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neutral particle beam controller, but the issues discussed

within this thesis should be valid for other applications.
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Abstract

The goal of this research was to develop a realizable

proportional-plus-integral (PI) feedback tracker to control

a neutral particle beam. The design is based on detecting

the photo-electron events that are emitted from a laser-

excited particle beam and the observed events are used by a

Meer filter to locate the beam's centerline. The observed

events are modeled by a Poisson space-time process and are

composed of both signal- and noise-induced events. The Meer

j filter is a stochastic multiple model adaptive estimator

which is composed of a bank of Snyder-Fishman filters and is

designed to distinguish the signal-induced events from the

noise-induced events. A target model is developed from a

Gauss-Markov acceleration process, and the target states are

estimated by a Kalman filter. The "optimal" PI controller

design is based on the linear quadratic (LQ) controller

synthesis technique and the "assumed" certainty equivalence

property, and the Kalman filter provides the reference

(target) states while the Meer filter supplies controlled

(beam) states. The objectives of the research were to (1)

select the "best" cost weighting matrices that minimize the

RMS tracker error and enhance robustness, (2) simplify the

Meer filter for easier on-line usage, (3) complete full-

xiii



scale sensitivity and robustness analyses over all the

Kalman and Meer filter parameters, and (4) develop on-line

adaptive estimation of those parameters that greatly affect

stability robustness and tracker performance. During the

research, an apparent stability problem was uncovered, and a

fifth objective was to identify the source of the

instability, and to propose a solution that would insure

stability during parameter variations.
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I. INTRODUCTION

This research is motivated in part by the problems in

neutral particle beam pointing and tracking currently being

3 investigated at the Air Force Weapons Laboratory, and at the

Rome Air Development Center. Their goal is not only to

estimate the position and direction of the beam, but use

that information in an optimal way to control the pointing

of the beam.

A method for sensing the location has been proposed in

which the beam is illuminated by one or more lasers [23].

At certain angles of intersection and at different particle

velocities, the particle electrons absorb photons from the

laser beam and attain a higher energy state. When the

particle beam electrons relax and spontaneously decay to

their ground energy state, they expend the energy as light.

By detecting the light energy, the position of the beam can

be inferred. If the light energy were to arrive at the

photo-detector at a sufficient signal rate as to produce an

observable current, it might be modeled by a continuous-

time, Gaussian process as done in many communication and

control type problems. But, the assumption upon which this

thesis is based is that the photon events do not arrive at

such a sufficient rate. Instead, a discrete, Poisson space-

time process is used to describe the arrival of the

individual signal-induced events (the photons) and the

noise-induced events (caused by dark currents within the

11 I I 1 1 1 1 1 111



detector, or other outside sources of noise). A space-time

point process is a stochastic process having as realization

points with random coordinates in both time and space. [9].

For this application, the time between events will assume a

conditional Poisson process composed of Gaussian spatially

distributed signal-induced events, and uniformly distributed

noise-induced events.

1.1 Bakron

In 1975, Snyder and Fishman [251 developed an

estimation algorithm called the Snyder-Fishman filter. The

filter is a minimum-mean-square estimator that for this

application, estimates the position of maximum intensity

from the arrival of the signal-induced events (all events

are assumed to be signal induced). The filter equations

appear very similar to the Kalman filter equations with the

notable exception that the Snyder-Fishman filter is based on

the Poisson space-time process and thus the arrival times of

the events are not known a priori. Instead, the events

arrive as part of the Poisson distributed process. In the

absence of noise-induced events, the Snyder-Fishman filter
provides good results, but Santiago [24] found the filter's

performance is severely degraded in the presence of noise.

In 1982, Meer [18] developed an adaptive filter

designed to estimate the position of maximum intensity from

the arrival of signal-induced events that are corrupted by a

statistically independent noise process. This was

accomplished through a multiple model structure in which a

2
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bank of elemental Snyder-Fishman filters are based on

different hypothesis sequences. The hypotheses define which

Sobserved events were assumed to be due to the signal process
and which were assumed to be due to the noise process, and

each elemental filter is allowed to process the observed

3events only when its associated hypothesis defined the event
as being signal-induced. Meer was the first to apply the

point process to the neutral particle beam problem, and the

W"Meer" filter outperformed the Snyder-Fishman filter in a

noisy environment. This successful filter development was

the primary breakthrough required in controlling the beam

location.

In 1983, Zicker (27] conducted a feasibility study of a

simple proportional gain controller, considering both a

regulator design to null out variations in the beam's

location and a tracker design to maintain the beam on a

maneuvering target. Zicker synthesized his stochastic

controller designs from a deterministic optimal LQ

controller assuming full state feedback. An LQ controller

is a controller design based on a linear system model which

uses a quadratic performance index to define optimal

control. Then, the states were replaced by their best

estimates according to the principle of assumed certain

equivalence [14]. The Meer filter was used to provide the

beam state estimate while a Kalman filter was used to

provided the target state estimate.

13 3



Over the next two years, Moose [20] and Jamerson [8]

replaced Zicker's proportion gain controller with

S Uproportional-plus-integral (PI) controllers, and the effort

began to move from a question of feasibility to

realizability and performance potential. The PI controller

9was selected because it possessed several characteristics
which make it ideally suited for the tracking problem.

First, control is based on both the current as well as the

integral of previous tracking errors, thus providing a type-

one system. Second, type-one systems are able to reject

constant unmodeled disturbances that arise from linearized

models, and are able to handle non-zero setpoint control

with zero steady state error. Although performance improved

considerably,. especially when the controller was confronted

with unmodeled disturbances, it came at the expense of some

additional sluggishness due to the additional integrator in

the controller. Also, Jamerson replaced Zicker's simple

target model, which was based on a Gauss-Markov position

model, with a more realistic Gauss-Markov acceleration

model.

1.2 Objectivesyj

Much of the previous work was spent on developing a

stochastic filter based on a Poisson space-time point

process which models both discrete signal- and noise-induced

events, and then demonstrating that it can be used for

feedback control. The next logical question that remains is

whether a practical implementable controller can be designed

4



which has the stability robustness to handle "real world"

plant variations. Therefore, the objectives of this thesis

* are: (1) to evaluate the quadratic cost function in the LQ

synthesis of Jamerson's PI controller and select the best

set of cost weighting matrices that minimize the RMS tracker

error and enhances robustness, (2) to evaluate the

possibilities of a simplified filter to replace the multiple

model structure of the Meer filter in order to reduce the

computational loading, (3) to complete a full-scale

sensitivity and robustness analysis on the six beam

parameters and the three target parameters within the Meer

and Kalman filters, and (4) to develop on-line adaptive

estimation for those parameters that greatly affect

stability robustness and tracker performance. During the

research, an apparent stability problem has been uncovered,

and a fifth objective has become to identify the source of

the instability and to propose a solution that insured

U stability during parameter variations. The initial

objective of evaluating an alternate cost weighting

technique, such as implicit model following was dropped when

the apparent stability problem surfaced. Discussions that

pertain to developing an alternate cost weighting technique

remain within the thesis (see Appendix A) as an aid for

future research.

5
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1.3 System Overview

An overview of the tracker design that is used

throughout the thesis is shown in Figure 1-1. The purpose

of a tracker is to generate a control input, u(tt), that

minimizes the difference between the the controller

variable, yc (t), and the reference (i.e., target) variable,

yr(t). In other words, we want the particle beam to track

the target position.

The target model is generated through a shaping filter

which uses an exponentially time-correlated noise process to

simulate the target acceleration. The target velocity and

position states are generated by integrating the

acceleration state with respect to time. The target sensor

is modeled as a sample and hold device that obtains a noise-

corrupted measurement of the target's position, &T (tt), at a

regular, prespecifed sample rate. The measurements are used

by the Kalman filter to generate a target state estimate,

AT.

The particle beam dynamics (also referred to as the

plant dynamics) are modeled as an exponentially time-

correlated position process, the output of a shaping filter

having one dominate pole. The position of the beam is

inferred through the observations detected at the surface of

the photo-detector. These observations, ;B(t), are assumed

to be well modeled by a Poisson space-time point process,

and can be of either signal or noise origin. The Meer

filter is designed to discriminate between the two types of

6
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events, and generate a beam state estimate, B(ti), from the

signal-induced events.

The target state estimate and the beam state estimate

are fed into the discrete-time controller algorithm to

generate a command input to the plant. Because the target

and the beam processes are assumed to be well modeled as

Gaussian processes as produced by linear shaping filter,

"near" optimal controller designs can be developed using the

linear quadratic (LQ) full-state feedback controller

synthesis process, and the assumed certainty equivalence

property for incorporating filters into the loop. The

proportional gain and proportional-plus-integral controllers

are developed in theory (presented in Chapter 3), and the PI

controller is implemented and evaluated on its own merit and

within an adaptive multiple model controller structure.

The performance of the tracker is evaluated by

calculating the tracker error, e(t), which is defined as the

difference between the target and beam positions. Because

A' of the adaptive nature of the controller and the time-

variant nature of the Poisson space-time point process, the

tracker error statistics have to be generated with a Monte

Carlo simulation, as opposed to a covariance analysis or

similar analytical methods.

1.4 Approac~h

The filter and controller theory is developed for the

n-dimensional space, but for simplicity, the specific

tracking system of interest will be designed and evaluated

de 8



in one-space. This reduction in physical dimensionality

shall simplify the physical insights about the design

without loss of generality. Chapter 2 describes the Meer

filter in considerable detail. The tracker model and

controller designs are developed in Chapter 3. This

includes the derivation of proportional gain, proportional-

plus-integral and adaptive multiple model controller

designs. Chapter 4 discusses the Monte Carlo simulation and

the analyses to be performed, which are in accordance with

the objectives stated in Section 1.2. Chapter 5 presents

the results from the Monte Carlo analyses along with a

detailed interpretation of the findings. One finding, an

S--apparent instability problem found during the robustness

analysis of the beam time constant is developed more fully

in a separate chapter, Chapter 6. This chapter analyzes the

stability and robustness characteristics of the

deterministic and stochastic PI controller designs, the

Kalman and Snyder-Fishman filters, and the Meer filter

structure. The conclusions and recommendations for future

research are provided in Chapter 7.

. V
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II. ESTIMATING THE POSITION OF THE BEAM -

THE MEER FILTER

The first challenge in designing a controller for the

pointing and tracking of a neutral particle beam is

developing an estimator which can predict the location of

the beam. Previous research resulted in defining the beam

model and creating the Meer filter, a Multiple Model

Adaptive Estimator (MMAE) composed of a bank of Snyder-

Fishman filters. This chapter will explain the particle

beam model, the Poisson space-time point process, and the

* "Meer filter. The chapter concludes with a proposal to

simplify the Meer filter under a given set of conditions.

2.1 Particle Beam Model

*. ~-One recommended method for locating the center of a

particle beam entails illuminating the beam by one or more

lasers [23]. As a result, the particle electrons absorb the

4. photons from the laser and jump to a higher, unstable energy

state, and then spontaneously decay, returning to the ground
energy state and dissipating the energy as photons. The

photons radiate approximately in an isotropic manner and the

position of the beam can be inferred from the location at

N which the photons strike a photo-detector array. The

photoelectric events occur as a discrete process at random

intervals. Because the optical sensors suffers from dark

10



currents and background light, the sensors will corrupt the

signal-generated data with erroneous, noise-induced events.

aMeer noted that the signal-induced event could be

modeled as a Poisson space-time point process on

(to,-) x RN, and that this is a model upon which a Snyder-

Fishman filter could be based.. Each event has associated

with it the time of occurrence t F [to,-), and a spatial

location r F RN. A physical detector array will result in

quantizing of RN into a finite number of sections. For

simplicity, the quantization is ignored without loss of

generality, and the array is assumed to be continuous; that

is, it is assumed that the value of r is known as an exact

>value from a continuous range of possible values.

The rate of occurrence is defined as the signal rate

parameter, As(t,E, (t)), and is assumed to have a spatial

Gaussian function given as [18]:

As (t,r,,K(t)) = A(t)exp|-[L-H1(t)K(t)]TR-'(t) [L-R(t)K(t)]/21

' ~(2-1)

where

A(t) is the maximum amplitude of the rate function
" is a symmetrical positive definite matrix

defining the spread of the beam
r, is a spatial location on the detector array
ff(t)X(t) is the signal-inferred beam centroid in RN
2(t) is a stochastic process defining the state

dynamics of the beam centroid
H(t) is an m x n projection matrix from the state

space into the space of measured photoelectron
events

The beam's spatial Gaussian function is a result of the

beam's diffusion.



The state process is modeled as the Gauss-Markov output

of the linear differential equation:U
d~(t) - I(t)&(t)dt + (td(t) (2-2)

"K(to) o

where 1(t) is a Wiener process, whose hypothetical

derivative is white Gaussian noise of unit strength, and Ko

is a Gaussian random vector with mean _Ro and covariance Po.

Similar to the signal-induced events, the noise-induced

events are modeled as a Poisson space-time point process on

(to,-) x RN with a noise rate parameter, xx (t,r). The noise

*.process is assumed to be statistically independent of the

signal process [18]. The noise events are assumed to be

uniformly distributed over the detector's field of view.

The relationship between the signal- and noise-induced

events is the signal-to-noise ratio, which is defined as the

ratio of the average signal rate to the average noise rate.

For a comparison of the two rate functions, see Figure 2-1.

The signal-to-noise ratio is the ratio of the areas under

the two curves in that figure.

Because both the signal and noise processes are Poisson

point processes and independent of one another, their sum

remains a Poisson point process. This can be shown by

taking the product of the characteristic functions of the

signal and noise processes. The resulting characteristic

function will be a Poisson point process with the total rate

12



R - 1.0 cm
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Figure 2-1. Signal and Noise Rate Parameter Functions

parameter equal to the sum of the signal and noise rate

parameters:

(t, (t) 2j(t)) = s (t, 1. (t) t)j ) + AN (t, -r(t), (t)) (2-3)

V
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2.2 Snyder-Fishman Filter

Snyder and Fishman developed an estimator which

specifically handled the case of measurements that appear as

a Poisson point process (25]. Their filter is similar in

structure to the Kalman filter, but the Snyder-Fishman

filter differs in two significant ways. The development of

the Snyder-Fishman filter was based on the assumption that

all measurements were signal-induced. In other words, the

filter is limited to noise-free environments. The other

difference is that the sample period is not fixed and the

time between signal events is a Poisson distributed process.

With the absence of noise-induced events, the Snyder-

* -. Fishman filter estimates the beam's centroid as H(t);(t),

where &(t) is the expected value of the beam states, x(t),

conditioned on all the previous measurements,. The filter

is described by the following differential equations [25]:

U
d:_(t) - E(t);9(t)dt + | (t)[K-jj(t);g(t)]-N(dt x dr)

JRN

+ B(t)u(t)dt (2-4)

., df(t) -EMtE(t)dt + E(t)]ET(t)dt + 9(t)27(t)dt

M f (t)(t)P(t)N(dt x dr) (2-5)
J RN

M(t F_ (t) JJT(t) Ell(t) Z(t) PT (t) + R (t)]- (2-6)

14



PA

where

:&(to) - to and P(to) - Eo are the initial conditions
_(t) is the filter-computed error covariance
3(t)9. M - 9.(t)Wgt (t) W
F(t) is the filter gain

The notation found in Equations (2-4) and (2-5) involves

counting integrals, where

0 Nt- 0

I f(t,r)N(dt x dr) I{ (2-7)

1 f (tt ,r1 ) t,tt Nt 2: 1

and 5(t,ti) is a Kronecker delta. Simply stated, if no

events are detected, then the integral equals zero. If an

event is detected, the integral causes a jump discontinuity,

f(t,r), to be added to the solution of the differential

equation for time ti [25].

The propagation and update equations can be derived

from Equations (2-4) and (2-5). The propagating equations

for use between (signal-induced) events are:

dR_*t) = F(t)2R(t)dt + B(t)uL(t)dt (2-8)

dj(t) = F(t)P(t)dt + P(t)FT (t)dt + G(t)GT (t)dt (2-9)

Equations (2-8) and (2-9) are actually implemented in the

discrete controller designs (to be developed in Chapter 3)

as stochastic difference equations:

(t ) 1 4(t t ) (t, + BId (t I)u3L(t ) (2-10)



[(tl~') = (tlil, ti )](tl )S T (t1+1 'ti)

+ G2d (t, )Qd (ti)G_ T (t,) (2-11)

where Gd (ti) - Z and the calculated as

. d1 (ti) [ + !(ti+I ,T)G (T (T)IT (ti, ,)dT (2-12)

When an event has been detected, a measurement update can

take place as defined by the following equations:

_(tl = _(ti-) + K(ti)[ri-a(ti a(ti-) (2-13)

~ti+ ) = P(ti-) - K(ti)H(ti)P(t- (2-14)

where the Snyder-Fishman filter gain is defined by

K(ti) -tl) [(ti)i(t')li (ti) + &(ti)]' (2-15)

Equations (2-8) through (2-15) appear strikingly

similar to the Kalman filter equations, except the

measurement update times are not known a priori [253.

Instead, the measurement updates occur whenever an event is

detected, and the time interval is defined as a random

process.

Ii 16
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2.3 M Model Adaptive Estimator

The problem with using the Snyder-Fishman filter is

that all the events are assumed to be signal-induced. To

incorporate the noise-induced events, Meer developed a bank

of Snyder-Fishman filters into a MMAE, where each filter in

9the bank is associated with an individual hypothesis. The

hypothesis defines which events are signal-induced and which

are noise-induced. The result is a hypothesis tree with

each branch depicting a hypothesized noise/signal sequence,

and each branch has an associated probability that its

assumed sequence of events in fact occurred (see Figure

2-2). In other words, associated with each of these

hypothesis sequences could be a specific Snyder-Fishman

filter that performs measurement updates when it receives a

hypothesized, signal-induced event and ignores the

hypothesized noise-induced events (see Figure 2-3).

The state estimate out of each filter is expressed as

j (t) - E 1(t) IhjNt ,ZNt ( (2-16)

S-. where Rs (t) is the expected value of the beam states, K (t),

conditioned on the j-th assumed hypothesis time histories,

hjut , and the observations history, Zu , of events (tI ,E ),

where i - 1, 2,...,Nt. Therefore, the overall state

estimate of the MMAE is the probabilistically weighted

average of the individual filter state estimates as

expressed by

17



Event: signal-induced - 1, noise-induced = 0

hijmt(i): i - event number (sequentially numbered)
j - elemental hypothesis sequence
Nt- total number of observed events

Signal h3 2 (2)=1 h (,1

h22 (1h=h22 (1)=

- ha 2=11,01
h2 2 (2) =0

hj 2 (0)

h, 2 -10,11

h12 (1-ho (1)=0

h,2 -=[0,01
Noise hi2 (2)=0

t o t;it

Figure 2-2. Hypothesis Tree (18]
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: -- ISnyder-FishmanE~l°  Rt)
! I based on hj

Pr(hi Itt I Z"t I -.0

0 0
0 0

z (t) +

Snyder-Fishman 2_ (t)
Filter

based on hi

, Pr~himt IZ~t]_

+ Filter X
, based on ho I

Pr [ho t I Z" t ]

Figure 2-3. Multiple Model Adaptive Estimator
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2N t -1
S(t) - I Pr[hj t IZw tIJj (t) (2-17)

i-i

with an MMAE computed error covariance defined as

2N t - 1
P P(t) = I Pr (hi NtlIZN I -{Ei (t) + [& (t) -8(t)] [R (t)-_Lt(t) ] T

'P j-i
(2-18)

The weighting probabilities, Pr[hjst IZNt], are the

conditional probabilities that a hypothesis sequence is

correct, conditioned of the measurement history that has

been observed.

The weighting probability starts at to, with

Pr[hjO IZ] - 1. The subsequent weighting probabilities

*- appear as:

Xs (tk ,k ,L_(tk)) or Xi (tk .Ck
Pr~hjft IZut] = rk .Pr[hjxt-I JZN t - I]

(2-19)

where Xs (tk , t(tk)), X (tk ,rk) and X (tk ,rk ,a(tk)) =

.s(tkD ,(tk)) + XN(tk,rk) are estimates of the signal,

noise and total rate parameters, and Pr[hjNt IZNt] is the

probability of hiNt conditioned on the most recent event

that occurred. The upward branches of the hypothesis tree

are based on the assumption that the most recent event was

signal-induced, and the downward branches of the hypothesis

20



tree are based on the assumptions that the event was noise-

induced (see Figure 2-2). The estimate of the signal rate

parameter, Xs(tkKk,8(tK)), appears in the numerator for a

hypothetical signal-induced event, and is found by

evaluating Equation (2-1) for x(t) = 8(t). The estimate of

the noise rate parameter, X.(tk,rk), is used for a

hypothetical noise-induced event, and Xx = AN. Because of

the recursive nature of Equation (2-19), only knowledge of

the most recent measurement is needed, rather than a growing

memory of the entire history of measurements, for its

evaluation [18).

2.4 Pruning the Hypothesis Tree

At this point, all the equations of the Meer filter

have been derived in order to construct a full-scale

particle beam estimator. The only problem is that we have

developed a growing and soon to be unmanageable hypothesis

tree, because the tree must grow two branches for each event

to represent the possibility of either a signal or noise

.0 event. Therefore, if we have a total of Nt events, and Nt

update cycles, there will be 2Nt possible signal-versus-

noise hypothesis sequences (frequently referred to as tree

branches). The solution is to prune the hypothesis tree and

keep the number of branches at a manageable size. The two

proposed pruning algorithms are the "best half" and "merge"

methods.

21



2.4.1 The Best Half Method [18] The "best half"

method was the method Meer used in his dissertation to

Sachieve an implementable filter. Initially, the hypothesis

tree is allowed to grow until it reaches a prescribed memory

depth of D. This produces a tree with 2D hypothesis

branches, with half of the tree originating from an assumed

-signal-induced event, and the other half emanating from a

noise-induced event. With the (D+1)-th event, the

conditional probability weighting factors associated with

each branch are summed for each of these halves, and the

more probable half is accepted, and the branches of the less

probable half are eliminated (see Figure 2-4). The

probability weight is normalized for the retained half of

the tree so the sum of the retained probabilities will equal

one.

The estimates are propagated forward until the next

event, and the measurement update and pruning process occurs

again. By doing so, the tree never grows past the memory

depth of D.

