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parameter) control systems (e.g., those governed by delay-differential and partial
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standard eigenvector (Potter, Laub-Schur) based techniques are discussed and

numerical evidence of the efficacy of our ideas presented.

- N .

4 TN Y LS -‘-'l"'"' AR YN LS “m -"-\ \' ) ?
R R R A AN 1 ) R M A SR R O TN
2 A% B0, n " .

M

By




AFOSR-TR 87-0792

A NUMERICAL ALGORITHM FOR
OPTIMAL FEEDBACK GAINS IN HIGH
. DIMENSIONAL LQR PROBLEMS

by

H.T. Banks and K. Ito

L
-

ien
o
. «.}' R




A NUMERICAL ALGORITHM FOR
OPTIMAL FEEDBACK GAINS IN HIGH
. DIMENSIONAL LQR PROBLEMS

- by

H.T. Banks and K. Ito

Accession For

| NTIS GRA&I

DTIC TAB

Unannounced O
Justification |

By
- Distribution/
Availabuitg Codes
lAvail and/or
Dist Special

A

October 1986 LCDS/CCS #86-47




v T— T T— T T T I W T W T W T w e W v W —

y MERICA RITHM P A
) IN HIGH DIMENSIONAL LOR PROBLEMS

H.T. BANKS
K. ITO

- Center for Control Sciences
" Division of Applied Mathematics
Brown University

Providence, RI
October 1986

Research supported in part by the National Acronautics and Space Administration
under NASA grant NAG-1-517, the Air Force Office of Scientific Research under
. contracts No. AFOSR-84-0398 and AFOSR-85-0303, and the National Science
¥ Foundation under NSF grant MCS-8504316. Parts of the research were carried out
5‘ while the authors were visiting scientists at the Institute for Computer Applications
‘ in Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA
23665, which is operated under NASA contracts NAS1-17070 and NASI1-18107.

. - LN I SR cSRees
Y CaPL P4 (Ab'v?' "’..“‘ A0 X w ALV ._ N
A AN

e A AT T

; OO W
LB Ry ,"‘""A’Li s Wy ..;'v. o T AR O Ayt N 3 it ks A3 bt 30 %




——— Radho b WRTWWW L W wiR e "'—-T
—_— - LA achh diad

e A Numerical Algorithm for Optimal Feedback Gains
B in High Dimensional LQR Problems
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ABSTRACT

o T s

it We-propose a hybrid method for computing the feedback gains in linear
e N

'."t. quadratic regulato;;/;):o'ialcms. The method, which combines use of a Chandrasekhar
type system with an iteration of the Newton-Kleinman form with variable
acceleration parameter Smith schemes, is formulated so as to efficiently compute
ey directly the feedback gains rather than solutions of an associated Riccati equation.
,;},. The hybrid method is particularly appropriate when used with large dimensional
s‘v:. . systems such as those arising in approximating infinite dimensional (distributed

parameter) control systems (e.g., those¢ governed by delay-differential and partial

s differential equations). Computational advantages of our proposed algorithm over the

«,t,:é standard eigenvector (Potter, Laub-Schur) based techniques are discussed and

‘,"., numerical evidence of the efficacy of our ideas presented.

K Kev  Words: LQR problems, feedback gains, distributed parameter systems,
X computational algorithm, Chandrasekhar system, Newton-Kleinman scheme, Smith

S method.
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A great deal of effort in recent years in control of distributed systems has
';J' . focused on approximation techniques (for example, see [1]-[6], [8), [11]-[14]), [16), [18],
ot
¥, . PR . .
e [21], [22), [24), [26], [32]) to reduce inherently infinite dimensional problems to (large)
It
finite dimensional analogues. Relatively little attention has been given to the
H%
’ development of efficient computational methods for the resulting large but finite
Ll
E:: dimensional control problems. In this paper we consider such questions for one
(N
W e
classical formulation of the feedback control problem, the well-known linear quadratic
i
.Q. regulator (LQR) problem.
1N
N
:-: There are several approaches one can take in such an endeavor. With the
h
. emergence of new computer architectures (vector and parallel), one exciting possibility
{4
-:_'f. involves the development of new algorithms to be used with nonsequential computers.
o
o While we are currently investigating ideas in this direction, our presentation here is
)
P
. to report on some of our efforts to develop better algorithms for wuse with
s . .
) \"_ conventional serial computers.
o
J!
":. As is well-known, the LQR problem can be reduced to the solution of a
l‘
J matrix Riccati equation in order to construct the feedback gain matrix. The most
',; v widely available method for solution of the Riccati equation is the Potter method
e 0
W~ . . ) . .
,W,',: [30], which is based on obtaining the eigenvectors and cigenvalues of an associated
Y
i . . .
f_ 2nx2n Hamiltonian system when the underlying dynamical control system is of
i'* . . . .
: dimension n. A related, but improved version involving computation of Schur vectors
(5
:'_ for the system was proposed by Laub in [27]. While both of these "eigenvector®
s
] methods can be used satisfactorily (for a discussion of real advantages offered by the
gy
: Laub-Schur approach over Potter’s method, see [27]) for systems with n relatively
\ h )
52 small, say n < 100, the computational effort (and time) grows like n® and becomes
" . .
» prohibitive for large systems. More recently, the idea of using Chandrasekhar systems
o
‘::;.,
b
.‘0..
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‘.l.n.
W
>
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(19], [20], [33, p-304-310], [36]) when the number of states is large compared to the
number of control inputs (exactly the situation in a number of cases where one
approximates a distributed system) has been suggested by a number of authors [33,
p.309], [7), (8], [17], [31). However, as we shall discuss below, there can be numerical
difficulties in using the Chandrasekhar approach. On the other hand, it is known
that iterative methods such as the Newton algorithm as formulated by Kleinman in
[23] can be quite efficiently implemented (even for some large systems) if good
initial estimates are provided and if one can solve efficiently the resulting Lyapunov
equations. In this presentation, we discuss the formulation and numerical testing of a
hybrid method that represents an attempt to combine the good features of the
Chandrasekhar approach (growth like n in computational effort) with those of the
Newton-Kleinman (quadratic convergence when good initial estimates are provided)
along with innovative use of the Smith algorithm for solution of Lyapunov
equations.

