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ABSTRACT

A perspective view of a slanted textured surface shows systematic changes in ¶hedensity, area and
aspect-ratio of texture elements. These apparent changes in texture element properties can be analyzed to
recover information about the physical layout of the scene. However, in practice it is difficult to identify
texture elements, especially in images where the texture elements are partially occluded or are themselves
textured at a finer scale. To solve this problem, it is necessary to integrate the extraction of texture ele-
ments with the recognition of scene layout. This paper presents a method for recovering the orientation of
textured surfaces while simultaneously identifying texture elements. Candidate texture elements are con-
structed from overlapping circular regions of relatively uniform gray~level. The uniform circular regions
are found by convolving the image with V2G (Laplacian-of-Gaussian) masks over a range of scales, and
comparing the convolution output to that expected for a circular disk of constant gray level. True texture
elements are selected from the set of candidate texture elements by finding the planar surface that best
predicts the properties of the candidate texture elements. A planar fit is evaluated by comparing the
predicted. texture-element areas to the actual areas of the candidate texture elements. The planar fit receiv-
ing support from the most regions is chosen as the correct interpretation. Simultaneously, those candidate
texture elements that suppore the best plane are identified as the true texture clements. Results are shown
on images of many natural texturs, including rocks, leaves, waves, flowers, bark, and clouds. Texture.;
consist of both bright and dark regions, corresponding to lit and shadowed areas, or to foreground and
background. The positive-contrast and negative-contrast regions of each image are analyzed separately.
For a number of images used in our experiments, the two analyses result in slant and tilt estimates that are
within ten degreds of each other. Fo other images, the discrepancy is larger because of implementation
restrictions or because ihese textures violate the homogeneity assumptions made in one or both of the ana-
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3 1. INTRODUCTION

Texture variations provide important cues for recovering the three dimensional structure of the sur-
faces visible in an image. A uniformly textured surface undergoes two types of distortions during the
imaging process. Firstly, an increase in the distance from the surface to the viewer causes a uniform
compression of increasingly large areas of surface onto a fixed area of image. Secondly, as the surface
slants away from the image plane foreshortening causes an anisotropic compression of the texture. The
resulting texture gradients provide information about the relative distances and orientations of the textured
surfaces visible in an image. Such shape information may be extracted from a textured image indepen-
dently of texture recognition and classification processes. This paper investigates methods for computer-
based extraction of the spatial layout of textured surfaces visible in an image.

1.1. Texture

t'exture is an elusive concept, difficult to define precisely. Muerle [1970, page 371] states that
...we meet the first problem in using a computer for extracting information about visual texture from a pic-

ture - a precise definition of texture does not exist.

and goe., on to say that
...the primary attributes of a visual texture are many variations and repetitive variations.

For our purposes, we define texture as the visible variation within an area perceived as a single region.
Two points are noteworthy: firstly, texture is a property of a surface, and secondly, texture perception
depends on scale. For example, imagine sitting in a packed stadium watching a football game. Looking at
the spectators across the field, you see a crowd texture in which each spectator is a texture eler !nt. This
texture is perceived as a surface. Scale is critical in this perception: looking at the spectators sittng next
to you, you do not perceive them as texture elements, aor do you consider yourself as part of a surface.
"The physical structure of the world is hierarchical; large objects are perceived as structure, and the little
sub-objects of which they are composed are texture. As a texture element is approached it resolves into an
object that is itself textured.

1.2. Texels

The term texel, short for texture element, denotes the repetitive unit of which a texture is composed.
"Texel" refe-s to tka physical texture element in the real world as well as to the appearance of the texture
element in the image. In cases where the distinction must be made, we use the phrases physical texel
versus image texel. Distance and foreshortening chinges alter the appearance of the image texel, although
the physical texel remains unchanged.

Textures vary in how clearly delineated their texels are. Textures composed of separate physical
entities have clearly identifiable texels: each rock in Figure 5(a) is a texel, each house in Figure 7(a) is a
texel. Other textures, such as the tree-bark of Figure 19(a) or the waves of Figure 33(a) consist of texels
that are less clearly defined. In these textures the perceived location of texel-boundaries may vary slightly
from viewer to view.,r.

We restrict image texels to be regions of relatively uniform gray level. Under this definition, a piy-
sical texel can give rise to several image texels: typically the physical repetitive unit of a texture contains

''NI
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both bright and dark regions. As described below, we treat the bright and dark image texels as separate
texture fields. Requiring an image texel to have "relatively uniform" gray-level means that the texel is uni-
form relative to the gray-level changes that occur at its own scale; however, the texel may contain
significant internal variations of gray level. In other words, large texels appear as regions of uniform
gray-level only after suitoble blurring of the original image.

1.3. Texture gradients

The term texture gradient, in use since Gibson (19501, denotes the systematic texture changes visible
across the perspective view of a textured surface. A varicty of texture gradients may be defined, depending
on which attribute of texture is considered - there are gradients of apparent texel size, apparent texel den-
sity and apparent texel shape. Texture gradients are discussed in detail in Section 2.

1.4. Texture fields

We use the term texture field or field of texels to denote a collection of image texels that exhibit one
or more consistent texture gradients. Consistency is defined with respect to the texture gradients expected
from a particular surface arrangement viewed under perspective. There are several common reasons for
separate texture fields to occur in a single image. Firstly, many textures are composed of closely associated
bright and dark fields which arise from lighting effects. For example, the aerial view of houses in
Figure 7(a) contains a field of bright texels composed of the houses and a field of dark texels composed of
the shadows cast by the houses. Secondly, associated bright and dark texture fields can arise from the phy-
sical structure of the texture elements; see, for example, the sunflowers in Figure 17(a). Thirdly, it is p's- I
sible for physically separated textured surfaces to be spatially interleaved in an image. This is strikingly
illustrated by the birds over water shown in Figure 9(a), where the birds and the water occur in two physi-
cally separated planes. Finally, multiple texture fields result from physical surfaces that are covered by I
several types of texture elements. An aerial view of a residential neighborhood shows one texture field
consisting of houses and another texture field consisting of trees.

The concept of texture field is useful for separating portions of physical texels that exhibit differing
foreshortening properties. Consider, for example, an aerial view of many fiat-roofed houses. The roofs of
the houses, which are parallel to the textured plane, are foreshortened increasingly as the angle between the
line of sight and the plane decreases, whereas the walls of the houses exhibit the opposite behavior since
they are perpendicular to the textured plane. Any analysis of foreshortening in such an image trust treat
these two texture fields separately. The difference in gray-level properties of the two fields can help to
achieve this separation.

1.5. Slant/tilt encoding of surface orientation

From a viewer's perspective, a surface can be represented by specifying the distance to each point on
the surface and the unit surface normal at that point. The two degrees of freedom needed to specify a sur-
face orientation can be encoded in a variety of ways. Stevens [1983a] and [1983b] presenits arguments in

favor of a slant/tilt encoding. Slant and tilt express the orientation of a planar surface relative to the image
plane. Slant is the angle between the surface and the image plane. If the slant is zero the surface is paral-
lel to the image plane; we call this a frontal view of the surface. On the other hand, if the slant is large
the surface recedes steeply away from the viewer. Slant ranges from 0* to 900. Tilt is the direction in
which the surface normal projects in the image; thus the tilt is the direction in the image in which the sur-
face distance increases the fastest. Tilt ranges from 0° to 3600; a tilt of 00 indicates that distance to the
viewed surface increases fastest toward the right side of the image. To illustrate the definition of "slant"
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mid "tilt", we show synthetic textures at various slants and tilts in Figure 1.

1.5. Scope of tbh work

This work investigates how to exploit textural cues to infer the relative distance and orientation of
the textured surfaces depicted in an image. We do not address the problem of texture discrimination or
identification.

A primary goal of this work is to demonstrate the feasibility of extracting useful measures of texture
gradients from images of natural (as opposed to man-made) textures. The textures present on man-m&aJe

objects frequendy exhibit regularities such as parallel lines, perpendicular lines, equally-sized texture ele-
ments, or equally-:-paced texture elements. Several existing shape-from-texture algorithms exploit these
regularities (Section 3); however, most naturally occurring te,.tures are too variable to permit successful
application of these methods. Our results permit fairly successful analyses of natural textures.

A second goal of this research is to develop a uniform treatment of various texture gradients. As dis-
cussed in Section 2, any combination of gradients (systematic changes in texel area, aspect ratio, contrast,
density) may be present in an image, and the relative accuracy of the. gradients varies from image to image.
Therefore, we need a unified method of analyzing the variations in different textural properties, awid a way
to selectively pay attention to the relevant and xcurate gradients. Our work provides a :art in this direc-
tion, but much remains to be done before this goal is fully realized.

A major challenge in texture analysis is to ,i'ndle scale consistently. Natural surfaces exhibit a rich
hierarchy of textures, with each texture element containing subtextures. All texture measurements are
prone to distortion due to the presence of subtexture, since the imaging process captures more subtexture
detaiLs for close texture elements than for distant ones. The algorithms presented in this paper provide

good surface-orientation estimates even in the face of significant sub- and supertexture.

1.7. Overview

The organiration of this paper is as follows. In Section 2 we. begin with a general discussion of tex-

ture gradients. After characterizing frontal views of textures, we describe the texture distortions that arise

due to changing foreshrxtening and changing distance. The computer vision literatut. relating to surface

estimation from texture is reviewed in Section 3.

Section 4 presents one of the central ideas of our work, namely, that the extraction of texture ele-
ments is an essential step in texture analysis. Texel identification permits coxTect onal sis of texture gra-

dients in images wnere the texture elements are themselves textured at a finer scale. We review existing

methods for texture analysis, which generally do not involve texel identification. Much previous work has
avoided texel identification because of its difficulty. However, no adequate substitutes exist. Texture ele-

ments cannot be identified in isolation since texels am defined only by the re.etitive nature of the texture
as a whole. Therefore the identification of texture elements is best done in parallel with the estimation of
the shape of the textured surface. We integrate these two processes by first constructing a large set of can-
dictate texels, and then using a surface-fitting algorithm to identify the true texels while simultaneously con-

structing an approximation to the shape of the textured surface.

In Section 5 we describe a multi-scale region detector that forms the basis of our texel extraction.
The region detector, which has a simple- implementation and shows robust performance on a wide variety

of images, is used to construct a set of candidate texels.

Section 6 presents an analysis of texture gradients in images of textured planes. This analysis is

used in Section 7 to develop an algorithm for finding the best planar fit to the candidate texels, while



simulteously choosing the true texeis from among the candidats

Section 8 discusses the mesul of tie computer aaysi on a variety of texture images. A common
complaint about computer vision adgorit'ms is dhot they arm not teutrA on enougih imps, so the generity
of the method renmdirs in dcbt. We use seventeen images of nauaml tutures to illustr-te die generality of
the method and the stregths and weaknesss of the implementaion.

We conclude In Section 9 by summarizing the main ideas of the paper.

!I
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2. PROJECTIVE DISTORTION AND TEXTURE GRADIENTS

In this section we discuss the various texture gradients that arise due, to the imaging proces. These

Sgradients convey information kbout physical scene layout.

2.1. Regularities in fronta! views of textures

It is possible to recognize texture gradients despite the inherent variability of natural textures. This is
because textures show statistical regularities in a frontal view (in afropital view the textured plane is paral-
lel to the image plane). These regularities are distorted in a systematic: and recognizable way by the imag-
ing process.

What texture features tend to be regular? The literature on twxture representations (Section 3.1.)
describes various methods of characterizing texture regularities. Texel area often shows statistical regular-
ity: the observed texel areas are distributed randomly around an unclanging mean value. Intrinsic texel
properties that ma) be fairly uniform - in a frontal view with constant lighting - include the texel area,
shape attributes such as aspect ratio, and intensity attributes such as coutrast and mean gray-level. In addi-
don to uniformities of intrinsic texel properties, most textures exhibit some regularity of texel placement or
density. Many natural processes result in independently placed texels (leaves falling off of a me sand
piled on a beach), so that local texel density is distributed randomly around an unchanging mean value. In
more constrained textures, such as snake skin or brick walls, texels arm rannge with i.m" grid-like regular-
ity.

Some textures are not regular in the ways described above. For example, the texels in a pine cone
decrease in area toward the top of the pine cone; thus, the physical texels do not have sizes that are distri-

1t' buted randomly around an unchanging mean value. Textures of this type are not suitable for the analyses
•. Idescribed in this paper, given only a single view of a texture, it is impossible to distinguish trends in te

physical sie of texels from trends that arise due to foreshortening and distance changes. Additional cues,
such as shading, might help to make this distinction. This subject is beyond the scope of our research.

2.2. Texture gradients tor an idealized texture

Projective dilstortion affects many texture features. Consider first an idealized texture consisting of
nonoverlapping circular disks of constant size, as shown in Figure 1. The disks project as elli,sre in the
image. The major axis of each ellipse is perpendicular to the tilt, whereas the minor axis is par•llel with
the tilt. The apparent size of the major axes decreases linearly in the direction of tilt. due to increasing
distance from the viewer. The apparent size of the minor axes decreases more rapidly: in addition to the
distance scaling, the minor axes are reduced b / increasing foreshortening. (Foreshortening is inversely pro-
portional to the cosine of the angle between the line of sight and the surface normal.) These changes in the
major and minor axes cause an increase of the eccentricity of the ellipses in the tilt direction. The area of

the ellipses decreases fastest in the direction of tilt. This is accompanied by an increase in the density of
the ellipses. In this idealized texture, the grid-like layout of the texture elements results in linear perspec.
tive cues; however, such regularity in texel spacing is extremely rare in natural textures.

L~ac-
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2.3. Texture gradients in natural ttxtures

The changes observed in synthetic txture occur in natural texture as well. Ilowever, the texture

gradients amr not as easily observed because natural textures display considerable variability of texel size,
shape and density. Phyical texels are typically three-dimonsional, in contrast with the two-dimensional
disks portrayed in Figure 1. This thkee-dlmensionalky results in highlights and shadows, and in occlusions
between one texel and the next. Albo, physical toxels have a complex stmctum In contrait to a uniform
synthetic disk, a physical texel changes appearance as the resolution is increased: sobtextum becomes visi-
ble. In an image with fixed resolution, more subtexture is visible for the nearby texels than for the distant
texels. Supertexture may be apparent in parts of the image: distant physical texels appear as imago texels
that are small enough to blur into larer regions of relatively homogeneous gray level. These factors make
it difficult to identify texture elements and extract texture gradients from real images.

We have defined a texture field as a collection ot image texels thtt exhibits one or more consistent
texture gradients. The statistical nature of texture regularities makes it impossible to judge a priori whether
two texture elements belong to the same texture field. The perception of a texture field is an aggregation
phenomenon that requires a consistent textre gradient across the whole field.

A given texture may be. more regular in some featur3 than in others. Theret.-e the relative accuracy
of the various texture gradients may vary from image to image. This is illustrated by the following exam.
ples. It is common for texel to be fairly uniform in size and shape, but for the gaps between the texels to
be much less unifoim. This is illustrated by the birds in Figure 9, the peoplo in Figure 21, the flowers in
Figure 25, and the water Millies in Figure 27. In these images, it is morm accurate to infer a three-
dimensional surface from the size and ampect-ratio gradients than from the gradient of spacings between
texels. Our results reflect this: for the flowers image, the planar fit obtained from the area gradient of tex-
els (positive-contrast reion% Figu 25) is much more accurate than the planar fit obtained from the area
gradient of the space between the texels (negative-contrast regions, Figure 26). The potential accuracy of
"the aspect ratio gradient is higher in textures where the physical texels are separated by gaps than in tex-
tures where the physical texels overlap and occlude one another. For example, the lilly pads in Figure 27
show a much better aspect ratio fpadient than do the rocks in Figure 5. For the water hyacinths of Fig-
ure 31, the random three-dimensi 3nal arrangement of the leaves make.t the aspect ratio gradient very weak,
while the area gradient is still qi Ate usable. In images with partial occlusions, such as the movie audience
of Figure 15 and the sunflowers of Figure 17, the perspective gradient (length of the unforeshortenod texel
dimension) is more accurate th&n the area gradient: if only pan of a texel is occluded, the apparent texel
area is decreased, whereas the complete unforeshortened dimension (maximum width in the direction per-
pendicular to the tilt) may remain in view.

2.4. Psychophysics experiments relating to texture gradients

As we have seen. a variety of texture gradients may be defined, depending on which attribute of tex.
ture is considered. Cutting and Millard (1984] discuss, among others, the size gradient (texel area), the
perspective gradient (length of the unforeshortened texel dimension), the compression gradient (length of
the foreshortened texel dimension), the aspect ratio gradient (ratio of foreshortened to unforeshortened
texel dimension), and the density gradient (number of texels per unit image area). Rosinski and Levine
[1976) mention that these gradients are mathematically equivalent in that, if the gradients could be meas-
ured with perfect accuracy, each one would provide the same information. However, the gradients vary in
their perceptual effectiveness: they are not equivalent in terms of an observer's ability to extract or use
them. The psychology literature contains reports of many experiments that address this subject. These
experiments provide interestir.g insights into texture perception; however, since the experiments are
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performed on highly idealixed synthetic textures, the results may not generalize to textures occurring in
nature.

