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ABSTRACT

We present an algorithm for finding a minimum set of edges to be added so as to k-edge-

connect a given graph G = (V.E) with k > 1 and lVi> 1. The time complexity is 0(k2lVI3(klVl + IEI))

or O(k2(IV14 + kVI + tEl)) if we use Dinic's maximum flow algorithm or Malhotra, Kumar and

Maheshwari's one, respectively, as a subroutine.
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U 1. INTRODUCTION

*The problem in which the object is to add a minimum weight set of edges to a graph G (ME)

so as to satisfy a given vertex- or edge-connectivity condition is called the vertex- or edge-

connectivity augmentation problem. This problem has a wide variety [3.4.5.10,14-22].

Frank and Chou [5] discussedche unweighted version of some edge-connectivity augmentation

problem for graphs without edges, and showed Uuat 4 is polynomially solvable. Eswaran and Tar-

jan [31 'considered the following problems:

(i) The strong connectivity augmentation problem for directed graphs.

(ii) The bridge-connectivity augmentation problem for undirected graphs.

(iii) The biconnectivity augmentation problem for undirected graphs.

They proved that the weighed versions of these three types are NP-complete and that each of

the unweighted versions has an o(IV + IEI) algorithm. Rosenthal and Goldner [15] proposed an

O(IVI + E) algorithm for the unweighted version of the biconnectivity augmentation problem.

Frederickson and Ja'ja' [6] discussed the NP-completeness of several restricted augmentation prob-

lems and showed 0 (1V2 ) approximation algorithms for above problems (i)-(iii).

We are interested in the k-edge connectivity augmentation problem for undirected graphs

with k>2. a generalization of (ii). The weighted version of the problem are easily shown to be

NP-complete. The unweighted version. which had been one of open problems in graph theory [2. p.

49]. was solved by Watanabe and Nakamura [20-22]: it is shown that the cardinalitv of a

minimum solution of the problem is equal to the k-augmentation number. EAk(G). of a given graph

( (the definition will be given later) and that a minimum solution can be obtained in

o(kl\1%1fkV + IFl) time by using Dinic's maximum Io\, algorithm.

In this paper we consider an improvement ol our previous algorithm, given in [20-221. for k-

edge-connectivity augmentation problems.

I
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In section 2. graph-theory terminologies and technical terms used in this paper are given.

In section 3. we summarize our previous results on k-edge-connectivity augmentation prob-

lems.

In section 4. we describe an improvement of the algorithm mentioned in [20-22]. The previ-

ous algorithm repeats two procedures: the one constructs the data structure called the component

tree by using a maximum flow algorithm. and the other searches for a pair of vertices, called an

admissible pair. which are to be joined by a new edge. The most time-consuming part of the algo-

rithm is the first procedure. which is repeated each time a new edge is added. Thus it is repeated

EA,(G) times, where EAk(G)-kI VI.

The definition of an admissible pair implies that any minimum solution Z of the problem is

partitioned into some minimal sets Z(m+l ).....Z(k) such that their addition in this order increases

the edge connectivity one by one., where m is equal to the edge connecti'. ity of G.

We will describe how to determine such a minimal set of new edges whose addition to the

current graph increases the edge connectivity by exactly one, \,ithout reconstructing the data struc-

ture. This will reduce the repetition of reconstructing the data structure to at most k-I times.

leading to a more efficient algorithm.

We consider the case where a gi\,en graph is disconnected or connected. respecti\.ely. in 4.1 or

4.2. In 4.3. we estimate the time complexity of the impro',ed algorithm and show that it is

* 0( k21V1'( kJ'I + It'l))

it xe use l)inic's maximum flow algorithm [4] or

() 3 \~+ kj\.j +Il)

d p • :1 xe use the maximum tiow algorithm proposed h\ \laihotra. Kumar and \laheshwari [4.13].

U--
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2. PRELIMINARIES

Many of graph-theory terminologies and technical terms used in this paper are more or less

standard. and those not specified here can be identified in [1.4.81.

A graph G = (V.E) (or G=(V(G).E(G)) ) is a finite set of vertices. V. and a finite set of edges.

E. If E is a multiset. that is. if any edge may occur several times, then G is called a multigraph.

Such edges are called multiple edges. Otherwise G is a simple graph. In this paper, the term "a

graph" means an undirected multigraph unless otherwise stated.

Two vertices u.v which comprise an edge are said to be adjacent. and the edge is often denoted

by (u.v). even if it is one of multiple edges. as long as no confusion arises. The edge (u.v) is

incident to the vertices u.v: u and v are incident to (u.v). The degree dG(v) (or. simply d (v) ) of a

vertex v of G is the number of edges incident to it in G. An edge (v.v). that is. an edge joining v to

itself is referred to as a loop G, = (V 1. 1 1) is isoumorphic to G, = (V 2 .E,) if IvII = 1V,1.1E 11 = 1E2,

and there is a hijection 6 of V, onto V2 such that (u.v)EE if and only if (Q(u).M(v))EE.

A walk of G from vi to v,, (or a (",. v,,) - walk of G) is an alternating sequence of vertices and

edges of G. v1.e1,ve ...... v _.e,_l.v,(n> I). such that e, = (v,.v, 1 ).l <C[(n-1. The length of this

walk is n-I A path (A trail, respectively) is a walk without any repeated vertices (edges) in it.

For l i<j n. the (\,,v) -path consisting of edges (v.v, ).(vji.v j) is referred to as the (v,.v,)-

subpath of a (vi.v)-path. If n > 2 then vi. . . . v,,-, are called the inner vertices of the path. If

two paths have no edge in common. then they are said to be edge-disjoint (or simply. disjoint). Let

\1I,(u.v) (or simply. I(u.v)) denote the maximum number of pairwise edge-disjoint (u.v)-paths of

G is cennected it and only if eerv pair of \ertices of ( are joined by a path of G. If G and H

are tw, o graphs such that V(ll)\'V(G) and HI 1) C.(G). then II is a .ubgraph of G. If 1t is a maxi-

mal connected subgraph of G (that is. if V() * V(G) then G is not connected) then 11 is called a

c,nnected c,,rnpnent (or simply. cemponen ) of G. Let Z1 be a set of edges such that Z C F (G) (Z

fl F(; 6(empty), respectively). \here an'y' edge of Z joins two vertices of V(G). Then G-Z

%. ~~ - ' - ~~ 'V,! ~' .'% N
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(G+Z. respectively) denotes the graph obtained by deleting all edges of Z from G (by adding all

edges of Z to G). If Z = (el then it is denoted by G-e (GC-re) for simplicity.

For two subsets S.S'9.V(G). let E(S.S':G;) denote the set of all those edges of E(G) joining a

vertex of S and one of S'. in particular, we denote F(SN%((])-S:(G) by K(S.G). If S = 1v0 then we

write K(v.G). If S 6(. and ScV%(G) (a proper subset) then K(S.G) is called a separator or a

IK(S.G)-separator of G. Clearly, if 1%'(G)I > I then (G-K(S.G;) is disconnected. Put

d(S.(;) = IK(S.(G)I.
and we call it the degree of S (in CO.

Let K be a separator of G. and suppose that K=K(T.G;) for a nonempty subset TCV(G). A

pair or disjoint subsets S. S'!QV(G) (that is. S fl ' = 0) is said to be separated by K (or we say

that K separates S from S') if S _ T and S' ;V(G)-T. K is referred to as an (S. S')-separator (of

G). If S=Iul and S' = Mv then we simply call K a (u.v)-separator. An (S.S' )-separator K with the

minimum cardinality among all (S.S')-separators of G is referred to as an (S,S')-czd. A (u.v)-cut is

defined similarly. Each component of G-K is called a K-block (of G). A :K-block whose vertex set

includes a subset SC V(G) is denoted by B(S.K:G) and is referred to as the (S,K;G)-block . or simply

the (S.K -block of C. (For simplicity, we often use the term "a K-block", meaning its vertex set. If

S=iul then B(IuLK;G) is written by B(u.K:G).

L~et m:! k f or a fixed integer k > 1. A subset SC V(G) is cal led an rn-ed ge-component (or. sim-

ply, an rn-component ) of G if and only if the following (1), (2) hold:

(I ) %1(;(u.v).>,m for any u. v E S.

