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20. Abstract.

We propose a hybrid method for computing the feedback gains in linear

quadratic regulator problems. The method, which combines use of a Chandrasekhar

type system with an iteration of the Newton-Kleinman form with variable

acceleration parameter Smith schemes, is formulated so as to efficiently compute

directly the feedback gains rather than solutions of an associated Riccati equation.

The hybrid method is particularly appropriate when used with large dimensional

systems such as those arising in approximating infinite dimensional (distributed

parameter) control systems (e.g., those governed by delay-differential and partial

differential equations). Computational advantages of our proposed algorithm over the

standard eigenvector (Potter, Laub-Schur) based techniques are discussed and

numerical evidence of the efficacy of our ideas presented.
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A Numerical Algorithm for Optimal Feedback Gains
in High Dimensional LQR Problems

H.T. Banks
K.Ito

_BSTRACT

We-propose a hybrid method for computing the feedback gains in linear

quadratic regulatoriprdblems. The method, which combines use of a Chandrasekhar

type system with an iteration of the Newton-Kleinman form with variable

acceleration parameter Smith schemes, is formulated so as to efficiently compute
directly the feedback gains rather than solutions of an associated Riccati equation.

The hybrid method is particularly appropriate when used with large dimensional

systems such as those arising in approximating infinite dimensional (distributed

parameter) control systems (e.g., those governed by delay-differential and partial

differential equations). Computational advantages of our proposed algorithm over the

standard eigenvector (Potter, Laub-Schur) based techniques are discussed and

numerical evidence of the efficacy of our ideas presented.

Key Words LQR problems, feedback gains, distributed parameter systems,

computational algorithm, Chandrasekhar system, Newton-Kleinman scheme, Smith

method.
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1. Introduction

A great deal of effort in recent years in control of distributed systems has

focused on approximation techniques (for example, see [1]-[6], [8], [11]-[14], [16], [18],

[21], [22], [24], [26], [32]) to reduce inherently infinite dimensional problems to (large)

finite dimensional analogues. Relatively little attention has been given to the

development of efficient computational methods for the resulting large but finite

dimensional control problems. In this paper we consider such questions for one

classical formulation of the feedback control problem, the well-known linear quadratic

regulator (LQR) problem.

There are several approaches one can take in such an endeavor. With the

emergence of new computer architectures (vector and parallel), one exciting possibility

involves the development of new algorithms to be used with nonsequential computers.

While we are currently investigating ideas in this direction, our presentation here is

to report on some of our efforts to develop better algorithms for use with

conventional serial computers.

As is well-known, the LQR problem can be reduced to the solution of a

matrix Riccati equation in order to construct the feedback gain matrix. The most

widely a,,ailable method for solution of the Riccati equation is the Potter method

[30], which is based on obtaining the eigenvectors and eigenvalues of an associated

2nx2n Hamiltonian system when the underlying dynamical control system is of

dimension n. A related, but improved version involving computation of Schur vectors

for the system was proposed by Laub in [27]. While both of these "eigenvector"

methods can be used satisfactorily (for a discussion of real advantages offered by the

Laub-Schur approach over Potter's method, see [27]) for systems with n relatively

small, say n < 100, the computational effort (and time) grows like ns and becomes

prohibitive for large systems. More recently, the idea of using Chandrasekhar systems
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([9], [20], [33, p.304-3101, [36]) when the number of states is large compared to the

number of control inputs (exactly the situation in a number of cases where one

approximates a distributed system) has been suggested by a number of authors [33,

p.309], [7], [8], [17], [31]. However, as we shall discuss below, there can be numerical

difficulties in using the Chandrasekhar approach. On the other hand, it is known

that iterative methods such as the Newton algorithm as formulated by Kleinman in

[23] can be quite efficiently implemented (even for some large systems) if good

initial estimates are provided and if one can solve efficiently the resulting Lyapunov

equations. In this presentation, we discuss the formulation and numerical testing of a

hybrid method that represents an attempt to combine the good features of the

Chandrasekhar approach (growth like n in computational effort) with those of the

Newton-Kleinman (quadratic convergence when good initial estimates are provided)

along with innovative use of the Smith algorithm for solution of Lyapunov

equations.

We expect these ideas to be quite useful in design of control laws for some

of the models currently being investigated in connection with large flexible structures

as well as in some of the population dispersal and control studies that we are

currently pursuing with biologists and ecologists. Some of the large flexible structures

involve rather sophisticated distributed parameter models (e.g. see [4], [34]), especially

when one wishes to include complicated damping mechanisms involving time or

spatially related hysteresis [6], [34] or nonlinear effects [19]. For such models, the

computational task. can be rather demanding whether one is carrying out parameter

identification [3] or feedback control calculations with traditional eigenvector based

methods (the authors of [6] have indicated experiences with runs requiring 9 hours of

VAX time when using an approximate system with dimension equivalent to n =

238).