2.4.1. The role of texture cues In perception

Following the pioneering work of Gibson [1950] and (1966], many researchers have studied the roles
of various texture cues in surface perception, using experiments with idealized synthetic textures to deter-
mirte the relative effectiveness of the various texture cues. Some of the early work in psychophysics
tenmrs on the relevance of two image properties for judging slants of planar surfaces: (1) the projective
distortion in the shape of a single object versus (2) the gradient of object sizes across the visual field
(accompanied by a gradient in object density). Flock ([1964], [1965)) emphasizes the role of the

~ sizeldensity gradients, whereas Freeman ([1965], (1966a], [1966b]) argues that the foreshortening of an
object's shape is responsible for perception of surface slant. Freeman even suggests that texture gradients
have no role to play in surface slant perception by humans: he compares subjects' judgements of surface
slant from a textured surface and from a textureless rectangle. These disagreements are due, at least in
part, to inappropriate test data and to the ill-defined nature of the problem. Braunstein and Payne (1969]
provide further relevant discussion.

Gruber and Clark [1956] focus on the relationship between texture density and slant perception.
They use synthetic disk textures to conclude that the impression of slant is maximized at a particular texel
density (which varies with texel area); stimuli with a lesser or greater texel density give rise to a weaker
slant perception. Eriksson [1964] obtains similar results.

2A.4 Relative importance of various texture gradients
Many experiments have been performed to test the relative importance of various texture gradients.

Braunstein and Payne [1969] use dot and line patterns to conclude that linear perspective appears to be the
~ principle variable underlying relative slant judgements. Phillips (1970] uses d•sk textures to test the rela-

tive importance of size, shape and density information, but warns that it would be improper to generalize
his results to other types of visual texture. Phillips finds in Wis experiments that slant judgements depend

~ less on texel density than on texel size and shape parameters (texel attributes that could be responsible for
the slant judgements inciude texel area, aspect ratio, major axis length and minor axis lengh). Rcsinski
and Levine [1976] find that minor axis length is a less effective cue than major axis length or texel area.
Atzneave and Olson (1966] experiment with grid and line textures to test the relative importance of
contour-density and texel-size cues, but their measures are so specific to their test patterns that the results
arm difficult to generalize. Several different properties of image texture that capture surface information,
and the effectiveness of these properties in human vision, are reviewed by Rosinski [1974].

Vickers (1971] was among the first to advocate an approach involving accumulation of evidence
ftom multiple texture gradients. Vickers' principle of perceptual economy states that the magnitude and
strength of slant judgment are related to the amount of total evidence present in favor of the judgmet.L
Support for this principle comes from experiments that show that increasing the number of texture gra-
clients causes a more vivid tridimensional impression, increases the judged slant angles, and reduces the
amount of tie pattern that has to be exposed to obtain a tridimensional response. These experiments are
performed using patternis of parallel lines.

Cuting and Millard (19841 have performed a quantitative study of the relative importance of size,
compression and density gradients in slant judgments of fiat as well as curved surfaces. They use textures
consisting of disks. By experimenting with conflicting and consistent combinations of different texture
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gradients, Cutting and Millard conclude that size and density gradients explain 65% and 28% of th, slant
judgements of flat surfaces, whereas the compression gradient (gradient of minor-a:ds length) has practi-
cally no effect on the perceived slant. For curved surfaces on the other hand, the compression gradient
accounts for almost 96% of the slant judgment with perspective and density gradients having little (8%)
impact. The dominance of these selected factors s ,nbserved despite the presencc of equally strong gra-
dients of other texture features. Thus, it appears that the compression gradient is not important for the per-
cepuon of a fiat surface, but that it is crucial for the perception of curvature. Observers appear to use
changes in the compression gradient as .a salient local source of information about curvature.

2.5. Distance and foreshortening effects

Two separate effects combine to form the texture gradients observed in an image. Firsdy, an increase
in the distance between the textured surface and the image plane cwises a uniform compression of incrcas-
ingly large areas of physical texture onto a fixed area of image. Secondly, an increase in foreshortening
(the angle between the line of sight and the textured surface) causes an anisotropic compression of the tex-
ture. We now turn to a general discussion of the difference in gradients resulting from changing distance
and changing foreshortening.

2.5.1. Isotropic effect of changing distance

Texture attributes such as texel shape and texel density undergo an isotropic distortion as the distance
between the viewer and the physical texture changes. As the distance to a physical texel increases, the
texel subtends a smaller visual angle; a more distant physical texel gives rise to a smaller image texel.
This influence of distance on perceived texel extent is isotropic: all dimensions of the texel are scaled
equally as distance changes. Therefore, the aspect ratio and the internal angles of the texel are unchanged.
Consider an unforeshortened view of a square, for example. The side-length of the square, as measured in
the image, depends on the viewing distance; however, the apparent shape of the square -- four sides ofequal length, meeting at right angles -- is not affected by the viewing distance.

2.5.2. Anisotropic effect of foreshortening

The effect of foreshortening on apparent texel shape is anisotropic: some dimensions of the texture
element shrink more than others. Consider a fiat texalre where the texels lie in the plane of textured sur-
face (rather than projecting out like porcupine quills). For such a texture, foreshortening is a compression
of the texture in the tilt direction. The amount of compression is proportional to l/cos(t), where € is the
angle between the line of sight and the textured surface. Foreshortening Alters the aspect ratio and internal
angles of a texel. For example, a square can foreshorten so that its sides no longer meet at right angles.

2-5.3. Difficulties in interpreting apparent texture density

Apparent texture density is a function of both the distance to the textured surface and the orientation
of the textured surface. The effect of distance on texture density is isotropic. However, density has com-
plex behavior under foreshortening: depending on how big the gaps between texels are, the effect of
foreshortening may be either isotropic or anisotropic. This is discussed further below.

1 ne simplest characterization of texture density counts the number of texels per unit image-area. !n
order to measure isotropic ve.4 :; anisotropic density changes, we may take a set of directional density

S~measurements. We measure ' linear density of texels (number of texels crossed per unit distance) along •

lines at various orientations away from the point of measurement. For texels that fill the plane, as in a
brick wall, linear density is easy to compute once texels have been identified. However, we must also
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define linear density for sparse textures such as dot patterns (or widely scattered leaves, for example). For
sparse textures, linear density may be measured by counting the number of Voronoi polygons crossed per3unit distance. A Voronoi polygon associates each point on the plane with the texel that it is closest to.

In a perspective projection, increasing distance shrinks all dimensions equally. If density is measured
as the number of texels per unit area, the apparent texture density is proportional to the square of the dis-
tance between the camera and the textured surface. The effect of distance on apparent texture density is
isotropic. Consider a frontal view of a brick wall for example. (In a frontal view the textured plane is

if parallel to the image plane.) Draw a horizontal and a vertical line on the image, and count the number of
bricks per unit length on each of these lines. Due to the rectangular shape of the bricks, the vertical line
has a higher density of bricks than the horizontal line. Suppose that the vertical density is four times as

~ large as the hofizontal density. This four-to-one density relationship will be apparent in any frontal view of
this brick wall, no matter what the distance to the wall is. DoLbling the distance to the wall doubles both
the apparent horizontal and vertical texel densities. This unchanging ratio between horizontal and vertical
densities illustrates the isotropic effect of distance on texture density.

Since foreshortening causes an anisotropic compression of individual image texels (Section 2.5.2.), it
seems intuitively clear that foreshortening must simultaneously have an anisotropic effect on the apparent
texture density. This is indeed true for textures composed of plane-filling texels, such as a brick-wall.
However, this intuition is false for sparse textures, where the gaps between texels are large relative to lhe
diameters of the texels themselves.

First, consider the foreshortening of plane-filling textures, which behave in an intuitive manner. Con-
sider again a brick wall where each brick is four times as wide as it is high. In a frontal view of this brick
wall, the vertical texel density is four times the horizontal texel density. If we foreshorten the wall by
rotating it sixty degrees around a vertical axis, we obtain a two-to-one density ratio. On the other hand, if
we rotav, the wall sixty degrees around a horizontal axis, we obtair an eight-to-one density ratio. Simi-
larly, in an image of a tree trunk the density of texture elements in the vertical direction remains the same
in all parts of the 'runk, whereas the apparent density in the horizontal direction increases near the edges of
the image as the bark curves away from view. For textures such as these, it would be theoretically possi-
ble to compare directional densities at two different image points, and decompose the differences into an
isotropic scaling component and an anisotropic foreshortening component.

This anisotropic effect of foreshortening on texture density occurs only if the texels are placed adja-
cent to each other, so that neighbor relations among the texels are preserved during the foreshortening pro-
cess. In contrast, a texture with small, widely spaced texels experiences a nearly isotropic change in den-
sity with foreshortening (although each individual texel is shrunk anisotropically). The sparsest texture
possible is a dot pattern, where each texel is a point that occupies no area. Ccnsider a random dot pattern:

.V a subset of points on the plane generated by a Poisson process. An important characteristic of the Poisson
process is that the expected number of dots in any region depends only on the area of the region, not on
the shape of the region. A slanted view of a random dot pattern of density D results in a random dot pat-
tern of density D/cosO, where 0 is the angle between the line of sight and the plane of the dot pattern.
The slanted dot pattern has an isotropic distribution of dots: a long, thin region can be oriented at any
angle without affecting the expected number of points it contains. Thus, an orthographic projection of a
slanted dot pattern is not very informative: it is impossible to tell in which direction the dot pattern recedes
away from the viewer.

These considerations show some of the difficulties involved in analyzing directional densities.
Analysis of changes in apparent texel size and shape seems a more promising approach than analysis of
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changes in apparent texel density. Once a shape-based analysis has been performed, texel density measures
could be used to verify the results.

2.5.4. Separating distance and foreshortening effects

The appearance of a texture patch is deiermined by a mixture of perspective and foreshortening
effects. Stevens (1981] argues that these two effects need to be separated and discusses methods of doing
so (Section 3.9.). In our approach to texture analysis we do not attempt to decompose texture gradients
into distance and foreshortening effects. Rather, we hypothesize a particular surface arrangement, compute
the total texture distortion (from both distance and foreshortering changes), and then test how well the
observed texture gradients in the image match the expectations.



3. PREVIOUS WORK ON INFERENCE OF SURFACE SHAPE FROM TEXTURE

In this section we review some of the computational work on surface estimation from texture. We
begin with a summary of the work on representation of homogeneous image texture, and follow this by a
review of some approaches to surface estimation from texture.

3.1. Texture representation

A texture has random aspects, and yet appears globally uniform. One of the goals of a texture
represertation is to characterize the uniformity present in a frontal view of the texture (where the texture
sample is parallel to the image plane). In Section 2.3. we discussed the importance of texture uniformity
for the recovery of scene layout from non-frontal views of textured surfaces. Texture representations are
useful in a variety of other applications, including texture discrimination (for image segmentation), texture
recognition, and texture generation (for realism in computer-generated images).

Texture representation is a broad subject which we cannot cover here. We refer the reader to sur-
veys provided by Haralick [1979], Van Gool et al. [19851, and Ahuja and Schachter [1983a], [1983b].
These surveys define two broad classes of texture models: pixel-based statistical models, and region-based
structural models. Pixel-based statistical texture measures, such as autocorrelations and cooccurrence pro-
babilities, are useful in texture discrimination and classification applications but do not apply directly o the
shape-from-texture problem. Structural texture models focus on the description of texture elements and
their placement, and hence are more relevant to the shape-from-texture problem. A texture description thet
uses independent texel-generation and texel-placement processes provides randomness with overall stable,
recognizable characteristics.

3.2. Kender: recovering scene layout from images of man-made textures

Kender [1980a] (alternate references include Kender [1978], [1979], [1983], and Kender and Kanade
[1980b]) provides a theoretical framework for shape-from-texture algorithms designed to work with man-
made t•extures. Hris research was done in the context of analyzing aerial views of cities, where very regular
textures, such as sky-scraper windows, provide distance and surface-orientation information. The following
topics (among others) are addressed., algorithms for exploiting gravity-based heuristics (the major axes of
buildings and trees are aligned with the direction of gravity); and exploitation of texture regularities such as
equal-area texels, parallel or perpendicular lines, equal spacing, equal-length lines and symmetry. Kender's
main paradigm may be summarized as follows:

Identify some textural property to "regularize". This property is assumed to be more regular in a
frontal view of the texture than in the image. For exampie, nearly parallel lines in the image may be
"assumed to originate from precisely parallel lines on the surface.

- Divide the image into significant subimages.

- For each subimage, compute all possible backprojections. Choose the surface orientation that has the

most regularized backprojection. (A "backprojection" effectively inverts the foreshortening transfor-
mation.)

Kender has efficient methods for precomputing the backprojections for many types of regularization condi-
-tions. His method is applicable to regularization conditions relating two texels, such as "nearly equal-

Li
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length markings in the image correspond to equal-length markings on the surface". Some texture condi-
tions, such as the one used by Witkin (Section 3.5.), cannot be formulated in this framework. Cues that
Kender uses to compute surface orientation include the points of convergence of straight line segments in
the image (assuming the physical line segments are parallel; see also Nakatani et al. [1980]), the observed
length difference between image line segments (assuming the physical line segments are of equal length)
and the observed angle between image line segments (assuming the physical line segments are perpendicu-
lar). Kender addresses the issue of perpendicular versus ui-plane texture constituents. The precomputed
backprojections for perpendicular textures (such as buildings in an aerial view, where each building is a
texel) differ greatly from the backprojections appropriate to in-plane texture constituents (such as the win-
dows of a sky-scraper, where each window is a texel). Kender's work, while providing a good framework
for the analysis of man-made textures, does not seem applicable to naturally-occurring textures which lack
precise regularity in texel spacing. tex;ýl size and texel shape.

3.3. Wltkin, Davis, Dunn: surface estimation from the observed distribution of edge directions

Witkin (1983] proposes a simple method for estimating surface orientation in orthographic images of
natural textures. He assumes that any systematic elongation in a texture is due to foreshortening, and cal-
culates the deprojection that best removes the systematic elongation. The elongation that is present in the
image is calculated as follows: (1) apply an edge detector, (2) count the number of edge-elements that
occur at each possible edge orientation, (3) calculate which surface orientation would best account for
peaks in the edge-orientation histogram (for example, a preponderance of horizontal edge segments sug-
gests that the surface has been rotated around a horizontal axis). Efficient algorithms for performing this
calculation are presented by Davis et al. [1983]. 1

Witkin's idea is appealing in its simplicity. However, it is too restrictive to apply to natural images.
The image is assumed to be an orthographic projection, so that there are no distortions due to increasing
distance from the viewer. Also, the texture must be composed of in-plane texture elements. Witkin's
method does not apply well to textures with very non-uniform distributions of edge directions such as I
checkerboards or herringbone patterns (Dais et al. [1983]). The method fails for elongated textures such
as grass, hair, waves, or striated rock: the algorithm attempts to attribute all of the elongatedness to
foreshortening, thereby grossly overestimating the slant. Apparently the directional-isotropy assumption is
very restrictive and is present only in a small subset of natural images (Aloimonos and Swain [1986, page
585]).

Even when Witkin's assumptions are satisfied, the accuracy of his method is poor. Dunn et al.
[1984] describe a series of experiments with implementations of three variations of Witkin's algorithm.
The test images are derived from frontal views of textures (from Brodatz [1966]), which are pasted onto
cylinders or slanted planes and then digitized. As we point out in Section 4, projections of this type,
derived from frontal views, are a simplification of the real projections that results from photographing
curved or slanted samples of the physical texture. Even with the simplified projections, slant and tilt esti-
mates obtained from 6- -by-64 subwindows are poor. The estimates obtained from 128-by-128 subwindows
are better, but large errors still result.

Kanatani [19841 builds on Witkin's work by proposing a different test for the distribution of edge-
orientations. He uses an estimator that is based on the number of edge intersections encountered by sets of I
equi-spaced parallel lines, each set in a fixed direction. If the texture elements have borders with uniform
orientation distribution, then the number of intersections is the same for parallel lines in different direc-
tions. Otherwise, the observed deviation from a uniform distribution gives an estimate of the surface orien-
tation. This technique is illustrated only on a synthetic example.
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3.4. Rosenfeld, Kanatani, Aloimonos: surface estimation from edge density measurements

Rosenfeld [1975] defines a "texture gradient" as the rate and direction of maximum change of texture
coarseness across a surface. He suggests measuring the texture gradient by computing the average response
of an edge-detection operator in various parts of the image. In coarsely-textured parts of the image there
should be fewer edges per unit area than in finely-textured parts of the image. This method assumes that
the texture elements do not have significant sub-texture.

Kanatani and Chou [1986] present a theoretical analysis aimed at recovering the 3D shape of a tex-
tured surface from a perspective view, assuming that the frontal texture is homogeneous. Dot and line tex-
tures are analyzed, to calculate the expected density of dots or lines after perspective projection. The
method is illustrated on two synthetic images, one showing a perspective view of a grid of dots and the
other showing a perspective view of a grid of lines. The authors do not address the problem of applying
this method to real textures.

Aloimonos and Swain [1985], and Aloimonos [1986] describe a procedure to estimate surface shape
from measures of texture density; this method has been tested on a wide variety of images. They develop
a method that applies when either the number of texels can be counted or the boundaries of the texels can
be located. In theory, the orientation of a planar surface can be recovered from the densities measured in
two pairs of image regions. Since density fluctuations in the regions can cause inaccurate results,
Aloimonos and Swain use a least-square-fit mechanism, which uses density measurements taken from many
pairs of image regions. Aloimonos [1986] claims that it is much easier to find the boundaries of texels
than to find texels themselves (Section 4 expresses our disagreement with this claim). Therefore he formu-
lates a density measure based on the total length of texel boundaries per unit area. The experimental
results reported by Aloimonos are impressive in their scope and accuracy. However, it is our experience
that an approach that measures edge density without explicit texel identification cannot work when applied
to complex natural textures (with subtexture) under natural lighting conditions (Section 4.1.).