I 2) For any u'E'((;)-S. S has a \, ertex v' with NM((u .v') <m.

An in-edge-component that is not an (m- I )-edge-component is said to be critical. If S is an

in-edge-component of (; with 0<_d(S.C;)<m then S is called an rn-pendant Clearly, a I-pendant of

G is identical to the ertex set of a component of' G. Let P"'(6) denote the total number of m-

Fenm:ants of G. An in-pendant S of G is referred to as an external rn-pndant if K(S.G) is an (S.S')-

cut of G for some m-edge-tomponent S'( dS) of G;
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The edge-connectivity ec(G) of a graph G is the minimum number of edges whose removal

I from G disconnect it to more than one component or result in a single vertex:

'A

min I JK K is a separator of G I if IV(G)l > 1
ec(G) =

0 otherwise

G is said to be h-edge-connected if ec(G)>h. Let NG(u.v) (or simply. N(u.v) ) denote the cardinal-

ity of a (u.v)-cut. It is well known that

and that -NG(u.v) = M 0 (u.v) for any uvEV(G),u;ev

ec(G) = min{MG(u.v): u.vEV(G). u;&v) if IV(G) > 1.

(See [4,8].)

Let lxi (lxJ, respectively) denote the minimum integer not less than x (the maximum integer

not greater than x).

For a subset S QV(G). let G[S] denote the graph defined by V(G[SI) S and E(G[SI) {(u.v)

E((;): u.v ES). G[S] is referred to as the subgraph induced by S of G.

3 Let Y be a nonempty subset of V(G). and let a EY. Put

G-Y=G[V(G )-Y].

and let G<a.Y> be defined as follows:

V(G<a.Y>) = (V(6)-Y)U (a),

E(G<aY>) = E((;-Y)U {(a.v): (uv)EF((;).uEY.vEV(G)-Y}.

It is said in [12] that G<a.)'> arises /rom G by identification o/ to a. Let

T(a.a':G) = IXCV(G): aEX. a'EV(G)-X. d(X.G) = NIG(a.a')).

If ada' then T(a.a':() is nonempty.

THEOREM 2.1. [121.

In a graph G. let YET(a.a':G) for certain a.a'E%'\(). Then. for any distinct vertices u.v of
! (;<a.Y>,
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-N'(,.Y(uv) = N1G(uv)

Let SCV(G), and let GS denote the graph defined by the following:

V(G/S) = V(G)-S U (v(S)l I MS) eV(G)).

and

E(G/S) E(V(G)-S. V(G)-S;G)U l(uv(S)): (u.v)EK(SG),vES).

where v(s) is the new vertex corresponding to S. This operation constructing G/S from G is called

shrinking of S in G. G/S is called the graph obtained by shrinking of S in G. For simplicity, we

also call GS shrinking of S if no confusion arises. Let 7r = S ..... Sj (t> 2) be a partition of

, V(G):

V(G) = s,u .. u Ust. si n7 si = o(i j.

Let Iun'r denote the total number of sets in 7T. For each i. I1<i:<t. put

G(1) = G( 1 1 ) /S1,

where (,, = G. Put

and we call it the r - shrinking of G. Gir is uniquely determined up to isomorphism, indepen-

dently of the order of shrinking of the sets in r. Since we identify two isomorphic graphs. we con-

sider that (3, r is unique for each 7r.

Let in;(m) denote the partition of V(G) into m-components of G. where m>ec(G). Put

G/m = G/in(,( m )

for simplicity. G/ m may have multiple edges. Let p, denote a mapping

p:,:V(()-V(G/m)={v(S,): SjEir(mi1

defined bv p1 (,) = v(S,)Eir(m) if and only if vES,. p,, is called the mapping ,)/ G induced by

7r(,(n). We lix p.. and denote P,:'(v(S,)) = S,. For any ;et !:CE((;). let

p ,( E)= {(p ,(u).p:,,( v )): (u.. )EF1.
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PROPOSITION 2.1.

i Let S.SEr(m)(SIdS,) and v .v,EV(G/m)(k dv,) . If k 6 is an (S1 .S,) -cut of G then p..(K(,)

is a (p,(S).Pfl(S-))-cut of Glm with Ip.,,(Ku)I = lK61. Conversely, if K is a (vI.v,)-cut of Gm then

G has a (p,'(vl).p,-(v2))-cut KG with IKGI = IKI.

PROOF.

It suffices to consider the case where KGd0 ,K;d0. Then m> 1. Let

B, = ip,,(S): SE7'(m).SCB(S,.KG;G)L.i = 1. 2.

It is easy to see that

Pm(KG) = E(BI.B 2 :(;/m). IPn(K6 ) = IK6.

If we have S. S'EB(S,.K;:G) (S ,S') for either i = I or i = 2 then G has a (w.w')-path P for some

pair wES.w'ES' such that

E(P)fl K6 ,

This implies that G, m has a (p,(S).pn(S'))-path Q such that

E(Q) fl p,, K6 )

Hence it follo,,s that p,(K 6 ) is a (p,,,(SI ).p .,.(S,))-cut of G; m.

Converselv we prove the second part. For each i. - I. 2. put

Bi=BU ... (i m.

let K, t,

e, =(v I.',zE K, :1 M (m, = kl<m ,

x here

E 1I = 1. 2

Thon :,,r eaLh j. 1 -<]<n'. ,here 'an edge

"a
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fj = (u,.up)EE(G). ujEp '(vj,). t = 1. 2.

Put

K4,= If .  f 11)ni

[hen. clearly. we have

KG = E(VIN,: G).

Similarly to the proof of the first part we can show that KU is a (p-'(vl).p-'(v2 ))-cut of G.

Q.E.D.

suppose that there is a pair u.v E V((;)(u:;v) such that G has exactly p edges

el......ep (p>1)

onnecting them. Delete these p edges from G and add an edgee

e = (u.,,)

. & et . Ight

c(e) = p.

\e denote

OT~e)=e. = 1. p.

Repeal ,uh replacement until . ,e obtain a simple graph (' with each edge having weight equal to

* ,he number ot multirle edges ot G connecting each pair of endvertices.

(,,nstruct a directed graph N((-) from G by replacing each edge e= (u.v)EE(GS) by two

e, =(u-.. e" (-u)

hlb .1 hjh La. L .e' L'1,N idt ] to (e

*:f = '  = (e).

N '( , ;- . .ed 'ke 't-t G' ,

(. ,e t I r.e. - " - t Irom \ (VGC )) 'a th \i,.t)>). and ,xe call s and t a

" anc and d .. A .'ves:.e (U'n~ider each Ue lo he the capacity 1 eEl-(\((;")). and any



existing algorithm for finding a maximum flow f,, from a source to a sink can be applied to NG)

Let v'al (M denote the total flow of a flowv f:

val(f) E f(e) - E f (e).

where IN0w) (OLT(w). re pectively) denotes the set of all edges of N\ (G') incoming to w (outgoing

from w). In particular. put

Hs-t: GY) = i'al(f ..) or F(s-'t = val(f,,,)

S Let S. S'CV(-\(G')) be nonempty disjoint sets. and let

F(S-S') = ie = (u-\v)eEE(\(G')).uES.v -ES'T

(S.S') =E(S-S') U E(S' -S).

(S.S) =(SAV(N(GU)) - S).

We call (S. S )a cut of N\(GS) Put

SEtS-Si

\x hich is called the capacitY of a cut (S. S ). A minimum cut is a cut % ith the minimum capacit-,rn among all cuts of'NG)

PROPOSITION 2.2.

EHs-t = Nl(;(s.t) if N1 0;(s.t) > 0.

!PROOF.
Let K be anyv (s.t)-cut of . here NK \I(,G (s~t). Put

S = B~,KG.S=1(t.K:(G).

Let

Trhen clearly.

*~~~~I NM - ~'~*
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E. c(Qie)l = Ii

Hence. tor the cut (,S.5) C F( \((;s)) of \(G;l) \e ha% e

(SA) = I(-S)UI- (-.

I ( --S) = u-, I (u.. )Ek 

["(S-=S) = (-"u)- (u )EK

rhen

(k')= E c(e--klk='.)

