
1 -A 82 633 SYSTOLIC ALGORITHMS
FOR THE PARALLEL

SOLUTION OF DENSE
1/1

I COMPUTER SCIENCE I C IPSEN MAY 67 YRLEU/DCS/RR-539
UNLSIIDWS49-0103 U 1/6 N

EE 7wE: 0EE

W Lin,~

L.U L
I' I-OI4

I~ x, w' W1. * , j, ?,,p pt,!.HAW

~'*~*'- .. j.j ysi . *7~.- %A-

U. * **** , .. -

OTE F1ILE COPJ

01coL c~

ETVERIT~

Systolic Algorithms for the Parallel Solution of
Dense Symmetric Positive-Definite Toeplitz Systems

Ilse C.F. Ipsen

Research Report YALEU/DCS/RR-539
May 1987

DTIC
f SJUN 2 6 7

YALE UNIVERSITY LE"Ti
DEPARTMENT OF COMPUTER SCIENCE

10o

Abstract. The most popular method for the solution of linear systems of equations with Toeplitz
coefficient matrix on a single processor is Levinson's algorithm, whose intermediate vectors form the
Cholesky factor of the inverse of the Toeplitz matrix. However, Levinson's method is not amenable
to efficient parallel implementation. In contrast, use of the Schur algorithm, whose intermediate
vectors form the Cholesky factor of the Toeplitz matrix proper, makes it possible to perform the
entire solution procedure on one processor array in time linear in the oider of the matrix.

By means of the Levinson recursions we will show that all three phases of the Toeplitz system
solution process: factorisation, forward elimination and backsubstitution, can be based on Schur
recursions. This increased exploitation of the Toeplitz structure then leads to more efficient parallel I
implementations on systolic arrays.

To appear in: Proceedings of the IMA Workshop on Numerical Algorithms for Modern Parallel
Computer Architectures, M.H. Schultz, ed., Springer Verlag, 1987.

Accession For

NTIS G &I
DTIC TAB

Unannounced C
iustifioat ton

03133dSNI

.LdOO

Distribution/
Availability Codes

Avail and/or
Dist Special

Systolic Algorithms for the Parallel Solution of 'I
Dense Symmetric Positive-Definite Toeplitz Systems

Ilse C.F. Ipsen

Research Report YALEU/DCS/RR-539 .
May 1987 DT1C

ThELECTE9

~JUN 2 6 1987

The work presented in this paper was supported by the Office of Naval Research under con-
tracts N000014-86-K-0310 and N00014-85-K-0461, and by the Army Research Office under contract
DAAL03-86-K-0158.

.....to..

/V
A' .

Introduction

The aim of this paper is to discuss parallel methods for the solution of linear systems of

equations

Tx= f

whose coefficient matrices T are dense symmetric positive-definite Toeplitz matrices.

A symmetric Toeplitz matrix Tn = (tr)O<kj<n of order n + 1 is a matrix whose elements are

constant along each diagonal, t = tik-11. The solution of a general, n x n system of equations by

a direct method requires 0(n 3) operations. Since a n x n Toeplitz matrix is characterised by O(n)

rather than 0(n 2) parameters efficient algorithms for the solution of Toeplitz systems exhibit an

operation count that is considerably smaller: the classical Levinson and Schur algorithms require

0(n 2) operations [1, 14, 15, 18] while the doubling algorithms require 0(nlog2 n), cf. the early

references [2, 91. A thorough treatment of Toeplitz matrices is given in [10, 11], and a brief summary

can be found in [17]. Numerical aspects of algorithms for Toeplitz matrices are reviewed in [5].

Development of parallel implementations for the solution of dense Toeplitz systems was moti-

vated by the need to execute certain signal processing tasks in real-time. The preferred architectures

are systolic arrays, special-purpose devices built with Very Large Scale Integrated (VLSI) circuit

technology [13]. Systolic arrays are homogeneous networks of tightly coupled, highly synchronised,

simple processors that essentially operate in SIMD (Single Instruction Multiple Data stream) mode.

Due to the repetitiveness of the computations and the regularity of the data dependencies systolic

implementations can be described by means of linear transformations: the processor in which a

quantity rij is computed as well as the time of its computation is expressed as a linear function in

the indices i and j [7, 8]. To keep the approach simple and intuitive, implementation details will

N be omitted in this paper, they can be found in [7, 81.

Three classes of systolic arrays will be presented whose efficiency improves with increased

exploitation of the Toeplitz structure in various phases of the solution process.

The classical method of choice for solving a n x n symmetric positive-definite Toeplitz system

on a single processor is the Levinson algorithm [141. The intermediate vectors generated by the

Levinson algorithm form the Cholesky factor of the inverse of the Toeplitz matrix. Due to a

sequence of n inner products, however, the lower bound of the parallel solution time on n processors

is 0(n log n).

The second classical method is the Schur algorithm [1, 15, 181; its intermediate vectors form

the Cholesky factor of the Toeplitz matrix. Although its operation count is fifty percent higher

- ..-

than that of Levinson's method, it is more amenable to parallel implementation: an array of O(n)

processors can determine the Cholesky factor of an order-n Toeplitz matrix in time O(n) [3, 4, 6,

7, 8, 12, 16].

