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ABSTRACT

B We present an algorithm for finding a minimum set of edges to be added so as to k-edge-

,vé connect a given graph G = (V.E) with k>1 and |V|>1. The time complexity is O(k}|V|*(k|V| + |E|))
or O(K3(JV]* + k|V| + |[E|])) if we use Dinic’s maximum flow algorithm or Malhotra, Kumar and

Maheshwari's one, respectively, as a subroutine.
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1. INTRODUCTION

‘“The problem in which the object 1s to add a minimum weight set of edges to a graph G = (V.E)
so as to satisfy a given vertex- or edge-connectivity condition is called the vertex- or edge-

connectivity augmentation problem. This problem has a wide variety [3.4.5,10.14-22].

Frank and Chou [5] discussed™the unweighted version of some edge-connectivity augmentation
problem for graphs without edges. and showéq that n§ polynomially solvable. Eswaran and Tar-

jan [3] considered the following problems:

(i)  The strong connectivity augmentation problem for directed graphs.
(i1) The bridge-connectivity augmentation problem for undirected graphs.
(i1i) The biconnectivity augmentation problem for undirected graphs.

They proved that the weighed versions of these three types are NP-complete and that each of
the unweighted versions has an O(|V| + |E]) algorithm. Rosenthal and Goldner [15]) proposed an
O(]V] + |[ED) algorithm for the unweighted version of the biconnectivilty augmentation problem.
Frederickson and Ja'ja’ [6] discussed the NP-completeness of several restricted augmentation prob-

lems and showed O (|V}*) approximation algorithms for above problems (i)-(iii).

We are interested in the K-edge connectivity augmentation problem for undirected graphs
with k22, a generalization of (ii). The weighted version of the problem are easily shown to be
NP-complete. The unweighted version. which had been one of open problems in graph theory [2. p.
19]. was solved by Watanabe and Nakamura [20-22]: it is shown that the cardinality of a
minimum solution of Lhe problem is equal to the k-augmentation number. EA,(G). of a given graph
G (the definiion will be given later} and that a minimum solution can be obtained in

OCRZVIMK|V] + |E]) time by using Dinic’'s maximum low algorithm.

In this paper we consider an improvement of our previous algorithm. given in {20-22]. for k-

edge-connectivity augmentation problems.




In section 2. graph-theory terminologies and technical terms used in this paper are given.

In section 3. we summarize our previous results on k-edge-connectivity augmentation prob-

lems.

In section 4. we describe an improvement of the algorithm mentioned in [20-22]. The previ-
ous algorithm repeats two procedures: the one constructs the data structure called the component
tree by using a maximum flow algorithm, and the other searches for a pair of vertices. called an
admissible pair, which are to be joined by a new edge. The most time-consuming part of the algo-
rithm is the first procedure. which is repeated each time a new edge is added. Thus it is repeated

EAL(G) times, where EA(G)SK|V].

The definition of an admissible pair implies that any minimum solution Z of the problem is
partitioned into some mimimal sets Z(m+1).....Z(K) such that their addition in this order increases

Lhe edge connectivity one by one. where m ix equal to the edge connectivity of G.

We will describe how 10 determine such a minimal set of new edges whose addition to the
current graph increases the edge connectivity by exactiy one, without reconstructing the data struc-
ture. This will reduce the repetition of reconstructing the data structure to at most k-1 times.

leading to a more eflicient algorithm.
We consider the case where a given graph 1s disconnected or connected. respectively. in 4.1 or
4.2, In 4.3, we estimate the time complexily of the improved algorithm and show that 1t s
ORIVIURIV] + [E])
if ae use Dinic’s maximum flow algorithm [4] or
ORIV + KV + [ED)

i1 ‘ae use the maximum flow algorithm proposed by VMalhotra. Numar and Maheshwari [4.13]).
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2. PRELIMINARIES

Many of graph-theory terminologies and technical terms used in this paper are more or less

standard. and those not specified here can be identified in [1.4.8].

A graph G = (V.E) (or G=(V(G).E(G)) ) is a finite set of vertices. V. and a finite set of edges.
E. If E is a multiset. that is. if any edge may occur several times, then G is called a multigraph.
Such edges are called multiple edges. Otherwise G is a simple graph. In this paper, the term "a

raph” means an undirected multigraph unless otherwise stated.
grap grap

Two vertices u.v which comprise an edge are said 10 be ad jacent. and the edge is of ten denoted
by (u.v). even if it is one of multiple edges. as long as no confusion arises. The edge (u.v) is
incident 1o the vertices u.v: u and v are incident to (u.v). The degree dg(v) (or. simply d (v) ) of a
vertex v of G is the number of edges incident to it in G. An edge (v.v). that is. an edge joining v to
iself is referred to as a loop Gy = (V.E,}) is isomorphic to Gy = (V,.E,) if [V| = |V4|E)| = |E,

and there is a bijection € of 'y onto V; such that (u.v)€E, if and only if ({(u){(v))€E,.

A walk of G from v, 1o v, (ora (v,, v,) - walk of G) is an alternating sequence of vertices and
edges of G. vie;vaer...vy_y.,1.v, (n21), such that e, = (v,.v,,,).1€<i<n—1. The length of this
walk is n-1 A path (A trail. respectively) is a walk without any repeated vertices (edges) in it.
For 1€1<)<n. the (v,.v,) -path consisting of edges (v,.v ,)..... (v,-1.v,) is referred to as the (v,.v)-
subpath of a (v;.v,)-path. If n > 2 then v.... ., v, are called the inner vertices of the path. If
t'wo paths have no edge in common. then they are said to be edge-disjoint (or simply. disjoinz). Let
M(u.v) (or simply, M(u.v)) denote the maximum number of pairwise edge-disjoint (u.v)-paths of
G

G s connected if and only if every pair of vertices of G are joined by a path of G. If Gand H
are two graphs such that VIINGV(G) and E(HQE(G). then H is a subgraph of G. If H is a maxi-
mal connected subgraph of G (that is. if V(H) = V(G) then G is not connected) then H is called a
connected component (or simply. component ) of . Let 7 be a set of edges such that Z Q F (G) (7

n F(Gi = élempty), respectively). where anv edge »f Z joins two vertices of V(G). Then G-Z

1 0 N N T N s AT N N R LT NS
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:: (G+Z. respectively) denotes the graph obtained by deleting all edges of Z from G (by adding all i
X &

edges of Z 1o G). If Z = {e} then it is denoted by G-e (G+e) for simplicity.

¥
4 .
‘:' For two subsets S.8'CV(G). let E(S.8:G) denote the set of all those edges of E(G) joining a ‘t'
o]
B vertex of S and one of §". In particular. we denote E(S.V(G)-S:G) by K(S.G). If S = {v} then we
v‘,’ write K{v.G). If S#¢ and SCV(G) (a proper subset) then K(8.G) is called a separator or a i
Y
d |K(S.G)|-separator of G. Clearly. if |[V(G)] >1 then G-K(S.G) 1s disconnected. Put ~
| d(S.6) = [K(S.G)].
i and we call it the degree of S (in G). ;
N Let K be a separator of G. and suppose that K=K(T.G) for a nonempty subset TCV(G). A .
1
& b
o pair of disjoint subsets S. S'GV(G) (that is. S [} $* =) is said to be separated by K (or we say -
£ that K separates S from $) if S C T and S CSV(G)=T. K is referred to as an (S. S Fseparator (of g
53 » Y
» .
N G). If S={u} and S’ = {v} then we simply cail K a (u.v)-separator. An (S.§')-separator K with the
) ) ) . _ ¢
' minimum cardinality among all (S$.8")-separators of G is referred 10 as an (8.8 )-cut. A (u.v)-cut is
;: defined similarly. Fach component of G-K is called a A-block (of G). A K-block whose vertex set
¥
>y 4
2 includes a subset SCV(G) is denoted by B(S.K:G) and is referred to as the (S,K.G Fblock . or simply ’
3
.“Y, K
the (S.K Fblock of G. (For simplicity. we often use the term "a K-block”. meaning its vertex set. If
*
‘: S={u} then B({u} K:G) is written by B(u.K:G).
¢ l.et m<K for a fixed integer k> 1. A subset SSV(G) is called an m-edge-component (or. sim- )
t
‘of
plv. an m-component ) of G if and only if the following (1), (2) hold:
.*' ;
‘{ (1) Mgluv)Z2mforany u. v € 8.
. 5
o (2) Forany u €\V(G)-S. S has a vertex v with Mglu'.v)<m. X
‘k An m-edge-component that is not an (m+1)-edge-component is said to be critical. If S is an {
2 «
: m-edge-component of G with 0Sd(S.(G)<m then § is called an m-pendant Clearly. a 1-pendant of
' ¢
'
" G 15 1dentical to the vertex set of a component of G. Let P™(G) denote the total number of m- s
:;' pencants of G. An m-pendant S of G s referred 10 as an external m-pendant if K(S$.G) is an (8.87)- .
1 Y

»
».

cut of G for some m-edge-component S (=S) of G.
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The edge-connectivity ec(G) of a graph G is the minimum number of edges whose removal
from G disconnect it 1o more than one component or result in a single vertex:
min { |[K|: K is a separator of G } if [V(G)| > 1

ec(G) =
0 otherwise

G is said to be h-edge-connected if ec(G)2h. Let Ng(u.v) (or simply, N(u.v) ) denote the cardinal-

ity of a (u.v)-cut. It is well known that

Ng(u.v) = Mg(u,v) for any u.ve€V(G)u=v
and that

ec(G) = min{Mg(u.v): uveV(G), u=v}if |V(G) > 1.
(See [4.8].)
Let Ix] ([x]. respectively) denote the minimum integer not less than x (the maximum integer

not greater than x).

For a subset S SV(G). let G[S] denote the graph defined by V(G[S]) = S and E(G[S]) = {(u.v)

€(G): u.v €S). G[S]is referred to as the subgraph induced by S of G.
Let Y be a nonempty subset of V(G), and leta €Y. Put

G-Y=G[V(G)-Y].
and let G<a.Y> be defined as follows:

V(G<aY>) = (V(G)-Y) | fal.
E(G<a.Y>) = E(G=Y)|J l(a.v): (uv)EE(G).uEY.vEV(G)-Y).
It is said in [12] that G<a.}'> arises from G by identification of Y toa. let
T(a.a".G) = {XQV(G): a€eX. a'€V(G)=X. d(X.G) = Mgla.a)}.
If a=a’ then T(a.a":G) is nonempty.