3 •3.5. Ikeuchi: surface estimation from regular patterns

Ikeuchi (1980] proposes a surface estimation algorithm based on the apparent distortion of regular
patterns. His method applies only under very restricted conditions. He assumes that the surface texture
consists of repetitions of identical texels, and that the frontal shape of the texture element is known. The
method is illustrated on synthetic images and on a picture of a golf ball.

3.6. Ohta: computation of vanishing points from observed texel areas

Ohta et al. [1981] propose an interesting method of obtaining the vanishing line of a textured plane
from the area of texels in the image. They use the observed arcas of pairs of texels to obtain vanishing
points. The vanishing points determined by many pairs of texture elements are used to estimate a vanish-
ing line, which gives the direction of tilt. Ohta et al. point out that their method is more general than those
described by Kender [1978] and Nakatani et al. (19801 because it does not demand the existence of parallel
lines or edges in the texture. However, the method of Ohta et al. has been tested only on synthetic texture
images. The problem of extracting texels from natural images is not addressed.

3.7. Zucker: measuring texture coarseness using multi-scale spot detectors

Zucker et al. [1975] suggest a method of measuring texture coarseness. Their goal is to discriminate
between a coarse and a fine texture, but a good coarseness-discriminator could also be used to detect tex-
ture gradients. Zucker et al. describe a texture discrimination method based on the application of spot
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detectors of all different sizes throughout the image. They use a simple spot detector, which computes the
difference in average gray-level between two nested, square image-regions. This spot detector does not
yield detailed information about spot shapes, but only crude information about spot sizes and spacings.
This work is of interest to us, because the goal of the spot aetectors is, in effect, to perform texel
identification. Our method for texel identification also uses a spot detector (Section 5), one that is more
complex and more accurate than Zucker's. Zucker et al. obsexve that their sPot detector is influenced by
the presence of subtexture and supertexture.

3.8. BaJcsy and LIebeuman: using Fourier transforms to detect texture gradients

Fourier domain features can be used to characterize texture coarseness and elongatedness. .Baicsy
and Lieberman [1976] detect texture gradients by calculating Fourier transforms of various parts of the
image, determining a characteristic texture-element size from peaks in the Fourier power s-pectrum, and
looking for trends of the characteristic sizes across the image. Their implementation is subject to the fol-
lowing restrictions: (1) texture models are requir.d for choosing appropriate window sizes in which to com-
pute the Fourier transforms (the choice of window size is rather ad hoc, and was manually verified in their
experiments), (2) only elongated textures sach as grass and ocean waves can be analyzed, and (3) the
viewpoint and surface tilt must be known (the texture is assumned to be uniform in a horizontal scan and
increasing in density in a bottom-to-top scan, as in an image of a level field of grass). Some of these res-
trictions are artifacts of the implementation, but there are also difficulties inherent in the use of Fourier
spectrum measurements for texture analysis. Natural textures have very irregularly placed texture ele-
ments; even in an idealized texture composed of equal-size texture elements, the irregular placement intro-
duces noise into the Fourier spectrum, which obscures the presence of a texture gradient. Also, as dis-
cussed by Dyer and Rosenfeld [1976], the choice of window sizes is a very difficult problem in any
Fourier-based approach to texture analysis.

3.9. Stevens: separating distance and foreshortening effects

The appearance of a texture patch is determined by a mixture of distance and foreshortening effects
(Section 2.5.). Stevens [1981] discusses methods of separating these two effects. He proposes to identify
the non-foreshortened dimension of each texel (eg, the major axis of each ellipse in Figure 1). This length
depends only on the distance to the texel, and is independent of slant. To find the direction in which to
measure these texel widths, the direction of least texture variability must be identified. Successful
identification of the non-foreshortened texel dimensions provides the tilt direction as well as the relative
distance to each tewel.

Surface slant may be obtained either indirectly by differentiation of the estimated distance values, or
it may be computed directly from the image. The aspect ratio of the texture elements is a measure which
varies with slant and is independent of distance, but Stevens cautions that the relationship between ascit
ratio and surface slant is complex. Texels that lie flat on the plane (such as bricks) foreshorten differentlythan texels that project out of the textured surface (such as erect porcupine quills). Successive occlusion, I

which occurs for example when one ocean wave partially obscures the view to the next wave, complicates
the relationship between aspect ratio and slant even f ougther.

Stevens [1981] presents a good theoretical discussion of the problems involved in defining appropri-

ate texture measures for the extraction of distance and/or surface-orientation information. However, he
offers only rather sketchy suggestions for implementation: characteristic dimensions could be estimated
from peaks in the Fourier power spectrum, or from measurements of the average distance between edges

--



I ~provided by V2G zero crossings. It appears that these methods will not work on natural textures without
extensive modifications.

IIAN O
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4. INTEGRATION OF TEXEL IDENTIFICATION AND SURFACE SHAPE ESTIMATION j

Texture properties vary across the image in a manner predictable from the physical surface shape;
thus it is possible to infer surface shape from textuie gradients. This section examines the basic require-
ments of such an inference process. We argue that correct interpretation of texture gradients requires expli-
cit identification of image texels, especially when texels exhibit significant subtexture. Texture elements
cannot be identified in isolation since texels are defined only by the repetitive nature of lhe texture as a
whole. Therefore, we claim, the identification of texture elements is best done in parallel with the estima-
tion of the shape of the textured surface.

4.1. The central role of texture elements i1
Texture properties are most directly defined in terms of texture elements. Texel identification per-

mits correct analysis of multi-level textures, where texture elements exhibit subtexture. Explicit texel
identification also permits a unified treatment of the various texture gradients that may be present in an
image. Previous work has avoided texel identification because it is quite difficult to do in real images. I
Instead, indirect methods are used to estimate texel features. We give bel ow two examples of such
methods.

As a first example, consider the edge-based texture features. Edges are normally detected by an edge
operator that does not distinguish between texture and subtexture edges, or between c•ges from different
texture fields. Eage density is approximately constant in a frontal view of almost any texture (Aloimonos
(1986]); subtexture is not a problem in a frontal view since the same amount of subtexture is visible every- U
where. However, a difficulty arises when the texture is seen under projection: more subtexture edges are
visible in nearby than in distant samples of the texture. !i is incorrect to interpret all the edges produced
by an edge detector as the boundaries of texture elements.

This problem is illustrated by Figure 3, which shows all of the edges extracted from several texture
images. We use an edge operator described by Nevatia and Babu [19801. Six 5-by-5 edge masks at
different orientations are used; the mask giving the highest output at each pixel is recorded. The edges are
thinned through perpendicular non-maximum suppression. The exact details of the edge operator are not
important here. We merely wish to illustrate that it would be incorrect to iterpret all of the detected
edges as boundaries of texture-elements. Additional edges --ise due to sub-texture and due to the presence
of several texture fields in u single image. The additional edges are not artifacts of this particular edge
detector, since they are clearly present in the original images. Many natural textures have a hierarchical
physical structure that causes observed edge density to be nearly constant throughout the image: edges from
subtexture and sub-subtexture are observed to whatever detail the camera resolution permits.

In the early stages of this research we experimented with measurements of edge density to detect tex-
ture gradients. To eliminate sub-texture edges, we experimented with a suppression of weak edges that are
located close to strong edges. This is somewhat successful, since the contrast of subtexture is usually less
than the contrast of the texture elements themselves. Such edge suppression is an indirect attempt to iden-
tify texture elements: the goal is to suppress all edges except those that result from the boundaries of tex-
ture elements. We 3bandoned this edge-based approach in favor of a region-based approach, in which the
problem of texel identification is approached more directly, and can thus be solved in a more general way.U
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As a second example of indirect estimation of texture features, consider the method that make
specific aRsumptions about the distribution of texel edge directions. Witkin [1981], Dunn (1984) anI Kana-
tani [1984] assume that the texel edges in a frontal view of the texture have an isotropic directional distri-
bution, which may not be true for many textures. Kender (19791, [1980a], [1983], Konder and Kartnde
[1980b], and Nakatani et al. [1980] consider textures containing parallel or perpendicular lines; these
include many man-made textures but few natural textures. All of the edge-direction methods, like the
edge.density methods, are sensitive not 3nly to edges arising from texal borders, but also to edges arising
from subtexture and from multiple texture fields.

Texture algorithms are often tested on images formed by artificial projections derived from image, of
frontal texture samples. An artificial projection is formed in one of two ways. The first method is to wrap
an image of the frontal texture onte a surface such as a slanted plane or a cylinder, a view of this surface
is then digitized to obtain the test image (see, for example, Dunn et al. (1984]). The second method
obtains a similar result using a computer program. Starting with a digitized sample of a real texture seen
in frontal view, the computer program applies a perspective transformation to map the digitized texture
sample onto a desfred surface geometry. Both of these methods produce simplified approximations of the
images that result when curved or slanted samples of physical texture are photographed and digitized.

A Artificial prbjections lose the effect of three-dimensional relief: texels do not shadow or occlude each other,
and they may foreshorten improperly (imagine the result of performing a synthetic projection of erect por-
cupine quills). Most importantly, artificial projections do not properly capture the complexities of subtex-
tore: no subtexture details appear when regions of the frontal texture sample are expanded to model parts
of the surface that are close to the viewer. Since artificial projections introduce these simplifications, tex-
ture algorithms that successfully analyze artificially-projected scenes cannot necessarily cope witb real
images of slanted physical textures.

We summarize with the following observations. By making some assumptions about the nature of
texture elements it is often possible to estimate certain texel properties through measures that do not
require explicit identiScation of texture elements. However, when texture elements are not identified and
explicitly dealt with, it becomes difficult to disti&guish between responses due to texture elements and
thos, due to other image features. Edge-density measurements (Section 3.6.) may include contributions
fronm subtexture or supertexture edges, from borders of partially occluded texture elements, and from edges
of texels belonging 'o several texture fields. Similarly, when making an edge-direction histogram (Sec-
tion 3.5.) it way not be posible te distinguish between edges from texel borders and edges due to other
features such as ýubtexture. ourie.r domain features (Section 3.8.) are also sensitive to the presence of
subtexture and superttxt'.r. It appears to be ne:essary to recognize the teture elements before the various
measures can be computed as intended.

Explicit iden'ification of texture elements offers an additional advantage: texture elements provide a
unifying framework for examination of the various texture gradients that may be present in an image. The
relative accuracy o-f texture gradients varies fromn image to image (Section 2.3.); %ierefore it is not known
in advance which wxtxur gradients can ý ,ncsured accurately enough to be useful for the estima'ion of
td-iee-dimensional scen-. lt:,Out. A long-term goal of our research is to provide a unified treatment of vari-

N ous texture gradients. The currert "¶Aaplementation, summarized in Section 8, is only a start in this direc-
tion: we use the a ea-gradient of texture elements and the area-gradient of the spaces between the texture
elements.

IJ
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42. Integration of texel identification and surfact shape estimation

Having said that we must identify image texels, we now address the problem of texal identification.
We claim that oxel identification is best donm in parallel with the estimation of surface shape. To see this,
consider the image regions of relatively uniform gray level. Recions of relative gray-level uniformity arise
in many different ways. An imoge region may correspond to a texture element, cc to the visible portion of
a partially occlude4 physical texel. AlternaV, the region may represent subteature within a close-range
texture element or supertexturm arising from a merging of several texture elements located at large dis
tances in the scene. Finally, tho nrrion may arise from an isolated object that is not part of a texture (eg,
the snowy areas and the tree trunk in the rock-pile image of Fiure 5).

If we consider a single image region in isolation, it is impossible to tell to which texture field, if any,
the region belongs. This decision can only be made by considering the rest of the image: could this region
be a texel that is consistent with the properties of many other image texels? To answer this question we
must hypothesize a surface estimate. It is therefore essential that the identification of texture elements and
the estimation of surface shape be done cooperatively.

We have developed a two-step approach to carry out such integration of texel identification and sur-
face estimation. First, we assume that all homogeneous gray-level regions are candidates for being texels;
thus the first step performs a local gray-level an•lysis to identify potential texels. Second. we use surface-
fitting to identify the true texels from among the candidates, while simultaneously constructing an approxi-
mation to the shape of the textured surface. The second step thus enforces perspective viewing constraints
to select texels. The next three sections describe the algorithm that we have implemented. Section 5
describes a region detector for extracting uniform image regions of unknown size and shape. Derivations
necessary for the surface-fitting are presented in Section 6. and the surface-fitting algorithm is descnred in
Section 7. Section 8 contains a summary of the implementation, and presents results for a variety of
images of textured natural scenes. 6

p. U

i i
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p $. MULTISCALE EXTRACTION OF HOMOGENEOUS IMAGE REGIONS

1 6 1, is neawly impossible to extract texture elements directly from an image because of the tremendous
vaiety among toxbz,'s and because &,e apparent size and shape of texture elements varies across the
image. We decompose thir prrblem into two more tactable parts: first we extract a lrgp set of candidate
taxels from the image, and then we select among these candidates to find a set of texels that shows varia-
tions consistent with a particular three-dimensional surface arrangemenL This section describes the extrac-
tion of candidate texels. later sections describe a method for selecting texels from among the candidates,
while simultaneously finding the three-dimension surface arangemenL

Any region that has relatively uniform gray-level is a candidate texel. The uniformity of small
regions is measurod relative to a small surrounding neighborhood in the image. whereas the uniformity of
large regions is measured relative to a proportily Larger neighborhood in the image. Since the shape
and size of texture elements is unknown in advance, we need a multiscale operator for detecting uniform
regions of all shapes and sizes. We simplify this problem by assuming that each region can be represented
as a union of overlapping circular disks. Lae disks define the rough shape of the gion, with overlap-
ping smaller disks capturing finer shape detail such as protrusions and cornavities, We present a multi-
scale method of extracting all circular imqge regions of relatively uniform gray level. Sets and subsets of
overlapping disks are used to form candidate texture elemer'..

5.1. Scale space

I The region-extraction algorithm is based on an analysis of the scale-space behavior of uniform image
regions. Before presenting a derivation of the algorithm we briefly review previous reseamc; concerning
multi-scale image reprusentations.

The term scale space was introduced by Witkin [1983]. He builds on the teory of edge detection
developed by Mart and Hildreth [1980] (see also Marr [1982]), in which edges are located as the zero-
crossings in the Laplacian of a Gaussian-smoothed image. Mart aid Hildreth suggest using a selection of
filter sizes in orde- to capture edges at different scalem thin, sharp edges are best captured by small filter
sizes whereas broad, fuzzy edges me better characterized by large filter sizes. However, Mar and Hildreth
do not adequately address the problem of combining the edge images obtained from various filter sizes.
Witkin [1983] introduces a scale-space representation of V2G zero-crossings over a continuous range of
scales. A scale-space representation is constructed by convolving the original signal with V2G filters for
all possible choices of the filter size a. The scale-space representation of a one-dimensional signal occu-
pies an x--a plane, whereas the scale-space representation of a two-dimensional signal (such as an image)
occupies an x-y--a volume. Gaussian smoothing has two effects: simplification through removal of fine-
scale features, and distortion through dislocation, broadening and flattening of the surviv'ing features.
Salient zero-crossing contours may be identified at coarse scales, and then traced to fine scales for accurate
localization. Witkin [1983] describes an efficient representation of the zero-crossings of a one-dimensional
signal (in the x - a plane). There Ls no straightforward extension of this representation to encode the zero-
crossings of two-dimensional signals.

Crowley and Parker [1984] analyze images over a range of scales using a representation that is
related to Witkin's scale-space representation. Crowley and Parker use a difference-of-Gaussian operator,
which may be considered a discrete approximation to the V2G operator. (The relationship between V2G

ail *
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and the difference of two Gaussians is characterized by the diffusion: equatioit V2G = .JG. The

difference of two Gaussians with similar a is a discrete approximation to *G and hence to V2C.) A

scale-space representation of a signal has many features that could be analyzed. Whereas Witkin conctn-
rates on the behavior of zero-crossings over a range of scales, Crowley and Fwuker instead concentrate on
peaks and ridges ercwted over a range of scales. A peak in the V2G response indicats a local best-fit oi
a disk of a particular size, The pattern of peaks and their connecting ridges character4ts obj•ect shapes in
a form that is sulted to object recognition or matching: the coarse shape information captured 1'y the large
filter sizes Ls used to bring the objects into approximate registrazion, and then the more detailed shape
information captured by the small filter sizes is used w refine the matching.

We have developed a method of analyzing the scale-space behavior of an image to extract primitive
shapes that together span the image regions. A description of our method follows.,

S,. Notation

The following symbols are used:

V gradknt: VF M ( ,_ -)

G, lwacin onorm aussdian: Gae a. ote c

22 of
V2G laplacian of unnormaliUzed Gaassian. positive center lobe: 262--r2 e - Uia4
V2G. lapician of normalisird Gaussian, positive center lobe: 202-r2 e"'m

C contrast of a bar or disk
8 bar Mdrh
D disk diameter
o, w G or V2G filter site; w - 242a

The various forms of the V2G operator used in the literature differ from each other by a multiplicative
constant. Multiplicative constants do not change the shape of the V2G operator (Grimson and Hildreth
(1985]); however, since they do alter the shape of the *V 2 G operator, we make the distinction between

V2G and V2G,. Differences between the V2G and V2G,, operators are discussed further in Section 5.4.

