac{\delta N_0}{2N_0} \right)^2 \frac{a_+}{m_{33}} + \frac{a_-}{m_{11}} \right] C_{22} \]
\[+ \left(\frac{\delta N_0}{2N_0} \right)^2 \left(\frac{m_{12} m_{21}}{m_{11}} + \frac{m_{32} m_{23}}{m_{33}} - a_{22} \right). \] (B2)
\[M_{22} \] yields the dispersion relation for uncoupled electromagnetic and space charge waves. The right-hand side of Eq. (B2) introduces the FEL interaction and coupling to sidebands, and its effect is included iteratively. At the lowest order, \(M_{22} = 0 \) for some \((\omega, k)\). Substituting in the right-hand side, the second set of terms vanishes; the term proportional to \(C_{22} \) survives.

Substantial modification of this dispersion relation is expected if

\[1 + \left(\frac{\delta N_o}{2N_o} \right)^2 \left(\frac{a_+}{m_{33}} + \frac{a_-}{m_{11}} \right) \ll 1 \]

i.e., if

\[\frac{\delta N_o}{N_o} \sim 2 k_B c \omega_o^{-3/2} (2k v_{z0})^{1/2} \gamma_z^{1/2} v_o^{-3/4}. \]

For typical experimental parameters, the right-hand side of this equation exceeds unity, whereas \(\delta N_o / N_o \ll 1 \), implying the insignificance of the effect of modulation on the dispersion relation.
Appendix C: Stability Analysis

The purpose of this appendix is to establish the stability of the fixed point \((r_s,\alpha)\) of Eqs. (14).

Perturbing Eqs. (14a) and (14b) about the fixed point and making use of Eq. (19), it is seen that the perturbation evolves according to:

\[
\frac{d}{d(k, z)} \begin{pmatrix} \delta \alpha \\ \delta x \end{pmatrix} = 2 \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} \delta \alpha \\ \delta x \end{pmatrix},
\]

where \(x = (k_r r_s)^2\), \(y = (k_r r_b)^2\),

\[
a_{11} = -\frac{\alpha (ck_\omega/\omega)}{x+y} + X_I \frac{\partial}{\partial \alpha} (X_R - \alpha X_I),
\]

\[
a_{12} = \frac{(1+\alpha^2) (ck_\omega/\omega) y (2x+y)}{x^2 (x+y)^2} + \frac{\partial}{\partial x} (X_R - \alpha X_I),
\]

\[
a_{21} = \frac{x X_I}{\alpha} - x \frac{\partial}{\partial \alpha} X_I,
\]

\[
a_{22} = -\frac{\alpha (ck_\omega/\omega)}{(x+y)^2} - \frac{\partial}{\partial x} (x X_I),
\]

and

\[
X = -\frac{1}{2} \left[\frac{\eta}{2 (1+\alpha^2)} \right]^{1/2} \alpha^{-i \left[1 + \frac{(1+\alpha^2)^{1/2}}{1+ \left(\frac{1+\alpha^2}{2} \right)^{1/2}} \right]^{1/2} \frac{x}{x+2} \left(\frac{xy}{x+y} \right)^{1/2} \cdot (C1)
\]

Assuming that \(\delta \alpha, \delta x \sim \exp(\lambda k, z)\), one finds that

\[
\lambda = - \left[\frac{\alpha (ck_\omega/\omega) (x+2y)}{(x+y)^2} + S_2 + S_1 \right] + \left\{ \left[\frac{-\alpha (ck_\omega/\omega) x}{(x+y)^2} + S_2 - S_1 \right]^2 - S_3 \right\}^{1/2},
\]

21
where

\[
S_1 = - \frac{3X_R}{3\alpha} + \alpha \frac{3X_I}{3\alpha},
\]

\[
S_2 = \frac{3}{3x} (xX_I),
\]

\[
S_3 = -4x \left(\frac{X_I}{\alpha} - \frac{3X_I}{3\alpha} \right) \left[-\left(1+\alpha^2\right) \frac{ck_\nu/\omega}{x^2(x+y)^2} y(y+2x) + \frac{3}{3x} \left(X_R - \alpha X_I \right) \right].
\]

