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Preface

The purpose of this research was to continue the

e X2

development of a stochastic controller that uses a Poisson

space-time point process for feedback. The effort was

motivated in part by the concurrent research being conducted

s

at the Air Force Weapons Laboratory, Kirkland AFB, NM., and
the Rome Air Development Center, Griffiss AFB, NY. The

research was conducted with the primary goal of developing a

7a 8esx

neutral particle beam controller, but the issues discussed

within this thesis should be valid for other applications.
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Abstract

The goal of this research was to develop a realizable
proportional-plus-integral (PI) feedback tracker to control
a neutral particle beam. The design is based on detecting
the photo-electron events that are emitted from a laser-
excited particle beam and the observed events are used by a
Meer filter to locate the beam's centerline. The observed
events are modeled by a Poisson space-time process and are
composed of both signal- and noise-induced events. The Meer
filter is a stochastic multiple model adaptive estimator
which is composed of a bank of Snyder-Fishman filters and is
designed to distinguish the signal-induced events from the
noise-induced events. A target model is developed from a
Gauss—-Markov acceleration process, and the target states are
estimated by a Kalman filter. The "optimal" PI controller
design is based on the linear quadratic (LQ) controller
synthesis technique and the "assumed" certainty equivalence
property, and the Kalman filter provides the reference
(target) states while the Meer filter supplies controlled
(beam) states. The objectives of the research were to (1)
select the "best" cost weighting matrices that minimize the
RMS tracker error and enhance robustness, (2) simplify the

Meer filter for easier on-line usage, (3) complete full-

xiii
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scale sensitivity and robustness analyses over all the
Kalman and Meer filter parameters, and (4) develop on-line
adaptive estimation of those parameters that greatly affect
stability robustness and tracker performance. During the
research, an apparent stability problem was uncovered, and a
fifth objective was to identify the source of the

instability, and to propose a solution that would insure

stability during parameter variations.
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I. INTRODUCTION

é ﬁ. This research is motivated in part by the problems in
; 33 neutral particle beam pointing and tracking currently being
' a investigated at the Air Force Weapons Laboratory, and at the
E Rome Air Development Center. Their goal is not only to

E ﬁ estimate the position and direction of the beam, but use

; that information in an optimal way to control the pointing
i g of the beam.

:: @ A method for sensing the location has been proposed in
( which the beam is illuminated by one or more lasers [23].

: i; At certain angles of intersection and at different particle
& velocities, the particle electrons absorb photons from the
g i laser beam and attain a higher energy state. When the

§ fﬁ ﬁarticle beam electronstrelax and spontaneously decay to

k a their ground energy state, they expend the energy as light.
o ! By detecting the light energy, the position of the beam can
( -, be inferred. If the light energy were to arrive at the

é‘ ﬁ photo-detector at a sufficient signal rate as to produce an
N B observable current, it might be modeled by a continuous-

§ ) time, Gaussian process as done in many communication and

E’; g control type problems. But, the assumption upon which this
% o thesis is based is that the photon events do not arrive at
k “ such a sufficient rate. 1Instead, a discrete, Poisson space-
R ﬁ time process is used to describe the arrival of the

. individual signal-induced events (the photons) and the

noise-induced events (caused by dark currents within the

E 1
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detector, or other outside sources of noise). A space-time

point process is a stochastic process having as realization

| o

points with random coordinates in both time and space. [9].

For this application, the time between events will assume a

&

i conditional Poisson process composed of Gaussian spatially |

distributed signal-induced events, and uniformly distributed

noise-induced events.

e
NG

5%

|
|
1.1 Background ‘

In 1975, Snyder and Fishman [25] developed an ‘

el

3 o estimation algorithm called the Snyder-Fishman filter. The
) & filter is a minimum-mean-square estimator that for this
f Lf application, estimates the position of maximum intensity
% . from the arrival of the signal-induced events (all events
‘ are assumed to be signal induced). The filter equations
. appear very similar to the Kalman filter equations with the

- notable exception that the Snyder-Fishman filter is based on

n -
AY
™

, the Poisson space-time process and thus the arrival times of

" -
A Kad

the events are not known a priori. Instead, the events

-

",
-ﬁ arrive as part of the Poisson distributed process. 1In the

P
s

absence of noise-induced events, the Snyder-Fishman filter
provides good results, but Santiago [24] found the filter's

performance is severely degraded in the presence of noise.

[ - e |

In 1982, Meer (18] developed an adaptive filter

e
v,

designed to estimate the position of maximum intensity from

,l

ﬂ ’i the arrival of signal-induced events that are corrupted by a
1 3

- statistically independent noise process. This was

£

% :j accomplished through a multiple model structure in which a
RS
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bank of elemental Snyder-Fishman filters are based on
different hypothesis sequences. The hypotheses define which
observed events were assumed to be due to the signal process
and which were assumed to be due to the noise process, and
each elemental filter is allowed to process the observed
events only when its associated hypothesis defined the event
as being signal-induced. Meer was the first to apply the
point process to the neutral particle beam problem, and the
"Meer" filter outperformed the Snyder-Fishman filter in a
noisy environment. This successful filter development was
the primary breakthrough required in controlling the beam
location.

In 1983, Zicker [27] conducted a feasibility study of a
simple proportional gain controller, considering both a
regulator design to null out variations in the beam's
location and a tracker design to maintain the beam on a
maneuvering target. Zicker synthesized his stochastic
controller designs from a deterministic optimal LQ
controller assuming full state feedback. An LQ controller
is a controller design based on a linear system model which
uses a quadratic performance index to define optimal
control. Then, the states were replaced by their best
estimates according to the principle of assumed certain
equivalence [14]). The Meer filter was used to provide the
beam state estimate while a Kalman filter was used to

provided the target state estimate.
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Over the next two years, Moose [20] and Jamerson [8]
replaced Zicker's proportion gain controller with
proportional-plus-integral (PI) controllers, and the effort
began to move from a Question of feasibility to
realizability and performance potential. The PI controller
was selected because it possessed several characteristics
which make it ideally suited for the tracking problem.
First, control is based on both the current as well as the
integral of previous tracking errors, thus providing a type-
one system. Second, type-one systems are able tc reject
constant unmodeled disturbances that arise from linearized
models, and are able to handle non-zero setpoint control
with zero steady state error. Although performance improved
considerably,. especially when the controller was confronted
with unmodeled disturbances, it came at the expense of some
additional sluggishness due to the additional integrator in
the controller. Also, Jamerson replaced Zicker's simple
target model, which was based on a Gauss-Markov position
model, with a more realistic Gauss-Markov acceleration

model.

1.2 Qbjectives

Much of the previous work was spent on developing a
stochastic filter based on a Poisson space-time point
process which models both discrete signal- and noise-induced
events, and then demonstrating that it can be used for

feedback control. The next logical question that remains is

whether a practical implementable controller can be designed
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which has the stability robustness to handle "real world"

plant variations. Therefore, the objectives of this thesis
are: (1) to evaluate the quadratic cost function in the LQ
synthesis of Jamerson's PI controller and select the best
set of cost weighting matrices that minimize the RMS tracker
error and enhances robustness, (2) to evaluate the
possibilities of a simplified filter to replace the multiple
model structure of the Meer filter in order to reduce the
computational loading, (3) to complete a full-scale
sensitivity and robustness analysis on the six beam
parameters and the three target parameters within the Meer
and Ka.man filters, and (4) to develop on-line adaptive
estimation for those parameters that greatly affect
stability robustness and tracker performance. During the
research, an apparent stability problem has been uncovered,
and a fifth objective has become to identify the source of
the instability and to propose a solution that insured
stability during parameter variations. The initial
objective of evaluating an alternate cost weighting
technique, such as implicit model following was dropped when
the apparent stability problem surfaced. Discussions that
pertain to developing an alternate cost weighting technique
remain within the thesis (see Appendix A) as an aid for

future research.
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8 1.3 System Qverview
An overview of the tracker design that is used
‘ throughout the thesis is shown in Figure 1-1. The purpose
o of a tracker is to generate a control input, u(ti), that
minimizes the difference between the the controller

. variable, yc (t), and the reference (i.e., target) variable,

¥r {t). In other words, we want the particle beam to track

~

o the target position.

o) The target model is generated through a shaping filter
~

Yt

which uses an exponentially time-correlated noise process to

simulate the target acceleration. The target velocity and

&>

position states are generated by integrating the

.
3 acceleration state with respect to time. The target sensor
i is modeled as a sample and hold device that obtains a noise-
corrupted measurement of the target's position, zr(t1), at a
Za regular, prespecifed sample rate. The measurements are used

by the Kalman filter to generate a target state estimate,

‘! .

3 The particle beam dynamics (also referred to as the
w plant dynamics) are modeled as an exponentially time-
3. correlated position process, the output of a shaping filter
iy having one dominate pole. The position of the beam is
e inferred through the observations detected at the surface of
i‘ i: the photo-detector. These observations, zs (t), are assumed
% : to be well modeled by a Poisson space-time point process,
: ""? and can be of either signal or noise origin. The Meer
W 3 filter is designed to discriminate between the two types of
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b :j events, and generate a beam state estimate, R8s (ti1), from the
™ signal-induced events.
§ ‘ The target state estimate and the beam state estimate
)
E
q ~ are fed into the discrete-time controller algorithm to
S N
&2 generate a command input to the plant. Because the target

and the beam processes are assumed to be well modeled as

e o)

Gaussian processes as produced by linear shaping filter,

S S
gl

Ca O
»

" & "near" optimal controller designs can be developed using the
.; g{ linear quadratic (LQ) full-state feedback controller

ii A synthesis process, and the assumed certainty equivalence

f- ég property for incorporating filters into the loop. The

?; proportional gain and proportional-plus-integral controllers
A

E e are developed in theory (presented in Chapter 3), and the PI

iy controller is implemented and evaluated on its own merit and

(&

within an adaptive multiple model controller structure.

The performance of the tracker is evaluated by

£X
s

) <

7$ calculating the tracker error, e(t), which is defined as the
ﬁf - difference between the target and beam positions. Because
;: ;: of the adaptive nature of the controller and the time-

%é - variant nature of the Poisson space-time point process, the
53 24 tracker error statistics have to be generated with a Monte
gi Carlo simulation, as opposed to a covariance analysis or

o
&

similar analytical methods.

i 1.4 Approach
A The filter and controller theory is developed for the

n-dimensional space, but for simplicity, the specific

o _q tracking system of interest will be designed and evaluated
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in one-space. This reduction in physical dimensionality
shall simplify the physical insights about the design
without loss of generality. Chapter 2 describes the Meer
filter in considerable detail. The tracker model and
controller designs are developed in Chapter 3. This
includes the derivation of proportional gain, proportional-
plus-integral and adaptive multiple model controller
designs. Chapter 4 discusses the Monte Carlo simulation and
the analyses to be performed, which are in accordance with
the objectives stated in Section 1.2. Chapter 5 presents
the results from the Monte Carlo analyses along with a
detailed interpretation of the findings. ©One finding, an
apparent instability problem found during the robustness
analysis of the beam time constant is developed more fully
in a separate chapter, Chapter 6. This chapter analyzes the
stability and robustness characteristics of the
deterministic and stochastic PI controller designs, the
Kalman and Snyder-Fishman filters, and the Meer filter

structure. The conclusions and recommendations for future

research are provided in Chapter 7.
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II. ESTIMATING THE POSITION OF THE BEAM -
THE MEER FILTER

The first challenge in designing a controller for the
pointing and tracking of a neutral particle beam is
developing an estimator which can predict the location of
the beam. Previous research resulted in defining the bean
model and creating the Meer filter, a Multiple Model
Adaptive Estimator (MMAE) composed of a bank of Snyder-
Fishman filters. This chapter will explain the particle
beam model, the Poisson space-time point process, and the
Meer filter. The chapter concludes with a proposal to

simplify the Meer filter under a given set of conditions.

2.1 Particle Beam Model

One recommended method for locating the center of a
particle beam entails illuminating the beam by one or more
lasers [23]. As a result, the particle electrons absorb the
photons from the laser and jump to a higher, unstable energy
state, and then spontaneously decay, returning to the ground
energy state and dissipating the energy as photons. The
photons radiate approximately in an isotropic manner and the
position of the beam can be inferred from the location at
which the photons strike a photo-detector array. The
photoelectric events occur as a discrete process at random

intervals. Because the optical sensors suffers from dark
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currents and background light, the sensors will corrupt the

St
%ﬁ . signal-generated data with erroneous, noise-induced events.
% Meer noted that the signal-induced event could be
ff S modeled as a Poisson space-time point process on
ir i (to,») x R¥, and that this is a model upon which a Snyder-
i % Fishman filter could be based.. Each event has associated
:§ N with it the time of occurrence t € [to,=), and a spatial
ﬁ; :‘ location r € R*. A physical detector array will result in
" ;? quantizing of R® into a finite number of sections. For
f% s simplicity, the quantization is ignored without loss of
‘,h :;\ generality, and the array is assumed to be continuous; that
é: . is, it is assumed that the value of r is known as an exact
~§ : value from a continuous range of possible values.

af ii The rate of occurrence is defined as the signal rate
M  parameter, as (t,r,x(t)), and is assumed to have a spatial
ié ;S Gaussian function given as {18):
i

‘ : as (t,r,x(t)) = Alt)exp{-[r-H(t)x(t)]TR-! (t) [p-H(t)x(t)]/2]
L (2-1)
now

W where

% 5; A{t) 1is the maximum amplitude of the rate function
“E R is a symmetrical positive definite matrix
3ﬁ ] defining the spread of the beam
K

£ 1is a spatial location on the detector array

H(t)x(t) 1is the signal-inferred beam centroid in RM

x(t) 1is a stochastic process defining the state
dynamics of the beam centroid

v
o -
Bk ¥
.
.‘:_1"!

; :i H(t) is an m x n projection matrix from the state
) space into the space of measured photoelectron
. events
.A~ é
The beam's spatial Gaussian function is a result of the
)
 ¥ : beam's diffusion.
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The state process is modeled as the Gauss-Markov output

of the linear differential equation:

dx(t) = F(t)x(t)dt + G(t)dp(t) (2-2)

X(to) = X%o

where B(t) is a Wiener process, whose hypothetical
derivative is white Gaussian noise of unit strength, and %o
is a Gaussian random vector with mean %0 and covariance Po.

Similar to the signal-induced events, the noise-induced
events are modeled as a Poisson space-time point process on
[to,=) x R* with a noise rate parameter, ar(t,r). The noise
process is assumed to be statistically independent of the
signal process [18]. The noise events are assumed to be
uniformly distributed over the detector's field of view.