For our presentation, we assume that one has used their favorite
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approximation scheme (finite-elements, spline, spectral, etc.) to reduce the problems of

interest to an LQR problem with finite dimensional system. More precisely,

throughout our discussions we consider the LQR problem: minimize the cost

functional

(1.1) J(u) - Jfi Cx(t)12 + lu(t) r)dt
0

subject to the state dynamics

x(t) = Ax(t) + Bu(t) , x(0) - xo .

Here A e R'xn, B e Rnxm, and C E RPxD. (We have, without loss of generality, for

our discussions here normalized our problem so that the control term in the cost

functional (1.1) appears with a weighting matrix I.) We shall assume that (A,B) is

stabilizable and (C,A) is detectable [25], [37]. Then the optimal feedback control for

the LQR problem involving (1.1) is given by

u(t) = -BTpx(t)

where P is the unique non-negative symmetric solution of the algebraic Riccati

equation

(1.2) ATP + PA - PBBTp + CTC - 0.

In this paper we propose an algorithm which leads to direct calculation of the

feedback gain matrix K = BTp without computation of P. In addition to providing

substantial savings in computational time over eigenvector methods, our algorithm

requires much less storage and can easily be implemented to take advantage of

special structures (e.g. sparsity) in the system matrix A.

To outline the steps in our algorithms, we first recall that the optimal

feedback gain K is given by the limit K - lim K(t) as t - of solutions of the

Chandrasekhar system [9], [20]

.4
k -
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K(t) - -BTLT(t)L(t) , K(0) - 0
(1.3)

L(t) = -L(t)(A-BK(t)) , L(0) - C,

where K E Rmxn and L RPXn. In fact (see [20], [37]) P = lim f° LT(s)L(s)ds as t

.. The first step in the proposed hybrid algorithm involves a numerical integration

of (1.3) backward in time on an appropriate interval [-t.0]. For the second step, the

value K(-td obtained through this numerical integration of the Chandrasekhar system

is then refined by use of the Newton-Kleinman algorithm [23], if we use K(-tf) as an

*initial value K o for the Newton method.

To motivate our effort in these two steps, we note that the convergence

K(t) - K as t -. - can be very slow when the eigenvalues of A-BK lie close to the

imaginary axis. Moreover, L=0, K. arbitrary are solutions in the asymptotic limit

sense to (1.3). That is, if we denote by f(K,L) the right side of system (1.3), then K.

arbitrary and L=0 are solutions of f(K.,L) = 0. Hence K(t) - K., L(t) - 0 as t -, -

doesn't, in general, have a unique limit numerically. Thus, as is pointed out in [33,p.

316-319), if one is to use the Chandrasekhar approach alone, one needs a very

accurate numerical solver for (1.3). This can be computationally quite expensive if we

are dealing with a large system and/or a stiff system. Hence, we propose to use a

rather crude, fast integration method for the Chandrasekhar component of our

algorithm and take the resulting numerical solution K(-tf) as a start-up value for the

Newton iterations. If this crude estimate from the Chandrasekhar step is a

sufficiently good initial guess, then we can expect to meet the Newton-Kleinman

requirements that A-BK o be a stability matrix and to obtain quadratic convergence in

this second component of the algorithm.

The first step of our hybrid method requires the solution of n(m+p)

* simultaneous equations, while each iteration of the usual Newton-Kleinman step

- requires the solution of a Lyapunov equation for the nxn symmetric estimates of P.

%1
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However, as we shall see below, one can use factorization ideas [20] and the Smith

method [35] for Lyapunov equations to reformulate the Newton-Kleinman method as

a direct iterative method for the mxn gain K, thereby providing additional

computational advantages. To speed up our calculations and improve convergence in

the Smith algorithm, we propose a variable stepsize Smith method to solve the

Lyapunov equations as described in Section 4 below. In Section 2 we outline a

numerical scheme for the Chandrasekhar system, while the reformulated

Newton-Kleinman iterative procedure to compute directly the gain K is detailed in

Section 3. Finally, in Section 5, we discuss further some advantages and disadvantages

of the proposed algorithm and report on our experience with several numerical

examples to illustrate the feasibility of our hybrid approach.

4" . %

,J.
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2. Numerical Solution of the Chandrasekhar System

We return to consider more closely the Chandrasekhar system:

(2.1) K(t) -BTLT(t)L(t) , K(0) - 0

(2.2) L(t) -L(t)(A - BK(t)) , L(0) - C

where A c Rnxn, L,C c RPXn, and K,BT E Rmxn. We first observe that the second

equation (2.2) is linear in L. In cases where A arises from a discretization or

approximation of partial differential equations, equation (2.2) tends to be a stiff

system and thus it is advisable to use an implicit numerical scheme. We propose here

the second order Adams-Moulton algorithm [10, p.235]. A second observation is that

the right hand side of equation (2.1) is independent of K and thus an explicit

scheme is appropriate; we propose the second order Adams-Bashforth algorithm [10,

K p.226].