(Note that all the variables in this appendix are evaluated at the fixed point.) Making use of Eq. (C1) it is simple to show that \(X_I/\alpha - 3X_I/3\alpha > 0\), \(3(X_R - \alpha X_I)/3x < 0\), whence \(S_3 > 0\) and hence, noting that \(S_2 + S_1 > 0\), and that the perturbation solution for Eq. (18) implies \(S_1 < \alpha(ck_\nu/\omega)/(x+y)\), one finds that \(\text{Re} \lambda < 0\), thus indicating the stability of the fixed point to small amplitude perturbations.
Fig. 1. Spot size (r_s), α, phase shift (Δk), and gain (I) vs. distance along the wiggler. z is normalized to the Rayleigh range z_R.
Fig. 2. \((1/e)\)-width of the optical field vs. distance along the wiggler.

Solid curve: 5 mode system; dashed curve: 1 mode system.
Fig. 3. Spot size (r_s), α, phase shift (Δk), gain (Γ), and radius of electron beam (r_0) vs. distance along wiggler.
DISTRIBUTION LIST

Naval Research Laboratory
4555 Overlook Avenue, S.W.
Washington, DC 20375-5000

Attn: Code 1000 - Commanding Officer, CAPT William C. Miller
1001 - Dr. T. Coffey
1200 - CAPT H. A. Howard
1220 - Mr. M. Ferguson
4000 - Dr. V. R. Ellis
4600 - Dr. D. Nagel
4603 - Dr. V. W. Zachary
4700 - Dr. S. Osmakov (26 copies)
4700.1 - Dr. A. W. Ali
4710 - Dr. C. A. Kapetanakos
4730 - Dr. R. Elton
4740 - Dr. W. M. Manheimer
4740 - Dr. V. Black
4740 - Dr. J. Condon
4740 - Dr. A. V. Milfilet
4740 - Dr. S. Gold
4740 - Dr. D. L. Hardesty
4740 - Dr. A. K. Kinkead
4740 - Dr. M. Rhinevine
4770 - Dr. G. Cooperstein
4790 - Dr. F. Sprangle (100 copies)
4790 - Dr. C. M. Tang
4790 - Dr. M. Lampe
4790 - Dr. Y. T. Lau
4790A - V. Brizzi
5700 - Dr. L. A. Cosby
6840 - Dr. S. Y. Ahn
6840 - Dr. A. Ganguly
6840 - Dr. R. K. Parker
6843 - Dr. R. B. Jackson
6843 - Dr. N. R. Vanderplaats
6875 - Dr. R. Wagner
2628 - Documents (20 copies)
2634 - D. Vilbanks
1220 - 1 Copy
Dr. R. E. Aamodt
Science Appl. Intl. Corp.
1515 Walnut Street
Boulder, CO 80302

Dr. J. Adamski
Boeing Aerospace Company
P.O. Box 3999
Seattle, WA 98124

Dr. H. Agravante
TRW, Inc.
One Space Park
Redondo Beach, CA 90278 / R1-2020

Prof. I. Alexeff
University of Tennessee
Dept. of Electrical Engr.
Knoxville, TN 37916

Dr. L. Altgilbers
3805 Jamestown
Huntsville, AL 35810

Dr. A. Amir
Quantum Inst. and Dept. of Physics
University of California
Santa Barbara, CA 93106

Dr. Bruce Anderson
Air Force Weapons Laboratory
Kirtland AFB
Albuquerque, NM 87117

Dr. Antonio Anselmo
909 Mitchell Street
Cornell University
Ithaca, NY 14850

Dr. T. M. Antonsen
University of Maryland
College Park, MD 20742

Dr. C. M. Armstrong
Code 6843
Naval Research Laboratory
Washington, DC 20375-5000

Dr. Tony Armstrong
Science Applications Intl. Corp.
P.O. Box 2351
La Jolla, CA 92038

Assistant Secretary of the Air Force (RD&L)
Room 4E856, The Pentagon
Washington, D.C. 20330