The relationship between the signal- and noise-induced
events is the signal-to-noise ratio, which is defined as the
ratio of the average signal rate to the average noise rate.
For a comparison of the two rate functions, see Figure 2-1.
The signal-to-noise ratio is the ratio of the areas under
the two curves in that figure.

Because both the signal and noise processes are Poisson
point processes and independent of one another, their sum
remains a Poisson point process. This can be shown by
taking the product of the characteristic functions of the
signal and noise processes. The resulting characteristic

function will be a Poisson point process with the total rate
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parameters:

Ess

alt,p(t),x(t)) = as(t,x(t),x(t)) + an(t,z(t),x(t)) (2-3)
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2.2 Snyder-Fishman Filter
Snyder and Fishman developed an estimator which
specifically handled the case of measurements that appear as

a Poisson point process [25]. Their filter is similar in

s SR X8 KL

structure to the Kalman filter, but the Snyder-Fishman

«
o

filter differs in two significant ways. The development of

v the Snyder-Fishman filter was based on the assumption that

By

-
Lo wg B
%

all measurements were signal-induced. 1In other words, the
filter is limited to noise-free environments. The other

difference is that the sample period is not fixed and the

s |

g time between signal events is a Poisson distributed process.
. With the absence of noise-induced events, the Snyder-
¥ - Fishman filter estimates the beam's centroid as H(t)f(t),

where R(t) is the expected value of the beam states, x(t),

L3

conditioned on all the previous measurements,. The filter

is described by the following differential equations [25]:

W I

t

: dg(t) = E(t)(t)dt + J K(t) [z-H(t)R(t)]-N(dt x dr)

% ,Q'- RM

& In

! + B(Bu(t)dt  (2-4) ‘
2 |

b AR(t) = E(t)R(t)dt + B(L)ET (£)dt + G(E)GT (t)dt |

B !

- J R(t)H(t)RP(t)N(dt x dr) (2-5)
RM

e

- ..

|2

K(t) = P(t)HT (t) [H(t)R(L)HT (t) + R(t)]-1 (2-6)

e
=
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where

R(to) = %0 and P(to) = Po are the initial conditions

P(t) is the filter-computed error covariance
G(t)GT (t) = G(t)Q(t)Gr(t); Q(t) =1
K(t) is the filter gain
The notation found in Equations (2-4) and (2-5) involves

counting integrals, where

0 Nt =0
J £(t,p)N{(dt x dr) = 4 ' (2-7)
RHM It
I £(t1.,x1)8(t,t1) Ne 2 1
[ 1=1

and 3(t,t1) is a Kronecker delta. Simply stated, if no
events are detected, then the integral equals zero. If an
event is detected, the integral causes a jump discontinuity,
f(t,xr), to be added to the solution of the differential
equation fér time ti1 (25].

The propagation and update equations can be derived
from Equations (2-4) and (2-5). The propagating equations

for use between (signal-induced) events are:

dg+t) = F(t)R(t)dt + B(t)u(t)dt (2-8)
dp(t) = E(t)P(t)dt + P(t)ET(t)dt + G(t)GT (t)dt (2-9)
Equations (2-8) and (2-9) are actually implemented in the
discrete controller designs (to be developed in Chapter 3)

as stochastic difference equations:

R(ti1s+2-) = O(tis1,t1)R(t1*) + Ba(ti)ulty) (2-10)
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B(tis1-) = @(t14+1,t1)P(t1*)OT (tre1,ty)

+ Ga(t1)Qa (t1)Gat (t1) (2-11)
where Ga (t1) = I and the calculated as

ti1+1
Qa(t1) = J O(ti1+1,7)G(T)GT (T)OT (L1421 ,7)dT (2-12)
t1

When an event has been detected, a measurement update can

take place as defined by the following equations:

R(t1*) = (ty-) + R(t1) [p1-H(t1)R(t1-)] (2-13)
BP(ti*) = P(ti-) - K{t1)H(t1)P(t1") (2-14)
where the Snyder-Fishman filter gain is defined by

K(t1) = P(ts=)H (t1) [H(t1 )P{t1-)HT (1) + R(ty)])-2 (2-15)

Equations (2-8) through (2-15) appear strikingly

similar to the Kalman filter equations, except the

measurement update times are not known a priori [25].
Instead, the measurement updates occur whenever an event is

detected, and the time interval is defined as a random

process.
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2.3 Multiple Mode]l Adaptjve Estimator
The problem with using the Snyder-Fishman filter is

that all the events are assumed to be signal-induced. To
incorporate the noise-induced events, Meer developed a bank
of Snyder-Fishman filters into a MMAE, where each filter in
the bank is associated with an individual hypothesis. The
hypothesis defines which events are signal-induced and which
are noise-induced. The result is a hypothesis tree with
each branch depicting a hypothesized noise/signal sequence,
and each branch has an associated probability that its
assumed sequence of events in fact occurred (see Figure
2-2). In other words, associated with each of these
hypothesis sequences could be a specific Snyder-Fishman
filter that performs measurement updates when it receives a
hypothesized, signal-induced event and ignores the
hypothesized noise-induced events (see Figure 2-3).

The state estimate out of esach filter is expressed as
R (t) = E{x(t)lhyet 2nt} (2-16)

where R; (t) is the expected value of the beam states, xs (t),
conditioned on the j-th assumed hypothesis time histories,
hy¥t, and the observations history, 2!, of events (t:.ri),
where 1 = 1, 2,...,Nt. Therefore, the overall state
estimate of the MMAE is the probabilistically weighted
average of the individual filter state estimates as

expressed by
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Bvent: signal-induced = 1, noise—induced = 0
¥t {(i): i = event number (sequentially numbered)
j = elemental hypothesis sequence
" Nt = total number of observed events
A
\ Signal h32 (2)=1
g: ha2={1,1}
4
E ha2 (1)=hs2 (1)=1
I
IB hz22={1,0}
-~ hz22 (2)=0
\ <
I
li hy2 (0)
hi12(2)=1
Q&\ h12={0,1}
F h12 (1)=ho2 (1)=0
i !
IR hi12={0,0}
Noise hi12(2)=0
4 .l | | ¢
to t1 t2

Figure 2-2. Hypothesis Tree [18]
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29t -1
R(t) = 2 Pr(hydt |Z2¥t] -8 (t) (2-17)
=1

with an MMAE computed error covariance defined as

Nt -
B(t) -2.! 1Pr[hJ"‘1Z"]-{2;(t)+[31(t)-3(t)]~[8¢(t)-g(t)]'l
=t (2-18)
The weighting probabilities, Pr[hy¥t |ZNt], are the
conditional probabilities that a hypothesis sequence is
correct, conditioned of the measurement history that has
been observed.
The weighting probability starts at to, with
Pr[(h;°}2°] = 1. The subsequent weighting probabilities

appear as:

xs (tk 'Lk ,g(tk)) or xN (tk l;k)

Pr(hy*t |2¢t] = “Pr[hyNt-1|ZNt-1]

Stk . Xx, R(tx))

(2-19)
where fs (tx,Ix . .R(tk)), An(te,xx) and RK(tkx.rx,R(tk)) =
8 (tk . Ix ,R(tx)) + fw(tk,rx) are estimates of the signal,
noise and total rate parameters, and Pr[h;*t|2¥t] is the
probability of hyNt conditioned on the most recent event
that occurred. The upward branches of the hypothesis tree
are based on the assumption that the most recent event was

signal-induced, and the downward branches of the hypothesis
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tree are based on the assumptions that the event was noise-
induced (see Figure 2-2). The estimate of the signal rate
a parameter, As (tkx ,rx,R(tx)), appears in the numerator for a

. hypothetical signal-induced event, and is found by

b evaluating Equation (2-1) for x(t) = 2(t). The estimate of
! the noise rate parameter, Ax (tx.,rx), is used for a

A hypothetical noise-induced event, and Afx = Axn. Because of
ﬁ the recursive nature of Equation (2-19), only knowledge of
pﬁ the most recent measurement is needed, rather than a growing
g memory of the entire history of measurements, for its
g evaluation [18].
2 2.4 Pruning the Hypothesis Tree

?".

At this point, all the equations of the Meer filter

have been derived in order to construct a full-scale

- particle beam estimator. The only problem is that we have
t;j developed a growing and soon to be unmanageable hypothesis

tree, because the tree must grow two branches for each event

to represent the possibility of either a signal or noise

-,

:j event. Therefore, if we have a total of Nt events, and Ni
update cycles, there will be 2¥! possible signal-versus-

by noise hypothesis sequences (frequently referred to as tree

*3 branches). The solution is to prune the hypothesis tree and
keep the number of branches at a manageable size. The two

proposed pruning algorithms are the "best half" and "merge"

methods.
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2.4.1 The Best Half Method [18] The

"best half"

method was the method Meer used in his dissertation to

achieve an implementable filter. 1Initially,

the hypothesis

tree is allowed to grow until it reaches a prescribed memory

depth of D. This produces a tree with 22 hypothesis

branches, with half of the tree originating from an assumed

signal-induced event, and the other half emanating from a

noise-induced event. With the (D+1)-th event, the

conditional probability weighting factors associated with

each branch are summed for each of these halves, and the

more probable half is accepted, and the branches of the less

probable half are eliminated (see Figure 2-4). The

probability weight is normalized for the retained half of

the tree so the sum of the retained probabilities will equal

one.

The estimates are propagated forward until the next

event, and the measurement update and pruning process occurs

again. By doing so, the tree never grows past the memory

depth of D.

2.4.2 The Merge Method An alternative
the "best half" method was proposed by Weiss
[26] and is designed to preserve some of the

that would be lost if the less probable half

eliminated. It is referred to as the "merge"

22

N e A I L R np
In X o ¥ MUR

M L (A% %

R

: ., TN A .\;‘

algorithm to
and associates
information
were

method because




g 3

¥, L0

| '
o}
[/
S
i )
~
"

e
~iR

-
.
et

EL A

RJ
) [l
) -
004
iy .d,"
e
L

I

X
Y {at
G
:" r:!
J‘

>
IR

o't

D)

N >
) {:\
) Y
.' ¢

s v

i W
I

Wi
I
N

{

)

“: E
y

' I
oy QN
v -:
71 I

&,

5 -~
LS
S

:l

2

A}j‘

£, PIREY 'c" . " K v
20 B b D0 L L ol R 41 LGRS AL A S

Signal
hat
4
ha!
Upper Half
Lower Half
hgt
L 4
........ hot
Noise
= | % s t
ti1-2a ti-2 tt-1 ti

Figure 2-4. "Best Half" Method

the hypothesis sequences that are identical to each other in
the assumptions made over the D-1 most recent events are
paired up. That is, each pair of hypothesis sequences
differ by the assumption made about the oldest event in the
current sequence, and when the sequences are merged, only
the oldest event is dropped. For example, if the hypothesis
sequence is defined as hy"t, where j = 0,1,2,...,2¥t-1, and
Nt is the total number of observed events, one entire

sequence could be written as

. ke | I .1
hs = {hj(1), hj(2),..., hy(Ne)} = {1,0,...,11 (2-20)
23
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All signal-induced events are represented by a "1" while

[y

noise-induced events are labeled with a "0". Continuing

with the example, it will be assumed that the memory depth

is limited to two (D=2), and the total number of observed

Aol

events is two (Nt=2). Then the hypothesis sequences would

!! be:
:3 ha? = (hs?(1), ha2(2)} = (1,1}
hz2 = {hz2(1), h22(2)} = (1,0}
g hiz = {hi12(1), hi2(2)} = {0,1}
e ho2 = {ho2 (1), ho2(2)} = {0,0] (2-21)
.
; As the next event is observed, Nit=3, and there would be
’ eight hypothesis sequences. If they are paired up by the
i D~-1 most recent events, the sequenced pairs would be

Pair 1: hs? = {[hs?2 (1), ha2(2)], h?2(3)} = {1,1,1}
! ha3 = {[hi2(1), hi2(2)], ha?(3)} = {0,1,1}
Pair 2: he® = {[hz2(1), ha?(2)], he?(3)} = {1,0,1]
& h2® = {(ho? (1), ho?(2)], hz3(3)] = {0,0,1}
- Pair 3: hs?® = {[hs2(1), ha2(2)], he?®(3)} = (1,1,0]
& hid = {[hs2(1), hi2(2)], hi2(3)} = {0,1,0}
;; Pair 4: he3 = {[hz2(1), h22(2)], h«®(3)} = {1,0,0}
&

I he? = {[ho2 (1), ho2(2)], ho?(3)] {0,0,0} (2-22)

To merge the paired hypothesis sequences, the oldest, i.e.

.

(Nt -D)-th, event is dropped, and the new weighted

probability is the sum of the probabilities of the

hihh

24
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individual sequences that were merged. The state estimates
and error covariances associated with each merged pair can

be found using the following equations:

R ' () {Prf{hy¥t |ZNt] .2 (t) + Pr(h«™t|2Z¥t].-R (t)]}/A (2-23)
By'(t) = {Pr[hy™t |28t].(By (t)+[Ry (t)-%s ' (t)]1 [ (£)-Ry"'(L)]T)
+ Prihe®t {ZNt] . (Bx (£)+[R ()-8 " () ][R (t)-&; "(£)]T)}/A

(2-24)

A = Pr[hy'Nt |2Z20t] = Pr[hyNt|2Nt] + Pr[hx¥Nt|2¥t] (2-25)

where
hy? and hx? denote the two different sequences
within each pair (see Equation (2-19): k = j + 2°
and j=0,1,..,(20-1)
D is the memory depth of the hypothesis tree after the
pruning process has occurred
' and P;' are the "merged" state estimates and
error covariances as the number of elemental filters
are reduced from 2°*% ¢to 2; 3' =0,1,...,(20-1)
Equation (2-25) must be normalized so that the sum of the
probabilities of each new estimate equals one. Figure 2-5
demonstrates the "merge” method. This method conceptually
has an advantage over the "best half" method because it
accounts for all possible time histories rather than
deleting half of the branches from a decision tree.