In keeping with tradition in the literature, we negate the V2G equations, so that filters with a positive
center lobe result. The size of a V2G filter is characterized by L. the standard deviation of the Gaussian
distribution, or by w, the width of the positive center lobe of the V2G filter.

5.3. Cosed form expressions for the V2G responses of disk and bar images

Our algorithm for uniform-region extraction is based on calculations of the V2G and !V 2 G

responses of a disk image.

Definition: Given a function I(x,y) which specifics the intensity of an image, the V2G response of this

image at (x, y) is given by the following convolution:
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V2G (zy) 0 J(xy) a _2a2._(u¾.v2) (5.1)

""his deinition is fer continuous rather than discrete images. We analyze the V2G response of ideal disks
ard bars in this continuous domain. (However, to generate the V2G convolution of digitized images, ,e
sample the V2G filter values and perform a discrete convolution.) Mathematical analysis of the response of
the V'2G filter to most images is difficult because the convolution integrals of Equation (5.1) do not have
closed form solutions. However, a closed-form solution can be derived for the center point of a circular
disk of constant intensity. The image of a disk of diameter D and contrast C is defined by

disk image: I(x, y) . C if x2 +y 2 SD2 ,'4ag. I~~0 elsewhere (5.2)

Using this definition of I(x,y) in Equation (5.1), and setting x and y to zero, we show in the appexdix that

the V2G response at the center of the disk is e-DO and the *V 2G response at the center of the

disk i

We also solve Equation (5.1) for an image of an infinitely-long bar. An infinitely long bar is not a
useful shape primitive; however, the bar response is used for calculations performed in Sections 5.4. and
5.9. The image of a bar of width B and contrast C is defined by

bar image: I(xy)m C ifo * XB (5.3)S"" ~ ~0 elsewhere(.)

Using this definition of I(xy) in EquationJ5.1), and setting x to B/2, we show in the appendix that the
2VG response at the center of the bar is e-. e and the *kV 2G response at the center of the bar is

"TABLE I

center of bar center of disk

V 2G eCB e.ag, eCD2 .ab,

irCD2 f D 024

2a•

II V2G C- e, 01 f0 2 } eD.ota

CR { 82210 CD2•. • VG. eB B

~ ~Table 1 summarizes the expressions derived in the appendix. The correctness of these equations has
b•een verified experimentally by performing discrete convolutions of V2G and 4V 2 G masks with syn-

thesized images of isolated bars and disks. The V2G and - V2G values at the centers of the bars and

disks match the values predicted by the equations to within roundoff and discretnation errors.
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S.A V2G convolutions have more consistent magnitude than V2G. convolutions

If we are considering the V2G responses of a disk or bar, there are two quantities we may vary: the
filter size (a) and the disk-diameter (D) or bar-width (B). This is illustrated in Figure 2, which shows the
V2G response to a scaled square wave over a range of a values. The square wave is a cross section of an
image composed of infinitely long bais of varying widths. A horizontal scan of Figure 2 shows the depen-
dence of the V2G response on bar width. A vertical scan of Figure 2 shows the response of a fixed-width
bar to V2G filters of varying size. Observe that with fixed a there is an ideal bar-width that gives maximal
response. Similarly, with fixed bar-width there is an ideal filter-size that gives maximal response. We
would like these ideal bar-widths and ideal filter-sizes to coincide. The desired consistency property for
the V2G magnitudes seen at a bar center is:

If B is dte width of the maximally responding bar at a fixed 6, then, conversely, 4 is the filter size that
maximizes the response of a bar of width B.

Similarly, the desired consistency property for the V2G magnitudes seen at a disk center is:

If b is the diameter of the maximally responding disk at a fixed 6, then, conversely, 4 is the filter size that
maximizes the response of a disk of diameter D.

Using the equations in Table 1 it is easy to show that these consistency properties hold for V2G, but not
for V2G.. In order to prove this, we find the ar values which maximize the response for fixed-size bars and
disks, and compare this to the bar and disk sizes which maximize the response at a fixed a. We set - of

* the V2G bar-center response and -L of the V2G disk-center response to zero to find that

for fixed a, both V2G mad V2G,, have maximum response to disks of diameter D =21(a _ A to bars of
width B =20.

By setting the a V2G and I V2G, expressions from Table 1 to zero, we find that

for a fixed disk-diameter D (varying ar), V2 G ha&s maximum response at the disk center when the filter size
* = D/24/24); for a ftxed bar-width B, V2G has maximum responso at the bar center when the filter size* o=B/2.

On the other hand,

for a fixed disk-diameter D (varying ar). V2G. has maximum response at the disk center when the filter size
SD4; for a fixed bar-width B, V2G. has maximum response at the bar center when the filter sizea B B/(2 -13).

The consistency property for V2G follows by inspection; this property is useful for comparing the
responses of an image to V2G filters of various sizes.

5.S. Estimating the size and contrast of disks and bars from V2G measurements

We have seen that V2G responds maximally to disks of diameter D = 2-'2fa. Imagine an image com-
posed of non-overlapping equally-bright disks of many different sizes. The V2G response at some partica-
lar a will peak for particular disk sizes, namely for those disks with diameters close to 2'52a. This effect
is illustrated for a one-dimensional sgnal by Figure 2, which shows the V2G response to a scaled square
wave over a range of a; values. (Since the square wave is a cross section of an image composed of

infinitely long bars, the V2G response in Figure 2 peaks for those square pulses with widths close to 2aO.)
It seems possible to characterize image structure by noting the values of local maxima in the V2 G response
at various values of a. For small a, small regions give maximum response; for larger a, larger regions
give maximum response. However, we need additional measurements in order to distinguish high-contrast

regions from large regions. The V2G response at a disk center depends on both the disk-diameter D and

,%
IRj OR
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the disk-contrast C (Table 1); therefore, many different disks can give the same V2G response at a given
cf. To avoid interpreting lighting changes ýs region-size changes, the image response to V2G filters of
variojis sizes must be analyzed.

The equations in Table 1 suggest how to compensate for the influence of region contrast. Both V2G
and .V 2G responses are proportional to the region contrast C; dividing one value by the other leads to a
measure independent of C. From the entries in Table 1, we see that at the center of an ideal circular disk,

(r, 2 G*I)I/(V2 G* )= D2: - 2
We can solve this equation for the disk diameter D:

D = 2a•/a(IV 2 G*1)/(V2G*I) +2 (5.4)

where the convolutions are evaluated at the center of the disk. Once we have solved for the disk-diameter,
we obtain the contrastCby

C e1219'(2G (5.5)

where the convolution is evaluated at the center of the disk. Similarly the bar-width B may be calculated
as

-2k"B (5.6).. B = 2a• (*VG*I)I(V2GI+1(56

where the convolutions are evaluated at the center of the bar. The V2G response for a particular disk or
bar is maximized when WV2G*J =0; at this point Equations (5.4) and (5.6) evaluate to D =2r21a and

SB =2o.

5.6. Detecting un form regions in real images

In the previous section we derived the theoretical results necessary for the definition of a region-
extraction algorithm. The algorithm is based on Equations (5.4) and (5.5): after computing the discrete
convolution of a real image with V2G and -•V 2G masks, Equations (5.4) and (5.5) arer applied at selected
image locations to recover the diameters and contrasts of the disks that best fit the local shape of uniform
image regions. The equations must be appliod at disk centers; the equations produce nonsensical results at
image locations where the intensity pattern is not at all disk-like. (If the quantity under the the square root
symbol in Equation (5.4) is negative an attempt was made to apply the equations at an unsuitable location:
no disk can be fit.) Since the suitable locations for disk centers are not known a priori, Equations (5.4) and
(5.5) are applied at all pixels that are local maxima in the V2G image. This produces disks that model the
positive-contrast regions in the image; the equations are also applied at locai minima to obtain disks that

•. model the negative-contrast regions in the image. The generality of this region detector is discussed in

, •Section 5.9.

Choosing local maxima of V2G as potential disk centers is justified by the following considerations.
Consider a near-circular image region of approximately uniform gray-level. Local maxima in the V2G
image occur at the region center for any filter size that is close to the diameter of the region. However, as
illustrated in Figure 2, if (T is chosen much too small or much too large, then the V2G iocal maxima do
not locate Lhe region center well. If a ýs too small, then the local maxima occur off-center (and application
of Equation (5.4) underestimates the region diameter). On the other "and, if a is too large, then Gaussian
smoothing merges neighboring regions, making the result of Equation (5.4) meaningless.

i~ t~
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Thus a selection of filter sizes is necessary to assure that at least one of the filter sizes falls into the
o range at which it is appropriate to analyze the local shape of each region. We apply Equations (5.4) and
(5.5) at V2G local maxima for six different ar values. A disk detected at a filter size a is accepted only if
2,F2c (the diameter of the center lobe of the V2G filter) is close to the disk diameter. Other disks are
located more accurately at another filter size. Implementation details are covered in Section 5.8.1.

5.7. Forming candidate texture elements from groups of overlapping disks

Homogeneous regions in an arbitrary texture have complex shapes. We construct an approximation
of these complex shapes using a union of overlapping circular disks. After all disks have been detected for
a particular image, overlapping disks are used to form potential texture elements. When overlapping disks
are grouped together, concavities are formed at the joins between the disks. At each concavity, we can
choose either to keep the complete set of disks, or to split into two smaller sets of di3ks. The significance
of a concavity is not always clear. Some concavities arise at the border between two neighboring teyels; at
other times the concavities are part of the shape of an individual texel. Since there is no a priori way to
tell which set of disks (split or unsplit) is a better representation of a texel, all possible sets of disks are
added to the list of candidate texels. When a disk participates in the formation of several candidate texels,
these candidates are marked as mutually exclusive, so that at most one of them is accepted as a true texel.
Details of the implementation are covered in Section 5.82.

5.8. Implementation details for the region detector

Let I denote an image. The processing of I is divided into three main phases: finding the disks, con-
structing potential texture elements from the disks, and fitting a planar surface to the candidate texels.
Here we discuss the implementation of the first two phases. Implementation of the third phase is described
in Section 7. Figures 5 to 38 show the positive-contrast and negative-contrast regions extracted from vari-
ous images. Figure 4 illustrates details of the disk-fitting process for one particular image.

5.8.1. Finding disks

The first step in processing an image I is to compute V2G*I and I V2G*I for a selection of filter

sizes. To compute V2G*I for a particular a value, the image is convolved with a mask whose coefficients
are taken from

2c 2-r 2  _,,r2a2

To compute a V2G*1 for a particular a value, the image is convolved with a mark whose coefficients are

taken from

6r
2a 2 -r 

4-- 4,
4

The convolutions are performed via multiplication in the Fourier domain. Six different V2G and -WV2G
convolutions are evaluated, using a values of 12, 2,F2, 342-, 4,F2, 5-F and 642. The center lobes of the six
V2G filters have diameters of 4, 8, 12, 16, 20 and 24 pixels respectively.

The second step in processing the image I is to mark the locations where disks will be fit. In order
to find disks that model positive-contrast image regions, each VlG*l image is scanned to find local max-

ima: any pixel larger than all eight of its neighbors is marked as a disk-center location. Similarly, in order
to find disks that model negative-contrast image regions, each V2G*I image is scanned to find local
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minima: any pixel smaller than all eight of its neighbors is marked as a disk-center location.

Next, Equations (5.4) and (5.5) are applied at each of the marked locations, using the V2G*I and
S*V2G*1 values observed at that location:

D = 2a•lý ,VZG*I)I(VZG*j) + 2 C = 22e (V2 G*•)

Disks are detected most accurately at a filter' size close to their diameter (D =w = 241a2); therefore only a
restricted range of disks diameters is accepted from each filter size. In the cmurent implementation, the
detected disk diameter must be within two pixels of the filter size. Thus, of the disks detected by the filter
of width 12 pixels (a = 3-v2), we keep only those with diameters in the range 10 to 14 pixels. Internally,
the disks are represented as a list of disk-descniptors, where each disk-descriptor contains the coordinates of
the disk center, the disk diameter and the disk contrast. However, for display purposes the disks may be
expanded to fill the regions they represent. Parts (d) to (k) of Figure 4 illustrate the disks detected in an
image of a rock pile at various filter sizes. In Figure 4 each disk is represented with an intensity propor-
tional to its contrast. Note that the smaller filter sizes find many more disks than the larger filter sizes do:
the expected distance between V2G*I zero-crossings is proportional to a (Marr [1982], page 136), and
hence the density of local maxima (or minima) is proportional to 1/02.

The final step in disk detection is to combine the disks detected at the various filter sizes into one
data structure. This is done by concatenating the lists of disk-descriptors from each filter size. Parts (b)
and (c) of Figure 4 show the result. Only one disk can be displayed at pixel locations covered by several
disks. In part (b) the disk of higher contrast is displayed; therefore, low-contrast disks that are spatially
contained within high-contrast disks are not visible. Part (e) shows the low-cantrast disks better: at pixel
locations covered by several disks, the disk of lower contrast is displayed.

5.8.2. Constructing potential texture elements from the disks

"*, • After the disks have been detected, overlapping disks are grouped to form a list of potential texture. elements. We process one group of overlapping disks after another, extractin all subsets of disks that are

spatially connected and contain no concavities greater than 900. Concavities are computed as the angle
formed between two neighboring disks on the border of a region. A concavity greater than 900 forces a
split into smaller regions. A concavity in the range 50* to 900 causes both the unsplit and split regions to
be included on the list of potential texels. Concavities less than 50* are never split. If a co-..;avity is in
the range 500 to 900, the disks are used to form three potential texture elements: one large region consist-
ing of all the disks, and two smaller regions resulting from splitting the large region at the concavity .

These rules are applied recursively, so that the smaller regions can again give rise to several alternate
entries on the list of potential texture elements. The particular values 500 and 900 are not critical; we have
found that the range 50* to 900 is large enough to capture all regions of interest and yet small enough to
prevent a combinatorial explosion in the number of potential texture elements generated. Potential texture
elements that share a disk are marked as mutually exclusive, so that at most one of them can contribute
support to a planar fit and he chosen as a true texture element.

'Region spliutng is implemented as follows. We begin with a set P of overlapping disks, which tog-zther cover an image region
R. The largest concavity in R is found by computing the argles formed by every pair of neighboring disk4 on the border of R. Sup-
pose that X and Y am two neighboring disks on the border of R, and that they form a concavity that should cause a split into smaller,
more convex regions. The concavity is split by (1) removing X from P and repeating the abore process, and then (2) removing Y
from P and repeating the above process.

I• ••" • Y'•. ..... ' 3
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Internally. each potential texture element is represented by a texel-descriptor. A texel-descriptor con-
tains a fist of the disks that together represent the image region occupied by the texel. The texel-descriptor

also contains other information, including the area, average gray-level and conta of the texel, as well as
a list of texels that are mutually exclusive with this one.

S.9. Generality of the representation

The region detector described above performs well on a wide variety of images. Parts (a) and (b) of

Figures 5 to 38 illustrate the strengths and weaknesses of the region extraction. The most notable weak- p
ness of the region extraction is that the representation of elongated regions is not very good. This is not
surprising, since the only shape primitive used is a circular disk. In Section 8.2. we mention future work
that could lead to the development of additional shape primitives more suited to the detection of elongated
regions. Here we analyze the result produced by our region detector when it is applied to an elongated I
image region. Two sources of error are apparent: (1) the calculated disk diameters overestimate the widths
of elongated regions, and (2) iong thin texels tend to appear as a string of disconnected disks. We discuss
these two types of errors in turn.

Suppose we have an image of an infinitely long bar of width B, and we try to fit a disk to somie
point along the center-line of the bar. By comparison of Equations (5.4) and (5.6) we can calculate the
diameter of the resulting disk. The disk diameter will overestimate the bar-width since the formula

D 2a RvzyG*J)/(VzG*J) + 2

r% is used to obtain the diameter D that models the bar-width B, whereas the correct formula for the bar is
B= = 2aqa( , I)(VG*)+ 1j

The seriousness of this error depends, of course, on the magnitude of a(IV2G*I) /(VG*I) relative to 1.
In our implementation, the quantity (4V2 G*I)/(V2G*I) is small. We accept a disk detected at a particular

filter size only if the diameter is close to the filtr size: D =- w = 242fa. When D = 2f2o we have
(V2G*I) /(V2 G*) = 0, so the calculated disk diameter overestimates the bar width by a factor of '2.
Thus, in an image of an infinitely long region, the region-width is overestimated by a factor of approxi-
mately )ff. For regions that are more moderately elongated tue overestimation is less serious. In the limit-
ing case of a region with no elongation, there is no overestimation at all.

Using a circular disk as a shape primitive, we hope to model elongated regions by a string of over-
lapping disks. However, in our current implementation the disks that model an elongated region are often
placed too sparsely, so that a disconnected chain of disks results. One possible remedy is to fit disks more
closely. Currently we fit disks at local maxima (or minima) of the V2G*I images. An elongated region
gives rise to a ridge of large values in the V2G*1 image. Such a region could be better modeled by fitting
a disk at each ridge point rather than just at each local maximum. However, it is difficult to formulate
simple and accurate criteria for judging when a ridge point is significant enough to be used as a disk
center.