Dr. W. P. Ballard
Sandia National Laboratories
ORG. 1231, P.O. Box 5800
Albuquerque, NM 87185

Mr. Jon Barber
Dept. of Physics
Bethel College
St. Paul, MN 55112

Dr. W. A. Barletta
Lawrence Livermore National Lab.
P. O. Box 808
Livermore, CA 94550

Dr. L. R. Barnett
University of Utah
Salt Lake City UT 84112

Commander George Bates, PMS 405-300
Naval Sea Systems Command
Department of the Navy
Washington, DC 20362

Dr. Latika Becker
U. S. Army SDC
DASD-H-F
P. O. Box 1500
Huntsville, AL 35807-3801

Dr. W. Becker
Univ. of New Mexico
Institute for Mod. Opt.
Albuquerque, NM 87131

Dr. Robert Behringer
Code 818
Office of Naval Research
1030 E. Green
Pasadena, CA 91106

Dr. G. Bekefi (5 copies)
Mass. Institute of Tech.
Bldg. 26
Cambridge, MA 02139

28
Dr. J. A. Edighoffer
TRW, Bldg. R-1
 une Space Park
Redondo Beach, CA 90278

Dr. O. C. Eldridge
University of Wisconsin
1500 Johnson Drive
Madison, WI 53706

Dr. Luis R. Elias (2 copies)
Quantum Institute
University of California
Santa Barbara, CA 93106

Dr. C. J. Elliott
Los Alamos National Laboratory
P.O. Box 1663
Los Alamos, NM 87545

Dr. James Elliott
X1-Division, M.S. 531
Los Alamos Natl. Scientific Lab.
P.O. Box 1663
Los Alamos, NM 87545

Dr. A. England
Oak Ridge National Laboratory
P.O. Box Y
Mail Stop 1
Building 2201 2
Oak Ridge, TN 37830

Dr. William M. Fairbank
Phys. Dept. 6 High Energy
Phys. Laboratory
Stanford University
Stanford, CA 94305

Dr. Anne Marie Fauchet
Brookhaven National Laboratories
Associated Universities, Inc.
Upton, L.I., NY 11973

Dr. J. Feinstein
Dept. of Electrical Engineering
Stanford University
Stanford, CA 94305

Dr. Frank C. Felber
11443 Convista Road
San Diego, CA 92127

Dr. D. Feldman
Los Alamos National Laboratory
P.O. Box 1663
Los Alamos, NM 87545

Dr. Renee B. Feldman
Los Alamos National Laboratory
P.O. Box 1663
Los Alamos, NM 87545

Dr. L. A. Ferrari
Queens College
Department of Physics
Flushing, NY 11367

Dr. C. Finfgeld
ER-542, GTN
Department of Energy
Washington, DC 20545

Dr. A. S. Fisher
Dept. of Electrical Engineering
Stanford University
Stanford, CA 94305

Dr. R. G. Fleig
Hughes Research Laboratory
3011 Malibu Canyon Road
Malibu, CA 90265

Dr. H. Fleischmann
Cornell University
Ithaca, NY 14850

Dr. E. Fontana
Dept. of Electrical Engineering
Stanford University
Stanford, CA 94305

Dr. Norval Fortson
University of Washington
Department of Physics
Seattle, WA 98195

Dr. J. Fraser
Los Alamos National Laboratory
P.O. Box 1663
Los Alamos, NM 87545

Dr. Roger A. Freedman
Quantum Institute
University of California
Santa Barbara, CA 93106
Dr. J. Hoffman
Sandia National Laboratories
ORG. 1231, P.O. Box 5800
Albuquerque, NM 87185

Dr. R. Hofland
Aerospace Corp.
P. O. Box 92957
Los Angeles, CA 90009

Dr. Fred Hopf
Optical Sciences Building, Room 602
University of Arizona
Tucson, AZ 85721

Dr. Heinrich Hora
Iowa Laser Facility
University of Iowa
Iowa City, Iowa

Dr. J. Y. Hsu
General Atomic
San Diego, CA 92138

Dr. H. Hsuan
Princeton Plasma
Plasma Physics Laboratory
James Forrestal Campus
P.O. Box 451
Princeton, NJ 08544