We expect these ideas to be quite useful in design of control laws for some
of the models currently being investigated in connection with large flexible structures
as well as in some of the population dispersal and control studies that we are
currently pursuing with biologists and ecologists. Some of the large flexible structures
involve rather sophisticated distributed parameter models (e.g. see [4), [34)), especially
when one wishes to include complicated damping mechanisms involving time or
spatially related hysteresis [6], [34] or nonlinear effects [19). For such models, the
computational task. can be rather demanding whether one is carrying out parameter
identification [3] or feedback control calculations with traditional ecigenvector based
methods (the authors of [6] have indicated experiences with runs requiring 9 hours of
VAX time when using an approximate system with dimension equivalent to n =
238).

For our presentation, we assume that one has used their favorite
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approximation scheme (finite-elements, spline, spectral, etc.) to reduce the problems of
interest to an LQR problem with finite dimensional system. More precisely,
throughout our discussions we consider the LQR problem: minimize the cost

functional

(L.1) Ju) = J°{|Cx(t)|= + Ju(t) Pt
o

subject to the state dynamics

x(t) = Ax(t) + Bu(t) , x(0) = x,.
Here A ¢ R™" B ¢ R™™ and C ¢ RP*™ (We have, without loss of generality, for
our discussions here normalized our problem so that the control term in the cost
functional (1.]1) appears with a weighting matrix 1) We shall assume that (A,B) is
stabilizable and (C,A) is detectable [25], [37). Then the optimal feedback control for
the LQR problem involving (1.1) is given by

u(t) = -BTPx(1)
where P is the unique non-negative symmetric solution of the algebraic Riccati
equation
(1.2) ATP + PA - PBBTP + CTC = 0.
In this paper we propose an algorithm which leads to direct calculation of the
feedback gain matrix K = BTP without computation of P. In addition to providing
substantial savings in computational time over eigenvector methods, our algorithm
requires much less storage and can easily be implemented to take advantage of
special structures (e.g. sparsity) in the system matrix A.

To outline the steps in our algorithms, we first recall that the optimal

feedback gain K is given by the limit K = lim K(t) as t = -= of solutions of the

Chandrasekhar system [9], [20]

ALY

- o oy :
N .4 QM "=
A ,.4'3 '\5,‘.‘,‘;}!‘.’!‘1\'J.'Ql?‘“";i“."ﬂv_ ||‘. '\'!.:".\’, ;'...g., 1§ SN TR




iy

il

46'-
.t

s & a &
N

<

b
-~

LRI ATY ™ R P T e
BRI I W ot ), B s o

A e e ol - wewawe - rrewer -

k(t) = -BTLT()L(1) , K(0) = 0
(1.3) :
L(t) = -L(t)(A-BK(t)) , L(0) = C,

where K € R™™ and L ¢ RP* In fact (see [20], [37]) P = lim ﬁ’ LT(s)L(s)ds as t ~
-2, The first step in the proposed hybrid algorithm involves a numerical integration
of (1.3) backward in time on an appropriate interval [-t50]. For the second step, the
value K(-t) obtained through this numerical integration of the Chandrasekhar system
is then refined by use of the Newton-Kleinman algorithm [23), if we use K(-t) as an
initial value K, for the Newton method.

To motivate our effort in these two steps, we note that the convergence
K(t) = K as t - -» can be very slow when the eigenvalues of A-BK lie close to the
imaginary axis. Moreover, L=0, K, arbitrary are solutions in the asymptotic limit
sense to (1.3). That is, if we denote by f(K,L) the right side of system (1.3), then K,
arbitrary and L=0 are solutions of f(KaL) = 0. Hence K(t) = Ko, L(t) = 0 as t » -®
doesn’t, in general, have a unique limit numerically. Thus, as is pointed out in [33,p.
316-318), if one is to use the Chandrasekhar approach alone, one needs a very
accurate numerical solver for (1.3). This can be computationally quite expensive if we
are dealing with a large system and/or a stiff system. Hence, we propose to use a
rather crude, fast integration method for the Chandrasekhar component of our
algorithm and take the resulting numerical solution K(-t) as a start-up value for the
Newton iterations. If this crude estimate from the Chandrasekhar step is a
sufficiently good initial guess, then we can expect to meet the Newton-Kleinman
requirements that A-BK, be a stability matrix and to obtain quadratic convergence in
this second component of the algorithm.