The solution to the Toeplitz system can be found by performing forward elimination with the

transpose of the Cholesky factor and subsequent backsubstitution involving the Cholesky factor.

This necessitates the additional use of arrays for triangular system solution and intermediate storage

of order O(n2) for the Cholesky factor during forward elimination [12, 16].

Instead of performing the usual forward elimination, recursions similar to the 'Schur recursions'

in the factorisation may can be employed to modify the right-hand side vector, thus making it

possible to employ the same type of array for factorisation and forward elimination. Intermediate

storage of the Cholesky factor till the start of backsubstitution may be avoided by re-generating it

on the fly [3, 41.

A final improvement in efficiency is achieved by also performing backsubstitution by Schur

recursions. In this case it is possible to perform the whole solution process on one n-processor

array in time O(n) [7, 8].

Since it appears impossible to conceive systolic implementations of doubling algorihms, it can

be concluded that the most efficient method hitherto to solve Toeplitz systems on systolic arrays

is one that makes maximum use of Schur recursions.

Notation

A symmetric Toeplitz matrix of order n + 1 will be denoted by Tn, where

to t1 t t

ti to

Tn= ' ' '

to ti

tn ti to

and the sequence ti ... tt of Toeplitz matrix elements for i < k will be denoted by t,&:. Frequent use

will be made of the fact that the first and last columns of Tn have the respective representations

to:n and Jto:n where J = (e, ... el eo) represents the 'exchange' matrix with ones on the

antidiagonal, and e, is a (n + 1) x I vector with a one in position i and zeros everywhere else,

0 < i < n. At last, Oh stands for the k x I vector consisting of k zero elements; when k - 0 it is

the empty vector.

2

7: , Z-

A symmetric Toeplitz matrix T. is centro-symmetric, that is

Tn = JTIJ.

Direct methods with operation count 0(n 2) or less for the solution of dense Toeplitz systems of

order n exploit this property and the resulting recursive nesting of Toeplitz matrices:

Tt- to tl..t

Tn, = JTnJ=

tl] :T.-I
tn ... ti to tn

The system Tnx = f can be solved by recursively solving a system involving T- 1 .

The Levinson Algorithm

Levinson's algorithm computes the Cholesky factorisation of the inverse of a n x n Toeplitz

matrices with 0(n 2) operations; the following derivation is partly based on the one given by Trench

in [19]. Suppose the Cholesky factor L of T; 1 = L.D;1 Ln is known, where Ln is unit lower

triangular and Dn is diagonal (as T" is symmetric positive-definite the diagonal elements of Dn are

strictly positive). The Toeplitz matrix Tn+1 of next higher order can be partitioned into a 2 x 2

block matrix as

T.+I = n) t = Jt 1l:n+ = (tn+1 ... ti).tT to

Solving

n = (0~ 1)

where In+1 is the identity matrix of order n + 1, results in a 2 x 2 block partitioning for T,+1

Tn1,- (Tl + T;ttTTn'/d -Tn-'t/d.

-tTT ld 1ld)
Setting V) = -T t yields

(I/d ld) In) (2; d-1 (n 3
d- 1 n1 n+D +1.(1)

3

Thus, (OT 1) is the trailing row of the Cholesky factor L.+1 of T- 11. It remains to show that b

and d can be computed in 0(n) steps.

To this end, suppose that the Cholesky factorisation of T;1 is already known:

T;, ' T- = .- + O. n / OnJ/dn

T/dnT -1 = L T.D ;1 L n = (nT / d nf I/ d n) I4) d

where do = to and On is a n x I vector. The symmetry-centro symmetry of Toeplitz matrices

implies for the inverse of the next higher-order matrix Tn+1 that T-+ = JTn,-+J, or in block form

OnT 1/d.+ I /dn+ 1 J .+l/d.+ TV + J¢.+,0 .+ J/d.+l 2

This gives for the trailing row On+1 = -TW1 Jtl:,n+ of Ln+ 1 the block form

-JOn/dn -T _1 -JknOX J/d) Jt1 :,. J -Tn, Jti:n - Jtn(t,+i + nkt::)/.

Denoting the term in brackets by

Pn+1 = -(tn+l n :n)/dn n(k I)ti:n+i/dn, PI -ti/to, (3)

and observing that on = -T-Jtl:n gives

~n+1=(n+)
On1= O + Pfl+lJ,bf

Consequently, with Oo the empty vector, the trailing row of Ln+1 can be obtained from the

trailing row of Ln via

(~u~i = onit + Pn+1 IJonj (4)1

Remembering that d; 1 is the bottom right element of TW 1 and Pn+I is the leading element of On.+I

one gets with (2) for the bottom right element of T-+,

dnI= d.-1 + pn+ I d-+ or dn+I = dn(- p'+ 1), do = to. (5)

Note that the original paper by Levinson [14] does not contain the simple recursive computation

of d+I from d and Pn+ I

4U

% %.
.v '' ,, ,. f "/, *, , *,*,.'*,*.*, , *.'', .'',. *.. **. .*. ". . ."% -. " '.. '..\,.".. '. .:.:..".% -'v% .-

The Lemnson Algorithm

The Levinson algorithm computes the lower triangular Cholesky factor Ln of T, "' with kth row

given by ('k,o ... bk,k-1 I OT.).

do = to

k-1
1 < k <_i, ph = -(+ Z ,._;jt)/d,_j, dh = dk_(1 - i), 4,o = Ph

.=1

O k-l,O- '' k-,0-2(,o... ',k_-) = (1I Pie) \ t'k-1,h-2 ... i,-,,o

The reason why Levinson's algorithm has little potential for paralleisation is that the vector

O, enters into the computation of 'n+i from both ends: in a linear combination of On and Jo.