Dr. James Hu
Quantum Inst. and Phys. Dept.
University of California
Santa Barbara, CA 93106

Dr. Benjamin Hubberman
Associate Director, OSTP
Rm. 476, Old Executive Office Bldg.
Washington, DC 20506

Dr. J. Hyman
Hughes Research Laboratory
3011 Malibu Canyon Road
Malibu, CA 90265

Dr. H. Ishizuka
University of California
Department of Physics
Irvine, CA 92717

Dr. A. Jackson
Lawrence Berkeley Laboratory
University of California, Berkeley
Berkeley, CA 94720

Dr. S. F. Jacobs
Optical Sciences Center
University of Arizona
Tucson, AZ 85721

Dr. Pravin C. Jain
Asst. for Communications Tech.
Defense Communications Agency
Washington, DC 20305

Dr. E. T. Jaynes
Physics Department
Washington University
St. Louis, MO 63130

Dr. Bernadette Johnson
Lincoln Laboratory
Lexington, MA 02173

Dr. Richard Johnson
Physics International
2700 Merced St.
San Leandro, CA 94577

Dr. G. L. Johnston
NW 16-232
Mass. Institute of Tech.
Cambridge, MA 02139

Dr. Shayne Johnston
Physics Department
Jackson State University
Jackson, MS 39217

Dr. William Jones
U. S. Army SDC
P. O. Box 1500
Huntsville, AL 35807-3801

Dr. R. A. Jong
Lawrence Livermore National Laboratory
P. O. Box 808/L626
Livermore, CA 94550

Dr. Howard Jory (3 copies)
Varian Associates, Bldg. 1
611 Hansen Way
Palo Alto, CA 94303

Dr. C. Joshi
University of California
Los Angeles, CA 90024
Dr. Paul Kennedy
Rockwell International/Rocketdyne Div.
6633 Canoga Avenue, FA-40
Canoga Park, CA 91304
Dr. R. Kennedy
Boeing Aerospace Company
P.O. Box 3999
Seattle, WA 98124

Dr. K. J. Kim, MS-101
Lawrence Berkeley Lab.
Rm. 223, B-80
Berkeley, CA 94720

Dr. I. Kimel
Quantum Institute
University of California
Santa Barbara, CA 93106

Dr. Brian Kincaid
AT&T Bell Labs
700 Mountain Ave.
Murray Hill, NJ 07974

Dr. S. P. Kno
Polytechnic Institute of NY
Route 110
Farmingdale, NY 11735

Dr. Xu Knogyl
Room 36-285
Mass. Institute of Technology
Cambridge MA 02139

Dr. A. Kolb
Maxwell Laboratories, Inc.
8835 Balboa Avenue
San Diego, CA 92123

Dr. Eugene Kopf
Principal Deputy Assistant
Secretary of the Air Force (RD&L)
Room 4E64, The Pentagon
Washington, D.C. 20330

Dr. P. Korn
Maxwell Laboratories, Inc.
8835 Balboa Avenue
San Diego, CA 92123

Dr. J. Kotthaus
Quantum Inst. and Dept. of Physics
University of California
Santa Barbara, CA 93106

Dr. S. Krinsky
Nat. Synchrotron Light Source
Brookhaven National Laboratory
Upton, NY 11973

Prof. N. M. Kroll
Department of Physics
B-019, UCSD
La Jolla, CA 92039

Dr. Thomas Kwan
Los Alamos National Scientific Laboratory, MS608
P. O. Box 1663
Los Alamos, NM 87545

Dr. Jean Labacqz
Stanford University
SLAC
Stanford, CA 94305

Dr. Ross H. Labbe
Rockwell International/Rocketdyne Div.
6633 Canoga Avenue, FA-40
Canoga Park, CA 91304

Dr. Willis Lamb
Optical Sciences Center
University of Arizona
Tucson, AZ 85721

Dr. H. Lancaster
Lawrence Berkeley Laboratory
University of California, Berkeley
Berkeley, CA 94720