THEOREM 2.1.[12]

In a4 graph G. let Y€T(a.a":G) for certain a.a’€\V(G). Then. for any distinct vertices u.v of

G<a.Y>.




’:?‘:’ ‘\IG<A.Y>(U'V) = NIG(U.V).

2 Y Let SCV(G). and let G/ S denote the graph defined by the following:

y
h)
§ V(G/S) = V(G)-S | {v(S)} (W(S)eV(G)).

and
XA E(G/S) = E(V(G) = S. V(G) = $: G) J lu.v(S)): (u.v)EK(S.G).veS},
where v(s) is the new vertex corresponding to S. This operation constructing G/S from G is called
shrinking of S in G. G/S is called the graph obtained by shrinking of S in G. For simplicity, we
also call G/S shrinking of S if no confusion arises. let 7 ={S,.. ... Sit (122) be a partition of

W V(G):

=2 V) =S, U - US. SiNS =G = j).
3.-,: Let |m| denote the total number of sets in 7. For each i, 1Ki<t, put

o Gy = Gy-p) /S,

a) where G¢,, = G. Put

)
o G/m =G,

Oy

Youd and we call it the w - shrinking of G. G/m is uniquely determined up to isomorphism, indepen-
“,t.‘;' dentiy of the order of shrinking of the sets in 7. Since we identify two isomorphic graphs. we con-

0
R
:g& sider that G, 7 is unique for each 7.
Let 7;(m) denote the partition of V(G) into m-components of G. where m>ec(G). Put

G/m = G/mi(m)

for simplicitv. G,m may have multiple edges. Let p,, denote a mapping

P V(G)=V(G/m)={v(S)): S;€m(m)}
Ol defined by p (v) = v(§)€m(m) if and only if v€S. p,, is called the mapping of G induced bv

o m,(m). We lix p,, and denote p,;'(v(S)) =S,. For anv vet EQE(G). let

PulE) = {(p,(u)p, (v)): (un)EE].

N
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PROPOSITION 2.1.

[ 3

Let $,.S-€m(m)(S;#S,) and v . v, €V(G/m)(v #=va) If K¢ s an (S,.5,) -cut of G then p,(K,)

is a (P(S))Pm(S2))~cut of G/m with [p,(K¢)| = [Kgl. Conversely. if K isa (v;.vo)-cut of G'm then

v

G has a (p;'(v)).p51(va))-cut K¢ with [Kg| = |K|.

<5

PROOF.
2
L It suffices 1o consider the case where Kg=¢ K#¢. Then m>1. Let
) B, = {pn,(S) Sem(m)SCB(S, K;:G)hi=1.2.
Y
o It is easy to see that
hG
*.

Pm(Kg) = E(B;.B2:G/m). |p,(Kg)| = |Kgl

RS ,
. If we have S. S€B(S,.K;:G) (S#S') for either i = 1 or i = 2 then G has a (w.w')-path P for some
a} pair w€S.w’ €S’ such that
, EP)I) K =o.
3 .
ol This implies that G, m has a (p,,(S).p,(S))-path Q such that

' EQ) [ pulhg) = &.
’ Hence it follo'vs that p(Kg) is a (p,,(85,).0,,(8-))-cut of G m.

vy

Conversely we prove the second part. Foreachi.i=1.2, put

®

B(i) = B(v.. K: G/m).

T U pitN )

w8

-, ve B

3 I et

2 e =(v, .. €N =1 m (m = |K|<m:
n~' ‘

- a here

~

ﬁ . EBLO. =12

Then toreach ) 1 £3€$m’. there s an edye

vata*
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, = (uup)€E(G). up€pnt(vy). t=1.2.

Put

Kg =1l ....f .\

m

Then, clearly. we have

K¢ = LV .V, G).

Simtlarly 1o the proof of the first part we can show that Kg is a (pg'(v,).pn'(v2))-cut of G.

Q.E.D.

Suppose that thereis a pair u.v € V(G)(u=v) such that G has exactly p edges

er.....e, (p21)

connecting them. Delete these p edges from G and add an edge e

e =(un)
ath werght
cle) = p.
We denote
oglel=e 1 =1,.. ., P

Repeat such replacement unuil we obtain a simple graph G* with each edge having weight equal to
the number ot multirle edges of G connecting each pair of endvertices.

Construct o directed graph N(GY) from G by replacing each edge e = (u.v)€ELE(G®) by two
Jdirecied edyes

‘e

e =lu=y) e =(v—u)
hoth of which have aednts egual to cter

e = rel = cle),

NG s Cdrled Jhe e vk ot G

Covsew paar b 2roces ~ tis 2 titrom v ONCG ) wath MGisa)> 0, and we call s and t a

Cwrce and goank respectinein . Convider each e to be the capacity of e€E(N(GH), and any

Py
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existing algorithm for finding a maximum flow f, from a source to a sink can be applied to \(G*).

Let val (f) denote the total flow of a flow f:

val(f) = T f(e)=— I f(e).
£IN() €OUT

where IN(w) (OUT(w), re-pectively) denotes the set of all edges of N (G*) incoming to w (outgoing

from w). In particular, put
F(s—1; G) = vallf,) or F(s=t) = val(f,)
Let S. S'CV(N(G®)) be nonempty disjoint sets, and let

F(S—S) = {e = (u—=Vv)e€E(N(G*)).ueS.veS'}.
(88 = E(S=S) J E(§—$).
($.5) = (S.VIN(G) = ).

We call (S. 8 ) a cut of N(G%) Put

(S8 = X cle)

€ E(S—S)

which is called the capacity of a cut (S.S ). A minimum cut is a cut with the minimum capacity

among all cuts of N(G®).
PROPOSITION 2.2.
F(s=—1) = M(s.0) if Mg(s.t) > 0.

PROOF.

Let K be any (s.t)-cut of G. where [K| = M, (s.1). Put
S = B(s.KN:G). § = BOLK:G).
Let

K =lo(e)eF{G™): e€N).

Then clearlyv.




R 12

I ote) = |N| ]

BATIE N N

v’ Hence. tor the cut (8. 8§) € FINI(G*)) of N((*). we have

(881 = FS=SJ HS=»

o
AN F(S=8) = {(u—=\v" (urvI1EN]
W
F(S—=S) = {(v—u) (ur)EN)
W,
» Then
"
XY
A dhD= I de)=|h]. K =(88)
.‘ ez FiN=—§
¥
': Since anyv flow | has
7,
",
: \'al(f)$dl\"i.
1
o ‘ae have
o
> Fs=0SR = |R] = M i
) Conuersely suppose that we have a maximum flow t,. Then 1t s well-known that \(G*) has a
N\
0 minimum cut K = (S.5) such that .
"" v .
K €N 1ES KT = hs—1
)
(:0
".‘ . -
B Vet e €N —=N)
¥ e =
Y .
; 0 e EHIR =\
¢
W o . - . S - i
" tarany e ERT Toreache S ta—=VI€LIS=Sithere 1n » =0 =€ S=N1 und e verng Lot
)
‘,; K= lus €l G ru— €l N=S ]
' Ien K o~ an s t-separator 1 GF L und
v,
’,
by
‘.
)“‘
L)
.0’

“atap

[xn .
1»“! L2600 uilk WY _’. "

il ) ‘ " ) - L J LA A -
A -f"_"' NN AN «""'.‘," LA L i Yy o‘i,g‘i,.‘:,g'u oA D l‘.’a,
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L

T cle) =c(K") = F(s—1).

€ X

I et

et
A

N = {e€E(G) ofe)eK’}.

Then N 1s an (s.t)-separator of G with
[N = Fs.t).

We have

B X

e

F(.\l )2 \1(.(\.1).
LS
ﬁ snee

\‘ \l(,(\l) = \(,(5.l)$“\|

Q.E.D.

COROLLARY 2.1

L e

Y

Forany pair uy €VIG) Ctusey )

Mglun ) = Flu—y),

ahere ae put Fru—i=0,1 M (un) =0

). THE K-EDGE-AUGMENTATION PROBLEM

Fhe v -edye-connectivuy augmentation problem tor any fixed k 2 1 1s defined by:

ve'

"Gi.ena yraph G = (\ B) with [V| > 1. determine 4 minimum set Z ot edges joining two

certiees 5 MG Ssuch that /Z n b =& uand G + 7 1s k-edge-connected.”

e can ussume that Gohas no loop and that any added edge joins distinet wertices of V(G).

Ry S5

Sarpese that A Zec G et R 16 denote the minimum number of edges whose addition 1o G result

< N~ -edye-ccnnrected graph IE k= 1 then the problem iy easy to sol.e. Therefore we assume that

e

r= -

DVIENICN,
i g,.‘d&%‘bf{%"‘




k22 and |V(G)|>1

in this paper.

3.1. THE DEMAND AND THE EDGE-AUGMENTATION NUMBER OF A GRAPH

We give definitions of edge demands of. demands of . component demands of m-components as

well as the demand of a graph.

Assume that ec(G) Sm<k. Let S denote a nonempty subset of V(G). The edge demand of S
(of G). ED\(S.G). is defined by
0 if $=V(G)or d(8.G)2k
ED\(S.G) =
k—=d(S.G) otherwise
Here we denote a t-edge-component of G by S(1) for t > 0. If S = S(m) then the demand of S (of

G). D,(S.G). is defined recursively by the following (i), (ii):
(i) If S=S8(K) then

D((S.G) = ED,(S.G).
(ii) If S=S(m) withm < K then

max(ED(S.G). X D(S(m+1).G)) if there is an S(m+1)CS
Sim+1)CYS

DJ(SG) =
D(S(m+1).G) if $=S(m+1),

where Y. D(S(m+1).G) denotes the total sum of demands D (S(m+1).G) of those (m+1)-

smrlCS

components S(m+1)C S of G.
(We note. as is in Corollary 3.1 of {20-22], that § is the disjoint union >f some (m+1)-components
of Gif Sis a critical m-component of G.)

