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~
Abstract. The most popular method for the solution of linear systems of equations with Toeplitz
coefficient matrix on a single processor is Levinson’s algorithm, whose intermediate vectors form the
Cholesky factor of the inverse of the Toeplitz matrix. However, Levinson’s method is not amenable
to efficient parallel implementation. In contrast, use of the Schur algorithm, whose intermediate
vectors form the Cholesky factor of the Toeplitz matrix proper, makes it possible to perform the
entire solution procedure on one processor array in time linear in the ofder of the matrix.

By means of the Levinson recursions we will show that all three phases of the Toeplitz system
solution process: factorisation, forward elimination and backsubstitution, can be based on Schur
recursions. This increased exploitation of the Toeplitz structure then leads to more efficient parallel
implementations on systolic arrays.

To appear in: Proceedings of the IMA Workshop on Numerical Algorithms for Modern Parallel
Computer Architectures, M.H. Schultz, ed., Springer Verlag, 1987.
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Introduction

The aim of this paper is to discuss parallel methods for the solution of linear systems of

equations

Taz=f

whose coefficient matrices T,, are dense symmetric positive-definite Toeplitz matrices.

A symmetric Toeplitz matrix T,, = (tx)o<k,i<n of order n + 1 is a matrix whose elements are
constant along each diagonal, t;; = t;_;). The solution of a general, n x n system of equations by
a direct method requires O(n®) operations. Since a n x n Toeplitz matrix is characterised by O(n)
rather than O(n?) parameters efficient algorithms for the solution of Toeplitz systems exhibit an
operation count that is considerably smaller: the classical Levinson and Schur algorithms require
O(n?) operations [1, 14, 15, 18] while the doubling algorithms require O(nlog?n), cf. the early
references [2, 9]. A thorough treatment of Toeplitz matrices is given in 10, 11], and a brief summary
can be found in [17]. Numerical aspects of algorithms for Toeplitz matrices are reviewed in [5].

Development of parallel implementations for the solution of dense Toeplitz systems was moti-
vated by the need to execute certain signal processing tasks in real-time. The preferred architectures
are systolic arrays, special-purpose devices built with Very Large Scale Integrated (VLSI) circuit
technology [13]. Systolic arrays are homogeneous networks of tightly coupled, highly synchronised,
simple processors that essentially operate in SIMD (Single Instruction Multiple Data stream) mode.
Due to the repetitiveness of the computations and the regularity of the data dependencies systolic
implementations can be described by means of linear transformations: the processor in which a
quantity r; ; is computed as well as the time of its computation is expressed as a linear function in
the indices 1 and j (7, 8]. To keep the approach simple and intuitive, implementation details will
be omitted in this paper, they can be found in [7, 8].

Three classes of systolic arrays will be presented whose efficiency improves with increased
exploitation of the Toeplitz structure in various phases of the solution process.

The classical method of choice for solving a n X n symmetric positive-definite Toeplitz system
on a single processor is the Levinson algorithm [14]. The intermediate vectors generated by the
Levinson algorithm form the Cholesky factor of the inverse of the Toeplitz matrix. Due to a
sequence of n inner products, however, the lower bound of the parallel solution time on n processors
is O(nlogn).

The second classical method is the Schur algorithm [1, 15, 18]; its intermediate vectors form

the Cholesky factor of the Toeplitz matrix. Although its operation count is fifty percent higher

1
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than that of Levinson’s method, it is more amenable to parallel implementation: an array of O(n)
processors can determine the Cholesky factor of an order-n Toeplitz matrix in time O(n) |3, 4, 6,
7, 8, 12, 16).

The solution to the Toeplitz system can be found by performing forward elimination with the
transpose of the Cholesky factor and subsequent backsubstitution involving the Cholesky factor.
This necessitates the additional use of arrays for triangular system solution and intermediate storage
of order O(n?) for the Cholesky factor during forward elimination [12, 16).

Instead of performing the usual forward elimination, recursions similar to the ‘Schur recursions’
in the factorisation may can be employed to modify the right-hand side vector, thus making it
possible to employ the same type of array for factorisation and forward elimination. Intermediate
storage of the Cholesky factor till the start of backsubstitution may be avoided by re-generating it
on the fly (3, 4].

A final improvement in efficiency is achieved by also performing backsubstitution by Schur
recursions. In this case it is possible to perform the whole solution process on one n-processor
array in time O(n) (7, 8].

Since it appears impossible to conceive systolic implementations of doubling algorihms, it can
be concluded that the most efficient method hitherto to solve Toeplitz systems on systolic arrays

is one that makes maximum use of Scliur recursions.