The first step of our hybrid method requires the solution of n(m+p)
simultaneous equations, while each iteration of the usual Newton-Kleinman step

requires the solution of a Lyapunov equation for the nxn symmetric estimates of P.
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However, as we shall see below, one can use factorization ideas [20] and the Smith
method {35] for Lyapunov equations to reformulate the Newton-Kleinman method as
a direct iterative method for the mxn gain K, thereby providing additional
computational advantages. To speed up our calculations and improve convergence in
the Smith algorithm, we propose a variable stepsize Smith method to solve the
Lyapunov equations as described in Section 4 below. In Section 2 we outline a
numerical scheme for the Chandrasekhar system, while the reformulated
Newton-Kleinman iterative procedure to compute directly the gain K is detailed in
Section 3. Finally, in Section 5, we discuss further some advantages and disadvantages

of the proposed algorithm and report on our experience with several numerical

examples to illustrate the feasibility of our hybrid approach.
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e
; 2. Numerical Solution of the Chandrasekhar System
2
BLS
K
)
. We return to consider more closely the Chandrasekhar system:
:'
» (2.1) K(t) = -BTLT(t)L(t) , K(0) = 0
2 .
‘:: (2.2) L(t) = -L(t)(A - BK(t)) , L(0) = C ,
. where A ¢ R™" L.C ¢ RP*, and K,BT ¢ R™™  We first observe that the second
:*: equation (2.2) is linear in L. In cases where A arises from a discretization or
)
D approximation of partial differential equations, equation (2.2) tends to be a stiff
ay system and thus it is advisable to use an implicit numerical scheme. We propose nere
)
)
) \ the second order Adams-Moulton algorithm [10, p.235]. A second observation is that
N
)
i:! the right hand side of equation (2.1) is independent of K and thus an explicit
‘\ scheme is appropriate; we propose the second order Adams-Bashforth algorithm [10,
\ p.226).
-k: These observations lead us to propose the following algorithm for the
. Chandrasekhar system (2.1), (2.2): Given a step size h>0, approximations K, and L; to
0"
>
1y K(-ih) and L(-1h) are generated by
<A,.
" 0) STy T T T
) (2.3) lém = K; + hGB'LL, - IBTLT L, )
= 0) (0)
:,':: (2.4) léi+% = (K, + Ky)/2
o L L + b k9
o (2.5) i1 =Lt 5( i+1 * L)(A-BK; 1)
N,
] h/ T T T T
(2.6) K,y =K+ f(B L Lis,;+ BLL)
:::; where Ky = 0 and L ; = L, = C.
.:;\:: Several remarks may be useful at this point.
N, (Remark 1) The stiffness of the matrix A dictates the choice of stepsize h.
b
':\:: (Remark 2) The predicted values Ki(al and the corrected values K;, satisfy
).‘
*:
bl
555
L]
fed
7
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L)
e '.‘
::!":: K k@ _ hgTyT T T
;"'i. i1 7 i+l T 3 LiyiLigr - 2L7L; + Ll )
vy 2
DU\
.i{ ) and this relationship can be used for stepsize refinement, i.c., to give local bounds
K depending on stepsize which can be used in error control.
i’c

: (Remark 3) The formula (2.5) can be rewritten as
g
ti’ h h -1
";E'.' | (2.7) Lisn = L+ 2 A)0 - 3 A)
My -1
i =2L,( - %Ai) - L
5 where A; = A - BK({) . Defining H = 1 - 2A we have that 1 - BA; = H + 3BK S
Y
":‘E: where B ¢ R"™™ and Ki(ﬂgs ¢ R™™ | Thus by the Sherman-Morrison-Woodbury
DAY
;E':k formula [29, p.50] (used frequently when updating an nxn matrix by rank m
2 ¥ .
:?: matrices)
e

hayv?! _ -1 . hy-t he @ il (0 0y
?__; (2.8) (- 2A) = H? - JHIB( + 3K,y H'B) K;,
'l,
N - where I + gKi(g_kH'lB € R™™  The matrix K}ﬂk}i’l in (2.8) can be computed by
s
?-"h% K(O) H-1 K.H! h g_BTLTL -1 l_BTLT L. H!
i (2.9) i = KHT 4 EBILLAT - 5B L LT

- .
ol -1 -1 hpTi T -1 T T -
o KiyH'= KH™ + BTLI L, (H + BILTLH),
,‘i Hence we see from (2.7) - (2.9) that the step (2.5) only involves the operation LiH'l
i
& plus inversion of an mxm matrix I + Kﬂ% H-1B. Thus the step (2.5) can be
A,
jzg,:' reformulated so that it requires only an mxm matrix inversion plus matrix-vector
_ ' multiplications if the LU decomposition of H = I - gA is computed a priori.  This
‘::’;:,: procedure can be most advantageous computationally when m and p are small
3
N compared to n.
e.;p (Remark 4) For some problems one might wish to use a completely implicit scheme
5. i s
¢ ;: in place of (2.3) - (2.6) to enhance stability and reduce sensitivity to step size choice.
g, Then one might consider iterations Kx(i)1 , Ll(ﬂ generated by
A%N
]
[
B2 -
gk
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=8«

6) () (j-1)

h
Lisn = L + 3(Liy, + L)(A-BK; i)

(J) T_ ()T, (j)
= K, + X8 LinaLlin

T T
(2.10) K1 it 3 + B LL)

Kiy = (K, + K2

and thus produce iterates with limits (as j - «) K.y, Lj,; satisfying
Lig=L + g(LHI + L)(A-B(K;,; + K;)/2)

(2.11) h T T T
Kijp = K + §(B Liwlim + BL LY.

.......
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A widely used iterative method for finding the non-negative solution of the
algebraic Riccati equation (1.2) is Newton’s method as modified by Kleinman [23].' We
show that this method can be reformulated so that, when combined with a factored
form of the well known Smith method [35], one can compute directly a sequence of
iterates K, for the feedback gain K.