We generalize the definition of D.(S.G) to that for a subset § & V(G). Suppose that SCV(G)

and S = S(m) for any m<Kk. and let

e ER R ER X EEZ

. -
e

Tare A P A T AT " SR e I R AT K N ;
AL O 7 O T OND AT e L2 e P A O Yty e MUK YN
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minij: S(})CS} if thereis S(j) € S with j>0
h(s) =
0 otherwise.

Then we define the component demand of S (of G). CD,(S.G). by the following:

D, (S(h(S)).G)
S(h(%)cs ‘ if h(8)>0
CD,(S.G) =

0 otherwise.

For any SCV(G). the demand of § (of G). D,(8.G). is defined by using this notation as follows:

D (S(m).G) if S =S(m) for some m <k
D(S.G) =
max(ED(S.G).CD(S.G)) otherwise.

Let D (G). called the demand of G. denote the value determined by the following procedures
{1)-(3)
(1) Compute the demand of S(k). ), (S(k).G). for every k-component S(k) of G.

(2) U kZec(G)+1 then. for each m with m=k-1....ec(G) in this order. compute recursively the
demand of every m-component S(m) of G:
max(ED(S(m).G).CD,(S(m).(5)) if there is S(m+1)CS(m)

D (S(m).G) =
DUS(m+1).6) if S(m)=S(m+1).

(3) let

DUGI=D(VIG).G).
Put

EALG) = [DG2].

We call EAQG) the k-edge-connectivityv-augmentation number (or simply. the k-augmentation

R Ty,
’v,’."*..:, ly‘ Y )l‘ ¥,

AN AN N :
. .1*?.'Vfi.t§“‘ﬁ t '*‘G|<! v‘!?ivef*'ag“?:i!'t‘!’:'!':'f
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number ) of G.

3.2. THE CHARACTERIZATION OF EA(G).

We summarize our previous results given in [20-22].

PROPOSITION 3.1. [20-22]

For any fixed k 22. G=(V.E) is k-edge-connected if and only if EA(G)=0.

LEMMA 3.1. [20-22]

RU(G)ZEA(G) for any fixed k 22.

We give the definitions of the edge condition and m-augmenting sets, which are necessary to

prove the converse of Lemma 3.1: .
R(G)SEA(G) for any fixed k> 1.

Clearly, it suffices to consider the case with ec(G)<k. Fkor any vertex v and each m with
ec(G)SEm<k. G has exactly one m-component that contains v. let S(v.m:G) denote the m-

component of G that contains v.

Whenever ec(G) <k we choose from V(G) distinct vertices u,.us satisfying the following con-

ditions (1) - (3) called the edge condition (for G3):

(1) Slu,.m:G) is an external m-pendant of G fori=1,2 and for any m with ec(G)+1 Sm<h.
(2) SCu,.m +1:6)ES(u.m":G) fori = 1, 2 and for anv m’ with ec{g)+1<m’ <k.

(3) Sluy.ec(GI+1:G)#=S(us.ec(G)+1:G).

We note that. by Proposition 3.3-(3) of [20-22]. we can find a pair of vertices u;.u» satistving

the edge condition for G.

e N 3 3 3 B A R ). ) 0 2
RS Pen St ! ,’v’-'_'h{.’:,',.‘v-‘,‘v DR A ",.“t'l" ’..‘t".‘.'h"‘l‘.‘i" LN P"':""s’,ii‘zl"f,':%'t'"!‘!’l‘f""ffs'?\ .

CYEAR MO A9 300
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"'l )
(N Put
Rid \
v . G'=G+(u,.u,)
-\:’ -
l"
e & (We use this notation throughout this section.) Then

.\lc'(ul.U::) = :\‘G(ul'u;’) + 1 =edG) +1

7,
L
van

A4
! - :: An m-component S of G’ that is not an m-component of G is referred to as an m-augmenting
o, K

M J¢ o

set of GG (with respect 1o the edge (u;.u>)). Any m-component of (' is either an m-component of G

‘;:: 5_ or an m-augmenting set of G. Since the addition of the edge (u,.us) to G can increase the number of
D
.:a:' pairwise edge-disjoint paths by at most one. each m-augmenting set of G is identical to the disjoint
D

" g

’ i union of at least two m-components included in an (m-1)-component of G. Clearly. any m-

U
by o augmenting set of G 1s a critical m-component of G
iy
B A pair of distinct vertices up.u;€V(G) 1s said 1o be admissible (with respect to GG) it the fol-
Bt ] e

3

lowing (1) and (2) hold:

e
ot - N
;a" -;: (1} The pair u;.u> satisty the edge condition for G.
:g‘ I{‘

ey (2) It ec(G) = k-1 and P*(GG) 24 then S{u; k:G) (=8(u,.k:G)) 1s not a k-pendant of G'.

K
o 3
¥ LEMMA  3.2. [20-22]

- -”
o

Suppose that 0Sec(G)<k. Then we can find an admissible pair u,.u> with respect to G such

. g that

4 N

X _ ,

R EA(G) = EAJ(G) = 1.
g

..’., \:

We have proved in [20-22] the following theorem by induction on k-augmentation numbers

:,; )

Lo o graphs.

.:‘;,

i

s
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THEOREM 3.1. [20-22]

For any graph G with |V(G)|> 1 and for any fixed k22,
R(G) = EA(G).

3.3. THE DATA STRUCTURE

We describe data structures used in an algorithm for finding a minimum solution Z of the

problem. We denote
n, = |[V(G)|. n, = |E(G)]

tor a given graph G.

3.3.1. THE DATA STRUCTURE FOR A GRAPH G

We assume here that ;. a multigraph. is given by means of adjacency lists for (°, a weighted
simple yraph: il consists of a list head ,,, and some vnodes representing vertices of G. as in the

following declarations. where N = n, (Figure 1).

type
pr:ude =T vnode:
G, =array [1.\] of pnode:
vrode = record
VNAME VAL WY integer:
TR pnode;
end:

Vertces of VG are integers 1.\ and VV.AME muintains the corresponding integer. VAL
atll he used to muintain current tlow values in a maximum How algorithm. WT is set equal to the

multipiicity st the corresponding edge 1in (. The adjacencs lists for (7 can be considered as those
P P g édg J :

BARAS iy, e i ANARAON WY 3 Ot o AOOOGN00
BRI x'.‘,x’-_b‘v s ﬂ':‘t".'t“, [ A l’!‘q‘\"li\ﬁ.aﬁ‘._\"54'}}';-2.‘0’;"‘,?.’;,0'1}!.‘_;,l":l.v lfg.z .?gtl y,l'.)‘g,lfpkl'.gl 34]2.. o, ,l."!.‘r!,'.l;‘.‘x !1‘1!

e

(AN A ,l:’!
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¢ . N
L ‘
*:: for N(G®). and are used also in a maximum flow algorithm which compute F(lu—v) = Mg(u,v) for a |
) ' pair u.v€V(G) on the network N(G®). where we put Flu—v) = 0 if Mg (u.v) =0. For any Z'CZ,
.,‘(.‘;
4 s —yt
::;l: @ G + Z' wi1ll be maintained as adjancy lists for (G + Z2').
L »
) »
o
(AN}
" 3.3.2. THE DATA STRUCTURE FOR A COMPONENT TREE
U
;:E. - We use the following logical data structure. which is referred to as the component tree for G.
) -
::::, g Let S(m) (S(m)’, respectively) denote any m-component of G (of G').
DO
4

The component tree CT(G) is an undirected tree defined by the following (1) and (2):

'Q'i ~

ol

:‘ ' (1) V(CT(G)) consists of those vertices ug. Ugy,). U, representing. respectively, V(G), each S(m)
‘oW

! :‘ (1€m<Kk). each vertex VvEV(G). Vertices ug, ugp,). U, are referred to as the root, an m-

135
[ "]

component - ertex, a leaf, respectively.

X N
s
YNy

(2) For any distinct vertices u.u' € V(CT(G)), there is an edge (u.u’)€EE(CT(G)) if and only if one

- -

of the following (i)-(ii1) holds:

|2

9};'," (i) uis the root and u' = ug(). :
WY s )
s-‘ :‘,{} (i) u = ug,, and u" = g4, such that

o )
~e S(i+1) C S(i). 1<i<k.

) g
A (iii) u = ugy, and u” = u, such that v€S(k).
l'. Ll
ey .
:E:. % If Kk =3 and G is as shown in Figure 2 then CT(G) will be as in Figure 3, where V,, T, §, are,
&l .

S

e respectively. 1-components. 2-components. 3-components of G.

A

» h . . "
g v - We brieflv describe the actual data structure of a component tree. T'he component tree CT(G)
v
’, {. consists of four kinds of data types. linknode. LEVEL. CH and cnode as in the following declara-
I *

tions (Figure 4):
[~ '
S
“n .
! 3 type
3 G
' & linknode = T cnode:
'4":‘ o LEVEL = array ).k} of linknode:
) A
L) .'.-
: e C/f = array[1..\] of linknode:
K
l’,‘: -
|1

o 3 ‘o
‘l
\“'\

S A I : LS .v‘l-l il S0k L0 WO ,. ! ‘l (o L\ Mﬁm A ‘ ! Sy AR
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«'i.
)"
4
ig 20
s
) :
:‘: cnode = record
NAME: integer:
o ger
"
i NEXT. LLINK. RLINK.SON.TOP, F: linknode:
y
Uy DEG: integer:
.\ end: '
)
o
G2 {
o For each m. 0Sm <k, LEVEL [m] is the pointer to the first cnode of the list maintaining m- i
component vertices by means of NEXT. This list is called the m-level. For each i, 1SiSN,CH [i] is
3
(
) the pointer to the cnode corresponding to the leaf i.
.":
B NAME has an integer greater than N\ if the crnode represents the root or an m-component ver- '
" tex. and has one between 1 and \ otherwise. Suppose that an m-component § is the disjoint union
N of (m+1)-components $;,....S,. t21. ec(G)Sm<k. where we assume that a (k+1)-component
\.
B means a leaf. Let R(S). R(S,). denote the cnodes representing 8. S,. respectively. Then R(S)).....
" R(S,) are maintained as a doublv linked list by means of LLINK and RLINK. They are called sons
¢
) , ) _ S
e of RIS). RISIT.SON is pointed to the first son of R(S). and R(S)1.F is pointed to R(S). i =1 ...1. ]
R
4 :
o RISNT.DEG is provided for d.(S.G) if R(S) represents a non-leaf. R(S)T.TOP is set equal 1o p
b R{S)NT SON initiallv. and is used as the pointer to the first leaf in the sons of R(S) during the pro- 2
LY s
D
) cedure is processing R(S) in the construction of CT(G). If R(S)T.TOP= nil then the partitioning R(S) ¢
B ; . |
2 into R(S,)..... R(S.) has been finished. Figure 5 shows a part of the actual data structure
hl
‘ corresponding CT(G) of Figure 2. ,‘
3
-'1 In the procedure which constructs CT(G), we compute Mg(u.v), unv €VIG). by using a max- W
. |
imum flow algorithm. as a subroutine. with a modification such that it will terminate and return
5 :
L) '
. the value h whenever the current flow value exceeds k. '
~
;.. l.et al{(3) denote the time complexity of a maximum flow algorithm with such a modification 1
ot Al
. to vcompute Flu=v:G = M (u.v). Then CT(G) can be constructed in O(nZal((G)) time. For exam-
%)
'
B ple 1t 1s Olag-Taen.) it we use the Dinic's algorithm and s O 'ng Tnd) if we use the algorithm pro- '
5. .‘.
R
“
:
B