Unfortunately, it is computationally more burdensome.
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) 2.5 simplifying the Meer Filter

Zicker ran a performance analysis on the Meer filter

S

and found the Meer filter virtually insensitive to the depth

-
-

o parameter D. Varying D from D=1 to D=8 produced less

' than one percent change in rms errors. This is partially a
% function of using simple scalar first order Gauss-Markov
% model to define the beam centroid dynamics [17]. Assuming
; the first order beam model proves to be adequate, this

i insensitivity could be used to simplify the MMAE structure
(e of the Meer filter by limiting the depth to D=1, and

defining the filter gain, K(x*), as a function of the

e Ve, 0 0y ¥ B,
Wty .'m‘ T ARRRRIR TN DT NN T " .' B0 0, ¥ 20 o.\c.g.!.
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residual, r*. The insight comes from plotting K(z*)
verses r* as shown in Figure 2-6.

The mathematical development of the simplified
algorithm can be established in the following manner. 1If
the elemental Snyder-Fishman filter assumes that the event

was signal-induced, the beam state estimate is

R (t1*) = R (t1-) + K(t1) [ - Hi (1 )& (ti-)] (2-26)
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The probability it was in fact a signal-induced event is
pr1(t1) = Rs(t1,x1 ,R(t1)) / K(ts1,x1.,.R(t1)) (2-27)

using the notation of Equation (2-19). If the elemental
Snyder-Fishman filter assumed that the event was noise-~
induced, then fR2(ti1*) = R2(ti1-). The probability it was a

noise-induced event is
pal{ti) = Anlts,x1) / R(t1.,x1,R(t1)) (2-28)
Therefore, the adaptive beam state estimate is

Ra(tr*) = pr(t1)R (t1*t) + p2 (t1 )Rz (k1) _ (2-29)

= fa(ti-) + pr(t1)R(t1) [ = Hi (t1 )R (ta-)]

where Ra (t1-) = R (t1-) = R (t1-). Thus, the algorithm
involves a single Snyder-Fishman-like filter, but with a
modified gain of [p:(ti1i)K(ti)], and thus the gain is a
function of the residual as seen in Figure 2-6.

Higher order Gauss-Markov beam models should have a
greater sensitivity to D. Therefore, this simplification

may be limited to this simple case.
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2.7 Summary

The Meer filter is a Multiple Model Adaptive Estimator
{MMAE) that is based on a space-time point process model for
measurement events, and it can be used to estimate the
position of a neutral particle beam. The Meer filter
locates the beam by detecting the photo-~electric event
occurring from the spontaneously decaying excited particle
within the beam. The time between events is a Poisson
process, and this is properly modeled by the Snyder-Fishman
filter. Meer introduced the MMAER structure to handle the
noise-induced events which the Snyder-Fishman filter
neglected. Because there is no deterministic mechanism for
declaring whether an event is signal- or noise-induced, a
hypothesis tree was developed. The depth of the tree was
limited by incorporating either the "best half" or "merge"
method. The results from Zicker's research indicated that
the Meer filter could be reduced by limiting the depth to
one, redefining the filter gain as a function of the
residual, and eliminating the multiple model structure.

With the beam state estimator in hand, the next step is
to develop the controller(s) to regulate the beam and track

the target. The next chapter will address this.

29
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i III. CONTROLLER DESIGN

The next challenge is to design a controller which can

place the beam on the target. Zicker developed the first

=B

controller for this application [27]. It was a proportional

gain controller and was designed as an intuitive tool to

S

gain insight into the tracker problem. But, because the

=3

proportional gain controller does not have type-one

characteristics that allow rejection of unknown, constant

disturbances that arise from linearized models, Moose
developed a proportional-plus-integral (PI) controller

[20] . Jamerson carried on Moose's research, and developed a
i different PI controller based on a more reélistic target
model [8]. Although the PI controller could reject constant
- unmodeled disturbances, it did so at the cost of additional
9 sluggishness and had difficulty tracking a highly

maneuverable target. The next step will be to develop a

=
=

7 Multiple Model Adaptive Controller (MMAC) to handle
- parameter uncertainties caused by a highly manueverable
E% target that can display rapid variations from a benign
E trajectory to evasive maneuvering.

All the controllers are based on the same fundamental
'g assumptions: a linear system model, a deterministic optimal
n control law, full state feedback, and a quadratic cost
a criterion. The regulator's gain is based on a backward
33 Riccati difference equation, assuming all the particle beam
™ 30
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states are perfectly known. Then, by assumed certainty
equivalence, the full state feedback is replaced by a
filtered or "observed" state feedback provided by the Meer
filter. The tracker portion of the controller is designed
around the regulator, and directs the beam from the
regulator's zero setpoint onto the target, using target
state estimates generated by a Kalman filter.

Because the target model is used to developed the
trackers, it will be presented first, followed by the
proportional gain, proportional-plus-integral and the
multiple model adaptive controller designs. The controllers
are developed in the general vector form and then reduced to
the specific one-dimensional tracker problem model that will

be used during the analyses.

3.1 Target Model
Zicker [27] and Moose [20] designed their controllers

for a simple target model composed of a first order Gauss-
Markov position process. Research centered around
feasibility studies and the emphasis was on gaining the
knowledge and insight required to develop a realistic
controller. Starting with Jamerson [8], the emphasis
shifted to a more realistic target model built around a
first order Gauss-Markov acceleration process. The linear,

time-invariant state-space representation of this model is

xr (t) = Exr(t) + G we(t)
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Xre (t) 0 1 0 Xre (t) 0
Xrv (t) = 0 0 1 Xrv (t) + 0 wr (t) (3-1)
Xra(t) 0 0 -1/7+ Xrat) G

where

Xre (t) is the target position state

xrv(t) is the target velocity state

xra(t) is the target acceleration state

Tr is the acceleration correlation time constant

wr (t) is a zero mean white Gaussian noise of strength

Qr associated with the target

F is the matrix that describes the system's dynamics

G is the matrix that maps the white noise effects into

the state vector.

Equation (3-1) has three poles, of which two are at the
origin of the s-plane. This equation of target motion is
inherently astable, and the target is uncontrollable by the
control input, u{t); therefore, the steady state Riccati
equation used to generate controller gains may not have a
solution [10,14]). All modes must be stabilizable to
guarantee a solution of the steady-state Riccati equation.
To insure a solution, the following sections will move the

two poles at the origin of the s-plane to the left by some

small epsilon. This will guarantee a solution for the

g steady state Riccatl equation, but not affect the filter's
-~ development.
pa

In order to use the target equation of motion defined

by Equation (3-1), the target position will be measured as a

P

discrete function defined by

z(t1) = Hr(t1)xr(ti) + v(ty)

32
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xre (ti)
z(t1) = [ 10 0 ]| xev(ts) + vity) (3-2)
xXra(ts)

where [ xrr(ti1) xXrv(ti) xra(t:) ]T 4is the target state and
v(ti) is a discrete-time zero-mean measurement corruption
noise with a covariance R, and is assumed to be independent
of the dynamics driving noise in Equation (3-1). How the
target is actually detected and located is beyond the scope
of this thesis. Between measurements, the state estimate

and covariance matrix are propagated forward in time by
Rr(t1es-) = Or(t1+1,t1 )R (t1*) (3-3)

Pr(ties=) = Or(tres,t1)Pr(t1+2)@rT (t1+e1.,.t1)

€+
+ I Or(t1+1,T)Gr (T)Qr (T)Gr T (T) QT (t1+s,T)AT (3-4)
ts

where ®r (t1+1,t1) is the state transition matrix associated
with F in Equation (3-1). During the measurement update,
the state estimate and covariance matrix are updated by
Rr(t1*) = RKe(ty-) + K(ts1)[2(t1) = Hr(t:1 )R (t1-)] (3-5)

Pr(ti*t) = Pr(ti-) - K(t1)Hr (t1)Pr (t1-) (3-6)

K(ti) = Pr(ti-)Hr?(t1)[Hr (t1)Pr(ts-)HrT(ts1) + Rr(t1)]-1

(3-7)

33
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where the initial conditions were

R(to) = Ro P(to) = Po
and the subscript "T" denotes "target."

As with any Kalman filter, if the measurement noise
variance R(ti) is increased, then the filter must rely more
on the dynamics and propagation equations. In a similar
fashion, if the driving noise strength Qr is increased, the

filter must rely more heavily on the incoming measurement.

3.2 Proportional Gain Contxoller

If we had a linear quadratic Gaussian (LQG) stochastic
controller problem, we could use the certainty equivalence
property. But, the adapative mechanism in the Meer filter
violates linearity; <therefore, we must use the assumed
certainty equivalence methodology [14]. It allows us to
synthesze a sub-optimal, non-linear stochastic controller by
generating the associated optimal deterministic full-state
feedback controller, and then replacing the actual states
with the conditional mean estimates from the stochastic
filters.

3.2.1 Proportional Gain Regulator The function of the
regulator is to drive the states of the beam to a zero
setpoint defined as the center of the detector array. The

linear discrete-time state equation that defines the beam is

Xa(tie1) = Op(t1ea,t1)xe(ts1) + Ba(ti)us(ty) + Gawa(ty) (3-8)

; FIINICWNC
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where
Xs (t1) is the position of the beanm
u(t:) is the control applied over the next period from
t1 to tis+a

Wwa (t1) is a zero mean white Gaussian discrete-time
stochastic process of strength Q4, where

t1+1

Qa = J O (t1es,T)GB(T)QB (T)GeT (T)®BT (t1+1,7)dT
t

(Note that the Snyder and Fishman filter defines dynamics

driving noise strength as G(t)GT (t); therefore, Qs (t)=I.)

The discrete, optimal deterministic control law, assuming

perfect knowledge of xs (t1), is
u* (ti1) = -Ge* (t1)xs (t1) (3-9)

where Gc* (t1) is the optimal controller gain. Because we do
not have perfect knowledge of the beam position state,
xs{(t1), it is replaced by the conditional mean of the beam
position state, % (t1), which is provided by the Meer
filter. This is done in accordance with the assumed
certainty equivalence synthesis methodology. The result is

a discrete, optimal stochastic control law:
U* (ty1) = =Ge* (t1)Re (t1) (3-10)

The controller's optimality is defined by minimizing a

quadratic cost function defined as
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J = Bl T %IxT(t1)X(t1)x(t1) + ur(t1)U(ti)u(t1)]
1=0

+ BXT (tuer )Xr (twer ) x(tuey) (3-11)

where
X(tx+1) is the final position to be achieved
x(t1) is the position at time t;
X and Xr are n-by-n constant weighting factors
defined as a positive semi-definite matrices
U is an r-by-r weighting factor defined as a positive
definite matrix
The controller gain, Gc (ti1), in Equation (3-10) is generated

by solving the backwards Riccati recursion

Ge* (t1) = [U(t1) + BaT(t1)Rc(ti+1)Ba(t1)]-?

[BaT(t1)iz(tis+1)®p (t1+1,t1)] (3-12)

Re(t1) = X(t1) + ©T (t14+1,t1 )Re (t1+21)

[®T(t1+2,t1) = Ba(t1)]) Ge* (t1) (3-13)
solved backwards from the terminal condition
Kc (twsr) = Xr (3-14)

The resulting equations are sufficient to define the beam
regulator as depicted in Figure 3-1.

For simplicity, the problem will be reduced to one
physical dimension. That is, the beam and target models

will be confined to one-space, R!, and Ba, Ge¢ and X(ti)
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Figure 3-1. Proportional Gain Regulator
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will be scalars equal to one. The reascn the weighting

matrix X(ti) can be reduced to unity is that the X/U ratio

R

is the important factor in determining the steady state

Lo

gains, and, for the scalar case, either the numerator or

-
-

denominator can be set to one, and the other weighting

P
¥

function adjusted to maintain the proper ratio. This

e e -t

L=

simplification is limited to the scalar case.

With these simplifying assumptions, the general

> . PR
- e e

o

regulator equations reduce to:

=y

IS xp(tier) = Gpxs(ti) + u(t;) (3-15)
gL
[ ]
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o . ® = expl(-(ti+1-t1)/7e] = exp[-at/7s] (3-16)
S u(ti) = =Ge* (ti1)Re (ty) (3-17)
A IR

2

» & Ge* (t1) = Ko (ti+1)® / [U + Ko (t1+1)] (3-18)
OO

AN

NN

A A Because this is a pure tracking problem without a well

q defined terminating point, the solution in found by

) ‘:\'.

N determining the steady state solution to the backward

\l

i Riccati difference equation (i.e., solving for the positive
t root in a quadratic solution):

-’"

M
‘: -

Y

o i Re {t1) = Ke (t1+1) = Kc

- '-‘

T Ke?2 + Ke [U(1 - @2) - 1] - U =0 (3-19)

L5

3.2.2 Proportional Gain Tracker Now we wish to

2

» < extend the regulator to a tracking problem using the same
=

“ ' LQG synthesis process. The goal is to minimize the

..-' &‘ difference between the controlled beam variables, yc, and
s

:’:: the target or reference variables, yr. The variables are
v, -

VA the linear transformations of the states of the beam and
s' - target states expressed as:

N

N

s

> “ ye (t1) = Ce (t1)xs (t1) (3-20)
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yr{ti) = Cr(t1)xr(t1) (3-21)

and the difference between them is referred to as the

tracking error, expressed as

ef(ti) Ce(ti)xs(t1) - Cr (t1)xr(ty)

[ Ce(t1) -Cr(t1) ] [ xe(ty) xr(ty) 1T

Ca (t1)Xxe (1) (3-22)

The tracking error shall be regulated to zero by way of

minimizing the tracker augmented cost function defined as
N

J = E{ I %[XeT(t1)Xa(ti)xa(ts) + ut(ts)U(t1)ults)]
1=0

+ MXe T (twer ) Xra(tuer)Xa(trner) (3-23)

where
La(t1) = CaT(ti)Ya(t1)Calts)

Xra(ti) = CaT(tuer)Yra(twes1)Caltuer)
Assuming we will have perfect knowledge of both the beam

states and target states, we can obtain the full-state

proportional gain control law of

u*(t1) = = [ Ger*(t1) Gez*(ti) ] [ xe(ty) Xr(ty) 17

= -~ Ger*(t1)xe(t1) - Gea2* (ty)xr (t1) (3-24)
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The solution to the augmented gain matrix is solved by an
augmented backward Riccati recursion:

- -1
Re11 Kc112 Ba

Kfciz2 [Kcz2:2 Q

[ Ge1* Ge2* ] = (U + [ BaT Q]

Re1: Re12 o O
Efc1z2 Kecz:2 1] o

« [ Ba™ Q]

= [U + BaTKc11Bal-t-[ BaTRc11®c BaTRc129r )
(3-25)

Re11({t1) = CcT(t1)Y(t1)Cc(t1) + ©cTKert (t1+1)Qc

= ©cTRcis1 (t1e1)Ba(t1)Ger*(ty) (3-26)

Re12(t1) = —CeT(t1)Y(t1)Cr(t1) + QcTRc12(t1+1)®r
=Ge1*T(t1)[ BaT(t1)Kc12(t1+1)®r ] (3-27)

where @®c is the beam state transition matrix, ®s (ti+1,t1)
is this application, o is the target state transition
matrix, ®r(ti+1,t1), and Equations (3-26) and (3-27) are

solved backwards from the terminal conditions

Reia(tner) = CeT(tuat)Yr (tnes)Cec(tuer) (3-28)

Re12{(twer) = =CcT(tns1)Yr (tne1)Cr (tner) (3-29)

- ad




b ﬁ By carefully partitioning the augmented backward

N\ -

#

Y Riccatl recursion equations, one can see that the solution
' for Ge1* (t1) is identical to the feedback gain, G* (t1),

e found in the regulator (Note: Equations (3-25) and (3-26)

are similar to Equations (3-12) and (3-13)). Thus, Kci1 and

e

Ge1* are independent of the reference variable being

: tracked, and they are found by solving the deterministic

5
-~ S

134

regulator design. The tracker gain, Gcz, is determined from

Equations (3-27) and (3-29), and is a function of the

=3

feedback gain and the reference variable:

B T W - -

| L]

Gez* (t1) = {U(t1) + BaT (ty1)Kc11(t1+1)Ba(ts)i-1?