First we recall the Newton iterative algorithm as formulated by Kleinman:
(1) Choose a gain matrix K, so that A-BK, is a stability matrix;

(2) Update K, by Ky = BTPi where P, is the solution of the Lyapunov equation
(A-BK)TP, + P(A-BK) + KTK, + CTC = 0.

It can be shown that 0 ¢ Pi_‘_1 ¢ P, for any i, and P = lim P, where the
convergence is quadratic. This algorithm can be viewed as an iterative method for
the gain K, ie. K = lim K; where K., = F(K) with F(K) = BTP and P is the
solution of the Lyapunov equation:

(3.1) (A-BK)TP + P(A-BK) + KK + CTC = 0.

Thus, in order to calculate F(K) one has to solve the Lyapunov equation (3.1) for the
symmetric matrix P, However, one can form an alternative version that allows one to
directly calculate F(K) using the Smith method for a Lyapunov equation in X of the
form

(3.2) STX + Xs + D™D = 0

where S € R™™ is a stability matrix and D ¢ RP™",

To this end, we replace step (2) in the Newton-Kleinman method by:
(2') For i » 1, update K, by Ky = K - BTZi where Z, = P, , - P, is the solution of

the Lyuapunov equation

(3.3) (A-BK)TZ, + Z(A-BK, + DD, = 0




with D, = K, - K, ;.

The method with (2') offers several advantages over that using (2). The
Lyapunov equation in (2') has fewer inhomogeneous terms than does the one in (2)
and the term D; has rank m which depends only on the number of inputs (controls)
to the system. In the proposed modified Smith method described below, one is able
to compute directly the mxn update matrix J' = BTZ, without computing Z, (see (3.12)

below). Since Z,

; =0 as i = = is expected, choosing the start-up value J}) = 0 in the

factored Smith algorithm (where J' = BTZ is computed as the limit as k = « of a
sequence JL) is a natural as well as convenient choice.

Note that the step (2') requires that one have Z; = P, - P, in hand and
hence we must start this procedure with P, P, (and K K,) given whereas (2) requires
only that one start with K, given. Then K, is computed by K, = BTP, with P, the
solution of

(A-BK)TP, + Py(A- BK,) + KT Ky + CTC = 0.
Since our Smith algorithm below is formulated to solve Lyapunov equations of the
form (3.2), we can, to maintain this form, initially solve the equation twice. That is,
if we solve for 20 the solution of
(3.4) (A-BK)7Z, + Z,(A-BK,) + KT K, = 0

and for Z, the solution of

(3.5) (A-BK)  Z, + Zy(A-BK) + CC =0 ,
then we can obtain ..K1 by K, = BTZ, + BT.Zo . Since the Smith method as
formulated here actually returns BTX where X is the solution to (3.2), we thus will
use this Smith algorithm twice (with S = A-BKg), once with DTD = KJK,, once with
D™D = CTC and then simply add the solutions to obtain K,.

We turn next to the desired factored form of the Smith method as applied

to equation (3.2). Let Xo be an arbitrary nxn symmetric matrix and let a sequence
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N

::: {Xg) of nxn symmetric matrices be generated by
o

Wy (3.6) X

T
38 el k+1 ™ Ur kar + Yx' ’

where r is a postive constant (the Smith stepsize) and

(3.7) U, = (1-15)" (I+15)

(3.8) Y, = 2¢(1-rsT)" DTD(I-rS)”

ﬁ:,l. Then one can argue that (X,) converges to X, the solution of (3.2). The method and
E:" its analysis is basecd on the observation that for any positive constant r, the equation
T (3.2) is equivalent to

,'." X = UTXU, + Y,

'.v,l which can be used to define a contraction map in the obvious manner.

M We modify this standard formulation of the Smith method to suit our
el particular needs here (computing BTX instead of X). From (3.6) we have

b Xepr = Xy = Up Xy = X U, 5 k3 L.

Rl Hence, if X, - X, , = MIM, (ic. if we have a factorable difference), then

) Xy+1 - X, = UTMI MU, = MU)TM,U)).

N - If the start-up value X, is zero, then we can write

hy (3.9) X, - Xo = 2tMIM, , M, = D(I-rS)? .

R By induction on k, (3.6) is then equivalent to

(3.10) M., = MU,

) T
ot (3.11) Xy = Xy + 2MF M, .

L4

In this manner BTX can be obtained as the limit of J, = BTX, where J, is gencrated

Azbd-.'{

by

- - -
T e

TapT
Jepr1 = J + 20BPM M,

>
:5 !

Thus, the update step (2') is carried out by the following Smith algorithm:

P
r%2

(3.12)(i) Set S, = A-BK; and D = K, - K ;;

.é.": (3.12)(ir) Choose a positive constant r and form U, and M, by (3.7) and (3.9)

» ; I
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o . . TpT

,:‘ with § = §, ; put J, = 0 and J, = J, + 2IBPMM,.