UG ‘ A DO TY . 1 e T L T T O SO IO M MO O
: "‘;“'."'.' "*.:"‘ W 9"!&"‘\'i‘-'i‘t"*‘k‘l,ﬁi!o",:'l.q :"‘.':‘i"' e -t ..;5'0.5*0,"!4 3;.\.-,5’“'9.,‘*&?;,54 " ’i () 0@'3’,‘0.‘;‘0 :'0?2’0' A!‘J.!‘a'
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" posed by Malhotra. Kumar and Maheshwari (MKM, for short), where T = min{k.n.}. (For the

Sl
. & B

detail. see [4. 13])

¢
o
2 - (In [9] it is shown that we can determine F(u=v.G)(= Mg(u.v)) for all pairs u.ve€\V(G) by
~
f' v using a maximum flow algorithm only O(n,) times. instead of O(n?) times as described above. In
! E this paper. however, we do not take advantage of this result simply for ease of implementation.
"
; The time complexity for constructing CT(G) would be O(n,-n’ne) in Dinic’s case and O (n.'ny) in
Ao
1 3 ';{ MK M's case.)
&7
- P_-A'
:" o 3.3.3. COMPUTATION ON CT(G)
:'!.‘ ~
Y
oy E Suppose that we have CT(G). We describe the time complexity of the following computation
>
+ &4 -y -
. (1) - (5) on CT(G)
Y
t
L
WY (1) de(S(m).G). D(G). ec(G) and P™G).
‘.‘|: v
) ’
The computation of the following (1) - (iv) can be done in O(k(n, + n.)) time:
Vg
: o~ (1) The degree d,.(S(m).G) for every m-component S(m) of G. m = 1....k.
b 3
R (i) Dy(G) (the demand of G),
.'\ E (i) ec(G) (the edge-connectivity of G).
:‘. o (1v) p?(G) (the number of m-pendants of G) with m = ec(G)+1.
b &
o)

(2) Finding a pair uj.us; satisfving the edge condition.

‘:..: Let S be an external m-pendant of G. Proposition 3.3 of [20-22] shows that § includes at least
Z;:. i? one external (m+1)-pendant of G. First, suppose that there are dJistinct (m+1)-components
- ‘ S1.8:CS ol G. Since

£y

M (vivsi=m for “v, €8, 1 =1, 2.

LR XY
.l

a we ha.e

<

de(S,. G) = NS G2m. 1 =12

o as
S
AT AT

>
-
1~

oo P o e M

/ ’ e PR LR P PO PP CIPL PR . - . LN . o
’ (3 [ . p ot St e - " !
r“.t ),l"' £ 2 o X o " > 1] * ’ » ’ - Lt L Pe” A > 4 5 LB AR S ‘ 13 .V‘E' A
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Wl if

AR di (S, G) = m for either i=1 or i =2

V’..‘» then K(S,. G) is a (S;. Sp)-cut of G. meaning that S; is an external (m+1)-pendant of G. If
d(S,.G) > m

o then S, is not an (m+1)-pendant of G. Suppose that S is also an (m+1)-component of G. Then.

) -
P clearly. S is an external (m+1)-pendant of G.

) Therefore if we specify a cnode of representing an external m-pendant S(m) of G. we can find

: -’Q in O(kn,) time the cnode representing a leaf u such that
. u€S(K)&-SS(m+1)CS(m).

“ where each S(1), m+1<1<Kk. is an external t-pendant of G. Hence we can find a pair uj.u- satisfv-

Y ing the edge condition for G in O(kn,) time.

2 (3) Constructing adjacency lists for (G

We can construct adjacency lists for (G)® in O(n,) time. where G’ = G + (u,.u-).
(4) Finding an admissible pair.

) Suppose that we have a pair uj. u, satisfving the edge condition for G and adjacency lists for
*

A
W, + (). where G" = GG + (u,. u,). It suffices to consider the case where k = ec{G) + 1 and P*G)2 4.

We choose a vertex v, from each k-component S (= S(u. K:G):i=1.2) of G. and compute

2

N .
by MoCuav ) 1N Cug s JZKk then DFG of everv son of the cnode representing S(v K:G) is set 1o 1,
il , e
> a hich indicates Stv . k:G) S S(up.k:G'). Then we compute d, (S(up.k:G .G in OUE(G)] time by
’;’"' counting the total weight of edges (u.v) € E(GT) N K(S{u, kG .G
N "
drN : VN : . - .
;": ::: I doSCu kGG <K then Stuy h:GY) s a k-pendant of 7. and we choose another vertex u.
" trom a kh-pendant not included in S(u k:G). This choice s done in Oln,) time. lemma 32 of
o [20-22] shows that the pair uy. u." 1x an admissible pair. Thus we can find an admissible pair A ith

)

LM ",
N respect 1o G in On.alG) + [F(G)]) time if 'we compute M (uypv)) by means of a maximum fow

N OO S0 AU PROR N e L L L e s e e N N N N L L R L e L e e A e e A e
.'_l’-‘ “u ‘3!‘\, “i'!‘!”nl'u_l..l'qll, ‘r 'g, “)... - ,'. : .! "-‘-"‘-J‘." % o '\" :’*v‘}" ' ‘ 0 -- “a 4" Lt :E
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Qv)‘ .

vy

b o

e algorithm.

‘T‘: .
‘., (5) An algorithm proposed in {20-22].

:a‘ The proof of Theorem 3.1 shows an algorithm for finding a minimum solution of the problem
o
ﬁ First construct the initial data structure and compute the initial data (i)-(iv )

y

Ry A

¥ (1) di(S(m).G) for every S(m), m=1.... Kk,

Q' -.

i,.' %

Gi) DG

&~

L%

(111) ec(Q),

»
L

~J ”~
(h
N (v) PMG) with m = ec(G) + 1.

j; : Then repeat the tollowing (a). (b) by EAL(G) uimes.

2. ,

5¢ (a? Finding an admissible pain u,.u> with respect 10 G and the construction of CT(G'),
u (;‘ =(;+(U].u2)

£

P

oo (b) The computation of the following (i)-(ii1) for G

1

s

* \-
g 1) 4, (S{m)".G') for every m-component S{(m) of G'. m=1.... k.

o

' ; Ay

t'.. " n) ec((G),

!

‘o

:':. N Gynn) PG with m=ec (G') + )

L)

Suppose that we use Dinic's maximum flow algorithm. Then the initial data structure and the

AL |

~

A imtial Jdata f1)-0v i can be obtatned in OCkn'n.) ume. (a). (b) for G can be done in O(knJ|E(G")])
g -:.

D :i ume. Since ‘»e have

: o . .
D {71 = FA(G) € kn,

x * -

: 2 R} and

K

&

FGH+HG g+ +#'H G0 =a+in+1D+  +n+FA (G S(kne+iln.+kn

RS LS X Y
AR

. toran. seiuticn /. the total ime s
.

R

8

&

t",

‘.|

L4
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O(k*ndkn, + n,).

It we use MRV 'S maximum flow algorithe then the total time is

Olkn (n,+kn)).
The most time-consuming part of thix algorithm s constructing a component tree. which is
repeated each time 4 new edye 1s added. In the next section we will propose an improved algorithm
in which constructing a component tree is repeated at most k-1 times instead of EA(G) Skn,)

limes mentioned above.

4. AN INMPROVEMENT OF THE ALGORITHM

We consider an improvement of the algorithm mentioned in 3.3.3-(5). The idea of the

improvement s as follows

The previous algorithm reconstructs the component tree each time we find only one edge to be

added. We can expect a more ethaent algorithm il there s an easy wayv to find as many edges to be

ddded ax possible betore reconstructing component trees: it mayv reduce both time spent to find

suen edges and the number vf times of reconstructing component trees. We will describe more pre-

cisel
Suppose that
eclGI<h. Kk 2 2.