Notation

A symmetric Toeplitz matrix of order n + 1 will be denoted by Ty, where

to 4 ... ... ta
t1 o
Tn= )
to )
th ... ... i ¢t

and the sequence ¢; ...t of Toeplitz matrix elements for { < k will be denoted by ¢,.,. Frequent use
will be made of the fact that the first and last columns of T, have the respective representations
to:n and Jto., where J = (e, ... €1 €g) represents the ‘exchange’ matrix with ones on the
antidiagonal, and ¢; is a (n + 1) x 1 vector with a one in position 1 and zeros everywhere else,

0 <1 < n. At last, O, stands for the k x 1 vector consisting of k zero elements; when k = 0 it is

the empty vector.
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A symmetric Toeplitz matrix T, is centro-symmetric, that is
Tn=JT,J.

Direct methods with operation count O(n?) or less for the solution of dense Toeplitz systems of

order n exploit this property and the resulting recursive nesting of Toeplitz matrices:

th to 4 ta
Th-1 : 4
=Ta=JT,J =
t Tn—l
th ... 4 to tn

The system T,z = f can be solved by recursively solving a system involving T),_;.

The Levinson Algorithm

Levinson’s algorithm computes the Cholesky factorisation of the inverse of a n x n Toeplitz
matrices with O(n?) operations; the following derivation is partly based on the one given by Trench
in (19]. Suppose the Cholesky factor L, of T,;! = LTD;'L, is known, where L, is unit lower
triangular and D, is diagonal (as T, is symmetric positive-definite the diagonal elements of D, are
strictly positive). The Toeplitz matrix Tp+1 of next higher order can be partitioned into a 2 x 2

block matrix as

T, Tn t=Jt (¢ t1)
1= y = B = v .
n+ tT t 1in+1 n+l 1
Solving
- In+1 0
Tn-f:-l]_T'l'f'l = ( 0 1) )

where I, is the identity matrix of order n + 1, results in a 2 x 2 block partitioning for .}

n+1
— T '+ T uTT Y /d -T;'t/d
n+ ~TT-1/d 1d |’

Setting ¢ = —T,; !t yields

T — Tn-l'f'\ll'l’T/d v/d _ In ¢ Tn—l I,
n+l = vT/d 1/d “\1 g o1
LT ¢ D;! Ln
) ( ! ) ( d") (w 1) = L Dii e (1

" A . O g 0 LY

-------



Thus, (¢7 1) is the trailing row of the Cholesky factor Ln+1 of T,},. It remains to show that ¢

and d can be computed in O(n) steps.
To this end, suppose that the Cholesky factorisation of T, ! is already known:

do

-1 T
T;'= LTD;'L, = (T"“ + ¥nda fdn ‘b"/d") , Da=

¥ /dn 1/d, ;

where do = to and ¢, is a n X 1 vector. The symmetry-centro symmetry of Toeplitz matrices

implies for the inverse of the next higher-order matrix Tp4; that T,7}, = JT,},J, or in block form

(Tn_l + Yns1¥h 41 /dns1 ¢u+1/dn+1) _ ( 1/dn41 ¥I1J/dns1 ) @
¢:+l/dn+l l/dn+1 J¢n+l/dn+l Tv:l + J'lb'H’l'b:w»l‘l/d""'l .

This gives for the trailing row ¥p41 = —T.7 1Jt1.n+1 of L4y the block form

~1/dn —\bz.]/dn th+l _ —(tn+1 + '/’:tl:n)/dn
—Jnfdn TN = JYat¥TJ/dn ) \Jt1n ~T7 N Ttin = I¥n(tasr + ¥Tt1n)/dn )

Denoting the term in brackets by

Par1 = —(tnrr + ¥ t1n)/dn = — ($T  1)t1041/dn, p1 = -t /to, (3)

and observing that ¢, = —T"'__l,J t1.n gives

v _( Pn+1 )
"7\ dnt Pns1d¥n )

Consequently, with ¢y the empty vector, the trailing row of Ln;1 can be obtained from the

trailing row of L,, via

v 0 1
( "l+l) = | ¥ | tonr1| J¥n |- (4)
1 0

Remembering that d;! is the bottom right element of T,; ! and pn 1 is the leading element of Yn41

one gets with (2) for the bottom right element of T, +‘l
d;ll =d, '+ anﬂd;ix or dny1 = dn(l - ply), do = to. (5)

Note that the original paper by Levinson [14] does not contain the simple recursive computation

of dpy1 from d,, and pp 4.
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The Levinson Algorithm

The Levinson algorithm computes the lower triangular Cholesky factor L, of T,;! with kth row
given by (Yro ... ¥ra—1 1 0T_,).

do =t
k-1

1 S k S n, pfr= —(tk+z:¢k_l.j"ltj)/dk—l, dk =dk—l(l_pz), ¢k,0=pk
=1
Yi-10 - Vr-14-
('/’k,o 1/1‘,*_1):(1 Pk)( k-1,0 k—1,k z)

Yi-1k-2 ---  VYe-10

The reason why Levinson’s algorithm has little potential for parallelisation is that the vector
¥n enters into the computation of ¢4 from both ends: in a linear combination of ¢, and Jn.
Even if one were to maintain two separate copies, ¥, and Jy,, the weight p,1 in this combination
would still depend on the entire vector ¢,,. Thus, it is not possible to pipeline successive recursions,

and the lower bound on the time of a n x n parallel Cholesky factorisation of is O(nlogn).