These observations lead us to propose the following algorithm for the

Chandrasekhar system (2.1), (2.2): Given a step size h>0, approximations K1 and Li to

K(-ih) and L(-ih) are generated by

(2.3) I0) = Ki + h(1-BTLT L -B TLTL.

i+ 1 2 1 i 2 i-i -
m. (O) (0)

(2.4) +)= (0) + Ki)/2
(2.5) Li+1  " L. + h(L. + Li)(A0BK )

a 2 1 ~(AB~~
(2.6) K. = K. + (B TLT L + BTLTL.)

i+1 Ki 2 i+1 i+1

where K o - 0 and L-, Lo - C.

Several remarks may be useful at this point.

(Remark I) The stiffness of the matrix A dictates the choice of stepsize h.

(Remark 2) The predicted values Kfo( and the corrected values K satisfy

a,t

'a'
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K(o) _TtT 2LT ~ LTIi

i+1 Ki+1 2 "-1+l+1 - 2L-L1 + L~1 L1 1)
h BT d2 (LTL)

and this relationship can be used for stepsize refinement, i.e., to give local bounds

depending on stepsize which can be used in error control.

(Remark 3) The formula (2.5) can be rewritten as

(2.7) Li+ 1 = Li(I + -A)(I - hA.)-1
2 2

2L3 (I " h -

where- A. AA
222where Ai = A - BK(" . Defining H I hA we have that I - hA' = H + hBKO

where B e Rnxm and Kf° e Rmxn Thus by the Sherman-Morrison-Woodbury

formula [29, p.50] (used frequently when updating an nxn matrix by rank m

matrices)

(2.8) (1I A - !- IB(I + h (0) 4H-B) Kj(oH-2 2 2-

where I + hK(O4H1IB e R m xm . The matrix K1O4H 1 in (2.8) can be computed by

,"H = + ._TLTLH'I . L L H

(2.9) 2  2 i 2

hH (2.9)h+ nTLT L H + BTL T L ).L ' Ki+lH "1 = KiH ' + !-4B 1+1 1+ 1  +

Hence we see from (2.7) - (2.9) that the step (2.5) only involves the operation LiH'1

plus inversion of an mxm matrix I + K° H'1B. Thus the step (2.5) can be

reformulated so that it requires only an mxm matrix inversion plus matrix-vector
h~A is computed a priori. This

multiplications if the LU decomposition of H I - 2

procedure can be most advantageous computationally when m and p are small

compared to n.

(Remark 4) For some problems one might wish to use a completely implicit scheme

in place of (2.3) - (2.6) to enhance stability and reduce sensitivity to step size choice.

Then one might consider iterations Kfj, Lfj) generated by

; .- * 4. -



6kL+-L + f(i + Lj)(A-BK 1j+)

(21)0) h T (j)T (j) T T
(2.10) Ki= K. + 2..(B2 i+1 Li+1 B L3 -1)

0) 6i)K +)- ('S+ 1 + i/

and thus produce iterates with limits (as j *)K.:+1 Li+, satisfying

L j+ L !-L1 (L +l + L1)(A-B(Ki+1 + Ki)/2)

(2.11) h T T T T
Ki+ 1 =Ki + (B L 1+1L,+ + B Li L1)

p2
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3. An Iterative Method for Comoutinst the Optimal Feedback Gain K

A widely used iterative method for finding the non-negative solution of the

algebraic Riccati equation (1.2) is Newton's method as modified by Kleinman [23]. We

show that this method can be reformulated so that, when combined with a factored

form of the well known Smith method [35], one can compute directly a sequence of

iterates Ki for the feedback gain K.

First we recall the Newton iterative algorithm as formulated by Kleinman:

*(1) Choose a gain matrix Ko so that A-BK o is a stability matrix;

(2) Update K i by Ki+1 = BTpi where Pi is the solution of the Lyapunov equation
(A-BKi)TPi + Pi(A-BKi) + KTKi + CTC = 0.

It can be shown that 0 ( Pi+t ( Pi for any i, and P = lim Pi where the

convergence is quadratic. This algorithm can be viewed as an iterative method for

the gain K, i.e. K = lim Ki where Ki+1 = F(Ki) with F(K) = BTP and P is the

solution of the Lyapunov equation:

(3.1) (A-BK)Tp + P(A-BK) + KTK + CTC . 0.

Thus, in order to calculate F(K) one has to solve the Lyapunov equation (3.1) for the

symmetric matrix P. However, one can form an alternative version that allows one to

directly calculate F(K) using the Smith method for a Lyapunov equation in X of the

form

(3.2) STX + XS + DTD = 0

' -where S E Rn n is a stability matrix and D e Rpxn.