Even if one were to maintain two separate copies, O, and Jon, the weight Pn+1 in this combination

would still depend on the entire vector On. Thus, it is not possible to pipeline successive recursions,

and the lower bound on the time of a n x n parallel Cholesky factorisation of is 0 (n log n).

The Schur Algorithm

Since the inner-product (3) in the formation of Pn+I is the culprit for the poor parallel per-

formance of Levinson's algorithm one could try to reformulate the algorithm so as to obviate the

need for an explicit inner-product computation. This is accomplished by observing that (1) implies

d_ (T 1) Jto:n, and substituting this into (3) leads to

(On' 1) t,:n+l

Thus, the coefficient Pn+1 is the ratio of two quantities that are obtained by multiplying (O 1)

and its reverse by a column of the Toeplitz matrix. This is the basis for the so-called Schur algorithm

[1, 15, 18], it avoids the inner-product by recursively 'updating' matrix-vector products involving

the Toeplitz matrix, so that p,+ can be formed as the ratio of two vector elements.

Unlike the Levinson algorithm which determines the Cholesky factor of the inverse, the Schur

algorithm determines the Cholesky decomposition of the matrix proper. If the result of Levinson's

method is Tn 1 = LTD-,Ln, where Ln is lower triangular, then the uniqueness of the Cholesky

5

* -- * . .
-.[.

decomposition implies that L.T. = DLT must be a scaled version of the upper triangular

Cholesky factor U, of T.: T. = UTD U_. Therefore it follows that ((OT 1) O.) T. is the

kth row of the scaled Cholesky factor D.Un of Tn. Let Ok represent a row vector of k zeros, then

the kth row of D.Un has the form

((4-)0rnk)T.=((OkT 1)0._Tk 0) T 2-k- *

• to

=((OT 1)Tk (OT)4 ,)(oT 4 (O d)k ,)

(oT dk Vo .. ,--),(6)

where • denotes unimportant terms and from (1)

(OT 1) T= (0 T dk). (7)

If it is possible to compute the non-zero elements (d vi,o ... ,n--) of the kth row of

DnUn with 0(n - k) operations then the Cholesky factorisation Tn = UTDnU can be computed

with 0(n 2) operations. It is now shown how to compute the vector of Vt,j as a linear combination

of two vectors by making use of the Levinson recursion as follows:

((O+1 1) OTk_ Il)Tn=((OT 1) T T((OT 1)j 0 0rn_._)Tn.

With (3), (7) and (6) the first summand evaluates to
t tl:k+ *OTT

0 _(_f) tl:k+l Tk Ak

• A'T Tnk_2

=((OT 1)t:k+l (OT 1)TI (OT 1)AO)=(-pk+ldk 0' 4 (4T 1)A)

-(-pt+ldk OT k Vk,O ... I,/-k-2).

The second summand amounts to
OT (TI Jtl:&+l Bt

((k 1)P 0 0-k-1) t T1+IJ to)

kr T.-k-2

(dk OT= ((4r 1)ST, (4b l)t:+i (4 1)JB) (d4 0T' -pk+d& (4 1)JB,)

(d k 0 k,O ... k,n-k-l .

where the leading element of the non-zero part is jso = -pk+ldk.

Forming the linear combination of the two summands yields

((r+ I) 0._k_) T.

=(-Pk+ldk 0._h dk. ', .o Vk,.-k-2)+pk+1(dk 0.TOk Ak,O ... Pk,n-k-)

=(T- I dk+1 Vk+1,o ... Vk+,.-(+)1)

where due to (5) dk+1 = dk(1 - PI+i)" Similarly, determination of the new vector elements uk+l,i

is accomplished using the row-reversed version of (4)

k(+1 1) nT-k- I) T-

=((4O 1)J 0 OTn.k_)Tn+p+1(O (OT 1) O.k~l)Tn

- (dk 0 k Po ... Ak,n-k-1) + Pk+1 (-Pk+ldk OT dk 1 ',O ... Vk,n-k-2)

=(dk+i k+1 k+1,0 ... kn-(k+l)-),

where uk+I,O = -pk+2dk+l.