Dr. D. J. Larson
The Inst. for Accelerator Physics
Department of Physics
University of Wisconsin-Madison
Madison, WI 53706

Dr. J. LaSala
Hansen Labs
Stanford University
Stanford, CA 94305

Dr. Bernard Laskovski
M.S. 230-3
NASA-Ames
Moffett Field, CA 94305

Dr. Michael Lavan
U.S. Army Strategic Def. Command
ATTN: Code DASD-H-WD
P. O. Box 1500
Huntsville, AL 35807-3801
Dr. Ray Leadabrand
SRI International
333 Ravenswood Avenue
Menlo Park, CA 94025

Dr. Kotik K. Lee
Perkin-Elmer
Optical Group
100 Wooster Heights Road
Danbury, CT 06810

Dr. K. Lee
Los Alamos Nat. Scientific Lab.
Attn: X-1 MS-E531
P. O. Box 1663
Los Alamos, NM 87545

Dr. Barry Leven
NISC/Code 20
4301 Suitland Road
Washington, D.C. 20390

Dr. B. Levush
University of Maryland
College Park, MD 20742

Dr. Lewis Licht
Department of Physics
Box 4348
U. of Illinois at Chicago Cir.
Chicago, IL 60680

Dr. Anthony T. Lin
Dept. of Physics
University of California
Los Angeles, CA 90024

Dr. B. A. Lippmann
Stanford Linear Accel. Center
BIN 26
Stanford, CA 94305

Dr. R. Lohsen
Los Alamos National Laboratory
P. O. Box 1663
Los Alamos, NM 87545

Dr. M. Loring
Oak Ridge National Laboratory
P.O. Box Y
Mail Stop 3
Building 9201-2
Oak Ridge, TN 37830

Dr. D. D. Loventhal
Spectra Technology
2755 Northup Way
Bellevue, WA 98004

Dr. A. Luccio
Brookhaven National Laboratory
Accelerator Dept.
Upton, NY 11973

Dr. A. Lumpkin
Los Alamos National Laboratory
P. O. Box 1663
Los Alamos, NM 87545

Dr. Phil Mace
W. J. Schafer Assoc., Inc.
1901 N. Fort Myer Drive
Arlington, VA 22209

Dr. John Madey
S.P.R.C.
Physics Department
Stanford University
Stanford, CA 94305

Dr. S. A. Mani
W. J. Schafer Assoc., Inc.
10 Lakeside Office Park
Wakefield, MA 01880

Dr. J. Mark
Lawrence Livermore National Lab.
Attn: L-477
P. O. Box 808
Livermore, CA 94550

Dr. T. C. Marshall
Applied Physics Department
Columbia University
New York, NY 10027

Dr. W. E. Martin
L-436
Lawrence Livermore National Lab.
P. O. Box 808
Livermore, CA 94550

Dr. Xavier K. Maruyama
National Bureau of Standards
Gaithersburg, MD 20899
Dr. L. Ranjun
Dept. of Physics
University of Cal. at Irvine
Irvine, CA 92717

Dr. L. L. Reginato
Lawrence Livermore National Laboratory
P. O. Box 808
Livermore, CA 94550

Dr. M. B. Reid
Dept. of Electrical Engineering
Stanford University
Stanford, CA 94305

Dr. D. A. Reilly
AVCO Everett Research Lab.
Everett, MA 02149

Dr. James P. Reilly
W. J. Schafer Associates, Inc.
10 Lakeside Office Park
Wakefield, MA 01880

Dr. M. Reiser
University of Maryland
Department of Physics
College Park, MD 20742

Dr. Bruce A. Richman
High Energy Physics Lab.
Stanford University
Stanford, CA 94305

Dr. S. Ride
Johnson Space Center
Houston, TX 77058

Dr. C. W. Roberson
Code 412
Office of Naval Research
800 N. Quincy Street
Arlington, VA 22217