and let Z be a solution obtained by the algorithm mentioned in 3.3.3-(5). Since each edge of 7 joins

a parr ol vertices satistving the edee condition. Z has a4 partition
Z=/lectGI+ 1)U - U /KD,
00N =iz /O 2 S (el G+ 1$18K)
sul that

et (i) = (’k"(; -1 4=




%ot w Aand A _atd okl of b o h A e ad bl ol o bl e _haC A Aahdial dal Jlek Aad A |

e 25
WIS
s ec(G,—e) = ec(G,_;) for ve€Z(1).
L'
W@ ‘ where
g
::;
-,1 . Geeg=G. G, = G,_; + 2(i). 1=ec(G)+1. . . k. ‘
IR |
5}! \
. We will consider two procedures, connect in 4 1 and find in 4.2: the firs: one determines Z(1)
3 "
‘l' [ 2%
e" for G with ec(G) = 0. and the second one does Z(m+1). m=ec(G). for G with ec(G) > 0. The pro-
A
o0 S . ; . .
::u: E cedure find is used repeatedly to determine Z(m+).....Z(k) in this order such that reconstructing the
Safe :
I component tree will be done only between Z(j) and Z(j+1) for each j. ec(G)+1 € j € k-1. In 4.3
' n b we describe the outline of an improved algorithm and estimate its time complexity.
S
a0 -
R B REMARK 4.1.
O
[,
A e
R ) If ec(G) = 0 then |[Z(1)] 2 PYHG) — 1 (Note that PXG) is equal to the number of components of
{'] -
AN <
G.
» Fﬁ )
¥
: _:i (2) If ectG) > O then [Z(1)] 2 [PMG,_})/2) for each 1. ec(G)+1 € i € k.
“'j -;::
¢ Let m denote any fixed integer such that
¥ [
g ec(G) € m € k—1.
My
Wy , and put
:"" |
= H=G,/m(m+1),
“T .
e
:3 N ‘where m{m=+1) denotes the partiion of V(G into (m+1)-components of G,,. Let {,., denote the
Ne D
LUy mapping of G, induced by m(m+1). We have
:“ - dlud) 2 m. Mu.i=m
.. .
:”’ torany u, v € V). A vertex u with dlull) = m s called an t m=+1'- pendant or a pendant of H.
i} ? )
— i and PICHD 202,
Q-‘ )
a . "r\
B
;‘:Q:: Cb
b“:l
"’" 1
|-
2. w
)
el e

N o it n-r WAL A AR «Iq"f? P o e A TN
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"o »
X REMARK 4.2
N It u is a pendant of H then Ktlulll) v a (und-cut of H tor anv ~€VOHD and a
L}
' ,
! {nli(u) € m(m+1) is an external (m+1)-pendant of G,,. Anv (m«1)-pendant S ot G, s exiernal iﬂ
L) J
o and {,,+,(S) € V(H) is a pendant of H.
- Let
Y =iy, .. .. vl (g =PorICH)) 3’
& denote the set of all pendants of 1. and put ﬁ
A o)
A i
. Put
a:‘
V(e) = {u~) for an edge e=(u). .
0 and "
g - VIE) = U\V(e) for a set b ol edges
« «t
* .
y .
) : 4 . |
! Let E be a set of edges. We call k£ un attachment (for H) it and only af the tollowing (1)-(41
I hold:
: N
! (1) V(E)C Y. ;
: 1
i (2)  ENEI =6
¢ <
) {3) Vied = Vie') for vee €F, eme '
1
y
:: (4 There 1s at most one pair £, ! € b such that [Vt DN f =1 a

4.1. THE PROCEDURE CONNIECT lectG)=0)

=<

3 We consider the procedure conrntect. » hich determines /7 1 and «onstr 10 sdjacene . Lot 0o

CGY+/0100 aathed Gr=t et

’ m:ec'(;;(:()l

W 5 O«

A '-". '4'. TR . e Aodidi Pad s pTah A b i ‘ .
\ ("'-'.-(f". 2 Ja B0 o ' ,_',, :‘-,'ub.!'_l.!‘,n".\‘,b',""-.-“
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amad vonsider
H=G/w7(1)
I'hen
VIH) =Y 22 K=o

Dehne a set o1 edyes

A here
Zy N EH) =
Clear!s

ectH + /‘H) =1 ecH + 7.“,) =0forv Z“' C 7.".
Now we a1l show how o choose a pair of vertices sauisfving the edge condition. For each i, 1

S S 4 pnl
S, ={)) € (1)

I'here are two cases concerning each S,

1 S s g h-component of G

I N v g ritical t-component of G where 1 S U < k.

Propesiiion 3301 120222 (hows that. in both (11 and (2). there 1s a sequence

SOk Q SN+ Qs
CAah =12 vhere S ot denotes an evternal U-pendant of G U = 1+1. K.
NS o =S 1S v d h—=component.,
N o+l 0N +1=0 0N s aaniticad t=component 1<k

(34C LR
vt DX W) )
: l'«.""19"-,"’."»‘.5!:."_:-"i:"i

W Wy P Py { v 7 ) Tt by (G TSN
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Choose vertices uy;, x=1.....g-1; j=1.2, as follows:

(i) If S, (Se4). respectively) satisfies (1) then
U, €S, (uy; € Seyp).

(ii) If S, (Sc4y) satisfies (2) then
Uy € S (k) (uys € Seqg (K.

Put

e = (uy ue). x=1.....q-1.

where

e, € E(G).

We consider the case where x = 1:
G. G =G+e.

Clearly. the pair uj,. u)> satisfies the edge condition for G. We will show that if g 2 3 then the
PaiT Usj. Uy, satisfies the edge condition for G'. If this is shown then the discussion for x=1 can be

applied to the general case:

Proposition 3.6 and Lemma 3.4 show the following (a)-(c):

(a) SCupp. 1:GY) = 8(up2.1:G")N(=8,US,). and it is the only 1-augmenting set of G with respect
to ey.

(b) Any m'-component S’ of G’ is also an m'-component of G if m" > 1 or if § # S(u,;.1.G")
withm' = 1.

(¢) For any m -component S of (', ec(G) € m’ € k.

2 if Vie,)CS and either P¥ (G)=3 or m’ = k.
DUS.GI=DUS.G) =1 1 if [V(epyNS| = 1. or i V(e)CS and P™ (G)=3 with m'=k.
() otherwise.

[}

| =4

B

LYY

v’h’—»

¢ P,{"vf"xnr—l'»‘*'-r PRI RN ATy N A M IAT S ™ X BN w
i-‘u“‘;‘ BV VED, el' ATS RSN (L LN d et l‘gql ,l.!'i' W 2 A P A "h ,p\,h XN ’Q;""?"' “l..\’ T ‘\j, ﬁ.,‘*r “vj,‘!'f“{.“f‘ Q:.“ah"*,.’.,“
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Hence we have (d). (e):
(d) If S; =S, (k) then S, is also a k-component of G" with D(S,. G') = D(S,. G)—1 (=k—1) \

(e) If S, is a critical t-component of G, 1 €1<K. then (i), (ii) hold.

&K R T OB

(i) $,5;(1") is an external t'-pendant of G° with Dy(5,,(1).G") = D,(8,,(1").G) for each t.

R )

t+ 1 <t'<k.

(ii) If 122 then S; is an external t"-pendant of G’ for each t”", 2 €1 €.

29

It follows that there is a sequence of external pendants of G’

521(]\)g T QSZl(t+1)CSI US'_)

such that if S, is a critical t-component of G with 2S1<k then S, is an external t”-pendant of G’

&= o5

and
o
s Sg](l+1);52csl US‘_)
for éach 1. 2€1"<t. Thus the pair ua;.u., satisfies the edge condition for G', and we obtain the
u following proposition.
RS
3

PROPOSITION 4.1.
5 Let

G&?, Fo=le,..... eq-1l. & = (uup). 1€iSg—1.

Then we can set

f &
b
by Z(1) = E,.

y
i;» The procedure connect repeats two procedures: finding a pair u,;.u,; satisfving the edge condi-

tion for the current graph G in O(kn,) time and then constructing adjacency lists for

= (G> + (u;.u,5))* in O(ng) time. Thus the procedure connect finds Z(1) and constructs adjacency
E lists for (G> + Z(1))* in O(kny) time.

CT(G + |)) is easily obtained rom CT(G): coalesciny all 1-component vertices of CT(G) into
ﬁ one l-component vertex. merging corresponding sons lists into one list. and changing degrees of
(2]

G

f 1 e ] \
PSR R R DA A XA AN AR )

T
S LA
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2
::' corresponding component vertices in O(kn,) time (by means of (¢))
Y 4.2. THE PROCEDURE F/ND (ec(G) > 0)
[\ .
"
. We consider the procedure jind. which determines Z(m~1) and constructs adjacency lists for .
X (G5 + Z(m+1)® with m = ec{G)>0. In 4.2.1 and 4.2.2. we consider the procedure hfind. which i
)
W
1 determines a minimum attachment Zy for H = G/m(m+1) such that ec(H+Zy) = m+1. In 4.2.3. we
o P H
" consider how 1o determine an edge (u’.v )€Z(m+1) from each edge (u.v)€Z,. In 4.2.4 we describe v
&N the procedure find. a modified version of the procedure /ifind.
\
'."
N ‘ . .
% Let F be any attachment for H. For each edge e = (u.v)€E, H+F has a new (m+1)-component,
*
;(" denoted by A(e.H+E). containing V(e), since v
&
o Mieeluv) = Mulun) + 1 = m +1SM,,6(u.v).
:: Al(e.H+E) is referred 10 as the (m+1)-augmenting set for ¢ (with respect to E).
s
D
First we show the following proposition for an attachment E for H.
,;-
N« 7
B .
Ny PROPOSITION 4.2. W
ke
" Suppose that an attachment I for H satisfies the following (1).(2): K
oty !
l"
(1) VIE)=Y 0
L) k]
]
R (2) H+ E has an (m+1)=component A such that V(E) © A,
B>, Then v
2 :
e
o A= VUD. "
o )
o PROOF.
s
¢ !
% Assume that o
('™
Q‘ 1
! ACVH, ’
i Corollary 3.1 of [20-22] shows that H = I has an (m=1)-component S such that
Ll
- 4
., SSVID = AL !
\G
i’
q
h)
4 P T . 1 Yy y ! g vty e "» "o \
R R e R RO _‘,u'. PR rRGad . T o
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Proposition 3.1 of [20-22] shows that H + E has an (AS)-cut K with |K| = m  Proposition 3.3 of
(20-22] shows that B(S.N:H+F) contains an (m+1)-pendant § of H + E We can show. by using
Theorem 31 of [20-22]. §" 15 also an (m=-1)-pendant ot H Hence S ={v}i for some vertex

vEVIH)—A. It follows that

(VH)=-A0 ) Y=o,

a contradition.
Q.E.D.

We will show. in 4.2.1 and 4.2.2. that we <an tind an attachment E,

E =le,. et (r=|y2].

satistving the following (1) - (i)

(1) Foreachi. 1€:€r—1,

Ale H) (] ey Ho )= 1 r22

where
Ho=H H=H_+e. j=1. T
() V(E) =Y.