- e BaT(t1)Kec12(t1+1)®r (t1+1,t1) (3-30)

PR

ko
A

The resulting tracker model is diagrammed in Figure 3-2.

v
B

Once again, the thesis problem will be reduced to one

-~ o CA X )

dimension, and the tracker error will be the scalar
' difference between the beam and target positions. As
foretold, the regulator design will provide the feedback

gain, Gc1*. The problem setup is as follows:

o
5
) I =X (3-31)
b
2
Ce =1 (3-32)
A
b,
V Cr=[100] (3-33)
5 a
Co = [ C ~Cl=[1-1 0 0] (3-34)
T
;¢
R
K = 41
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X114 -X11 O 0
Xa = CaTYCa = X111 X1 O 0 (3-35)
0 0 0 0
0 0 0 0
xs (t1)
u* (t1) = = Gec1* Geczer* Geczv® Gecaza* 1| xre (ty) (3-36)
xrv (t1)
Xra(ts)

The form of the augmented weighting matrix, Xa, can be

intuitively verified. We are trying to drive the quantity

e(ty) = xp(t1) - xrp (t1) (3-37)

towards zero, so the quadratic penalty placed on the error

is

X111 -X11 xs (t1)
KX11e(t1)2 = %[ xs(t1) xre(t1) ] (3-38)
-X1: X1 xre (ts)

which is the upper left block of Equation (3-35). The rest
of the elements in X« should be zero because we wish to
disregard the velocity and acceleration components of the
target when we calculate the error and the control input.
By restricting the tracker design to a time-invariant
system with a target model driven by a stationary noise and

by implementing constant cost matrices, we can solve for the

v steady state tracker gain Gc:*. As in the regulator




design, Ba 1is set to one. The beam state transition matrix

o {2

K is a scalar function decribed by Equation (3-16), where T1s

is the time constant.

The target state transition matrix, ®r (ti+:,ti), must

RS

¢ be stable to find the steady state tracker gain, since the

augmented system must be stabilizable. If the target state

“B

transition matrix has any poles on or outside the unit
circle {(z-plane analysis), then the augmented system model

will have modes that are astable or unstable, and

w5 A

s uncontrollable. Because the original target state

s_ ﬁ: transition matrix would be astable, we have to move the two
- poles at the origin of the s-plane left by some small e.

3 7 The modified F matrix from Equation (3-1) is

:

. E'=| 0 -¢ 1 ' (3-39)
D ‘v:\ 0 0 "l/T

5 @

’!

H ! The resulting state transition matrix is

Y

A

K} '

A Or (ties,t1) = J=1 ([ 8L - F' 1-'} = or (3-40)
i 3

5‘ »

a s where J-1{.] represents the inverse Laplace transformation.
N

: f]

k. Previous experience found that the value of ¢ = .0001

L ﬁ ensured at least an order of magnitude difference between

~ L S

" the poles forced away from the origin and the exponential

W

e g time constants of either the target's acceleration, 1r, or

; & the beam's position, 71s.

R
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As a result, the tracker gain equations can be reduced

to

Gez* = Kc129r / (U + Kc11) (3-41)

Ke1z = [ Xa1 0 O ] + ®pTRe12®r = Ge1*TRc129r (3-42)

3.3 Proportional-Plus-Integral Controller

Because a proportional gain controller could not handle
constant unmodeled dAisturbances in the system, Moose
developed the type-one, proportional-plus-integral (PI)
controller. The PI controller design includes many of the
same assumptions used in the proportional gain controller.
Both the PI regulator and tracker are designed on the basis
of linear system models and quadratic cost functions, and
they both implement steady state controller gains. Once
again, assumed certainty equivalence is used and the Meer
filter provides the particle beam state estimate while a
Kalman filter provides the target state estimate.

3.3.1 Proportional-Plus-Integral Requlator The
function of this regulator is to guide the beam state to
some definable setpoint, ya. This setpoint can be non-zero
but, for this application, the setpoint will be defined as
zero. To handle a definable setpoint and unmodeled step
disturbances, the regulator augments a set of pseudointegral
states to the original plant state equation. Because we are

using a discrete system, a true integration process is not

45
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possible. 1Instead, a pseudointegral or summation process is
used to provide a type-one control, able to drive the steady
state mean of the regulation error, [yc (ti)-yr(ti)-ya], to
zero, even in the face of unmodelled constant disturbances
affecting the plant. Note that for the regulator, the
reference state, yr (ti) is equal to the zero vector. The

pseudointegral is defined as

1-1
g(ti) = g{to) + I [yc(ty) — ¥r(ty) - yal
3=0
= g(ti-1) + [yc(t1) - yr(t1) - yal (3-43)

Figures 3-3 and 3-4 demonstrates how the pseudointegral is

implemented in the PI controller.

Ya
yr(t1) ;;‘L, -q(t1)
" +
- X
-q{t1-1)
ye (t1) DELAY

Pigure 3-3. Pseudo-integral Term
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The PI control law is found by augmenting the
pseudointegral (Equation (3-43)) with the beam state

(Equation (3-8)) to form

Ke(tr1eg) = GaXa(ty) + Baau(ti) + Daya + Gdawa (t:)

xs (t1+1) ® Offxs(ti) Ba Q Ga
= + u(ts )- Ya+ wa (t1)
gl{ti+r) Ce Illgfts) 1] I o

(3-44)

The cost function retains the same structure as before, but
includes a quadratic weighting on the pseudointegral in

augumented form:

N
J = Bl T KIXaT(t1)Ka(ti1)Xa(t1) + ut (t1)U(Lt1)ul(ts1)]
120

KlXeT (tuer)Xra (tneg)Re (tner)} (3-45)
The optimal control law
ul{ti1) = ~Geca* (ty1)xa(t1) + Eyd {3-46)

minimizes the cost function. The solution to the optimal

gain functions are [14]

Gea*(t1) = [ Ger*(t1) Ge2*(t1) ]
= (U + BaaTKc(t1+1)Bdal-t[BaaTKc(t1+41)®a(tre1,t1)]

(3-47)
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:‘, E= [ Ge1*(t1) - Gea*(t1)Ke22-t(t1)Kc12%(t1)]Ms2 + Q22
(3-48)
' where
s -1
. s M2 (Ps(t1e1,t1) - I} Ba
o= = (3-49)
g Ny Q22 Ce 0
3‘5 Kc (t1) is derived from the backward Riccati difference
equation
X
-
% Ke11 (1) K12 (t1)
b Ke (t1) =

Kc127(t1) [Kezsz(ti)

z = %o + ©aT(ties, ti)Ke (E1v1)Q0 (Erv1,t1)
i - [BaaTRc(t1+1)@a(ties,t1)])TGec* (t1) (3-50)
i%
E; E; solved backwards from Kc (twe1) = Xta.
ﬁ If we assume a time-invariant system model and use
! constant weighting matrices, the regulator can be designed
\.5 with steady state controller gains (provided the gain
A) transients are short compared to the total time interval of
? interest, which is the case for this application). Because
- the tracker design will develop different controller gains,
51 the specialization to the one-dimensional problem has been
gi omitted.

)
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o 3.3.2 Proportional-Plus-Integral Tracker For the PI

. tracker, we want to use the same PI controller structure as

R found in Figure 3-4 while implamenting the tracking error

PN

po equation used for the proportional gain tracker,

o e(ti) = Ca(ti)xe(ts)

b 2 = [ Cel(t1) =Cr(t1) ] [ ReT(t1) XeT(t1)]T (3-51)

1

f @ where Cs is an augmented matrix, and x. is an augmented

fi § vector that include the beam state and the target state. 1
? “ 1‘
. Unless we wish to offset the beam from the target centroid ‘
:: Q; (as to track some other appropriate point on the target or !

to lead the target), the set point, ya, will be defined as

Wad

the zero vector. The remaining tracker development closely

~ follows the PI design.

----.---
.y-
L

The PI control law is determined from the discretized,

! augmented system equation
N
'S Xa(ties) = Qaxa(ti) + Baau(ty) + Daya + Gaawa (ti)
= |
1 ;:‘ xs (t1+1) ® 0 Oflixs(t:) B4 1] Ga
’ Xr(ti=1)]| = |0 Ot Offxr(t1)|+]|0 |u(t1)-|0|ya+]0 |wa (t1)
. gltier) Ce =Cr Iflal(ty) 9 I Q
]
(3-52)

f - where
l’ -”
: xre (t1)
I Xr(ti) = | xev(ty)

Xra(ts)

RO

: |
a = 50 ;
£ |
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Equation (3-52) is composed of the beam state Equation

(3-8), the discretized form of the tracker state equation

(3-1) and the pseudointegral Equation (3-43) in which yc (t:)

&, is expressed in terms of Xa (ti). As mentioned before, the F
@ matrix of Equation (3-1) is astable and the poles will be

g moved to the left of the s-plane origin.

.. Again, the cost function retains the same basic

% structure, but now it includes both the tracker and the

<§ pseudointegral cost terms. Because we are using the same PI
= control structure defined by Figure 3-4, the optimal control
:S law, Equation (3-46), and the solution to the optimal gain
- functions, Equations (3-47) through (3-50), are still valid
:7 and will be used to design the PI tracker.

As was done with the the proportional gain tracker, the

o

PI tracker will be restricted to a one-dimensional, time-

£
»

invariant system using constant weighting matrices. The

,w
[N

first restriction simplifies the problem substantially. The

R
<

controlled variable, yc, the reference variable, yr (ti), and

the setpoint, ya, are scalars defined as

~

l“.

¥ Ye (t1) = x» (1) (3-53)
yr{t1) = xrp (1) (3-54)

-~

A ya = 0 (3-55)

’ The latter two restrictions along with a decision to ignore

a short transients in Riccati solutions allow the problem to

be solved using steady-state constant gains.

g 51
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The PI tracker problem setup is as follows (see

Equations (3-20) and (3-21):

Co =[C -Cl=[1:-1 0 0] (3-56)

The state transition matrices of the beam and target are

o = expl[-(ti+1-t1)/718] = expl-at/Ts] (3-57)
-1
s+¢ -1 0
O = L'{[ sI - F' ]-t} = ! 0 S+sg -1 (3-58)
0 0 s+l/71r

The augmented transition matrix is

®%: 000 : 0
0 ; : 0
Qg = (I oy : 0 (3-59)
0 : : 0
1:-100 :1
L i

To be consistent with Jamerson's derivation [8], Ba is not

assumed to equal one, but is derived from the continuous

model:

ti1+1
Ba = ®s (t1+1,T7)BAT = Bre (1-08) (3-60)
t

52
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oy where B=1, and the discrete, augmented control input matrix,

) P
o e 4

Ed. ’ iB

AR WY

o

N Bia = [ Ba 00 00 ]° (3-61)
N
o
L)
< ‘ Because the cost weighting function includes a cost
4 "
- , weighting term on the pseudointegral state, Equation (3-35)
O must be redefined as
o :3
Y
. i 7
Ve X112 -X11 O 0 0
" @ X112 X121 0 0 0
a Xa = 0 0 0 0 0 (3-62)
X . 0 0 0 0 0
oy 0 0 0 0 Xss
b . L -
%) -
P
N
:- The optimal control law that minimizes the cost function is
W
g A
Pd
W l u(ti) = =Ge* (t1)Xe (t1) + Eya
W . -
: xs (t1)
AN xre (t1)
(- - = —[Ge1* Gc2*]| xrv(ts) + Eya (3-63)
"W xra(ti)
: L
1 q(ty)
S - -
S
\) ';q
S where Gei1* = [ Gc1s* Geirep* Getv* Geia* 1. The steady
,." *,: state controller gains are found by solving
b
* ‘.’
-
v v
! "ﬁ Ge* = [U + BaaTKcaBdaal=! [BdaTKca®a]
,. . = Ba (ki1 kiz kis Kie« kKis]®a / (U + Ba2k;1) (3-64)
S
e A
'0
) > 53
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i E = [Ge1* - Ge2*Ro127/Ke22]1l12 + [la:z (3-65)
o where
M
-1
Iy, a2 o -1 [+] : Ba

) = 0 o -1 : 0

a=f | j=-==-=-=---- - - (3-66)
o Ix: Qiz2 Ce -Cr : 0
g
g Ece is the steady state solution to the backward Riccati
@ difference equation, and the solution is found by solving

Equation (3-50) with the successive values of Kca equal to
"
‘_‘ one another:
i Reo = Xa + ©aTKca® -~ [(BaaTRca®a]?Gc* (3-67)
Py .
LY where the elements of Kca are defined as
' | 1

ki:s K1z kia Kie : ki

i ) R Ke12 k21 ka2z kas Kk2a : kso
"~-: Kca = = kai kaz k3sa ki« : kas (3-68)
k‘n Kc13T [Kcazs Kei1 kaz kas kaea : kas
» ks: ksz2 ksa kse : kss
’ - -
-,
T
w Table 3-1 contains the PI controller gains used for the
.‘{: sensitivity and robustness analyses (to be discussed in