L]

"y (3.12)Giii) Iterate for k = 1,2, ..., on

AN

) Mk+1 = MkUr

A TpT

4 g1 = Jx + 2BPM (M,

w-‘ In summary, we have described in this section a Newton-Kleinman scheme
"'Q

N combined with the Smith method for the resulting Lyapunov equation at each step in
g the Newton-Kleinman. We have reformulated the Newton-Kleinman iteration and
Kol

~$ factored the Smith algorithm so as to result in algebraic savings in computing
e

& directly the gain estimates K,

<

1\

pon
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As is well-known, the rate of convergence in the Smith method discussed in
the last section depends upon the choice of the acceleration or step parameter (See
[33, p.291-297] for several discussions. Note that our parameter r is the negative
reciprocal of the parameter in Russell’'s discussions). To increase speed in
convergence, one may employ the accelerated Smith method [33), [35] which can yield
quadratic convergence as compared to the linear convergence obtained with (3.6).
However, unlike (3.6), the accelerated Smith method is not self-correcting [33] and
here we propose to speed up convergence in an alternative way which has proved
both reliable and efficient in some of our numerical tests. Specifically, we propose to
use a succession of acceleration parameter values r; (much in the spirit of other
well-known iterative methods such as alternating directions [15], [28])) to accelerate
convergence in the basic Smith method. Our formulation of this "variable stepsize”
Smith method is based upon the observation that for fixed r > 0 and k 3 1, the
Smith algorithm can be written as
@ sTX, + X,8 + DD = E,

E, =(I+ 1S)™T M + r5)
where M, is defined by (3.9) and (3.10). To sce this, we note that from (3.6) we
have

(I - 18)TX, (I - 1S) = (I + rS)TX, (1 + rS) + 2rD™D ,
or

(1 + 1STHX (I + 1S) - (I - 1)TX (I - 1S) + 2rDTD

= (I +19T(X, - X, ) + 1S) .

Hence, from (3.11) we obtain

2r(STX, + X,S + DTD) = 2r(1 + rS)TMM (I + r§)

which implies (4.1). Moreover, from (3.9) and (3.10) we have

P e e e R
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(4.2) E, = (UN)DTDWU)* , k » 1
Thus, if we use the iteration (3.6) with acceleration parameter r, for k, iterates, we
obtain an iterate X)) and equation error EM satisfying

sTx®M + xWs + p™D = EW
(4.3) E) . (U,Tl)kl DTD(Url)kl.
Let us define the difference T = X - X where X is the sought-after solution of
(3.2). Then it is readily seen that I(1) satisfies a Lyapunov equation similar to that
of (3.2) :
(4.4) ST + IS + EM - 0.
If we next apply the iteration (3.6) Kk, times with acceleration parameter r, to the
residual equation (4.4) we obtain

(4.5) sTx(® 4 x5 4+ M) = E?

where X(®) s the final iterate using r, and the equation error E® js given by

E® = (UT)? EMU_)*2
T2 2
If we proceed to define the difference I® = X - (XU + X)), then from (4.4) and
(4.5) we see that ) satisfies a Lyapunov equation
ST + IS + E® = 0 .
We continue this procedure, using a sequence of acceleration values {r;) along
with corresponding iteration counts {k;} to produce a sequence (X(i)) of nonnegative,

symmetric matrices. For i 3 1, we have

(4.6) sTX® 4 xUg 4 gl-1) o EWO)
. k. : k.
(4.7) EV - CON E("”(U,i) i, E@ = DD .
Thus, if -)-(j E t X, then ij satisfies
i=1
(4.8) sTX; + X + D™D = E)

and hence ij € X and 5()._1 £ ij ) ® L

Using arguments similar to those in [33, p.291-297) one can show that for

FRT. T 1 NI © . U L U N N VR R ! NS RN AR b >"-'.'> SRR Sy RN Ay o \:_-,.'--_ - -:«_
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" 0<pr €r ¢ R, with r, R positive constants, there exists a constant W, 0 < W < 1,
l“ .
::',‘. depending only on r and R, such that for w < p < I,
LY

. Uy | € M(eP*, k=0,1,...,

']
:: . where M(p) is independent of r. Thus, if € r, € R, then for any 0 < & < 1, there
';: exists an integer k(&) such that for k; 3 k(8) , i 3 I,
A

. ¥ k'
) (4.9) US| €1 - ¢.
I." ‘ 1
)
:":' Hence, using (4.7) we have
g . .
A |E(,))| < (1_5)21 |D|2

W so that E) = 0 as j = ® and therefore 5(1. “Xas j= e
fg. For the hybrid method proposed in this paper, we have combined the
B,
Ry variable stepsize method just outlined with the reformulated Smith method of (3.12).
4.';’" We then obtain the following algorithm for solving for the feedback gains K
0y ol
:
i Y
s
S Algorithm (4.10):

‘l-fi

‘.-’I . -
e Set §; = A - BK,, D, = K, - K, and J, = 0. For given acceleration parameters r,,
‘_»:
" fy - . ., and iteration count indices kv kyy . .., we iterate on j = 1, 2, ..., in

the following steps:
(4.10a) Compute U, = (I - eri)'l(I +18) and
J
-1
M, = DI - rS)?,

TmT
I, = 14+ 2 B™MIM,

(4.10b) Iterate for k = 1, 2, ..., k). -1 in
M= MkUrj
T = I ¢ 2’jBTME+1Mk+1

(4.10¢) Compute Dj+l = Mkj(l + r)Si), set J, = ka and return to (4.10a) with
j=j+ 1.