The Schur Algorithm

The Schur algorithm computes the scaled Cholesky factor DnUn of Tn with kth row given by

(Ok 4 Vk,O ... Vk,n-k-).

do= to

/10,0 ... V0,n_ I tI ... tn

1 <k n, Pk = -lit-.,odk-i, dk = dk-.(1 - p2)(Vk,O ... Vk,n-k-1 I 1 Pk Vk (h1,0 ... Vhl-,n-(.1)-2

k,O ... Ak,n-k-1 Pk P 1 k-1,1 ... ;Ak-1,n-(k-1)-1

First Class of Systolic Implementations

Assume that a linear array of n + 1 processors, numbered 0 to n, is available for the execution

of the Schur algorithm on matrix Tn of order n + 1. A time step for the array is defined as a time

interval long enough to accommodate the operations

Pk = -Pk-Io/dk-I, dk = d- - p)
Vkj; I plk P: Vak_ '.'j,

1k Ph), k -i +1

7

. .- *

Different schedules and processor assignments for individual operations can be derived by applying I
appropriate linear transformations to the indices of the computed quantities: the pair (iv.' pji)

is computed in processor

w= (k +
Xr2

at time

=(k +r.
rs

The partial order of computations is preserved by observing that k -lj must be computed before

vkj, and Pk-Ij,+1 before ai. That is, the time function must satisfy

- r, < O, -rl -+ r2 < O.

In general, if a quantity with index (ij) depends on a quantity with index (kl) the latter must

be available before the former can be determined, in other words [81

(k-i I-J<)() <0.

To make sure that one processor does not have to perform two different operations at the same

time the determinant of the matrix

72 W2

should be non-zero [8], r 12 - T27rl : 0.

The first systolic array presented in [12] is based on the following linear transformations. In

step k of the Schur algorithm, 0 < k < n, (Vk,j Pk,) is computed in processor ir at time r > 1

where

7r =(k j))0j (k j)('+=k + 1, 0 <j n- k -1

The parameters P and di are assumed to be associated with index (k, 0) and thus determined in

processor 7 = 0 at time r = k + 1. Initially processor j is loaded with matrix element t i .

The execution of the Schur algorithm requires n + 1 steps. In each step processor 0 computes

a new p and broadcasts it to all other processors, so that each step produces a new row of the

Cholesky factor. The components of the v-vectors remain in their respective processors (z'&,, resides

in processor j for all k) while the I-vector is shifted left by one in each step (pUk1_,+l is computed

8

in processor j + 1 before being sent to processor j for the computation of pj). Note that in step k

there are k idle processors, and in order to offload a row of the Cholesky factor each processor must

be able to perform external I/O.

To avoid difficulties, such as synchronisation delays and long wires, associated with a global

communication scheme like broadcasting a 'pipelined' array is proposed in [12, 16]. The processor

function (91 X2 is) is the same as before but the time function has changed to

(r, r2 rs)=(2 1 1).

Thus, p, and d are computed at time r = 2k + 1 in processor 0 and pk is then sent to processor 1.

In the next step, at r = 2k+2, (Mt,1 vj,) can be computed in processor 1, Pk can be transmitted

to processor 2 and pkt left to processor 1 so that at r = 2k + 3 the computation of pk+1 can start.

Thus, successive iterations are two time steps apart. Because p, and 4 are computed at r = 2n + 1

the computation time for the Schur algorithm comes to 2(n + 1). The replacement of broadcasting

by forwarding (or pipelining) of p from processor to processor results in communication that takes

place exclusively on a nearest neighbour basis. All other features are the same as in the first array.

In order to solve the system Tz = f three possibilities are discussed in [12]:

1. forward elimination and backsubstitution involving the Cholesky factors U., Dn and UT of Tn

2. computation of the Levinson vectors 'P using the Pk from the Schur algorithm, and subsequent

matrix vector multiplications involving Ln, Dn, and LT (the #Pk constitute the rows of the

Cholesky factor Ln of T- 1)

3. explicit computation of T; 1 in form of the Gohberg-Semencul formula and subsequent matrix-

vector multiplications by means of FFTs (the Gohberg-Semencul formula represents the inverse

of a Toeplitz matrix as a sum of products of triangular Toeplitz matrices that consist of the

elements of On).

Since details for parallel implementations of the latter two methods are not given and their

data and control flows are likely to be rather complex only the first method will be considered.

9

Forward Elimination with Cholesky Factor

Forward elimination solves the lower triangular system (D, U,) T h = I, the elements of the solution

vector h are given by hi = hk,k.

ho,o = fo/do

I <k<n, hk.-_=O

1 < k - 1, hkj = ±V _ _ h+ ,

hk k = (f - hkk_)/dk.

In order to overlap forward elimination as much as possible with factorisation a second linear

array with n + 1 processors is employed, and it is assumed that each processor in the elimination

array is physically connected to the corresponding processor in the factorisation array. Since a

matrix element v-,.k-j is computed in processor k - j at time r = k + j - 2 in the factorisation

array it may be used at the next time step in processor k - j of the forward elimination array

Hence, the forward elimination array has the processor function

7r, 2 w)=(-1 0),

and essentially the same time function as the factorisation array (the time functions just differ by

one in their displacement r3):

(r, r2 rs)=(2 1 2).