Dr. B. Robinson
Boeing Aerospace Company
P.O. Box 3999
Seattle, WA 98124

Dr. K. Robinson
Spectra Technology
2755 Northup Way
Bellevue, WA 98004

Dr. D. Rogers
Lawrence Livermore National Laboratory
P. O. Box 808
Livermore, CA 94550

Dr. H. Romero
ECE Department
University of Wisconsin
Madison, WI 53706

Dr. Jake Romero
Boeing Aerospace Company
P. O. Box 3999
Seattle, WA 98124-2499

Dr. T. Romesser
TRW, Inc.
One Space Park
Redondo Beach, CA 90278

Dr. Marshall N. Rosenbluth
Institute for Fusion Studies
The Univ. of Texas at Austin
Austin, TX 78712

Dr. J. B. Rosenzweig
The Inst. for Accelerator Physics
Department of Physics
University of Wisconsin-Madison
Madison, WI 53706

Dr. J. Ross
Spectra Technology
2755 Northup Way
Bellevue, WA 98004

Dr. N. Rostoker
University of California
Department of Physics
Irvine, CA 92717

Dr. G. A. Saenz
Hughes Research Laboratory
3011 Malibu Canyon Road
Malibu, CA 90265

Dr. Antonio Sanchez
Lincoln Laboratory
Mass. Institute of Tech.
Room B213
P. O. Box 73
Lexington, MA 02173
Dr. W. Stein
Los Alamos National Laboratory
P. O. Box 1663
Los Alamos, NM 87545

Dr. L. Steinheuer
STI
2755 Northup Way
Bellevue, WA 98004

Dr. A. Stern
Quantum Inst. and Dept. of Physics
University of California
Santa Barbara, CA 93106

Dr. Efrem J. Sternbach
Lawrence Berkeley Laboratory
University of California, Berkeley
Berkeley, CA 94720

Captain D. Stone
Defense Nuclear Agency
Washington, DC 20305

Dr. H. Strauss
Courant Institute
New York University
New York, NY 10016

Dr. W. C. Stvalley
Iowa Laser Facility
University of Iowa
Iowa City, Iowa

Dr. R. Sudan
Cornell University
Ithaca, NY 14850

Dr. P. W. Sumner
Hughes Research Laboratory
3011 Malibu Canyon Road
Malibu, CA 90265

Dr. David F. Sutter
ER 224, GTN
Department of Energy
Washington, D.C. 20545

Dr. Abraham Szoke
ML/L-470
Lawrence Livermore Natl. Lab.
P.O. Box 808
Livermore, CA 94550

Dr. R. Taber
Phys. & High Energy Lab.
Stanford University
Stanford, CA 94305

Dr. T. Tajima
IPS
Univ. of Texas
Austin, TX 78712

Dr. H. Takeda
Los Alamos National Laboratory
P. O. Box 1663
Los Alamos, NM 87545

Dr. J. J. Tancredi
Hughes Aircraft Co.
Electron Dynamics Division
3100 West Lomita Blvd.
Torrance, CA 90509

Dr. S. C. Tasker
Dept. of Phys. & Res. Lab. of Electronics
Mass. Institute of Technology
Cambridge, MA 02139

Dr. Milan Tekula
AVCO Everett Research Lab.
2385 Revere Beach Parkway
Everett, MA 02149

Dr. R. Temkin (2 copies)
Mass. Institute of Technology
Plasma Fusion Center
Cambridge, MA 02139

Dr. L. Thode
Los Alamos National Laboratory
P. O. Box 1663
Los Alamos, NM 87545

Dr. Keith Thomassen, L-637
Lawrence Livermore National Laboratory
P. O. Box 808
Livermore, CA 94550
Dr. Mark Zedikev
103 S. Goodwin
Urbana, IL 61801

Dr. M. S. Zisman
Lawrence Berkeley Laboratory
University of California, Berkeley
Berkeley, CA 94720

Dr. J. Zumdieck
Spectra Technology
2755 Northup Way
Bellevue, WA 98004

DIRECTOR OF RESEARCH
U.S. NAVAL ACADEMY
ANNAPOLIS, MD 21402
2 COPIES
END

9-87

DTIC