2.4.2 The Merce Method An alternative algorithm to

the "best half" method was proposed by Weiss and associates

[26] and is designed to preserve some of the information

that would be lost if the less probable half were

eliminated. It is referred to as the "merge" method because

22
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i Figure 2-4. "Best Half" Method

(.,the hypothesis sequences that are identical to each other in

~the assumptions made over the D-1 most recent events are

paired up. That is, each pair of hypothesis sequences

.N differ by the assumption made about the oldest event in the

current sequence, and when the sequences are merged, only

the oldest event is dropped. For example, if the hypothesis

sequence is defined as himt, where j = 0,1,2,...,20t-1, and

Nt is the total number of observed events, one entire

N sequence could be written as

It It It It
h- hi (1), hj (2),..., hj (Nt) = 11,0,... ,11 (2-20)

.Ad
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All signal-induced events are represented by a "1" while

noise-induced events are labeled with a "0". Continuing

Uwith the example, it will be assumed that the memory depth
is limited to two (D=2), and the total number of observed

events is two (Nt=2). Then the hypothesis sequences would

be:

ha2 = (h3 2 (1), h3 2 (2)1 = (1,11

h2 2  = 1h22 (1), h 2 2 (2)1 = 11,0)

1 = (hi2 (1), h, 2 (2)1 = 0, 11

ho 2  - 1ho2 (1), ho2 (2)1 = [0,01 (2-21)

As the next event is observed, Nt=3, and there would be

eight hypothesis sequences. If they are paired up by the

D-1 most recent events, the sequenced pairs would be

Pair 1: h7 3  = f[h32 (1), ha2 (2)], h73 (3)) = [1,1,11

h33 = [[hi2 (1), hi 2 (2)], h3 3 (3)1 = 10,1,11

Pair 2: h63 = [h2 2 (1), hz 2 (2)], he3 (3)1 = [1,0,11

h2 3  = ( [ho2 (1) , ho2 (2)], h2 3 (3)1 = {0,0,11

Pair 3: ho 3 = I[ha2 (1), h32 (2)], ha 3 (3)} = i1,,01

hW3 - ( 2h (1), h,2 (2)], h,3 (3)1 = (0,1,01

Pair 4: h43 = f[h22 (1), hz2 (2)], h43 (3)1 = 11,0,01

ho3  = ([ho 2 (1), ho 2 (2)], ho 3 (3)1 = 10,0,01 (2-22)

To merge the paired hypothesis sequences, the oldest, i.e.

(Nt-D)-th, event is dropped, and the new weighted

probability is the sum of the probabilities of the
w'.
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individual sequences that were merged. The state estimates

and error covariances associated with each merged pair can

U be found using the following equations:

I _'(t) = (Pr~hjNt IZNt ] .:j t) + Pr~hkt I ZNt I -8k (t) /A (2-23)

PI t) IPr[hj Nt IZNt .I j (t-+[ j (t)-2 j ' (tI [;j (t-*j ' (til t )

+ Pr[hk t IZNt] (Pk (t)+[;k (t)-Rj '(t)] ICk (t)-Rj ' (t)]T) i/A

(2-24)

A = Pr[h 'Nt IZNt] = PrfhiNt IZNt] + Pr[hkNt Z 1"J (2-25)

where
hj and hkD denote the two different sequences

within each pair (see Equation (2-19): k = j + 2D
and j = 0,1,..,(2D-i)

D is the memory depth of the hypothesis tree after the
pruning process has occurred

#j' and Pj' are the "merged" state estimates and
error covariances as the number of elemental filters
are reduced from 20+1 to 20; jI 0,.,(2D-1)

Equation (2-25) must be normalized so that the sum of the

probabilities of each new estimate equals one. Figure 2-5

demonstrates the "merge" method. This method conceptually

has an advantage over the "best half" method because it

accounts for all possible time histories rather than

deleting half of the branches from a decision tree.

Unfortunately, it is computationally more burdensome.
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Figure 2-5. "Merge" Method

2.5 Simlifying the eer Filter

a Zicker ran a performance analysis on the Meer filter

and found the Meer filter virtually insensitive to the depth

parameter D. Varying D from D-1 to D=8 produced less

than one percent change in rms errors. This is partially a

function of using simple scalar first order Gauss-Markov

model to define the beam centroid dynamics [171. Assuming

the first order beam model proves to be adequate, this

.. _insensitivity could be used to simplify the MMAE structure

*. of the Meer filter by limiting the depth to D=1, and

defining the filter gain, ~(*,as a function of the

26



Maximum Meer SNR = 20
Filter Gain R = 0.5 cm
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75%
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Figure 2-6. Meer Filter Gain Versus Residual Size

residual, r*. The insight comes from plotting K( )

Mverses r as shown in Figure 2-6.

The mathematical development of the simplified

algorithm can be established in the following manner. If

the elemental Snyder-Fishman filter assumes that the event

was signal-induced, the beam state estimate is

S(t, )  A (t ) + K(t- (t) (ti (2-26)
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The probability it was in fact a signal-induced event is

'. pi (tt) X8 (t , r1,R(t ) X (ti , ir _ A(ti) (2-27)

using the notation of Equation (2-19). If the elemental

Snyder-Fishman filter assumed that the event was noise-

induced, then _a2(ti*) = R2(ti-). The probability it was a

noise-induced event is

p2 (tt) = XN (tt,ri) / (tXti l ,_(tl)) (2-28)

Therefore, the adaptive beam state estimate is

:A_(ti) = pI (ti)*i (ti) + p2 (ti)g2 (ti) (2-29)
' = 8_ (ti-) + pi (ti)K(ti) [r - Hi (ti ):_1 (tA-)]

where RA(ti-) 8 _i(ti-) = R2(ti-). Thus, the algorithm

involves a single Snyder-Fishman-like filter, but with a

modified gain of [pi (ti)K(ti)], and thus the gain is a

function of the residual as seen in Figure 2-6.

Higher order Gauss-Markov beam models should have a

greater sensitivity to D. Therefore, this simplification

may be limited to this simple case.
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2.7 Summary

The Meer filter is a Multiple Model Adaptive Estimator

(MMAE) that is based on a space-time point process model for

measurement events, and it can be used to estimate the

position of a neutral particle beam. The Meer filter

locates the beam by detecting the photo-electric event

occurring from the spontaneously decaying excited particle

within the beam. The time between events is a Poisson

process, and this is properly modeled by the Snyder-Fishman

filter. Meer introduced the MMAE structure to handle the

noise-induced events which the Snyder-Fishman filter

neglected. Because there is no deterministic mechanism for

declaring whether an event is signal- or noise-induced, a

hypothesis tree was developed. The depth of the tree was

limited by incorporating either the "best half" or "merge"l

method. The results from Zicker's research indicated that

the Meer filter could be reduced by limiting the depth to

one, redefining the filter gain as a function of the

Iresidual, and eliminating the multiple model structure.

With the beam state estimator in hand, the next step is

to develop the controller(s) to regulate the beam and track

the target. The next chapter will address this.
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U III. CONTROLLER DESIGN

The next challenge is to design a controller which can

place the beam on the target. Zicker developed the first

controller for this application [27]. It was a proportional

gain controller and was designed as an intuitive tool to

gain insight into the tracker problem. But, because the

proportional gain controller does not have type-one

characteristics that allow rejection of unknown, constant

disturbances that arise from linearized models, Moose

* developed a proportional-plus-integral (PI) controller

[20]. Jamerson carried on Moose's research, and developed a

different PI controller based on a more realistic target

model [8]. Although the PI controller could reject constant

unmodeled disturbances, it did so at the cost of additional

sluggishness and had difficulty tracking a highly

maneuverable target. The next step will be to develop a

Multiple Model Adaptive Controller (MMAC) to handle

parameter uncertainties caused by a highly manueverable

target that can display rapid variations from a benign

trajectory to evasive maneuvering.

All the controllers are based on the same fundamental

4assumptions: a linear system model, a deterministic optimal

control law, full state feedback, and a quadratic cost

criterion. The regulator's gain is based on a backward

Riccati difference equation, assuming all the particle beam

J% 30
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states are perfectly known. Then, by assumed certainty

equivalence, the full state feedback is replaced by a

filtered or "observed" state feedback provided by the Meer

,, ,filter. The tracker portion of the controller is designed

around the regulator, and directs the beam from the

regulator's zero setpoint onto the target, using target

state estimates generated by a Kalman filter.

~ -' Because the target model is used to developed the

trackers, it will be presented first, followed by the

proportional gain, proportional-plus-integral and the

multiple model adaptive controller designs. The controllers

are developed in the general vector form and then reduced to

the specific one-dimensional tracker problem model that will

be used during the analyses.

3.1 Taret Model

Zicker [271 and Moose [201 designed their controllers

for a simple target model composed of a first order Gauss-

Markov position process. Research centered around

feasibility studies and the emphasis was on gaining the

knowledge and insight required to develop a realistic

controller. Starting with Jamerson [8], the emphasis

lshifted to a more realistic target model built around a

first order Gauss-Markov acceleration process. The linear,

time-invariant state-space representation of this model is

*T (t) - [ t(t) + G wT(t)
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[*?rt ] [ 0 1 0 XT P (t) 1 0o
(t 0 0 1 X (t) + 0 w (t) (3-1)

?A (t) [0 0 -1/TT XT(t) G

where

XP,(t) is the target position state
XTv (t) is the target velocity state
XTA(t) is the target acceleration state
TT is the acceleration correlation time constant
wT(t) is a zero mean white Gaussian noise of strength

Q? associated with the target
F is the matrix that describes the system's dynamics
r is the matrix that maps the white noise effects into

the state vector.

Equation (3-1) has three poles, of which two are at the

origin of the s-plane. This equation of target motion is

inherently astable, and the target is uncontrollable by the

control input, u(t); therefore, the steady state Riccati

equation used to generate controller gains may not have a

solution [10,14]. All modes must be stabilizable to

guarantee a solution of the steady-state Riccati equation.

To insure a solution, the following sections will move the

two poles at the origin of the s-plane to the left by some

small epsilon. This will guarantee a solution for the

steady state Riccati equation, but not affect the filter's

development.

In order to use the target equation of motion defined

by Equation (3-1), the target position will be measured as a

discrete function defined by

z(ti) N aT (ti )2T (ti) + v(ti
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[XTP (tI)]
z(ti) - 1 00 1 ] xrv(tt) + v(tt) (3-2)j XT A (tl)

where [ xTP(tI) xTw (tI) XTA(tI) ]T is the target state and

v(ti) is a discrete-time zero-mean measurement corruption

noise with a covariance R, and is assumed to be independent

of the dynamics driving noise in Equation (3-1). How the

target is actually detected and located is beyond the scope

of this thesis. Between measurements, the state estimate

and covariance matrix are propagated forward in time by

SRT (tlI -+ I T (tI,+1 , tI );gT (ti ) 13-3)

SET (tl+,s ) ! ®T (tl Ltlj Itj+, )ITT (tj~j tj)

+ J IT (ti+1 ,T)GT (T)QT (T) v
T (T)_T T (ti + ,T)dT (3-4)

where p (t + ,ti) is the state transition matrix associated

with y in Equation (3-1). During the measurement update,

the state estimate and covariance matrix are updated by

y (ti 1  = rT (ti ) + Klt& ) [zlti) - HT (ti )8T (ti')] (3-5)

i T (tt) - P (tt-) - Kltt )R (tt) P_ (tt) (3-6)

K(tj ) E PT (t,-)PT T (t ) [HT (t,) _T (t -)IT T (t,) + LT (t,) -

(3-7)
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where the initial conditions were

L(to R= !(to) Po

and the subscript "T" denotes "target."

As with any Kalman filter, if the measurement noise

variance R(ta) is increased, then the filter must rely more

on the dynamics and propagation equations. In a similar

fashion, if the driving noise strength QT is increased, the

filter must rely more heavily on the incoming measurement.

3.2 Proportional Gaiin Controller

If we had a linear quadratic Gaussian (LQG) stochastic

- controller problem, we could use the certainty equivalence

property. But, the adapative mechanism in the Meer filter

.U violates linearity; therefore, we must use the assumed

certainty equivalence methodology [14]. It allows us to

synthesze a sub-optimal, non-linear stochastic controller by

generating the associated optimal deterministic full-state

feedback controller, and then replacing the actual states

with the conditional mean estimates from the stochastic

filters.

3.2.1 Proportional Gain Regulator The function of the
regulator is to drive the states of the beam to a zero

S.

setpoint defined as the center of the detector array. The

linear discrete-time state equation that defines the beam is

an (ti ) OP (ti I,ti N)P (ta) + -d (tt)3ILI(ti) + Gd w d (ti) (3-8)
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where

Kn(tt) is the position of the beam
u(tt) is the control applied over the next period from

ti to t1+1
w (tt) is a zero mean white Gaussian discrete-time

stochastic process of strength Qd, where
it's.

Qd - f __3 (t+ 1 ,T)Go (T)28 (T) G.sDT (T)0I3T (tIi ,T)dT

(Note that the Snyder and Fishman filter defines dynamics

driving noise strength as G(t)GT (t); therefore, Qe(t)=I.)

The discrete, optimal deterministic control law, assuming

perfect knowledge of Ls (tt), is

G (t) -ac* (ti)LD(ti) (3-9)

S i where Gc*(ti) is the optimal controller gain. Because we do

not have perfect knowledge of the beam position state,

2. (ti), it is replaced by the conditional mean of the beam

position state, _t (ti), which is provided by the Meer

filter. This is done in accordance with the assumed

certainty equivalence synthesis methodology. The result is

a discrete, optimal stochastic control law:

W* (tI) = -c* (ti)_ (tt) (3-10)

The controller's optimality is defined by minimizing a

quadratic cost function defined as

'a
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N

J - E 0 I [20 (tIl)_ltilxlt ) + _' (tilltillt )

+ 3XT (t ,1) (t.,1)x(t,. ) (3-11)

~where

whr (tN$,) is the final position to be achieved
X(tt) is the position at time ti

S and K are n-by-n constant weighting factors
defined as a positive semi-definite matrices

U is an r-by-r weighting factor defined as a positive
definite matrix

The controller gain, Gc (ti), in Equation (3-10) is generated

by solving the backwards Riccati recursion

-..

Gc* (t,) : [U(ti ) + Pd T (t )Kc (ti+, )Bd (tI)]-1
• ~[Pd T (t,). (ti. j +i . ,1 (3-12.)

Kc (t,) = X(t ) + OT (ti. ,t )_, (tij + )

(IT (ti*i ,ti ) - Ad (ti )].Gc (ti) (3-13)

solved backwards from the terminal condition

Kc (tN.l ) :(3-14)

The resulting equations are sufficient to define the beam

regulator as depicted in Figure 3-1.

For simplicity, the problem will be reduced to one

physical dimension. That is, the beam and target models

will be confined to one-space, R', and Bad, Gd and X(ti)
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Figure 3-1. Proportional Gain Regulator

will be scalars equal to one. The reason the weighting

matrix K(ti) can be reduced to unity is that the X/U ratio

is the important factor in determining the steady state

gains, and, for the scalar case, either the numerator or

denominator can be set to one, and the other weighting

function adjusted to maintain the proper ratio. This

simplification is limited to the scalar case.

With these simplifying assumptions, the general

regulator equations reduce to:

x (tii) I %X (ti) + u(ti) (3-15)
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N d

A 0. = exp[-(t.i,-ti)/TB] = exp[-At/TB] (3-16)

i

" ult ) = -Gc* (ti 1Ra (ti) (3-17)

Gc* (tt) - Kc (ti + )(o / [U + Kc (ti + )] (3-18)

'N Because this is a pure tracking problem without a well

, defined terminating point, the solution in found by

determining the steady state solution to the backward

%Riccati difference equation (i.e., solving for the positive

root in a quadratic solution):

Kc (ti) = Kc (ti ) = Kc

Kc 2 + Kc [U(1 - 0n2) 1] U = 0 (3-19)

3.2.2 Proportional Gain Tracker Now we wish to

extend the regulator to a tracking problem using the same

LQG synthesis process. The goal is to minimize the

difference between the controlled beam variables, yc, and

the target or reference variables, yr. The variables are

. the linear transformations of the states of the beam and

target states expressed as:

IC (ti) CQ (tt )Ke (ti) (3-20)
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Y r (ti) - _r(tI) XT(tI) (3-21)

I and the difference between them is referred to as the

tracking error, expressed as

e(tI) = Cc (ti )x (ti) - Cr (ti )XT (ti

. [ C (ti) -r(ti) ] [ Xs(t,) xT(t,) ]T

=QS (ti ) Xa (ti) (3-22)

The tracking error shall be regulated to zero by way of

minimizing the tracker augmented cost function defined as

92 A

J = El I [x T t, 1i)(ti )L(ti) + u T (t)UIl(tiu(t)]
1=0

r. + VA& T (tw.II)f. (t.i) (t.1) (3-23)

where
_ . aa(ti)" - .Q(ti)Ia (ti)Qa.(ta)

Kra (t) - Q. T (tN.. )Y,. (tM.1 ). (t,.i)

Assuming we will have perfect knowledge of both the beam

states and target states, we can obtain the full-state

proportional gain control law of

U* (I )C L - c * (I 2C 2~z (ti) ] [ x (ti ) KT (t,) T

- - c *(ti)X 5 (ti) - c* (ti)XT (ti) (3-24)

39



The solution to the augmented gain matrix is solved by an

augmented backward Riccati recursion:

I r -1

r .ci* C2* ] _ + 0 ] T Q

-( + Dd T C11Id 1-I-[ Vd T &Lt1Oc Id T KiC r ]

(3-25)

Ec_ (t,) = c t (t, ) Y (t ) .Qc (t, ) + !Ic T 1 (ti ) C

- _CT Ii (tiI )Id (ti )Gc1 (ti) (3-26)i
Ecia (ti) C T (t, )(ti )qr (t, ) + &T1 2 (ti )1IIr

-GCI * T (t,) [ jdT (tI )Kc12 (tt*1 )_r ] (3-27)

where _c is the beam state transition matrix, _s(ti+,,tt)

is this application, .r is the target state transition

matrix, tT(ti+,ti), and Equations (3-26) and (3-27) are

solved backwards from the terminal conditions

& 1c(tM+Q) c(t+W + I)F(tM I)g C c(tN+1) (3-28)

Kc. ( (t(t+ - (tT (tN (t.) (3-29)
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By carefully partitioning the augmented backward

Riccati recursion equations, one can see that the solution

b for Gc* (tt) is identical to the feedback gain, G* (ti),

found in the regulator (Note: Equations (3-25) and (3-26)

are similar to Equations (3-12) and (3-13)). Thus, Kcli and

Gci* are independent of the reference variable being

tracked, and they are found by solving the deterministic

regulator design. The tracker gain, Gc2, is determined from

Equations (3-27) and (3-29), and is a function of the

feedback gain and the reference variable:

g-cz (ti) = {L(ti ) + BdT (t, )Kc1, (ti+1 )Bd (ti)i-

"d T (tI )Kc 2 (tI+i )_r (ti+ ,ti ) (3-30)

The resulting tracker model is diagrammed in Figure 3-2.

Once again, the thesis problem will be reduced to one

dimension, and the tracker error will be the scalar

P difference between the beam and target positions. As

foretold, the regulator design will provide the feedback

gain, Gcl*. The problem setup is as follows:

I mXi (3-31)

Lc - 1 (3-32)

§r [ 1 0 0 ] (3-33)

go - [ Qc Cr] = [ 1 -1 0 0 ] (3-34)

'p"
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X 1 I -Xi 1 0 0

X= = I TYCa = [ Xi1 0 (3-35)
o 0 oj

xv (ti)
u* (tt) =-[ Gci* Gczi* Gctv * GC2A* ] xP (ti) (3-36)

_ X tV (ti)

XT A (ti)

The form of the augmented weighting matrix, Xa, can be

intuitively verified. We are trying to drive the quantity

eltt) = X9 ti) - XT P(ti) (3-37)

Stowards zero, so the quadratic penalty placed on the error

is

X1 i -Xi i Xe (tt
3Xj 1e(t, I s = %1 xi (tt) XTP (ti) ] I i (3-38)

-Xii Xi, xTp (ti)

which is the upper left block of Equation (3-35). The rest

Iof the elements in Ke should be zero because we wish to

disregard the velocity and acceleration components of the

target when we calculate the error and the control input.

By restricting the tracker design to a time-invariant

system with a target model driven by a stationary noise and

by implementing constant cost matrices, we can solve for the

steady state tracker gain Gc2*. As in the regulator
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design, Bd is set to one. The beam state transition matrix

is a scalar function decribed by Equation (3-16), where TB

I is the time constant.

The target state transition matrix, Or (ti+i,ti), must

be stable to find the steady state tracker gain, since the

augmented system must be stabilizable. If the target state

transition matrix has any poles on or outside the unit

circle (z-plane analysis), then the augmented system model

will have modes that are astable or unstable, and

uncontrollable. Because the original target state

transition matrix would be astable, we have to move the two

poles at the origin of the s-plane left by some small e.

The modified E matrix from Equation (3-1) is

i0
A- 0 -6 1 (3-39)S0 0 -1/T

IThe resulting state transition matrix is

1T(tiiti) J-f ( s1 - E' I'-l = ! (3-40)

where J-1 1.1 represents the inverse Laplace transformation.

Previous experience found that the value of t = .0001

Oensured at least an order of magnitude difference between

the poles forced away from the origin and the exponential

time constants of either the target's acceleration, TT, or

the beam's position, Te.
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As a result, the tracker gain equations can be reduced

toS
G©* KCOI 2T / (U + Kc1 1 (3-41)

&12 = [ X11 0 0 ] + TKci2z_ - Gci*T z 2T (3-42)

3.3 Proportional-Plus-Intecral Controller

* ~Because a proportional gain controller could not handle

constant unmodeled disturbances in the system, Moose

developed the type-one, proportional-plus-integral (PI)

controller. The PI controller design includes many of the

same assumptions used in the proportional gain controller.

Both the PI regulator and tracker are designed on the basis

of linear system models and quadratic-cost functions, and

they both implement steady state controller gains. Once

again, assumed certainty equivalence is used and the Meer

filter provides the particle beam state estimate while a

Kalman filter provides the target state estimate.

3.3.1 Prooortional-Plus-Intearal Reaulator The

function of this regulator is to guide the beam state to

some definable setpoint, yd. This setpoint can be non-zero

but, for this application, the setpoint will be defined as

zero. To handle a definable setpoint and unmodeled step

disturbances, the regulator augments a set of pseudointegral

states to the original plant state equation. Because we are

using a discrete system, a true integration process is not

45
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possible. Instead, a pseudointegral or summation process is

used to provide a type-one control, able to drive the steady

S state mean of the regulation error, [yc (tt)-yr(tt)-yd], to

zero, even in the face of unmodelled constant disturbances

affecting the plant. Note that for the regulator, the

reference state, r (ti) is equal to the zero vector. The

* pseudointegral is defined as

i-I

gq(tt) - g(to) + I [c (tJ) - yjr(tj) - d]

- (tt-1) + [Ic (ti) - Ir(ti) - yd] (3-43)

Figures 3-3 and 3-4 demonstrates how the pseudointegral is

implemented in the PI controller.