The Schur Algorithm

Since the inner-product (3) in the formation of pn; is the culprit for the poor parallel per-
formance of Levinson’s algorithm one could try to reformulate the algorithm so as to obviate the
need for an explicit inner-product computation. This is accomplished by observing that (1) implies
dn = (¢T 1) Jto.n, and substituting this into (3) leads to

Pt = — ($3 1) tinn .
(¥7 1)Jton
Thus, the coefficient pn.1 is the ratio of two quantities that are obtained by multiplying (¢TI 1 )
and its reverse by a column of the Toeplitz matrix. This is the basis for the so-called Schur algorithm
(1, 15, 18], it avoids the inner-product by recursively ‘updating’ matrix-vector products involving
the Toeplitz matrix, so that p,,1 can be formed as the ratio of two vector elements.

Unlike the Levinson algorithm which determines the Cholesky factor of the inverse, the Schur

algorithm determines the Cholesky decomposition of the matrix proper. If the result of Levinson’s

method is T;! = LTD;!L,, where L, is lower triangular, then the uniqueness of the Cholesky

5
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decomposition implies that L,T, = D,L;T must be a scaled version of the upper triangular
Cholesky factor Up of T,,: T = UT DpUn. Therefore it follows that ((¢7 1) 0F_, )T, is the
kth row of the scaled Cholesky factor D,U, of T,,. Let 0{ represent a row vector of k zeros, then
the kth row of D, U, has the form

T A *
(('l’f 1) Oz.g)T» = (('/'I 1) OZ—k—l 0) AI Tak-z *
* * to

=((¢f DT (¢ DA «)=(0] d (¥] 1A *)
=(0f di Vko ... Vin-k-1), (6)
where * denotes unimportant terms and from (1)
(¢ 1)Te=(0] dp). (7)

If it is possible to compute the non-zero elements (dy vipo ... Vin-k—3) of the kth row of
D,U, with O(n — k) operations then the Cholesky factorisation T,, = UT D,U, can be computed
with O(n?) operations. It is now shown how to compute the vector of vy, as a linear combination

of two vectors by making use of the Levinson recursion as follows:

(¢ 1) O, )Ta=(0 (¢ 1) O, )Ta+par((¥] 1)J 0 O, ,)Tn.

With (3), (7) and (6) the first summand evaluates to

to tf:u—l *

(0 (¢ 1) O, )| tienn T Ax
{
* A{ T,._k-z \

=((¢f Dtirnr (¢f 1)Te (¢ 1) A)=(-pearde O] di (¥ 1)A:)

=(~prsrde O] de vip ... Vin-k-2).
The second summand amounts to
T} Jtyks By
(('ﬁf 1)J 0 05-;‘_1) t{:kﬂ‘] to *

BT * Tpi-2

=((¢f 1)ITe (¥F Dtrasr (Y 1)IBe)=(dx O ~ppprdi (¥1 1)JBy)

\ =(dy O pro .- Mkn-k-1)-
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where the leading element of the non-zero part is upo = —pr41di.

-~ -

Forming the linear combination of the two summands yields
(¢ 1) 074 1)Tn

R
ﬂ'
:: ) . =(-pes1de OT_, dis eo ... Vknok-2)+oes1(de OF_, pro ... Bra-k-1)
s r
B = (0‘,.,.1 de+1 Vit10 - Vk+1,n-(k+1)-1)
; where due to (5) dp4y = di(1 — p? +1)- Similarly, determination of the new vector elements p44
: is accomplished using the row-reversed version of (4)
( (¢I+l 1 ) J 05-1;-1 )Tn
=((yf 1)J 0 0T, )Tu+pes1(0 (] 1) OF_, )Tn
3,
=(dr O] mro ..o Ben-i-1)tors1(—petrdi O de vep ... Vin-k-2)
3
) = (di+1 Ozﬂ Be+1,0 ..o Bekn—(k+1)-1 )s
where pii10 = —prs2di41-
4 L}
X The Schur Algorithm
; The Schur algorithm computes the scaled Cholesky factor D,U, of T, with kth row given by
» (()Z~ de wneo ... Vk,n—k—l)-
\ do = to

‘ - (Vo'o Vo,n—l)_(tl R
B0oo --- HMOn-1 ty ...ty

1<k<n, pp=—pp10/de-1, dip=de_y(1 - p})
| (Vk,o cor Vin-k-1 ) ( 1 Pk) (Vk—l,o <o Ve-1n—-(k-1)-2 )
., Bko - Bkn-k-1 pe 1 Bk-11 - Bk-1n-(k-1)-1

