The preparation of macrobicyclic hosts 1,8-dichloro-1,8-distannabicyclo[6.6.6]icosane (1a), 1,10-dichloro-1,10-distannabicyclo[5.6.6]hexacosane (1b), 1,12-dichloro-1,12-distannabicyclo[10.6.6]dotriacontane (1c) and 1,12-dichloro-1,12-distannabicyclo[12.6.6]octa- triacontane (1d) are reported. Complexation of chloride ion in CDCl₃ solutions by these hosts was studied by Sn-119 NMR spectroscopy, and kinetics and equilibrium constants for 1b-d were determined by line shape analysis. Selective chloride binding was observed; hosts 1b and 1c bind chloride more strongly than does host 1d, and host 1a does not bind chloride.
Macrocycles Containing Tin. Through Space Cooperative Binding
and High Size Selectivity in the Complexation
of Chloride Ion by Lewis Acidic Macrobicyclic Hosts
by
Martin Newcomb*, John H. Horner, Michael T. Blanda
Department of Chemistry
Texas A&M University
College Station, Texas 77843
July 27, 1987
Prepared for publication in
the Journal of the American Chemical Society

Reproduction in whole or in part is permitted for
any purpose of the United States Government

* This document has been approved for public release
and sale; its distribution is unlimited

* This statement should also appear in Item 3 of Document Control Data - DD Form 1473. Copies of form available from cognizant contract administrator.
Macrocycles Containing Tin. Through Space Cooperative Binding and High Size Selectivity in the Complexation of Chloride Ion by Lewis Acidic Macrobicyclic Hosts

Martin Newcomb*, John H. Horner, Michael T. Blanda

Department of Chemistry
Texas A&M University
College Station, Texas 77843

Abstract: The preparation of macrobicyclic hosts 1,8-dichloro-1,8-distannabicyclo[6.6.6]eicosane (1a), 1,10-dichloro-1,10-distannabicyclo[8.8.8]hexacosane (1b), 1,12-dichloro-1,12-distannabicyclo[10.10.10]dotriacontane (1c) and 1,14-dichloro-1,14-distannabicyclo[12.12.12]octatriacontane (1d) are reported. Complexation of chloride ion in CDCl₃ solutions by these hosts was studied by \(^{119}\text{Sn}\) NMR spectroscopy, and kinetics and equilibrium constants for 1b-d were determined by line shape analysis. Selective chloride binding was observed; hosts 1b and 1c bind chloride more strongly than does host 1d, and host 1a does not bind chloride.
Macrocycles Containing Tin. Through Space Cooperative Binding
and High Size Selectivity in the Complexation
of Chloride Ion by Lewis Acidic Macrobicyclic Hosts

The interaction of basic macrocyclic and macrobicyclic hosts with cationic guests has been studied intensively in recent years. In contrast, the analogous complexation of anionic guests by acidic polydentate or macrocyclic hosts has received little attention. Recently, we found low selectivity in binding of chloride ion in organic solvents by a series of macrocyclic hosts containing two Lewis acidic tin atoms. We anticipated that the addition of more binding sites to or the incorporation of structural rigidity into our Lewis acidic macrocyclic hosts would result in more selective anion complexation. Creation of macrobicycles appeared to be one way to build up binding site rigidity rapidly since Lewis acidic tin atoms containing one electron withdrawing group will complex donors in a trigonal bipyramidal structure with the donor and withdrawing groups in the axial positions. In this communication we report Lewis acidic macrobicycles in which both the dynamics and energetics of binding of chloride anion are highly size dependent; this apparently represents selective binding of chloride within the host cavity in a manner directly analogous to the binding of cations by cryptands.

The reaction sequence for preparation of macrobicyclic hosts from macrocycles is shown in the Scheme. The starting macrocycles have been reported as has the immediate precursor of lb. The macrobicyclization reactions were effected in 20-30% yields for the precursors to lb-ld but only in 4% yield for the (apparently) strained precursor to la. The final HCl cleavage reactions were virtually quantitative. Sharp melting products were characterized by 1H, 13C and 119Sn NMR spectroscopy.
The complexation of chloride by hosts 1 was studied by 119Sn NMR spectroscopy.\(^7\) Previously, we observed that macrocyclic hosts 2 exchanged chloride fast on the 119Sn NMR time scale and that the first and second binding constants for hosts 2 were nearly the same for each host and varied little between hosts.\(^2\) In this work, similar behavior was observed for macrocyclic model 3 in the binding of chloride in CDC\(_3\) solution; addition of increments of tetrahexylammonium chloride to a solution of 3 resulted in a smooth shift for the single sharp peak from +150 ppm (tetra-coordinate) to -50 ppm (penta-coordinate). Thus, model 3 (like hosts 2) binds two chloride ions strongly and equilibrates rapidly ($k > 5 \times 10^6 \text{ s}^{-1}$).

\[(a: n = 6, b: n = 8, c: n = 10, d: n = 12) \]

Reagents: \(x\), HCl in CH\(_2\)Cl\(_2\); \(y\), BrMg(\(CH_2\))\(_n\)MgBr in THF.
The 119Sn NMR spectra of bicyclic hosts 1 showed dramatic differences in comparison to those of their macrocyclic counterparts when chloride ion was present. Unlike macrocycles 2 and 3, bicyclic hosts 1b-d in the presence of excess chloride bound only one chloride per host; the limiting chemical shifts were at about the mid-point of the tetra- and penta-coordinate tin shifts (one signal for the two tin atoms arises either from fast exchange within the complex or complexation of chloride by both tin atoms simultaneously). There was no indication that any host 1 bound a second chloride anion. Thus, since the tin atoms are insulated from one another by hydrocarbon chains, there is a through space cooperative binding effect in 1b-d mandated by the structure.