To this end, we replace step (2) in the Newton-Kleinman method by:

(2') For i ) 1, update Ki by Ki+1 = Ki - BTZi where Zi - Pi-1  Pi is the solution of

the Lyupunov equation

(3.3) (A-BKi)TZi + Zj(A-BK) + DTDj 0
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with Di = K i - Ki. r

The method with (2') offers several advantages over that using (2). The

Lyapunov equation in (2') has fewer inhomogeneous terms than does the one in (2)

and the term D, has rank m which depends only on the number of inputs (controls)

to the system. In the proposed modified Smith method described below, one is able

to compute directly the mxn update matrix P = BTZi without computing Z i (see (3.12)

below). Since Z i  0 as i -" is expected, choosing the start-up value P - 0 in the

factored Smith algorithm (where P - BTZi is computed as the limit as k -. of a

sequence Ji) is a natural as well as convenient choice.

Note that the step (2') requires that one have Z1 = PO - P1 in hand and

hence we must start this procedure with PO, P1 (and Ko,K1 ) given whereas (2) requires

only that one start with K o given. Then K, is computed by K, = BTPo with Po the

solution of

(A-BKo)TPo + Po(A- BKo) + K T K0 + CTC . 0.

Since our Smith algorithm below is formulated to solve Lyapunov equations of the

form (3.2), we can, to maintain this form, initially solve the equation twice. That is,

if we solve for i. the solution of
(3.4) (A-BKo)TZ + Zo (A-BK o ) + KToK - 0

and for Z o the solution of

T' T
(3.5) (A-BK0 ) Zo + Zo(A-BKo) + C c = 0

then we can obtain K1 by K1 = BT Zo + BTZo Since the Smith method as

formulated here actually returns BTX where X is the solution to (3.2), we thus will

use this Smith algorithm twice (with S - A-BKo), once with DTD = KTKo, once with

DTD _ CTC and then simply add the solutions to obtain K.

We turn next to the desired factored form of the Smith method as applied

to equation (3.2). Let X 0 be an arbitrary nxn symmetric matrix and let a sequence

4"*' "%
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(Xk) of nxn symmetric matrices be generated by

(3.6) Xk+l Ur XkUr + Yr

where r is a postive constant (the Smith stepsize) and

-1

(3.7) U r = (I-rS) (I+rS)

(3.8) Yr =  2r(I-rST)I DTD(IrS)' 1

Then one can argue that (Xk) converges to X, the solution of (3.2). The method and

its analysis is bascd on the observation that for any positive constant r, the equation

(3.2) is equivalent to

X = UTXU +Y
r r r

which can be used to define a contraction map in the obvious manner.

We modify this standard formulation of the Smith method to suit our

particular needs here (computing BTX instead of X). From (3.6) we have

Xk+ - Xk . UT(Xk - Xkl)U , k ; 1.

Hence, if Xk - Xkl = MkMk (i.e. if we have a factorable difference), then
x x .UTMT MU (M )T(

Xk+lXk , r k k r - rT(MkUr).

If the start-up value X o is zero, then we can write

(3.9) X = 2rMTM ,M D(I-rS) "l

By induction on k, (3.6) is then equivalent to

(3.10) Mk+ 1 = MkU r

(3.11) Xk+l = Xk + 2rMTMk+

In this manner BTX can be obtained as the limit of Jk - BTXk where Jk is generated

by
Jk+l = Jk + 2rBTMT M

k+1 k+1

Thus, the update step (2') is carried out by the following Smith algorithm:

(3.12)(i) Set Si - A-BK i and D - K i - Ki1;

(3.12)(ii) Choose a positive constant r and form Ur and M, by (3.7) and (3.9)

i
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with S - Si ; put Jo = 0 and J, - Jo + 2rBTMTMr

(3.12)(iii) Iterate for k - 1, 2, on

Mk+ 1 ' MkU r

2rB TMTM
Jk+ Jk 2rB k+1 k+1

In summary, we have described in this section a Newton-Kleinman scheme

combined with the Smith method for the resulting Lyapunov equation at each step in

the Newton-Kleinman. We have reformulated the Newton-Kleinman iteration and

factored the Smith algorithm so as to result in algebraic savings in computing

directly the gain estimates Kr.

J

.
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3. The Smith Method and VaTiable Steosize

As is well-known, the rate of convergence in the Smith method discussed in

the last section depends upon the choice of the acceleration or step parameter (See

[33, p.291- 297 ] for several discussions. Note that our parameter r is the negative

reciprocal of the parameter in Russell's discussions). To increase speed in

convergence, one may employ the accelerated Smith method [33], [35] which can yield

quadratic convergence as compared to the linear convergence obtained with (3.6).