First Class of Systolic Implementations

Assume that a linear array of n + 1 processors, numbered 0 to n, is available for the execution
of the Schur algorithm on matrix T, of order n + 1. A time step for the array is defined as a time

K interval long enough to accommodate the operations

.. P = —pk-1,0/dr-1, di = di_1(1 - p})

. Bk j pe 1 Bk-15+1
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Different schedules and processor assignments for individual operations can be derived by applying

appropriate linear transformations to the indices of the computed quantities: the pair (v ; px;)

x=(k ) (") +7s
x2

r=(k J)(rl) + rs.
T3

The partial order of computations is preserved by observing that v;_;; must be computed before

is computed in processor

at time

Vb, and pp_y ;41 before uy ;. That is, the time function must satisfy
-1 <0, -n+r<0.

In general, if a quantity with index (7, 5) depends on a quantity with index (k,l) the latter must

be available before the former can be determined, in other words 8]

(k-3 z—j)(“) <o.
2

To make sure that one processor does not have to perform two different operations at the same
N1 1
T2 73

The first systolic array presented in [12] is based on the following linear transformations. In

time the determinant of the matrix

should be non-zero [8], ry72 — ramy # 0.

step k of the Schur algorithm, 0 < k < n, (uk.j pk'j) is computed in processor 7 at time 7 > 1

where
0 1
r=(k j)(l)+0=j, r=(k j)(0)+1=k+l, 0<j<n-k-1

The parameters pi and d are assumed to be associated with index (k,0) and thus determined in
processor x = 0 at time 7 = k + 1. Initially processor j is loaded with matrix element ¢;.

The execution of the Schur algorithm requires n + 1 steps. In each step processor O computes
a new p and broadcasts it to all other processors, so that each step produces a new row of the
Cholesky factor. The components of the v-vectors remain in their respective processors (v ; resides

in processor j for all k) while the u-vector is shifted left by one in each step (u-1,;+1 is computed

8
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in processor 5 + 1 before being sent to processor j for the computation of u; ;). Note that in step k
there are k idle processors, and in order to offload a row of the Cholesky factor each processor must
be able to perform external 1/0.

To avoid difficulties, such as synchronisation delays and long wires, associated with a global
communication scheme like broadcasting a ‘pipelined’ array is proposed in [12, 16]. The processor

function (x; x2 =xs) is the same as before but the time function has changed to

(Tl T2 1'3)=(2 1 l)

Thus, p, and d; are computed at time r = 2k + 1 in processor 0 and p, is then sent to processor 1.
In the next step, at r = 2k+2, (px,1 vi,1 ) can be computed in processor 1, p; can be transmitted
to processor 2 and u;; left to processor 1 so that at r = 2k + 3 the computation of pi4+1 can start.
Thus, successive iterations are two time steps apart. Because p,, and d,, are computed at r = 2n+1
the computation time for the Schur algorithm comes to 2(n + 1). The replacement of broadcasting
by forwarding (or pipelining) of p from processor to processor results in communication that takes
place exclusively on a nearest neighbour basis. All other features are the same as in the first array.

In order to solve the system T,z = f three possibilities are discussed in [12]:

1. forward elimination and backsubstitution involving the Cholesky factors Uy, D,, and U,T of Ty,

2. computation of the Levinson vectors ¢ using the p; from the Schur algorithm, and subsequent
matrix vector multiplications involving L,, D,, and Lf (the ¢, constitute the rows of the

Cholesky factor L, of T,;'!)

3. explicit computation of T,; ! in form of the Gohberg-Semencul formula and subsequent matrix-
vector multiplications by means of FFTs (the Gohberg-Semencul formula represents the inverse
of a Toeplitz matrix as a sum of products of triangular Toeplitz matrices that consist of the

elements of ¢,,).

Since details for parallel implementations of the latter two methods are not given and their

data and control flows are likely to be rather complex only the first method will be considered.
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Forward Elimination with Cholesky Factor

Forward elimination solves the lower triangular system (D, Un)Th = f, the elements of the solution

vector h are given by hy = hg .

hoo = fo/do

lSkSn, hk,—lzo

1<5)<k-1, hk,) thd—]+uj-l,k—jhj,)

Ree = (fe — Bei—a)/de.

In order to overlap forward elimination as much as possible with factorisation a second lLinear
array with n + 1 processors is employed, and it 18 assumed that each processor in the ehmination
array is physically connected to the corresponding processor in the factorisation array. Since a
matrix element v;_; ;_, is computed in processor k — j at time 7 = k + 5 — 2 in the factorisation
array it may be used at the next time step in processor k — j of the forward elimination array

Hence, the forward elimination array has the processor function

(my =2 =x3)=(1 -1 0),

and essentially the same time function as the factorisation array (the time functions just differ by

one in their displacement 73):
(n r2 m3)=(2 1 2).