Note that the elements of the h-vector are shifted one processor to the right each step. At time

r = 3k + 2, fk and dk have to be input to processor 0 of the elimination array so that hk = hkk

can be computed there. Thus, forward elimination is completed after the computation of h" at

time 3n + 3.

10

Backsubstitution with Cholesky Factor

Backsubstitution determines the solution z, with elements zk = zk,k, of the upper triangular system

DnUnX = Dnh.

=.n,n = dnh./d.

n-l>k>O, xk,+1=O

n > j _ k + 1, Tkj = xkj+ + Vkj-k-lxj

Zk,k = (dtht - Zk.k+1)/dk.

As backsubstitution can only start once forward elimination is completely finished, the forward

elimination array may be re-used. Its time and processor functions are now

(I X2 Wrs)=(-1 1 0), (r r2 rs)=(-1 -1 5n+3).

If processor 0 has retained all ht and dk from the forward elimination phase then the solution

element zk = Zk,t can be determined in processor 0 at time r = 5n + 3 - 2k. Note that solution

of a Toeplitz system of order n in such a manner requires time 0(5n) on 2n processors plus 0(n 2)

Sstorage to store the matrix DnU. during the forward elimination phase.

Forward Elimination by Schur Recursions

The second step, the modification of the right-hand side vector f in the system Tnz = f can

be improved for a systolic implementation by applying the same operations to f as were applied to

T. in the Schur algorithm: after having determined LaTh = DnUn one now determines g = Lnf so

processors perform the same type of operations during facorsation and forward elimination, and

only one type of array is needed for both phases.

To derive the computational steps for g = Lnf we extend the vector f to a Toeplitz matrix Fn

with f as its first column:

fI h I
Io)

S. f 0 Io

1% 11

, U '
'

d 'r ,'" • " "' *'u ' 1 "" " - - " * ''" %
%

" " " " " %
%

"" " '

From the computation of L.F one can derive recursions for Lf by means o the following obeer-

vation. The kth element of g : LRJis

01 =()0 [_)f(O l)Io O<k<_n,

while the kth row of L. F. is

((4T 1) O- ((4 1) F

=(, (4.)F)

whose kth element m the trailing element of (4 1) F, which is equal to (4 1) ifo ,. Hence,

the trailing element of (O I) J Fk in

OT .((4 1)J 0,)F.:((v7 I)JF.)

is g,.= (,p 1)fo,..

Consequently, the sought vector g is a product of f with the matrix whose rows contaun the

reverse Levinson vectors, and g can be computed by the following Schur-like recursions involving

the upper triangular part of this matrix.

Denote elements in position k < i < n of

VTI jO._ 1,) F. =(,T 1) j01 _ & C 1, F ((*,T i)JFk (%,T 1)jCk)

by
a . ,.)((b 1. (*,r I je,)

and elements in position k < s < n of

FT , I

= ((4 l)F, (4,r I)D, (, l)Jf.. .)

by

(0,.k 01..= (1)JfO, (4[I)D. (4[l)Jf....) ()

Now att = gi is the kth element of # and the recursive computation of ok. I 1t I gt . 1 from

as,, and Ok, can be derived by means of the Levinson recursions (4) as follows

((4.1 1) Or 1)FF ((,WT I) 0 .)-p, (0 (1) Oj)..

12

7nS W. Min .n .-V -

Ignoring elements in positions 0 through k on both sides of the equation gives

(ak+.,,k. ... , ,.) = (eb...l ... ,,) + P h, (, ,. ... , -)

since the second summand is equal to

(o fT5
(0 (OT 1) _) 01_. F& D& =((l/:k (OT I)Ft (,O 1) D.).

2DTF :OT

Comparing elements in positions k + 1 through n with (8) one notes that

((OT 1)Jfo:1 (OT 1)D,)=(8,& .

The second vector consisting of elements k+s,,, k + 1 < i < n, can be updated similarly.

Forward Eimination I Scker Recursion

The Schur recursions determine g = Ln1 where g k = k,k.

0 0 ... AD,. o ,,

Second Class of Systolic Implementation*

Again, the same assumptions as before hold, and the array from [3, 4] is presented that performs

both phases, factorisation and forward elimination, by Schur recursions.

The pipelined version of the factorisation phase is performed as before. As for forward elimi-

nation, the index structure of its equations is adapted to that of the factorisation by performing a

linear transformation on each index (k j).

(k () k1),

1

I
I

.... ... "." o"".'' % ,'.'','%',-', '.' :'',.''.''-' ", ',,',,." " ". .. V.' . '.',."v'..',." .'..'- :.' , .':.'" "', ", " .".r ,.-.","% , '.",,'4

resulting in

\fo,o ... /0,n fo ... A

l 0. --- 0, f= ...

I1< k < a~, Cknk) P t C'k)' ...~: Ck-1,n:(k-1)+1
(fo f,,,-k / ' 1) fk-i,o ... /O,-l,,-(,.-l)+l

If a second (n + 1)-processor array is available for forward elimination with the same time and

processor functions as those of the factorisation array, then factorisation and forward elimination

can be performed simultaneously. Processor 0 of the forward elimination array is assumed to be

connected to processor 0 of the factorisation array so the latter can forward the ph to the former.