The rates of binding of chloride by hosts 1 were substantially slower than those for cycles 2 and 3. In the presence of 0.5 equivalents of chloride ion per host, the 119Sn NMR spectra of C-12 host 1d at room temperature consisted of one broad signal that increased in broadness at lower temperatures. The spectrum of the C-10 host 1c (plus 0.5 equiv of Cl$^-$) at room temperature contained one very broad signal, but at -50 °C broad signals at +150 ppm (uncomplexed) and +40 ppm (1:1 complex) were observed. The spectrum of the slower exchanging C-8 host 1b (with 0.5 equiv of Cl$^-$) contained two sharp signals at -50 °C that broadened on warming (Figure).

\[
\text{HOST} + \text{Cl}^- \xleftrightarrow{K_{eq}} (\text{HOST} \cdot \text{Cl})^-
\]

(1)

The binding of chloride by 1b-d is described by the simple model in equation 1. Line shape analyses of the spectra containing hosts 1b-d and chloride gave kinetic results, some of which are listed in the Table. The rates of complexation and decomplexation were slowed appreciably as the chain length decreased; we presume that this reflects steric interactions as the chloride squeezes between two chains to enter or exit the cavities. For host 1b,
studies of solutions of varying concentration indicated that decomplexation (k_r) was rate limiting; an Arrhenius treatment for this first order decomplexation of chloride from the (1b·Cl)" complex gave an E_a of 9.1 ± 0.5 kcal/mol. The binding constants of hosts 1b and 1c at -20 °C were nearly an order of magnitude greater than that for host 1d; apparently the best cavity size for chloride occurs between hosts 1b and 1c.

A more dramatic demonstration of size selectivity was found when the C-6 bicycle 1a was studied. At room temperature the 119Sn NMR spectrum of 1a (+148 ppm) was unaltered by the addition of excess chloride. The absence of line broadening or a second signal in the +30-40 ppm region in the spectra of 1a showed that no complexation occurred to the limit of our detection capabilities. With the conservative estimate that even in the most difficult to detect case (slow exchange limit) we would have observed 5% complex if it was present, we can set a limit on K_eq for 1a of < 1 M⁻¹. Host 1a is not Lewis acidic towards chloride!

We have shown that highly selective anion binding in organic solvents is possible with appropriately constructed Lewis acidic hosts even when only two binding sites are available. The selectivity can result from either the exclusion of the guest from an under-sized cavity or the poor fit of the guest within an over-sized cavity. The replacement of chloride on bicycles 1 with a non-labile electron withdrawing group should be expected to give hosts that complex a variety of anionic and neutral basic guests selectively.

Acknowledgment. This work was supported by the Office of Naval Research.
References and Notes

7. 119Sn NMR spectra of CDCl$_3$ solutions were recorded on Varian XL-200 (74.6 MHz and XL-400 (149.2 MHz) spectrometers. Gated decoupling was used to suppress NOE. Chemical shifts were measured against internal Me$_4$Sn.

9. A two site exchange model was used. The T_2 values used in simulations were determined experimentally (Varian's CPMG T2 sequence) for host 1b at 149.2 MHz (0.05 s for the uncomplexed and 0.003 s for the complexed signal).

Table. Rates and Equilibrium Constants for Binding Chloride Ion by Hosts 1.\(^a\)

<table>
<thead>
<tr>
<th>Host</th>
<th>Temp (°C)</th>
<th>(k_r \text{ (s}^{-1}\text{)})</th>
<th>(k_f \text{ (M}^{-1}\text{, s}^{-1}))^b</th>
<th>(K_{eq} \text{ (M}^{-1}\text{)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1b(^c)</td>
<td>-50</td>
<td>2.0 \times 10^2</td>
<td>8.9 \times 10^3</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>-40</td>
<td>3.6 \times 10^2</td>
<td>2.2 \times 10^4</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>-30</td>
<td>8.4 \times 10^2</td>
<td>3.7 \times 10^4</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>-20</td>
<td>2.0 \times 10^3</td>
<td>6.6 \times 10^4</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>-10</td>
<td>4.3 \times 10^3</td>
<td>1.2 \times 10^5</td>
<td>28</td>
</tr>
<tr>
<td>1c</td>
<td>-20</td>
<td>3.0 \times 10^4</td>
<td>1.0 \times 10^5</td>
<td>36</td>
</tr>
<tr>
<td>1d</td>
<td>-50</td>
<td>5.6 \times 10^4</td>
<td>3.1 \times 10^5</td>
<td>5.5</td>
</tr>
<tr>
<td></td>
<td>-20</td>
<td>3.2 \times 10^5</td>
<td>1.9 \times 10^6</td>
<td>5.9</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>2.7 \times 10^6</td>
<td>1.2 \times 10^7</td>
<td>4.4</td>
</tr>
</tbody>
</table>

\(^a\) Results from line shape analyses of spectra of CDC\(_3\) solutions containing hosts and tetrahexylammonium chloride.