Chapter 4).
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TABLE 3-1

Calculating the PI Controller Gains

1. Problem Setup
s = 20 Tt = 10 e = ,0001
U =1 Xi1= 100 Xss= 10
2. Bda, ®, Keca and [ Matrices
Baa= [ .97541 0.0 0.0 0.0 0.0 ]
.95123 0.0 0.0 0.0 0.0
0.0 .99990 .99990 .48371 0.0
Qo = 0.0 0.0 .99990 .95158 0.0
0.0 0.0 0.0 .90484 0.0
1.0 -1.0 0.0 0.0 1.0
138.57 -138.63 -1.0092 .21089 37.367
-138.63 151.13 62501 624373 -37.370
Kca= -1.0099 62501 6.25*%10° 6.25*%10% -.00963
20405 624373 6.25*10% 6.25*%101° _69494
i 37.367 -37.370 -.00946 .69654 47.099
-
3.01*10-7 -10001 -1.00%107-1.00%10% 1.0000
3.01*10-7 -10001 -1.00*107-1.00%108% 1.8%10-°
1 = 0.0 0.0 -10001 -1.00%*10% 0.0
0.0 0.0 0.0 -10.508 0.0
1.0252 -500.02 -5.00%106-5.00%107 .05000
L o
3. PI Controller Gains
Ge = [ 1.2422 -1.2921 -1.0252 -.49800 .27436 ]
B = 1.074560
Note: ¢ is the distance that the two poles are moved left
of the origin (see Equation 3-39)
Bae is calculated from Equations (3-60) and (3-61)
® 1is calculated from Equations (3-57) through
(3-59)
Kca is calculated from Equation (3-67) - note the
numerical precision that is required
I is calculated from Equation (3-66)
Ge 1is calculated from Equation (3-64)
B is calculated from Equation (3-65)
55
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3.4 Reviewing the Cost Weighting Matrices

v Bxs

This section will re-evaluate the quadratic cost

function in both the proportional gain and the PI trackers

%I in the hope of selecting a set of weighting matrices that
%

will improve the robustness of the trackers. We will start
g with the more complex PI tracker cost function, and reduce
o~ the general quadratic cost equation to the present form
ﬁ expressed by Equation (3-45). After reviewing the
Nl relationship between the elements within the weighting
P

matrices, we will draw the analogues applicable to the
ﬂ proportion gain tracker cost function.
N The general form of the PI cost function is
~
i T

N x(t1) X1t Xiz S:{ixr(ti)

J = I Klg(ts) Xi2T X222 Sz ||g(t1)

- 1=0 uf(ty) S1T ST U |ful(t:)

P )

T
+ |x(twer) 11 Xriz2 | |X(twes) (3-69)
g(tusr) Xr127 Xr22 | |g(tuer)

%

-~ To generate a steady state control law, we can let N

g approach ». As a result, the Xr matrix will not effect the

g overall cost function, and can be dropped from any further
consideration.

kf The § cross terms have two origins. First, the § term

~ arises from the coupling between the control input, u(ti),

u the pseudo-integral vector, g(t:i), and the dynamics state
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:1 vector, x(ti1). This coupling arises from the linear
relationship of the filter model, such as,

i

N X = -(1/7)xx + uk (3-70)

*

ﬁ and there might be a desire to put a quadratic cost on the
scalar quantities such as x that are linear combinations of

{ﬂ:’{ u, g and x. Second, the § term is frequently used to exert

= control over continuous-time dynamics for the entire sample

e period and not just at ti [14]. The significance of this

3 contribution to the S term depends on the sample rate. As
the sample rate is increased, the § term's contribution

32 approaches zero. Por the controller designs in this

application, it is assumed that the sample rate will be high

mx:

enough to make the § terms insignificant. Without the S

E§ terms, Equation (3-69) assumes the form found in Equaticn

' (3-45) .

g What remains to be evaluated are the X. and U cost

- weighting matrices required for the PI tracker steady state
o)

~ gain functions. The Xa matrix is defined as a positive

“ semidefinite weighting matrix that assigns a cost to the

;' tracker error between xs (ti) and xre (ti1). Therefore, there
éi is no reason to weight the cross product terms resulting

from the target velocity or acceleration, and their elements
are set to zero as depicted by Equation (3-62). The Xii

elements weight the present position error between the beam

0 S5

and target and Xss weights the pseudointegration value of
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those errors. Non-zero Xss allows the controller to have
type 1 versus type 0 properties, which are desirable in
tracking. If Xss is smaller than X::, this tells the
controller to place a greater emphasis on minimizing the
integral of past errors. Therefore, the response to a large
positive error history at ti would be a large negative
control input. Unfortunately, this can cause a very
oscillatory response and a large initial overshoot that
could drive the actuators into saturation [8]). If this were
to occur, the oscillatory response can be dampened by
increasing Xss.

The U matrix places a penalty on the control energy
expenditure, and U must be positive definite. Because we
are limiting the design to one dimension, U becomes a
positive scalar. This leaves only three cost weighting
elements, Xi11, Xss and U, to be evaluated. If one of the
elements is set to a constant value, then a robustness
analysis can be conducted over the range of the remaining
two elements. In other words, the selection of alternate
weighting matrices that have the best robustness
characteristics does not require us to evaluate the the
three by three cost weighting matrix depicted by Equation
(3-69), but instead requires us to confine our attention to
a single relationship with only two unknown variables.

These findings can be extended to the proportional gain
tracker. Since the proportional gain tracker does not have

a pseudointegrator, it does not have a pseudointegral
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weighting element. Therefore, if we set U to a constant,

then we only need to vary Xi1: to determine the best set of

s s

cost weighting matrices.

D g0 The method of selecting a set of weighting matrices is
‘. ,I‘
I based on the simple sum of the quadratics on all the

£

quantities of interest at each sample period. Therefore,

-
.
“

any deviations from zero are penalized. If we had to design

! § a system with specified performance limitations, we would
y :5 pick the initial cost weighting elements as one over the
i & square of the maximum allowable value {[(14]. From there, the
',E "f: controller's cost weighting matrix would be tuned according
: to the results of a performance analysis. Without
T

“e

prescribed design specifications, the cost weighting

elements will be selected to minimize the RMS tracker error

-

which will be calculated during the initial performance

analysis (refer to Section 4.4).

s

There are several alternative methods of selecting cost

weighting matrices. First, with a controller feedback

-

sample period of one second, it might be desirable to

S

-

include the cross terms in order to provide better control

:E E over the entire sample period. Second, the weighting

3 ) matrices can be selected on the basis of their impact on the
:: 23 closed-loop system's pole placement. The effects this can
:. ; have on stability and loop shaping can be observed by

i ’ evaluating the effects different controller gains could have
j: ﬁ on the controller transfer function (see Equation (6-13)).

y ‘ Two formal techniques which exploit this are implicit model
x
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;

y j.' following [2,16,19] and the LQG/LTR Dual Method of

2. Kwakernaak and Sivan ([10]. Further discussions on these

..» . techniques has been included in

’ 5 S; Appendix A.

K . 3.5 The Multiple Model Adaptive Controller

. & The previous two controller designs had difficulty

: ‘,};: tracking a target transitioning from a benign trajectory to

an evasive flight path because of the dynamics noise

4

strength parameter uncertainty induced by the increased

»
»

¥

’;" 'Q: maneuvering. That is, if a non-adaptive Kalman filter were
A & tuned to a target flying straight and level, it will have

:' _'f. great difficulty tracking the same target as the target

:.:: b_* tries to evade the tracker with a series of high-g jinking
: ‘ maneuvers. The reason is that the filter's parameters such
3 . as the target's acceleration time constant and the dynamics
g S noise strength will not be representative of the new

) ! target's trajectory. One method to improve a system's

% : performance is to construct a multiple model adaptive

f '::’: controller (MMAC). This section will start out by

« developing the general MMAC model and then tailor it to the
tracker model that is used throughout the thesis. The

i.;; uncertain parameters of initial interest are those

- associated with the target. Thus, the multiple model

: :'-j structures entail replications of the Kalman filter or of
" o the entire controller.

o 4 3.5.1 Derjvation of the Multiple Model Adaptive

:E a controller The MMAC is based on the premise that the

s 60
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robustness of a controller can be improved if the controller
can provide on-line estimation of the uncertain parameters
defined as a(t). The uncertain parameters can affect any
or all of ¢®, Ba, H, Q¢« and R, and thereby induce erroneous
estimates of the state and the error covariance in a non-
adaptive filter. As a result, we may not be able to design
a single controller model exactly. Instead, we may find it
possible to design an adaptive estimator/controller.

One means of generating an adaptive stochastic feedback
controller is by designing a MMAE-based adaptive controller
with adaptive controller gains, Gc* [t: ,8(t:1*)] (see Figure
3-5a). The concept is that the MMAE provides a state
estimate, £(t1*), and an uncertain parameter estimate,
d(t1*), based on the past measurement history, Zi. The
adaptive controller gain is calculated from the uncertain
parameter estimate (gains are precomputed as a function of
assumed parameter values, and then those functions are
evaluated based on &(ti*)), and the control input, u(ti), is
calculated from the product of the state estimate and the

adaptive controller gain, as:

ults) = =Ge* [t1 ,8(t1)]R(t1*) (3-71)

If the uncertain parameters were confined to the
dynamics driving noise and the measurement corruption noise

statistics, then Gc* (ti) is not dependent on 4(t:), and a

non-adaptive controller gain, Geco* (t1), is appropriate (see




a)

{atey /), all ¢y € [t 1n]}
(1)) J |
= "] Statc and parameter {"_  +
- A i . ulT;
ulti- ) »| cstimator XU )¢ - G:*[n; {n(r,/r,)}] () -
u(ti-) u(t;)
Onc-sample memory |+
b)
Z(rl)
ult 1) Stqrc and parameter (1) o(z)
: cstimator b———— -G -
u(ti-¢) w(t,)
Onec-sample memory |«
‘J
<
_:J
-} Pigure 3-5. Adaptive Stochastic Peedback Controller:
(a) With an adaptive feedback gain. (b) With non-adaptive
gain.
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Figure 3-5b). On might also choose to implement a nominal
gain Gco (ti ) rather than employ an adaptive gain, using
adaptivity only to improve the accuracy of the state
estimate. Last, one might assume steady-state conditions
and use a steady-state controller gain, such as Gc* (3) or
Geo*.

By extending the concept of an adaptive stochastic
feedback controller, we can generate the multiple model
adaptive controller (see Figure 3-6) [1,4,13,14]). This is
done by replacing the bank of Kalman filters, used to
estimate the state and uncertain parameters, with a bank of
LQG controllers. Each controller is based on a particular
set of parameter values, ax (ti), where k identifies the
controller within the bank. Within each controller, a state
estimate, R (ti1*), is computed by a Kalman filter based on
the parameter value, ax, and is multiplied by the
appropriate steady-state gain, Gc* (ak), based on the same
parameter assumption. The result is an optimal control law

conditioned on ax being the true parameter:

Uk (t1) = -Ge* (ak )R (t1*) (3-72)

The adaptive control is generated by adding the

probabilistically weighted ux (ti) values; as shown at the

right most summing junction in Figure 3-6.
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i.? One way to develop the MMAC mathematically is first to
; ’ develop the multiple model adaptive estimator using a

'. ‘ Bayesian approach, and to draw the mathematical analogy

1: 2 between the adaptive feedback controller based on such an
AT

estimator and the MMAC. The Bayesian state estimate can be

expressed as the expected value of the state conditioned on

the measurement history 2:i:

»
’

o~

)
O
r X
. q R(t1*) = Bix(t1){Zs} = [E-Exctrr1z (E12Z1)dE (3-73)
3
.
R
‘R

where { is a dummy variable of integration of x(t), and

5 £2(tr>12(E1Z1) is the conditional probability density

r function of x(t). If we let a(t) denote the vector of

. uncertain parameters, and assume a(t) can take on any value
¢ .
P f} in the continuous range of A, Equation (3-73) can be
IR
" rewritten to include a(t):

- R(ti*) = I;H fxm...z(f.,g_lg.)dg]d; (3-74)
) ]

g @ .

o

ﬁ " where g is the dummy variable used to integrate a(t) over

~ o the range of A. According to Bayes' rule, the conditional

probability density function can be expressed as

y fxctr, a2 (L, qlZ1) = fx(t)1a, 2 (Ela@, 21 )far2(aiZt) (3-75)

. -
&

k) . "'
5 o
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The first density function on the right hand side of

< oo
s

Equation (3-75) is Gaussian, with a mean of %(ts*) and a

covariance of P(ti*) as computed by a Kalman filter based

upon a particular a. The second term is the conditional

e

probability of a conditioned on the measurement history.

>

According to Bayes' rule, it can be expressed as

n

b far2(alZ1) = fatzc1r,201-1) (alfs,Z1-1)

m

R fa.zctr1zc1-1y (@, L1 121-1) ]
- f2¢1y12¢1-1) (L1 12Z1-1) ‘
g

fzeirie2¢t- (L1 la,2i-1)fatz(aiZs)

hl

h]
-

“¥
.

J freirra,2¢t-y (1 la,Z1-1)farz2(gl21)da
A

l'

(3-76)

where f2(1):1e.2¢(1-1) ({1 la,21-1) is Gaussian, with a mean of

et d

H(t1)R(t1~) and a covariance of [H(ti)P(ti-)HT(t1) + R(t1)]. X

Equation (3-76) could conceptually be evaluated recursively

= starting from f.(g). By combining Equations (3-74) with
-,
) (3-75) and switching the order of integration, we can
g generate the state estimate from
3
'y Ri{t1*) = J [ JL f:(t)l..z(ﬁlg,zn)dﬁlf.:z(gl&x)dg (3-77)
A
X ]
.»: .
Unfortunately, the double integration will make this
B approach computationally impractical, so we let the

uncertain parameter vector assume only a finite number of \

s " }
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values, such as the discrete vector set fai, az, ... axl,

&3
YR
AS; where K is the number of elemental filters in the MMAE, and
oy ! eventually the number of controllers within the MMAC. Thus,
1y
[} L
3 .Vr_,- the integration is replaced by a finite summation. This
SoRe
j‘:g becomes the foundation of the multiple model structure,
ot E where each controller within the bank of controllers is
@ o
N
g' ) based on an actual discrete parameter value.
3::“ ‘33' To adopt the Bayesian approach to a multiple model
.« structure, an a priori density function is required for
L} "\: ':-:
e ar (to):
“'J:’ -
L
i - .
. factor (a) = ¥ px(te)d(a - ax) (3-78)
1R "_~ k=1

where px (to) is the probability a assumes the value ax at

< time to. Therefore, the hypothesis conditional probability,
Lol :
,«.j ~3 px(ti1), is a recursive relationship expressed as
$::' L+
) MY
.) i Pk (t1) = probfa=ax |Z(t1)=2;}
ot £ (L1 fak,Z1-1)pk (tie1)
o~ 2(1)ta,2(1-1) (L1 18k ,41~-1)pk{t1-1
e . = (3-79)
Co .
— P L frc1rra,zc1-1r(L2lay,Zi1-1)py(ti-1)
b > =1
o
"r_: :
v where fz2(1):a,2(1-1) (L1 l8k,21-1) can be evaluated as
L)Y b
i
.f, ..
v’ : i
-
o fzc1r1a,2¢0-1) (L1 )ak,21-1) = -expf -]
7 (2N)®/2 [Ay (1) 1272
o fo) = {-¥rx® (ti)Ax (t1)-tpe(ty)]) {3-80)
67
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and
Ix (t1) is the residual; rx(ti) = Z1 - Hu(ti )R (t1-)
Ax (t1) = He (t1)Px(ti-)Hx (t1) + Rk (t1)

m is the number of measurements at time ti; dimension
of rx (t1)

Therefore, the conditional mean is the sum of the

«<2

probabilistically weighted state estimates from each

L

controller within the bank:

é
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R(te1*) = Elx(t1)1Z2(t1)=Z1}

= I Re(ti*)px(ti) (3-81)
k=i

Note how equations (3-79) and (3-81) are closely related to
equations (3-76) and (3-77) respectively.