Yr (tt) +

yc (ti DELAY

Figure 3-3. Pseudo-integral Term
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The PI control law is found by augmenting the

pseudointegral (Equation (3-43)) with the beam state

(Equation (3-8)) to form

&a (ti + 1 !k Kaa (tI) + Ada I(tt + !! d+ ad ald (ti I

X9 (tii +I Sn 0 N (ti ad0 G

(344

The cost function retains the same structure as before, but

includes a quadratic weighting on the pseudointegral in

augumented form:

% (T (tM + ) Xf a (t +i 1X (tH~ + 1 (3-45)

The optimal control law

Rj~tt ) 9 =Ga* (ti )Xa (ti ) + Ey~d (3-46)

'S

gain functions are [14]

*i ca* (ti !2 I * ci (ti )j G2* (ti t

M [ILU + _qd T .& (ti +i ABd aI [Id ST EC (tij +)I0 (tii + Iti

(3-47)
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ac 1cE (ti) - G2c* tt2Kc- 1 (tl 1Kc1T (ti l]fl + 1112

(3-48)

where

Hf l l a [Os (tl+I ,ti) - I i d
(3-49)

121 1122] Cc 0

(ti) is derived from the backward Riccati difference

equation

&LIT (ti) KC-2 (tt)

&.I K + _a T (t + 1, tj) (tj + )®_ (ti~,+1 ts)

I a T KC (t ) (tt (t,+1 ,ti )JTG c (ti) (3-50)

solved backwards from Kc (tx,i) = X a.

If we assume a time-invariant system model and use

constant weighting matrices, the regulator can be designed

with steady state controller gains (provided the gain

transients are short compared to the total time interval of

interest, which is the case for this application). Because

the tracker design will develop different controller gains,

the specialization to the one-dimensional problem has been

omitted.
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3.3.2 Proportional-Plus-Intearal Tracker For the PI

tracker, we want to use the same PI controller structure as

found in Figure 3-4 while implementing the tracking error

equation used for the proportional gain tracker,

C c (ti) -Cr (ti) ] T xms (ti) XTT (ti)]T (3-51)

where Ca is an augmented matrix, and &. is an augmented

* vector that include the beam state and the target state.

Unless we wish to offset the beam from the target centroid

* .(as to track some other appropriate point on the target or

to lead the target), the set point, yd, will be defined as

A the zero vector. The remaining tracker development closely

follows the PI design.

The PI control law is determined from the discretized,

augmented system equation

S(ti+1= ta K. (tl) + BdsaU(tt ) + 2a Y. + Gdad (t )°r at 1 o]
-jrl0 k QK t +B U~.i )-L;6 d +L]d (ti

(3-52)

where

XT P (tI )xET (ti) XT x (tI )
XTA (ti )
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Equation (3-52) is composed of the beam state Equation

(3-8), the discretized form of the tracker state equation

S (3-1) and the pseudointegral Equation (3-43) in which Xc (ti)

is expressed in terms of xa (ti). As mentioned before, the

matrix of Equation (3-1) is astable and the poles will be

moved to the left of the s-plane origin.

Again, the cost function retains the same basic

structure, but now it includes both the tracker and the

pseudointegral cost terms. Because we are using the same PI

control structure defined by Figure 3-4, the optimal control

law, Equation (3-46), and the solution to the optimal gain

functions, Equations (3-47) through (3-50), are still valid

and will be used to design the PI tracker.

As was done with the the proportional gain tracker, the

PI tracker will be restricted to a one-dimensional, time-

invariant system using constant weighting matrices. The

first restriction simplifies the problem substantially. The

controlled variable, yc, the reference variable, yr (ti), and

the setpoint, Xd, are scalars defined as

ye (tI) - x3 (ti) (3-53)

Yr (tI) - XTP (tI) (3-54)

yd = 0 (3-55)

The latter two restrictions along with a decision to ignore

short transients in Riccati solutions allow the problem to

be solved using steady-state constant gains.
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The PI tracker problem setup is as follows (see

Equations (3-20) and (3-21):

S-cr]= : -1 0 0] (3-56)

The state transition matrices of the beam and target are

0 = exp[-(ti+,-tt)/Tn] = exp(-At/TB] (3-57)

s+- -1 0
ST- = L-  sI F' = L-0 0 s+, -1 (3-58)

0 0 S+1/TT

* . The augmented transition matrix is

09: 0 0 0 :0

0: :0
0 0: _y :0 (3-59)

0: :0

1 :-1 0 0 : 1

P ?

To be consistent with Jamerson's derivation (8], Bd is not

assumed to equal one, but is derived from the continuous

.\model:

Bd =8 (tt+i ,T)BdT = BTe (1-09) (3-60)
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.where B-i, and the discrete, augmented control input matrix,

D.da, is

Ida = [ Bd 0 0 0 0 ]T (3-61)

kBecause the cost weighting function includes a cost

"* weighting term on the pseudointegral state, Equation (3-35)

must be redefined as

r1 X, -Xi 1 0 0 0
-Xii X11 0 0 0

Ka 0 0 0 0 0 (3-62)
0 0 0 0 0
0 0 0 0 X5 5

The optimal control law that minimizes the cost function is

u(ti) -Gc (ti)X (ti) + Eyd

xe (ti
.. XTP (ti)

-< v -[G..ci* Gc2*] XTv (ti) + Eyd (3-63)
X A (ti

~ q(tI)

where Gci* [ GciD* Gclp* Gctv* GCiA ]. The steady

state controller gains are found by solving
?.5IC.'

-Q CU + &dS T KCapda ]-I (BdaTEC.a j

P= Bd [kii k1a k13 k1 4 ki o]_ / (U + Bd 2 ki ) (3-64)
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E - Gc1* - GCz*&o1T/Kc2z]f1hz + 1122 (3-65)

where

S 2-1

.0 -T o 0_
- - - (3-66)

1.

- . is the steady state solution to the backward Riccati

difference equation, and the solution is found by solving

Equation (3-50) with the successive values of Kca equal to

one another:

Kc - K&+ *_T _ - [aT. T g.0 a]T"c *  (3-67)

where the elements of Kca are defined as

kit kt2 kim k14 : kis
001cii &te12 ki kzi k23 k:4 : k2.

_, kak~ k33 k34 : ka (3-68)
1, 2T aa j k4 1k42 k43 k44 : k4 3

k1 k ks3 ke4 : ksa

Table 3-1 contains the PI controller gains used for the

N sensitivity and robustness analyses (to be discussed in

Chapter 4).
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TABLE 3-1

Calculating the PI Controller Gains

1. Problem Setup

To = 20 TT = 10 .0001

U 1 X1 100 X55- 10

2. &da, .a, &a and fi Matrices

Bda- .97541 0.0 0.0 0.0 0.0 ]

.95123 0.0 0.0 0.0 0.0
0.0 .99990 .99990 .48371 0.0

0. = 0.0 0.0 .99990 .95158 0.0
0.0 0.0 0.0 .90484 0.0
1.0 -1.0 0.0 0.0 1.0

"138.57 -138.63 -1.0092 .21089 37.367
-138.63 151.13 62501 624373 -37.370

aKc= -1.0099 62501 6.25*108 6.25*109 -.00963
-. 20405 624373 6.25*109 6.25*1010 .69494

37.367 -37.370 -.00946 .69654 47.099

4%3.01*10 -7 -10001 -1.00*107-1.00*109 1.0000
3.01*10-7 -10001 -1.00*107-1.00*109 1.8*10-8

0.0 0.0 -10001 -1.00*105 0.00.0 0.0 0.0 -10.508 0.0
1.0252 -500.02 -5.00*106-5.00*107 .05000

3. PI Controller Gains

r, , - 1.2422 -1.2921 -1.0252 -.49800 .27436 ]

8 - 1.074560

Note: I is the distance that the two poles are moved left
of the origin (see Equation 3-39)

&de is calculated from Equations (3-60) and (3-61)
!a is calculated from Equations (3-57) through

(3-59)
ca is calculated from Equation (3-67) - note the

numerical precision that is required
~I is calculated from Equation (3-66)
gc is calculated from Equation (3-64)
E is calculated from Equation (3-65)

55



3.4 Reviewing the Cost Weighting Matrices

This section will re-evaluate the quadratic cost

function in both the proportional gain and the PI trackers

in the hope of selecting a set of weighting matrices that

will improve the robustness of the trackers. We will start

with the more complex PI tracker cost function, and reduce

the general quadratic cost equation to the present form

expressed by Equation (3-45). After reviewing the

. relationship between the elements within the weighting

matrices, we will draw the analogues applicable to the

proportion gain tracker cost function.

The general form of the PI cost function is

TT
% !;Lti ) 12T X.22 1 Et )

1=0 Tti) S 2 T Ut(ti)

+ (t+ ] 11K11[(t:+I)]1 (3-69)
_q~t + 12 r22 (tu + )

To generate a steady state control law, we can let N

approach -. As a result, the Ky matrix will not effect the

overall cost function, and can be dropped from any further

consideration.

The cross terms have two origins. First, the term

arises from the coupling between the control input, u(ti),

the pseudo-integral vector, q(ti), and the dynamics state
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vector, x(tt). This coupling arises from the linear

relationship of the filter model, such as,

U
*1 - -(l/T)Xk + uk (3-70)

and there might be a desire to put a quadratic cost on the

scalar quantities such as *k that are linear combinations of

u, S and 2. Second, the S term is frequently used to exert

control over continuous-time dynamics for the entire sample

period and not just at ti [14]. The significance of this

contribution to the S term depends on the sample rate. As

the sample rate is increased, the § term's contribution

approaches zero. For the controller designs in this

application, it is assumed that the sample rate will be high

enough to make the S terms insignificant. Without the S
Zj terms, Equation (3-69) assumes the form found in Equation

(3-45).

What remains to be evaluated are the Xa and U cost

,weighting matrices required for the PI tracker steady state

gain functions. The Ka matrix is defined as a positive

semidefinite weighting matrix that assigns a cost to the

tracker error between xi (ti) and XTP (ti). Therefore, there

is no reason to weight the cross product terms resulting

from the target velocity or acceleration, and their elements

are set to zero as depicted by Equation (3-62). The Xii

elements weight the present position error between the beam

and target and Xns weights the pseudointegration value of
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those errors. Non-zero Xas allows the controller to have

type 1 versus type 0 properties, which are desirable in

i tracking. If Xas is smaller than Xti, this tells the

controller to place a greater emphasis on minimizing the

integral of past errors. Therefore, the response to a large

positive error history at tt would be a large negative

control input. Unfortunately, this can cause a very

oscillatory response and a large initial overshoot that

could drive the actuators into saturation [8]. If this were

to occur, the oscillatory response can be dampened by

increasing Xao.

The U matrix places a penalty on the control energy

expenditure, and U must be positive definite. Because we

are limiting the design to one dimension, I becomes a

positive scalar. This leaves only three cost weighting

" elements, Xii, X55 and U, to be evaluated. If one of the

elements is set to a constant value, then a robustness

analysis can be conducted over the range of the remaining

two elements. In other words, the selection of alternate

weighting matrices that have the best robustness

characteristics does not require us to evaluate the the

three by three cost weighting matrix depicted by Equation

(3-69), but instead requires us to confine our attention to

: ", a single relationship with only two unknown variables.

These findings can be extended to the proportional gain

tracker. Since the proportional gain tracker does not have

a pseudointegrator, it does not have a pseudointegral
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weighting element. Therefore, if we set U to a constant,

then we only need to vary Xii to determine the best set of

cost weighting matrices.

The method of selecting a set of weighting matrices is

based on the simple sum of the quadratics on all the

quantities of interest at each sample period. Therefore,

any deviations from zero are penalized. If we had to design

N a system with specified performance limitations, we would

pick the initial cost weighting elements as one over the

square of the maximum allowable value (141. From there, the

controller's cost weighting matrix would be tuned according

to the results of a performance analysis. Without

prescribed design specifications, the cost weighting

elements will be selected to minimize the RMS tracker error

which will be calculated during the initial performance

analysis (refer to Section 4.4).

There are several alternative methods of selecting cost

weighting matrices. First, with a controller feedback

sample period of one second, it might be desirable to

include the cross terms in order to provide better control

over the entire sample period. Second, the weighting

matrices can be selected on the basis of their impact on the

closed-loop system's pole placement. The effects this can

have on stability and loop shaping can be observed by

evaluating the effects different controller gains could have

on the controller transfer function (see Equation (6-13)).

Two formal techniques which exploit this are implicit model
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following [2,16,191 and the LQG/LTR Dual Method of

Kwakernaak and Sivan (10]. Further discussions on these

*techniques has been included in

Appendix A.

3.5 The Multple Model Adaptive Controller

The previous two controller designs had difficulty

tracking a target transitioning from a benign trajectory to

an evasive flight path because of the dynamics noise

strength parameter uncertainty induced by the increased

* maneuvering. That is, if a non-adaptive Kalman filter were

tuned to a target flying straight and level, it will have

.great difficulty tracking the same target as the target

tries to evade the tracker with a series of high-g jinking

maneuvers. The reason is that the filter's parameters such

as the target's acceleration time constant and the dynamics

noise strength will not be representative of the new

target's trajectory. One method to improve a system's

performance is to construct a multiple model adaptive

controller (MMAC). This section will start out by

developing the general MMAC model and then tailor it to the

tracker model that is used throughout the thesis. The

uncertain parameters of initial interest are those

associated with the target. Thus, the multiple model

, .structures entail replications of the Kalman filter or of

the entire controller.

3.5.1 Derivation of the Multiple Model Adaptive

C The MMAC is based on the premise that the
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robustness of a controller can be improved if the controller

can provide on-line estimation of the uncertain parameters

I defined is j(t). The uncertain parameters can affect any

or all of 0, , Qd and R, and thereby induce erroneous

estimates of the state and the error covariance in a non-

P Wadaptive filter. As a result, we may not be able to design

a single controller model exactly. Instead, we may find it

possible to design an adaptive estimator/controller.

One means of generating an adaptive stochastic feedback

controller is by designing a MMAE-based adaptive controller

with adaptive controller gains, Gc*[ti,j(ti + )] (see Figure

3-5a). The concept is that the MMAE provides a state

estimate, k(ti+), and an uncertain parameter estimate,

&(ti+), based on the past measurement history, Zi. The

adaptive controller gain is calculated from the uncertain

parameter estimate (gains are precomputed as a function of-4-

assumed parameter values, and then those functions are

evaluated based on a(tt+)), and the control input, u(tt), is

calculated from the product of the state estimate and the

adaptive controller gain, as:

_qltl Et -_ [t , !ltt )18(tt +  (3-71)

If the uncertain parameters were confined to the

dynamics driving noise and the measurement corruption noise

statistics, then G (ti) is not dependent on A(ti), and a

non-adaptive controller gain, jco* (ti), is appropriate (see
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Figure 3-5b). On might also choose to implement a nominal

gain Gco(ti) rather than employ an adaptive gain, using

adaptivity only to improve the accuracy of the state

estimate. Last, one might assume steady-state conditions

and use a steady-state controller gain, such as Gc* (I) or

2co .

By extending the concept of an adaptive stochastic

feedback controller, we can generate the multiple model

adaptive controller (see Figure 3-6) [1,4,13,14]. This is

done by replacing the bank of Kalman filters, used to

estimate the state and uncertain parameters, with a bank of

LQG controllers. Each controller is based on a particular

set of parameter values, ak(ti), where k identifies the

* controller within the bank. Within each controller, a state

estimate, _k(tt*), is computed by a Kalman filter based on

the parameter value, ak, and is multiplied by the

appropriate steady-state gain, Gc (ak), based on the same

parameter assumption. The result is an optimal control law

conditioned on i being the true parameter:

Ui (ti) --G c* (0 ) k(ti) (3-72)

The adaptive control is generated by adding the

probabilistically weighted u (ti) values; as shown at the

right most summing junction in Figure 3-6.
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One way to develop the MMAC mathematically is first to

develop the multiple model adaptive estimator using a

I Bayesian approach, and to draw the mathematical analogy

between the adaptive feedback controller based on such an

estimator and the MMAC. The Bayesian state estimate can be

expressed as the expected value of the state conditioned on

the measurement history Zi:

'Ril E{.ltlltZ, I JL-fx(t)iz(L li)d.L (3-73)

where L is a dummy variable of integration of x(t), and

• fz(t~tz(llI~) is the conditional probability density

function of x(t). If we let a(t) denote the vector of

uncertain parameters, and assume p(t) can take on any value

in the continuous range of A, Equation (3-73) can be

rewritten to include a(t):

L fz'taIz(LaIai ddL (3-74)

< 'where g is the dummy variable used to integrate l(t) over

the range of A. According to Bayes' rule, the conditional

probability density function can be expressed as

f t , a I z (j,S2Li ) fX( t ) a, (JLI,.zi )fa :z (qlz. ) (3-75)
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The first density function on the right hand side of

Equation (3-75) is Gaussian, with a mean of :_(ti + ) and a

covariance of P(ti+) as computed by a Kalman filter based

upon a particular a. The second term is the conditional

probability of a conditioned on the measurement history.

According to Bayes' rule, it can be expressed as

f a (I lZl) = f ,a: z (I), I -I) (Zli_ - ,

f a , z 1)I Z (i-i (c I £t I it -I

= f~ z )i a z 2 CI - I ) (LIt I q~, Zit - 1 f a iz (q, Zi

f I I) a, ( 1 -1t ) (i I .Z -I )fat z (qllZ ) d

a (3-76)

where fz(i):a.z(,-i)(I gI,Z-I) is Gaussian, with a mean of

U(t)R(ti-) and a covariance of [H(tt)P(t1 -)HfT(t) + R(tt)].

Equation (3-76) could conceptually be evaluated recursively

starting from fa (g). By combining Equations (3-74) with

(3-75) and switching the order of integration, we can

generate the state estimate from

:-. R-(tl) J [ J fi aJAz ( Li,Z )dLJ fa:z (g1iZ )da (3-77)

Unfortunately, the double integration will make this

approach computationally impractical, so we let the

uncertain parameter vector assume only a finite number of

66



values, such as the discrete vector set Iai, a2, ... aXI,

where K is the number of elemental filters in the MMAE, and

eventually the number of controllers within the MMAC. Thus,

OF the integration is replaced by a finite summation. This

becomes the foundation of the multiple model structure,

where each controller within the bank of controllers is

based on an actual discrete parameter value.

ATo adopt the Bayesian approach to a multiple model

structure, an a priori density function is required for

Ak (to)

fa(to) (a) = I pk (to)(a_- a(k) (3-78)

where Pk (to) is the probability a assumes the value ak at

time to. Therefore, the hypothesis conditional probability,

pk (ti), is a recursive relationship expressed as

* pk (tl) - probil=Ak IZ(ti)=ZiI

f. f, I(a)! , Z( I- I ) (:LI iak ,Zit- I ) Pk ( ti- I

% " = (3-79)

: f,(1):a,z(-i) (1i 1 ,Z1-i )Pj (ti-i)
4

4
b i-1

a..

7 where fz(i),Iez(i-) ( i Ijk,;i-i) can be evaluated as

:': (2n)-/2 IAk (t )I' / a

"a.

'~t )- -k I- ~~t )k tI)-rk ti) (3-80)
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and

D (ti) is the residual; r-k (t) &I -4 a(ti)2(tI-'

&k (ti) =i k(tI ) b(t1 ilk (tt) + &(tl)

m is the number of measurements at time ti; dimension
of Dj (tti)

Therefore, the conditional mean is the sum of the

probabilistically weighted state estimates from each

controller within the bank:

I Rk (ti*)Pit(tt) (3-81)
k I

Note how equations (3-79) and (3-81) are closely related to

equations (3-76) and (3-77) respectively.

The lINAC feedback control can be analogously derived,

and is the probabilistically weighted sum of qk (tt) as

P expressed by

u(ti) I Il J(ti) PTA(ta)
kink

- I (lk )Rk (ti )Pk (tt (3-82)
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3.5.2 The Multiple Model Adaptive Tracker Since this

is the first implementation of a MMAC for this application

and is to be viewed as a feasibility demonstration, the

design will be simple. The MMAC will be based upon only one

uncertain parameter, discretized into three possible values,

and thus it will be composed of a bank of three controllers.

The purpose of the MMAC is to allow the tracker to adapt to

changes in the best modeled value of target dynamics driving

noise strength, QT, because the tracker has no control over

QT, and since mis-modeling of QT leads to large RMS errors.

Each controller will be tuned to a different, quantized

value of QTk. For this application, each controller will be

tuned to one of the following uncertain parameter values:
'S.

QTi - 0.01 QTi = 0.1 QTr = 1.0

These three values approximately cover (for modeling

purposes only) the range of trajectories from the straight

and level flight, to the maximum manned-vehicle g-limit of

lOg's, assuming a specific range to target or a defined

relationship between real maneuvers and maneuvers as seen in

the detector array plane.

Because QT is selected as the uncertain parameter and

it is aot used to calculate the steady-state controller

gain, we can use the non-adaptive steady-state controller

gain, 0co*. If we had to calculate an adaptive controller

gain, such as would be the case if the target acceleration
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time constant, TT, were the uncertain parameter, then each

controller gain, Gc*[ak(ts)], would be calculated from the

same steady-state controller gain equations, Equations

(3-57) through (3-67), but each controller gain function

would be tuned to its specific uncertain parameter value.

Each controller within the MMAC structure operates

independently of one another, and the embedded k-th

elemental Kalman filter calculates the residual, rLk (tt), the

covariance of the measurement, Ak(tk), and the best estimate

of x (ti). The residuals and covariances of the measurement

from all of the elemental filters are used to calculate the

*. *: probability, pk (ti), which is used to weight each controller

(see Equations (3-79) and (3-80)). Then, the

probabilistically weighted control inputs, Uk (tl)pk (ti), are

summed according to Equation (3-82). The controllers start

out with equal probabilistic weighting. That is, each

controller is initialized with an equal probability, pk (to)

I I/K; the constant K represents the number of controllers

within the MMAC structure (for this application, K = 3 ).

73.6 Summary

This chapter developed the target model and all the

controllers to be used directly or in support of this

thesis. The target was modeled through a first order Gauss-

Markov acceleration process, where the state estimate

(involving position, velocity and acceleration variables)

and covariance error are provided by a Kalman filter. The

Nfirst controller design developed the proportional gain
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regulator and tracker equations. But because the

proportional gain controller does not have type-one

characteristics that allow rejection of unknown, constant

disturbances that arise from linearized models, the PI

controllers were developed. Still, the performance of the

tracker was sub-optimal. The next sections looked at

improving the controllers' robustness by evaluating

alternative weighting matrices and using the PI tracker in a

multiple model adaptive controller. In all, the final

objective is to design the optimal controller which can

place the particle beam on a maneuvering target.
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IV. THE ANALYSESI
Before a design can be considered complete, it must be

developed and its performance evaluated against some

prespecified standard or baseline. This chapter discusses

the different performance analyses used to evaluate the PI

controller and also to develop and evaluate the adaptive PI

controller. Both controller designs use the Meer filter to

estimate the beam (controlled) state, and the Kalman filter

to estimate the target (reference) state. The results of

the performance analyses are listed in Chapter 5. The first

section explains why Monte Carlo simulation was selected

over covariance analysis. The next section addresses the

software packages SOFE and SOFEPL which were used to

generate the Monte Carlo simulation and error statistics.