(ii1) Ve) n Vie) = @ il and onhy it g v odd. 1=r—] und j=7r

If such b exists then Ale, H ) asan (m=1)-component of H + F and

VG Ale )

Proposition 4.2 shows that

Ae Moo= N
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4.2.1. THE CASE WHERE q =2
I q =2 then let J
Zy=1e; = (y. vo). e €E(H). '
Clearly 7y 1s an attachment for H. It is easy to see that Zy and 7Z(e; H)) satisfy Proposition 4.2-
G
(1).12), showing that ‘
Ale, H)) = V(D). :
Thus we obtain the following.
v
PROPOSITION 4.3. .
If 4 =2 then a
.'\(el.}ll) = \(ll) -
fore, = 1v,.v,)EE(H). (
*
4.2.2. THE CASE WHEREq 2 3
[ et F be any attachment for H such that there are vertices ]
v, EY=V(E). i.j=1.2, i
where v |.vs.vay are pairwise distinct. and if vs, is equal to one of the rest then we assume. f
aithout foss of generality. that o
"
V22 T Va2 )
Put 5
L=H+FE e=(vn5) e =(va -,
» here (
e. e €FL]).
Put
Ale) = Alel +lee’l Ale) = Ale' L + lee}), )
e = Alel +ei, de = Ale'l +e')
Clear!ly f

"I. ) A | rl " L ” Y ) - oty tar
B s A0 O AL DRC T DL A KM S O O RO TR N DR T D st o TR S AT S D e o Salalah

Pt A0 Mol MM M
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o AeCA(e). Ae'cCAle).

S ' and

i

o AelJ Ae € Ale) = Ale) it Ae)[] Ale)=0.

‘:-. -"-
eL

In the following we first consider the case | where

Ale) N Ae) =o.

~E1

NG re.. L + fe.e’} has an (A(e).A(e"))-cut consisting of m edges. Then we proceed Lo another case I
N o

pa ", A

N ‘..:, w here

) ° Ale) () Ale)=6.

B v, . ,

S CASEL A(e){] A(e') =¢. (Then V(e) [ Vte) = ¢.)

:', M

i Q Let K be any fixed (A(e).A(e"))-cut of L + {e.e’}. and let B..i = 1.2, denote the K-block of
T ,

o 3 I. + {e.e’} such that

0

‘-‘ - I ’

P V(e)TA(e)EA(B)). V(e)CA(e)TV(B,).
¥l -

o h (In the tollowing discussion. we write B, instead of V(B,) for simplicity.) We note that K is also an
05. (A(e) Ale))-cutof L.of I.+ecrof L +¢

ﬁ? » let . 1" be 1wo edges defined by either

Y

>} C { =(\«“.\.2|). ‘.l =‘\«'l2.\/3:)
W) LIS
¢ or
)
k I*
\
l'. :\i' f=(\4“.V22). f'=(\/|3.\21).

'4!"!

w here

e X
SO

| ’ IEREARIRE

< e
":j . l.et b be any fixed vertex from {\>;.vasi and put

Bty
N [=(1 +e)<h B>

_':: = We note that

X

a é Vi =B, J!bl 1 =01 + ,eel)<b. B.>. (See Fig 6.)
N
Py
@
1)
&Y

‘.0’\, . Ry N L SR A e A O "s.'-ﬂ.‘-_-‘.-"n BT AN S BT *.-. N ‘.. \. v P GLE Y
"lﬂlo J'f J' Vo A Yy % -n‘\l‘ pA) 'a WA VY’ * U 2% OO OO DA AN o 't"t'




PROPOSITION 4.4.

Suppose that A(e) ] A(e’) = ¢. Then
T\IL'(u.u') = M(u,u’)

for anv u.u €V(1), whereL'=1L +eorL =L + {e.e'}.

PROOF.
Since

.\1L+¢(V11.V21) = \11. i

Theorem 3.1 of [20-22] shows that

.\ILf(u,u') = M;(u.u").

Q.E.D.

PROPOSITION 4.5.

Suppose that A(e) [ ) A(e’) = &. Then
M oAvv)SM (v

foranv v.v €B,. where ' =L +eorl. =L + lee'].

PROOF.
It suffices to sav that

v

1<
M vy )\.\ILH” ‘

”:}(v“,vn) =m = |K|.

34

Since 1.-K has just two components whose sets of vertices are By and B>, L-KN has a (v.,.v;)-path Q,

such that

EQ ' (MKk=0.j=1.2

Hence I. + 'f.1°} has a circuit C such that

FOC) = B J r@a

et P, denote the (v, v >)-subpath of C defined by

S
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E(P,) = E(C) — E(Q,).

Let P, .. .. P, denote any fixed set of (v.v')-path of L + e, where t = M, (v,v'). If none of them

passes through e then all of them are paths of L + {{.f"} and the proposition follows. Suppose that

'_: e€E(P)). Let Py,. j= 1.2 denote the two subpaths of P;—e. where we may have
F E(P,)) =¢ or E(P},) = ¢.
h“

P,,. P;> and all other P(i22) are paths of L + {f.f'}. Let P," denote the (v.v')-path of L + {f.f'}

::: defined by joining P,;.P,.P;>. Then

E(P)EP) =¢ if i22.

s That is.

ﬁ My (Vv )SM (v,

+iff !

, Q.E.D.
ol

ﬁ COROLLARY 4.1.

Suppose that Ale)[] Ale’) = ¢. Then L + {f.f} has the (m+1)-component A such that

““J Ae C Ale) € A

E Put
o

f] = (VII'VZX)' f3 = (V“,V:;z). f3 = (Vlz.\‘:g). f,; = (\"l'."v'.’l)‘

oA
A I

AL+ i 1€i€2.

v

Alf) =
AL + {10, if 3<i<4.

s

PROPOSITION 4.6.

N

Suppose that we have

Ale)NAte) =6 and AU AUFD = ¢,

By

Then

s

1

W L L oy oy o T a” a? e At "
2 s - \'I'("J"'}“’.'

Vg K
AR .n'l, L 2

R I T N U P W T R W -
SYWAISIASSEAT I ISR TR SFNI SIS RINNY

P P R Y 2
AONGRQLARY . S aans

v
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Ao Alf) ) AT )=, ie. A(f,) = Alf,).

PROOF.

o L+{f,.f.} has an (A(f{).A(f;))-cut consisting of m edges. Let K’ denote any fixed
(A(f.A(f2))-cut of L + {f,.f-}. Then K'=K. K’ is also an (A(f}).A(f2))-cut of L. of L 4+, or of
\ - L + f,. Let B denote the K'-block of L + {f.f>} containing V(f,), i =1,2. We have

N v,€B]B. ij=1.2.

Suppose that

RPN -
f‘:;:‘ ] VKB, = vl
:: Then any (v,,.v;)-path. j=1.2. of L and of L + (e} passes through v. Each of m edge-disjoint

) (vy.va,)-paths is decomposed into two subpaths: the (v,.v)-subpath and the (v.v;)-subpath.

R
.

Vs

showing that

PR
ll.yaA
e A Ar A

B> .

.\ll_,.“" f;):(vl)'V) =m+ 1, lj =1.2.

55

That is.

(’, “
y a.¥
Vo

vEA(f) ) AF).

U

o

)
L, =,

a contradiction. Similarly we can show that

o
-

]

P N+

VIO BIZ2 i=1.2. [V(KOB]Z2. j=1.2.

b
AR

et

- - e
o
e

4
ol

K={e: 1Si€m}. K" ={e: 1Si€<m},

" and let Py;. .. .. P,,, denote any set of m edge-disjoint (v,;.va2)-paths of L. Then

oY IFP K = [ER)AK]=1 i=1...m.

T If we assume that there is e€K U K’ such that

oy Vi) (VBB )=, Ve ) (B,[]B.)=e

.',‘ then some P;, passes through e. showing a contradiction that

[P (YK|Z2 or kP [KR]Z2.

Hence no such e€K U K exists. Let Py .o Py, denote any set of m edge-disjoint (v~ p.v 2 )-paths

%

of 1.. Then we can similarty ~how that there 1s no e€K U K’ such that

Pt
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VieY(N(B, B )=, i=1.2.

Foreachi.1=1.2 put

K, =le,€K: V(e)CB'}. K/ ={e €K V(e/)CB}.
Clearly.
K= }\IUK:" KI=K11UK3'. K]ﬂk2=lenl\'3'=¢,
Ki=o. K'=¢. i=12. K[]K =0¢.

We also have

Ky =Ko = K, = K2,

showing that m is even. Put

X = m/2.

For each P;.1=1...m. put

Pit'=Py[B (Bl 1=1.2.

Similarly. for each P, .1 = 1....m, put

P4l =P, [B.[)B/]. P{Y =P, B, []B:]

We note that these 4m subpaths are pairwise edge-disjoint. It follows that L has pairwise edge-

disjoint (vy;.va;)-path Q.. i = 1....m. defined by these 4m subpaths and K | J K’. (See Figure 7).

Let Q.,1(Q,,>. respectively) denote the (v,;.v,>)-subpath (the (v1s.va;)-subpath) of Q,,. and let

R (R,,. respectively) denote the (v);,va;)-path of L + {f;.f;} defined by joining

le' f-l (Qm2' f1)
The paths Q. .. .., Qu=1-Quu1 Q> are pairwise edge-disjoint (vy,.v~y)-paths of L + {f;.f,}. showing

that
Al AL = o

Q.E.D.

The next corollary follows from Corollary 4.1 and Proposition 4.6.

PSSRy Y RE . ‘-l - .“’l G S Y AL LW [N ~(v' L) \.\\ LGS
ot i 1 26 : c!n. BN AL A u“v.ﬂ‘h‘t.i-‘ U0 R N o '
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" COROLLARY 4.2.
A Suppose that Afe)[ ] Ale’) =& Then
¢ «
) - %
d AeC A(e)C A =AF,) WAL ) All)=e. 4
X,
AeC Ale)C A(f) = A(f,) otherwise. o
0 )
9 ‘
e CASE II.  Ale)[] Ale =0, 3
) ' .
Put
by !
W [t
T e=(v.w). e =(vw) L' =L+e u
i
¥ Suppose that there are distinct vertices {
Y
4 Viowey —(vD v Y vien ]
“.‘:' such that
" Al L'+fe'e N Ale". L' +le'e”) = 0.
: w here
.. 0
L o W EE
i e —(\' W )6[([.)
}
o Corollary 4.2 shows that we can find a pair of edges {.f" such that
i
> AL+ 0D YA L + 107D = 6.
; ‘vhere Y
Uy, A.!
L
Vi v = vieh |J vie).
2‘,! VIO V) = 6.
. We assume. without loss of generality. that
F=0w) ="
Z
PROPOSITION 4.7 b
It ot
Al )AL+ 1i=d -
then g

. -..‘-‘ ) .._:..?g \'.; ._;..:1; \‘: .'_;I‘\.}.rq
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Ale L) AU L + )=,

PROOF.