A AR AN
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The steps in Algorithm (4.10) are to be repeated, i.e. iteration through
b ry, Ty - . . , until some convergence criterion is met. In performing the steps in
(4.10b), one can use the Sherman-Morrison-Woodbury formula in a procedure such as
a that outlined in (2.7) - (29) in section 2.
, As is often the case in variable stepsize algorithms, the choice of the
acceleration parameters ry, r,, . . ., and the associated iteration counts k;, k,, . . .,
.) provides both freedom and some frustration in the search for "best” choices. If one
" follows the guide provided by ADI methods (see [15, p.37]), onec might choose a set
of values r; to be used in some cyclic order. The best choices of values for the r
often depend on the cigenvalues of §; = A - BK, For example, consider the case
where §; has only real eigenvalues xj, each with multiplicity m;, j=12 ..., m
Then a choice of T = -1/3; and kj = m, in the algorithm produces convergence in a
finite number (m) of steps. That is, this choice yields EM = 0 in (4.8).
:" Of course, the complete ecigenstructure of S; will not be known (nor do we
i suggest that any sophisticated analysis along these lines be included with each use of
E Algorithm (4.10) to obtain the gains K). A possible alternative is to use one of the
% polynomial acceleration methods [15, Chp 3, 4].
v In closing this section, we note that the analogies of our variable step Smith
method with the ADI methods used to solve partial differential equations can be
-P made a little more precise. Briefly, in ADI spliting methods [28, p.146-148), one
. attempts to solve a discretization of the evolution equation
:. = Ad + f
7

when A 3 0 can be written A = A, + A, with A; 3 0 (for example, factored into
components corresponding to spatial discretizations in the x and y directions

respectively for an equation in a two dimensional spatial domain). This can be shown

{28, p.150] to lead to an iterative scheme
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4.11 I+ ZA )1 + ZA)T™ = (1 - 2A)J - 2A,))® + hf!
4 (4.11) (1+3a)01 + 24y (- 2A)0 - 24))
' where the index j is related to time stepping. On the other hand, if one considers
' the Smith method (3.6)-(3.8) for
i
[y STX + XS = F
G and chooses r = 23 one obtains the iteration
y (4.12) a- gsT)xi“(I - 35) =1+ 'i‘sT )X + }E‘S) + hF .
! In these iterations one may identify the nxn matrix X = [xp - - - » x), x; € R" and
y, the n? vector ¢ = column [Xy -+« 5 Xy If we then identify A ¢ with -STX (e,
S A = - 18ST) and A,® with -XS§ (ie. A, = -S¢l), we can immediately see the
N
equivalence between (4.11) and (4.12).
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mmary Remarks and Numerical Exampl

In the preceeding sections we have presented an algorithm which offers some
definite advantages in computing directly the feedback gains K for high dimensional
LQR problems such as those arising in approximating partial or delay differential
equation control problems. As we shall see with several numerical examples in this
section, it can substantially outperform standard eigenvector methods on such
problems. As we have pointed out, a fundamental algebraic operation (in both the
Chandrasekhar update (2.6), (2.7) and in the reformulated Smith methods (4.10b))
involves computation of
(5.1) L(I - r(A - BK))'!
where L and K are pxn and mxn matrices respectively. Qur algorithm wuses the
Sherman-Morrison-Woodbury formula which can provide significant computational
savings when m and p are small compared to n. For systems involving sparse
matrices A (a frequent occurence in many approximation schemes), the needed
calculations can be carried out quite efficiently.

We further note that the Chandrasekhar and Newton-Kleinman-Smith
components as formulated in our algorithm lead to ready estimates between the true
gain K and the iterates K, in terms of cquation errors in the steps being performed.

One component (the variable step Smith) of the algorithm is most effectively
carried out if one possesses some a priori knowledge of bounds on the closed loop
cigenvalues. If the closed loop eigenvalues lie close to the imaginary axis, then
convergence in the Smith method can be very slow. Eigen or Schur vector methods
[27], [30] are less sensitive in this regard. For low order systems, the Schur vector
approach is more reliable and less expensive computationally than our algorithm. Our
hybrid algorithm depends critically on a number of choices (e.g., stopping criteria in

the Newton-Kleinman and Smith components, stepsize sequence (rj) and iteration count
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sequence (kj} in the variable step component) to be made by the user and the "best"
choices are heavily problem dependent. Hence one can expect our hybrid algorithm to
requirc more experimentation and fine tuning than other more standard methods.
However, as we shall demonstrate with examples, for the case where n is large
compared to m and p, it can offer considerable computational savings with no loss in
accuracy over the methods mentioned above.

We have tested (and are continuing our efforts in this direction) our hybrid
algorithm on several numerical examples. We shall report on just two of these here to
illustrate our findings. All our computations were carried out in double precision on
an IBM 3081 at Brown University. We gratefully acknowledge the assistance of Yun
Wang in our carrying out of the extensive computational studies reported for the

boundary flux control in the diffusion equation problem of Example 2 below.

Example 1: As one of our examples, we considered an example (Example 6 of [27])
which Laub used to test his Schur based methods. The system is the n-dimensional

system of (1.1) with

: ; ]
010 ...0 0
0 0 ! 0
A = B =
. 01 0
[ o . . ... 0] 1]

c= [10. ..0]
which leads to an ill conditioned Riccati equation. This problem corresponds to one
in which n integrators are connected in series with a feedback controller to be
applied to the nth integrator in order to stabilize the system. Only deviations of x,
from the origin are penalized in the cost functional. The true optimal gain is an n
vector K = (l—(l, R l-(") and for this examplc one can arguc that K! « 1. In [27),

Laub used his Schur techniques to study this example and reported difficulties with
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loss of accuracy at a relatively low value of n, n = 21. We carried out runs with
our hybrid algorithm and obtained quite favorable performance. Some of our findings
included:

(@) For n = 40, we used the Chandraseckhar component to integrate to ty = 100 and
produce an initial estimate Ké = 99041, which when used in the Newton-Kleinman
(fixed step size r = .5 in the Smith) produces the estimate Ké = 1.0 - in a total of
293 seconds of CPU time. When we used a cruder solution in the Chandrasckhar
component (t, = 200 but with step size twice that in the first run) to produce K}, =
9394, followed by the N - K (ry, = .5, ry = 1.0 in the variable step Smith) we
obtained Ki = 1.0 -, all in 2.39 seconds.