However, unlike (3.6), the accelerated Smith method is not self-correcting [331 and

here we propose to speed up convergence in an alternative way which has proved

both reliable and efficient in some of our numerical tests. Specifically, we propose to

use a succession of acceleration parameter values ri (much in the spirit of other

well-known iterative methods such as alternating directions [15], [28]) to accelerate
'

convergence in the basic Smith method. Our formulation of this "variable stepsize"

Smith method is based upon the observation that for fixed r > 0 and k ; 1, the

Smith algorithm can be written as

STXk + XkS + DTD , Ek
(4.1)

Ek - (I + rS)TMT Mk(I + rS)

where Mk is defined by (3.9) and (3.10). To see this, we note that from (3.6) we

'p., have

(I - rS)TXk(I - rS) - (I + rS)TXkx(I + rS) + 2rDTD

or

(I + rST)Xk(I + rS) - (I - rS)TXk(l - rS) + 2rDTD

a (I + rS)T(Xk - Xk-l)(I + rS)

Hence, from (3.11) we obtain
2r(STXk + XkS + DTD) - 2r(I + rS)TMTMk(I + rS)

which implies (4.1). Moreover, from (3.9) and (3.10) we have

-'p

it5
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(4.2) Ek - (U T )kDTD(U r )k , k ) 1

Thus, if we use the iteration (3.6) with acceleration parameter r i for k, iterates, we

obtain an iterate X (1 ) and equation error EM') satisfying

STX ( 1) + XM1)S + DTD - E(1)

(4.3) EM = (UT)k 1 DTD(Ur) l.

Let us define the difference E(l) - X - X O) where X is the sought-after solution of

(3.2). Then it is readily seen that E( l) satisfies a Lyapunov equation similar to that

of (3.2) :

(4.4) STE + ES + E ( 1) - 0.

If we next apply the iteration (3.6) k2 times with acceleration parameter r 2 to the

residual equation (4.4) we obtain

(4.5) STX( 2) + X(2 )S + EM = E( 2)

where X (2 ) is the final iterate using r 2 and the equation error E( 2) is given by

E (2 ) = (UT ) 2 E(1)(U ) k 2

r2 ) 2

If we proceed to define the difference E(2) - X - (X( 1) + X(2)), then from (4.4) and

(4.5) we see that E(2) satisfies a Lyapunov equation

STE + ES + E(2 ) 
- 0

We continue this procedure, using a sequence of acceleration values (ri) along

with corresponding iteration counts (ki) to produce a sequence (X(O)) of nonnegative,

symmetric matrices. For i ) 1, we have

(4.6) STX(i) + x(i)s + -
(i-1) . E i)

(4.7) E ( )  ( , E ( °) m DTD

Thus, if 0 X(i), then X. satisfies

(4.8) STXj + XjS + DTD - E ( j )

and hence X. ( X and X. 1 ( Xj j ? I.

Using arguments similar to those in [33, p.291-297] one can show that for

j
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0 < r( r ( R, with L R positive constants, there exists a constant w, 0 < w < 1,

depending only on L and R, such that for t < p < 1,

IUkI M(p)pk , k o, 1, .

* where M(p) is independent of r. Thus, if r ( ri ( R, then for any 0 < 9 < 1, there

exists an integer k(C) such that for ki ) k(C) , i ) 1,I

(4.9) 1 U l -

Hence, using (4.7) we have

so that E -0 as j - and therefore Xj -* X as j-.

For the hybrid method proposed in this paper, we have combined the

variable stepsize method just outlined with the reformulated Smith method of (3.12).

We then obtain the following algorithm for solving for the feedback gains K.:

Algorithm (4,10):

Set Si -A - BKi, DI - K i - Ki 1 and Jo - 0. For given acceleration parameters rp

r 2 . . . and iteration count indices kJ, k2 ..... we iterate on j 1, 2,... in

the following steps:
(4.1Oa) Compute Ur - (I - r.S)'(I + r.Si) and

M- Dj(I -rjSi) "

J =  + 2r BTMTM

(4.1Ob) Iterate for k - 1, 2, . . . , k 1 in

Mk+1 - MkU

Jk+1 Jk + 2riB Mk+Mk+l

(4.1Oc) Compute D,+ - Mk (I + r S,), set Jo J and return to (4.10a) with

j-i+ 1.

•.
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The steps in Algorithm (4.10) are to be repeated, i.e. iteration through

rp, r2 , . . . , until some convergence criterion is met. In performing the steps in

(4.10b), one can use the Sherman-Morrison-Woodbury formula in a procedure such as

that outlined in (2.7) - (2.9) in section 2.

As is often the case in variable stepsize algorithms, the choice of the

acceleration parameters r, r2 , . . . , and the associated iteration counts k,, k2l, .

provides both freedom and some frustration in the search for "best" choices. If one

follows the guide provided by ADI methods (see [15, p.37]), one might choose a set

of values rj to be used in some cyclic order. The best choices of values for the r

often depend on the eigenvalues of Si = A - BK i . For example, consider the case

where S, has only real eigenvalues XP each with multiplicity mj, j = 1, 2, . . . , m.

Then a choice of rj = -l/X j and kj M M in the algorithm produces convergence in a

finite number (m) of steps. That is, this choice yields E(m) - 0 in (4.8).