Nince an', fliOv, I has

g'.v~al(f )L( k" )

' I( -'I) '(K")= Iki = l, .t

(on'. er,<eI suppose that ,e ha ,e a maximum flo , I Then it is 'xell-kno,%n that \(G() has a

minimum cut k" = (.,t ' uh that

E ,E' tE 'K , = (,,-

I

I r an, e EK I redLh t =e j-, EIt%-4' there = -uand -! a.nd ere .er l,

K'= u.., EI"; a-. l

Ihen K' .- an N t -,eraratr )I (G' and

• IM
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Z c(e) = c(K') Fs-)

K I eEE(G) c(e)EKiJ.

Then K isan (s.)-separator of G with

%N eha% e

For~~~si an\ pai u,.(% ( )t).c

Ile. .s.t)~ =e put( =O.K

S~ he'e _Iiapt k '.9( I et~ R .0) u.'.t th niiru nurF(-fde whs ad iin o rs l

r 3.^te THEar KEEAGETIOf PROBLh pohEM saytso.e'Trfrewsu !t
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k.>2 and IXV(G)I> I

in this paper.

3. 1. THE DEMAND AND THE EDGE-AUGMENTATION NUMBER OF A GRAPH

We give definitions of edge demands of, demands of, component demands of rn-components as

well as the demand of a graph.

Assume that ec(G) <mk Let S denote a nonempty subset of 'V(G). The edge demand of S

(of G). EDk(S.G). is defined by

0 if S=V(G)ord(S.G)>,k
EDk(S.G) =

k-d(S.G) otherwkise

Hlere we denote a t-edge-component of G by S(t) for t > 0. If S = S(m) then the demand of S (of

G), Dk(S.G;). is defined recursively b-y, the following Wi, hii):

Wi If S =SWkthen

Dk(SG) =EDk(S.G).

00i If S = S(m) with m < k then

max( EDK(S.G;). E 1),(S(m+ 1 ).(;)) if there is an S(m +- )CS

IDk(S.G)=

Dk(S(m+l ).G) if S=S(m+ 1).

,Ahere E Dk(S(m+l ).G) denotes the total zum of' demands Dk(S(m+l ).G) Of those (m+l )-

components S(m+l)C S of G.

(We note. as is in Corollary 3.1 of' [20-22]. that S is the disjoint union )f some (m+lI)-components

of G if' S is a critical in-component of G.)

We generalize the definition of R(S.(;) to that for a subset S V(G). Suppose that SgVW;

and S =tS( m) for any m <,k. and let
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I mmli: S(j)CS) if there is S(j) C S with j>O

h(S) 0 
terie

Then we define the component demand of S (of G). CDk(S.G). by the following:

S~h())CSif h(S)>O
CDk(S.G)=

0 otherwise.

S For anv SCV(G). the demand of S (of CO. Dk(S,.G). is defined by using this notation as follows:

Dk(S(m).(G) if S = S(m) for some m -,k

Dk(S.(;)=
max( ER(S(i)CD~(S-C)) otherwise.

Let Dk(G). called the demand of G, denote the value determined by the following procedures

1 ) - (3):

(I) Compute the demand of S(k). 'Dk (S(k).G). for every k-component S(k of G.

N (2) It k>,ec((G)+l then, for each m with m -l c()in this order, compute recursively the

demand of ever%, r-component S(m) of G

max(EDk(.S(mn).G).C')k(S(M)-(;)) if there is S(m+1 )CS(mn)

I)k(s(m+l )I if S(m)=s(m+1 0.

(3) Let

Put.

Wve call F.Akk(i) the k-i'dge-connectii'ity%-augmentaii('n number (or simply. the k-augmentation
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number ) of G.

3.2. THE CHARACTERIZATION OF EAK(G).

We summarize our previous results given in [20-22].

PROPOSITION 3.1. [20-22]

For any fixed k ?-2. G=(V.E) is k-edge-connected if and only if EAk(G')=O.

LEMIMA 3.1. [20-22]

Rk(G)>,E.Ak((G) for any fixed k.>2.

We give the definitions of the edge condition and rn-augmenting sets, which are necessary to

prove the converse of Lemma 3. 1: 1

Rk(G) (5EAk(G) for any fixed k > 1.

('ieariv. it suffices to consider the case with ec((G)<k. For any vertex v and each m with

ec(()<m-<k. G has exactly one rn-component that contains v. Let S(V.m:.G) denote the m-

component of G that contains v.

Whenever ec((G)<k we choose from %V(() distinct vertices ui.u, satisfying the following con-

ditions (1) - (3) called the edge condition (for (;):

(I1) S(u,,m:(G) is an external in-pendant of' ( for i = 1. 2 and for any m \A.ith ec((G)+lI< ~m <k.

(2) S(u,,m'+ 1:G;)CS(u,,m':G) for I = 1. 2 and i or any m' with ec(g)+ 1 <,m' <k.

We note that, by Proposition 3.3-0 ),, [2(1-22]. we can find a pair of \,ertices ulu satist ., In

the edge condition for G.



PutS(;'=(;+(U.'
(We use this notation throughout this section.) Then

An rn-component S of G' that is not an rn-component of G is referred to as an rn-augmening

set ot (; (with respect to the edge (ul.uj)). Any M-Lomponent of G' is either an rn-component of G

or an rn-augmenting set ol G. Since the addition of the edge (ul.u2 ) to 6 can increase the number of

pairwise edge-disjoint paths by at most one, each in-augmenting set of G is identical to the disjoint

union of at least two rn-components included in an (rn-1 )-component of G. Clearly, any m-

-~ augmenting set of G is a critical rn-component of G'

A pair of distinct ' ertices ui.u2 EV(G) is said to be admis~ible (with respect to G) it the fol-

I 1o ing ( I)and (2) hold:

1) Te pir i~u~satsfythe edge condition for C.

(2) It ec(C) - k-I and pk(G;) 4 then S(u 1 .k:G') (=S(u,.k:(G')) is not a k-pendant of G'.

LEMMA 3.2. [20-22]

Suppose that 0!(ec(GC)<k. Then we can find an admissible pair ui.u, with respect to G such

thait

.1F 
.-\ ( (C ) - F A k((C ) =

We have proved in [20-221 the following theorem by induction on k-augmentation numbers

_I graphs-
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THEOREM 3.1. [20-22]

For any graph 6 Nxith IV*(()I> I andi for any fixed k,>2.

R,,(() = EAk((G).

3.3. THE DATA STRUCTURE

We describe data structures used in an algorithm for finding a minimum solution Z of the

problem. We denote

n, no. ((

for a gi'.en graph G.

3.3.1. THE DATA STRUCTURE FOR A GRAPH G

e assume here that G. a multigraph. is given by means of adjacency lists for G', a weighted

simple graphs it consists of a list head G,,, and some vnodes representing vertices, of G. as in the

lollov. ing declarations. . .here N = n, (Figure 1).

type

pnode = T vnode:

G : = array [Il.A] of pnide:

xrde = record

IXlALAL. W7. integer:

PTR pnv(de:

end.

* ~ \ertioe 1, \ (G) are integers~ I.N, and VN.1M1 maintains the corresponding integer. V AL

Sill he ased to maintain current tlo'% values in a maximum ilow algorithm. WT is set equal to the

multipil-ht1. )I the coerresponding edge in G. VFhe adjacenc;, lists for (; can be considered as those
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for (GS). and are used also in a maximum flow algorithm which compute F(u-v) = Nl(u.v) for a

I pair u.,- EV(G) on the network N(GS). where \xe put F(u-.v) = O if MG (u.v) =0. For any Z'CZ.

G + Z' will be maintained as adjancy lists for (G + Z')s.

3.3.2. THE DATA STRUCTURE FOR A COMPONENT TREE

We use the following logical data structure, which is referred to as the component tree for G.

Let S(m) (S(m)'. respectively) denote any m-component of G (of G').

The component tree CT((;) is an undirected tree defined by the following (1 ) and (2):

(1) V(CT(G)) consists of those vertices uG. us(m). uv representing. respectively, V(G). each S(m)

(I mKk). each vertex vEV(G). Vertices uu, U5 (,,). u, are referred to as the root. an m-

component ". ertex. a leal, respectively.

(2) For any distinct vertices u.u'EV(CT(G)), there is an edge (u.u')EE(CT(G)) if and only if one

of the following (W)-(iii) holds:

(i) u is the root and u' = us(,).