Note that the elements of the h-vector are shifted one processor to the right each step. At time
r = 3k + 2, fi and di have to be input to processor 0 of the elimination array so that hy = hy

can be computed there. Thus, forward elimination is completed after the computation of h, at

time 3n + 3.

10
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Backsubstitution with Cholesky Factor

Backsubstitution determines the solution z, with elements z; = z; ;, of the upper triangular system
D ,Upz = D,h.

Inn = dnhn/dn
n-1>k>0, zp,41 =0
n>23>k+1, Zp;=Zejp1+ Vej-k-1%5;

zex = (dehe — Zep41)/di.

As backsubstitution can only start once forward elimination is completely finished, the forward

elimination array may be re-used. Its time and processor functions are now
(7!'1 2 1l’3)=(—l 1 0), (1’1 T2 T3)=(-—I -1 5n+3).

If processor O has retained all h, and di from the forward elimination phase then the solution
element zy = z;: can be determined in processor O at time r = 5n + 3 — 2k. Note that solution
of a Toeplitz system of order n in such a manner requires time O(5n) on 2n processors plus O(n?)

storage to store the matrix D,U,, during the forward elimination phase.

Forward Elimination by Schur Recursions

The second step, the modification of the right-hand side vector f in the system T,z = f can
be improved for a systolic implementation by applying the same operations to f as were applied to
T, in the Schur algorithm: after having determined L,T,, = D,U, one now determines ¢ = L,f so
processors perform the same type of operations during facorisation and forward elimination, and
only one type of array is needed for both phases.

To derive the computational steps for ¢ = Lnf we extend the vector f to a Toeplitz matrix F,

with f as its first column:

fo Jo N f.n
/ n fo
f= .‘ ’ Fo= : '
fo i
f" fn fl fo
11




From the computation of Ln F. one can derive recursions for L, f by means of the following obser-
vation. The kth element of g = L, f is

" n=((v] 1) 0T )f=(¥] 1)foa, O<k<n,
i
. while the kth row of L, F, is
| T T T Fe *
. ((wf 1) 01 )Fu=((¥] 1) 0],)
::: o Faay
‘ =(s (9] 1FR)
\
N whose kth element is the trailing element of ( w{ 1) F, which is equal to (w{ 1)Jfo: Hence,
the trailing element of (¢ 1)JF, in
\i
o (v 1)J 0L )VF=((v] 1)JF »)
~
isge = (¥l 1)/fou
" Consequently, the sought vector g is a product of f with the matrix whose rows contain the
) reverse Levinson vectors, and g can be computed by the following Schur-hike recursions involving
the upper triangular part of this matrix.
Denote elements in position k <1 < n of
N T T T T B G T T
., ((wh l)J ou_g)puz((w. I)J 0"_.) T :(("g l)JFt (“ﬂ l)JCk)
) C. Fh
SN
“ by
: (ann  awa) =((¥] 1)for (¥] 1)JC))
’
: and elements in position k < 1 < n of
o
: Fk Dk J/nn &
e (Cvi 1) O\ )Fa=((v] 1) 00,y O)| DI Faur o
'\ I:,.,.J . ,0
. =((vi DF (¢] VD (¥ 1)Jfan )
o
! by
A (Baa Ben)=({v] 1)Jfos (v] 1)Ds (] 1) an ) (8) ‘
\: Now a, y = ga 18 the kth element of ¢ and the recursive computation of ay. 4.,y gp.) from ;
2: ay, and 8, can be derived by means of the Levinson recursions (4) as follows |
|
? (Cele 1) O, F (6] 17 07 ) pea(0 (v 1) 07, ) F, |
g ”
s
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Ignoring elements in positions O through k on both sides of the equation gives

(aasr1a+1 . aasrn)=(aapsr - aan)+pes1(Bap ... Bin-1)

since the second summand is equal to

Jo !;rg *
(0 (vf 1) T, Dl e AR D |=((¢] Vha (¢ 1)F (¥ 1)Ds).
* DI Fn-i—!

Comparing elements in positions k + 1 through n with (8) one notes that

((vT 1)Jdfox (¢ 1)Dy)=(Bap ---Brn-1)-

The second vector consisting of elements 83,1, K+ 1 <1 < n, can be updated similarly.

Forwerd Elimination by Schur Recursions

The Schur recursions determine g = L, f where gy = a, ;.
(00.0 ao',‘)_(fo fn)
»80,0 cee ﬂO.n !0 v In

(ak,k ak,u) ( 1 P;) ( Qp_1k ... Ok-1n )
1<k<n, = .
Ban - Bun e 1 Br-1a-1 - Br-1n-1

Second Class of Systolic Implementations

Again, the same assumptions as before hold, and the array from (3, 4] is presented that performs
both phases, factorisation and forward elimination, by Schur recursions.