Of course, the complete eigenstructure of Si will not be known (nor do we

suggest that any sophisticated analysis along these lines be included with each use of

Algorithm (4.10) to obtain the gains K1). A possible alternative is to use one of the
4...

polynomial acceleration methods [15, Chp 3, 4].

In closing this section, we note that the analogies of our variable step Smith

method with the ADI methods used to solve partial differential equations can be

made a little more precise. Briefly, in ADI spliting methods [28, p.146-148], one

attempts to solve a discretization of the evolution equation

0 = AO + f
when A ) 0 can be written A Al + A2 with Ai ) 0 (for example, factored into

components corresponding to spatial discretizations in the x and y directions

respectively for an equation in a two dimensional spatial domain). This can be shown

A" (28, p.150] to lead to an iterative scheme

4',
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(4.11) (1 + Aj)(I + A (j+' - (I - tAj)(I A)l + hfJ

where the index j is related to time stepping. On the other hand, if one considers

the Smith method (3.6)-(3.8) for

STX + XS - F

and chooses r h, one obtains the iteration
2'

(4.12) (I - hT)X+I(I _2 =S (I + h T)Xi(I +h +h

2 ~ 22

In these iterations one may identify the nxn matrix X = [x, , xnj, xi c Rn and

the n2 vector 0 - column [x,, . . . I xc]. If we then identify A1 0~ with ..STX (i.e.,

Al = - JOST ) and A 2 0 with -XS (i.e. A2  -SOI), we can immediately see the

equivalence between (4.11) and (4.12).

4r
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5. Summary Remarks and Numerical Examples

In the preceeding sections we have presented an algorithm which offers some

definite advantages in computing directly the feedback gains K for high dimensional

LQR problems such as those arising in approximating partial or delay differential

equation control problems. As we shall see with several numerical examples in this

section, it can substantially outperform standard eigenvector methods on such

problems. As we have pointed out, a fundamental algebraic operation (in both the

Chandrasekhar update (2.6), (2.7) and in the reformulated Smith methods (4.10b))

involves computation of

(5.1) L(I - r(A - BK)) "1

where L and K are pxn and mxn matrices respectively. Our algorithm uses the

Sherman-Morrison-Woodbury formula which can provide significant computational

savings when m and p are small compared to n. For systems involving sparse

matrices A (a frequent occurence in many approximation schemes), the needed

,. calculations can be carried out quite efficiently.

We further note that the Chandrasekhar and Newton-Kleinman-Smith

components as formulated in our algorithm lead to ready estimates between the true

gain K and the iterates K i in terms of equation errors in the steps being performed.

One component (the variable step Smith) of the algorithm is most effectively

carried out if one possesses some a priori knowledge of bounds on the closed loop

eigenvalues. If the closed loop eigenvalues lie close to the imaginary axis, then

convergence in the Smith method can be very slow. Eigen or Schur vector methods

[27], (30] are less sensitive in this regard. For low order systems, the Schur vector

approach is more reliable and less expensive computationally than our algorithm. Our

hybrid algorithm depends critically on a number of choices (e.g., stopping criteria in

the Newton-Kleinman and Smith components, stepsize sequence (r,) and iteration count

N
"470'

"44

J
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sequence (k.) in the variable step component) to be made by the user and the "best"

choices are heavily problem dependent. Hence one can expect our hybrid algorithm to

require more experimentation and fine tuning than other more standard methods.

However, as we shall demonstrate with examples, for the case where n is large

compared to m and p, it can offer considerable computational savings with no loss in

accuracy over the methods mentioned above.

We have tested (and are continuing our efforts in this direction) our hybrid

algorithm on several numerical examples. We shall report on just two of these here to

illustrate our findings. All our computations were carried out in double precision on

an IBM 3081 at Brown University. We gratefully acknowledge the assistance of Yun

Wang in our carrying out of the extensive computational studies reported for the

boundary flux control in the diffusion equation problem of Example 2 below.

.-. 5.

, Example I: As one of our examples, we considered an example (Example 6 of [27])

which Laub used to test his Schur based methods. The system is the n-dimensional

system of (1.1) with

_10 0 1 0

A B-

0 0
'.1 01

which leads to an ill conditioned Riccati equation. This problem corresponds to one

% in which n integrators are connected in series with a feedback controller to be

applied to the nth integrator in order to stabilize the system. Only deviations of x1

e. d., from the origin are penalized in the cost functional. The true optimal gain is an n

#, 'p vector K = ( 1, ..... ,n) and for this examplc one can argue that K1 - 1. In [27],

Laub used his Schur techniques to study this example and reported difficulties with
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loss of accuracy at a relatively low value of n, n = 21. We carried out runs with

our hybrid algorithm and obtained quite favorable performance. Some of our findings

included:

(a) For n = 40, we used the Chandrasekhar component to integrate to t, = 100 and

produce an initial estimate K' - .99041, which when used in the Newton-Kleinman0

(fixed step size r = .5 in the Smith) produces the estimate K' - 1.0 - in a total of

- 2.93 seconds of CPU time. When we used a cruder solution in the Chandrasekhar

component (tf - 200 but with step size twice that in the first run) to produce Ko1 =

.9394, followed by the N - K (r 1 = .5, r 2 = 1.0 in the variable step Smith) we

obtained K' = 1.0 -, all in 2.39 seconds.