1h (ii) u = us( and u' - Us(,+,) such that

SOi+) 0 SMi. I< i <k.

(iii) u = US(k, and u' = u, such that vES(k).

If k = 3 and G is as shown in Figure 2 then CT(G) will be as in Figure 3. where V,, T,. S, are.

respectively, 1-components. 2-components. 3-components of G.

We briefly describe the actual data structure of a component tree. The component tree CT(G)

" *". consists ol four kinds of data types. linknode. LEVEL. CH and cnode as in the following declara-

itons (Figure 4):

V'> ." type

linknode = t cn,,de:

3.. II:II, = array ,)..k] of linknde:

CI = array[I..NI of linknode:

HA
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cnode = record

NAME: integer:

NEXT. LLINK. RL1NK. SON. TOP, F: linknode:

DEG: integer:

end;

For each m. O1m4 k. LE'EL [m] is the pointer to the first crude of the list maintaining m-

component vertices by means of NEXT. This list is called the m-level. For each i. I <i<. CH [il is

the pointer to the cnode corresponding to the leaf i.

NAME has an integer greater than N if the crude represents the root or an m-component ver-

tex. and has one between I and N otherwise. Suppose that an m-component S is the disjoint union

of (m+1)-components S. S. t > 1. ec((;),m <k. where we assume that a (k+l)-component

means a leaf. Let R(S). R(S,). denote the cnodes representing S. S, respectively. Then R(S1 ) .....

R(S,) are maintained as a doubly linked list by means of LLINK and RLINK. They are called sons

of R(S). R(S)T.SON is pointed to the first son of R(S), and R(S,)T.F is pointed to R(S). i = 1.t.

R(S)T.DE(, is provided for dk(S.(;) if R(S) represents a non-leaf. R(S)T.TOP is set equal to

R(S)T.SON initially, and is used as the pointer to the first leaf in the sons of R(S) during the pro-

cedure is processing R(S) in the construction of (MG). If R(S)T.TOP= nil then the partitioning R(S)

into R(S 1) ..... R(S.) has been finished. Figure 5 shows a part of the actual data structure

corresponding CT(G) of Figure 2.

In the procedure which constructs CT(G). V e compute \1;(u.v). u.v E\(;). by using a max-

Imum flow algorithm, as a Iubroutine. with a modification such that it will terminate and return

the .alue k whene\er the current flow \alue exceeds k.

Let a((;) denote the time c:kmplexjt of a maximum flow algorithm w ith such a modification

to ompute 17u'":- = \l(,( u.v ). Then ("1'(6) .an be constructed in On,2Ck((,)) time. For exam-

ple it is ((n,-'n,in.) it ',we use the minmLs algorithm and is (0 n.Tn2) if we use the algorithm pro-
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posed by Malhotra. Kumar and Maheshwari (MKM, for short), where T = min{kn}j. (For the

S detail, see [4. 131.)

h. -(In [9] it is shown that we can determine F(u-*v:G)( = \G(u.v)) for all pairs u,vEV(G) by

using a maximum flow algorithm only 0(n,.) times, instead of 0(n 2) times as described above. In

this paper. however, we do not take advantage of this result simply for ease of implementation.

The time complexity for constructing CI7(G) would be O(n,'n2Vne) in Dinic's case and O (nn ) in

NlKM's case.)

7 ' 3.3.3. COMPUTATION ON CT(G)

Suppose that we have CT(G). We describe the time complexity of the following computation

1) (5) on

(I ) dk(S(m).(;). Dk(G). ec(G) and P'(G).

e] The computation of the following (i) - (iv) can be (lone in O(k(n, + n,)) time:

() The degree dk(S(m).(;) for every m-component S(m) of G. m=1.k

(6) Dlk(;) (the demand of G).

(mii) ec(G) (the edge-connectivity of G).

(iv) p(G) (the number of m-pendants of G) with m = ec(G)+1.

(2) Finding a pair ui.u 2 satisfying the edge condition.

Let S be an external m-pendant ol . Proposition 3.3 of [20-221 shows that S includes at least

one external (m+ I )-pendant of G. First, suppose that there are distinct (m+l)-components

S 1 .SCSol G. Since

\(;(vj.\_- = m for 'yVES,. = 1. 2.

e a,. e

, d C, (=G K,. G>m. 1 = 2.

tw
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If

dk(S,.G) = m for either i = I or i = 2

then K(S,, G) is a (SI. S,)-cut of G. meaning that Si is an external (m+l)-pendant of G. If

dk(S,. G) > m

then S, is not an (m+l)-pendant of G. Suppose that S is also an (m+l)-component of G. Then.

clearly. S is an external (m+l )-pendant of G.

Therefore if we specify a cnode of representing an external m-pendant S(m) of G. we can find

in O(kn,.) time the cnode representing a leaf u such that

. uES(k)9 ...-9S(m+l )CS(m).

v. here each S(t). m+l <t <k. is an external t-pendant of G. Hence we can find a pair ul.u, satisfy-

ing the edge condition for G in O(kn,.) time.

(3) Constructing adjacency lists for ((')s.

We can construct adjacency lists for ((;')s in O(n,) time. , here G' = G + (u1 .u,).

(4) Finding an admissible pair.

Suppose that xe have a pair ui. u2 satisfying the edge condition for G and adjacency lists for

(;') . where G' = G + (u,. u,). It suffices to consider the case where k = ec((;) - I and Pk(6)>:4.

We choose a \ertex v, from each k-component S(* S(u. k:():i=1.2) ol G. and compute

%I (u.. . ). If \l ,(u,.%,)-k then DA; of every son ol the crafde representing Sv..k:- ) is set to 1.

x hich indicates S(v ..k:(;J S(ul.k:(i'). Then we compute dk(S(ul.k;(' ).(') in O(IL((;s)I) time by

counting the total wkeight of edges (u.v) E |W) fl K(S(ui.k;').)

11 dS(u1.k:;'). G' )<k then S( ul.k:(') is a k-pendant ol G'. and xe choose another ,erte* u,

!rom a k-pendant not included in S(u 1 .k:(;'). This choice is done in O(n,.) time. I emma 3 2 of

[20-221 sho,w that the pair ul. u,' is an admissible pair. Thus wAe can find an admissible pair k it .

respect to G in )(n...((;') - J(P I) time if we compute \l1 ( Ui.v') by means ol a maximum ow

a' a P
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algorithm.

(5) An algorithm proposed in [20-22].

The proof of Theorem 3.1 shows an algorithm for finding a minimum solution of the problem

First construct the initial data structure and compute the initial data (i)-(iv):

(i) dk,(S(m).G) for ev.er% S(m). =1 k

(ii) D ((;).

S(iii) ec(G;).

(i, ) I ...(G) with m = ec(G) + 1.

- Then repeat the tollowing (a). (b) b\ EAk((;) times.

(a) Finding an admissible pain u1 .u, with respect to G and the construction of (T(G'),

G. = G + (u 1 .u,)

.. (h) The computation ot the lollox ing (i)-(ii,) for G'.

) d(S(m)'.(;') for e\erv m-component S(m)' of ('. m=l ..... k.

,,i) ec:((; ),

i ) P"((;') with m=ec (') +

-. Suppoee that xe use l)inis maximum llo\% algorithm. Then the initial data structure and the

nitiai data )-f i, ) can I)e obtained in ()( knn..) time. (a). (b) for G' can be done in ()( kn,'IE((;' ))

time "ince .e ha e

"ZI = FA~f( kn,.

ano

16(+ - 1 ! + (; 1+ -, = n.n + <-..+.Aj(;'' (kn,.+i)(n.-tkn,,

* ~ :,r an. eiuti(r Z. the 'otal "jme isJ1
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0(k 2n,(kn,. + n,).

It ". e use \Ik\l maximum tlo' algorithm then the total time is

,%-%,r. ()( kn,(n,+kn,:a))..

The most time-consuming part ol this algorithm is constructing a component tree. which is

'.* repeated each time a ney, edge is added. In the next section we wxill propose an improved algorithm

*4''., in %k hich constructing a component tree is repeated at most k-1 times instead of EAk(()( kn)

times mentioned aboe.-

4. AN IMPROVEMENT OF THE ALGORITHM

WVe consider an impro-ement of the algorithm mentioned in 3.3.3-(5). The idea of the

:npr,. ement :s a, f,,lo' x'.