The pipelined version of the factorisation phase is performed as before. As for forward elimi-
nation, the index structure of its equations is adapted to that of the factorisation by performing a

linear transformation on each index (k j):

Y L NP
(J)(0 l)—( i-k),

13
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resuiting in
acp ... aon\ (fo ... j,.)
(ﬂo,o ﬂo,u) B (fo cee In
1<k<n, (ak,o ak,n—k) _ ( 1 Pk) (ak—l,l cor Qp—1n-(k-1) ) .
Beo -+ Ben-k e 1 Bi-10 --- Br-1n—(k-1)+1
If a second (n + 1)-processor array is available for forward elimination with the same time and
processor functions as those of the factorisation array, then factorisation and forward elimination
can be performed simultaneously. Processor O of the forward elimination array is assumed to be
connected to processor 0 of the factorisation array so the latter can forward the p; to the former.
When pipelining is used, processor 0 of the elimination array receives p; and forwards it
directly to the other processors in the array so pairs (a;; Si ;) are computed in processor j at
time 2k+ 7+ 1. Initially, processor j is loaded with the right-hand element f;. Element g; = a is
computed in processor O at time 7 = 2k+ 1 and transmitted to processor O of the factorisation array
where it is retained till the start of the backsubstitution phase. Thus, factorisation and forward
elimination can be executed on 2(n+ 1) processors in 2(n+ 1) time steps if communication proceeds
on a nearest neighbour basis.
In order to avoid the O(n’) storage needed to store D,U, till the onset of backsubstitution

only its last column and the parameters p, are retained from which D,U, can be re-generated by

the Schur recursions.

The Reverse Version of the Schur Algorithm

The reverse version of Schur algorithm computes the scaled Cholesky factor D,U,, of T, with kth

row given by (0{ dr o ... Vip—i-1)from pg, 1 < k < n, and the last column

(Vom-1 Vip-2 - Vn-10 dn)T

of DyUn, whereby o n-1 = tn.
n-12k20,
(Vk,o Vk,n—&—z) _ 1 ( -1 PH-I) (Vh+l,0 ”k+l,n—(k+l)—l)
=5
Bkt - Ben-k-1 Pr+1 1 Pr+1 —1 Be+10 ... Breln—(k+1)-1
di = dis1/(1 - p341)y  Bro = —drPrsr.

14
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! If processor O in the factorisation array has retained all p; and d,, and processor n — k has
received component Vg n—i-1 of the last column from its left neighbour then the re-generation of

D,U, in the factorisation array can start at time 2(n + 1). The processor and time functions are

(71 =x2 xs)=(0 1 0), (n 72 13)=(-2 -1 4n+2),

Py e o

so that (wx; pkj+1) is computed in processor j at time 4n + 2 — 2k — j, and d; in processor 0
at time 7 = 4n + 2 — 2k. Processor O stores the d; for the backsubstitution phase. Note that the
components of the v-vector stay put in a processor (v ; resides in processor j for all k) while the
components of the u-vector are shifted one processor to the right in each step.

Suppose a third array for backsubstitution is available whose processors are connected to the

corresponding processors of the factorisation array. Since v j_i— is computed in processor j—k—1

Ty B Sy

at time r = 4n+ 3 — k — 7 it can be used at time 4n + 5 in processor j — k of the backsubstitution

array. With processor and time functions

(xy m2 x3)=(-1 1 0), (n 7 rn)=(-1 -1 4n+5), h

z; can be computed in processor j — k at time 4n + 5 — k. Since processor 0 has retained d; from

the previous re-generation phase and g, is computed early enough in processor O of the forward
elimination array (at time r = 2k + 1), element z; = z;; of the solution vector can be computed
in processor O at time 4n + 5 — 2k. The whole computation is completed in 4n + 6 time steps. Note !
‘ that during step k of the factorisation and forward elimination phase there are 2k idle processors. .
Therefore, 6n processors can compute the solution to a n x n Toeplitz system in time O(4n)
only relying on nearest neighbour computation, however the storage in at least one processor must .

be proportional to the problem size O(n).

Backsubstitution

The last step is normally solved by backsubstitution z = LT D;'g without making any use of
the Toeplitz structure of the original system. A new approach that uses the Schur recursions also
for the last step was derived in (7] and can be related to the Levinson recursions as follows.
Remember that ((¢I_, 1) 07), is the kth column of L7, that g; = a; 4 is the kth element .
of the vector g, and that d; is the kth diagonal element of D,,, 0 < k < n. With the abbreviation