Inaccurate modeling of elongated regions does not necessarily cause errors in the analysis of textures
composed of elongated texels. In the present implementation we use the detected regions to analyze gra-
dients of texel area. All elongated regions in an image are split into a chain of disks in a statistically simi-

* lar way; thus we successfully analyze images of elongated textures (see, for example, Figures 29 and 30),
even though the image texels we identify are not as elongated as they should be. A better extraction of
elongated regions would allow us to detect additional texture gradients based on other texture features. For

-X
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example, the aspect ratio of the detected texels could be analyzed. In the current implementation the meas-
ured aspect ratios are too inaccurate to be informative.

The region detector is designed to respond to regions of relatively uniform gray level that contrast
with a relatively uniform background. Most of the regions in the images of Figures 5 to 38 satisfy these
conditions (at least approximately). Therefore region detection is quite good. However, it is not difficult to
construct images containing uniform regions to which our region detector does not respond. Consider, for
example, an image which is white on the left half and black on the right half, with a gray region centered
on the border between black and white. Our detector will not respond well to the gray region because the
background around the region is highly nonuniform.

In summary, despite its shortcomings, the region detector is exact enough to allow fairly accurate
detection of the gradient of texel area in the images shown in Figures 5 to 38. Our method of detecting
and modeling the texture gradients is described in the next two sections.

QI '
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6. TEXTURE GRADIENTS FOR PLANAR SURFACES

In order to deduce scene-layout from texture cues, we must first quantify the relationship between 3D
scene layouts and the corresponding texture gradients. In this section we analyze the texture gradients
present in images of planar textured surfaces. The analysis applies to textures that have no three-
dimensional relief, such as the texture of a wooden table top. The texture gradients are characterized by
deriving the relationship between physical texels and image texels as a function of image location, scene
layout, and camera parameters.

The results of this section can be summarized with reference to a perspective view of an idealized
disk texture as in part (a) of Figure 1. Scanning this image from left to right, in the direction of constant
surface depth, no texture gradient is observed. All image-texels encountered in a horizontal scan have the
same size and shape. On the other hand, scanning the image from bottom to top, in the direction of
greatest depth increase, changes in the size and shape of image texels are observed. We characterize the
magnitude of the observed changes in image texels as follows:

1. The length of the major axes decreases linearly as the image is scanned from bottom to top. This is
a distance-scaling effect, due to the changing distance between the physical texels and the viewer.

2. The length of the minor axes decreases quadratically as the image is scanned from bottom to top.
This quadratic decrease occurs because the minor axes are subject to foreshortening as well as to dis-
tance scaling. (Foreshortening is proportional to the angle between the line of sight and surface nor-
ipal.)

3. Texel area is proportional to the product of the major and minor axis lengths. Therefore, the texel
areas decrease cubically as the image is scanned from bottom to top.

Additional conclusions may be drawn about the rate of change of texel eccentricity and texel density.
Since eccentricity equals the ratio of major axis length to minor axis length, the texel eccentricity increases
linearly as the image is scanned from bottom to top. The density of texels (number of texels observed per
unit area in the image) increases cubically as the image is scanned from bottom to top.

6.1. Notation for scene layout and camera geometry
We consider a planar surface covered with a pattern of identical texels. Later in this section two

expressions are derived to describe the size of image texels. The first expression characterizes the texel
extent in the direction of greatest depth increase (the minor axis length in Figure 1). The second expres-
sion characterizes the texel extent in the direction of no depth change (the major axis length in Figure 1).
Combining these we derive an expression for the expected texel-area as a function of plane parameters,
camera parameters and texel location.

Drawing 1 illustrates the camera geometry and the symbols we use. We consider an image of a
planar textured surface, using the pinhole camera model. Drawing 1 shows a slice that is perpendicular to
the line of intersection of the image plane and the textured plane; the slice is distance y from the focal
point. Both the image plane and the textured plane are perpendicular to the paper that the figure is drawn
on. I
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Drawing 1 - Scene layout and camera geometry

Camral c C Oater ta focal point at (0, 0.0)
origui at focal point

S"y axsit paper \ -image texel, length Fi

t n~exue plaw y!

Plane coordinates:
origin at (0, 0. g) p e

in camer a peordntlegh F
%m (0.. y, zg)

or
(Up.V.O)or

(uj ; . .0)
To simplify the derivation of the relationship between F, and Fp we define two coordinate systems: a cam-
era coordinate system and a plane coordinate system The orientation of both of these coordinate systems
depends on the placement of the textured surface relative to the image plane (the x and a axes are chosen
to align with the tilt direction). No loss of generality is involved: the coordinate systems are tools of the
de" 'ation and thus may be defined in any way we choose.

Here is a complete list of symbols used in this section. Many of these symbols are illustrated above in
rxrawing 1.

y, z) A point in the camera coordinate system is denoted by (x, y, z). This is a left-handed coordi-
nate system with the origin at the focal point. The view direction is along the positive z axis.
The positive x axis points in the tilt direction, ie the direction of greatest depth increase.

(US, v, w) A point in the plane coordinate system is denoted by (u, v, w). This is a left-handed coordinate
system with the origin at (0, 0, g) in camera coordinates. The u and v axes lie in the textured
plane; thus the w component is zero for all points on the textured plane. The u axis is chosen
so that after projection onto the image plane it becomes parallel with the x axis. Thus the v
axis is parallel to the y axis.

From Drawing 1 we see how to convert the coordinates of a point on the textured plane to
camera coordinates. A point on the textured plane, denoted by (u, v, 0) in plane coordinates, is
denoted by (x, y, z) in camera coordinates, where

x=ucosS y =v z=,,sinS+g

S, T The slant and tilt of the textured plane are denoted by S and T respectively. (Slant and tilt are
defined in Section 1.5.)

all



Ii
30

f, S The focal length is denoted by f and the distance along the optic axis from the focal point to

the textured surface is denoted by g.
Ai, Fp, F, The foreshortened dimension of a texel (texel extent measured in the direction of greatest depth

increase; this is the minor axis length in Figure 1) is denoted by F, for an image texel and by
F. for the physical texel. F, denotes the value of F, that would be measured for a texel
located precisely at the image center.

Ui, Up , U, The unforeshortened dimension of a texel (texel extent measured in the direction of constant
depth; this is the major axis length in Figure 1) is denoted by Uj for an image texel and by Up
for a physical texel. U, denotes the value of Q• that would be measured for a texel located
precisely at the image center.

A., A, Ai denotes the area of a texel anywhere in the image. A, denotes the value of A. that would
be measured for a texel located precisely at the image center.

The angle 0 = atan(x/ If) for an image point with coordinates (x1 , y, f). In order to compute
0 for a given image Iccation we need to know the tilt direction (since the orientation of the x
axis depends on the tilt), as well ns the the field-of-view of the camera lens (9 is larger in an
image formed with a wide-angle lens than in an image formed with a telephoto lens).

6.2. The foreshortened texel dimension

We wish to find an expression for Fi, the observed length of the foreshortened texel dimension.
Drawing 1 illustrates the derivation. The foreshortened texel dimension is parallel to the u axis. Thus the
two endpoints of F. are located at (up, v, 0) and (uz,. v, 0). In camera coordinates we denote these same
two points by (x,, y, z.) and (x,', y, :,') respectively. Fi, the image sxtent corresponding to Fp has end-
points at (xi, y, f ) and (xi', y, f). From the geometry in Drawing 1 we see that

f Z' f Zp;

Therefore

F, = xi/-Xi f LP LaffU'o pCs{ xP, _ P xu' o S sc s

=-f Coss uP'zt - up f Cos uS,(g+u,sinS) - u.(g+u;sinS)
-fcos zP, ;P fcos

=-' cosS (_s-u) g
z•,p

Since F. = u; - a., we hae

F, f Coss Fp g 61g .P, Z" 6A

In order to simplify this expression, we derive an alternate expression for g Z',:

g =zp - u,, sinS = , -xptanS

I I
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I. - &tans I - ta ns (6.2)

Substituting this expression for g/ p (and a similar expresion for gIi.') into Equation (6.1), we obtain

F F c L cosS (I- tanO tanS)(0 -tanO' tanS)

If we make the approximation that the view angle does not change significantly across the texel, then 0 is
effectively constant across the texel, so e = 0'. Then

F. = F, cosIS (1- tanO tan S)2
9

We would like to convert this equation into a form that is indep.ndent of the focal iength f and the sur-
face depth g. Setting 0 to zero we obtain an expression for F,, the foreshortened dimension of a texel
measured at the image center:

F.=FdL coss
g

Therefore the foreshortened dimension of a texel anywhere in the image is related to the foreshortened
dimension of a texel at the image center by

F = =F,(I - tanO tanS)ý (6.3)

As a reminder, the only approximation made in the above derivation is that the view angle does not change
significantly across the texel, so that 0 is effectively constant across the texel.

6.3. The unforeshortened texel dimension

The unforeshortened texel dimension lies along a line of equal distance from the image plane. Thus
x and z are constant along the unforeshonened dimension of the physical texel; the endpoints of the physi-cal texel are denoted by (x, yp, z) and (x, yp', z). We see that

up ,=y,- y, and u, =L y,-L y,

so

u L = uLA

Substituting the expression for g/z from Equation (6.2), we obtain

u1 = jL (I -tan@ tan S)
g

Setting 0 to zero we find the unforeshortened texel dimension at the image center:

Therefore the unforeshortened dimension of a texel anywhere in the image is related to the unforeshortened
dimension of a texel at. the image center by

Q U, 0 -( -tanO tan S) (6.4)
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6.4. The projected texel area

Assuming thut the area A, of an image texel is proportional to the product of Fj and Lj, we have
A k Fi E4, where k is a constant of proportionality which depends upon the texel shape. Than, from

Equations (6.3) and (6.4)

= k FU( - tanOtanS)1 = A,(I-tanOtanS)' (6.5)

The only approximation made in this derivation is that the view angle does not change significantly across
the texel, so that 9 is effectively constant across the texel.

Using Equation (6.5), we can predict the area of a texel located anywhere in an image of a textured
planar surface. The following values an needed to make the prediction:

- A,, the aea that would be measured for a texel located at the center of the image.

- S and T, the slant and tilt of the textured plane.

- Field of view of the camera (the ratio of the film-width to the focal length). In orier to calculate 9
for a particular image location, we need the tilt of the textured plane as well as the field of view of
the camera lens.

In our work we assume that the field of view of the camera lens is a known quantity. The other three
quantities, (At, S. T), form the parameter space we search to find the best planar fit for a given texture
image. This is discussed further in Section 7.

The Equations (6.3). (6.4) and (6.5) describe the appearance of texels in an image of a planar tex-
tured surface covered with identical texels. The texels are assumed to show no three-dimensional relief.
Clearly, the textured surfaces typically occurring in natural scenes violate these assumptions. Sections 6.
and 7. demonstrate that the equations are nevertheless useful for finding planar approximations to the tex-
tured surfaces visible in a variety of real images.

I
IL

qI
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7. SURFACE ESTIMATION AND TEXEL IDENTIFICATION

Our goal in analyzing image texture is to find a spatial layout of homogeneously textured surfaces
that could result in the given image texture. We do this by testing many spatial layouts and choosing the
one that best matches the observed image texture.

A set of candidate texels is derived from the image using the methods described in Section 5. By
finding a surface arrangement that is consistent with a maximal subset of the candidate texture elements,
we calculate the surface parameters at the same time that we choose the true texels from among the candi-
dates.

The current implementation is restricted to fitting a single planar surface to the image, based only on
the observed areas of the candidate texture elements. The method could be extended to fit more complex
surfaces, or to fit separate planar surfaces to different parts of the image. The method could also be
extended to use additional properties of the candidate texture elements (aspect ratio, contrast, density) to
obtain a more informed planar fit. Ideally, we would like to find a planar fit that is supported by parallel
sources of infrwmation - the observed changes (across the image) of texel area, aspect ratio, contrast and
density can all give separate evidence to support the hypothesized surface arrangement. We have per-
formed experiments with planar fits basrd on the aspect ratio gradient and the perspective gradient. (The
perspective gradient is the gradient of unforeshonened texel extents; this is the gradient of major axis
lengths in Figure 1). In the current implementation the extraction of elongated regions is not accurate;
therefore these additional gradients do not provide much information beyond that obtained from the area
gradients. An important step in exlending this work is to develop a shape primitive that extracts and
represents elongated regions more accurately than the disks do.

Having extracted candidate texeis from an image of a textured surface, we find the orientation of the
textured plane that best agrees with the observed areas of the candidate texels. A planar surface is charac-
terized by the triple (A,S, T), where A, is the texel area expected in the image center, S is the slant, and
T is the tilt. In order to find the best planar fit for the image texture, we discretize the possible values of
A,, S and T, and evaluate the merits of each possible planar fit. For each choice of (A, S, T), the
expected texel area is computed at each image location. These expected areas are compared to the region
areas actually occurring in the image, and a fit-rating is computed for the plane. The plane that receives
the highest fit-rating is selected as the estimate of the textured surface. The candidate texels that support
the best planar fit are interpreted as true image texture elements (another planar fit may be performed for
the left-over regions, to extract a second texture field).

For efficiency, the best planar fit is determined using a two-stage process. An initial coarse fit is per-
formed using increments of 50 for slant. 100 for Lilt, and 100% for A4. The A, values are chosen to
increase exponentially because area-discrepancies are measured as a ratio of expected to actual areas. To
refine the planar fit, a more detailed search of the (A, S, T) space is done in the neighborhood of the best
plane from the coarse fit. Slant is stepped in increments of 2.50, tilt is stepped in increments of 50, and A,
is stepped in increments of less than 25%.

To evaluate a particular planar fit, the area of each potential texture element is compared with the
texel area predicted by the parameters (A4, S. T). The predicted texel area is computed using the following
equation, which is derived in Section 6. (The angle 9 depends on tilt and image location; the image

0 € •"" 5• ,, 7. *..•..••. ' •" ,••.•••,. .,"' ..• '' '
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location used is the centroid of the potential texture element).

A, = ( -tanO tan S)3

If the expected and actual areas are similar, the candidate texel supports the planar fit well. The total sup-
port for each planar fit is:

fit-rating = • (region area) I region contrast I C"(msion-6014 (7.1)

where

region-ft = max~expcted area, actual area)
min(exrp:ted area, actual area)

The region-fit is 2.0 for a candidate texel that is either alfr -Z big or twice as big as the size predicted by
the planar fit. As seen from Equation (7.1), the contribution made by a region falls off sharply as the
region area deviates from the expected value. The regions make a contribution pioportional to their area:
this compensates for the fact that smail regions outnumber large regions. Region contribution is propor-
tional to the contrast of the region: higher contrast regions are perceptually more important and thus should
have more influence on the planar fit. (We have tried performing planar fits where the "region contrast"
term is left out of Equation (7.1). This works surprisingly well: the parameters of the best planar fit do not
change much. However, the peak of the fit-rating values in (AL, S, T) space is less pronounccd.)

In Equation (7.1). the summation is written to be over all regions. This is not strictly true: in those
image locations where multiple regions are possible (when a single disk participates in the formation of
several candidate texture elements), the sum includes only the candidate texel whose area best agrees with
the hypothesized planar fit.

Results obtained for a variety of images are illustrated in Figures 5 to 33. Parts (c) and (d) of each
figure show the texels that are extracted on the basis of the best planar fit. Part (e) of each figure is a syn-
thetic image illustrating the (4, S, T) parameters of the best planar fit. The height fields in part (f) of each
figure show fit-rating as a function of slant and tilt, with A, fixed at the value that produces the best planar
fit for the texture in question. The height fields flatten out near the back because tilt becomes less impor-
tant as slant decreases; the planar fit is independent of tilt when the slant is zero. The graphs in part (g) of
each figure show fit-rating as a function of A,, with slant and tilt fixed at the values that produce the best
planar fit for the texture in question. The fit-rating values change smoothly as a function of A, slant and
tilt. The absence of secondary peaks and ridges makes it easy to identify the best planar fit. These results
are discussed further in Section 8.

- -

I
SI
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8. IMPLEMENTATION-SUMMARY AND RESULTS

Some implementation details for region detection and surface fitting were given in Sections 5 and 7
respectively. In this section we present a summary of the implementaticn and the results obtained on
naual images. Results ar shown for a number of tetures, so that the srengths. weaknesses and general-
ity of the impletnentation may be judged. All of the images are processed the same way; the method has
no parameters that need to be tuned to particular images.

8.1. Summary of the Implementation

Here we list the processing steps used on all of the images used in our experiments. The processing
of an image I is divided into three main phases& fit disks to the uniform image regions (Section 5.8.1.),
construct potential texture elements from the disks (Section 5.8.2.), and fit a planar surface to the candidate
texels (Section 72.).

Fit disks to the uniform Image regions
(1) Compute the convolutions V2G*1 and V 2G"I for the following six a values: Z/, 2Td. 34., 4J/?.
5'd and6•01 J(he center lobes of the six VIG filters have diameters of 4, 8. 12, 16, 20 and 24 pix-
els respectively.)
(2) Mark the locations where disks will be fit. To analyze the positive-contrast regions of the origi-
nal image, mark all local maxima in the VkG* images. To analyze the negative-contrast regions of
the oeiginal image, mark all local minima in the V2G*1 images.