The MMAC feedback control can be analogously derived,
and is the probabilistically weighted sum of ux (t:) as

expressed by

x
u(ti) = I u(tyi)px(ty)

k=1
K
m I -Ge*{ak )R (ti*)px (ty) (3-82)
k=1
68
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) 3.5.2 The Multiple Model Adaptive Tracker Since this
is the first implementation of a MMAC for this application
and is to be viewed as a feasibility demonstration, the 2

design will be simple. The MMAC will be based upon only one

uncertain parameter, discretized into three possible values, ¢

. and thus it will be composed of a bank of three controllers. 3
. The purpose of the MMAC is to allow the tracker to adapt to i
i: changes in the best modeled value of target dynamics driving i
noise strength, Qr, because the tracker has no control over i

)

Qr, and since mis-modeling of Qr leads to large RMS errors.

} Each controller will be tuned to a different, quantized ;

value of Qrx. For this application, each controller will be ;

? tuned to one of the following uncertain parameter values: E‘

Dy )
Qr: = 0.01 Qr:1 = 0.1 Qr1 = 1.0

These three values approximately cover (for modeling
. purposes only) the range of trajectories from the straight
and level flight, to the maximum manned-vehicle g-limit of
10g's, assuming a specific range to target or a defined
" relationship between real maneuvers and maneuvers as seen in
| the detector array plane.
h Because Qr is selected as the uncertain parameter and A
it is aot used to calculate the steady-state controller
gain, we can use the non-adaptive steady-state controller ;
gain, Geco*. If we had to calculate an adaptive controller \

gain, such as would be the case if the target acceleration X
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time constant, T:r, were the uncertain parameter, then each
controller gain, Ge* [ak (ti)], would be calculated from the
same steady-state controller gain equations, Equations
(3-57) through (3-67), but each controller gain function
would be tuned to its specific uncertain parameter value.
Each controller within the MMAC structure operates
independently of one another, and the embedded k-th
elemental Kalman filter calculates the residual, rx (ti), the
covariance of the measurement, Ax (tx), and the best estimate
of xk (t1). The residuals and covariances of the measurement
from all of the elemental filters are used to calculate the
probability, px (ti), which is used to weight each controller
(see Equations (3-79) and (3-80)). Then, the
probabilistically weighted control inputs, ucx (ti1)pk (ti1), are
summed according to Equation (3-82). The controllers start
out with equal probabilistic weighting. That is, each
controller is initialized with an equal probability, px(te)
= 1/K; the constant K represents the number of controllers

within the MMAC structure (for this application, K = 3 ).

3.6 Summary
This chapter developed the target model and all the

controllers to be used directly or in support of thisz
thesis. The target was modeled through a first order Gauss-
Markov acceleration process, where the state estimate
(involving position, velocity and acceleration variables)
and covariance error are provided by a Ralman filter. The

first controller design developed the proportional gain
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regulator and tracker equations.

But because the

proportional gain controller does not have type-one

characteristics that allow rejection of unknown, constant

disturbances that arise from linearized models, the PI

controllers were developed.

tracker was sub-optimal.

still,

the performance of the

The next sections looked at ¢

improving the controllers' robustness by evaluating

alternative weighting matrices and using the PI tracker in a *

multiple model adaptive controller.

In all,

the final X

objective is to design the optimal controller which can P

place the particle beam on a maneuvering target.
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IV. HE ANALYSES

Before a design can be considered complete, it must be
developed and its performance evaluated against some
prespecified standard or baseline. This chapter discusses
the different performance analyses used to evaluate the PI
controller and also to develop and evaluate the adaptive PI
controller. Both controller designs use the Meer filter to
estimate the beam (controlled) state, and the Kalman filter
to estimate the target (reference) state. The results of
the performance analyses are listed in Chapter 5. The first
section explains why Monte Carlo simulation was selected
over covariance analysis. The next section addresses the
software packages SOFE and SOFEPL which were used to
generate the Monte Carlo simulation and error statistics.
The following section provides an in-depth review of the
parameters used in the Meer filter for beam location
estimation and the Kalman filter for target state
estimation. The last section discusses the actual analyses

that are used.

4.1 The Method - Monte Carlo Simulatjon

The particle beam estimator/controller problem is
modeled as a stochastic process and the performance can be
best evaluated by observing the statistical behavior of the
error processes. Specifically, we are interested in

evaluating the controller's tracking error statistics, and
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g it is assumed that the embedded estimators are already tuned
‘ for the appropriate dynamics driving noise strength, Q, and

' measurement corrupting noise covariance (spread dispersion

& of the beam in the Meer filter), R. Regardless, it will

h also be necessary to evaluate the Kalman and Meer filter's
o state estimation error statistics, to support some of the

findings from the sensitivity and robustness analyses. The

Y]
v, :
s :

performance of a controller can often be analyzed by either

covariance analysis or Monte Carlo simulation. The more

N

efficient method is the covariance analysis, which requires

K

only one software run to generate the time history of the
estimation error covariance, Ps (ti), or other pertinent

statistics. Unfortunately, covariance analysis cannot be

i applied to the multiple model adaptive controller because a
] proper covariance analysis is limited to linear stochastic
; controllers that use prespecified measurement update times.
. The adaptive mechanisms in both the controller and in the

»

Meer filter violate the linearity, and the elemental Snyder-

r

oYy

Fishman filters have a varying sample rate that is not

-

prespecifiable.

g Therefore, the less efficient Monte Carlo simulation is

~ used to evaluate the particle beam estimator/controller.

v The Monte Carlo simulation is a complete computer simulation
E :E that requires numerous simulation runs to generate enough
1 ? samples of the error process to approximate the filter's

i true statistics with sample statistics [12). Por this
5 o application, Zicker (17,27) found that the sample statistics
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sufficiently converged by 200 runs, with each run lasting
100 secoﬁds. Zicker also found that the system transients
dissipated by 50 seconds into the simulation. Therefore,
these numbers have become the baseline for future Monte
Carlo simulations and the statistics of the error processes
are averaged over the last 50 seconds. Because the last 50
seconds should represent a steady-state condition, the time-
average of the error process statistics, such as the average
root-mean-square tracker error, can be used as a compact
index of performance, and can be used to identify trends
within any of the analyses.

The Meer or Kalman filter's state estimation error
statistics, which are used to evaluate the filter's
operation, are the mean and the standard deviation of the
error between the truth and filter states. They will be
calculated and plotted for each controller feedback sample
period, ti, between 50 and 100 seconds. For example, the
derivation of the Meer filter's beam position state estimate
error statistics are as follows: the error between the

true beam position and the Meer filter estimate is
ep (t; ,n) = x:p(t1 ,n) - Ra(t1,n) (4-1)

where 50 < t1 < 100 and n is the run number. Thus, the

mean error is

N
& (t1) = [1/N]-% es (t1.n) (4-2)

as=1
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t:. ‘ where N is the total number of runs (N=200). The variance
and the standard deviation of the error are [5,7]
o
v I
‘.
DY X
g ve (t1) = [1/(N-1)]-I f{es2(t1,n)] - [N/(N-1)]-&2(t:1)  (4-3)
n=i
5
N
qg:r o op(t1) = {1 + 1/[4(N-1)]}-fvs(ty1)}r/2 (4-4)
) »
b 4t
fl S!: Equation (4-3) calculates the unbiased estimate of the
R ‘) ‘-.
?2 variance and Equation (4-4) is an approximation that
¢ 5
Q-j produces an unbiased estimate of the standard deviation. A
SO full derivation of the exact equation and the limitations
SN
(< that azpply to the approximation can be found in reference
boY .
W a (6]. Because these statistics are calculated for the
"j: steady-state condition, it is desirable for & (t:) to
O
el e approximate zero (i.e., it is desirable for the bias to be
45
e c negligibly small), and for os (ti) to approach a steady state
by 7 value from t;=50 to 100 seconds. Deviations from these two
T
‘*; '; conditions will indicate the filter is operating improperly.
igyS .
‘0 I - [] [
o Note how the statistics are calculated for a finite sample
o
3 o population, and only when we have a large enough sample can
! 3 we be sure the sample statistics closely approximate the
A R
vhy -
By N true statistics.
Jé, ; The root-mean-square (RMS) tracking error, RMS. (t:i),
b3
;- and the time-averaged RMS tracker error, RMS., are the
‘l i f"
' “ statistics used to evaluate the performance of the
1-.‘ controller during the different analyses. The error for the
-;.‘; ~,
f‘,
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tracker problem is defined as the difference between the

true target state and the true beam position state:

et (ti,n) = xta (t1,n) - xexe (t1,n) (4-5)
The errors from each run are averaged and a mean error,
me {t1), and a standard deviation of error, oce (t1), are

calculated for each ti:

N
[1/N]). Zfxts(t:1,n) - xtrr(ti,n)]} (4-6)

asi

me (t1)

Ce (t1) = {1 + 1/[4(N-1)])1}

N
-{[1/(N-1)]- £ {er2(t1,n)} - [N/(N-1)] -me2 (t1)}1/2

a=}
(4-7)
The root—-mean-square (RMS) was selected as the
statistical performance parameter to be used to evaluate the
controller. The RMS error can be generated for each sample

period by using the equation:

RMSe (1) = [me2(t1) + oce2(t1)])2/2 (4-8)

The time-averaged RMS error is calculated by averaging each

RMS error, RMSe (t1), from 50 to 100 seconds:

100
RMSe = [1/51)-I RMS. (ti) (4-9)

e=8¢
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Once again, because the RMS error statistic is calculated

-I
ooy

for steady-state condition, RMSe. (ti) should appear as a

4 -
»

constant value with only minor deviations. A controller

&

%ﬁ ﬁ with an increasing, ramp-like RMS error would indicate that
g; : the filter is unstable. Anytime an undesirable RMS error is
;:. E found, the RMS error will be analyzed to see if the problem
;f \ is primarily due to bias-like characteristic (i.e., an

.
a*

increasing mean) or fluctuations (i.e., an increasing oe).

>3 =

4.2 The Tools - SOFE and SOFEPL

-u‘r‘.‘- o
-
L

The performance analyses are generated from tailored

-

« a
(3
A

»

&

software packages called SOFE and SOFEPL [7,21]. SOFE,

-

Phef Yl )

which is short for Simulation for Optimal Filter Evaluation,

b 1o
..
A

fulls

is a general purpose Monte Carlo simulation program designed

-
-

,
-
-

for evaluating systems that use Kalman filters. It contains

-’
LM SF W 2 2
>

both a truth model and a filter to be evaluated. The truth

model is described by a set of stochastic differential

equations that emulate the "real-world" system dynamics.

e ]

.é The filter is also described by a set of differential

k]
&

equations representing the system's state propagation within

¥ N
ll

a Kalman filter, and updates due to measurements. SOFE

i
=S
5T

allows the user to specify the measurement format of the

5
N
W, :‘3 filter update, and if desired, to include feedback control.

- SOFEPL, which is short for SOFE Plotter, is a post-

-~
~ o
-

o« é!

processing routine that can be programmed to perform various
statistical functions, such as calculate the RMS error time

history, and then plot the results. Both SOFE and SOFEPL
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were developed by Stanton H. Musick and others of the Air
Force Avionics Laboratory.

SOFE had to be modified internally before it could be
used, because the original version of SOFE was limited to
Kalman or extended Kalman filter applications. In doing so,
Meer [18] changed SOFE's code to accommodate the Snyder-
Fishman estimators and the MMAE structure for indicating the
likelihood of each photoelectric event being due to signal
versus noise. The problem of adapting SOFE to this
application did not affect the propagation or update
equations, but lay in generating Poisson distributed random
sigral and noise events, and then using these events as
measurement update for the Meer filter. The standard Kalman
filter, such as found in the original version of SOFE,
updates the filter at regular discrete time intervals,
whereas the Meer filter updates only when it receives a
signal event [27].

Because SOFE was intended for general applications, it
allows the user to tailor SOFE to the user's needs through
nine user-defined (i.e. user-written) subroutines. These
subroutines allow the user to specify: the truth model's
differential equations, the filter model's differential
equation, truth model disturbances (optional), the
projection matrix of the state vector onto the measurement
vector (H), the measurement corruption noise covariance
matrix (R), the system dynamics matrix (often composed of

partial derivatives) (F), dynamics driving noise strength
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matrix, (Q), the initial filter covariance matrix (Po), the
initial conditions for each run, a prespecified trajectory
(optional), impulsive control (optional), and other
calculations required during the measurement update such as
feedback control. Meer's [18) alterations to the code
incorporated several more user-defined subroutines that were
used to implement the Meer filter. Zicker [27] followed
Meer and added the "Merge"” method of filter pruning and the
first controller design. Moose and Jamerson [8,20] designed
the follow-on controllers and Jamerson implemented the
Gaussgs-Markov acceleration model for the target. Zicker,
Moose and Jamerson's changes are limited to the user-defined
subroutines and do not affect the executive routine of SOFE.
The SOFE source code that Meer altered and that is used
throughout the research is the FORTRAN 4, May 1982 version
of SOFE.