(b) For n = 50, we produced Kj = .9224745 at t, = 220 and after the N-K-Smith
(fixed step r = .5 in the Smith) obtained K; = 1.0000000003820 in a total of 4.44

CPU seconds. For the same runs with variable step (ry, = .5, = .7) Smith we

T2
obtained a K; as above with 3820 replaced by 3817 in a total of 4.3]1 seconds.
(c) We compared runs with the Chandrasekhar component only against the Potter
method for n = 10, 21, 40. Obtaining essentially the same estimates for n = 10 and
2] (at n = 40, the Potter degenerates numerically to produce useless estimates) we had
CPU times of CH _,, = .753 seconds, POTT _,, = .188 seconds, CH __,, = 1.52
seconds, POTT _,, = 1.22 seconds, CH__,, = 4.35 seconds, POTT __,, = 6.81 seconds.
We found for this example that the eigenvector methods are best for small
n, but as n grows, the Chandrasekhar alone, and, even more so, the hybrid method

will out perform ths e¢igen-Schur methods in both accuracy and CPU times. A more

striking demonstration of this behavior will be given in the next example.

Example 2: We consider the linear quadratic regulator problem: minimize the cost

functional
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(5.2) Jw) = [ (JCz0)]* + Ju(t)|Hat
subject to the partial differential equation

(5.3) 3 5tx) = B 2(tx) , x € (O.1)

z(0,x) = &(x)
with boundary conditions

(5.4) g; 2(t,0) = u(t) and g;z(t,l) -0

where ¢(-) is square integrable on [0,1] and

Cz(t) = J';c(x) z(t,x) dx

-

We can discretize or approximate (5.3)-(5.4) using the standard Galerkin method [2];
i.e. the approximating solution zN(t,x) to (5.3)-(5.4) is given by

) (5.5) N(t,x) = § w8 (x) , w(t) € R1,

i=0

. where #, = 2 is the first order spline defined by

il G-1) ¢ L
N(x N ), N L ¢ N
ol ) 1
Nx) = N(’_*_r;]_-x), %1£x<(1;1_)
y
! L 0 otherwise
and zN(t,x) satisfies
) ! 'a nd
F (5.6) Jg? 2N(t, )N (x)dx = I = 2N X¢N dx - u(t)yNo)
4 0 0
)

for all YV ¢ ZNespan (§ .8, ..., §) .

Then, (5.6) leads to the nth order (n = N + 1) ordinary differential equation for

N

wh o= col(wg, ..., W)

(5.7) QN¥wN(t) = -HNwN(t) - BNu(t)

R



“
k)
-22-

"

K where

.I

! (13 16 0 . . 0]

" 1/6 2/3 1/6
N 0 . .

. N _ 1 . N _!

;. Q" = N 0 with Qj J'olxljdx .

% . 1/6 2/3 1/6

Q 0 ) . 0 1/6 1/3

L) - <

! [ 1.1 0 0]

N -1 2 -1

0
: HY = N with HN = [14_ g d 445,
t . 0 N odx dx
-1 2 -1

. 0 0-1 1
{' and
o BN= col(10...0).

)

: For computational convenience, we change coordinates (for fixed N) in the
_' system (5.7) by x = QN¥wN to obtain the approximate system

.
» x = -HNQYM)!x - BN u

s Thus, in (1.1) we have A = -HYMQY)Y, B = -BN and C = CN(QM)'! where CN is the
=@ vector with components ciN = L‘, c(x)2(x)dx, 0 € i € N.

I

-

,(:J For the problem in this e¢xample, the approximating optimal feedback
N

' operator KN is given [2] by:
'.‘

‘g K¥ = [} kN(x)z(x)dx
_ where kN(x) = E k8(x) and K = (k, . .., ky) is the optimal feedback solution in
“’ i=1

- the problem for (1.1)- with A, B, C chosen as indicated above. We note in this case
%‘f: that for any N 3 1, A has only one unstable cigenvalue (zero), (A,B) is stabilizable,
_’ and (A,C) is detectable.
i