When pipelining is used, processor 0 of the elimination array receives pk and forwards it

directly to the other processors in the array so pairs (akj #ij) are computed in processor j at

time 2k+j+ 1. Initially, processor j is loaded with the right-hand element fi. Element gj = Ok,0 is

computed in processor 0 at time r = 2k+ 1 and transmitted to processor 0 of the factorisation array

where it is retained till the start of the backsubstitution phase. Thus, factorisation and forward

elimination can be executed on 2(n + 1) processors in 2(n+ 1) time steps if communication proceeds

on a nearest neighbour basis.

In order to avoid the O(n 2) storage needed to store DnUn till the onset of backsubstitution

only its last column and the parameters pt are retained from which DnUn can be re-generated by

the Schur recursions.

The Reverse Version of the Schur Algorithm

The reverse version of Schur algorithm computes the scaled Cholesky factor DU, of Tn with kth

row given by (0T d vk,0 ... P,n- t-) from ph, 1 < k < n, and the last column

(i'0,n-1 1'1,n-2 ... tn-i,o d.)T

R of D.nU, whereby &0,,-1 = tn.

n-I> k>0,

Vk' ... Vk,n-k,-h =__ _-l k+ 1 \'h+1,o ... Vk+1,, (h+1)-1

Ak,l Puk,n-k-1 P't+ Ph+i -1 1.P~, ~ ~~-hi-

d = dk+i/(1 - p+ , Pko - dpk+1.

14

'. ~~*. z~ *~ . .',m- *" *~ -% . %-, - -. %#'

If processor 0 in the factorisation array has retained all p; and d, and processor n - k has

received component _ of the last column from its left neighbour then the re-generation of

DnUn in the factorisation array can start at time 2(n + 1). The processor and time functions are

(Vi W2 s)--(0 1 0), (Ti r2 rs)=(-2 -1 4n+2),

so that (,vkj ytj+1) is computed in processor j at time 4n + 2 - 2k - j, and d in processor 0

at time r = 4n + 2 - 2k. Processor 0 stores the dk for the backsubstitution phase. Note that the

components of the v-vector stay put in a processor (vkj resides in processor j for all k) while the

components of the p-vector are shifted one processor to the right in each step.

Suppose a third array for backsubstitution is available whose processors are connected to the

corresponding processors of the factorisation array. Since vkj.k._ is computed in processor j- k- I

at time r = 4n + 3 - k - i it can be used at time 4n + 5 in processor " - k of the backsubstitution

array. With processor and time functions

(1I 72 xS) (-1 1 0), (ri r2 rs)=(-1 -1 4n+5),

zi,t can be computed in processor j - k at time 4n + 5 - k. Since processor 0 has retained dk from

the previous re-generation phase and gj is computed early enough in processor 0 of the forward

elimination array (at time r = 2k + 1), element zk = Xk,k of the solution vector can be computed

in processor 0 at time 4n + 5 - 2k. The whole computation is completed in 4n + 6 time steps. Note

that during step k of the factorisation and forward elimination phase there are 2k idle processors.

Therefore, 6n processors can compute the solution to a n x n Toeplitz system in time 0(4n)

only relying on nearest neighbour computation, however the storage in at least one processor must

be proportional to the problem size O(n).

Backsubstitution

The last step is normally solved by backsubstitution z = LTD;1 g without making any use of

the Toeplitz structure of the original system. A new approach that uses the Schur recursions also

for the last step was derived in [7] and can be related to the Levinson recursions as follows.

Remember that ((,OTk 1) OT), is the kth column of LT , that gt = ak,k is the kth element

of the vector g, and that dk is the kth diagonal element of Dn, 0 < k < n. With the abbreviation

"Yk gk/dk, 0 < k < n, one can express the solution vector as a linear combination of the columns

15

of Ln
:

x/ +-, 'to + 71 + '12- (+ 12

z "oOn O-\n-

Define the partial sums

() (-O1)""= (I) (--- (n-b) +"-k-i (,1 o ~ <ii-l1,

so that {°) - z. It will now be shown by induction that for I < k < n

(o- n-k,n-k) 1 (ok-j+1
-(n-k) -k-k + +E I kn- , (- In-k- + 'In-kn-, J'/-k-lo I (9)

fn k,n) On-k

(i) For k = 0 it follows from the Levinson recursion (4) that
.

(n) = () I (+ (
On + (+ O +,,,n O I + .,n J - ,

where enn = in n/dn and 'i,. = Pntn.

(ii) Assume the statement is true for k > 0.