The conceptual operation of the modified SOFE program
is shown at a macro level in Figure 4-1. The fixed-sample-
period controller requires that the discrete feedback
control and the Meer filter propagation cycle operate at the
same discrete sample rate, because the feedback law requires
the most current particle beam state estimate. As mentioned
before, the Meer filter's measurement update occurs whenever
an event is observed. For simplicity, the time to the next
signal and noise events are pre-calculated from the signal
and noise rate parameters, and the integrator is told in

advance where to stop for the Meer filter measurement

79

el e, it

o



- - —e—r Ty Lok aid ons ainhe mte s abe gcs A £ 2 il Lol anh ok and Eof oot

.. »
.
L,

« INITIALIZE PROSLEM
4 - DETERMINE STEADY STATE
' CONTROLLER GAINS

—
- « INITIALIZE RUN & DETERNINE

INITIAL FEEDBACK GAINS, &
TINE TD NEXT EVENT.

L T

+ PROPAGATE TRUTH, KALMAN
. FILTER & MMAE FILTER
‘- NODEL (SFPROP).
v + CALCULATE & APPLY CONTROL

INPUT

’
u‘.
i < UPDATE THE MMAE FILTER

HAS AN (SFUPDAT)
~} EVENT OCCURED? * MMAE FILTER °*PRUNED®
4

+ DETERMINE THE TINE
TO MEXT EVENT

-.‘.
o
W " 1S THE

PROPAGATION CYCLE
CONPLETE?

[ £

* UPDATE TRUTH & FILTER MODELS
* CALCULATE NE¥ FEEDBACK INPUT
* APPLY MEW FEEDBACK INPUT.

v

..
s

(OPTIONAL)

*« GENERATE ERRORS IN BEAM MODEL

END
OF RUN?

RA S

*

END
OF SINULATION?

A

"-:

-~

Figure 4-1. Macro Level Flow Cha:r: [




-A182 610 STOCHASTIC ADAPTIVE PRARTICLE BERN TR“CKER USING MEER 273
FILTER FEEDBACKCU) RAIR FORCE INST OF T
IGHT-PATTERSON AFB OH SCHOOL OF ENGINEERING
UNCLASSIFIED B R JOHNSON DEC 86 AFIT/GE/ENG/86D-27 F/G 1472

N O I A -




_,
-7
S
»

s Bz
2 “mz.z

m

ol

O’

.
W, :
¥ | ||||
'n‘;( -
" "

fl

o\ :
L
§ 22 s e
24 —_—
i , ]

) . Y;

rFFFEEER '
t

Trr

r
rs

N
(&

o

A e
o>
-~

— TR TR T W v*--*-" -

‘:;‘2" R . *‘ i ';'-;;; ':'i::"‘ c.'c
AR l
"‘:'* :"’: : "-‘a" ‘1’8':. :‘s' s"'

.5



o Ak xss B

o 23

¥,
¥

3

v, R xs W %0

&S e

e

iRt 4 B

update. A diagram of the top-down structure of the modified
SOFE is presented in Appendix B.

The propagation of the truth states, the filter states
and the filter-computed error covariances is accomplished by
integrating the differential equations from the current time
forward to some specified time. This time can be the
integration step size, the time for the next Meer filter
update or the time for the next Kalman filter update. The

state differential equations have the general form

x(t) = £[x(t),u(t),t] + G(t)u(t) (4-10)

where w(t) is a zero-mean white Gaussian noise of strength
Q. SOFE solves Equation (4-10) by first using a fifth order
Kutta-Merson integrator to solve the deterministic

differential equation

x(t) = £[x(t),u(t),t] (4-11)

The stochastic term is added upon the completion of each

integration through the expression

Xs = Xp + GAUSS(0,Q4) (4-12)

where Xp is the deterministic solution to Equation (4-11),
Xs 1s the stochastic solution, and the expression

GAUSS(0,Q4) is a randomly generated vector term of zero mean
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and a covariance of Qa. The dynamics driving noise
strength, Qu« (the second moment of the equivalent discrete

time noise representing G(t)w(t)), is calculated from

| TR
Qa = J O(tr+1,7)G(T)Q(T)GT (T)DT (t1es,1)dT {(4-13)
t1

For both the Kalman and Meer filters, Q4 is scalar, and the

integral in Equation (4-13) is solved as
Qs = G2QT[l-exp(-2at/T)]/2 (4-14)

where v is the target or beam time constant, G = 1, and at
is the sample period over which the the noise is injected
into the Equation (4-12).

The measurement noise is incorporated into the
measurement update in a similar manner. The general
measurement equation for either the Kalman filter or for the
elemental Snyder-Fishman filter (which receives a

hypothetical signal-induced event) is
Z2(t1) = hixe (t1),t1] + v(ty) (4-15)

where zZ(t:i) is the sum of the measurement function of the
true states, hix:t (ti),t1], and the measurement corruption
noise, wv(ti). SOFE injects the measurement noise by the

following relationship:

PO DAL O PO e X
AN “.-"*’"‘?0"‘.*“‘4"‘&'.29“9
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z(ti1) = GAUSS(h[xt (t1),t1],R] (4-16)

where R is the covariance of the target sensor measurement
noise v(ti), or the beam dispersion for the beam signal-

induced photodetector event. If the event is signal-

induced, Equation (4-16) gives the actual location of the
event, not a "noise-corrupted” measurement of it. If the
event in noise-induced, Equation (4-16) does not apply and
the location of the noise-induced event is simulated by
using a uniformly distributed mapping function.
SOFE updates the Kalman filter at regular time |
intervals since the Kalman filter has a fixed sample period.
This is not true of the Meer filter because the Meer filter
update is based on the arrival of the next signal or noise
event. Thus, Meer [18] had to modify the SOFE source codé
so that SOFE would simulate a varying sample period (i.e.,
the time to the next signal- or noise-induced event) as a
Poisson time process. The equation which will calculate the
the varying sample period is derived from the Poisson

process density function,
p(y) = ={[8(t)t]?/y!}-exp[-R(t)t] (4-17)

where p(y) is the probability that y events occurred within
time period t, and A(t) is the mean signal arrival rate.
Because we are interested in generating a random sample

period with the next event occurring at the completion of
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the sample period, y is set to zero (i.e., no events occur
during the sample period), and the random sample period, t,
is calculated from the inverse mapping function of Equation

(4-17) [27)
t = -%(t)-1n[p(0)] (4-18)

where p(0) is defined as the probability that t amount of
time has passed before an event arrives. This probability
has a range of 0<p(0)<1l. Because we are interested in
generating samples of ti, p(0) is selected randomly from the
range of p(0), and this process is used to simulate the
arrival time of the next signal- or noise-induced event.

The mean signal arrival rate is defingd as
fs (t) = n/(tr-to) (4-19)

where n is the number of signal-induced events expected over
the duration of the simulation run, (tr-to). The
relationship between the mean signal arrival rate and the
expected signal rate parameter, 3s (t,xr,(t)), can be shown
by integrating Equation (2-1),

fs (t) = fs (t1 ,a)da

J T

e

= A(ti)exp[-gTR-! (t1)a/2]da (4-20)
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where g=[{r-H(t)R(t)]. Although the integral of the Gaussian
density function does not have a closed-form expression, we
know that the entire area under a probability density

function must have a magnitude of one,

HOR RO =

‘IR J [(2n)= |R|)-*/2 .exp(-gTR"!ta/2)dg = 1 (4-21)

L

Thus, the maximum amplitude of the rate function, A(t), can

-y
"™
&=

i be shown as:

A(t) = [n/(tr-to)]-[(2M)=IR(L){]-1/2 (4-22)

e IR

where m is the dimensionality of the vector «.

-

" The mean noise arrival rate is defined as

e
a;_{ u

fn(t) = Jlﬂp(t,;)dg = fu(tsi,r)-L (4-23)
°

where fx (t1 ,r) is not a function of r in this application

o8 =5

(v (t,r) is defined as being uniformly distributed over the
entire length of the detector).

The data provided by SOFE is statistically reduced and
the results plotted by a second program called SOFEPL. The
statistics used to evaluate the performance of either the
Kalman or Meer filters are the mean and standard deviation

of the error between the truth and filter state (see

WE K o RRRm
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Equations (4-2) and (4-4)). Although the SOFEPL program
provides an array of statistical options, they are limited
to the error statistics found between the truth and filter
states (for filter performance evaluation) and are
inadequate for evaluating a controller design. An
alternative provided by SOFEPL 1is for the user to specify
the desired error to be evaluated statistically. The
procedure is used to generate the RMS time history as
described by Equation (4-8), where the statistics are based
on the error between the true beam and true target

positions.

4.3 The Beam and Target Parameters

This section reviews the beam filter and target filter
parameters siﬁce they can play such an important role in the
design and performance of the MMAC. The Meer filter is
designed around six parameters. They are as follows:

Ts is the beam time constant.

g 1is the square root of the beam propagation noise
strength, g = (G2Q)t/2 (Q=1 by assumption).

R is the beam dispersion measured as the variance of
the Gaussian-shaped beam at the detector surface.

SNR is the signal-to-noise ratio (to be defined as in
Equation (4-24)).

D 1is the MMAE filter depth.

n 1is the expected number of signal-induced events
during a simulation run.

The three parameters associated with the Gauss-Markov
acceleration target model are as follows:

v+ is the target time constant.
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Qr is the target dynamics driving noise strength.

Rr is the target measurement noise variance.

The signal-to-noise ratio is defined for this
application as the average number of signal induced events
produced for every noise event. The SNR can be expressed as

[(18]:

SNR = [n/(tr-to))/[(an(t,r) L]

= A(2NR)*/2/{an (t,x) -L] (4-24)

where n is the number of signal-induced events expected
during one simulation run, (tr-to) is the duration of the
simulation, ax(t,r) is the noise arrival rate per length of
the Qetector array, and L is the length of the detector
array. For this one-dimensional application, the length of’
the detector is 10 cm.

The nominal values for the beam and tracker filter

parameters used for the analyses are as follows:

The Beam Parameters

s = 20 (sec) D=3
g = 0.2 (cm?/sec)l/2 R =0.5 (cm?)
SNR = 20 n = 100 (signal events)

The Target Parameters
Tr = 10 (sec) Qr = 0.1 (cm?/sec?) Rr = 0.5 (cm?)
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When the the Meer filter is simplified and the assumptions
from Section 2.5 apply, the MMAE filter depth is reduced to
one.

Because the fastest transients at the nominal condition
have a time constant of ten seconds (rather benign
dynamics), the Kalman filter and the feedback control sample
period will be set to one second. This easily satisfies the
Shannon's sampling theorem which states that the sampling
rate should be at least twice the highest signal frequency
content of interest. To provide an extra margin of
insurance, the engineering guide of sampling ten times

faster than the highest frequency is used.

4.4 Performance Analyses

Five different performance analyses are required to
design and evaluate the MMAC, which is composed of a bank of
PI controllers, of which each elemental controller uses its
own Kalman filter to estimate the target state and a Meer
filter to estimate the beam state. The first two analyses
are the alternate controller cost weighting matrices
analysis and the reduced Meer filter depth analysis. The
results of these analyses will allow us to select the best
set of cost weighting matrices for good on-line design
performance and adequate robustness, and to allow us to
justify using a filter depth of one (i.e.

D = 1). The next two analyses are the sensitivity analysis
and the robustness analysis. The results from these

analyses are used to develop the MMAC. Last, another
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analysis is required to evaluate the operation of the MMAC.
The first four analyses are performed on the PI tracker
developed in Section 3.3.2. The MMAC analysis is performed
on the adaptive controller developed in Section 3.5.2.

4.4.1 Evaluating Alternate Weighting Matrices.
Although Jamerson did some work on selecting a suitable set
of controller cost weighting matrices to achieve good
controller performance and robustness, an exhaustive study
was never accomplished. Therefore, a performance analysis
is conducted to determine the best alternate cost weighting
matrices which provide good performance at design conditions
and that also enhance the MMAC's robustness. 1In other
words, the goal is to select the best set(s) of weighting
matrices that best minimize the averaged RMS error (without
using excessive amounts of control) when the truth model
matches the filter model, while simultaneously providing at
least stability at off-design conditiomns.

4.4.2 EBvaluating the Simplified Meer Filter. The

second analysis evaluates the performance of the controller
and the Meer filter when the filter depth is reduced from
D=3 to D=1, This will reduce the number of
propagating elemental Snyder-Fishman filters from eight to
two, and in fact the filter can be expressed equivalently
with only a single elemental filter, but with its gain
expressed as a function of residual size. Although this
will slightly increase the average RMS error, it should

significantly decrease the computational loading (see
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Section 2.5). It makes on-line feasibility much more
reasonable.

4.4.3 Sensitivity Analysis. The purpose of the
sensitivity analysis is to evaluate the performance of the
PI controller as it is exposed to several different "real-
world" environments. Because each environment could be
described by a set of parameters, the sensitivity analysis
is conducted by varying a single parameter in both the truth
model and in the controller. The results lend insight on
how the controller reacts if it knows the true environment
and the results provide an absolute baseline of the best
possible performance that could be expected from an adaptive
controller. The test is based on the nominal parameter
settings presented in the previous sections and most of the
parameters are evaluated at one order of magnitude above and
below their nominal values. The test evaluates all the beam
and target parameters except the filter depth, which is set
to one (D = 1). The cost weighting matrices are based on
the results in Chapter 5 and are set to U=1l, X:1:1=100 and
Xs5=10 (refer to Equation (3-62)).

4.4.4 Robustness Analysis. To complement the
sensitivity analysis, a robustness analysis is performed to
evaluate the controller's performance when an algorithm-
assumed parameter differs from the "real-world" environment.
The robustness analysis is conducted under the same

guidelines as the sensitivity analysis, but differs in that

the parameters are changed in the truth model without
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informing the controller's filters. The purpose of this
study and the sensitivity analysis is to identify those
parameters that are best suited for on-line adaptation by
the MMAC, and to identify any other potential problems with
the PI controller.

4.4.5 Evaluating the MMAC. Once the MMAC is
developed, it is evaluated against a performance baseline.
This baseline is defined as a PI controller which receives
noise-corrupted measurements, z(ti), but has access to the
truth model's parameters. This baseline provides the best
possible performance the MMAC could achieve if it could
perfectly estimate the uncertain parameters. A well
designed and tuned MMAC should closely approximate this
baseline. Also, the MMAC is compared to an unknowledgeable
and non-adaptive controller to see how much better

performance the on-line parameter adaptation yields.