The following section provides an in-depth review of the

parameters used in the Meer filter for beam location

estimation and the Kalman filter for target state

estimation. The last section discusses the actual analyses

that are used.

4.1 The Method - Monte Carlo Simulation

The particle beam estimator/controller problem is

modeled as a stochastic process and the performance can be

best evaluated by observing the statistical behavior of the

error processes. Specifically, we are interested in

evaluating the controller's tracking error statistics, and

72



it is assumed that the embedded estimators are already tuned

for the appropriate dynamics driving noise strength, Q, and

measurement corrupting noise covariance (spread dispersion

of the beam in the Meer filter), R. Regardless, it will

also be necessary to evaluate the Kalman and Meer filter's

.W state estimation error statistics, to support some of the

findings from the sensitivity and robustness analyses. The

performance of a controller can often be analyzed by either

covariance analysis or Monte Carlo simulation. The more

efficient method is the covariance analysis, which requires

only one software run to generate the time history of the

,'- "estimation error covariance, Pe (ti), or other pertinent

statistics. Unfortunately, covariance analysis cannot be
applied to the multiple model adaptive controller because a

proper covariance analysis is limited to linear stochastic

controllers that use prespecified measurement update times.

q The adaptive mechanisms in both the controller and in the

Meer filter violate the linearity, and the elemental Snyder-

Fishman filters have a varying sample rate that is not

prespecifiable.

Therefore, the less efficient Monte Carlo simulation is

Sused to evaluate the particle beam estimator/controller.

The Monte Carlo simulation is a complete computer simulation

that requires numerous simulation runs to generate enough

samples of the error process to approximate the filter's

true statistics with sample statistics [12]. For this

* ~*application, Zicker (17,27] found that the sample statistics
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sufficiently converged by 200 runs, with each run lasting

100 seconds. Zicker also found that the system transients

dissipated by 50 seconds into the simulation. Therefore,

these numbers have become the baseline for future Monte

Carlo simulations and the statistics of the error processes

are averaged over the last 50 seconds. Because the last 50

seconds should represent a steady-state condition, the time-

average of the error process statistics, such as the average

root-mean-square tracker error, can be used as a compact

index of performance, and can be used to identify trends

-within any of the analyses.

The Meer or Kalman filter's state estimation error

statistics, which are used to evaluate the filter's

operation, are the mean and the standard deviation of the

error between the truth and filter states. They will be

calculated and plotted for each controller feedback sample

period, ti, between 50 and 100 seconds. For example, the

Uderivation of the Meer filter's beam position state estimate

error statistics are as follows: the error between the

true beam position and the Meer filter estimate is

em (ti ,n) - xtm (tt ,n) - 16 (ti ,n) (4-1)

where 50 _ ti 100 and n is the run number. Thus, the

mean error is

N

As (ti) - [1/N] - em (ti ,n) (4-2)
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where N is the total number of runs (N-200). The variance

and the standard deviation of the error are [5,7]

va (ti) - [1/(N-1)]-I I e32 (ti,n) - [N/(N-1)] -B2 (ti) (4-3)
n3=1

ocs(tt) = (1 + I/[4(N-1)]I-vs(tj)1'/ 2  (4-4)

Equation (4-3) calculates the unbiased estimate of the

variance and Equation (4-4) is an approximation that

produces an unbiased estimate of the standard deviation. A

%, full derivation of the exact equation and the limitations

that apply to the approximation can be found in reference

[6]. Because these statistics are calculated for the

steady-state condition, it is desirable for Aa (ti) to

approximate zero (i.e., it is desirable for the bias to be

negligibly small), and for cm (ti) to approach a steady state

value from tin50 to 100 seconds. Deviations from these two

conditions will indicate the filter is operating improperly.

Note how the statistics are calculated for a finite sample

population, and only when we have a large enough sample can

we be sure the sample statistics closely approximate the

true statistics.

The root-mean-square (RMS) tracking error, RMS. (tt),*/.

and the time-averaged RMS tracker error, fMSe, are the

statistics used to evaluate the performance of the

controller during the different analyses. The error for the
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tracker problem is defined as the difference between the

true target state and the true beam position state:

et (ti ,n) = xta (ti ,n) - xtx, (tt ,n) (4-5)

The errors from each run are averaged and a mean error,

me (ti), and a standard deviation of error, o. (ti), are

L6 calculated for each ti:

me (tj) = [1/N]. Ifxta (tt ,n) - xtTP (ti ,n) (4-6)

c. (tt = 11 + 1/14(N-1)I1

-4 -111/1N-1)11 I I etO (ti ,n) I - [N/IN-Ill -me2 (ti II 1 / 2

(4-7)

The root-mean-square (RMS) was selected as the

statistical performance parameter to be used to evaluate the

P controller. The RMS error can be generated for each sample

period by using the equation:

RMS* (ti) - [y 2 (ti) + o.2 (ti 111/2 (4-8)

The time-averaged RMS error is calculated by averaging each

RMS error, RMS. (ti), from 50 to 100 seconds:

100

RMS. - [1/51]-1 RMS, (ti) (4-9)~n-SO

-d.,
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Once again, because the RMS error statistic is calculated

for steady-state condition, RMS. (tt) should appear as a

Rconstant value with only minor deviations. A controller

with an increasing, ramp-like RMS error would indicate that

the filter is unstable. Anytime an undesirable RMS error is

found, the RMS error will be analyzed to see if the problem

is primarily due to bias-like characteristic (i.e., an

increasing mean) or fluctuations (i.e., an increasing a*).

4.2 The Tools - SOFE and SOFEPL

The performance analyses are generated from tailored

software packages called SOFE and SOFEPL [7,21]. SOFE,

which is short for Simulation for Optimal Filter Evaluation,

is a general purpose Monte Carlo simulation program designed

for evaluating systems that use Kalman filters. It contains

both a truth model and a filter to be evaluated. The truth

model is described by a set of stochastic differential

equations that emulate the "real-world" system dynamics.

The filter is also described by a set of differential

equations representing the system's state propagation within

a Kalman filter, and updates due to measurements. SOFE

allows the user to specify the measurement format of the

_ filter update, and if desired, to include feedback control.

SOFEPL, which is short for SOFE Plotter, is a post-

processing routine that can be programmed to perform various

statistical functions, such as calculate the RMS error time

history, and then plot the results. Both SOFE and SOFEPL
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were developed by Stanton H. Musick and others of the Air

Force Avionics Laboratory.

SOFE had to be modified internally before it could be

used, because the original version of SOFE was limited to

Kalman or extended Kalman filter applications. In doing so,

Meer [18] changed SOFE's code to accommodate the Snyder-

Fishman estimators and the MMAE structure for indicating the

likelihood of each photoelectric event being due to signal

versus noise. The problem of adapting SOFE to this

application did not affect the propagation or update

equations, but lay in generating Poisson distributed random

signal and noise events, and then using these events as

measurement update for the Meer filter. The standard Kalman

filter, such as found in the original version of SOFE,

updates the filter at regular discrete time intervals,

whereas the Meer filter updates only when it receives a

signal event [273.

Because SOFE was intended for general applications, it

allows the user to tailor SOFE to the user's needs through

nine user-defined (i.e. user-written) subroutines. These

subroutines allow the user to specify: the truth model's

differential equations, the filter model's differential

equation, truth model disturbances (optional), the

projection matrix of the state vector onto the measurement

vector (), the measurement corruption noise covariance

matrix (&), the system dynamics matrix (often composed of

partial derivatives) (E), dynamics driving noise strength
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matrix, (Q), the initial filter covariance matrix (Po), the

initial conditions for each run, a prespecified trajectory

S (optional), impulsive control (optional), and other

calculations required during the measurement update such as

feedback control. Meer's [18] alterations to the code

incorporated several more user-defined subroutines that were

used to implement the Meer filter. Zicker (27] followed

Meer and added the "Merge" method of filter pruning and the

first controller design. Moose and Jamerson [8,20] designed

the follow-on controllers and Jamerson implemented the

Gauss-Markov acceleration model for the target. Zicker,

Moose and Jamerson's changes are limited to the user-defined

4subroutines and do not affect the executive routine of SOFE.

The SOFE source code that Meer altered and that is used

throughout the research is the FORTRAN 4, May 1982 version

of SOFE.

The conceptual operation of the modified SOFE program

is shown at a macro level in Figure 4-1. The fixed-sample-

period controller requires that the discrete feedback

control and the Meer filter propagation cycle operate at the

Zsame discrete sample rate, becduse the feedback law requires

the most current particle beam state estimate. As mentioned
*1

before, the Meer filter's measurement update occurs whenever

an event is observed. For simplicity, the time to the next
r%

signal and noise events are pre-calculated from the signal

and noise rate parameters, and the integrator is told in

advance where to stop for the Meer filter measurement
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update. A diagram of the top-down structure of the modified

SOFE is presented in Appendix B.

The propagation of the truth states, the filter states

and the filter-computed error covariances is accomplished by

integrating the differential equations from the current time

forward to some specified time. This time can be the

integration step size, the time for the next Meer filter

update or the time for the next Kalman filter update. The

state differential equations have the general form

*(t) - L[&(t) ,(t) ,t] + G(t)w(t) (4-10)

where w(t) is a zero-mean white Gaussian noise of strength

.. SOFE solves Equation (4-10) by first using a fifth order

Kutta-Merson integrator to solve the deterministic

differential equation

(t) - 2 ( (t),'3&(t) ,t] (4-11)

The stochastic term is added upon the completion of each

integration through the expression

- + GAUSS(,i (4-12)

where gp is the deterministic solution to Equation (4-11),

s is the stochastic solution, and the expression

GAUSS(Q,.Qd) is a randomly generated vector term of zero mean
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and a covariance of Qa. The dynamics driving noise

strength, Qd (the second moment of the equivalent discrete

time noise representing q(t)E(t)), is calculated from

ti + J

Qd Oti~l ,T)G(T)_Q(T) Q (T)( T (ti l ,T)dT (4-13)

For both the Kalman and Meer filters, Qd is scalar, and the

integral in Equation (4-13) is solved as

Qd - G2 QT[1-exp(-2At/T)]/2 (4-14)

where T is the target or beam time constant, G = 1, and At

is the sample period over which the the noise is injected

into the Equation (4-12).

The measurement noise is incorporated into the

measurement update in a similar manner. The general

measurement equation for either the Kalman filter or for the

elemental Snyder-Fishman filter (which receives a

hypothetical signal-induced event) is

j(ta) - h(E, (ti),tI] + v(ti) (4-15)

where z(ti) is the sum of the measurement function of the

true states, I[at(ti),ti], and the measurement corruption

noise, 1(tl). SOFE injects the measurement noise by the

following relationship:
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j(tt) - GAUSS(h[;t (ti),ti],R ]  (4-16)

where R is the covariance of the target sensor measurement

noise v(ti), or the beam dispersion for the beam signal-

induced photodetector event. If the event is signal-

induced, Equation (4-16) gives the actual location of the

event, not a "noise-corrupted" measurement of it. If the

event in noise-induced, Equation (4-16) does not apply and

the location of the noise-induced event is simulated by

using a uniformly distributed mapping function.

SOFE updates the Kalman filter at regular time

intervals since the Kalman filter has a fixed sample period.

This is not true of the Meer filter because the Meer filter

update is based on the arrival of the next signal or noise

event. Thus, Meer [181 had to modify the SOFE source code

so that SOFE would simulate a varying sample period (i.e.,

the time to the next signal- or noise-induced event) as a

Poisson time process. The equation which will calculate the

the varying sample period is derived from the Poisson

process density function,

p(y) = -[(1t)t]'/y!-exp[-X(t)t] (4-17)

where p(y) is the probability that y events occurred within

time period t, and X(t) is the mean signal arrival rate.

Because we are interested in generating a random sample

period with the next event occurring at the completion of
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the sample period, y is set to zero (i.e., no events occur

during the sample period), and the random sample period, t,

* is calculated from the inverse mapping function of Equation

(4-17) (27]

t - -9(t)-ln~p(O)] (4-18)

where p(0) is defined as the probability that t amount of

time has passed before an event arrives. This probability

has a range of OSp(O)&1. Because we are interested in

generating samples of ti, p(O) is selected randomly from the

range of p(O), and this process is used to simulate the

arrival time of the next signal- or noise-induced event.

The mean signal arrival rate is defined as

Is(t) - n/(tF-to) (4-19)

where n is the number of signal-induced events expected over

the duration of the simulation run, (tF-tO). The

relationship between the mean signal arrival rate and the

expected signal rate parameter, & (t,L,&(t)), can be shown

by integrating Equation (2-1),

98 W Is (ti q) da

A J.(ti )exp [-T 71(tt)a/2] da (4-20)
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where a-Cr-I(t)&(t)J. Although the integral of the Gaussian

density function does not have a closed-form expression, we

know that the entire area under a probability density

function must have a magnitude of one,

J .(2n)-lRI]-I/2-exp(-!aR7l. /2)da - 1 (4-21)

Thus, the maximum amplitude of the rate function, A(t), can

be shown as:

A(t) - [n/(tr-to)J.[(2n)IR(t)j] - 1'' (4-22)

where m is the dimensionality of the vector a.

The mean noise arrival rate is defined as

n (t) - .(t,L)d. - &m (ti ,r) -L (4-23)

where Iu (tt ,r) is not a function of r in this application

(Ix (t,1) is defined as being uniformly distributed over the

entire length of the detector).

The data provided by SOFE is statistically reduced and

the results plotted by a second program called SOFEPL. The

statistics used to evaluate the performance of either the

Kalman or Meer filters are the mean and standard deviation

of the error between the truth and filter state (see
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i
Equations (4-2) and (4-4)). Although the SOFEPL program

provides an array of statistical options, they are limited

to the error statistics found between the truth and filter

states (for filter performance evaluation) and are

inadequate for evaluating a controller design. An

alternative provided by SOFEPL is for the user to specify

the desired error to be evaluated statistically. The

procedure is used to generate the RMS time history as

described by Equation (4-8), where the statistics are based

on the error between the true beam and true target

positions.

4.3 The Beam and Target Parameters

This section reviews the beam filter and target filter

parameters since they can play such an important role in the

design and performance of the MMAC. The Meer filter is

designed around six parameters. They are as follows:

Te is the beam time constant.

g is the square root of the beam propagation noise
strength, g - (G2Q)1 /2 (Q-l by assumption).

R is the beam dispersion measured as the variance of
Mthe Gaussian-shaped beam at the detector surface.

SNR is the signal-to-noise ratio (to be defined as in
Equation (4-24)).

D is the MMAK filter depth.

n is the expected number of signal-induced events
during a simulation run.

The three parameters associated with the Gauss-Markov

acceleration target model are as follows:

TT is the target time constant.
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QT is the target dynamics driving noise strength.

fRT is the target measurement noise variance.

The signal-to-noise ratio is defined for this

application as the average number of signal induced events

produced for every noise event. The SNR can be expressed as

[18]:

SNR - In/(tF-to)I/[AN (t,r)-L]

- A(2R) //[xu (t,0-)L] (4-24)

where n is the number of signal-induced events expected

during one simulation run, (tt-to) is the duration of the

simulation, xN (tr) is the noise arrival rate per length of

the detector array, and L is the length of the detector

array. For this one-dimensional appiication, the length of*

the detector is 10 cm.

*The nominal values for the beam and tracker filter

parameters used for the analyses are as follows:

The Beam Parameters

To - 20 (sec) D = 3

g - 0.2 (cm2 /sec)1 /2  R = 0.5 (cm2 )

SNR = 20 n = 100 (signal events)

The Target Parameters

TT - 10 (sec) QT - 0.1 (cm2 /secO) RT = 0.5 (cm2 )
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When the the Meer filter is simplified and the assumptions

from Section 2.5 apply, the MMAE filter depth is reduced to

one.

Because the fastest transients at the nominal condition

have a time constant of ten seconds (rather benign

dynamics), the Kalman filter and the feedback control sample

period will be set to one second. This easily satisfies the

Shannon's sampling theorem which states that the sampling

rate should be at least twice the highest signal frequency

content of interest. To provide an extra margin of

insurance, the engineering guide of sampling ten times

faster than the highest frequency is used.

4.4 Performance Analyses

Five different performance analyses are required to

design and evaluate the MMAC, which is composed of a bank of

PI controllers, of which each elemental controller uses its

own Kalman filter to estimate the target state and a Meer

filter to estimate the beam state. The first two analyses

are the alternate controller cost weighting matrices

analysis and the reduced Meer filter depth analysis. The

results of these analyses will allow us to select the best

set of cost weighting matrices for good on-line design

performance and adequate robustness, and to allow us to

justify using a filter depth of one (i.e.

1D - ). The next two analyses are the sensitivity analysis

and the robustness analysis. The results from these

analyses are used to develop the MMAC. Last, another
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analysis is required to evaluate the operation of the MMAC.

The first four analyses are performed on the PI tracker

S developed in Section 3.3.2. The MMAC analysis is performed

on the adaptive controller developed in Section 3.5.2.

4.4.1 Evaluatina Alternate Weighting Matrices.

Although Jamerson did some work on selecting a suitable set

of controller cost weighting matrices to achieve good

controller performance and robustness, an exhaustive study

was never accomplished. Therefore, a performance analysis

is conducted to determine the best alternate cost weighting

matrices which provide good performance at design conditions

and that also enhance the MMAC's robustness. In other

words, the goal is to select the best set(s) of weighting

matrices that best minimize the averaged RMS error (without

using excessive amounts of control) when the truth model

matches the filter model, while simultaneously providing at

least stability at off-design conditions.

4.4.2 Evaluating the Simplified Meer Filter. The

second analysis evaluates the performance of the controller

and the Meer filter when the filter depth is reduced from

D - 3 to D = 1. This will reduce the number of

propagating elemental Snyder-Fishman filters from eight to

two, and in fact the filter can be expressed equivalently

with only a single elemental filter, but with its gain

expressed as a function of residual size. Although this

will slightly increase the average RMS error, it should

significantly decrease the computational loading (see
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Section 2.5). It makes on-line feasibility much more

reasonable.

4.4.3 Sensitivity Anaysis. The purpose of the

sensitivity analysis is to evaluate the performance of the

PI controller as it is exposed to several different "real-

world" environments. Because each environment could be

described by a set of parameters, the sensitivity analysis

is conducted by varying a single parameter in both the truth

model and in the controller. The results lend insight on

how the controller reacts if it knows the true environment

and the results provide an absolute baseline of the best

possible performance that could be expected from an adaptive

controller. The test is based on the nominal parameter

settings presented in the previous sections and most of the

parameters are evaluated at one order of magnitude above and

below their nominal values. The test evaluates all the beam

and target parameters except the filter depth, which is set

nP to one (D = 1). The cost weighting matrices are based on

the results in Chapter 5 and are set to U=1, Xii=100 and

Xss10 (refer to Equation (3-62)).

4.4.4 Robustness Analysis. To complement the

sensitivity analysis, a robustness analysis is performed to

evaluate the controller's performance when an algorithm-

assumed parameter differs from the "real-world" environment.

The robustness analysis is conducted under the same

guidelines as the sensitivity analysis, but differs in that

the parameters are changed in the truth model without

p.9-.
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informing the controller's filters. The purpose of this

study and the sensitivity analysis is to identify those

Sparameters that are best suited for on-line adaptation by
the MMAC, and to identify any other potential problems with

the PI controller.

4.4.5 Evaluating the MMAC. Once the MMAC is

developed, it is evaluated against a performance baseline.

This baseline is defined as a PI controller which receives

noise-corrupted measurements, z(ti), but has access to the

truth model's parameters. This baseline provides the best

possible performance the MMAC could achieve if it could

perfectly estimate the uncertain parameters. A well

* 'designed and tuned MMAC should closely approximate this

j baseline. Also, the MMAC is compared to an unknowledgeable

and non-adaptive controller to see how much better

performance the on-line parameter adaptation yields.

4.5 Summary

The purpose of this chapter has been to explain the

tools and methods used to develop and evaluate the MMAC, and

to evaluate the performance of the Kalman and Meer filters

within the MMAC structure. The Monte Carlo simulation

provides the most viable method of evaluating the

controller's performance. SOFE and SOFEPL provide the basic

-. method of computing the filter state estimation error

statistics and controller tracking error statistics which

allow us to evaluate the filters and the controller designs.

Four of the performance analyses, the alternate weighting
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matrices, the reduced Meer filter, the sensitivity, and the

robustness analyses, provide the foundation to develop the

MMAC. Upon completion, the MMAC is developed and evaluated

against a baseline controller, which assumes that the

baseline controller has access to the true parameters while

receiving noise corrupted measurements. The MMAC is also

N7 compared to the results of a non-adaptive PI controller.

The results of the five analyses are in the next chapter.
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V. RESULTS OF THE MONTE CARLO ANALYSES

The results of the five Monte Carlo analyses discussed

in Section 4.4 are presented in this chapter. The first

analysis evaluates seven different sets of weighting

* ' matrices and found the set, Uil, X1i=100, X55=10, produces

the lowest steady state RMS tracking error. None of the

seven sets of weighting matrices tested cause the controller

to use excessive amounts of control. The second analysis

;shows that the controller can be reduced to a filter depth

of one without any measurable increase in RMS error between

the beam and target positions. Therefore, the rest of the

research is conducted with the filter depth set to one

(D-l). Unfortunately, an appreciable reduction in computer

time is not seen. This is credited to the overall

inefficiency of the source code, and it is assumed that a

program designed to take advantage of a reduced filter depth

would require less computer processing time. The

sensitivity analysis provides a baseline of the best

possible controller performance provided the filter knows

the "real-world" environment, while the robustness analysis

measures the ability of the controller to cope with a

"real-world" environment that differs from the parameter

values assumed in the filter/controller design. The

performance achieved when the values of most "real world"

parameters are allowed to vary shows good robustness

characteristics. The two notable exceptions are the target
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4 dynamics driving noise, QT, which the MMAC is designed to

handle, and the particle beam time constant, To, which

appears to be the source of a controller stability problem.

Last, the MMAC provides good on-line adaptive estimation of

QT. The MMAC significantly outperforms the non-adaptive

controller, but the controller responds slowly to a

decreasing target dynamics noise strength.

The results of the first four analyses are from

existing SOFE software used by Meer, Zicker, Moose and

Jamerson [8,18,20,27], which was modified for easier usage,

and corrected for three software errors. These errors were

detected either by validation testing or by reviewing the

.4 source code, and the errors may have affected the previous

results. The errors are as follows: (1) the original SOFE

source code, version May 1982, had a repeated line of code,

line "LJ - LJ + K" in Subroutine PSQRT. Subroutine PSQRT

computes the Cholesky upper triangular square root matrix of

the Kalman filter covariance matrix, j(ti). This error

would miscalculate the upper triangular elements of the

Cholesky square root matrix. (2) Jamerson's source code had

an error in the parameter list of the call statement, "CALL

RICDSD(-)". This library-obtained subroutine calculated the

steady-state solution to the Riccati equation used to

calculate the controller gains (see Equation 3-67). This

error resulted in slightly higher controller gains than
~would be properly evaluated. (3) Zicker's source code,

which was modified and used by Moose and Jamerson,
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calculated the true maximum amplitude of the rate function,

At, as a function of the filter beam dispersion, Rt (see

Equation (4-22)). The true beam dispersion, Rt, should have

been used instead. This slightly affected the results from

the previous robustness analyses for the beam dispersion.