(iii) Using the induction hypothesis (ii) for z(n-k) in

=(n-k-) + n -k (

16

and making use of the Levinson recursion in each of the two sumns of (9) results in

(hj1 (/ki+ 0 &..,+i

k (k (0j 1

Z En-k,n-j On-k-1 = Efn-kn-j + Pu-k-1

30 k- 0 1= '~)~).
* = En-u k-2 + Pu-k-i Zj= km,0 O'-h-2 J JVfin-k-2,IL 0 J0 Jj+ 11 Pnk-

for the first sum and

/ k-,+1 I kj+ I kj

F,7n-k,n-i J~n-k- E 17-kun-j I+ P-k- I)= jj1 =0 0 1

k-I J'nkn-:2 Onu-- - 0,.-k2O--

Eu-k u-j +'1 -- + 17n-k~nh P-k (0

Si + I) U + I+ Ok I
for the second sum. The last term in (-k-) expands to

Collctig 1 =1n--1 O('k2J + Pu-k-i

Collectigorresponding terms gives the following expression for x(n-k-1)

(Pi-kn n -k 0

0k - I - O k -, -

k- + &mkIl-~m,~'- - 1

j=O j=0Ifmk~- J0~ - mkI~-~--Jmk2

+ nki+P-kii- - + in-kf-k + O-nkkI-A-I)JO-k -2

k Ok + 3 k+2

17

which can be written as

O. -k- I (7n-kl-h-i I. + I. +

* j k +1(+ + Fo4,,-k-l,,-j n-k-O + =o h--,,-J,-k-+O+

fu-k-ln On-k- 1 +

where

(n-k-l,n-k- I n-k-In-k ... n-k-1,n-I fn-k-l,n

1ln-k-1,n-k-1 1 n-k-l,n-k ...
t ln-&-i,n-I 1n-k-1,n)

= -- 1 (-n-- nknkE-nI'nhn

Pn-k- 1 I rn-k,n-k fln-k,n-k+l • • 7n-k,n

This completes the induction.

The backsubstitution part using the Schur recursions computes the t- and ti-vectors and can

be formulated as follows.

Backsubstitttion by Schur Recursions

The Schur recursions determine the vector z = L TD; g with its kth element given by z1,.

1 <k< En-k,n-k n-k,n-k+l ... • n-k,n- I n-k,n

(n-k~n- In-k,n-k+l ... tln-k,n-I1n i- kni

I- Pn- k gnkd- n- (k- 1),n - (k- 1) ... tn- (k-),n--I (n-(k-1),n

Pn 1) (fn-(k- 1),n-(k-i) 1n-(k-l),n-(k-I)+i .. 17n-(k- 1),n 0

O < j _n, Z2 = co, + qo,.

Third Class of Systolic Implementations

The computation of all phases, factorisation, forward elimination and backsubstitution, by

Schur recursions makes it possible to employ only one array for all three phases. The corresponding

array in [7, 8] is the most efficient of the three types of designs presented, and can be derived as

follows (the processor and time functions here differ from the ones in 17, 8] in a few small details

that do not affect the asymptotic computation time).

18

To fit all three phases on one array it is convenient to adapt the index structure of the factori-

sation phase to that of forward elimination by transforming each index (k j) in the factorisation

to

(k j) (k0 ~)

The transformed factorisation phase is thus expressed as:

do = to

(&o'o ... O 1) (ti ..

1AlO,O .. • AO,n- I tj ...• tn

1 < k < n, Ph = -pk-,k-1/d-, d = d-(1 -4)

Pk\
(£1k ... Vk'n-.I 1 k (Vk....i-1 Vk...,i..2

1Ak,k Akn-l Pk A1*I . A-~n1

The time and processor functions are chosen to be

(1 X2 rs)=(1 0 0), (rl r2 rs)=(1 1 2).

Thus, all matrix elements are input to the same processor: tk is input to processor 0 at time

r = k + 1; and (vk j IAtj) are determined in processor k at time r = k + j + 2. The values of pi,

and dk are computed along with vk,k, in processor k at time 2k + 2, and remain in that processor

throughout factorisation and forward elimination. Notice that the components of the v-vector stay

put in the processor while the components of the j-vector are shifted one processor to the left. The

last quantities p,, and dn are computed in processor n at time 2(n + 1), so the computation of the

factorisation requires 2n + 3 steps.

Since the factorisation has the same structure as the forward elimination phase, and the forward

elimination phase involves the Ph which are now computed in different processors the two phases

may be overlapped, thereby eliminating the processor idle time of the previous designs. Observe

that the last matrix element tn is input to processor 0 at r = n + 2 so the first element of the

right-hand side vector f0 can be input to processor 0 at time n + 3. In general, all right-hand

side elements are input to the same processor as the matrix elements: fi is input to processor 0

at time n + j + 3, and time and processor functions (except for the time displacement rs) are the

same as before:

W1 W2 9)(1 0 0) r r2 s)(1 n-+ 3).

19

%:..* I

The pair (akj Pkj) is determined in processor k at time r = k+j+ n+ 3, and the components of

both a- and #-vectors experience a shift to the left neighbouring processor after their computation.

Element g = akt is computed in processor k at time 2k + n + 3, and forward elimination is

completed at time 3n + 4.

To keep communication on a nearest neighbour basis, the linear array is folded together so

that processors k and n - k are situated across from each other. After completion of the forward

elimination phase processors k and n - k can then exchange their values of p, d and g so that

processor k ends up with Pn-, dn-t and gn-k. For simplicity each index (Ik j) of backsubstitution

is transformed to

(k) + ((n O)=(n -k j),

resulting in

(70,n) (0 d

I < k (k~n-k Ekn.k+l ... ek,n- I £k,n
" k'kn-k k-k,n-k+ l ... • •(),n-kI 1 k,n(1 Pn-k 1 gn-k/dn- fk I

Pn-k i. \k'i-,n-tk-1) t h-1,,-Ik-1)+i - T ik-i,n

0<j_<n, Xj=--n,J+ Inj.