'I he pre. ious aIorithm rec-'nstruct, the component tree each time we find only one edge to be

added. \e .an expett a more eti~ient algrithm il there is an easy Aav to find as many edges to be

added as pos,,bile before reconstructing omponent trees: it may reduce both time spent to find

,uLn edges and the number )I times )I rec.-nstructing component trees. We will describe more pre-

• uprpo.e tIhat

ec(G)<k. k >i 2.

and let / be a solution obtained bv the algorithm mentioned in 3.3.3-(5). Since each edge of Z joins

a 'air ',ertices satisf mg the edue condition. / has a partition

/ = /(eC G) + 1) U ... U /(k).

"-

""~~~~~~ /WI 6" i)=i ll.11 :f ' (eL((;) + lI I<k)

,

I'

'U"11"hat

G + I=;
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ec(G,-e) = ec(G, 1 ) for veEZ(i).

. \ where

6116i G =c(; G. (; =Q- + Z(i). i=ec(G)+.. k.

e \A, ill consider two procedures. connect in 4 1 and And in 4.2: the firs: one determines Z( 1)

for G ,with ec(G) = 0. and the second one does Z(m+l ). m=ec(G). for G with ec(G) > 0. The pro-

cedure And is used repeatedly to determine Z(rn+).....Z(k) in this order such that reconstructing the

component tree will be done only between Z(j) and Z(j+I) for each j. ec(G)+l K j (< k-l. In 4.3

we describe the outline of an improved algorithm and estimate its time complexity.

REMARK 4.1.

S(1 If ec((;) = 0 then Z( 1)1 > P'(G) - I (Note that P'((;) is equal to the number of components of

G.)

(2) If ec((G) > 0) then 11(1) >, [P,((G,1 )/1] for each i. ec((C)+1 i k.

Let m denote any fixed integer such that

ec(G) m < k-1.

and put

. II = ,.,G'r( m+ I ).

where 7r(mil) denotes the partition of \() into (mi-l )-components of (,,. Let r+i denote the

mapping of (;,,, induced h% 7r(m4-1 ). We ha, e

' d(u.1i 1) > M . \111u.'. I= M
.
m

*or any u. E \( I). -A '.erteX u .A ,th d( ull = m I1 called an I m-I - pendant or a puvndant of II.

and ( ... { 2.

. -.. % • ,, , ', 4 %
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REMARK 4.2.

It' u is a pendant of 11 then K) Iulll is a ( u. -tut At II for an,, E (1 (I and

J 1()E 7r(m+1 ) is an external (mi-I )-pendiant of (~Any (m-1 )-penclant S of G.. is external

and ,,,, 1(S) E V(H) is a pendant of 11.

Let

Y N= yv1 .  ) (q P Pm( lI I J

denote the set of all pendants of 11. and put

r = [q/21

Put

*V(e) =u.\. for an edge e=( u.

and

V(L') = U \(e) for a set 1: of edges

Let F be a set o f edges. We call F an attachme'nt Ifor I I i I a nd ,n i t t he tI llow i ng 1 - 4

hold:

(I) V(E-) c Y.

(2) F nl vHi )=6.

(3) V(e) ;d %'e' ) for .,e.e'E F. ede'

(4) 'rhere is at mostone pair !. : ElI uh that 1% q\ ~

4.1. THE PROCEDURE CLONIv.\ELCT (ecl G )=O)

We on~sider the procedure c.'nicctl .,. hi ih delermine- / I itj r t. ic- ik1.hent

1 1;-t I xith eL (G l=o) Let

4 m = ec;
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anid ,nider

V II = ( ( I )

.

A. here

ztH n F( 1)~

e0" I* e(I +t 1 1 )= 1, ec( I I+/ 1 Zj) for v Zjj C ZtH.

\k1A Ae sI'ho'A ho'x to choose a pair of' vertices satisfying the edge condition. For each i. I

S. v, E i( I

The-e are t ,ko cases concerning each S,.

l1 sne a i.. k omponerl of (v

- S :s a riticalit-,)mponent of G \xrhere I t < k

i, p' n or 20-221, ,hoA that. in EIth I ant 2). there s a sequence

p+.I

f) -r 1 2 li. r 'S deno~,tes. an -\ternal t -peflduflt of (I t' t+1. ...1s

Nit sr i ak- ,,r onent.
' N2= it Is s a riimritit l i - m ,r nent < k

4-. -h , hii ~ h(1)ad( ) hr . ,q ec

td < ' , i *,I ~ .1
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Choose vertices uj. x=1,.q-1: j=1.2. as follows:

Mi If S ,(S,,,,. respectively) satisfies (1I) then

(ii) if 5,, (S,+1~) satisfies (2) then

Put

e. (u, I u,,). x=1 .. q-1,

where

e,, k'(G).

WVe consider the case where x = 1:

G. G' =G +e.

Clealy, the pair U11 , U12 satisfies the edge condition for G. We will show that if q 3 then the

pair u,,. u, satisfies the edge condition for G'. If this is shown then the discussion for x=l can be

applied to the general case:

G + jej .  e,,). 6 + lel, . e,-,. ej. x?, 3.

Proposition 3.6 and Lemma 3.4 show the following (a)-(c):

(a) S(U 1 1, 1:G') = S(U 12 .lI:G')(=S U S,), and it is the only 1 -augmenting set of G with respect

to el.

(h) Any rn-component S' of G' is also an rn-component of G if m' > I or if S' ;d S(u 1 1 .l:G')

with m' = 1.

(C) For any m -cornponent Sof G', ec((G) < m' k.

2 if V(e1 )CS and either P'" ((G)t3 or rn' ;,I k.

=I if IV,(e,)flsI = I. or if \'(e1 )CS and P"' ((G)=3 with m'=k.

0) otherwise.

P3 
INM r ,n
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Hence we have (d). (e):

(d) If S, = S,,(K) then S, is also a k-component of G' with Dk(S,. U) = IDk(S,. W)-i (=k-1)

(e) If S, is a critical t-component of G, 1 -<t<k. then (i). 00i hold.

(i) S, 1(t*) is an external t'-pendant of G' with Dv(S 2 1(t').G') =Dk(S,1(t')-G) for each t',

t + I < t' Kk.

00i If t >-2 then S, is an external t"-pendlant of G ' for each tC. 2 < Ct

It follows that there is a sequence of external pendants of G'

SIk); .. .S, 1(t+1)CS U S,
such that if S, is a critical t-component of G with 2-<t<k then S, is an external t -pendant of G'

and

I ~~ CS-CIUS

for Iiach tC. 2-<t"(<t. Thus the pair u2.u, satisfies the edge condition for G'. and we obtain the

following proposition.

PROPOSITION 4. 1.

Let

e1 =e 1.  ~ e, =(u, l.ul2, -< li <q-t1.

Then we can set

Z(l1) = Ei.

The procedure councz repeats two procedures: finding a pair u,1 .u,2 satisfying the edge condi-

tion for the current graph G in 0(kn,) time and then constructing adjacency lists for

((P + (u;,.u,,))s in 0(n,) time. Thus the procedure co'nnect finds Z( I) and constructs adjacency

S lists for (S+ Z.( I ))" in O( kn,2) time.

( F( t FI) is easilyv obtained I rom (-r((;: coalescinij all I -component 'vertices of' (-r((; inio

one l-c;,mponent vertex, merging corresponding sons lists into one list, and changing degrees of

CI
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corresponding component vertices in O(knj) time (by means of (c))

4.2. THE PROCEDURE FIND (ec(G) > 0)

We consider the procedure 4nd. which determines Z(m- I) and constructs adjacency lists for

(Gs + Z(m+))s with m = ec(G)>O. In 4.2.1 and 4.2.2. we consider the procedure hjznd. which

determines a minimum attachment ZH for ti = G/r(m+l) such that ec(t+ZH) = m+1. In 4.2.3. we

consider how to determine an edge (u'.v')EZ(m+l) from each edge (u.v)EZH. In 4.2.4 we describe

the procedure find, a modified \version of the procedure iftnd.

Let E be any attachment for I1. For each edge e = (u.v)EE. tI+E has a new (m+l)-component.

denoted by A(e.H+E). containing V(e). since

MII (U.V) = -\IH(U.,) + 1 = m +I -\MH+E(U.V).