(3) At each marked location, use the measured V2G*I and *V 2G*l values to compute a disk diame.
ter and disk contrast:

D = 2aq40(*V2 G"I)/(V 2 G*l) + 2 C 03 4 2 eO~5s(V2Gktl)

Retain only the disks where w - 2 s D < w + 2 (w is the width in pixels of the center lobe of the
V2G filter).

Ln Construct potential texture elements from the disks
To form the list of potemtial texture elements, extract all subsets of disks that are spatially connected
and contain no concavities greater than 90°. If a concavity is in the range 500 to 90, use the disks
to form three potential texture elements: one large region consisting of all the disks, and two smaller
regions resulting from splitting the large region at the concavity'. Mark mutual exclusion between
potential texture elements that share a disk: at most one of them can contribute support to a planar fit
and be chosen as a rue texture element.

U Fit a planar surface to the candidate texels
A, is the texel area expected in the image center, S is the slant, and T is the tilt of ,a hypothesized

'Region spftiwna is implemented as follows. We begin with a set P of overlapprnn disks. whitch together cover an image region
R. The largest concavity in R is found by computing the angles formed by every pair of neighbouing disks on the border of R. Sup-
pose that X ad Y ame two neighboring disks on the border of R. and that they form a concavity that should cause a split into smaller.
more convex regions. The concavity is split by (1) removing X from P and r-peating the above process, and then (2) removing Y
from P and repeating the above proms.
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planar fit. For a coarse fit, choose A, from the set (10, 20, 40, 80, 160, 320, 640), choose S from
(00, 5Q, 10°, ..., 70°, 750, 800), and choose T from (0', 20', 40 ° ..., 3000, 3200, 340°). To perform
a fine fit in the neighborhood of the best plane from the coarse fit, change S in increments of 2.50, T
in increments of 50, and A, in increments of less than 25%.

The expected texel area for a particular choice of (A, S, T) is computed as Ai = A,(1 - tan0 tan S)3.
(See Sc ;tion 6 for a definition of the angle 0.) Evaluate a planar fit by adding contributions from
each potential texel:

fit-rating = (region area) I region contrast I e-(tegion'fit)214
all rsiogw

where region-fit = max(expected area, actual area). Select the plane that receives the highest fit-
min(expected area, actual area)

rating as the best estimate of the textured surface. Identify texture elements as those regions that
have an area close to the area expected by the best planar fit.

8.2. The images

Parts (a) of Figures 5 to 38 show images of seventeen natural textures. A few of the images are pho-
tographs of outdoor scenes in Urbana, Illinois. The rest are illustrations in books which have been rephoto-
graphed. All of these images are digtized off of the photographic negatives using a. drum scanner. The
images are 512 by 512 pixels; the image sizes in the figures vary because image borders have been
trimmed. Table 2 indicates the source of each image.

TABLE 2

Description Source of image
A rock pile Figures 5 and 6 Outdoor scene in Urbana, Illinois

An aerial view of houses Figures 7 and 8 Silverman [1983], page 221
Snow Geese flying over water Figures 9 and 10 Bourke-White (1972], page 201
Muslims at a mosque Figures 11 and 12 Bourke-White [1972], page 166
Fleecy clouds Figures 13 and 14 Strache [1956], plate 5
Audience at a 3D movie Figures 15 and 16 Life L -984], plate 1
Sunflowers Figures 17 and 18 Landscape [1984], page 75
A tree trunk Figures 19, and 20 Outdoor scene in Urbana, Illinois
Bathers on the Ganges Figures 21 and 22 Adams and Newhall [1960], page 42
A plowed field Figures 23 and 24 Bourke-White [1972], page 185
A field of flowers Figures 25 and 26 Gullers and Strandell [1977], page 5
Water lillies Figures 27 and 28 Thomas [1976], page 97
Ripple marks in a shallow sea Figures 29 and 30 Strache [1956], plate 14
Water Hyacinths Figures 31 and 32 Thomas [1976], page 14
The Toulumne River Figures 33 and 34 Adams and Newhall [1960], page 64
Sand by the Adriatic Sea Figures 35 and 36 Landscape [1984], page 95
Fallen leaves Figures 37 and 38 Outdoor scene in Urbana, Illinois

Fale
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8.3. Discussion of the results

Figures 5 to 38 illustrate the results we obtain on the seventeen images of natural textures. The
results obtained for each image ar illustrated in two successive figures. The first figure shows the results
obtained on the positive-contrast image regions, whereas the second figure shows the results obtained on
the negative-contrast image regions.

The original image is shown in part (a) of Figures 5 to 38. Part (b) of each figure shows the disks
that model the regions of uniform gray level in the original image. It is impossible to display all the disks
in a single image, since many disks are spatially contained in larger disks. This spatial containment typi-
cally means that either (1) the large disk is part of a texture element and the small disks are subtexture, or
(2) the small disks are texture elements and the large disk is supertexture. In case (1) the large disk usu-
ally has higher contrast than the smaller disks, wherea in case (2) the smaller dis2s usually have bigher
contrast than the large disk. Wherever disks overlap, our figures shows the disk of higher contrast. There-
fore most subtexture disks in part (b) of Figures 5 to 38 are not visible: they are covered by a larger,
higher-contrast disk corresponding to part of a texture element. Refer to Figure 4 for an illustration of the
complete set of disks found for a particular image (the rock pile).

The detected texels are shown in pans (c) and (d) of Figures 5 to 38: these are all image regions
* having area within a factor of two of the area expected by the best planar fit. The parameters of the best
- planar fit are illustrated by the synthetic texture images in part (e) of each figure.

Parts (f) and (g) of Figures 5 to 38 illustrate the change of fit-rating as a function of A, slant and
tilt. The height fields in part (f) of each figure show fit-rating as a function of slant and tilt, with A fixed
at the value that produces the best planar fit for the texture in question. The height fields flatten out near
the back because tilt becomes less important as slant decreases; the planar fit is independent of tilt when
the slant is zero. The graphs in part (g) of each figure show fit-rating as a function of A, with slant and
tilt fixed at the values that produce the best planar fit for the texture in question.

The shape of the fit-rating peak is related to the properties of the image texture. A sharp fit-rating
tý, peak indicates that the texels have small size variance. This is illustrated by the aerial view of houses (Fig-

ures 7 and 8) and by the field of sunflowers (Figures 17 and 18). If the texel sizes have larger variance, as
for the clouds (Figures 13 and 14) and the rock pile (Figures 5 and 6), then the peak is much broader. (In
the rock-pile image, the non-planarity of the original textured surface also cuntributes to the broadness of
the fit-rating peak.) The texels shown in parts (c) and (d) of the figures are those candidate texels having

S* area within a factor of two of the area expected by the planar fit. Using this same factor of two for all
images causes incomplete extraction of texels in images where texel size is highly variable. More com-
plete texel extraction can be achieved by adjusting the criteria for choosing texels from the set of candidate
texels: the criteria should vary as a function of the broadness of the fit-rating peak in (An, S, T) space.

The accuracy of the results may be illustrated in two ways. Firstly, the reader can compare his per-
ception of the textured surfaces (part (a) of Figuires 5 to 38) with the planar surface fitted by the program
(part (a) of Figures 5 to 38). Agreement with human perception is quite good for many of the images.
Seccndly, since the processing of the positive-contrast and negative-contrast regions is performed totallym -independently, the agreement between the slants and tilts obtained by the two analyses strengthens the

, .• confidence in the results. (The A, parameters are not expected to be similar for the positive-contrast and
negative-contrast regions -- the positive-contrast and negative-contrast regions may be of very different
sizes.) However, the two analyses may not always lead to the same estimates of slant and tilt, because a
"texture may not be homogeneous in both texel size and texel separation. Thus, an agreemeit among multi-
pie analyses (such as the two discussed here) must not be required. A method of selecting and integrating
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the pertinent analyses in a given case must be devised. Such inferencing from gradients of multiple texture
properties has not been addressed in the work reported in this paper.

Table 3 summarizes the planar fits obtained for all images. These fits use slants that are multiples of
2.50 and tilts that are multiples of 5*. The slant and tilt values computed from the positive-contrast and
negative-contrast regions are often within 100 of each other. Seven of the 17 images have di rerences less
than 100; nine of the images have differences less than 150. For reference, a 301 difference i i tilt is equal
to the angular distance between adjacent numbers on a clock face. A 30' difference in slant, on the other
hand, is a more serious error. In many of those images that have a large discrepancy between the two
planar fits, attributes of the original texture lead us to expect the fits to differ in accuracy. We have
identified four reasons for the observed discrepancies. In the field of flowers (Figure 25) and the water lil-
lies (Figure 27), the spaces between the texels are less regular than are the areas of the texels; therefore the
fit to the negative-contrast regions is not as accurate as the fit to the positive-contrast regions. A second
reason the background regions produce inaccurate results is because the properties of the physical texels are
more important than the properties of background regions. In images where the physical texels are
separated by gaps, the linear distance between image texels carries more information than does the shape or
area of the background regions. Thus, the results for the negative-contrast regions of the movie image
(Figure 16) and the lilly pad image (Figure 28) are inaccurate because the area of the background regions
poorly reflects the inter-texel spacing. A third reason for discrepancies between the two slant and tilt esti-
mates is a large variability in texel area (as occurs in Figure 11, the image of Muslims at a mosque). This
causes a broad peak in the planar fit space (part (f) of Figure 11); hence the exact peak location is not as
accurate for these images as for others. A fourth reason for inaccurate results is that the current extraction

TABLE3

Description Figures Fit to positive- Fit to negative- Difference
contrast regions contrast regions

A, slant tilt A, slant tilt slant tilt
A rock pile 5, 6 40 62.50 650 40 600 750 2.50 100
Aerial view of houses 7, 8 35 62.50 950 60 67.50 1I0 50 150
Birds flying over water 9, 10 35 450 800 40 57.50 1000 12.50 200
Muslims at a mosque 11, 12 160 27.50 500 120 42.50 1000 150 500
Fleecy clouds 13, 14 100 550 2750 160 550 2800 00 50
3D movie audience 15, 16 280 450 1050 320 7.50 3300 large
Sunflowers 17, 18 160 70' 950 200 700 900 00 50
A tree trunk 19, 20 70 650 3450 80 4z.50 00 25.50 150
Bathers on the Ganges 21, 22 100 450 800 80 650 850 200 50
A plowed field 23, 24 80 42.5' 400 100 650 800 22.50 400
A field of flowers 25, 26 50 700 900 140 52.50 200 large
Water lillies 27, 28 120 750 900 160 52.50 700 22.5° 200
Ripples 29, 30 50 52.50 1050 120 62. 5 1050 100 00

Water Hyacinths 31, 32 100 37.5` 800 100 400 800 2.50 00
The Toulumne River 33, 34 25 57.55 850 40 650 950 7.50 100
Sand 35, 36 240 400 800 200 554 800 150 00

Fallen leaves 37, 38 40 60- 90 ' 50 62.50 95' 2.50 50

4Oti
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of uniform regions fragments non-compact regions in an arbitrary way, increasing the variabilities of the
measured areas. This effect can be seen in the background of the movie image (Figure 16).

For nearly all of the images, at least one of the two analyses produces results that are in good agree-
ment with human perception. Future work may produce a method for automatically determining which
analysis -- the analysis of positive-contrast regions, or the analysis of negative-contrast regions -- has pro-
duced the most accurate results.
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9. SUMMARY AND CONCLUSIONS

We have presented a general discussion of the problem of recovering scene-layout information from
the texture cues present in an image. We argue that extraction of texels is useful and perhaps even neces-
sary for correct interpretation of texture gradients in the face of subtexture, multiple texture fields, and
occlusions. In order to separate texture elements from other regions (such as subtexture regions or texels
from a second texture field) it is necessary to integrate the processes of texel identification and surface esti-
mation. The processing of a texture image should ideally be an integrated analysis of all relevant texture
gradients, including area gradients, aspect-ratio gradients and density gradients.

We have presented an implementation that is based on these ideas; the implementation is restricted to
the detection of gradients of texel area. We derived a region detector based on the response of an ideal
disk to convolution with a Laplacian-of-Gaussian (V2G) over a range of scales. The output of the region
detector is used to form a list of candidate texels. These candidate texels then provide the evidence needed
to choose a good planar fit to the image texture; at the same time, the best planar fit is used to choose the
True texels from among the candidates. Both positive-contrast and negative-contrast image regions are
analyzed for texture information. Results are shown for a wide variety of natural textures.

The region detector and the techniques used to derive it may prove useful in computer vision appli-
cations other than texture analysis. The extraction of texture elements, especially of elongated texture ele-
ments, needs to be improved. We are interested in the development of an elongated shape primitive to
complement or replace the circular disk primitive obtained from the V2G scale-space. We do not have to
restrict our attention to the V2G filter; other filters may be more amenable to analysis. A better treatment
of elongated texels will allow additional texture gradients, such as gradients of aspect ratio, to be measured.
If several texture gradients are analyzed, methods must be developed to combine the information obtained
from each gradient. As we have discussed in Section 2.3., the relative accuracy of the various texture gra-
dients varies from image to image. In combining the results from separate analyses of several texture gra-
dients, it is important to determine which of the texture gradients have given the most accurate results.

Our current implementation produces a planar approximation to the textured surface seen in an
image. Better shape approximations for the textured surface could be obtained in various ways. Planar
surface patches could be fit to subwindows of the image. However, the choice of window-sizes is a
difficult problem. The texture data may be too variable to permit accurate fitting of small planar patches; a
method is needed to judge when a planar patch is large enough to allow an accurate estimate of slant and
tilt. It may be possible to recognize locations of texture curvature directly, by looking for changes in the
compression gradient. As discussed in Section 2.4.2., size and density gradients are important in judging
the ;lant of flat surfaces, whereas the compression gradient is the most important gradient for perception of
curved surfaces. Distance and foreshortening effects cause texture features to vary gradually across theI
image, except at discontinuities of depth or surface orientation, and at boundaries between different surface
textures. Methods for recognizing and locating these discontinuities are needed.

Analysis of the relationships between various texture fields could lead to a better understanding of
the physical structure of the texture. For example, one could note the relationship between the houses and
their shadows in Figure 7, between the heads and the facial features in Figure 15, and betwecn the centers
of the flowers and the petals in Figure 17. Currently, we treat these various components of the physical
texture elements as separate texture fields, without noting the systematic relationships among them.

'6I
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A significant aspect of this work is that it has been tested on enough real images to 'emonstrate its
strong and weak points. Unfortunately, texture is a fairly ill-defined concept. It is difficult to be rigorous
with this subject, to give a precise definition of the problem and to list criteria for judging when the prob-
lem is solved. This paper has developed a method of texture analysis that passes the only test we have: it
works fairly successfully on a wide range of images.
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APPENDIX

THE V2G RESPONSES OF DISK AND BAR IMAGES

In this appendix we derive closed form expressions for the response of bar and disk images to a V2G G
filter. The symbol definitions of Section 5.2. are used.

Given a functior: I(x,y) which describes the intensity of an image at (x,y), the V2G response of this
image at (x, y) is given by the following convolution:

V2G(x,y) * I(x,y) = ff V2G(u,v) I(x-u,y-v)du dv

a -(u2+v2) e"(as v2)I2°a (x-u,y-v)du dv (A.1)

The class of functions I(x,y) which have a closed-form solution for the integral of Equation (A.1) is quite
limited. A closed form for Je" 2du exists only when the bounds of integration are zero or infinite. There-
fore we have a closed-form solution for the V2G response of an infinitely long bar, but cannot find a solu-
tion for a rectangle or one-way infinite bar.

A.1."Some useful integerals

We begin with a list of integrals which will be used in later derivations. The well-known identity

42
)If e - dz -,Fn

may be put into a slightly different form using the substitution z=t/'lF2a:

f e-t'2/ 2 dt 4 a (A.2)

Integrating by parts and using Equation (A.2) we have

f t 2e- tZt2•dt = 21-2- cy (A.3)

The error function is defined here as
. 1 e212 d,

erf (k) j . e 2' x

Thus

f t~e-'"dt = -t e-2?2 + f e-'' dt -M e-'t 2 + "2xerf(M) (A.4)

We use the following equaton to solve for the V•G response of a disk image.

I
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D/(2 D-P9 p O (A.5)
0 e 'p p = -

in deriving this equation, we use integration by part on the second integral (u dy =uv-fv du. with
U = P2. du = 2pdp, V= e-p20e and dv = _p e -9):

D/2 D/2

f 202pe-P"dp + f _e-p;'92*dp
0 0

D/ 22 D/2 D/2 20e'd
-f 2aj2p e-p2 dp + p2yepfeI - f p1 I ~ 2d

00 0

-p2aj2e-;2a3 I-/ D2e e
0 4

A-2. V2G response of a step-edge image
The V2 G response Of a step-edge image will later be used to compute the V2G response of a bar image.
Consider an image of a vertical step edge at x=B defined by

step-edge image: I(x, y) {C if xB (A.6)
0 elewer

Using this definition of J(x~y) in Equation (A.1) gives

f3~ f C142 v2 e M 2 C dv du

2C -- 2rj2r !!Ir42V

f 2e0 e 22 2 Ldvdu

Using the. integrals given in Equations (A.2) and (A.3), this simplifies to

0 y2 e 2u32a2 du

-I-

42n -ý2
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=2nC erf ( -B) - q 25n C f £2e-1212dt

Substituting Equation (A.4), I

Since the two efterms cancel, wefothVGrepneoavrtclspedeoitnstC

V2 G response of step edge: 2-n C (x -B ) e -(x -B )2I2c~2 (A.7)

This expression isthe closed-formnslto o h 2 epneo etclse deo nest
located at x=B. This equation illustrates the zero-crossing of the Marr and Hildreth edge ope.-ator (Marr
1 1980]): for x <B the response is negative, at x =B the response is zero, and for x > B the response is posi-

tive.