The results from the MMAC analysis are from a corrected

version of the existing software which is modified for

adaptive estimation/control. All the subroutines used to

implement the MMAC were verified independently of SOFE.

5.1 EvaluatingAlternate Wija n Matrices

The purpose of this study is to select the cost

' weighting matrix that best minimizes the time-averaged RMS

error, RMSe, between the target and the beam without using

excessive amounts of control. Therefore, seven different

performance analyses have been performed with a different

cost weighting matrix as defined by the steady-state cost

*function,

Ti
x2 (ti) X1I -Xii1 0 0 x3 (ti)

J l (1/2- XT )tl -Xii X11 0 0 xTP (tt) (5-1)
q(ti) 0 0 X3. 0 q(ti)
u(ti) 0 0 0 U u(ti)

The results as depicted by Table 5-1 and 5-2 show that the

best cost weighting matrix is composed of U-1, Xii=100 and

X -10. A closer analysis shows that a 10:1 ratio of Xii to

X-e is the important relationship that future designs should
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TABLE 5-1

The RMS Errors from the Cost Weighting Matrices Analysis

Average Minimum Maximum
U X1Ii X5 5 RMSe RMSe(ti) RMSe(t,) %

1 1 1 2.536 2.258 2.881 +3.6%

1 10 10 2.639 2.314 2.918 +7.8%

1 10 100 2.929 2.526 3.251 +19.7%

100 10 2.448 2.165 2.737

1 100 100 2.676 2.336 2.963 +9.3%

1 100 1000 2.956 2.546 3.286 +20.7%

1 1000 100 2.450 2.166 2.740 +0.1%

TABLE 5-2

The Applied Control During the Second Monte Carlo Run

RMS of Minimum Maximum

U Xii X5s 5 u(tt uOtt) u (ti)

1 1 1 18.363 -50.896 18.046 3

1 10 10 18.413 -51.153 18.688 4

1 10 100 18.586 -52.456 20.231 6

1 100 10 18.330 -51.276 17.451 1

1 100 100 18.440 -51.365 18.753 5

1 100 1000 18.608 -52.478 20.470 7

1 1000 100 18.333 -51.283 17.740 2

Note: *is the order of performance with #1 being the
best.
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consider. This cost weighting matrix allows the controller

to operate with the lowest average RMS error among the seven

sets evaluated. Although none of the cost weighting

i .'. matrices allow the controller to use significantly large

amounts of control in relation to the severity of the target

dynamics, the best cost weighting matrix provides the least

oscillatory application of control as measured by the

applied control RMS statistic (see Table 5-2). These

findings are consistent with the theory presented in Section

3-4. As we increase the pseudo-integrator cost weighting

b element, XLa, with respect to the position states cost

weighting element, Xii, the controller will begin to

overcompensate large differences in the target and beam

positions. -This will cause the controller to be more

oscillatory in the application of control and it will lead

*. to larger RMS errors. Also, as the cost weighting of

control, U, approaches the values of the other cost

elements, the control will become more expensive to apply,

*and this will tend to raise the average RMS error. A plot

of the RMS error statistic is plotted in Figure 5-1. Except

for analyzing the pole placement of the controller (refer to

Chapter 6), nothing was done to enhance the robustness of

the controller in any explicit manner.

I The relationship between the amount of applied control

and the relative error between the target and the controlled

beam is shown in Figure 5-2. This plot is from the second

simulation run out of the Monte Carlo analysis and shows how
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Figure 5-1. RMS Tracking Error for U-1, Xii-100, X22-10
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Figure 5-2. Applied Control and the Relative Error Between
the Target and the Beam (Absolute position error - x- - XTp)
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the applied control reacts to the target. In this example,

the target is accelerating across the detector array of the

tracking particle beam, which causes the magnitude of

applied control to increase continuously. The plot starts

at ti-50 seconds because the first 50 seconds is being used

to let the system's transient response attenuate. The

discontinuities in the relative error are do to the Kalman

filter updates.

The previous concerns (8] over the effect of a large

initial overshoot caused by the beam position being offset

from the target are important because the initial transient

response can saturate the actuators and be very

destablizing. They were ignored only because the emphasis

is on the steady state operation of the estimator/

controller, and it is suggested that during target

acquisition a different cost weighting matrix or filter

tuning parameter be used which is more forgiving of large

initialization errors.

5.2 E the Simplified Meer Filter

The purpose of this analysis is to evaluate the

performance of the controller when the depth of the Meer

.filter is reduced from D=3 to D=1. The goal is to reduce

the computational loading of the Meer filter significantly

at the cost of slightly degrading the performance of the

controller. The insight was provided by Zicker [27] who

found that when the Meer filter was reduced from a depth of

3 to 1, the average RMS error increased by only 0.004 cm.
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The results from the controller's performance analyses show

that the controller is even more tolerant to the changes in

U filter depth. As the data in Table 5-3 suggest, there is no

detectable degradation of the controller's performance when

the depth of the Meer filter is reduced to one.

Unfortunately, the expected savings in CPU time did not

* appear.

TABLE 5-3

Results of the Reduced Meer Filter Analysis

Average Minimum Maximum CPU
Depth U Xii X a RMSe RMSe (ti) RMS. (tt) Time

3 2.44795 2.16530 2.73617 511.5

1 1 100 10 2.44795 2.1653. 2.7367M 521.6

3 2.67559 2.3357§ 2.96272 500.5
1 100 100

1 2.67559 2.33575 2.9627a 497.0

He

Note: CPU Time is for the entire simulation, which includes
data reduction and plotting; units are in seconds.
Underlining of digits is used to accentuate the
differences in computed statistics; units are in cm.

Because these findings did raise some suspicion, the

analysis was supported by an in-depth review of the source

code. The review indicated that the code was correct, and

that the reason there was no apparent reduction in CPU time

was due to the general inefficiency of the source code which

did not take advantage of the reduced filter depth.
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One of the reasons that contributes to the outstanding

performance of the controller with the reduced Meer filter

*is the simple beam dynamics used by both the plant and

filter. A more realistic plant might have had a much more

complicated transfer function which could lead to greater,

more discernible errors when the Meer filter's depth is

reduced. In other words, a depth of one might be sufficient

I for a first-order Gauss-Markov scalar position process, but

za greater depth might be required if a higher-order Gauss-

Markov model were a significantly better model. Another

reason is that the high SNR (SNR=20) provides few noise-

induced events to test the Meer filter. Combining the

effects of a high SNR with the effects of a tight beam

dispursion (R=0.5 cm2 ) and a long detector array (L=10 cm),

results in the fact that most of the noise events should be

easily detected as being induced by noise rather than

signal, and the Meer filter does not require the extra

filter depth to accomplish this adaptive decision-making.

5.3 Sensitivity Analysis

The purpose of the sensitivity analysis is to evaluate

a "fully parameter-knowledgeable" controller, in which both

the Kalman and Meer filters (as well as the controller gain

computations) have access to the true parameters. The

results provide the best possible performance that can be

expected of the controller under various "real world"

conditions, and the results define the baseline for the

robustness analysis. Throughout the sensitivity and
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robustness (Section 5.4) analyses, the Meer and Kalman

filter parameters are set to the the nominal conditions

U defined by Table 5-4, and then each "real world" parameter

is evaluated individually through variations plus or minus

one order of magnitude. In these sensitivity studies, the

corresponding filter/controller-assumed parameter is varied

accordingly, while in the later robustness studies, the

filter/controller-assumed parameter is left unchanged. The

sensitivity results from the beam parameters are presented

first.

TABLE 5-4

Nominal Conditions for the Sensitivity and Robustness
Analyses

Beam Parameters (see Section 4.3)

To - 20 (sec) D - 1
g - 0.2 (cm 2 /sec)1 /2  R - 0.5 (cm2 )

SNR -20 n - 100 (signal events)

Target Parameters (see Section 4.3)

TT - 10 (sec) RT - 0.5 (cm2 )
- 0.1 (cm'/sec)

Non-Zero Elements in the Cost Weighting Matrix
(see Section 3.4 and Equation 3-62)

U 1 X11- 100 X0o - 10
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5.3.1 Beam Time Constant - :LL. The beam time constant

represents the relative speed with which the particle beam

S dynamics can react to the applied control. The effect To

, v has on the plant dynamics can be seen by means of:

B B
GI (s) - - 5-2)

5 - Pi . + (1/Tm)

where Gx(s) is the plant transfer function. The effects of

increasing or decreasing To has the effect of moving the

pole closer to or away from the origin of the s-plane. The

effects of moving the pole can be evaluated by looking at

'the plant's settling time for a step input,

ts - 3.912/Ip I = 3.912-To (5-3)

.J.

where to is defined as the time it takes the exponentially

time-correlated plant dynamics to reach 98 percent of the

final steady state value C3]. As To is decreased, the pole

moves farther from the origin of the s-plane, the beam

dynamics become quicker, and it should be easier for the

particle beam to track the target. This should result in a

smaller average RMS error and this is confirmed by the

results in Table 5-5. But, contrary to what one might

expect, the large changes in To do not result in large

changes in the tracker error. This insensitivity is due to

the fact that the system's frequency response (as can be
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observed in a Bode plot) is not only a function of the

corner frequency, wc (w=1/rn), but also it is a function of

A the log magnitude of the open loop gain, KN (K.-BTD), and

the effects of changing To are cancelled by changes in Kw.

The filter's To represents the time constant in the filter's

model of the plant, whereas the true Ta is the actual time

constant of the particle beam plant. In a sensitivity

analysis, the true and filter parameter values are equal.

TABLE 5-5

The Sensitivity Analysis Results for To

Ta (seconds) Average
Filter True RMS* % Comments

2 2 2.431 -0.7% Quicker beam dynamics

20 20 2.448 - Nominal conditions

200 200 2.456 +0.3% Slower beam dynamics

5.3.2 Beam Propacation Noise Strength - qL The beam

*propagation noise strength indicates the confidence we have

in the target model being correct and the magnitude of the

random fluctuations that the beam position actually

undergoes. As we increase the strength of the noise, g2, we

are increasing the magnitude of the random beam position

".. fluctuations, and the Meer filter must depend more on the

measurement update. This can be demonstrated by analyzing

this relationship with an elemental Snyder-Fishman filter

covariance propagation equation, and gain equation:
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P (ti. - 02@ (t,I s, ti) P(ti + Qd (t,) (5-4)

K(tt) - P(t,-)/(P(ti-) + R) (5-5)

P where the closed-form solution of Qd (ti) is

Qd(ti) = g 2 T9[l-exp(-2At/TD)]/2 (5-6)

where At is the varying sample time between the arrival of

events. As g2 increases, so does P(ti,-) increase;

therefore, K(tt) will increase toward a value of one, and

the filter will begin to rely more heavily on the

measurement update.

With a sensitivity analysis, we assume that the filter

g2 matches a hypothetical true g2, which is used in the true

state dynamics model,

:Z xat (tt ,) - € t (tt+.,,t )x,, (ti ) + Bd (ti )u(ti ) + wdt (tl)

(5-7)

where wdt (tt) is a zero-mean, white Gaussian, discrete-time,

stochastic process with a variance as given in Equation

(5-6). As we increase the true g2 (and the filter g2

correspondingly), the magnitude of the random fluctuations

beam undergoes increases, and the filter must depend more

heavily on the measurements which come from the stochastic

truth model. Therefore, as the true g2 increases and the
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actual RMS value of excursions of the beam increase, so

should the average RMS error. The results in Table 5-6

Nconfirm this.

TABLE 5-6

The Sensitivity Analysis Results for g
2

g (cm/sec)1 /2 Average
Filter True RMSe % Comments

0.02 0.02 2.419 -1.2% K(tt) decreases

0.2 0.2 2.448 - Nominal conditions

2.0 2.0 3.743 +53.9% K(tt) increases

5.3.3 Beam Dispersion - R The particle beam is said

* to have a Gaussian-shaped dispersion as measured with

;. respect to the surface of the photodetector. Because the

beam is assumed to have Gaussian distribution (see Equation

3 2-1), it can be represented statistically by the true mean,

Int (t), and the true "variance", Rt (t). As Rt (t) increases,

-.' the signal-induced events spread over a larger area of the

detector, making it more difficult to estimate the center of

the beam, and forcing the filter to rely more heavily on its

internal dynamics model. Although Table 5-7 supports this

-concept, the filter is relatively insensitive to equal

changes in both the true and filter R's.
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.. 'TABLE 5-7

The Sensitivity Analysis Results for R

R (cm2 ) Average
.4 Filter True RMS* % Comments

0.05 0.05 2.437 -0.4% Depend on zm(ti)

. 0.5 0.5 2.448 - Nominal conditions

5.0 5.0 2.475 +1.1 Depend on filter

5.3.4 Sianal-t2-Noise Ratio - SNR The signal-to-

noise ratio is the ratio of the number the signal events to

the number of noise events that arrive over a period of

- time. Within the context of this simulation, the filter SNR

is used to estimate the noise rate parameter (the SNR is

ii defined in Equation (4-24),

(Nf (t,r) = [n/(tF-to)J/[SNRt -L] (5-8)

The true SNR is used to generate the the actual noise

parameter rate used to generate the noise events. Thus,

when the SNR is decreased, we expect to see the increase of

noise events to drive up the time-averaged RMS error, as
%I

depicted in Table 5-8. The table shows a discrepancy in

that the time-averaged RMS error shows a slight increase

IN when the SNR is increased. After reviewing the results from

the robustness analysis (see Section 5.4.4), one can see

that the controller is highly insensitive to changes in SNR,

and that the small deviations of time-averaged RMS error is
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within the sample statistical error. This is also supported

by the fact that the different noise arrival rates will

cause different random-number generated signal- and noise-

induced event patterns (i.e., the same random number

generator seed was used throughout the study, and changes in

signal or noise parameter rates will alter the simulation

pattern of signal- and noise-induced events by requiring

different numbers of calls to the random number generator).

TABLE 5-8

The Sensitivity Analysis Results for SNR

SNR Average

Filter True RMSO % Comments

2 2 2.469 +0.9% 1/3 noise events

20 20 2.448 - Nominal conditions

200 200 2.466 +0.7% Nearly noise free

5.3.5 Exoected Number ot Sianal-Induced Events -

The expected number of signal events is used to calculate

the filter's maximum amplitude of the rate function, as by

Equation (4-22),

At = n/[(2nRr)I/ 2 -(tF-to)] (5-9)

which, in turn is used by the filter to calculate the

conditional probability that a signal-induced event did

occur (see Equations (2-1) and (2-27). The true n is used

108



to calculate the signal arrival rate, xs(t). As both the

true and filter n are decreased by equal amounts, the filter

3 must rely more heavily on the filter dynamics model because

the mean Meer filter sample period is increased. Therefore,

we should expect the time-average RMS error to increase as

shown in Table 5-9. The RMS error statistics may be

slightly affected by differences in the random-number

generated signal- and noise-induced event patterns caused by

a change in the signal parameter rate. The n=1000

performance run was not accomplished because the expected

results did not warrant the high computer costs. More

signal events should slightly increase the filter's

accuracy. The n=10 performance run should have produced an

unstable system (according to findings in Chapter 6) because

the mean sample period of 10 seconds would place the poles

zof the discrete-time controller far outside the unit circle,

but the perfectly matched filter time constants prevented us

from seeing the instability.

TABLE 5-9

The Sensitivity Analysis Results for n

n (signal events) Average
Filter True RMS % Comments

10 10 2.540 +3.8% Emphasis on filter
internal dynamics
model

100 100 2.448 Nominal conditions

1000 1000 - Not performed
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5.3.6 Taet Time Constant - T The target

acceleration time constant is used in the target shaping

S Ifilter which simulates the target dynamics. The shaping

filter is a linear, time-invariant system driven by a

stationary white Gaussian noise process that has a mean of

zero and a variance of QT. The target dynamics position

process is modeled as the double integral of exponentially

time-correlated acceleration; a third-order Markov process

that is the output of a third order shaping filter which is

shown in Figure 5-3. By definition, the white noise process

'

w(t) d td

Figure 5-3. Target Shaping Filter

has a power spectral density (PSD) magnitude of QT and an

- . infinitely wide bandwidth as shown in

Figure 5-4a. When this white noise is passed through a

'C first-order lag filter, as is done in the target shaping
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a)

PSD

b)
PSD

Figure 5-4. PSD Functions: a) White Noise, b) TargetP Acceleration

filter, it becomes the acceleration of the target, and has a

power spectral density function of

PSA() 20T 2 /TT QT (-0

W2 + (1/TT) 2  W2 + (1/TT) 2

where the variance (mean squared value) of the target

acceleration is defined as

ill



O 0 2 = (RMS )2 - QTTT (5-11)

j A plot of the acceleration power spectral density function

is shown in Figure 5-4b. The effects of reducing TT would

increase the bandwidth of the target acceleration and lead

to faster dynamics, but with a much smaller amplitude as

' shown in Figure 5-5. The overall results of a small TT is a

lower RMSA (assuming QT is held constant). Therefore,

smaller TT should lead to smaller time-averaged RMS errors

Sas shown in Table 5-10.

TABLE 5-10

The Sensitivity Analysis Results for TT

Ti (sec) Average

Filter True RMS. % Comments

1.0 1.0 1.325 -45.9% CT2-0.05, PSD-0.1

2.5 2.5 1.882 -23.1% OTy=0.125, PSD=0.625

5.0 5.0 2.225 -9.1% aiT=0.25, PSD=2.5

10.0 10.0 2.448 - Nominal: OT2= , PSD=10

100.0 100.0 2.685 +9.7% oTS=5.0, PSD =1000

Note: PSD is calculated for PSD(w-0), i.e., the low
frequency asymptotic value at w-0.

.11
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Figure 5-5. The Effects of Different TT 'a on the PSD:
a) TT - 15 (sec), b) TT~ -10 (sec), C) TT -5 (sec)
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5.3.7 Taraet Dynamics Noise Strenoth - QT The target

dynamics noise strength is the strength of the white

Gaussian noise used to drive the shaping filter. Although

.it does not effect the bandwidth of the target acceleration,

it directly affects the amplitude of the power spectral

density function as can be seen by setting w to zero in

Equation (5-10):

PSD(w=0) - QTTT2  (5-12)

Therefore, an increase in QT will increase the RMSA (see

VEquation (5-11)) and should result in an increase in RMS

error. Table 5-11 confirms this. The true QT is the actual

'white noise strength used to drive the shaping filter, where

the filter QT is used by the Kalman filter in the target

state estimate and covariance propagation equations.!
TABLE 5-11

The Sensitivity Analysis Results for QT

QT (cm2 /secO) Average

Filter True RMSe % Comments

0.01 0.01 1.461 -40.3% OyT20.05, PSD-1

0.1 0.1 2.448 - Nominal: oyT2-, PSD-10

1.0 1.0 4.644 +89.7% oT2=5.0, PSD-100

Note: PSD is calculated for PSD(w-0).
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5.3.8 Evaluatino _L and QL with the Target

Acceleration Power Spectral Density Maximum Set to 10.0

Although it appears that the filter is much more sensitive

to QT, one more analysis is required to confirm this. For

this analysis, the amplitude of the low frequency asymptote

of PSD (see Figure 5-5) is held constant, and TT is varied.

The results in Table 5-12 show that, for targets with the

same low frequency acceleration PSD characteristics, those

which can exhibit more violent maneuvering (i.e., the TT is

smaller, or the acceleration process bandwidth 1/7, is

larger) are much more difficult to track.

TABLE 5-12

The Sensitivity Analysis Results for PSD

PSD = 10.0 (cm2 /Hz) at w-0
Filter True Average
TT QT TT Qr RMSe %

1.0 10.0 1.0 10.0 5.384 +119.9%

10.0 0.1 10.0 0.1 2.448

100.0 0.001 100.0 0.001 1.089 -55.5%

Note: PSD is calculated for PSD(w=0).

5.3.9 Taraet Measurement Noise Variance - RL The

target measurement noise variance indicates our confidence

in the measurement model. As the measurements becomes more

severely corrupted, the measurements assume a wider and

flatter Gaussian distribution centered around the trueu
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target position, and the variance, which is represented by

the true RT, increases. The filter RT is the filter's value

representing the actual RT. As the filter RT increases, the

Kalman filter gain decreases and the filter must rely more

heavily on its internal dynamics model, and tracking is more

* .* difficult with less precise sensors. Therefore, an increase

in RT should result in a higher time-averaged RMS error.

Table 5-13 confirms this.

TABLE 5-13

The Sensitivity Analysis Results for RT

RT (cm2 ) Average
Filter True RMS. % Comments

0.05 0.05 1.518 -38.0% Relies on measurements
which are precise

0.5 0.5 2.448 - Nominal conditions

5.0 5.0 4.473 +82.7% Relies on filter's
model and measurements

Iare imprecise

5.4 Robustness Analysis

The purpose of the robustness analysis is to evaluate

the controller's performance when the embedded Kalman or

Meer filters mismodels the "real world". Initially, all the

*parameters are set to the nominal conditions, and then the

true parameters are evaluated one at a time at values above

and below the nominal condition to simulate the effects of

the filters mismodeling the "real world". The results from
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the robustness analysis are evaluated against a baseline

defined by the results of the sensitivity analysis.

Tracking performance is highly insensitive to the changes in

most of the true beam parameters, and by definition, this is

a demonstration of excellent robustness characteristics (at

the chosen nominal conditions). The notable exception is

the beam time constant, for which the results indicate a

possible stability problem. Some poor robustness

1 characteristics were demonstrated for all three target

parameters, of which, the target dynamics noise strength was

selected as the parameter best suited for on-line adaptive

estimation.

5.4.1 Beam Time Constant - To Originally, the true TB

was to be evaluated at plus and minus one order of magnitude

of the nominal filter To so that the results would

correspond to the sensitivity analysis, but severe

computational difficulties led to run-time computer failures

before the simulations could be completed. To be able to

collect useful data, the true To was evaluated at plus five

percent and minus four percent of the nominal filter To. In

all, five robustness analyses were conducted with true To

equal to 19.2, 19.6, 20.0 (nominal conditions), 20.4, and

21.0 seconds. The results of the analyses are presented in

Table 5-14. The respective plots of RMS errors between the

target and the beam position, and the mean and standard

deviation of the error between the true and filter beam

state are shown in Figures 15-6 through 15-15.
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The results indicate a severe stability robustness

uproblem. When the true To is simulated at the values 19.2

or 21.0 seconds, the results in the both table and in the

, .. plots indicate that the controller's performance is

suffering from a strong instability. Growing RMS values and

* Nstandard deviations that increase with the severity of the

mismodeling strongly support the concept that a stability

problem exists. These findings led to a sensitivity

evaluation of the controller gains and a stability analysis

of the PI controller.