A(e.H+E) is referred to as the (m+l )-augmenting set lor e (with respect to E).

First we show the following proposition for an attachment E for Ii.

PROPOSITION 4.2.

Suppose that an attachment F for II satisfies the following (I ). (2):

(1) V ) = Y

(2) 11 + F has an (m+1 )-component A such that V(F.) C A.

Then

.- = \'IIL)

PROOF.

As,ume that

AC VI ll)

(,rollarv 3.1 of [20-:2] shows that II - F has an (m-I -component S such ihat

A, {V(I!P- A.
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Proposition 3.1 of [20-22] shows that Ii + E has an ( A.S)-cut k with 1KI =m Proposition 3.3 of

[20-22] sho',ks that B(S.k JI-F) contains an (m* I )-pendant S' of H + E We can Show. by using

heorem 3 1 of [20-22]. S' is also an (m-I )-pendant of If ence S'= for some ertex

vEX(11-A. It follows that

a contradition.

Q.E.D.

We will show, in 4.2.1 and 4.2.2. that we .:an find an attachment E.

E = lei. . e, (r = jq/21).

satisf\, ing the follov~ ing (j) - (mi):

Wi lFor each i. 1I - r-1,

(e.f) fl A<5.f. 1  it r>,2

w.here

I f, = I. H!. = 11_ + e'. j = Ir

NOii V(el) n~ \ e,) * 5 it- and onh it q is; Odd. i r-I andti r

* If wuch 1: exists then *\(ef,.lI is an (rn-I )-k~rnponent of 11 1 a *nd

Propositinn 4 sho%..s that
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4.2.1. THE CASE WHERE q = 2

It q = 2 then let

ZH = el "(y. Y 2 ) } . elEE().

Clearl\ /i1 is an attachment for Ii. It is easy to see that Z1, and Z(el.1-1) satisfy Proposition 4.2-

(1 ), 2). shox ing that

rhus we obtain the following.

PROPOSITION 4.3.

If q = 2 then

A(et.ll1) =V(II)

for e1 = 1 2.v,)EE(H).

4.2.2. THE CASE WHERE q > 3

1 et - be any attachment for H such that there are vertices

v, JEY-V(F). i.j = 1.2.

where ,\- _ are pairwvise distinct, and if v-, is equal to one of the rest then we assume.

i hOJt 1 os 0l generalit\,. that

":2= vi2".

Put

L = 1t + A.e = (\ 1 A ) e' =

:.. here

* e. ce' ECI. ).

-Aiej= A(e.I + ,e.e, .- e') = -(e'.l. eel).

Xe--- e.l.+e'. Xe = eA(e .. ±e .

_ . (#1ler k .,, -

P1 "A PI
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AeC A(e). Ae'C A(e').

S and

AeU Ae' C A(e) = A(e')if .A(e)f A(e');dO.

In the following we first consider the case I where

~~A(e) n A(e') =€

i.e., L + ie.e} has an (A(e).A(e'))-cut consisting of m edges. Then we proceed to another case I1

w here

A~e)nf Ae') dO.
CASE I. A(e)nA(e')=¢ (Then V(e) n Ve')=.

Let K be any fixed (A(e).A(e'))-cut of L + le.e'}. and let B. i = 1. 2. denote the K-block of

i i. + ie.e'} such that

V(e)CA(e)C'(B1 ). V(e')CA(e')CV(B,).

(In the lollowing discussion, we write B, instead of V(B) for simplicity.) We note that K is also an

(A(e) -\(e'))-cut of L. of I. + e or of L + e'

Let t. f' he two edges defined by either

I~~ =(x, :.n, f' = tv1-. v2,)

or

i1,'~ ~~~f = (vii.v,2 ,. f'I ,l, 2)

w here

M Let h be any fixed 'ertex I rom ~\ ~andi put

A .

I =(I +e) < b.b>

\Ve note that

(1)= B U Hb). I = (I - ,e.e'))<b. B,>. (See Fig. 6.)

.=

::.,,
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PROPOSITION 4.4.

Suppose that A(e)n fl (e') = 6. Then

M L '(u.u') = M1I(U.U')

for anx, uVEu'E(1). where L' = L + e or =L+ Ie.e'[

PROOF.

Since

Theorem 3.1 of [20-22] shows that

MIL' '(uu')-M(u')

Q.E.D.

PROPOSITION 4.5.

Suppose that A-(e)nf A(e') 6 . Then

.NI L'(v.v'): MLlf *ivy')

Ior any v.v'E B1 . where L' = L. + e or L'=L + I~i

PROOF.

It suffices to say that

Since 1.-K has just two components whose sets of vertices are 13, and 13,. L-K has a (v.1.v 19)-path Q,

.such that

E(Q Ifn K = (b. j = 1. 2.

Hence 1. + 'fl has a circuit C such that

H-'C) = :(Q, Ur 1.(, U I1.1!
Let 1), denote the (, I liv 12 )-suhpath ol C defined by~
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E(P,,) = E(C) - E(Q 1 ).

Let P1 .. P, denote an, fixed set of (v.,,')-path of L + e, where t = ML+e(V.V'). If none of them

passes through e then all of them are paths of L + {f.f'} and the proposition follows. Suppose that

- o, eEE(P1 ). Let P. j = 1.2. denote the two subpaths of PI-e. where we may have

F E(P 1 1)= or E(P 12)= .

P11. P12 and all other Pi)2) are paths of L + {f.f}. Let Pl' denote the (v.v')-path of L + {f.f'}

defined by joining P11 .P,.P1 2. Then

E(P1 ') N E(PI) -- k if i,2.

That is.

! . " ML+e(V .V' )( L+lf.fl( V'v').

Q.E.D.

COROLLARY 4.1.

Suppose that A(e) flA(e') = .Then L + {ffi has the (m+1 )-component A such that

.\Ae A(e) _ A.

~ Put

p fl = (VII'121)" f3 (VII,V1 1 2 2 ), f- 1 (V1 2 'v22)" f4  = (f, 2 ,V 2 1).

A A(f,.L + if.f 2 ) if 1<i <2.
A(f ) =

A(f,.L + (.f 4  ) if 3<i<4.

PROPOSITION 4.6.

Suppose that we have

Then
., --

db
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A(f )n A(f,);--h i.e.. A(f) =A(f,)-

PROOF.

. L+{f 1 .f2 } has an (A(f 1 ).A(f 2 ))-cut consisting of m edges. Let K' denote any fixed

(A(fl).A(f9))-cut of L + (fIf *J. Then K' K. K' is also an (AM(fI)A( f))-cut of L. of L + f, or of

L + f_. Let B,' denote the K'-block of L + if 1 .f} containing V(f,), i = 1.2. We have

v, EB,n ,'. i.j= 1.2.

Suppose that

%*(K)flB,
Then any (vI.v,,)-path. j=1,2. of L and of L + (e.e'} passes through v. Each of m edge-disjoint

(v,,,,,)-paths is decomposed into two subpaths: the (v1 .v)-subpath and the (v.v2j)-subpath.

showing that
'

•

.

Nl-,+ l(vJ M v)m+ 1. i.j = 1.2.

That is.

f ),, vEA(fl)f ' A(f 2 ).

a contradiction. Similarly we can show that

(K)fn BI>2. i = 1.2. I(K')fn B,'I>2. j= 1.2.

Let

K = (e,: Il-<i -<m}. K'={e,': 1l<i <m.k

and let P31.  P31 denote any set of m edge-disjoint (vlI.V 22 )-paths of L. Then

IF(,,,)nKI = IE(P3 ) nK'I = 1 i = 1 m.

If A e assume that there is eE K U K' such that

g :l: ~ ~~V(e) n (B2N n3'> %(e) N (B3 n ,'=

then some Pi, passes through e. showing a contradiction that

=ii-..wonk I,>2 ,or If.<,(%) Nk'l >.

1 lence no such eE K U K' exists,. Let P)4 l .. ... denote an\, Net l m edge-disjoint ( ' , v v)-paths

Of L. Then we can similarlv ,how that there is no eEK U K' such that

9% .. %
4' i~r , , .% , ,,% % % , -:,. %- • - 4 - .- .- 4%- 4%- %- *-*° p 

4
) * %- %-. .-.- -. •., ... •% .% ,.
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V(e) N (B, N B') , i = 1,. 2.