A.3. V2G response of a bar image

Consider an image consisting of a bar of width B and intensity C on a zero background:

bar image: I(x,y)= f C if 0:x:5B (A.8)
L 0 elsewhere

In order to compute Lhe V2G response of such a bar, we take the sum of twc step-edge responses. Using

V2 G response of a bar = (response of a step up at x =0) + (response of a step down at x =B)

Sbtttnx=B1inoEquation (A.7)9w)hv

repnea/h cent~e r o'f abre (A.90)

Taking thc derivative with respect to sigma,

~iVG response at the center of a bar: 42-icCB{ 1 e (A. 11)

TeVG. response of a bar differs from the VG response by a factor of 2nta 2. Thus we calculate

V ,response at ',he cent~er of a bar: __2B .. 2/a2/s (A. 12)I

an , .response at uile center o f a bar: Cý B-fB I_ _ I e ~SZ (A 13
7Fi (.T7 a 4  (A 13

rA
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A.4. V2G response of a disk Imageg Conisider an image consisting of a circular disk of diameter D and intensity C on a zero background:

disk- image: l(x,y) = { if x 2+y2 ! D 2/4
d elsewhere (A.14)

We have not succeeded in finding a general closed.form solution for Equation (A.1) using this definition of
I(x,y). However, we can solve Equation (A.1) when x=y=0, giving the V2G response at the center of the
disk. With x and y zero, Equation (A.1) becomes

"2a 2m-(u2+v2 ) e ('" -u -vY)du dy

Change to polar coordinates (p2= us2+vY, du dv = pdpdA) and using I(x,y) from Equation (A.14).
x D/2

CD2 f f(22 -p2,202 pdpdO

Substituting the solution to the inner integral from Equation (A.5).

cD2  -D .-% 2  (Ad

Thus CD

V2G response at the center of a disk: 2 e -D%0 2  (A.15)

Taking the derivative with respect to sigma,

.V2G response at the center of a disk: (A.16)

The V2G,. response at the disk center differs from the V2G response by a factor of 2nor2. Thus

V2G. response at the center of a disk: CD 2e-D-- (A.17)

'p. and ±V2 ~~~CD 2 rD 2  4~(.8

"V2 G. response at the center of a disk: 4 40' 2 e (A.18)
4 7 a,
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'%~

Figure I
Synthetic textures illustrating various slants and Lilts. Slant is the angle between the textured surface and the
image plane. Tilt is the direction in which the surface normal projects in the image. (a) Slant 60'0, tilt 900.
(b) Slant 500, tilt 90'. (c) Slant 600, tilt 45°, (dt) Slant 45", titt 2700.
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Figure 2
The top plot is a cross section of an image of varying-width bars. Subsequent plots, all on the same vertical
scale, show the result of convolving the image with V2G filters of various sizes. The impulse response of the

• 4 one-dimensional V2G filter is (4aa) (a02 - x) 1-12 A circular convolution is used.
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Figure

(a) A rock pile. (b3) Disks corresponding to Figue-onre 6 regions of relatively uniform gray level. Disks are
shown with a darkness proportional to the conLrast of the region. (c) Extracted texels. These are all regions ýsets
of overlapping disks) having area within a factor of two of the area expected by the best planar fit (A, 40,
slant 600, tilt 750). The texels that fit the plane most closely are printed darkest. (d) The texels superimposed on
a bright reproduction of the original.
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qb qM 4b

94b 4b•

q- tilt T 00 .. 350, 3550

(e) (

Si fit-rating

100%

80%

• 5~~0% .. . .,. . . . .

5 % - - - - - - - --- - - - - - -

40 .. . . . . - - - . . . .

S~~~20% . . . . . . ..

S115 1/4 1/3 1/2 1 2 3 4 5
= A , (multiples o&'40)

i Figure 6, continued (A rock pile; negative-contrast regions)
(e) Synthetic image to illustrate the planar fit A, 40, slant 600, tilt 75". (f) and (g) Ratings of various possible
planar fits. In (f) slant and tilt are varied while Ac is constant at 40. In (g) Ac is varied while slant and tilt areSconstant at 60* and 75 respectively.

ia

FOP"

1 a 00 I



elf ~ * ... *..*7

;Y* :'~ * p. 44:: t:: Oh*

*~.*.¾,~U4. Jw
9 

ip

4 48*****' 4

(a).

.
(b)

ee .see9

0004 0'" ::: . 0 **.*;.,

woo 00% *. *No 049, **~ * C

vA. r * 0 4.* .. a ** a

409II
(a) Aerial view of Littown, Pennsylvania. (b) FiueDisks corresponding to positive-contrast regions of relatively uni-
form gray level. Disks are shown with a darkne-ss proportional to the contrast of the region. (c) Extracted texels.
These are all regions (,sets of overlapping disks.) having area within a factor of two of the area expected by the

A best planar fit (A, 35, slant 62.50, tilt 950). The teXCIS that fit the plane most closely are printed darkest. (d) The
texels superimposed on a dark reproduction of the original.
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S~Figure 7, continued (Aerial view of Littown, Pennsylvania: positive-contrast regions)

(e) Synthetic image to illustrate the planar fit A4c 35. slant 62.50, tilt 950. (f) and (g) Ratings of various possible
planar fits. In (f) slant and tilt are varied while Ac is constant at 35. In (.g) A€ is varied while slant and tilt are

•. constant at 62.5° and 950 respectively.
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SFigure 8, continued (Aerial view of Litttwn, Pennsylvania; negative-con0ast regions)

(e) Synthetic image to illusrate the planar fit A, 60, slant 67.50, tilt 110*. (f) and (g) Ratings of various possible
planar fits. In (f) slant and tilt are varied while A. is constant at 60. In (g) A, is varied while slant and tilt are

S• constant at 67.5" and 110* respectively.
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Regions wittin -2 to 2 of center-a:ra 35, slant 45, tilt 30

Histogram of moan-gray2 of regions in .. /birds~regions. fit.2 t

320-329 2 %

330-339 S *
340-349 2 *

350-3:9 5! * ........

360-369 go........ ............
370-379 102 * ** . . . . * . . . . . * ......
340-3:9 1':2 **

390-309 i***********.** t

400-40: 37 .... *- * ......
410-419 6..........................****
420-429 74.......................* *

430-439 72 **..................

440-449 103 **..*.......**** ..
430-439 104.**********..*****.****** an......e*************

450-489 .2 *1 *.**...................

460-489 914 ****.*** .. ** ............400-509 29 *******'' ..

510-519 5 *

Total number of entries: 14S3: averaqe: 426.9: maxjimumw: 518.1

(h)

'. : (i) (i)

Figure 9, continued (Snow geese over Back Bay, Virginia; positive-contrast regions)
Categorizing the texels into a field of birds and a field of wave crests. (h) Histogram of the average gray-level of
the texels from (c). (i) Wave crests: texels with average gray-level less than 415. () Birds: texels with average
gray-level greater than 415. A better region detector would reduce the need for gray-level based categorization of
texels: with more accurate detection of elongated regions, the birds and waves could be recognized as separate
texture fields based on shape properties of the texels.
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(a) Muslims at a mosque. (b) Disks corresponding to positveconrst regions of relatively uniform gray level.
Disks are shown with a darkness proportional to the contrast of the region. (c) Extracted texels. These are all
regions (sets of overlapping disks) having area within a factor of two of the area expected by the best planar fit
(A, 160, slant 27,5', tilt 500). The texcis that fit the plane most closely are printed darkest. (d) The texels super-
imposed on a dark reproduction of the original.
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Figure 11, continued (Muslims at a mosque; positive-contrast regions)
U (e) Syntheilic image to illustrate the planar fit A, 160, slant 27.50, tilt 500. (f) and (g) Ratings of various possible

planar fits. In (f) slant and tilt are varied while A. is constant at 160. In (g) A, is varied while slant and tilt are
constant att 27.5 and 570 respectively.
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(g)

is Figure 12, continued (Muslimc at a mosque; negative-contrast regions)

(e) Synthetic image to illustrate the planar fit A, 120. slant 42.50, tilt 1M00. (f) and (g) Ratings of various possible
planar fits. In (f) slant and tilt are varied while A, is constant at 120. In (g) A, is varied while slant and tilt are

* constant at 42.50 and 1000 respectively.
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Figure 13, continued (,Fleecy clouds; positive-contrast regions)
* (e) Synthetic image to illustrate th~e planar fit A, 100, slant 550, tilt 275". (f) and (g) Ratings of various po~ssible

planar fits. In (f) slant and tilt are varied while A, is constant at 100. In (g) A, is varied while slant and tilt are
constant at 550 and 275- respectively.
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(g)

Figure 14, continued (Fleecy clouds, negative-contrast regions)
(e) Synthetic image to illustrate the planar fit A, 160, slant 550, tilt 280*. (f) and (g) Ratings of various possible
planar fits. In (f) slant and tilt are varied while A, is constant at 160. In (g) A, is varied while slant and tilt are
constant at 550 and 2800 respectively.
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Figure 15
(a) Audience at a 3D movie. (b) Disks corresponding to positive-contrast regions of relatively uniform gray level.
Disks are shown with a darkness proportional LO thIe contrast of the region. (c) Extracted texels. These are all
regions (sets of overlapping disks) having area %%ithin a factor of two of the area expected by the best planar fit
(A, 2180, slant 45. tilt 1051), The texels that ;it the plane most closely are printed darkest. (d) The texls super-'
imposed on a dark reproduction of dhc original.
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a. Figure 15, continued (Audience at a 3D movie: positive-contrast regions)

(e) Synthetic image to illustrate the planar fit A, 280, slant 450, tilt 1050. (f) and (g) Ratings of various possible
planar fits. In (f) slant and tilt are varied while A, is constant at 280. In (g) A, is varied while slant and tilt are
constant at 450 and 1050 respectively.
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Figure 16i
(a) Audience at a 3D movic. io) Disks corresponding to negative-contrast regions of relatively uniform gray level.
Disks are shown with ,, darkness proporucinal to the contrast of the region. (c) L ýtracted texels. These are all

regions (sets -f overlapping disks) having alxea within a factor of two of the area expected by the best planar fit .
(A, 320, slai - ', tilt 330,). The texels that fit the plane most closely are printed darkest. (d) The texels super-
imposed on a br : reproduction of the original.
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3 %,-- Figure 16, continued (Audience at a 3D movie; negative-contrast regions)

S(e) 

Synthetic im age to illustrate the planar fit A, 320, slant 7.5 °, tilt 330 °, (f) and (g) Ratings of various possible
planar fits. In (f) slant and tilt are varied while A, is constant at 320. In (g) A, is varied while slant and tilt are
constant at 7.50 and 3300 respectively.

IVT
_" .JT ,'



IY

G ,.INOMM ~ * ~ '~ Z
(a) (b)'

4 5 -

40 41

*P slit'J.*

*(C (d)*4~ *a a

Fiur 17

(a Sufo es baik orsodn opstv-otas ein frltvl nfr rylvl ik r
shw ihadrnespootoa to, the cont414ras oftergo.()Etrce Ae hs aea ein st
of ovrapn ik)hvn rawti atro w o h raepce ytebs lnrft(,10

ashorn withodudtikness phoportgional.t h otato h ein C xrce ~es hs r l ein s

of oerlppig dsks havng reawitin facor f to o th are exectd b th bes plnarfit(A~160

sln Qtl 5)~Terxl htfi h ln otclsl r rne dret d h exl ueipsdo
a dar rerdutonoteoiginalA."



* 81

*

MP de-41

=W -w da 00 4

4 ,- o am G W -,l ,It S 87.5-, 87% 2.50, 0"or -d -4 4W 40 -& 40

w a40 P 41w 4W 4W
MW - - - -0P 4 - W -1

c•~49 44M• O ~t T 0°, 5',.....350-, 3550

4d END 4W1P

(e) (M

S~fit-rating
100% - - - -- - - -

, ,•"90%

80% . . . . ..

70% . -

60%
5 - - - - - ,- - - - - - - -

- ,-- - ,

4w tltT 00 i 50',355

40%
3%

i• 30q0  ' - I- - ' - . . . . . . '

K . 20%
115 1/4 1/3 1/2 1 2 3 4 5

A, (multiples of 160)

(g)

'N Figure 17, continued (Sunflowers; positive-contrast regions)

(e) Synthetic image to illustrate the planar fit A, 160, slant 70', tilt 950. (f) and (g) Ratings of various possible

planar fits. In (f) slant and tilt are varied while A. is constant at 160. In (g) A, is varied while slant and tilt are

c.onstant at 70* and 950 respectively.
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(a) unfowes. () Dskscorrspodin toFigure 18
(a) unfowes. () Dskscorrspodin tonegative-contrast regions of relatively uniform gray level. Disks are

shown with a darkness proportional to the contrast of the region. (c) Extracted texels. These are all regions (sets
of overlapping disks) having area within a factor of two of the area expected by the best planar fit (A, 200,
slant 7Q0, tilt 900). The texels that fit the plane most closely are printed darkest. (d) The texels superimposed on
a bright reproduction of the original.
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-• 5 •FiguJre 18, continued (Sunflowers; negative-contrast regions)
(e) Synthetic image to illustrate the planar fit A, 200, slant 700, tilt 90*. (f) and (g) Ratings various possible

-•.•planar !its. In (t-) slant and tilt are varied while A, is constant at 200. In (g) A, is vaiied while slant and tilt areconstant at 70' and 900 respectively.

a a a



84

0 . , -

(a (b)I

4*

a t,,,*!, :...-..

(a) (d)

Figure 191
(a) Tree trunik. kb) Disks corresponding to positive-contrast regions of relatively uniform gray level. Disks are
shown with a darkness proportional to the contrast of the region. (c) Extracted texels. These =r all regions (sets
of overlapping disks) having area within a factor of two of the area expected by the best planar fit (A, 70,
slant 65", tilt 345"). The texels that fit the plane most closely are printed darkest. (d) The texels superimposed on

I
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Figure 19., cont~inued (T'ree trunk; positive-contrast regions)
(e) Synthetic image to illustrate the planar fit A, 70, slant 650, tilt 345'~. (f) and (g) Ratings of various possible
planar fits. In (f) slant and tilt are varied while AC is constant at 70. In (g) A, is varied while slant and tilt are
constant at 650 and 3450 respectively.
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shown with a darkness proportional to the contrast of the region. (c) Extracted texels. These are all regions (sets

,,•...of overlapping disks) having area within a factor of two of the area expected by the best planar fit (A, 80,

-'".'-slant 42.5°, tilt 0°). The texels that fit the plane most closely are printed darkest. (d) The texels superimposed or.