With processor and time functions

(72 7r3)=(l 0 0), (ri r2 Ts)(2 1 2n+4)

the pair (kj t7kj) is computed on processor k at time r = 2k+j+2n+4. In particular, component

Xk = Cnk + 71nt of the solution vector is computed in processor n at time r = 4(n + 1) + k. Hence

backsubstitution is completed at time 5n + 6.

With the above scheme, a Toeplitz system of order n can be solved in time O(5n) on n

processors with nearest neighbour commuincation. Each processor requires only a constant amount

of storage. External input takes place on the first processor and external output on the last. As

shown in [7, 8] the solution processes for several different problems with different right-hand sides

can be overlapped and the solution to a new problem can be obtained every n steps. Furthermore,

as shown in [8], the above array belongs to the class of n-processor arrays that solve Toeplitz

systems faster than any other array with linear processor and time function, and I/O restricted to

the boundary processors.

20

%'RX %Wj

References
[1] Bareiss, E.H., Numerical Solution of Linear Equations with Toeplitz and Vector Toeplitz Ma-

trices, Numer. Math., 13 (1969), pp. 404-24.
[2] Brent, R.P., Gustavson, F.G. and Yun, D.Y.Y., Fast Solution of Toeplitz Systems of Equations

and Computation of Pade Approzimants, J. Algorithms, 1 (1980), pp. 159-95.
[3] Brent, R.P., Kung, H.T. and Luk, F.T., Some Linear-Time Algorithms for Systolic Arrays,

Proc. IFIP 9th World Computer Congress, North Holland, Amsterdam, 1983, pp.

865-76.
[4] Brent, R.P. and Luk, F.T., A Systolic Array for the Linear-Time Solution of Toeplitz Systems

of Equations, J. VLSI and Computer Systems, 1 (1983), pp. 1-22.
[5] Bunch, J.R., Stability of Methods for Solving Toeplitz Systems of Equations, SIAM J. Sci. Stat.

Comput., 6 (1985), pp. 349-64.
[6] Delosme, J.-M., Algorithms for Finite Shift-Rank Processes, Ph.D. Thesis, Dept of Electrical

Engineering, Stanford University, 1982.
[7] Delosme, J.-M. and Ipsen, I.C.F., Parallel Solution of Symmetric Positive Definite Systems

with Hyperbolic Rotations, Linear Algebra and its Applications, 77 (1986), pp. 75-111.
[8] , Efficient Systolic Arrays for the Solution of Toeplitz Systems : An Illustration of a

Methodology for the Construction of Systolic Architectures in VLSI, Systolic Arrays,

Adam Hilger, 1987, pp. 37-46.
[9] Delosme, J.-M. and Morf, M., Normalized Doubling Algorithms for Finite Shift-Rank

Processes, Proc. 20th IEEE Conference on Decision and Control, 1981, pp. 246-8.
[10] Grenander, U. and Szego, G., Toeplitz Forms and their Applications, University of California

Press, 1958.

[11] Iohvidov, I.S., Hankel and Toeplitz Matrices and Forms, Birkhauser, 1982.
[12] Kung, S.-Y. and Hu, Y.H., A Highly Concurrent Algorithm and Pipelined Architecture for

Solving Toeplitz Systems, IEEE Trans. Acoustics, Speech, and Signal Processing,

ASSP-31 (1983), pp. 66-76.
[13] Kung, H.T. and Leiserson, C.E., Systolic Arrays (for VLSI), Sparse Matriz Proceedings, SIAM,

Philadelphia, PA, 1978, pp. 256-82.
[14] Levinson, N., The Wiener RMS (Root-Mean-Square) Error Criterion in Filter Design and

Prediction, J. Math. Phys., 25 (1947), pp. 261-78.
[15] Morf, M., Fast Algorithms for Multivariable Systems, Ph.D. Thesis, Dept of Electrical

Engineering, Stanford University, 1974.
[16] Nash, J.G., Hansen, S. and Nudd, G.R., VLSI Processor Array for Matrix Manipulation, CMU

Conference on VLSI Systems and Computations, Computer Science Press, 1981, pp.

367-73.

21

%

[17] Roebuck, P.A. and Barnett, S., A Survey of Toeplitz and Related Matrices, Int. J. SystemsB

Sci., 9(1978), pp. 921-34.
* [18] Schur, I., Ueber Potenzreihen die im Innern des Einheitakrcises Beschraenkt Sind, J1. Reine

Angewandte Mathernatik, 147 (1917), pp. 205-32.
[191 Trench, W.F., An Algorithm for The Inversion of Finite Toeplitz Matrices, J1. Soc. Indust.

Appi. Math., 12 (1964), pp. 515-22.

22

* UWJ UY JLAPW

% l%

N%

N%.