TABLE 5-14

The Robustness Analysis Results for TB

I Te (sec) Average Minimum Maximum Tuned

Filter True RMSe RMSe (tt) RMSe (tt) RMSe

20 19.2 80.080* 4.555 338.690* =2.448 **

20 19.6 4.779 2.920 7.030 z2.448 +195%

20 20.0 2.448 2.165 2.737 2.448 -

20 20.4 4.687 2.949 7.062 =2.448 +191%

20 21.0 96.719* 5.301 364.960* =2.448 **

Note: % This is the percentage of difference between the
average RMS error and the tuned RMS error, which
is based on or approximated from the results of
the sensitivity analysis (i.e., Tst=Tet).

,-These values and the results from the Meer filter
covariance analysis (see Figure 5-7) indicate that
the controller frequently became unstable before
the completion of the run (before 100 seconds).

** Extremely large values.
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The reason for the controller gain sensitivity

evaluation is to see if the gains are sensitive to changes

in To. If the controller gains are found to be highly

• " sensitive to changes in To, it is possible that the poles of

the full-state feedback system are being driven outside the

unit circle, because of the gains, Gc*, rather than due to

the effects of the Meer filter being in the loop. This

requires that the controller gain equations, Equations

-" (3-65) through (3-70) be solved for different values of To.

The results in Table 5-15 suggest that the controller gains

are relativity insensitive to changes in To.

The results of the stability analysis are in Chapter 6,

indicating that the stability robustness problem is induced

by mismodeling of the real world in the Meer filter dynamics

P ~model. Since this is a totally different form of analysis,

it is separated into a different chapter. Because we do not

know the cause of the instability (at this point in time),

the beam time constant would not be suitable for on-line

adaptive estimation.

TABLE 5-15

ASensitivity of the Controller Gains to Changes in To

To GC i * Gci1a2 GC 3a GC 14* Gca2 E

19.0 1.2413 -1.2938 -1.0265 -0.4897 0.2747 1.0760

20.0 1.2422 -1.2921 -1.0252 -0.4880 0.2744 1.0746

.. 21.0 1.2431 -1.2906 -1.0210 -0.4874 0.2740 1.0733
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5.4.2 Beam Propagation Noise Strength - qL. The

controller is rather insensitive to mismodeling of the beam

propagation noise strength, as is shown in Table 5-16.

TABLE 5-16

* The Robustness Analysis Results for g2

*g 2 (cm2/sec) Average Tuned
Filter True RMSe RMSe

0.2 0.02 2.427 2.419 +0.3%

0.2 0.2 2.448 2.448-

0.2 2.0 4.032 3.743 +7.7%

5.4.3 Beam Dispersion - Rt The controller is rather

insensitive to mismodeling of the beam dispersion parameter

as can be seen from the results in Table 5-17.

3 TABLE 5-17

The Robustness Analysis Results for ft

Rt (cm2 ) Average Tuned
Filter True RMS. RMSe %

0.5 0.05 2.439 2.437 +0.1*

S0.5 0.5 2.448 2.448-

0.5 5.0 2.549 2.475 +3.0%
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5.4.4 Signal t_ Noise Ratio - SNR The results in

Table 5-18 indicate that the controller is completely

insensitive to SNR parameter mismodeling.

TABLE 5-18

The Robustness Analysis Results for SNR

SNR Average Tuned

Filter True RMSe RMS.

20 2 2.496 2.496 0.0%

20 20 2.448 2.448 -

20 200 2.466 2.466 0.0%

5.4.5 EpZected Number of Signal-Induced Events - n

The controller is slightly sensitive to mismodeling of the

number of signal events, as the results in Table 5-19

indicate. Note concerning the data -- the tuned (baseline)

RMS error for nt=200 is only an approximation and no data

was collected at that value during the sensitivity analysis

(see Table 5-9). The effect is depicted in Table 5-19 as

approximations in the "Tuned RMSe" column. Also, changes in

the signal arrival rate will cause different random-number

generated signal- and noise-induced event patterns, which

could have contributed to the statistical differences in the

time-averaged RMS errors.
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TABLE 5-19

The Robustness Analysis Results for n

n (signal events) Average Tuned
Filter True RMSe RMS%

100 10 2.522 =2.540 -0.7%

100 100 2.448 2.448 -

100 200 2.468 =2.448 +0.8%

5.4.6 Target Time Constant - IL The controller

appears to be highly sensitive to target time constant

mismodeling when true target time constant is less than the

filter time constant (see Table 5-20). This is as

anticipated, since a small true TT is a harsher target to

track than one with a long true TT. This lack of robustness

indicates that the controller underreacts to the much

quicker target even though the target RMS acceleration has

decreased substantially (refer to Table 5-10 or Equation

(5-11) to see the relationship between TT and RMS

acceleration). Meanwhile, a much slower target dynamics

characteristic in the real world allows the controller to

track the target easily. The improvement over the tuned

(baseline) value is not easily explained. It is doubtful

the entire 1.3 percent difference can be explained as a

statistical error since both the baseline sensitivity

analysis and the robustness analysis used the same signal-

and noise-induced event pattern.
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a. TABLE 5-20

The Robustness Analysis Results for TT

TT (sec) Average Tuned

Filter True RMS, RJ S %

10 1 2.087 1.325 +50.7%

10 10 2.448 2.448 -

10 100 2.649 2.685 -1.3%

5.4.7 Taraet Dynamics Noise Strength - QL The

controller is highly sensitive to target dynamics driving

noise strength mismodeling as indicated by the results in

Table 5-21. Because of the high sensitivity and the fact

that this is a parameter over which the target has the mosta control, it was selected for on-line adaptive estimation.

TABLE 5-21

The Robustness Analysis Results for QT

QT (cm2 /sec5 ) Average Tuned
Filter True RMSo RMSe %

* 1.0 0.01 3.340 1.460 +128.8%

- 0.1 0.01 2.035 1.460 +39.4%

0.1 0.1 2.448 2.448 -

0.1 1.0 4.998 4.644 +7.6%

0.01 1.0 7.300 4.644 +57.2%

Note: The filter assumed value of QT was changed for
first and last entries.

JA 128



5.4.8 Evaluating andQLwith the Target

Acceleration Pw Spectral Density Maximum Set to 10.0

In this robustness study, the true parameters TT and QT are

varied while the maximum PSD was held to a constant value of

10.0 cm as defined by Equation (5-12). The results in Table

5-23 confirmed the overall controller sensitivity to QT, but

the findings are not as extreme as the results from the

previous two sections might have suggested.

TABLE 5-22

The Robustness Analysis Results for Constant PSD

PSD 1 10.0 (cm2/Hz)
Filter I True Average Tuned

TT QT TT QT RMSe RMSe

10 0.1 1 10.0 6.810 5.384 +26.5%

10 0.1 10 0.1 2.448 2.448 -

10 0.1 100 0.001 1.995 1.089 +83.2%

Note: PSD is calculated for PSD(w=0).

5.4.9 Taraet Measurement Noise Variance - Rj_ Table

5-22 shows that the controller is most sensitive to RT

mismodeling when the measurement of the target state is much

more severely corrupted by noise than the filter assumes.

This is expected. The importance of this analysis lies with

the target's ability to deceive or corrupt tracking by way

of jamming the controller's sensors.
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k TABLE 5-23

The Robustness Analysis Results for RT

RT (cm2 ) Average Tuned
Filter True RMS, RMS, %

0.1 0.01 1.623 1.518 +6.9%

0.1 0.1 2.448 2.448

0.1 1.0 6.324 4.473 +41.4%

5.5 Evaluating the Multiple Model Adaptive Controller

This section presents the results obtained during the

evaluation of the MMAC design described in Section 3.5.

The adaptive controller is composed of three elemental PI

controllers, each tuned to a prespecified uncertain

parameter value, QT, the target model white noise strength.

The first and third elemental controllers are based on the

target's upper and lower limits of QT, where QTi represents

the white noise strength of a benign trajectory (QTI=0.01

cm2 /sec5 ), and QT3 is the maximum white noise strength

associated with evasive maneuvering (QT3=1.0 cm2/sec5). The

middle elemental controller is based on an intermediate QT

equal to 0.07 cm2 /sec8 , as opposed to the previous nominal

value of 0.1 cm2 /secs . This value of dynamics target noise

strength was selected from a series of trial tests, each

composed of 20 simulation runs. It was found that as QT2

approached either the upper or lower limits, the adaptive

controller had difficulty distinguishing QT2 from the other

QT's, and the controller error increased.
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A successful adaptive controller must meet two

important criteria. First, the adaptive controller must

improve robustness significantly to warrant the additional

computational load of an adaptive structure. This can be

evaluated by comparing the Monte Carlo analysis results of

the MMAC against a baseline performance, the sensitivity

analysis results, and the robustness analysis results. The

baseline performance is the best possible performance that

can be expected of the adaptive controller. The baseline

performance is done by informing the adaptive controller of

the true QT and setting the probabilistic weighting of the

.correct" elemental controller to one. The baseline

performance in this evaluation used the filter-estimated

states, because the filter states were used to generate the

results found in Sections 5.1 through 5.4. (An alternative

method could assume an "ultimate" baseline controller to

have access to the truth states, but this is an artificial

assumption that yields an unrealistic baseline of

performance.)

The Monte Carlo analysis for the actual adaptive

controller and baseline controller uses the following test

format: from t=0.0 to t=50.0 seconds, the true QT is set to

0.01, and the first 40.0 seconds are used to let the system

transients die out. At t=50.0 seconds, the true QT is

changed to 1.00 and the target enters its evasive

maneuvering phase of the test. At t=80.0 seconds, the true

QT is reset to 0.01, and the target resumes a benign
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*trajectory. Data is taken over three periods of time. The

overall RMS error is calculated by averaging from t=40.0 to

100.0 seconds, while the controller's ability to adapt to

the benign trajectory is measured by averaging from t=40.0

to 50.0 seconds, and the controller's ability to adapt to

the evasive maneuvering is measured by averaging from t=70.0

to 80.0 seconds. The speed and effectiveness of the

adaptation is indicated from the the time history of the RMS

values, which can be observed in Figures 5-16 and 5-17.

The results in Table 5-24 show that the adaptive

controller does an excellent job of estimating the true QT

representing the evasive maneuvering, where performance is

most critical. Large errors here could result in the loss

of lock on the target (i.e., the target moves off the

detector array). Also, the adaptive controller does a good

job of adapting to the QT appiopriate for a return to a

pI benign trajectory, although the performance is not as good.

The data provided by the sensitivity analysis provides a

baseline of the best performance the PI controller could

attain if it had access to the true QT. The differences

between this baseline and the MMAC baseline demonstrate the

degradation in tracker performance due to using on-line

adaptation and selecting only three discretized values of QT

for the MMAC structure. The data provided by the robustness

analysis shows what the results would have been if we did

not use on-line adaptive estimation of QT.
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TABLE 5-24

Results of the MMAC Analysis

MMAC MMAC Sensi- Robustness:
Qti=0.01 Baseline (actual) tivity: Average RMS*
QTa=0.07 Average Average Average
Qr3=I.00 RMSe RMSe RMS* QT=0.01 QT=O.1 QT=I.0

Overall 3.139 3.546
40<t<100

Qr=0.01 1.634 1.736 1.461 - 2.034 3.340
40<t<50

QT=1.00 4.657 4.643 4.644 7.300 4.998 -

70<t<80

The performance of the MMAC algorithm is dependent upon

significant differences between the residual characteristics

in the "correct" and "mismodeled" elemental filters

associated with the individual elemental controllers (see

Figure 3-6). If the magnitude of the "correct" filter

residual, rk (ti), is much larger than the "mismodeled"

filter residuals (relative to the internally computed

. residual variances, Ak(tt)), then Equations (3-79) and

(3-80) will cause the "correct" probability, Pk (ti), to

increase until the "mismodeled" filter probabilities reach

their lower bounds. If the "correct" and "mismodeled"

residuals are indistinguishable, the filter will

inappropriately select the "correct" model based on the
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smallest magnitude of variance residual, A (ti). If this

happens, the controller probabilistic weighting will be

i erroneous, because the magnitudes of A (tt) are independent

of both the residuals and the correctness of the different

elemental controllers [1,133.

Although the actual residual values of the filters

within the adaptive controller structure were not collected,

the probabilistic weightings were recorded. The plots in

V Figure 5-18 are from the first two Monte Carlo runs and

suggest the adaptive controller had little difficulty in

distinguishing the "correct" elemental filter/controller

from the "mismodeled" filter/controllers.

The second important criterion that should be used when

evaluating an adaptive tracker is how quickly the tracker

can detect and respond to changes in target dynamics noise

strength. By definition, parameters are more slowly varying

(if they vary at all) than the states [13]. Unfortunately,

*the true QT is controlled by the target, and although it

varies slowly when it is compared to the target states, the

target can quickly change QT with respect to the one second

controller sample period used in this study. (This is

unrealistically long, but has been chosen to be constant

with the previous feasibility studies [8,20,27].)

Therefore, it is important to see how fast the MMAC can

adapt to changes in QT. The data is taken from a single

simulation run that lasted 2,000 seconds, with the initial

QT set to 0.01 cm2 /sec5 . At 65 seconds, and at every 100
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seconds thereafter, the true QT is increased to 1.0

cm2 /sec5, and at 90 seconds and at every 100 seconds

thereafter, the true QT resumes 0.01 cm2 /sec 2.

The results in Table 5-25 indicate that the adaptive

controller takes approximately five seconds to detect a

change in QT, and it is somewhat slow in adapting to the new

QT. In addition, it takes the adaptive controller much

longer to react to a decrease in QT than it takes to react

to an increase in QT. When you go from benign to a harsh

trajectory, [rk 2 /Ak] of the benign filter k becomes very

large while the corresponding term in the filter based on a

harsh trajectory model is small, so the probabilities

calculated in Equation (3-79) causes the probability

weighting to shift to the latter filter. However, when the

actual trajectory switches back to a benign trajectory, the

value of [rk 2 /Ak] in the mismatched filter is not

extraordinarily large compared to that of the matched

filter, so the probability weighting shift is not as rapid

[11,15]. This effect can be observed in Figures 5-16 and 5-

17. A possible solution to quicken the adaptive

controller's reaction to changes in QT is to increase both

the controller and Kalman filter sample rates. The other

problem of the filter/controller slowly adapting to a

decreasing QT is inherent to the design, and has been

previously noted in other studies of multiple model adaptive

algorithms [11,15].
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TABLE 5-25

Adaptive Filter Time Response to Increasing
and Decreasing QT

A. QT increases from 0.01 to 1.00.

Sample Time responses in seconds
Statistics to ti ts tT

I (mean) 5.30 8.45 6.90 13.75

a (std dev) 2.27 8.11 6.70 7.04

B. QT decreases from 1.00 to 0.01.

Sample Time response in seconds
Statistics to ta* ts* tT*

R (mean) 5.05 31.5 20.5 36.5

a (std dev) 2.06 15.3 25.8 15.2

Note: The sample population is n=20, except when denoted
by *, then n=19 (i.e., the 2000 second run from which
this data is tabulated, terminated before the
information on ta, ts and tT was available). The

4, sampled data is in Appendix D.

pDefinitions:
to - the delay time is the time it takes the adaptive

controller to react first to a new QT.
ts - the settling time is the time required by the

"correct" elemental filter to reach a pk>0.5,
and stay above it thereafter. It is measured
from the time the adaptive controller first
reacts to the new QT.

tR - the rise time is the time it takes the "correct"
PC. elemental filter to surpass a pu of 0.75.

Note: This is within 10 percent of the upper
bound. It is measured from the time the
adaptive controller first reacts to the new QT.

* tT - the transition time is the time it takes the
*1 "correct" elemental filter to detect and react

to a change in QT. tT = to + ti
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5.6 Conclusions

Five different Monte Carlo analyses were accomplished.

The first four evaluated the non-adaptive PI controller

while the fifth examined the MMAC. It was found that the PI

controller performed best with a 10:1 ratio between the cost

weighting elements Xi, and Xss, and that the

estimator/controller suffered no detrimental effects when

the Meer filter's depth was reduced from three to one. The

performance was found to be the most sensitive to equal

changes in QT (the target dynamics driving noise strength)

and RT (the measurement corruption noise variance) in both

the truth model and the filters, while To (the beam time

constant) and QT were the parameters that yielded the most

significant robustness difficulties. The severe lack of

robustness characteristics with respect to To appears to be

a stability problem which will be discussed in Chapter 6.

The target driving noise strength was selected for on-line

adaptive estimation, and the adaptive controller performed

well.
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VI. PI CONTROLLER STABILITY ANALYSISS
The purpose of this chapter is to evaluate how the Meer

and Snyder-Fishman filters affect the stability of the PI

controller. The motivation behind this analysis is to

isolate the stability robustness problem mentioned in

Section 5.4.1, and if possible, identify the reasons the PI

controller lacks robustness with respect to the beam time

constant. The source of the instability is believed to lie

within one of three areas: with the mismodeling of the

filter's state transition matrix (0), within the inherent

structure of the Meer filter, or with the varying sample

period which is the product of the Poisson process for

measurement event times.

The chapter will start by evaluating the stability of

the PI full-state feedback controller structure that uses

the steady-state gains found in Table 3-1. The generic PI

controller structure is time-invariant and linear;

. therefore, showing that the poles of the system lie inside

the unit circle (.-domain) will prove that the closed loop

system with a full-state feedback controller structure is

asymptotically stable in the global sense (a form of zero-A.

input stability). Then, the Meer filter is cascaded with

the controller transfer function, and the stability is

evaluated as functions of the Meer filter sample rate and

the filter gain. Because the sample rate of the Meer filter

is not fixed, the system is no longer time-invariant, such
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a simple stability evaluation is not possible. A rigorous

proof of global stability for stochastic control systems

I that use either the Meer or Snyder-Fishman filters in

conjunction with Kalman filters does not exist. Instead, an

ad hoc method is employed where the effects of different

sample rates are evaluated as being time-invariant, and the

zero-input stability analysis is used to evaluate the pole

movement within the stochastic controller. Next, a

stability demonstration is used to verify that an analogous

Kalman filter for this application is stable and inferences

are drawn to the possible sources of instability within

Snyder-Fishman filter. Last, we need to analyze the effects

the Meer filter structure has on the Snyder-Fishman filter

equations, and thus the effects the Meer filter structure

has on the PI controller. The emphasis in this chapter is

not to provide the rigorous conditions for global stability,

but to analyze the possible causes of the controller's

Pinstability. In other words, we are looking for answers to
the findings in Section 5.4.1.

6.1 Derivation of the PI Controller Transfer Functions

In a linear, time-invariant system, we find that the

stability is determined by the location of the poles in the

system transfer function. A system is said to be

asymptotically stable if and only if all the poles lie

within the stable region. For the continuous system, the

stable region is defined as the left-hand plane of the

Laplace s-domain plot. Analogously for the discrete system
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model, the stable region is defined as the area inside of

the unit circle of a z-domain plot. In other words, a

U discrete, linear, time-invariant system model, such as the

closed loop system with deterministic full-state feedback PI

controller, is asymptotically stable if and only if allthe

poles of the discrete closed loop transfer function lie

within the unit circle (i.e., have a magnitude less than

one).

The first step is to analyze the stability of the

deterministic PI controller loop shown in Figure 6-1. The

transfer function is formed by solving the pseudo-integrator

equation,
, V

z
qz) - [yc (z) - yr (Z)1 (6-1)

feedback control equation,

uz) = -Gc1yc(Z) - GC2qlz) + yr (Z) (6-2)

and the plant equation in terms of yc(z)/yr(z). The plant

equation is found by taking the impulse transform of a zero-

order hold attached to the plant dynamics model,

YC (s) = Gzo1 (s)P(s)U* (s) (6-3)
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where Gzon (s) is the transfer function (in the Laplace

domain) representing a zero-order hold and P(s) is the plant

U transfer function

Gzou(s) = (1- exp(Ats)]/s (6-4)

1

P(s) = - (6-5)

and then transforming it into the z-domain,

To t [1-exp(-At/Tot )
yc (Z) = GzoP(Z)U(Z) - -u(z) (6-6)

z - exp(-At/Tot)

where

* GzonP(z) = ZI[1 - exp(-st)/s][1/(s + 1/Tt)1 (6-7)

The deterministic PI controller transfer function is

ye (Z) TBt [1-exp(-At/Tt )] z (Gc 2 +1) -1]

yr (z) [z-exp(-At/Tn t)][z-1]

+To t [1-exp (-At/T t )[Z (Gc i +Gc 2 )-GC I

(6-8)

Assuming we want to know the location of the poles for the

nominal conditions (At=1.0 seconds, Tt-20.0 seconds,

Gci*=1.2422, and GC2*-0.27436), Equation (6-8) becomes
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Yc (z) .7654[z - .7847]
_- (6-9)

Yr(z) z 2 - .4719z + .2605

The poles of the closed loop system with deterministic PI

full-state feedback controller transfer function are located

at pi-0.7982 and pz=-0.3263 which are well inside the unit

circle, and therefore the deterministic controller is

hasymptotically stable.

IThe next step is to derive the stochastic PI controller

loop transfer function with Meer filter in the loop. For

simplicity, the Kalman filter, which is used to estimate the

reference variable, will be removed from the overall

controller structure, and its stability will be verified in

Section 6.3. This can be done because the Kalman filter

transfer function is not included in the feedback loop of

the regulator associated with the tracker. Therefore,

instead of analyzing the stability of the PI tracker, we

S will analyze the stochastic PI regulator, and this

simplification will not effect the pole/zero movement of

interest (14].

The stochastic controller loop transfer function is

derived in the same manner as was the deterministic

controller transfer function, except that an approximation

to a Meer/Snyder-Fishman filter is included in the feedback

loop (see Figure 6-2). Note that the approximation being

£made is that a fixed sample period is being used rather than

taking measurements at times dictated by a Poisson process.
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Thus, the approximation results in a Kalman filter structure

as shown in Figure 6-2. Such an approximation is made only

in an attempt to discern basic stability robustness

characteristics of the loop, possibly as a function of a

chosen fixed sample period, to gain insights into the actual

behavior of a Meer or Snyder-Fishman filter in the loop.