.,,-.-,a bright reproduction of th~e original.
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Figure 20, continued (Tree trunk; negative-contrast regior~s)
(e) Synthetic image to illustrate the planar fit A, 80, slant 42.50, tilt 00. (f) and (g) Ratings of various possible
planar fits. In Mt slant and tilt are varied while A. is constant at 80. In (g) A, is varied while slant and tilt are
constant at 42.50 and 010 respectively.
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•, Figure 22, continued (Bathers on the Ganges, negative-contrast regions)
t(e) Synthetic image to ilustrate the planar fit A, 80, slant 65*, Lilt 850. (f) and (g) Ratings of various possible

planar fits. In (f) slant and tilt are varied while A, is constant at 80. In (g) A, is varied while slant and tilt are
S~constant at 650 and 850 respectively.
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3%Figure 2., continued (A plowed field; positive-contrast regions)

(e) Synthetic image to illustrate the planar fit A, 80, slant 42.50, tilt 400. (f) and (g) Ratings of various possibleplanar fits. in (f) slant and tilt are varied while A, is constant at 80. In (g) A, is varied while slant and Lilt are
constant at 42.50 and 40* respectively.
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Figure 24, continued (A plowed field; negative-contrast regions)
(e) Synthetic image to illustrate the planar fit A., 100, slant 650, tilt 8Q0. (f) and (g) Ratings of various possible
planar fits. In (f0 slant and tilt are varied while A. is constant at 100. In (g, A, is varied while slant and tilt are
constant at 650 and 800 respectively.
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Figure 25

(a) A field of flowers. (b) Disks corresponding to positive-contrast regions of relatively uniform gray level. Disks
are shown with a darkness proportional to the contrast of the region. (c) Extracted texels. These are all regions
(sets of overlapping disks) having area within a factor of two of the area expected by the best planar fit (A, 50, '9

slant 7700 tilt 900). The texels that fit the plane most closely are printed darkest. (d) The Lexels superimposed on
a dark reproduction of the original.
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Figure 25, continued (A field of flowers; positive-contrast regions)
(e) Synthetic image to ilustrate the planar fit A, 50, slant 700, :ilt 900. (f) and (g) Ratings of various possible
planar fits. In (f) slant and tilt are varied while A, is constant at 50. In (g) A. is varied while slant and tilt are
constant at 10 ana 900 respectively.
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Figure 26
(a A field of flowers. (b) Disks corresponding to negatve-contrast regions of relatively uniform gray level.
Disks are shown with a darkness proportional to the contrast of the region. (c) Extracted texels. These are all
regions (sets of overlapping disks) having area within a factor of two of the area expected by the best plana± fit
(A, 140, slant 52.51, tilt 200). The texels that fit the plane most closely are printed darkest. (d) The texels super-
imposed on a bright reproduction of the original.
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S• Figure 26, continued (A field of flowers; negative-contrast regions)

(e) Synthetic image to illustrate the planar fit A, 140, slant 52.511, tilt 2100. (f) and (g) Ratings of various possible"
planar fits. In (f) slant and tilt arm varied while A, is constant at 140. In (g) A,, is varied while slant and tilt are-constant at 52.50 and 20° respectively.
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Figure 27
(a) Water -illies. (b) Disks corresponding to posiuive-contrast regions of relatively uniform gray level. Disks are
shown withi a darkness proportional to the contrast of the region. (c) Extracted texels. These an! all regions (sets -

of overlapping disks) having area within a factor of two of the area expected by the best planar fit (A, 120,
slant 750, tilt 900). The texels that fit the plane most closely are printed darkest. (d) The texels superimposed on
a dark reproduction of the original,
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,Figure 27, continued (Water fillies, positive-contrast regions)

ki (e) Synthetic image to illustrate the planar fit A, 120, slant 750, tilt 90°. (f) and (g) Ratings of various possible
planar fits. In (f') slant and tilt are varied while A, is constant at 120. In (g) A, is varied while slant and Lilt arm
constant at 750 and W respectively.
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Figure 28, continued (Water lillies; negative-contra.it regions)
(e Synthetic image to illustrate the planar fit A, 160, slant 52.5", tilt 700. (f) and (g) Ratings of various possible
p~lanar fits. In (f) slant and tilt are varied while A,~ is constant at 160. In (g) A, is varied while slant and tilt are
constant at 52.50 and 700 respectively.
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Figure 29
(a) Ripple marks in shallow sea. (ii Disks corresponding to positive-contrast regions of relatively uniform gray
level. Disks are shown with a darkness proportional to the contrast of the region. (c) Extracted texels. These are
all regions (sets of overlapping disks) having area within a factor of two of the area expected by the best planar fit
(A: 50, slant 52.5', tilt 1050). The texels that fit the plane most closely are printed darkest. (d) The texels super-
imposed on a dark reproduction of the original.
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Figure 29, continued (Ripple marks in shallow sea; positive-contrast regions)
(e) Synthetic image to illustrate the planar fit A, 50, slant 52.50, tilt 1050. (f) and (g) Ratings of various possible
planar fits. In (f) slant and tilt are varied while A, is constant at 50. In (g) A, is varied while slant and tilt are
Sconstant at 52.5° and 105 respectively.
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~I:I (a) Ripple marks in shallow sea. (b) Disks corresponding to negative-contrast regions of relatively uniform gray

* level. Disks are shown with a dzrkness proportional to the contrast of the regiol.. (c) Extracted tex'ds. These are
-" all regions (sets of overlapping disks) having area within a factor of two of the area expected by the best planar fit

"A(,3 120, slant 62.50, tlt 105°). The texels that flt the plane imost closely are printed darkest. (d) The texels
I'3' .superimposed on a bright reproduction of the original,;, 5'
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Figure 30, continued (Ripple marks in shallow sea; negative-contrast regions)
(e) Synthetic image to illustrate the planar fit A, 120, slant 62.50, tilt 10Y. (f) and (g) Ratings of various possible
planar fits. In (f) slant and tilt are varied while A, is constant at 120. In (g) A, is varied while slant and tilt are

imp constant at 62.51 and 1050 respectively.
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(sisof overlapping disks) having area within a factor of two of the area expected by the best planar fit (A% 100,

slant 37.50, tilt 800). The texels that fit the plane most closely are printed darkest. (d) The texels superimposed
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Figure 33
(a) The Toulumne River. (b) Disks corresponding to positive -contrast regions of relatively uniform gray level.
Disks are shown with a darkness proportional to the contrast of the region. (c) Extracted texels. These are all
regions (sets of overlapping disks) having area within a factor of t~wo of the area expected by the best planar fit
(A, 25, slant 57.5*, tilt 850). The texels that fit the plane most closely are printed darkest. (d) The texels super-
imposed on a dark reproduction of the original.

S •IO• I *•



113

4h ft a -- rt

sln S 8750 7-25,0

til T 00 a .,3O,35

* a)

fit-atin

100

90% L

80%

300%

1 .1/4 -A 1r. 1 2 3 4

costn at 575 an 85 repetvey



114

T0:.4 "

WE. -- %;*"gV.% It -
a.So

S...,f. .. , ,. a,'

* ,*...

(a) (b)

*... *w".~.o .. *+." .•. ,* - ... .. • * ,,, I -.,.'

.... ~~~ .. •+ , ,.".+ •.o•.*..O.,¢,.o .%,we al.++:.

g g:
0 0 I_ -- b o go -g`+ I N ~

ape .egg

045%0 ** 0.40 Sam * *
a*0... * t o

9 ****0 ** a

0 ft a -- I

l*~~ ~ 410 Zee 4 
-- t0•l

• 4Ei * Si DO• go• • •*

we. --. • ,.g-...:..A • . ,..

a. %

q **en ** 0% ,I! ,. i

.'I~l __I ll,•lU, tI - " t •

(C) (d)

) Te T R ( D reFigure 34
(a) he ou~une ive. (b Diks orreponingto negative-contrast -regions of relatively uniform gray level.

Disks are shown with a darkness proportional to the contrast of the region. (c) Extracted texels. T1hese are all
regions (sets of overlapping disks) having area within a factor of two of the area expected by the best planar fit
(A, 40, slant 650, tilt 950). The texels that fit the plane most closely are printed darkest. (d) The texels superim-
posed on a bright reproduction of the original.
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S•Figure 34, continued (Thbe Toulumne River, negative-contrast rei ons)(e) Synthetic image to illustrate the planar fit A, 40, slant 65°, tilt 950. (f) and (g) Ratings of various possible

planar fits. In (f) slant and tilt ame varied while A, is constant at 40. In (g) A, is varied while slant and tilt are

Sconstant at 650 and 950 repetvely.
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Figure 35

(a) Sand by the Adriatic Sea. (b) Disks corresponding to positive-contrast regions of relatively uniform gray level.

Disks are shown with a darkness proportional to the conrast of tne region. (c) Extracted texels. These are all

regions (sets of overlapping disks) having area within a factor of two of the area expected by the best planar fit

(A, 240, slant 400, tilt 800). The texels that fit th: plane most closely are printed darkest. (d) The texels superim-

posed on a dark reproducton of the original.
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level. Disks, ame sown with a darkness proPortional to the contrast of the region. (c) Extracted texels. These are
alrgions (sets of overlapping disks) having area within a factor of two of the area expected by the best planar fit

(A,20 slamu 55', Lilt 800). The texels that fit the plane most closely are printed darkest. (d) T~he texels superim-
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nt aFigure 37, continued (Fallen leaves; positive-contrast regions)
(e) Synthetic image to illustrate the planar fit A, 40, slant 600, tilt 900. (f) and (g) Ratings of various possible
planar fits. In (f) slant and tilt are varied while A. is constant at 40. In (g) A, is varied while slant and tilt arep constant at 600 and 900 respectively.
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Figure 38, continued (Fallen leave~s; negative-contrast regions)
(e) Synthetic image to illustrate the planar fit Al, 50, slant 62.5*, tilt 95°. (f) and (g) Ratings of various possible
planar fits. In (f) slant and tih ate varied while A, is constant at 50. In (g) A, is varied while slant and tilt are

tconstant at 62.50 and 950 respectively.

_ Ce (f



II
124

REFERENCES

Adcms, A. and N. Newhall [R960].
This is the American Earth, Sierra Club, San Fransisco.

Ahuja, N. and B. Schachter [1983].
Pattern Models, Wiley; 1983.

Ahuja, N. and B. Schachter (1983b].
"Image. Models", Computing Surveys, Vol. 13, No 4, 373-397, December 1981.

Aloimonos, J. and M. Swain [1985].
"Shape from Texture", Proceedings of the 9th International Joint Conference on Artificial Intelli-
gence 926-931, 1985.

Aloimonos, J. (1986].
"Detction of Surface Orientation from Texture I: The Case of Planes", Proceedings of the IEEE
Conference on Computer VWsion and Pattern Recognition, 584-593, 1986.

Attneave, F. and R. K. Olson (1966].
"Inferences About Visual Mechanisms from Monocular Depth Effects", Psychonomic Science. 4,
133-134, 1966. I

Bajcsy, R. and L. Lieberman [1976].
"Texture Gradient as a Depth Cue", Computer Graphics and Image Processing, vol 5, 52-67, 1976. j

Bourke-White, Margart [1972].
The Photographs of Margaret Bourke-White, Edited by Sean Callahan, New York Graphic Society,
Grzetnwich, Connecticut.

Braunstein, M. L. and J. W. Payne [1969].
"Perspective and Form Ratio as Determinants of Relative Slant Judgments", Journal of Experimental
Psychology, 81(3), 584-590, 1969.

Brodau, P. [1966].
Textures: A Photographic Album for Artists and Designers, Dover, New York, 1966.

Crowley, J. and A. Parker [1984].
"A Representation for Shape Based on Peaks and Ridges in the Difference of Low Pass Transform",
IEEE Pattern Analysis and Machine Intelligence, vol 6, no 2, 156-170, March 1984.

Cutting, J. E. and R. T. Millard [1984].
"Three Gradients and the Perception of Flat and Curved Surfaces", Journal of Experimental

Psychology: General, 113(2), 198-216, 1984. "
Davis, L., L. Janos, and S. Dunn (19831.

"Efficient Recovery of Shape from Texture", IEEE Traoacfions on Pattern Analysis and Machinen

Intelligence, VoL PAMI-5, No. 5, 485-492, September 1983.

Dunn, S., L. Davis, and H. Hakalahti [1984].
"Experiments in Recovering Surface Orientation from Texture", University of Maryland Computer
Science Technical Report CS-TR-1399, May 1984.

Dyer, Charles R. and Azriel Rosenfeld [1976].

"Fourier Texture Features: Suppression of Aperture Effects", IEEE Transactions on Systems, Man,
and Cybernetics. Vol 6, 703-705, October 1976.

,1 1



125

• Eriksson, S. [1964].

"Monocular Slant Perception and the Texture Gradient Concept", Scandinavian Journal of Psychol-

ogy, Vol 5, 123-128, 1964.

Flock, H. R. [1964].
"A Possible Optical Basis for Monocular Slant Perception", Psychological Review, 71(5), 380-391,
1964.

Rock, H. R. [1965].
"Optical Texture and Linear Perspective as Stimuli for Slant Perception", Psychological Review,
72(6), 505-514, 1965.

Freeman, R. B. [1965].
"Ecological Optics and Visual Slant", Psychological Review, 72(6), 501-504, 1965.

Freeman, R. B. (1966a].
"Optical Texture Versus Retinal Perspective: A Reply to Flock", Psychological Review, 73(4), 365-
371, 1966.

Freeman, R. B. [1966b].
"Effect of Size on Visual Slant", Journal of Experimental Psychology, 71(1), 96-103, 1966.

Gibson, J. [1950].
The Perception of the Visual World, Houghton Mifflin, Boston, 1950.

Gibson, J. [1966].
The Senses Considered as Perceptual Systems, Houghton Mifflin, Boston, 1966.

Grimson, W. E. L. and E. C. Hildreth [1985].g "Comments on "Digital Step Edges from Zero Crossing of Second Directional Derivatives", IEEE
Transactions on Pattern Analysis and Machine Intelligence, Vol PAMI-7, No. 1, 121-129, January
"1985.

Gruber, H. E. and W. C. Clark [1956].
"Perception of Slanted Surfaces", Perceptual and Motor Skills, 6, 97-106, 1956.

Gullers, Karl W. and B. Strandell [1977].
Linnaeus, Gullers International, Sweden.

Haralick, R. [1979].
"Statistical and Structural Approaches to Texture", Proceedings of the IEEE, Vol 67, No 5, May
1979, 786-804.

Ikeuchi, K. [1980].
"Shape from Regular Patterns (An Example of Constraint Propagation in Vision)", MIT A.l. Memo
567, March 1980.

Kanatani, K. [1984].
"Detection of Surface Orientation and Motion from Texture by a Stereological Technique", Artificial
Intelligence, 23, 213-237, 1984.

Kanatani, K. and T. Chou [1986].
"Shape from Texture: General Principle", Proceedings Computer Vision and Pattern Recognition 86,
NMiami, 578-583, June 1986.



1
126 I

Kender, J. [19781.
"Shape from Texture: A Brief Overview and a New Aggregation Transform", Proceedings of the
DARPA Image Undeistanding Workshop, 78-84, November 1978. I

Kender, J. [1979].
"Shape from Texture: A Computational Paradigm", Proceedings of the DARPA Image Understand-
ing Workshop, 134-138, April 1979.

Kender, J. [1980a].
Shape from Texture, Ph. D. Thesis, Carnegie-Mellon University Computer Science Department,
CMU-CS-S1-102, November 1980.

Kender, J. and T. Kanade [1980b].
"Mapping Image- Properties into Shape Constraints: Skewed Symmetry, Affine Transformable Pat- I
terns, and the Shape-from-Texture Paradigm", Proceedings of the National Conference on Artificial
Intelligence, American Association for Artificial Intelligence, 4-6, 1980. 1

Kender, J. [1983].
"Surface Constraints from Linear Extents", Proceedings of the American Association for Artificial
Intelligence Conference, 187-190, 1983. j

Landscape (1984].
Landscape Photography, edited by D. Earnest and M. Bulzone, American Photographic Book Pub-
lisiing, New York I

Life (1984].
LIFE: The Second Decade 1946-1955. Little, Brown and Company, Boston.

Marr, D. and E. H-ildreth [1980]. I
"Theory of Edge Detection", Proceedings of the Royal Society of London, B 207. 187-217, 1980

Mart, D. (1982]. 1
Vision, Freeman, San Francisco, 1982.

Muerle, J. [1970].
"Some Thoughts on Texture Discrimination by Computer", Picture Processing and Psychopictorics, I
Lipkin and Rosenfeld eds, New York- Academic Press, 371-379, 1970.

Nakatani, IL, S. Kimura, 0. Saito and T. Kitahashi [1980].
"Extraction of Vanishing Point and its Application to Scene Analysis Based on Image Sequence", I
Proceedings of the International Conference on Pattern Recognition, 370-372, 1980.

Nevatia, R. and K. R. Babu [1980]. 1
"Linear Feature Extraction and Description", Computer Graphics and Image Processing, 13, 251-
269, 1980.

Ohta, Y., K. Maenobu and T. Sakui [1981].
"Obtaining Surface Orientation from Texels under Perspective Projection". Proceedings of the Inter-
national Joint Conference on Artificial Intelligence, 746-751, 1981.

Phillips, R. J. [1970]. I
"Stationary Visual Texture and the Estimation of Slant Angle", Quarterly Journal of Psychology.
22, 389-397, 1970. 1

NI



I
127

Rosenfeld, A. (19751.
"A Note on Automatic Detection of Texture Gradients", IEEE Transactions on Computers, vol C-
24, 988-991, October 1975.

Rosinski, R. R. [1974].
"On the Ambiguity of Visual Stimulation: A Reply to Eriksson", Perception and Psychophysics,
16(2), 259-263, 1974.

Rosinski, R. and N. Levine (1976].
"Texture Gradient Effectiveness in the Perception of Surface Slant", Journal of Experimental Child
Psychology, 22, 261-271, 1976.

Silverman, J. [19831.
For the World to See: the Life of Margaret Bourke-White, Viking Press, New York.

Stevens, K.A. (1981].
"The Information Content of Texture Gradients", Biological Cybernetics, vol 42, 95-105, 1981.

Stevens, K.A. I1983a].
"Slant-Tilt: The Visual Encoding of Surface Orientation", Biological Cybernetics. vol 46, 183-195,
1983.

Stevens, K.A. [1983b].
"Surface Tilt (The Direction of Slant): A Neglected Psychophysical Variable", Perception and
Psychophysics, 33(3), 241-250, 1983.

Strache, Wolf [1956].
Forms and Patterns in Nature, Pantheon Books, New York.

Thomas, Bill [1976].
The Swamp, W. W. Norton & Company, Inc., New York.

Van GoOl, L. A Dewaele, and A. Oosterlinck [1985].
"SURVEY: Texture Analysis Anno 1983", Computer Vision, Graphics, and Image Processing, 29,
336-357, March 1985.

Vicket , 1 I. 7]

"I .ptual economy and the impression of visual depth", Perception and Psychophysics, 10(1),
23. 1971.

Witkin, A.P. (1981].
"Recove-'-zg Surface Shape and Orientation from Texture", Artificial Intelligence, vol 17, 17-45,
1981.

W>,*Jdn, A. F'.83].
"Scale Space Filtering", Eighth International Joint Conference on Artficial Intelligence, Karlsruhe,
West Germany, 1019-1022, August 1983.

Zucker, Steven W., Azriel Rosenfeld, and Larry S. Davis [1975].
"Picture Segmentation by Texture Discrimination", IEEE Transactions on Compaters, C-24, No. 12,
1228-1233, December 1975,

uvvu LpwA J ~ ~ ' ~ ~~~A