Yt = gk/di, 0 < k < n, one can express the solution vector as a linear combination of the columns \
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) T
b of L,:
toh)
1ot
o : 1 ¥ V2 Yn-1 n
N zZ=" +7 1 + 72 1 + ... + T 1 +n .
o On 1
‘::: On-1 On-3 0
&
Define the partial sums
i
::, v Yn-k-1
e z(") =, ( l») , gy L b |, o<k<n-n,
Ok+1
@
V'; so that z(0) = z. It will now be shown by induction that for 1 < k< n
R
ol On-2 NMn-kn-k
1 . . N Ok—j+1 X Ok-j+1
e _ n-kn—k .
" z(" k) = . + +Z €n—kn-j d’n—k-l +Z ﬂu—k,n—j J'/’n—k—l . (9)
,: . NMn—-k.n §=0 0 §=0
2 i+1 0;+1
Lo €n—k,n on—b
. (i) For k = 0 it follows from the Levinson recursion (4) that
~,
B i’ 1
(ﬂ) \l’n \
zh=m| )= Yn-1 | +Pn| J¥n-a
1 J 0
( 0 0
On nn
= + +enn| Yn-1 | +0an | J¥n-1 |,
€nn On \
0 0
¥
where €nn = Tn = gn/dn and Ny = pun.
X (i) Assume the statement is true for k > 0.
(iii) Using the induction hypothesis (ii) for z(®~*) in
3
;:‘ '/’n-k—l
N z(n—-k—l) - z(n—k) + Yn-k-1 1
- Or+1
&
5 16
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and making use of the Levinson recursion in each of the two sums of (9) results in

Ok—js41 Or—j+1
Ok —5+1
k k 0 1
zen—k.n—j Yn-k-1 | = z:en-k.n—j + Pn-k-1
§=0 §=0 ¢n—k—2 J'/’n-k—?
0541
0541 041
Ox41 Ok+1 Ok 5 Ok -
0 1 k-1 0 1
= €n-k.n + pn-x-1 + Z €n—kn—-j5—-1 + Pn-k-1
Yn—k-2 J¥n—k-3 =0 Yn—k-2 Jn—k-2
() ] 0,42 0543
for the first sum and
Ok—jy41 \ Ok-j+1
0k-j+l
k k JYn_k-2 Yn-k-2
Z"n—k,n—j J'/’n-k—l = Z')u—k,n—j + Pn-k-1
j=0 =0 0 1
0j+1 )
0541 0,41
Ok—j+1 Ox_y4+1)) 0 Y
k-1 J¥n-k-2 Yn-k-2 J¥n-k-2 Yn-k-2
= Z Nn-kn-j + Pn-k-1 > + n—kn-k + Pn-k-1
= 0 0 1
0541 O;4y /) Ok +1 Ok+1

for the second sum. The last term in z("~#-1} expands to

0 1
¢n—k—l
Yn-k-2 JUn_k-2
In—k-1 1 = Tn—k-1 + Pn-k-1
1 0
Ok41
Ok+1 Ok+1

Collecting corresponding terms gives the following expression for z(*~*-1)

On—s NMn-kn-k Og41
. Ory3
€n—k,n—t : Prn—-k-1€n—-k.n
. + + €n-k.n¥n-k-2 +
: NMn—-k.n 0 'a—h—l‘n-l.n"*u—k—?
Cn—k.n On—h 0
Ox—, 04—,
k-1 0 A-1 Prn—-k~1€n—-kn-y-1
+ Z (€n-hn—s-1+ Pn-k-1Mn—kn—j)¥n—t-2 | + Z (Mn-tn-j—1+ Pr-k-1€n—bkin-5-1)/¥n_a-2
y=0 Prn—k—1Mn—k,n—j; 1=0 o
0j41 0541
0
Prn-k-1Tn-k-1
(Tn-a-1+Pn-t-1Mn-2,n-2)¥n-t-3
+ ("n—i.n—i+’n—h-l'7n—h—l)""n—l-2
Yn-k-1F Pn-k—1Mn—-knn-t
Op 43

Or41

e DT TR R U N S N U Y
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which can be written as

Opn—x-1 Nn-k-1n-k-1
k+1 Oi-k+1 k+1 0;-k+1
€p—k-1n—-k-1 :
+ +Z cn--k—l.n-j¢n-k-2 +z "n-k—l.n—;’an-k-—z )
Nn-k-1,n j=0 j=0
0,41 0541
€n-k-1.n On—k-1
where
(fu—k-n,n-k—l €n—k-1n-k - Cn-k-1n-1 €n—k-1n
NMn-k-1n-k-1 Mn-k-1n-k --- MMn-k-1n-1 Mn-k-1n
( 1 Pn-k-1 In-k-1 €n—kn—k cor €n—kn-1 €n—kn
Pn-k-1 1 Nn-kn-k Nn-kn-k+1 .. Mn-k.n 0

This completes the induction.

The backsubstitution part using the Schur recursions computes the ¢- and n-vectors and can

be formulated as follows.

Backsubstitution by Schur Recursions

The Schur recursions determine the vector z = LT D;'g with its kth element given by z,.