Therefore, the transfer function is formed by solving the

equations for the approximated Meer(or Snyder-Fishman)

filter,

zKzlyc (z) + Bdu(z) [1-K(z)]
R+ (z) = (6-10)

z - 08[1-K(z)]

the pseudo-integrator,

. z
q(z) - [ + (z) - yr(Z)] (6-11)

~z - I

-.- the feedback control,

u(z) = -Gcik + (z) - Gc2q z) + yr (z) (6-12)

and the plant model, Equation (6-6), in terms of

yc (z)/yr (z). The term Bd is the discrete-time control input

matrix and can be calculated from Equation (3-60). The

stochastic PI controller closed loop transfer function is:
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Yc (z) (at (1-exp(-At/Tt ))] [Z(Gc2 +l) -l] [z-Om (l-K(z))]

Y r (z) z3  + z [A+D-C] + z[B-AC-E] - BC
~(6-13)

where

A = [I-K(z)] [Bd (Gct+Gc2)-09]-1

B = [1-K(z)I[O-BdGc,]

N C = exp(-At/Tmt)

D D = To tK(z) [GCI+Gc2] [1-exp(-At/Tat)]

E = TBtK(z) [Gc i (1-exp(-At/TBt)]

' "6.2 The Zero-Invut Stability Analysis

The purpose of the zero-input stability analysis is to

see what conditions will drive the stochastic PI controller

unstable. Two variables of the Meer filter will be

analyzed. First, the stochastic filter will be set to a

steady-state condition with a "fixed" sample period of one

second. This is to simulate a rather well behaved Poisson

distributed sample process in which the time "between"

events has closely approximated the mean signal arrival rate

of one second between events. The reasoning is that we need

to define some sort of baseline to be able the calculate a

Nfilter gain. Then, we want to vary the time to the "next"

signal-induced event (for the varying sample period

Ianalysis, we will discount the effects that noise-induced

events have on the simplified Meer filter gain) and observe
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the effects that different sample periods have on the

controller's pole locations. In other words, we want to see

in an approximate manner how the Poisson distributed sample

rate will affect the controller's stability. Theoretically,

as the time to the "next" event is increased, one or more

poles will migrate beyond the limits of the unit circle, and

the controller is forced to operate in the unstable region

for the duration of that sample period (281.

Second, the controller's stability will be evaluated

with respect to changes in the Meer filter gain, K(tt).

Unlike Kalman or Snyder-Fishman filters gains, the

simplified Meer filter gain (assuming a filter depth of one)

is a function of the filter's residuals (see Section 2.5);

j therefore, the Meer filter is susceptible to large swings in

filter gain due to noise-induced events. As it will be

Sseen, this can have a significant effect on the stability of

a controller.

The effects that a varying sample rate and changing

.filter gains have on controller stability can be evaluated

by solving for the stochastic PI controller closed loop

" *transfer function, Equation (6-13), for a range of different

sample periods and filter gains. This is done by solving

the state transition matrix, 03, for the "next" sample

.: period. The control input matrix, Bd, is calculated from

Equation (3-60) for the controller sample rate of one Hertz

*(i.e., a sample period of At=l second). For the evaluation

of the varying sample rate, the filter gain is calculated
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from the Snyder-Fishman covariance equations (see Equations

(2-11) and (2-14), where P(ti-i,) is calculated for the

steady-state condition defined by a "fixed" sample period of

one second and P(tt-) is calculated for the duration of the

"next" sample period. The filter gain is calculated from

P(tt-) using the Snyder-Fishman filter gain equation,

Equation (2-15). Changes in the filter gain are evaluated

by solving the stochastic PI controller transfer function

for a range of different filter gains at different sample

periods.

gap 6.2.1 The Effects oL & Varying the Sample Period It

was found that the PI feedback controller (using Meer filter

to estimate the beam states, and operating under nominal

conditions) is driven unstable for sample periods that are

longer than 3.368 seconds. This can be observed from the

stochastic controller root locus plotted in Figure 6-3.

AAlthough sample periods longer than 3.368 seconds occurs

only 3.45 percent of the time (as calculated from Equation

(4-17), and assuming Is-l.0 signal-induced event per

second), it means that the filter is operating in the

unstable region for 15.05 percent of the time (as calculated

by integrating over the Poisson density function from

ti-3.368 to ti+it-).

The effect of mismodeling To was also studied, and the

results showed (see Appendix C) that the controller becomes

unstable at shorter sample periods when the true To is

decreased from the Meer filter-assumed value.
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4. 6.2.2 The Effects of a Varyina Stochastic Filter Gain

The analysis was done with the sample period set to 1.0 and

.S 3.5 seconds, and the gain was varied from 0.0 to 1.0. That

is, the filter gain in this analysis was calculated across

its entire range, and the filter gain was not based on a

specific filter beam dynamic driving noise strength, g2 , nor

a measurement noise variance, R. The results for a sample

period of one second demonstrated that the controller is

stable for the entire range of the filter gain (see Table

6-1). This is expected, for we effectively evaluated the

controller as if it were using a Kalman filter instead of a

Meer filter. The controller is third order, but the filter

employs a pole-zero cancellation (during ideally modeled

conditions and not true for robustness), and the effects of

the filter within the controller structure is never felt.

This is not the case when the controller's sample period is

3.5 seconds long. The controller is only stable for values

Pof K(tt) that are less than 0.27. This is a relatively

small filter gain, which indicates that the filter assumes

that its internal dynamics model is relatively accurate

during that sample period. The results suggest that the

stability of the controller is highly sensitive to the

magnitude of the filter dynamic driving noise strength, g2 ,

., -. which is used to calculate the filter gain. The higher the

g2, the more susceptible the stochastic controller is to

being driven unstable by long sample periods (particularly
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if the filter-assumed model does not match the real world

exactly, which is always the case).

TABLE 6-1

Stochastic Filter Pole/Zero Placement as a Function of K(tt)

Pole locations (nominal condition)

Filter At -1.0 seconds At = 3.5 seconds
Gain Pt P2 p3 pi P2 P3

1.00 .7982 -.3263 .0000 .8183 -3.8484 .0000
0.90 .7982 -.3263 .0951 .8183 -3.4365 .0111
0.75 .7982 -.3263 .2378 .8183 -2.8248 .0338
0.50 .7982 -.3263 .4756 .8183 -1.8375 .1032
0.25 .7982 -.3263 .7134 .8183 -.9711 .2949
0.10 .7982 -.3263 .8561 .8183 -.6075 .5657
0.00 .7982 -.3263 .9512 .8183 -.4560 .8395

Zero locations (Note: the zz/p3 cancellation at At=l.0)

Filter At = 1.0 seconds At = 3.5 seconds
Gain zt Z2 zi Z2

1.00 .7847 .0000 .7847 .0000
0.90 .7847 .0951 .7847 .0839
0.75 .7847 .2378 .7847 .2099
0.50 .7847 .4756 .7847 .4197
0.25 .7847 .7134 .7847 .6296
0.10 .7847 .8561 .7847 .7555
0.00 .7847 .9512 .7847 .8395

6.3 The Stability of the Kalman and Snyder-Fishman Filter

Ecuations

This section applies the second Lyapunov stability

theory to the homogeneous portion of the Kalman filter to

show that it meets the zero-input stability criteria. Then,

the same stability criteria will be applied approximately to
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the Snyder-Fishman filter and although the stochastic

particle beam model is technically stable, an observability

problem is apparent. The stability criteria to be used in

this section presents a set of non-restrictive conditions

for which the Kalman filter algorithm is asymptotically

stable in the global sense. Asymptotic global stability is

the strongest form of stability, which means that, given any

initial condition within a defined region, its state plane

trajectory will always converge to an equilibrium point [3].

If that system is linear and asymptotically stable, there

will be only one equilibrium point. This is an important

concept, because for linear systems, the sufficient

conditions of asymptotic stability are indistinguishable

from conditions for bounded input-bounded output (BIBO)

stability [12]. When BIBO stability criteria are applied to

the filter, it means that, for a bounded input into the

filter, the output (state estimate) will be bounded. If the

region of the initial conditions that meet the stability

criteria is expanded to include the entire state space, then

that system is said to be stable in the global sense. If

the system model upon which the Kalman filter is based is

stochastically controllable with respect to the points of

entry of the dynamics driving noise wd (.,-), and

stochastically observable from the points of exit of the

measurements from the system model, then the filter is

asymptotically stable in the global sense (12,14].
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Therefore, a Kalman filter as defined by the target

model in Section 3.1, is saiid to be stochastically

controllable if there exist positive numbers a and ,

S.' O<a<<-, and a positive integer N, such that, for all

ikN,

.a I (t ,tj )gd (tj- )Qd (tj- )Gd T (tj-1)IT (ti ,tj ) I

(6-14)

and is said to be stochastically observable if there exist

positive numbers a and 0, 0<a<(<-, and a positive integer N,

such that, for all iaN

al S I *_T (tj , )1JT (tj )t - l (tj )j(tj )I tj ,tl') :5 (I6-15)

Because Equations (6-14) and (6-15) are bounded both above

and below, this is a stronger condition than just using the

'4 positive definiteness of the controllability and

observability gramians. If the target model upon which the

Kalman filter is based is stochastically controllable and

observable, then the filter is asymptotically globally

stable. For time invariant system models, we would only

need detectable and stabilizable to ensure stability of the

filter (10].

When Equation (6-14) is applied to the target model, it

becomes:
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I A2 Qd ABQd ACQd 1
ABjd B2Qd BCQd f 1_ (6-16)

aI . ACQd BCQd C2 Qd

where

A - To (At - B]

B - To E1 - C]

C - exp(-At/To)

Qd - the discrete target dynamic driving noise strength

At = ti - tJ (Note: ti-tj is not the sample period)

Because Qd does not equal zero, and the matrix in Equation

O(6-16) is a positive definite for all forward running time,

there will always be positive a and A such that O<a<o(-;

therefore, the target model is fully controllable.

When Equation (6-15) is applied to the target model, it

becomes

i [ /RT -At/R? C/RT
a X -At/R At2 / RT  -AtC/RT • PI (6-17)

J i- •* C/RT -ArC/RT C2 /RT

where

C - exp(-At/Te)

RT- target measurement variance

At - tj - tt (Note: backwards time)

Because R does not equal zero or infinity, and the matrix in

Equation (6-17) is positive definite for all backwards

* 156



running time, there will always be positive a and 0 such

that 0(a<P<-; therefore, the target model is fully

observable.

Since the target model upon which the Kalman filter is

based is fully controllable and fully observable, the filter

is uniformly asymptotically stable in the global sense.

Uniformly stable implies that the system in stable for all

time, regardless of what absolute time it is. The same

observations can be made by referring to the target shaping

filter in Figure 5-3. It is obvious that model is

controllable from the entry point of the white noise, and

observable from the point of extraction of the target

position state.

When the same zero-input stability criteria is applied

to the homogeneous part of a Kalman filter that approximates

the Snyder-Fishman filter, the Poisson distributed sample

rate does not violate any condition which define

controllability and observability. Note that the Kalman and

Snyder-Fishman filter structures are almost identical (see

Section 2.2).

When stochastic controllability Equation (6-14) is

applied to the particle beam model, the resulting expression

0is

a : 1 Qdexp(-2(ti-tj)/Ts] : 0 (6-18)
Jai-N,1
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As long as Qd does not equal zero, and none of the sample

periods are allowed to approach - (theoretically possible

I with the Poisson process), then there shall be positive

numbers u and A where O(o<<-, and the model used for the

basis of the filter design will be controllable.

Stochastic observability is also met. This can be

shown by applying Equation (6-15) to the stochastic particle

beam model to attain

a I exp[2(ti-tj)/ToI/R :9 (6-19)
J Al-N. I

But, a fundamental observability problem could arise for the

longer sample periods, because as the length of the sample

period grows, the upper bound must grow at an exponential

rate. Regardless, the Snyder-Fishman filter equations are

technically asymptotically stable assuming we define the

range of the Poisson process intervals between measurements

as not to include infinity.

6.4 Stability Insiahts on the Meer Filter Structure

This section will re-evaluate the method in which the

Meer filter gain is calculated for a filter depth of one,

with particular emphasis on gaining an understanding of the

severe robustness problems associated with mismodeling of

the beam time constant, Tm. As it was shown in Section 2.5,

the Meer filter gain, KM(tt), is related to the Snyder-

Fishman filter gain, KsF (ti), by the following expression

for a depth of one:
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Kx (t,) = pi (ti )KsF (t,) (6-20)

4- where pi (tt) is the probability that the event at tt was

signal induced (see Equation 2-27). As the filter residual,

r(tt), increases, pi (ti) decreases. If the mismodeling of

To is severe enough, the residual will be large enough so
""4

that pi (ti) will approach zero and drive the Meer filter

gain to zero regardless of the Snyder-Fishman filter gain.

This suggests the possibility that the Meer filter structure

can severely inhibit the robustness of the controller, and

that the apparent instability might be in part caused by or

at least aggravated by a robustness problem.

The concept is that the combined effects of long

sample periods and mismodeling To will cause large

residuals. Ideally, a large residual indicates that the

event is most likely noise-induced, and the event receives a

probabilistic weight as such. But, if the true center of

the beam is offset from the filter's estimate of the center,

then the Meer filter will begin to weight a large number of

signal-induced events as being noise-induced (see Figure

6-4). It appears that the filter could counteract this..

effect. As more events are labeled noise-induced, the time

between signal events will appear to increase, and the

filter covariance will increase. This will cause the

elemental Snyder-Fishman filter to rely more on the incoming
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Xaf Xat
filter-assumed true rate function
rate function (see Equation (2-1))

* ,noise

-5.0 -2.5 0.0 2.5 5.0

Detector Array

Figure 6-4. True Beam Offset from Filter Beam:
Rt=Rf=0.5 cm, r(ti)=1.0 cm

measurements. This does happen, but it is to no avail

because the elemental Snyder-Fishman filter gain is
°hi

multiplied with the probabilistic weight that it was a

signal-induced event, p1 (ti). This product forms the Meer

filter gain. As the filter beam center diverges from the

true beam center, pi (ti) approaches zero and forces the Meer

filter gain to zero. Meanwhile, no new measurements are

incorporated, and the filter never recovers.

This led to the hypothesis that some of the robustness

can be recovered by computing the filter R as a function of

some time-weighted average of the previous N residuals. By

increasing the filter R when the most recent residuals are

consistently larger than originally anticipated, the Meer

filter is told to look for the signal-induced events across

a larger section of the detector (see Figure (6-5)). The
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g filter-assumed true rate parameter
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41 Detector Array

Figure 6-5. True Beag Offset from Filter Beam:
Rt=0.5 cm, Rt=l.0 cm, r(ti)= 1.0 cm

advantage of this concept is that most of the signal-events

can be recovered, and the filter should have much better

robustness with respect to the mismodeling of the beam time

* constant. The robustness analysis found that the controller

is rather insensitive to increases of the filter R (see

Section 5.4.3), and although the larger filter R will cause

filter to weight more noise-induced events as signal-

induced events, this should have no significant effect on

the RMS tracking error. This conclusion is drawn from the

results found during the sensitivity and robustness analyses

conducted on the beam dispersion parameter (see Sections

5.3.3 and 5.4.3).

This concept was simulated through a measurement model

that received 1000 events. The true beam had a dispersion

parameter Rt of 0.5 cm, and was located at the center of the

detector. The measurement model was offset from the true

beam center by a prespecified residual. The simulation

included noise-induced events as specified by the SNR, and
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-TABLE 6-2

The Filter's Probabilistic Weight that an Event Was Signal-
Induced as a Function of Rf and the Filter Residual

(Simulated Results: Sample Population = 1000 events)

1. Rf=0.5 Filter residual: r = zB - 28 (cm)
Probability 0.0 0.5 1.0 1.5 2.0 2.5 3.0

0 (ti) .973 .965 .938 .851 .655 .454 .255
1.09p,<.99 .889 .754 .506 .371 .124 .019 .007
.99-p,<.95 .081 .197 .291 .185 .300 .137 .021
.955p,<.90 .003 .024 .080 .097 .081 .103 .038
.905pi<.75 .004 .005 .065 .146 .039 .145 .068
.755pi<.50 .003 .001 .024 .102 .117 .083 .126
.505p,<.30 .000 .002 .008 .034 .085 .016 .082
.30:p,:5.15 .001 .005 .005 .031 .067 .053 .077
.5 pi<.05 .004 .005 .001 .017 .081 .111 .053

.05-p,..00 .015 .016 .020 .017 .106 .333 .528

2. Rt=1.0 Filter residual: r = z, - _e (cm)
Probability 0.0 0.5 1.0 1.5 2.0 2.5 3.0

J,(ti) .986 .986 .975 .971 .935 .844 .667
1.0sp,<.99 .970 .958 .849 .558 .434 .201 .0476 .99:p,<.95 .011 .021 .122 .374 .267 .295 .265
.951pl<.90 .002 .003 .005 .036 .135 .092 .125
.905p,<.75 .004 .003 .002 .013 .116 .201 .065
.755p,<.50 .002 .006 .003 .006 .025 .117 .178
.50sp,(.30 .001 .001 .001 .000 .007 .048 .140
.305p,<.15 .004 .002 .003 .001 .002 .022 .076
.155p,<.05 .003 .002 .001 .000 .002 .011 .047
.05 pi<.00 .003 .004 .014 .012 .012 .013 .054

3. Rf=2.0 Filter residual: r = ze - Re (cm)
Probability 0.0 0.5 1.0 1.5 2.0 2.5 3.0

i (ti) .997 .996 .993 .991 .985 .980 .963
1.0:p,<.99 .976 .980 .980 .962 .834 .598 .476
.995p,(.95 .015 .008 .007 .025 .148 .371 .382
.955p,<.90 .005 .004 .004 .003 .003 .012 .097
.90-pi<.75 .003 .006 .003 .003 .004 .007 .031
.7 55p,<.50 .001 .000 .001 .003 .003 .003 .000
.50:p,(.30 .000 .001 .001 .001 .000 .002 .002
.30rpi(.15 .000 .001 .002 .001 .002 .000 .003
.155p,<.05 .000 .000 .002 .002 .001 .001 .002
.055p(.0O0 .000 .000 .000 .000 .005 .006 .007

Note: Rt=0.5, SNR=20 (952 signal-induced events, 48 noise-
induced events)
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the simulation was conducted with the filter R equal to 0.5,

1.0 and 2.0. The results are in Table 6-2, and confirm the

idea that, as the offset increased, pi (tt) would decrease,

and that an increase in R could compensate for the offset

and still be able to identify the most severely degrading

noise-induced events properly. Under nominal conditions and

assuming a filter residual equal to 0.0 cm, the filter

generated an average probability that an event was signal-

induced, f, of .973. More significant is the fact that

the Meer filter was able to distinguish the most severely

degrading noise-induced events by giving them an appropriate

probabalistic weighting of .05 or less. As the filter

residual increased to 3.0 cm, P decreased to .255, and the

gfilter had great difficulty in distinguishing the signal-
induced events. But, as the filter beam dispersion (Rf) is

increased, the Meer filter was able to identify more of the

signal-induced events and up to some point, be able to

distinguish the most severly degrading noise-induced events.

6.5 Conclusions

The controller stability evaluation led to several

conclusions. First, the apparent controller instability is

really a combination of an intermittent instability problem

and a stability robustness problem. Second, it appears that

there are three sources of the controller instability. The

varying sample rate (based on the mean signal parameter rateb
of one event per second) can drive the controller unstable

during the longer sample periods. The mismodeling of To can
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lead to large residuals, especially during the longer sample

periods. Finally, as the residuals increases, the Meer

filter structure will assume that more of the incoming

measurements are noise-induced and the filter will

inadvertently drive the Meer filter gain to zero. All three

.* of these problems can be rectified. First, by insuring the

. design has a much higher mean signal rate parameter, we can

reduce the chance that a controller will be driven unstable

by a long sample period. Second, developing on-line

adaptive estimation of Tm can reduce the large residuals.

Third, by on-line computing of the filter R as a time-

weighted average of the recent filter residuals, we can

inhibit the Meer filter from misdiagnosing the signal-

induced events as being noise-induced, and thereby, keep the

Meer filter structure from driving the filter gain

inappropriately low.
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rn VII. CONCLUSION AND RECOMMENDATIONS

7.1 Cocuso

Five Monte Carlo analyses and a PI controller stability

analysis were performed. The first Monte Carlo analysis

looked at seven different cost weighting matrices in an

effort to minimize the steady state RMS tracking error, and

to enhance the robustness of the PI controller. The

significant finding was that a 10 to 1 ratio between the

cost weighting element on the states, Xii, and the cost

weighting element on the pseudo-integral term, Xaa, resulted

in the lowest RMS error. This prevents Xa5 from inducing

any degrading oscillations into the controller, while

allowing the controller to minimize previous tracking errors

and compensate for non-linear disturbances. The results of

next Monte Carlo analysis demonstrated that the Meer filter

structure can be reduced to a depth of one without any

apparent degradation of the controller's performance. This

reduction in filter depth should lead to significant savings

in on-line computer processing. The third and fourth Monte

Carlo analyses were the sensitivity and robustness analyses.

The results showed the PI tracker performance was most

sensitive to equal changes in the true and filter target

dynamics driving noise strengths (QT) and to equal changes

in the true and filter target measurement noise variances

(RT). This means that a PI controller with perfectly tuned

Meer and Kalman filters (i.e., the filters have access to
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the true parameters), was most sensitive to the changes in

the true QT and RT. When the controller was evaluated

without access to the truth model's parameters, it was found

that parameter variations in the beam time constant, TB, and

QT caused the most significant robustness difficulties. The

N last Monte Carlo analysis evaluated the on-line adaptive

estimation of QT. The results showed that the multiple

model adaptive controller performed well.

Because the PI controller lacked robustness with

respect to the beam time constant, TT, an in-depth stability

analysis was performed on the PI controller. This was

composed of a zero-input stability analysis on both the

deterministic full-state feedback and stochastic PI

controllers, a controllability and observability evaluation

of the Kalman and Snyder-Fishman filter equations, and an

* analysis on the Meer structure. The apparent stability

problem was do to the combined effects of a low signal rate

parameter that frequently lead to long, destablizing sample

V periods, the mismodeling of TB that can lead to large

signal-induced residuals, and an inherent design problem

• 'that would allow the Meer filter to evaluate the large
,1

signal-induced residuals as being noise-induced. All three

problems can be corrected by using a higher signal rate

parameter, by developing on-line adaptive estimation of To,

and by calculating the filter target measurement noise

Avariance, RT, as a function of the time-weighted average of

the residual.
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7.2 Recommendations

These recommendations are divided into two parts. The

first part will suggest ways to improve SOFE and the SOFE

user-defined subroutines that provide for the Monte Carlo

analyses in this thesis. They are as follows: (1) The

large number of runs (200) and the long settling time

*required for the controller (the first 50 seconds of each

Vrun) were based on Zicker's research [27], and it appears to

be excessive. It is recommend that the number of runs and

the length of the initial transient response be reviewed.

This could save a considerable amount of computer time.

(2) It is suggested that the length of the detector array

"= CL) be increased. It was found that the target frequently

exceeded the 10 cm. length of the detector, especially

during conditions other than nominal. Alternatives would be

to change the scales so that 10 centimeters would correspond

to a large physical field of view, or change the plant or

target model gains to reduce the RMS tracker error.