(b) For n = 50, we produced K' = .9224745 at tf = 220 and after the N-K-Smith0f

(fixed step r = .5 in the Smith) obtained K' = 1.0000000003820 in a total of 4.44

CPU seconds. For the same runs with variable step (r1 = .5, r2 = .7) Smith we

obtained a K' as above with 3820 replaced by 3817 in a total of 4.31 seconds.

(c) We compared runs with the Chandrasekhar component only against the Potter

method for n = 10, 21, 40. Obtaining essentially the same estimates for n = 10 and

21 (at n = 40, the Potter degenerates numerically to produce useless estimates) we had

CPU times of CHn=10 = .753 seconds, POTTn=10 - .188 seconds, CHn=21 = 1.52

. seconds, POTTn=21 = 1.22 seconds, CHn=40 = 4.35 seconds, POTTn=40 = 6.81 seconds.

We found for this example that the eigenvector methods are best for small

n, but as n grows, the Chandrasekhar alone, and, even more so, the hybrid method

will out perform the eigen-Schur methods in both accuracy and CPU times. A more

- striking demonstration of this behavior will be given in the next example.

Example 2: We consider the linear quadratic regulator problem: minimize the cost

"- functional



-21-

(5.2) J(u) = I(1 CZ(t) 1 2 + I U(t) 12 )dt

subject to the partial differential equation

(5.3) a - a2 zt
C~tz~tx) - z~~), x C (0,1

Wx

z(0,x) - OWx

with boundary conditions

(5.4) a z(t,0) =a~)adC3Ztl
TX-) an rx ,1

where c(-) is square integrable on [0,1] and

Cz~t = Jc(x) z(t,x) dx
We can discretize or approximate (5.3)-(5.4) using the standard Galerkin method 121;

i.e. the approximating solution z N(t,X) to (5.3)-(5.4) is given by

(5.5) z N(t,x) = w1(t)l i(x) , wi(t) c '
i=O

where 1. 2!4~ is the first order spline defined by

N(x - LL), Li) 4 x 4
N NN

=NX N (L- - X), L 4 x ~i
Ix)N N N

L0 otherwise

and zN(t,X) satisfies

(5.6) J. zN(tX) ON( x)dx a -J~. ON4, dx -u(t)01~0)

f0F 0TX -

for all OpN C ZN-span (C 4

Then, (5.6) leads to the nth order (n - N + 1) ordinary differential equation for

WN . coI(w0 , . I. . NwN;

(5.7) QNWN(t) .- H HNwN(t) -B~u(t)
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where

1/3 1/6 0 0
1/6 2/3 1/60

QN 1 with f J I 1 dxN 0 0

1/6 2/3 1/6

0 . 0 1/6 1/3

1 -1 00

-1 2 -100

HN N with -d Idx
II o Ocix~ dx J

-1 2 -1
0 ~0 -1 1

and
BN col (1 0 ... 0).

For computational convenience, we change coordinates (for fixed N) in the

system (5.7) by x _ QNwN to obtain the approximate system

i = -HN(QN)'lx - BN u

Thus, in (1.1) we have A = -HN(QN) "1, B = -BN and C = CN(QN) "1 where CN is the

vector with components c I f' c(x)),(x)dx, 0 ( i ( N.

For the problem in this example, the aprroximating optimal feedback

operator KN is given [2] by:

KNz = I' kN(x)z(x)dx

where kN(x) = kifi(x) and K - (k o, ... kN) is the optimal feedback solution in

the problem for (1.1). with A, B, C chosen as indicated above. We note in this case

that for any N 0 1, A has only one unstable eigenvalue (zero), (A,B) is stabilizable,

IJ , and (A,C) is detectable.

For the special case when c(x) - 1, we find C = (1 .... , 1) E R1X(N+1) and

hence CA - 0. It is thus easy to see that the desired solution (K(t),L(t)) to the

Chandrasekhar system (1.3) is given by

M
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*K(t) - k(t)C , L(t) - 1(t)C,

where k,I are scalar functions satisfying

k k(O)= 0

j =-jk j l(0). 1

Therefore we find kk + it - 0 so that k2(t) + 12(t) = 1. We thus find in this case

that k(t) - I as t - -- and hence K - limK(t) - C. For this case, the

Chandrasekhar system for the infinite dimensional LQR problem (5.2)-(5.4) can also

be analyzed [17], [36] and exactly the same argument as above shows the optimal

feedback gain operator is given by

Kz = J1 l.z(x)dx

These analytic solutions can be used to test software packages and approximation

schemes before more interesting, analytically intractable examples are considered.