()= (")

€n-kn-k €n-kn-k+1 .- €n-kn-1 €n-kn ‘
1<k<n, ( )
NMn-kn-k Tn—kn-k+1 .- fin—-kn-1 Tin-kn ;
_ ( 1 pn—k) ( gn—k/dn—k €n—(k-1)n~(k-1) <o €po(k-1)n-1 (n—(k—l),n) ‘
Pn—k 1 M-(k-1)n-(k-1) Nn-(k-1)n~(k-1)+1 - fln—(k-1)n 0

\
0<3<n, z;=¢;+ M, 1

Third Class of Systolic Implementations

The computation of all phases, factorisation, forward elimination and backsubstitution, by
Schur recursions makes it possible to employ only one array for all three phases. The corresponding
array in (7, 8] is the most efficient of the three types of designs presented, and can be derived as
follows (the processor and time functions here differ from the ones in (7, 8] in a few small details

that do not affect the asymptotic computation time).

18
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To fit all three phases on one array it is convenient to adapt the index structure of the factori-

sation phase to that of forward elimination by transforming each index (k j) in the factorisation

- l l .
(k J)(o l)=(k k+3).

The transformed factorisation phase is thus expressed as:

to

do=tg
(Vo,o vo',._l) _ (tl t,.)
Hoo .- Mon-1 - ty, ... t,
1<k<n, pe=-—mrp-1/de-1, de=dp_y(1-p})
(Vk,k Vk,n—l) _ ( 1 Pk) (Vk-l,k—l Vk-l,n—z)
Bek - HBkn-1 IAVE! Be-1k - Hkoin-1)
The time and processor functions are chosen to be

(xy x2 x)=(1 0 0), (n m r3)=(1 1 2).

Thus, all matrix elements are input to the same processor: t; is input to processor 0 at time
r=k+1;and (v; pi;) are determined in processor k at time r = k + 7 + 2. The values of p;
and d; are computed along with v, in processor k at time 2k + 2, and remain in that processor
throughout factorisation and forward elimination. Notice that the components of the v-vector stay
! put in the processor while the components of the u-vector are shifted one processor to the left. The
last quantities p, and d, are computed in processor n at time 2(n + 1), so the computation of the
factorisation requires 2n + 3 steps.

Since the factorisation has the same structure as the forward elimination phase, and the forward
elimination phase involves the p; which are now computed in different processors the two phases
may be overlapped, thereby eliminating the processor idle time of the previous designs. Observe
that the last matrix element t, is input to processor O at 1 = n + 2 so the first element of the
right-hand side vector fo can be input to processor O at time n + 3. In general, all right-hand
side elements are input to the same processor as the matrix elements: f; is input to processor 0
at time n + j + 3, and time and processor functions (except for the time displacement r3) are the

same as before:

(1 72 #3)=(1 0 0), (nn 2 7)=(1 1 n+3).

19



The pair (ax; Pk, ) is determined in processor k at time r = k+ 5+ n+ 3, and the components of
both a- and B-vectors experience a shift to the left neighbouring processor after their computation.
Element gy = aii is computed in processor k at time 2k + n + 3, and forward elimination is
completed at time 3n + 4.

To keep communication on a nearest neighbour basis, the linear array is folded together so
that processors k and n — k are situated across from each other. After completion of the forward
elimination phase processors k and n ~ k can then exchange their values of p, d and g so that
processor k ends up with p,_x, d,—i and g,_,. For simplicity each index (k j) of backsubstitution

is transformed to

0

-1 0
(k J')( 1)+(n 0)=(n-k j),

resulting in

€0,n gn/dn
flon 0
€kn—k €kn—k+l -.- €kn-1 €kn
1<k<n,
Nkn—k Nen-k+1 - Nkn-1 Tkn

_ ( 1 Pn—k) ( In—k/dn—k €x—1,n-(k-1) cer €k-1n-1 Ck—x,n)
Pk 1 Ne-1n-(k-1) Tk-1n-(k-1)+1 --- TNk-1n 0
0<7<n, z;=¢€n;+ ;-

With processor and time functions
(x1 = 1!'3):—’(1 0 0), (nn n 1'3)=(2 1 2n+4)

the pair (ex; &, ;) is computed on processor k at time r = 2k+j+2n+4. In particular, component
Zp = €uk + n,i Of the solution vector is computed in processor n at time 7 = 4(n + 1) + k. Hence
backsubstitution is completed at time 5n + 6.

With the above scheme, a Toeplitz system of order n can be solved in time O(5n) on n
processors with nearest neighbour commuincation. Each processor requires only a constant amount
of storage. External input takes place on the first processor and external output on the last. As
shown in (7, 8] the solution processes for several different problems with different right-hand sides
can be overlapped and the solution to a new problem can be obtained every n steps. Furthermore,
as shown in (8], the above array belongs to the class of n-processor arrays that solve Toeplitz
systems faster than any other array with linear processor and time function, and I/O restricted to

the boundary processors.
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