\(^b\) \(k_f\) was calculated from the \(k_f'\) of the simulation and the concentration of free chloride; values are less accurate than those of \(k_r\), especially in the low temperature studies with 1b where most of the chloride was complexed.

\(^c\) Averages of four values for -50 to -30 °C and three values for -20 °C.
Figure 119Sn NMR spectra (149.2 MHz) of a CDCl$_3$ solution containing host 1b and 0.5 equiv of tetrahexylammonium chloride.
C-8 Bicycle with Chloride

$^{119}\text{Sn NMR, 149 MHz}$

$n = 8$ (C-8 Bicycle)
<table>
<thead>
<tr>
<th>No. Copies</th>
<th>No. Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Office of Naval Research</td>
<td>Dr. David Young</td>
</tr>
<tr>
<td>Attn: Code 1113</td>
<td>Code 334</td>
</tr>
<tr>
<td>800 N. Quincy Street</td>
<td>NORDA</td>
</tr>
<tr>
<td>Arlington, Virginia 22217-5000</td>
<td>NSTL, Mississippi 39529</td>
</tr>
<tr>
<td>Dr. Bernard Daude</td>
<td>Naval Weapons Center</td>
</tr>
<tr>
<td>Naval Weapons Support Center</td>
<td>Attn: Dr. Ron Atkins</td>
</tr>
<tr>
<td>Code 50C</td>
<td>Chemistry Division</td>
</tr>
<tr>
<td>Crane, Indiana 47522-5050</td>
<td>China Lake, California 93555</td>
</tr>
<tr>
<td>Naval Civil Engineering Laboratory</td>
<td>Scientific Advisor</td>
</tr>
<tr>
<td>Attn: Dr. R. W. Drisko, Code L52</td>
<td>Commandant of the Marine Corps</td>
</tr>
<tr>
<td>Port Hueneme, California 93401</td>
<td>Code RD-1</td>
</tr>
<tr>
<td>Defense Technical Information Center</td>
<td>U.S. Army Research Office</td>
</tr>
<tr>
<td>Attn: Dr. H. Singerman</td>
<td>Attn: CRD-AA-IP</td>
</tr>
<tr>
<td>Building 5, Cameron Station</td>
<td>P.O. Box 12211</td>
</tr>
<tr>
<td>Alexandria, Virginia 22314</td>
<td>Research Triangle Park, NC 27709</td>
</tr>
<tr>
<td>DTNSRDC</td>
<td>Mr. John Boyle</td>
</tr>
<tr>
<td>Attn: Dr. H. Singerman</td>
<td>Materials Branch</td>
</tr>
<tr>
<td>Applied Chemistry Division</td>
<td>Naval Ship Engineering Center</td>
</tr>
<tr>
<td>Annapolis, Maryland 21401</td>
<td>Philadelphia, Pennsylvania 19112</td>
</tr>
<tr>
<td>Dr. William Tolles</td>
<td>Naval Ocean Systems Center</td>
</tr>
<tr>
<td>Superintendent</td>
<td>Attn: Dr. S. Yamamoto</td>
</tr>
<tr>
<td>Chemistry Division, Code 6100</td>
<td>Marine Sciences Division</td>
</tr>
<tr>
<td>Naval Research Laboratory</td>
<td>San Diego, California 91232</td>
</tr>
<tr>
<td>Washington, D.C. 20375-5000</td>
<td>20375-5000</td>
</tr>
</tbody>
</table>
Dr. M. F. Hawthorne
Department of Chemistry
University of California
Los Angeles, California 90024

Dr. J. Zuckerman
Department of Chemistry
University of Oklahoma
Norman, Oklahoma 73019

Professor O. T. Beachley
Department of Chemistry
State University of New York
Buffalo, New York 14214

Professor R. Neilson
Department of Chemistry
Texas Christian University
Fort Worth, Texas 76129

Dr. W. Hatfield
Department of Chemistry
University of North Carolina
Chapel Hill, North Carolina 27514

Professor M. Newcomb
Department of Chemistry
Texas A&M University
College Station, Texas 77843

Professor R. Wells
Department of Chemistry
Duke University
Durham, North Carolina 27706

Professor L. Miller
Department of Chemistry
University of Minnesota
Minneapolis, Minnesota 55455

Professor K. Neidenzu
Department of Chemistry
University of Kentucky
Lexington, Kentucky 40506

Professor K. O. Christe
Department of Chemistry
Rockwell International
Canoga Park, California 91304

Dr. Herbert C. Brown
Department of Chemistry
Purdue University
West Lafayette, IN 47907

Dr. Margaret C. Etter
Department of Chemistry
University of Minnesota
Minneapolis, MN 55455
END 9-87 DTTC