Remark: The form (5.7) of system equations appears frequently in applications. Thus

the critical computational factor (5.1) can be modified so that one can avoid

computing A. For example, in this ease it has the form

L(I - r (-HQ- 1 - BK))1

(5.8)
= LQ(Q + rH + rBKQ) "1

where Q + rH is a symmetric, tridiagonal, positive matrix. Thus one can readily use

the Cholesky decon position algorithm for computing LQ(Q + rH)"1 and combine this

with the Sherman-Morrison-Woodbury formula (see Remark 3 of Section 2) to

efficiently compute the critical expression (5.8).

We carried out extensive computations for this example with c(x) - 1 + x.

We compared our hybrid method to the Potter algorithm and to use of the

Chandrasekhar system alone. We have not used the Laub-Schur method on this

example since we felt comparison with a readily available (to us) Potter package

would give as a feel for the relative advantages and disadvantages of our scheme
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compared to eigen and Schur vector based techniques. (Analysis and computational

experience indicate that the Potter method and the Laub-Schur method are both

0(N) with the latter method about twice as fast as the Potter method.) We required,

whenever feasible, the same level of accuracy in computation of feedback gains and

compared relative CPU times.

In studying our hybrid scheme, we tested numerous sets of Smith

acceleration parameters (r,), (k,), stopping times t, in the Chandrasekhar component

and error stopping criteria in both the Chandrasekhar and Newton-Kleinman-Smith

components. We summarize some of our findings to date.

In Table 5.1 we present comparative CPU times for the hybrid scheme vs.

Potter as we increase N. Recall the corresponding finite dimensional approximation

scheme has system with dimension n - N+I. In all of the runs reported in Table 5.1,

the feedback gains for the hybrid and Potter calculations agreed to 9 decimal places

N Hybrid (CPU Sec.) Potter (CPU Sec.)

10 .17 .14
20 .31 .81
30 .56 2.45
40 .74 5.49
50 .91 10.71
60 1.09 18.09
70 1.26 27.97
80 1.43 41.56

100 1.76
120 2.10
140 2.45
160 2.80

Table 5.1

so both scemes provided accurate solutions. In these runs, the hybrid scheme

calculations used tf = 2.2 (corresponding to h - .1) with IL(-tj)l - 10-3 in the

Chandrasekhar component. The Newton-Kleinman component converged after 4

iterations (i.e. at K4) and we used acceleration steps r1 - 1, r 2 - 10-1, r3 = 10"s

r 4 - 105 . Each Smith iteration was allowed a maximum of kj - 50 per value of r
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although in most cases the iteration satisfied a convergence criterion before this

maximum was attained. Careful consideration of Table 5.1 reveals that the hybrid

scheme is clearly O(N) while the Potter is O(NS); both rates are to be expected from

our earlier observations about the methods. Note that at N = 80 the hybrid scheme

is more than 25 times faster than the Potter scheme (with comparable accuracy, of

course).

We also ran the hybrid scheme with N = 80 and a number of different

fixed acceleration values r in the Smith component. The same Chandrasekhar

component prameters as reported above were used. Table 5.2 contains relative CPU

times as well as an indication of the N-K iterate for which convergence was

4 achieved.

In Table 5.3 we list some CPU times when different sets of acceleration

parameters (r.) were used. Again these runs were for N = 80 with the same

r CPU (Sec.) Converged N-K Gain

5 5.10 K6
1 6.52 K 410-14::.:-" 6.27 K4

10-2 7.40 K4
10"s 10.10 K 4
10- 4  12.06 K5
10"s 10.07 K4

Table 5.2

L CPU (Sec.)

(10.1, 10"2) 6.25
(1, 10.1, 10"2) 4.88
(1, 10 1, 10 -2,  10 , 10 4, 10 ) 1.98
(1, 10-, 10-3, 10-1, 10-6: 10-7) 1.61

_d" Table 5.3

Chandrasekhar solution as above. All of the converged Newton-Kleinman iterates were

after 6 steps (i.e. K.).

Finally, we made runs (for N - 80) to find the best results that the
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Chandrasekhar algorithm alone (i.e. accurate integration until K(t) - K, L(t) - 0)

could produce. The best results we were able to achieve yielded an accurate value of

K for K(-tf) with tf = 3.22 with IL(tf) I 10.6 obtained in 5.85 CPU seconds.

Based on our computational findings for the above two examples and our

experience with several other examples for infinite dimensional systems (e.g., beams

with tip bodies, etc.), we are quite confident that the hybrid scheme we propose in

this paper can be profitably used with a number of large scale LQR problems. We

are currently developing a rather general software package that implements the

hybrid scheme in a manner so that a broad range of problems can be treated in the

context of the ideas presented here.
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