(3) It is suggested that the software be updated. The SOFE

program used for this research was complied in May 1982 and

was written in FORTRAN 4. The current version of SOFE was

written in FORTRAN 77 and developed using top-down

structured programming, and the current version (Version

2.5) is supported by a new user's manual. The problems with

using an older version of the software is the increasing

difficulty in obtaining technical support and the inherent

difficulty of reading FORTRAN 4 code. (The only SOFE (i.e.,
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not user-defined) subroutine altered by Meer was "ADVANS";

therefore, this should be the only subroutine in the SOFE

U source code that would have to be rewritten.) Second, if

the simplified Meer filter (i.e., with a filter depth of

one) is accepted for all further research, much of thee

existing Meer filter code can be deleted. Most of the Meer

filter code is overhead used to support greater filter

depths. This should result in a much more efficient code.

The second half of the recommendations suggests ways of

improving the filter's stability robustness. They are as

follows: (1) Use a higher signal rate parameter that will

generate a higher mean sample rate. This will insure that

the controller is stable more than the current 85 percent of

the time for nominal conditions. (2) Develop on-line

adaptive estimation of TB, which could be accomplished

through multiple model adaptive methods. If the Meer filter

is kept at a filter depth of one, this should be a simple

task. The goal is to reduce the large residuals that occur

during the mismodeling of To. (3) Develop a variable filter

R which is always larger than the true R and is evaluated as

a function of the time-weighted average of the the most

resent residuals. This should be done with the intent of

* keeping the mean conditional probability that an observation

was signal-induced, fi (ti), near the true (based on the

*truth model simulation of signal and noise rates) value of

01. At the same time, the filter R must be kept small

.enough to be able to identify the severely degrading noise
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events. The goal is to maintain stability robustness by

g preventing the Meer filter from driving p1 (tt) to extremely

low values, which would effectively "shut down" the filter

measurement model. (4) Consider using implicit model-

following (see Section 3.4 and Appendix A) as a means to

enhance the controller's robustness and to obtain good

response characteristics [16]. Once the PI controller

demonstrates good robustness for all meaningful parameter

variations, the effects of unmodeled beam dynamics and

timing delays can be studied. (5) Consider reducing the RMS

tracker error by increasing the gain of the particle beam

plant (see Section 5.3.1 and specifically Equation (5-2)).

This can be done be increasing the control input gain

matrix, B(t) (for this application, B is a scalar). The

effects of different control input gains can be analyzed

with frequency domain techniques (like using Bode plots).
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ADendix A

Alternate Cost Weighting Methods

V.
This appendix will derive the implicit model-following

method [16,19], and discuss the LQG/LTR (linear quadratic

Gaussian/loop transfer recover) Dual Method of Kwakernaak

and Sivan [10]. Both of these methods are designed to

enhance the controller's stability robustness.

To be able to derive the implicit model-following cost

function, we must start with the general form of the cost

function:

Jc - EIX2 (tW+ I)XFx(tN+1 ) + t+I [XT (t)W.z (t)x(t) +
Ito

+ u(t)W ua(t)ult) + 2xT (t)Wx (t)lu t)dt (A-i)

Because we are designing for steady state, the cost function

can be re-defined as:

Jc = [x (t)Wxt) + U
T W(tW uUlt)

0 ti

C. + 2XT(t)Wvu(t)ldt (A-2)

"I1
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Now, for all ts[ttlti),) x(t) is described by:

x(t) = O(t,ti)x(tL) + J(t,TB(T)U(T)dT

+ fJ(t,T)G(T)UlT)dO(T) (A-3)
ti

and 3L(t) = u(ti) , and u(ti) is constant over the entire

sample period; therefore we can define

*(t,ti) = J (t,TB(T)dT (A-4)

Therefore, the deterministic form of Equation (A-3) is

2ix(t) 1 (t, ti )x(tt) + B* (t, ti)uI(tt) (A-5)

"p and the last integral term in Equation (A-3) has been

dropped because the only effect it will have on the cost

function is in the form of a loss function, defined as

: . Lr (ti), and because it cannot be affected by the control

. input (14]. Said another way, the first part of an assumed

certainty equivalence design is the synthesis of the LQ

deterministic optimal controller, so the stochastic driving

term can be neglected. By substituting Equation (A-5) into
Equation (A-2), we get
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JC (XT (t, )IT +UT (t, )BW*T )WRX (tx (ti ) +B* u(tt
1=0 Jti

+ UT (t, )Wu(ti

+ 2 (MT(ti )!T +UT (t,) * T )RX u (tt)]dt

% [K ~4X(ti ) ST Xxx(t1 )

+ UT (t, BT Wx xB* u(tt ) + UT (ti ) Ku U(t,

+ UT (t, )B T WZIu (t, ) + UT (ti )WIUTB*u(ti

+ 2XT (ttl)0TjxxB*u(tti) + 2XT (ti ) IT Kzua(ti)]dt

and since x(ti) and u(ti) are constants, this becomes

-0 tii

1t=+

+ M7 (ti) (r TjX X r + Wa. + B* T jX + ix T B*dt u (ti

Jtii

+ 2KT (t i)] Tjxx& + OT jx u)dt.u(t,) (A-6)
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By substituting Equation (A-6) into

I J _Kx (ti)X(tt)x(ti) + uT (t )U(tt)u(t )

i=O
+ 2XT (ti)S(ti )u(ti )]dt (A-7)

it yields

X(ti) = (_T(t,ti)W xx (t,ti))dt (A-8)
t1

-. fti.
U(ti ) = (B* T (t,ti )WxxB* (t,ti ) + W ua

Jti

+ B * T (t,tt)Wxu + WxuTB * (t,ti) )dt (A-9)

S(ti ) = (0T (t,ti )WxxB_* (t,ti) + OT (t,ti )Wxu )dt (A-10)
ti

5 By definition, X(tt ) and Wxx (t) are symmetrical positive

semi-definite, U(ti ) and W. (t) are symmetrical positive

definite, and S(tt ) and WxU (t) are defined such that the

expression

[X (t, S (t, ) I (t ) S (t, ) T

is positive semi-definite.

Instead of using the quadratic cost term

jT (t)WK_ (t)2(t) in the integral in the integral on Equation

(A-2) that is used to drive x(t) to "zero", we can define a

model of desired characteristics as:
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3t = N(t) 1NM(t) (A-il)

and then put a quadratic penalty on the deviations of the

actual system outputs (y_ - Q) from those characteristics:

E FI T Wy y ft - FMyl

QX f E - yj T Wv -ey

= g-M )2 + QM1 T Wv FFM]X + gCp.!A (A-12)

The 2Ozo quadratic cost term in Equation (A-2) is replaced

with

E- Fy IT Wy 3 = I(CQF-FMCQ]X2 + CBU I T WU (A-13)

Theref ore, the implicit model-following cost function is:

+ ele4 + ([QE-FM]K + CBI T~yaljidt (A-14)

Using the same derivation as above, this can be written as

ISO + 22T (ti ) §. (ti ).U (tt ) ] dt (A-15)

where
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3=J (0T (t,tl)(QE-EMH) T~yy(QE-~.m)0(t,tt)Idt (-6

!!I (ti )=J ((Qi-E?4 jr j (tti ) +CB ] T W (f~.CB (t, tt ) +CB]

+ uu+ Q(FM)* (t, ti) +]T W

y+ Q~?(-N)j* (t, ti )+CBI Idt (A-17)

Si~~tti + I

+ OT (t, ti) (CFMCQ) T yU I dt (A-18)

If we were to use the implicit model-following in the

PI tracker as described in Section 3.3.2, we would use the

same augmented states which include a pseudo-integral term,

C(ti) would be defined by Equation (3-56),

k(ti)=Cl 0 0 0 O]T, and O(t,ti) would be

0(~i 0 [ C 0 (A-19)
0 0 0 B0

where

A - exp(-At/Ta)

B - exp(-At/TT)

C = TT (1 B]

D = TT (At-C]
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At - t - tiI
The cost weighting matrices Wxx(t), Rxu(t) and Ru of

the general cost function, and Wy(t) and Wye (t) of the

*implicit model-following method must be selected as to

represent the physical objective we are trying to accomplish

with the individual states. For example (see Equation

(3-62)),

a -a 0 0 0
-a a 0 0 0

!J3 (t) Wj, (t) = 0 0 0 0 0 (A-20)
0 0 0 0 0
0 0 0 0 a/10

J

will drive the error between the target and the beam states

to zero, while applying a 10 to 1 ratio to the pseudo-

integral term. The 10 to 1 ratio is suggested because it

delivered the best performance (see Section 5.1). The cost

weighting matrix, Wyy (t), must be symmetrical, positive

semi-definite, and the Wyu (t) term must be such that

[ {)-(ti )U-- 1(t )S,1 Tt(t,

is a positive semi-definite matrix.

As the result of the implicit model-following

technique, Equation (A-i) is embedded into the cost

function, and the desired model does not appear explicitly

in the final controller structure. That is, the additional
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I
3 states used to achieve the desired characteristics of the

controller are not augmented to the original system model

states. Implicit model-following gives us the flexibility

to select the model of the desired closed loop system

characteristics by allowing us to choose Z& to have a

desired eigenstructure. In other words, we can select E in

such a manner as to place the poles and orient the

eigenvectors to develop a controller with good loop shape

(desirable feedback control characteristics) and enhance

robustness (2].

Another method that can be used to enhance robustness

is LQG/LTR Dual Method of Kwakernaak and Sivan [10]. This

is a specific method of choosing X=x that enhances the

system stability robustness at the plant output. This is

done by treating the Kalman filter (or Snyder-Fishman filter

as it would be the case for this application) as a dynamic

compensator and using it to establish good loop shapes in

order to achieve good command following, good disturbance

rejection and low sensitivity to plant variations from the

nominal conditions. Then Wzz is chosen iteratively as some

initial value plus the q2T_, where V is a positive

definite weighting matrix and q2 is a scaler that is

increased to acheive as much of the desirable robustness

characteristics as possible in the implementable filter-

controller structure.
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Outline of SOFE Operations

B.1 Structure 2, the Sfwre

This section provides a functional outline of

subroutines used in SOFE [7,21] for this application. The

lower case letters are the internal SOFE subroutines, and

the upper case letters are the user-defined subroutines.

Because a shaping filter was used to generate the target

trajectory rather than using an externally generated

trajectory, the following subroutines were not called:

span, TRAJO, move, interp, icsevu, or icsicu.

*** Problem Initialization *

----- advano

(twice)

~CNTGAIN

LB (Calculates xm from SNR)
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D *** Run Initialization

*g (twice)

STMEAS (Generates times to first

signal and noise events)

X *OT* These subroutines are called,

* but are not used.

Cl]-GETRS

C ~ Propagation Cycle -C2]-GETRN

.......Iv n A C U

-- NOYS

(1] - if it was a signal event, then ...
(2] - if it was a noise event, then ...
(3] - if At-1 (sec), then calculate u(ti)
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I B

SUpdate Kalman Flter Equations *
(The Meer filter is updated as
part of the Propagation cycle)

psqrt

'*' Injects Non-Linear Disturbances into Plant *

(called but not used for this thesis)

*n__ End of

U
y

Snd

Notes:

GETRS, GETRN. HRZ and SNOYS use the function GAUSS (see
Equations (4-12) and (4-16) for HRZ and SNOYS)

& GETTS and GETTN use the function Poisson (see Equation(4-18))
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3 Subroutine "out" calls several different subroutines
and collects the data required for the SOFE output
file, and by SOFEPL for statistical reduction of the
tracker and filter state errors (see Equations (4-1)
through (4-9)).

IDefinitions of the Subroutines:

advans controls propagation between measurement updates

advano initializes advans

asysp adds GOG T together for: dP/dt-FP+PFT+QGGT, the
differental form of Equation (3-4).

deriv evaluates the derivatives of the filter and truth
states

fppft adds FP+PFT together.

gauss Gaussian random number generator

getpf reads the initial covariance matrix, ko

getx reads in the initial truth and filter states, xo

kutmer Kutta-Merson integration algorithm

nzrcio reads the non-zero input from the disk

out outputs all scheduled data

psqrt takes the Cholesky upper triangular square root of

sofebd reads the PRDATA block data file from the disk
PRDATA is the SOFE simulation specification
file.

ITsplita partitions the unlabeled common block 'A' into
the states, filter covariances and other data

sqrs squares the Cholesky square root to form Z(tt)

valdta validates the input data

xsplus performs the measurement update on the filter and
truth model.

AMEND used to inject non-linear disturbances into the
beam dynamics (not used - variable VTRK set
to 0)

AMENDO initializes AMEND (not used)
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ESTIX used to control the Meer filter updates and
propagation cy .les

ESTIXO used to initialize the Meer filter propagation
cycle

FQGEN calculates the non-zero elements in F(t) and Q(t)

FQGENO initializes E(t) and Q(t)

HRZ calculates Pt (ti), rT (ti), AT (tt) and zT (ti)

HRZO initializes JT (to)

SNOYS used to inject the white noise into the target
V shaping filter and the beam dynamics model

SNOYSO initializes SNOYS (not used)

USRIN reads USRIDAT block data file from disk, does
initial filter and gain calculations, sets up
truth and filter parameter, prints out non-
scheduled data

INITJ initializes the Meer filter states and covariance

matrices

XFDOT filter state derivatives

XFDOTO alternate method for initializing XFDOT (not used)

XSDOT truth state derivatives

XSDOTO alternate method for initializing XSDOT (not used)

GETTS generates the time to the next signal event

GETTN generates the time to the next noise event

LAMBN generates the noise rate parameter (see Equation
(4-24))

GETRN generates the spatial location of the noise event,
rx (see Equation (2-2))

GETRS generates the spatial location of the signal
event, rs (see Equation (2-1))

GETMEAS generates the time to the next signal, noise or
measurement update

SFUPDAT get the next event and updates the Meer filter
(see Equations (2-3), (2-13) through (2-15)
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COLLAPS implements either the "best half" or "merge"
algorithms (see Section 2.4)

U POISSON Poisson random number generator (see Equation
(4-18))

SFPROP propagates the Meer filter (see Equations (2-4)

through (2-7), (2-10) and (2-11))

FEEDBK calculates u(tt) (see Equation (3-63))

CNTGAIN calculates Gc* and I (see Equations (3-64) and
(3-65))

B.2 Subroutines Modified to Implement the MMAC

FQGEN, FQGENO, HRZ, HRZO, XFDOT and XSDOT were

modified to included the increase in dimensionality of

2i T ( ti) iT f ( to) KT t ( ti) KTt ( to) ET ( t) , 2T ( t) , RT ( t,)

PT (to) and H (ti), which occurred as a result of embedding

* the 3 elemental controllers into SOFE. The measurement

updates were done recursively, using the same measurement

efor all three elemental filters. The elemental filter

residuals, rk(ti), and residual variances, Ak (ti) (see

I Equation (3-80)), were calucated in subroutine HRZ, and the

probability that an elemental filter was correct, pk(ti)

(see Equation (3-79)), was calculated in a new subroutine

called CPROB. Because the control input was the

probabalistic sum of the elemental control inputs (see

Equation (3-82)), subroutine FEEDBACK was replaced with a

new subroutine called MMAC. CNTGAIN was modified to

calculate the elemental steady-state controller gains,

gCk*(j~), and they were a function of the discretized

uncertain parameter, jk. SNOYS was modified to extend the
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3 white noise to all the elemental filter/controllers, and

USRIN had to be modified to accommodate the additional

filter/controllers. The parameter variations were simulated

through subroutine ESTIX, and initialized in ESTIXO.

1
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Apvendix C

Controller Pole/Zero Location as a Function of Different
Sample Rates

C.1 Pole/Zero Locations for Tt=19.0

At pole(l) pole(2) pole(3) zero(l) zero(2)

.01 .99731 .81799 -.21466 .82532 .78471

.5 .84321±j.017096 -.26176 .78703 .78471
1.0 .74763 .79959 -.32636 .75103 .78471
2.0 .48560 .81479 -.52990 .68687 .78471

*. 3.0 .31488 .81769 -.85387 .63136 .78471
3.5 .25903 .81862 -1.05451 .60630 .78471
4.605 .17996 .82017 -1.55394 .55625 .78471
5.0 .16120 .82060 -1.74383 .53992 .78471

10.0 .06537 .82386 -4.19311 .38312 .78471

The PI controller goes unstable at At>3.369.
*% .

C.2 Pole/Zero Locations for Tat=19.6

At pole(l) pole(2) pole(3) zero(l) zero(2)

.01 .99732 .81799 -.21465 .82532 .78471

.5 .84267±j.016724 -.26175 .78703 .78471
1.0 .74969 .79878 -.32632 .75103 .78471

- 2.0 .48742 .81461 -.52973 .68687 .78471
3.0 .31649 .81752 -.85382 .63136 .78471
3 .5 .26049 81845 -. 05478 .60630 .78471
4.605 .18113 .81999 -1.55572 .55625 .78471
5.0 .16229 .82041 -1.74642 .53992 .78471

10.0 .06609 .82364 -4.21612 .38312 .78471

The PI controller goes unstable at At>3.369.
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C.3 Pole/Zero Locations for pt=20.

At pole(1) pole(2) pole(3) zero(1) zero(2)

0.0 1.0 .81786 -.21466 .82613 .78471
.01 .99733 .81799 -.21466 .82532 .78471
.1 .97299 .81930 -.22234 - .78471
.25 .93059 .82244 -.23606 - .78471
.50 .84290±j.01648 -.26175 .78704 .78471
.75 .80872±j.03280 -.29157 - .78471

1.0 .75103 .79822 -.32629 .75103 .78471
2.0 .48858 .81449 -.52963 .68687 .78471
3.0 .31712 .81741 -.85378 .63136 .78471
3.5 .26142 .81834 -1.05494 .60630 .78471
4.0 .21939 .81911 -1.27438 .58280 .78471
4.605 .18167 .81988 -1.55878 .55625 .78471
5.0 .16299 .82030 -1.74806 .53992 .78471

10.0 .06655 .82351 -4.23078 .38312 .78471

The PI controller goes unstable at At>3.368.

V. CA4 Pole/Zero Locations for Tot=20.4

At pole(1) pole(2) pole(3) zero(1) zero(2)

.01 .99735 .81799 -.21466 .82532 .78471

.5 .84311±j.01624 -.26174 .78704 .78471
1.0 .75235 .79766 -.32627 .75103 .78471
2.0 .48970 .81438 -.52953 .68687 .78471
3.0 .31851 .81730 -.85375 .63136 .78471
3.5 .26231 .81824 -1.05510 .60630 .78471
4.605 .18260 .81976 -1.55793 .55625 .78471
5.0 .16367 .82019 -1.74964 .53992 .78471

10.0 .06699 .82337 -4.24494 .38312 .78471

The PI controller goes unstable at At>3.368.
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C.5 Pole/Zero Locations for Tot =21.0

At pole(1) pole(2) pole(3) zero(1) zero(2)

.01 .99736 .81799 -.21466 .82532 .78471

.5 .84343±j.01588 -.26174 .78704 .78471
1.0 .75431 .79679 -.32624 .75103 .78471
2.0 .49130 .81422 -.52939 .68687 .78471
3.0 .31992 .81714 -.85370 .63136 .78471
3.5 .26359 .81808 -1.05532 .60630 .78471
4.605 .18363 .81960 -1.55947 .55625 .78471
5.0 .16464 .82002 -1.75189 .53992 .78471

10.0 .06762 .82318 -4.26528 .38312 .78471

The PI controller goes unstable at At>3.368.

C.6 Equivalent Deterministic Full-State Feedback Controller
Transfer Function Derived in the a-Domain

Yc (s) 5 + Gca(S= 1c-1)____________________

Yr (s) S(S + 1/Tat) + Gcl* (s + Gc2*/Gcia)

i
Assuming we want to know the location of the poles for

Gc,*=1.2422 and GC2*=0.27436, Equation (C-1) becomes

YC (s) s + .27436
- = (C-2)

Yr (s) (s + 1.024365)(s + .267835)

These equations are the continuous-time, s-domain form of

Equations (6-8) and (6-9).
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Sample Data Used to Calculate the Statistics in Table 5-25

In an effort to estimate the time it takes the MMAC to

adapt to changes in QT, a single Monte Carlo simulation run

of 2000 seconds was performed. The uncertain parameter, QT,

kwas varied from 0.01 to 1.00 cm2 /sec5, and the following

data was collected.

QT Increasing QT Decreasing
from .01 to 1.0 from 1.0 to .01

Sample to ta ts tT tU ti ts tT

1 4 1 1 5 7 34 21 41
2 9 7 6 16 6 16 8 22
3 4 2 1 6 3 20 8 23
4 4 2 1 6 6 17 4 23
5 3 12 12 15 3 33 26 36
6 7 2 2 9 4 38 31 42
7 4 16 16 20 6 62 52 68
8 7 1 1 8 5 32 13 37
9 4 8 8 11 3 34 27 37
to 3 11 11 15 3 71 66 74
11 5 19 18 22 2 21 10 23
12 5 22 22 27 4 36 26 40
13 5 7 6 12 5 31 18 36
14 6 10 2 16 3 8 3 11
15 8 2 2 10 8 25 15 33
16 1 30 14 31 8 24 17 32
17 5 2 1 7 10 23 10 33
18 9 2 1 11 5 46 18 51
19 6 11 11 17 5 27 17 32
20 9 2 2 11 5 - - -

to, t, ta and tT are defined in Table 5-25.

Times are in seconds (or number of sample periods, At-1.0)

See Table 5-25 for more detail.
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Block #18 - Subject Terms

Poisson Process, Stochastic Esitmation, Target Tracking

Block #19

Abstract

The goal ofthis research was to developfa realizable
proportional-plus-integral (PI) feedback tracker to control
a neutral particle beam. The design is based on detecting
the photo-electron events that are emitted from a laser-
excited particle beam and the observed events are used by a
Meer filter to locate the beam's centtrline. The observed

events are modeled by a Poisson space-time process and are
composed of both signal- and noiseinduced events. The Meer
filter is a stochastic multiple model adaptive estimator
which is composed of a bank of Snyder#Fishman filters and is
designed to distinguish the signal-induced events from the

noise-induced events. A target model is developed from a
Gauss*Markov acceleration process, and the target states are
estimated by a Kalman filter.} The OoptimalO PI controller
design is based on th quadratic (LO) controller
synthesis techniqe-and the -assumed* certainty equivalence

property, and t e Kalman filter provides the reference
(target) stateowhile the Meer filter supplies controlled

(beam) states. >he objectives of the research were to (1)
select the fbest* cost weighting matrices that minimize the
RMS tracker error and enhance robustness, (2) simplify the
Meer filter for easier onhline usage, (3) complete fullA
scale sensitivity and robustness analyses over all the
Kalman and Meer filter parameters, and (4) develop on-line
adaptive estimation of those parameters that great'', affect
stability robustness and tracker performance. Dura, the
research, an apparent stability problem was uncovereu. -n& a
fifth objective was to identify the source of th*-
instability, and to propose a solution that wauld insure
stability during parameter variations.



Wvs wa W'A' 3 3