3 For each i. 1 1. 2. put

K, = leEK: V(e)CB,'}. K,' = le 'EK': V(ej')CB,.

Clearlv.

K= 1UK . K'= K,'UK,'. KiNK, = K.' fK..' =
ki 4kO. K';d. i 1,2. KflK'=

We also ha e

IK = IKl = IK,'l = IK2'l.
" showing that m is even- Put

x = m/2.

For each P3,. i= .m. put

-"= P3,[B, n B,']. t = ,2.

Similarly. for each P4, i=1.m.put

~~~nB ',]. p.,, (2B)
We ot tht hes4f B1 ]1P4 = P4,B4 1 4[BI flB,'].

W"e note that these 4m subpaths are pairwise edge-disjoint. It follows that L has pairwise edge-

disjoint (v 1 1.v2 1 )-path Q,. i = I ..... m. defined by these 4m subpaths and K U K'. (See Figure 7).

llet Q,,A( Q,2. respectively) denote the (v 1 1 .v12)-subpath (the (v 22 .v 2 1)-subpath) of Q,. and let

RI1 (R.,2.respectively) denote the (vll.V,)-path of L + f3.,f4 1 defined by joining

Q ..,. f4 (Q.2, f3).

The paths Q1.  Q,j.Q,,,j.Qm' are pairwise edge-disjoint (vI1 .v: )-paths of L + {f3,f4 .showing

that

Q.ED. orolar iuiow frm A1 3 )n .-\(f 4) e6.
" ' "" Q.E.D.

UJ The n orollary fullows from Corollary 4.1 and Proposition 4.6.

Ir
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COROLLARY 4.2.

Suppose that A(el) Ale'= 6. Then

' .. e (:.-_ (e ) C A (f 1 =. -(f,) if .- (fl) n  A(f,);eO.

.-eg -\(e)C -k(f3 ) = A(f 4 ) otherwise.

CASE 11. A(e)n A(e') 0.

Put

e=(v.w). e'=(v'.w'). L'=L+e.

Suppose that there are distinct vertices

4Ev".w"Y - (\(E) U \ (e)U %-(e'))

such that

ereA(e'i'+e'.e"}) A(e". L' + {e'.e")=

w here" e"
'i ~ e= (,".,,")E (I.I

Corollarv 4.2 shows that we can find a pair o edges .f' such that

.1 here

V(f)U %(f')= \'(e')UV(e").

We assume. without loss of generality. that

f = (,'.w "). I' = (v",' .

PROPOSITION 4.7.

then
"WX5 5. % 4
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A(e.L')fA(t'.l + f') d.

S PROOF.

First we note that

A(e.L')CA(e.L' + e') = A(e',L' + e')C -Af.L' + f.f'l) = A(f'.L' + {f.f'}) (by Corollary 42).

A(eL')CA(eL' + H. A(e.'+f)flAIf.L'+f) =

L' + f has an (A(e.L' + f). A(f.L' + f))-cut K with IKI = m. Let B.. B,. denote the K-blocks of

L' + I such that

* , A(e.L')CBe. A(f.L' + -)C131 .

We can assume. without loss of generality, that

w EB. v"EBr. (See Fig. 8).

Put

-, - .Since

N, ,v .', ) = L,+ C(v"v') = m + 1.

K . or K is a (v'.w')-cut of 1' + e' or a (v'".w')-cut of ['+f'. respectively B... B, are the K -

blocks of L' + e' and the K ,-blocks of L' + f'. Let ' be any fixed 'ertex of B, Then

" (.' + e'i<,> is isomorphic to (I.' + f') <, f.Bf>. Put

L+  +
i& Then. by Theorem 3.1 of [20-22].

.1* "." \I , ,J(u.u'.) = 1,, uu') = 1 ,uAu

tor dn," u.u E\(lI") = lie U 1 This sho'As that

Im :

C60-since

c.n-
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rhatis

.Ae.l )flAW + ');e6

Q.E.D.

- COROLLARY 4.3.

d-el, + Iff'D (I1 + f.fl = t -VI I' + H

We \hill1 show. by using Prpsiin 4 3. 4.6. and 4 7, that if- e06G) > Uthen ,k e an finda

s~equence of edges

el, e,. r lq 21
- ~ ~ Luch that

A\ele I )C 'e 1 '.~ ). L r-

vhere

Ae fir,,t de. 4r~he the procedure htznd x~ here Ae -ULt r ea..h .I~r

t~~V edlle' I -h!

60hj

'0 ;
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prot-edure : iznd

5 .1 begin

while .I do begin

if i, oo anujn = r Ithen A else~ A

In f othen begin

1 ~~it then beginthnbg

* * end
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The part from l ine 4 through l ine 22 is calIled the i-phase for each i. 1(i-<r-1.

Let f,. f,,, denote the two edges (,,.w). (v .w'). respectively, that we have at the beginning of

the i-phase. and let e,. f,,,' denote those edges obtained at the end of the i-phase. where

fl (V1- Y2)- fr' =- er.

vafo) U "'(f+1,) = V(e,) U V(f, 1').

*For each j. I (j Kr. put

Y if q is odd and j =r.

YIv. y2. y21-I.y:!j otherwxise.

PROPOSITION 4.8.

A(eH,)CA(e,,1 .H,,) f-or each i. 1I (i-<r-I.

PROOF.

Proposition 4.6 shows that, at the end of the I-phase, we have two edges

e 1. f

* suc.h that

A(e 1 . 1 )CA(e.111 + f,') = A(f,'.11, + f,')-

surro~e that. at the end of the (i-1 )-phase. 2<,i~r-I. we have two edges

4 suc-h that

eA .)n'-der the i-phase. At [tie beginning of the phase we ha' e twko edges

and suprw'e t11d1
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A(f,'. L'" + f,+,)n A(f,,,. L" + f,,,) =

3 Then Proposition 4.6 assures that, at line 12. we obtain two edges f, f' such that

V(f) U V(f') = V(f,) U V(f1 +1 ).

V(f); V(fW)

A(f.L'+{f.f'}) = A(f'.Ii + if.f+).

Proposition 4.7 also assures that we have

A(e,_j.L') f A(f.L° + f) * or A(e,_,.L') f A(f'.L' + f') d.

Hence, at line 20. we obtain two edges

e ,.

such that

A(e_..L.I')CA(e,.L-' + e,). L' + e, 1 1,

At the end of the (r-1 )-phase. we obtain two edges

e _1 . C, " e

such that

A(erlr.iH_)CA(e_j.,1r_ + fr') A(tI*'.1il_ + f,') = A(er.Ilr)

Q.E.D.

REMARK 4.3.

(1) Foreach i. 1 < i < r-l.

AVV(e.) fl] V(e,.i)11 if q = odd and i-r-l.

4"! \" e) f' \'(,.i)= ¢ otherm is.

.1 .11 U ,e, N

(2).1*



Thus we obtain the following proposition by Propositions 4.8. 4.3 and Remark 4.3.

* PROPOSITION 4.9.

A (e,.Il11, H)

COROLLARY 4.4.

ZH =l. .... er is a minimum solution to the (m+I )- edge-connectivity augmentation of a

graph H-.

PROPOSITION 4.10.

Suppose that q 3. Then, I-r each i. 1I Ir- 1. .Mej.H) is an (m+ I)-pendant of H-, if and

- only if q is odd andi i=r-l

PROOF.

Put

A =A(e, H,).

First suppose that q is odd and i=r-1. Since I -~= 1. U1_ has an in-cut K = K(kll l Hrj). where

'-.A = vlyl The K-block B(.A.K; llr-1) contains at least one (m+1)-pendant of ir-I (by Proposition

3.3 of [20-22]). lience if we assume that .- is not an (m+I )-pendant of 11,_i then we have an

(m- I )-pendant v'of- I I,, such that

v'E 3AK: 1 1  A.

meaning that.

v'EY'-A. y *y.

it contradiction. Thus A is an (rn-1 )-pendant of HlI..

Conversely suppose that A is in (m-,-I )-pendant of H., Then AIs external. Put

K = K.\. 1H).

~here Jkl = m. Let B\. B he the tvo K-tflocks of* 11, such that
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BA =A. B =V(H)- A

IAssume that either q is even or q is odd and i <r-1.- Then there is an edge e~j. for which

V(ej~)QB (by Remark 4.3-0l)).

Hence K is also a (BA.B)-cut of H,,, = H, + ej+ 1. meaning that

- AflA(e,+ 1.H,41)=

This contradicts Proposition 4.8.

Q.E.D.

S COROLLARY 4-5.

For each i. I (-i-<r. the pair of vertices of V(e,) is an admissible pair with respect to H,-,

4.2.3. DETERMINING Z(m+I) FROM ZH

We describe how to determine Z(m-'I1) from ZH obtained by the procedure hAnd. For each i.