First we note that

AleLNCA(el + &) = A(e' L' + )T AULL + {f.£1) = A(f.L" + {1.£}) (by Corollary 42).

Alel)CAlel’ + 1), AleL'+D[)AUL+N = ¢

L" 4+ has an (A(ell” + f). A(f.L" + {))-cut K with |K| =m. Let B.. B, denote the K-blocks of

L + { such that
A(e.L")CBe. A(f.L" + 1)CB,.
We can assume. without loss of generality. that

w €B.. v'€B,. (See Fig. 8).

Put
ho=KUltet Ko =nUJir
Since

MoV W)I=ML oV W) =m+ 1.
L 4+ L +f

Roor Kowwa (Viw)-cutof 1+ e or a (v".w)-cut of I'+f", respectively. B.. B, are the N -
blocks of L' +e and the K .-blochs of L'+ 1" Let v, be any fixed vertex of B, Then

(1" + e <V, B> is somorphic to (L + )<\ B> . Pul

L" = (1" +e)<v, B>

Then. by Theorem 3.1 of [20-22],

“,'-..‘(“’”"’ = \Ilu"u.u') =M u.u)

toranv uu €V(L") = BeU v This shows that

\ll' A a)Zm + 1.

sinee

NI T T

"h ‘.- J'c.o, [ i

1.-.I,s.,, A\ AL \!



.\IL' el(w,\.\')?m + 1

*

That s,
Ale LV AU L + 1 I=e

Q.E.D.
COROLLARY 4.3.
Al + 0D = AL + 067 = AT+ttt )

We will show. by using Propositions 4.3, 4.6. and 4 7. that if ec((G) > O then we «an find 4

sequence of edges

e . .e. r=lq2
such that
Ate HicAle ,, H, ) 1 =1 =1
A here
t.=H H,, =H +e_, i

We first describe the procedure Ainnd ahere ae put toreach s 1€ Sr—)

At

At H -

Por ta edees ! 1 such that

ot . . o e . PR YRR WY o L
LI A58 TR P i GOSNy I O A o o/ SEERRANMARAN A AN AR
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L)
3
:t: procedure /:1nd
»
' ] lxgln
»
d
- N H =H 1 =1 /y =0 « = » = t =y ow)
. - H v v o .
ko’
N .
YRR 3 while ' £ . -1 do begin
]
i = .
:q [ 4 "
O o if g~ ddand =1 1 then a =\ _ elsew =v,,,
iy
* A ]
“:' ‘}. » t = “
¥ L
R o o if v ﬂ A ! 1 = ¢ then begin
-
R
d SN L A

if At [} A1) =06 then begin

>

) ; vz A= A

~
\ ,-\'_

AT Ve end

[N

L

o

!

'+, i . end

5 1 if % Sr—1| then

S,
..,-: - ; it e ﬂ A, +1 =0 then begin
s S »

o .

3 g
3
3
&

+
':
:I g W= ez, =0U e
B 7. <.
' . it 1 then begin
Ay
g - - = W o=t ~e /=20 e
44
f: ) end
R :.‘
F = L
" E ~nd
»
[ eyt
'l -
.
L
n.'
' o'
‘.
. '
~ ‘e
. :
)
»

L L) L S

T 68 G Nl i
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p
¥
I_af' The part from line 4 through line 22 is called the i-phase for each i, 1 SiSr—1.
o Let f,". f,,, denote the two edges (v.w). (v',.w’), respectively. that we have at the beginning of
» P,
:\ the i-phase, and let e,. f{,;," denote those edges obtained at the end of the i-phase. where
'
R
fl = ()/x Yz)' fr =&
)t I ’ » ¢
o VU Ve, = vie) U V).
e
r:: For each ;. 1€j<r. put
g
Y if q is odd and j=r,
‘ Y, = :
: tyyovan oo Va-1.y2! otherwise. d
Bt PROPOSITION 4.8. ’
30 Ale . H)CA(e,.H,,) for each i, 1SiSr—1. (
N PROOF.
Proposition 4.6 shows that, at the end of the 1-phase. we have two edges
"
',;.-
Y e 2
) - 12
v
3 such that
;D .‘\(e‘.}{l)c.'\(Ex.IH + fz’) = .'\(f:'.i‘ll + f:').
l‘g
'
e Suppose that. at the end of the (i-1)-phase. 2<iS<r—1, we have two edges ‘
n G-t fll
, ~uch that
vl
o L ‘e .
- .-\(e._,.H;_I)C:\(el_,.H,_, + '1 ) = '\(’ 'l{I—l + f; )
114 We consider the 1-phase. At the beginning of the phase we have two edyes
‘ﬁ
Cd
2% L
94 (R P
Put ]
U . i o
“I [ =[{,_), l. =l{!_1+l,'
W v
Y and suppose that
4
o5
&
. { > D R 17 AP B St I UL P LS N NI Y WL I » P RENT A TN, ; L . L¥,
AR N N N AT WY .‘ﬂ‘. N " INP. ‘ L PR ‘! . . |i y A ‘ ! . n ' A 'I P AN .n '\I ‘ , "e‘ 1L ',‘..i'a,i “.‘!
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0
i 3
B AU L7+ L) (VAR L7+ 1) = 6.

Then Proposition 4.6 assures that, at line 12. we obtain two edges f. { such that

v va) = va) Y vy,

& s

V(D)= V()

o AL HES)) = AUL #1410,
. Proposition 4.7 also assures that we have
i .
WSS Ale L)YAUL + f)=¢ or Ale~ L) YA L + )=

Hence. at line 20, we oblain two edges

e
o

i e L
Y
o a such that
;'
Y oy Ale_, 1)CA(el  +¢). L +e =H,
,(~f:, .;"‘<

" o At the end of the (r-1)-phase. we obtain two edges

Y ‘
BAC P )

G €ceye fr =e

(e
Wy such that

.'"(L . :
SO Py g ey L :
N Ale,_ H_pDcAle,_ H,_, + 1) =aA0, N, +1.) = Ale. H,).

REMARK 43.

), E Q.E.D.
%

(1) Foreachi, 1 €1 € r-1.

‘1\:' ‘\'(e,)n\'(e,ﬂ”:l if ¢ = odd and i=r—1.
s
R
I Vie [ Vie, ) =0 otherw ise.
o F
)
“ +
N W Ae L+ 1LY =Y.,
)
!";'. ‘ﬁ aedb Y y=viep Y -Uveeray.,.
o
R (2)Y G Ale,. Hr),
ety %
"
v I
rt
a6 -
LI L
- Y .
i
RN
1
g . . ) .. i N o : N ‘ |
R D S e S L R o e R e R SR RGNS




Thus we obtain the following proposition by Propositions 4.8. 4.3 and Remark 4.3.

PROPOSITION  4.9.
Ale, H,)=V(H).

COROLLARY 44.

e/} is a minimum solution to the (m+1)- edge-connectivity augmentation of a

graph H.

PROPOSITION 4.10.

Suppose that ¢ 2 3. Then. for each i, 1XiSr-1, A(e,..H,) is an (m+1)-pendant of H, if and

onlv if g 18x odd and i=r-1
PROOF.

Put
A = Ale, H).

First suppose that g is odd and i=r-1. Since | Y-A| = 1. H,_; has an m-cut K = K({y}. H,_,). where
Y-A = {yv}. The K-block B(A.K: H,_;) contains at least one (m+1)-pendant of H,_; (by Proposition
3.3 of [20-22]). Hence if we assume that A is not an (m+1)-pendant of II,_; then we have an
(m=+1)-pendant v of I1,_, such that

v E€B(AK:H,_) = A,

meaning that

VEY—A. vy,

a contradiction. Thus A is an (m=1)-pendant of H,_,.
Conversely suppose that A is an (m+1)-pendant of H,. Then A isx external. Put

K = K(A,H).
where K] = m. Let B. B be the two N-blocks of H, such that

¢ e Sy A TSR DLIa (n 0 O NX \ o X Py
;'?‘*-'.'r'-,‘".."‘.'g‘-.fa".':' e et e bt L A T T tasigch! a“i.aa'.’fl' ! _f‘:'a’,,.. "t 0 8 Wy Agig) "'t’!‘t"‘t‘.'l‘:'.‘a':ft':\'? :

n 4y A
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,'.'1' \g

t'*' <

I : .

»::. By=A. B=V(H)- A

e

Assume that either q is even or q 1s odd and 1 <r-1. Then there is an edge e,,,. for which

{1;1
R o
! ’@ V(e;s1)&B (by Remark 4.3—(1)).
)
Hence K is also a (B,.B)-cut of H,,; = H, + e;,,. meaning that

O o
::: A n A(el*’-l'HH—l) =¢
{

This contradicts Proposition 4.8.

2

"V v' .E.D.
e ox
o
c::: ,
" g COROLLARY 45.
" ' For each i. 1 Ki<r. the pair of vertices of V(e,) is an admissible pair with respect to H,_,
2R
» *\
' 4.2.3. DETERMINING Z(m+1) FROM Z,,
|
:.;' We describe how to determine Z(m+1) from Zy obtained by the procedure hfind. For each 1.
L)
o
‘i!:' w 1<i<r, put
"’1‘ 5
W
.”

e = (\’II'VIZ)'

C

Vi= U eahitv
v€ Ale H,»

g s

P T o 2

Each p;1,(v) is an external (m+1)-pendant of G. and Proposition 3.3 of [20-22) shows that there

,.