For the special case when ¢(x) = 1, we find C = (1, . . ., 1) ¢ R¥(N+1) 54

y hence CA = 0. It is thus easy to see that the desired solution (K(t),L(t)) to the
Xy
' Chandrasekhar system (1.3) is given by
%
I
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M K() = k()C , L(t) = 2(1)C,
g
::,‘_ where k,? are scalar functions satisfying
y
R k=#¢ , k0 =0
“'.r: .
e 8= -0k , 2(0) =1}
o . )
. Therefore we find kk + 22 = 0 so that k%(t) + 2%(t) = 1. We thus find in this case
2 that k(t) - 1 as t = -= and hence K = 1imK(t) = C. For this case, the
L%
»
.\,57, Chandrasekhar system for the infinite dimensional LQR problem (5.2)-(54) can also
" Al
)
Ent be analyzed [17], [36] and exactly the same argument as above shows the optimal
A feedback gain operator is given by
>
N .
A Kz = [} 1.z(x)dx .
‘\:
These analytic solutions can be used to test software packages and approximation
a4
schemes before more interesting, analytically intractable examples are considered.
. Remark: The form (5.7) of system equations appears frequently in applications. Thus
E the critical computational factor (5.1) can be modified so that one can avoid
‘f-: computing A. For example, in this case it has the form
e L{ - r (-HQ?! - BK))?
A (5.8)
o = LQ(Q + rH + rBKQ)!
J
,.,-j where Q + rH is a symmetric, tridiagonal, positive matrix. Thus one can readily use
-h\-
:_:'. the Cholesky decon. position algorithm for computing LQ(Q + rH)! and combine this
e
i with the Sherman-Morrison-Woodbury formula (see Remark 3 of Section 2) to
~.::- efficiently compute the critical expression (5.8).
y L]
B
J.'.' We carried out extensive computations for this example with c(x) = 1 + x,
St
s i We compared our hybrid method to the Potter algorithm and to use of the
-s Chandrasckhar system alone. We have not used the Laub-Schur method on this
‘
I,
) .
"'- example since we felt comparison with a readily available (to us) Potter package
NI would give as a feel for the relative advantages and disadvantages of our scheme

! 1? Y
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" compared to ecigen and Schur vector based techniques. (Analysis and computational
A
[}
oy experience indicate that the Potter method and the Laub-Schur method are both
c'!.i
¥ O(N3) with the latter method about twice as fast as the Potter method.) We required,
.-
_‘ whenever feasible, the same level of accuracy in computation of feedback gains and
{n
f:'h compared relative CPU times.
'
ioF
In studying our hybrid scheme, we tested numerous sets of Smith
]
he
t
é:;' acceleration parameters (rj), (kj}, stopping times t, in the Chandrasekhar component
H "'
,'::::: and error stopping criteria in both the Chandrasekhar and Newton-Kleinman-Smith
L
components. We summarize some of our findings to date.
Ay
J,: In Table 5.1 we present comparative CPU times for the hybrid scheme vs.
* SN
‘-",\
‘_;.; Potter as we increase N. Recall the corresponding finite dimensional approximation
iy
L,‘ scheme has system with dimension n = N+1. In all of the runs reported in Table 5.1,
.
.::.{ the feedback gains for the hybrid and Potter calculations agreed to 9 decimal places
o
s N Hybrid (CPU Sec.) Potter (CPU Sec.)
e
10 17 14
L1y 20 31 .81
- 30 56 2.45
R 40 .74 5.49
< 50 91 10.71
Y 60 1.09 18.09
' 70 1.26 27.97
80 1.43 41.56
‘:;J 100 1.76
¥y 120 2.10
-
;.(-‘,‘4 140 245
m 160 2.80
o Table 5.1
ey
‘,:‘: s so both scemes provided accurate solutions. In these runs, the hybrid scheme
s
',k calculations used t, = 2.2 (corresponding to h = .1) with |L(-tf)| = 10" in the
:.,v Chandrasekhar component. The Newton-Kleinman component converged after 4
'.. \
z& iterations (i.c. at K,) and we used acceleration steps r; = 1, r, = 107, ry = 103,
e
!fi T, = 10" . Each Smith iteration was allowed a maximum of kj = 50 per value of I
o
o'v‘:l‘

VLI A e S g, m&tmmm&&gmr ! f\m
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although in most cases the iteration satisfied a convergence criterion before this
maximum was attained. Careful consideration of Table 5.1 reveals that the hybrid
scheme is clearly O(N) while the Potter is O(N3); both rates are to be expected from
our earlier observations about the methods. Note that at N = 80 the hybrid scheme
is more than 25 times faster than the Potter scheme (with comparable accuracy, of
course).

We also ran the hybrid scheme with N = 80 and a number of different
fixed acceleration values r in the Smith component. The same Chandrasekhar
component prameters as reported above were used. Table 5.2 contains relative CPU
times as well as an indication of the N-K iterate for which convergence was
achieved.

In Table 5.3 we list some CPU times when different sets of acceleration

parameters (rj} were used. Again these runs were for N = 80 with the same

r CPU (Sec.) nver -K in

5 5.10 K,

1 6.52 K,

107! 6.27 K,

10-2 7.40 K,

10°8 10.10 K,

104 12.06 K

10°° 10.07 K,
Table 5.2

L CPU (Sec.)

(10°%, 1073 6.25

(1, 107, 10°%) 4.88

(1, 1071, 102, 10", 104, 10°%) 1.98

(1, 107, 10-3, 105, 10-¢, 10°7) 1.61
Table 5.3

Chandrasekhar solution as above. All of the converged Newton-Kleinman iterates were

after 6 steps (ie. Ky).

Finally, we made runs (for N = 80) to find the best results that the
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Chandrasekhar algorithm alone (i.e. accurate integration until K(t) = K, L(t) = 0)
could produce. The best results we were able to achieve yielded an accurate value of

K for K(-t) with t; = 3.22 with |L(t)| = 10°® obtained in 5.85 CPU seconds.

Based on our computational findings for the above two examples and our
experience with several other examples for infinite dimensional systems (c.g., beams
with tip bodies, etc.), we are quite confident that the hybrid scheme we propose in
this paper can be profitably used with a number of large scale LQR problems. We
are currently developing a rather general software package that implements the

hybrid scheme in a manner so that a broad range of problems can be treated in the

context of the ideas presented here.
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