Iir. put

e,

V,' U pr-i(V)
vE A (eH,

Each p-11(v) is an external (m-~I)-pendant of G. and Proposition 3.3 of 120-221 shows that there

are two sequences

where S, Ct') denotes an external t'-pendant of G. t' = m+2. k F-or each i. I -<ir choose twxo

ert ices

anin put
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(w, IW,,).

,.x here gE('.w 1  Let

G., = G. Q Q-C1 + g1  1 r.

PROPOSITION 4.11.

For each i. 1 (i -r. the f ollow ing (1) (3) hold:

(1) V, is an (m-1 )-conlponent of G,. and if S is any (m+ 1)-component of G, such that S

fl v, = 0 then S E ff(m+1 ).

(2) ((%".G,) = d( VG) =L( A(e,. HI). 1-11) = d( A(e,.11,).H ).

(3) V, is an external (m+1 )-pendant of G, if and only if A-(e,. I1 ) is an external (m+1 )-pendant of

PROOF.

First 'we pro'.e (I1). where it suffices to consider the case where

V, C %((G). or i <r.

Ilet SI.S,E ff(m+lI) S,*52. and let K(, be any (Si.S2)- cut of G. where IKujl=m. There are distinct

.ertices. uE V(l1) such that

S- Pu (u1j. j1.2.

l'rort-ition 2 1 ho\%,, that 11 ha,, a ( Ui. Ul )-CU'. ki foJ~1  (,) r which

M~u K1,111l) = p.,-1 (S): SEnr(m+l ).SCI(S .K(,:(C)1. =1.2.

I he
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uJEA. j=l.2.

3 meaning that KH is no longer a (ul.u)-separator of 11,. There is some e, = (VtI,Vt2)EZH, 1 <txi.

such that

vtj E Mud. j=l,2.

For the corresponding edge g, = (wtl.wL,),

SwjE p 1ni(V 1 ), B(Sp), j=1.2.

Therefore any (S 1 .S,)-cut of G cannot be an (SI.S)-separator of G,.

3Next suppose that

S, CV,.S V() - V,.

Then

uEA.u2 EV(II,) - A.

11, has an (A. {u 2 )-cut K1' with IkH'I=m. Since

V(edCA. j=l.. i.

K11' is also an (A. {u,)-cut of it, and u2 } is an (m-l )-component of H, and of H. Proposition 2.1

shows that ; has an (SI.S,)-cut K,0 ' with IK(;'I IK. Since

V(g )CVCB(S.K(i':(;). j=l. i.

KJ " is an (%',.S2)-cut of Q. and SE(m+l ). Thus (1) follows.

tIt

then gEk(V,.(;). eEk(A.H,)

~gEIK(\'.(;). eEfK(A.ll).
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respectively, and (2) follows. Clearly. any (m+l)-pendant of G, (of II) is external, and (3) fol-

lows from (2).

Q.E.D.

PROPOSITION 4.12.

For each i. 1 <i<r. the pair w,,.w, 2 E\'(g, ) is an admissible pair with respect to G,-,.

PROOF.

We will prove the proposition by induction on i.

Intductive basis (i=l?: p1+ 1 (v). j=1.2. are distinct external (m+1)-pendants of G,_!. and. therefore.

the pair w,!.w,2 satisfies the edge condition for G,_1 . If q ?- 4 then. by Propositions 4.10. 4.11. Vi is

not an (m+l )-pendant of G,. lence the pair w1 j.w12 is an admissible pair with respect to G,_.

Inductive hypIthe.uLs (i ?- 2): For any t. I -<t<i. the pair wl.w,2 is an admissible pair with respect

to (;t-i-

Inductive step (i : 2): If q is odd and i=r then, by Propositions 4.10. 4.11. p,1 i(v,) = Vl which

is an (m+l )-pendant of G,_. (Note that we have assumed that Vr. Vr. 'rl-.2 = vr2 if q is odd).

Hence, regardless of q or i, our choice shows that p,-1(v 1 ). j1.2, are always distince external

(ml )-pendants of (;-I

Suppose that G:1 has at least four external (m+l )-pendants. Since

i-< < r-1 if q is even.

i-I < r-2 if q is odd.

Proposition 4.10 shows that V, is not an (m+l )-pendant of G. Thus the pair wi.w, 2 is an idmis.Ni-

ble pair with respect to G;-1

Q.E.D.

. ,... .
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COROLLARY 4.6.

We can set

i" -'2' Z(m+1) = {g1.  gJ1

~ 4.2.4. THE PROCEDURE FIND AND ITS TIME COMPLEXITY

The procedure find is a modified version of the procedure lifind: we find edges g, EZ(m+I),

'. - add them to (. and constructs adjacency lists for (G' + Z(m+ )) without handling IH. In the pro-

cedure h/md. the index i. 1 -<i4< r-1. is used. where r=[q/21. q = IYI. In the procedure find, we search

the m,-I )-level for a pair of (m+1)-pendants not vet processed. Concerning vertices, say v or w.

and edges. say t=(v.w). appearing in the procedure hfind. we choose vertices a,. a, from

corresponding (m+1 )-pendants of G and maintain adjacency lists for (G+(a,..a,,))s if the edge

(a,..a.) is added to G. Accordingly. for example, determining if A(f)f A(f') = b at line 7 of the

procedure h/nd is done by finding ,ertices a, a, a,'. a,' from corresponding (m+I )-pendants of G

and hv computing Me, values by means of adjacency lists for , = ((; + {(a,..a,).(a,'.a,')}).

11, = I!,I + e is maintained as adjacency lists for (G) s = (((;,-,)s + g).

One edge g, can be found in 0(kn,. + ct(;_G " ))time. vhere Q- = i + {(a,.a, ).(a,'.a,,')}.

If ,%e use I)inic's maximum flow algorithm then the total time of the procedure find is

O(rkn,. + F((m+l )n,(n,. + i+i )).

or

O(kn, 2(n, + n,)).

If we use \lK\'s maximum flow algorithm then the total time is

$ ~ O( k n.: ).

.:. -:-•

Si'

v-%
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4.3. THE IMPROVED ALGORITHM

The impro,,ed algorithm repeats the follovwing three steps (1) - (3) at most k-I times:

(1) The procedure cornptree, which constructs CT(G) for the current graph G.

(2) Computing MI - (iv) or (i). (iii) (iv.) mentioned in 3.3.3 -(1).

(3) if ec(G;) = 0 then the procedure connect, w hich find Z( I ) and constructs adjacency lists for

((;' + Z(lI))s else the procedure Aind, w hich finds Z(m+1). m=ec((G). and constructs adjacency

l ists for (s+ Z(m +lI))s.

Let

n, E()J i=(). k.

Then the time complexity of each step is as tfollowjs:

(1) 0 (kn2' n,) (Dinic) or 0(kn\4 ) (MKM)

(3) The procedure connect 0(kn 2). The procedure fAnd 0(kn,2(n,. + n.)) (Dinic) or

* a Since

n, n, + k n,

the total time is

0(k-.n, 3 L/ n,. + n,.)) (Dinic)

Or

0(k2(n-' + kn,. + n,)) (K)

We~ 'inte that .pace complexitv is, O(kn, + n.. plus space required] by a maximum flow, algo-

rittim.

-412W
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5. CONCLUDING REMARKS

We have proposed an improved version of an algorithm for finding a minimum solution to the

k-edge-connectivity augmentation problem. Taking advantage of the results in [9] to reduce time

complexity in constructing component trees, as mentioned at the end of 3.3.2, will lead to a more

efficient algorithm. We can also expect that a maximum flow algorithm will spend less time on H

* than on G. If we actually construct H and use the procedure hfind then we may be able to obtain a

more efficient algorithm with the increase in space complexity.
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