..
Q-

ot |

are two sequences

b
2

A

¥ ) SUKIG - €S (m+2)C ph(v) =12

VG ) )

: ot

Vi, where §, (1') denotes an external t'-pendant of G. t" = m+2. .k For each 1. 1 S1€r. choose two L
i

o s vertices

‘u:ﬁ

N

K1

Uy
(Y
Ve
.
v

:
.
30
l'c. )
P AT A RN T, TR

w, €S (h). ,=1.2.

and put

. » N () e - _ Y AP TR AN -
AV N AT N Rt RN s‘a ARSI, AN
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’
é' g, = (w, wp).

where ¢ €E(G), w, ;®=w .. lLet
G,.=G.G, =G +yg. i=1l.....r.
PROPOSITION 4.11.

For each i, 1 Si<r. the following (1) - (3) hold:

(1) V, is an (m+1)-component of G, and if § is any (m+1)-component of G, such that S

(V. =¢thenS € m(m+1).
i (2) d(V,.G) =d(V,.G) = d(Ale,. H,). H) = d{Ae..H,).H).

e (3) V,isan external (m+1)-pendant of G, if and only if Ale,. H,) is an external (m+1)-pendant of

i H,.

5 PROOF.

First we prove (1), where 1t suffices to consider the case where
V,.eViG)ori<r.

Let S;S-€mim+1). §;#S8,, and let K be any ($,.8:)- cut of G. where |K;|=m. There are distinct
' certices u € V{H) such that
) S.=p; 0 (up =12
Proposition 2 1 shows that H has a (uy. ua)-cut Ky = p 1 (K(,). for which
Blu KNyl =dp, (S S€mim+1). SCBS K, G j=1.2.
o b

A= el Brud = Blu kD, BIS) = BIS K, G). :

Surpese “nhal

| hen

o

-4 ' v . G [T » n [ R r =
LN DS AOAONOIN AN A,y 5 : >,
e "- "‘- “.'i“! “-\ ¢ t "b‘-.\"--“" (3 "'- "t. 'k'\ LY ..‘.B “"!J"" ..\,"v "‘“'l.!"‘""’.‘.‘Qf"h‘":‘ By h"'."lai -;b' ;‘!h‘.'"!?:"." ?'tl'_’. .'o .‘. “a.,'....:.t'g !‘ii!'s‘!.g -!.l
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M
ol u,€A. j=1.2.

’ . meaning that Ky is no longer a (u;.u,)-separator of H. There is some e, = (v{;.v\,)€Zy. 1S1€0,

such that

.:.Q i vy, € B(u,). j=1.2.

&2

For the corresponding edge g, = (w,;.w,5).

..

,
:

e

A oy
NPy wy €pad (v )EB(S), j=1.2.
LN
»‘z‘.r_.

Therefore any (S,.S,)-cut of G cannot be an (§;.S,)-separator of G,.
ey
SR N

Next suppose that

‘ oy

o
X 2

e

$;CV,.$-CV(G) = V.

‘",.". Then

A

3' -

xﬁ , up €A u€VIH) — A

H, has an (A, {us})-cut Ky with [Ky'}=m. Since

2
Ve HE

A Vie)CA. j=1.. ..
:' ,
‘::". Ky is also an (A, {ual)-cut of H. and lu,} is an (m+1)-component of H, and of H. Proposition 2.1
l.or
‘ ; R shows that G has an (8;.8:)-cut Kg' with [K¢'| = |Ky'|. Since
A0
‘ .
:|:$ _ V(g )TV, CB(S; Ky Gl j=1.. .. i
-
i
f:i,f. K¢ isan (V. .Sy)-cut of G, and $;€(m+1). Thus (1) follows.
N = A
W It
i
R
¢ GER(V,G,). e€N(AH)
; '
iy )

then

g€K(V,.G). e€N(AHD,

:‘u"
e R
N ks
‘,}.‘.‘:l

. -~
-

r‘
L g

R
e
w,:‘c

A D . " . At AT A" - . L)
RO RO O AN I WA y P e
'»'!".""c'i' 'L'»"i@'llt.l.. I A, L.-Q ANy Lo AN ‘Q (X0 X% ) iy

- Bl R RN RIGH
.‘r: LR .:\ ‘o‘.’-‘l'?‘ﬁ"‘l ‘;Q,lq'.'nl‘ l".f‘?.ﬂ‘? .!‘I.,'l:‘lﬂ|t
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i

respectively. and (2) follows. Clearlv. any (m+1)-pendant of G, (of H,) is external. and (3) fol-

o1

lows from (2).

El\i':"a

Q.E.D.

o | )

PROPOSITION 4.12.

-
"

G

For each i. 1 <i<r, the pair w,;.w,»€V(g,) is an admissible pair with respect 1o G,_;.
PROOF.
We will prove the proposition by induction on i.

Inductive basis (i=1): p7ti(v,). j=1.2. are distinct external (m+1)-pendants of G,_,. and. therefore.

the pair w,;.w, satisfies the edge condition for G,_;. 1f q¢ 2 4 then. by Propositions 4.10, 4.11, V, is

B )

not an (m+1)-pendant of G,. Hence the pair w,.w;, is an admissible pair with respect to G_,.

Inductive hypothesis (i 2 2): For anyv t. 1S1<i. the pair w;.w,> is an admissible pair with respect

to G,_y.

o

Inductive step (i 2 2):1f q is odd and i=r then. by Propositions 4.10, 4.11, p,7},(v») = V,_;, which

is an (m+1)-pendant of G,_;. (Note that we have assumed that v,_; |#v,,. v._;> = v,» if q is odd).

2§

lHence. regardless of g or i, our choice shows that p,;l,(v-”). j=1.2. are always distince external
(m+1)-pendants of G_,.

Suppose that G, has at least four external (m+1)-pendants. Since

ex M

i—1 < r—1 if (iseven,

i—1 < r—=2 if qisodd,

Proposition 4.10 shows that V, is not an {m+1)-pendant of G,. Thus the pair w,;.w» is an admissi-

N

ble pair with respect to G _.

Q.E.D.

=%z &<

dL8

H

1
ORI T (]
e ’v. e .J X 1\_

P .
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& i'q O
,,0" 1}
,'}: ! :8
'fnf:: COROLLARY 4.6.
E,»" o
N ! We can set
.
SR Z(m+1) ={g,..... gl
. P 4.2.4. THE PROCEDURE FI/ND AND ITS TIME COMPLEXITY
\“ (:.
z:;: The procedure find is a modified version of the procedure hfind: we find edges g, €Z(m+1),
oo -
o h-ﬂ
K ¥ add them to G°. and constructs adjacency lists for (G® + Z(m+1))® without handling H. In the pro-
e cedure Afind. the index i. 1KiSr-1. is used. where r=|[q/2]. q = |Y|. In the procedure find, we search
“*'-
L .
o ) the {m~+1)-level for a pair of (m+1)-pendants not yet processed. Concerning vertices, say v or w,
i='| -
f::‘ & and edges. say t=(v.w). appearing in the procedure hfind. we choose vertices a,. a, from
a2 ) .
.‘.;r corresponding (m+1)-pendants of (i and maintain adjacency lists for (G+{(a.ay))® if the edge
0 4y
h 2 i (a,.a,) 1s added to G. Accordingly. for example, determining it A(f){} A(f') = & at line 7 of the
ot
;:?G,o E procedure Afind is done by finding vertices a, a,. a, . 4. [rom corresponding (m+1)-pendants of G
ntty and by computing Mg values by means of adjacency lists for G = (G* + {(a,.a,).(a, .a. )} ).
O.' - N
$ .
e~
e +] H, = H,_ + e, is maintained as adjacency lists for (G = ((G,_)* + g, )%
. '.: %
"
e g One edge g, can be found in O(kn, + a(G,_," )Ntime. where G_," = G,_, + {(a,.a,).(a, a.)}.
AR N
.. e If we use Dinic’s maximum flow algorithm then the total time of the procedure find is
2‘
I » : . .
. 0 Olrkn, + Y ((m+1)nn, + i+1))).
'! ’ =1
g ar
\ .
)
;‘,::: N Oknd(n, +n,)).
'.“. ' ’5
- Ii we use MKM's maximum flow algorithm then the total time is
P
LV :_':.J‘ Olkn2).

o - - - Ll - - - - - - AR Y T - * e " - e AN N A 'Y ~ \ [R
AT AT T AT T , R ' t 0WQ
BN Pl H AR ER Y EARLGHERRAL LN A%t Al , n DI S O R T IR
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*.{—: 4.3. THE IMPROVED ALGORITHM

The improved algorithm repeats the tollowing three steps (1) - (3) at most k-1 umes:
o (1) The procedure comptree. which constructs CT(G) for the current graph G.

¥ (2) Computing (i) - (iv) or (i), (iii) (iv) mentioned in 3.3.3 - (1).

AV (3) if ec(G) = O then the procedure connect. which find Z(1) and constructs adjacency lists for
- (G* + Z(1)) else the procedure find. which finds Z(m+1). m=ec(G). and constructs adjacency

lists for (G5 + Z(m+1))s.

o let

' . n, = |[E(G))]. i=0 k.

. Then the time complexity of each step is as follows:
ol (1) O(knd n) (Dinic) or O(knd) (MKM)
(2) O(k(ny +n,))

e (3) The procedure connect O(kng). The procedure fnd O(kni(n, + n.)) (Dinic) or

e Otknd) (MKM).

Ay Since
% n,<n, + kn,.

the total time is

2 Ok“ndkn, + n.)) (Dinic)

2ty or

OR2And + kny + n)) (MKM).

We notle that space complexity is Olkn, + n.) plus space required by a maximum flow algo-

r
s

ritnm.

32
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Z .:'\' '_._
et e
s 5. CONCLUDING REMARKS
BN
»
- ! We have proposed an improved version of an algorithm for finding a minimum solution to the
SN
6N - . .
S k-edge-connectivity augmentation problem. Taking advantage of the results in [9] to reduce time
b X
v complexity in constructing component trees. as mentioned at the end of 3.3.2. will lead to a more
e x efficient algorithm. We can also expect that a maximum flow algorithm will spend less time on H
W,
; than on G. If we actually construct H and use the procedure hfind then we may be able to obtain a
, RN
) -~ . . . . . .
A, - more efficient algorithm with the increase in space complexity.
Y o
A
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