4.5 Summary

The purpose of this chapter has been to explain the
tools and methods used to develop and evaluate the MMAC, and
to evaluate the performance of the Kalman and Meer filters
within the MMAC structure. The Monte Carlo simulation
provides the most viable method of evaluating the
controller’'s performance. SOFE and SOFEPL provide the basic
method of computing the filter state estimation error
statistics and controller tracking error statistics which
allow us to evaluate the filters and the controller designs.

Four of the performance analyses, the alternate weighting
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;' jfﬁ matrices, the reduced Meer filter, the sensitivity, and the
§. . robustness analyses, provide the foundation to develop the
) i MMAC. Upon completion, the MMAC is developed and evaluated
“ o against a baseline controller, which assumes that the

: baseline controller has access to the true parameters while
o g receiving noise corrupted measurements. The MMAC is also

ﬁ - compared to the results of a non-adaptive PI controller.

t:' The results of the five analyses are in the next chapter.
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V. RESULTS OF THE MONTE CARLO ANALYSES

The results of the five Monte Carlo analyses discussed
in Section 4.4 are presented in this chapter. The first
analysis evaluates seven different sets of weighting
matrices and found the set, U=l, X;11=100, Xss=10, produces
the lowest steady state RMS tracking error. None of the
seven sets of weighting matrices tested cause the controller
to use excessive amounts of control. The second analysis
shows that the controller can be reduced to a filter depth
of one without any measurable increase in RMS error between
the beam and target positions. Therefore, the rest of the
research is conducted with the filter depth set to one
(D=1). Unfortunately, an appreciable reduction in computer
time is not seen. This is credited to the overall
inefficiency of the source code, and it is assumed that a
program designed to take advantage of a reduced filter depth
would require less computer processing time. The
sensitivity analysis provides a baseline of the best
possible controller performance p}ovided the filter knows
the "real-world" environment, while the robustness analysis
measures the ability of the controller to cope with a
"real-world" environment that differs from the parameter
values assumed in the filter/controller design. The
performance achieved when the values of most "real world"
parameters are allowed to vary shows good robustness

characteristics. The two notable exceptions are the target
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dynamics driving noise, Qr, which the MMAC is designed to
handle, and the particle beam time constant, 13, which
appears to be the source of a controller stability problem.
Last, the MMAC provides good on-line adaptive estimation of
Qr. The MMAC significantly outperforms the non-adaptive
controller, but the controller responds slowly to a
decreasing target dynamics noise strength.

The results of the first four analyses are from
existing SOFE software used by Meer, Zicker, Moose and
Jamerson ([8,18,20,27], which was modified for easier usage,
and corrected for three software errors. These errors were
detected either by validation testing or by reviewing the
source code, and the errors may have affected the previous

results. The errors are as follows: (1) the original SOFE

. source code, version May 1982, had a repeated line of code,

line "LJ = LJ + K" in Subroutine PSQRT. Subroutine PSQRT
computes the Cholesky upper triangular square root matrix of
the Kalman filter covariance matrix, P(ti). This error
would miscalculate the upper triangular elements of the
Cholesky square root matrix. (2) Jamerson's source code had
an error in the parameter list of the call statement, "CALL
RICDSD(-)". This library-obtained subroutine calculated the
steady-state solution to the Riccati equation used to
calculate the controller gains (see Equation 3-67). This
error resulted in slightly higher controller gains than

would be properly evaluated. (3) Zicker's source code,

which was modified and used by Moose and Jamerson,
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calculated the true maximum amplitude of the rate function,
At , as a function of the filter beam dispersion, Re (see
Equation (4-22)). The true beam dispersion, R:, should have
been used instead. This slightly affected the results from
the previous robustness analyses for the beam dispersion.
The results from the MMAC analysis are from a corrected
version of the existing software which is modified for
adaptive estimation/control. All the subroutines used to

implement the MMAC were verified independently of SOFE.

5.1 BEvaluating Alternate Weighting Matrices

The purpose of this study is to select the cost
weighting matrix that best minimizes the time-averaged RMS
error, RMS., between the target and the beam without using
excessive amounts of control. Therefofé, seven different
performance analysés have been perfbrmed with a different

cost weighting matrix as defined by the steady-state cost

function,
T
xs (t1) X11 -X11 O 0 xs (ti1)
J = % (1/2-|xrr(t1) -X11 X11 O 0 xre (t1) (5-1)
q(ts) 0 0 Xss O q{t:)
u(ty) 0 0 0 U |ju(ty)

The results as depicted by Table 5-1 and 5-2 show that the
best cost weighting matrix is composed of U=1, X;:=100 and
Xss=10. A closer analysis shows that a 10:1 ratio of Xii1 to

Xss is the important relationship that future designs should
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TABLE 5-1

The RMS Errors from the Cost Weighting Matrices Analysis

Average Minimum Maximum
U X11 Xss RMSe RMSe (t1) RMSe (t1) %
1 1 1 2.536 2.258 2.881 +3.6%
1 10 10 2.639 2.314 2.918 +7.8%
1 10 100 2.929 2.526 3.251 +19.7%
1 100 10 2.448 2.165 2.737 -
1 100 100 2.676 2.336 2.963 +9.3%
1 100 1000 2.956 2.546 3.286 +20.7%
1 1000 100 2.450 2.166 2.740 +0.1%
TABLE 5-2

The Applied Control During the Second Monte Carle Run

RMS of Minimum Maximum
u X11 Xss u(ti) u(ti) u(ty) *
1 1 1 18.363 -50.896 18.046 3
1 10 10 18.413 -51.153 18.688 4
1 10 100 18.586 -52.456 20.231 6
1 100 10 18.330 =51.276 17.451 1
1 100 100 18.440 -51.365 18.753 5
1 100 1000 18.608 -52.478 20.470 7
1 1000 100 18.333 ~51.283 17.740 2
Note: * is the order of performance with #1 being the

best.
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consider. This cost weighting matrix allows the controller
to operate with the lowest average RMS error among the seven
sets evaluated. Although none of the cost weighting
matrices allow the controller to use significantly large
amounts of control in relation to the severity of the target
dynamics, the best cost weighting matrix provides the least
oscillatory application of control as measured by the
applied control RMS statistic (see Table 5-2). These
findings are consistent with the theory presented in Section
3-4. As we increase the pseudo-integrator cost weighting
element, Xsas, with respect to the position states cost
weighting element, Xi1, the controller will begin to
overcompensate large differences in the target and beam
positions. -This will cause the controller to be more
oscillatory in the application of control and it will lead
to larger RMS errors. Also, as the cost weighting of
control, U, approaches the values of the other cost
elements, the control will become more expensive to apply,
and this will tend to raise the average RMS error. A plot
of the RMS error statistic is plotted in Figure 5-1. Except
for analyzing the pole placement of the controller (refer to
Chapter 6), nothing was done to enhance the robustness of
the controller in any explicit manner.

The relationship between the amount of applied control
and the relative error between the target and the controlled
beam is shown in Figure 5-2. This plot is from the second

simulation run out of the Monte Carlo analysis and shows how
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Figure 5-1. RMS Tracking Error for U=1l, X::1=100, X:3=1l0
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the applied control reacts to the target. In this example,
the target is accelerating across the detector array of the
tracking particle beam, which causes the magnitude of
applied control to increase continuously. The plot starts
at ti1 =50 seconds because the first 50 seconds is being used
to let the system’'s transient response attenuate. The
discontinuities in the relative error are do to the Kalman
filter updates.

The previous concerns (8] over the effect of a large
initial overshoot caused by the beam position being offset
from the target are important because the initial transient
response can saturate the actuators and be very
destablizing. They were ignored only because the emphasis
is on the steady statevoperation of the estimator/
controller, and it is suggested that during target
acquisition a different cost weighting matrix or filter
tuning parameter be used which is more forgiving of large

initialization errors.

5.2 Evaluating the Simplified Meer Filter

The purpose of this analysis is to evaluate the
performance of the controller when the depth of the Meer
filter is reduced from D=3 to D=1. The goal is to reduce
the computational loading of the Meer filter significantly
at the cost of slightly degrading the performance of the
controller. The insight was provided by Zicker (27} who

found that when the Meer filter was reduced from a depth of

3 to 1, the average RMS error increased by only 0.004 cm.
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The results from the controller's performance analyses show

that the controller is even more tolerant to the changes in
filter depth. As the data in Table 5-3 suggest, there is no
detectable degradation of the controller's performance when
the depth of the Meer filter is reduced to one.

Unfortunately, the expected savings in CPU time did not

appear.
TABLE 5-3
Results of the Reduced Meer Filter Analysis
Average Minimum Maximum CPU
Depth U X111 Xss RMS, RMSe (t1) RMSe (t1)| Time
3 2.44795 2.16530 2.73617 511.5
1 100 10
1 2.44795 2.16533 2.73670 521.6
3 2.67559 2.3357¢ 2.96273 500.5
1 100 100
1 2.67559 2.33575 2.96272 497.0

Note: CPU Time is for the entire simulation, which includes
data reduction and plotting; units are in seconds.
Underlining of digits is used to accentuate the
differences in computed statistics; wunits are in cm.

Because these findings did raise some suspicion, the
analvsis was supported by an in-depth review of the source
code. The review indicated that the code was correct, and
that the reason there was no apparent reduction in CPU time

was due to the general inefficiency of the source code which

did not take advantage of the reduced filter depth.
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? ;S One of the reasons that contributes to the outstanding
g _. performance of the controller with the reduced Meer filter
A . is the simple beam dynamics used by both the plant and

2; » filter. A more realistic plant might have had a much more
i; B complicated transfer function which could lead to greater,
. s more discernible errors when the Meer filter's depth is

§ “ reduced. In other words, a depth of one might be sufficient
] ﬂ for a first-order Gauss-Markov scalar position process, but
:; g a greater depth might be required if a higher-order Gauss-
S Markov model were a significantly better model. Another

':‘ é reason is that the high SNR (SNR=20) provides few noise-

?‘ i induced events to test the Meer filter. Combining the

:: 2: effects of a high SNR with the effects of a tight beam

disparsion (R=0.5 cm?) and a long detector array (L=10 cm),

Y results in the fact that most of the noise events should be

easily detected as being induced by noise rather than

Ry

A signal, and the Meer filter does not require the extra

X filter depth to accomplish this adaptive decision-making.

>

ol 5.3 Sensitivity Analysis

| « The purpose of the sensitivity analysis is to evaluate

~: < a "fully parameter-knowledgeable" controller, in which both

£ f the Kalman and Meer filters (as well as the controller gain

- computations) have access to the true parameters. The

jj :E results provide the best possible performance that can be

Y expected of the controller under various "real world"”

L conditions, and the results define the baseline for the

E 3. robustness analysis. Throughout the sensitivity and
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robustness (Section 5.4) analyses, the Meer and Kalman

"

filter parameters are set to the the nominal conditions 4

=

defined by Table 5-4, and then each "real world" parameter

is evaluated individually through variations plus or minus

£

Z( one order of magnitude. In these sensitivity studies, the
corresponding filter/controller-assumed parameter is varied
accordingly, while in the later robustness studies, the
filter/controller-assumed parameter is left unchanged. The

sensitivity results from the beam parameters are presented

e e &

first.

| o

TABLE 5-4

' Nominal Conditions for the Sensitivity and Robustness
IR Analyses

Beam Parameters (see Section 4.3)

N s = 20 (sec) D=1
g = 0.2 (cm?/sec)t’/2 R = 0.5 (cm2)
! SNR = 20 n = 100 (signal events)
S Target Parameters (see Section 4.3)
SEEA
ﬁ X Tt = 10 (sec) Rt = 0.5 (cm?)

v, . Qr = 0.1 (cm?/sec)

;". ", Non-Zero Elements in the Cost Weighting Matrix
e, (see Section 3.4 and Equation 3-62)
SEE U= 1 Xi1 = 100 Xss = 10
AP
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5.3.1 PBeam Time Congtant - 1. The beam time constant
represents the relative speed with which the particle beam
dynamics can react to the applied control. The effect T»

has on the plant dynamics can be seen by means of:

Gx (s) = = (5-2)
s - )1 s + (1/7s)

where Gx (s) is the plant transfer function. The effects of
increasing or decreasing 1s has the effect of moving the
pole closer to or away from the origin of the s-plane. The
effects of moving the pole can be evaluated by looking at

the plant’'s settling time for a step input,

ts = 3.912/ips} = 3.912-71s (5-3)

where ts is defined as the time it takes the exponentially
time-correlated plant dynamics to reach 98 percent of the
final steady state value [3]. As T8 is decreased, the pole
moves farther from the origin of the s-plane, the beam
dynamics become quicker, and it should be easier for the
particle beam to track the target. This should result in a
smaller average RMS error and this is confirmed by the
results in Table 5-5. But, contrary to what one might
expect, the large changes in s do not result in large
changes in the tracker error. This insensitivity is due to

the fact that the system's frequency response (as can be
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gj observed in a Bode plot) is not only a function of the
" corner frequency, wc (wc=1/Ts), but also it is a function of
& . the log magnitude of the open loop gain, K« (Ru=BTe), and
; ;& the effects of changing ts are cancelled by changes in Rx.
3, T The filter's ts represents the time constant in the filter's
! model of the plant, whereas the true 718 is the actual time

. constant of the particle beam plant. In a sensitivity

)N

analysis, the true and filter parameter values are equal.

e

R

X TABLE 5-5

Y

¢ The Sensitivity Analysis Results for Ts

S Ts (seconds) Average

nIEY Filter True RMS. % Comments

A " 2 2 2.431 -0.7% |Quicker beam dynamics
; 20 20 2.448 - Nominal conditions
200 200 2.456 | +0.3% [Slower beam dynamics

- I

5.3.2 Beam Propagation Noise Strength - gi The beam

D
.f E propagation noise strength indicates the confidence we have
) q: in the target model being correct and the magnitude of the
? B random fluctuations that the beam position actually

E! E; undergoes. As we increase the strength of the noise, g2, we
” are increasing the magnitude of the random beam position

{ '3 fluctuations, and the Meer filter must depend more on the

4

P

measurement update. This can be demonstrated by analyzing
. this relationship with an elemental Snyder-Fishman filter

covariance propagation equation, and gain equation:

p=A s
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P(ti+2-) = @2 (t1+1,t1)P(t1*) + Qa(ts) (5-4)

K(ts) = P(t1~)/(P(t1~) + R) (5-5)

where the closed-form solution of Qa4 (ti1) is

Qa(t1) = gits[l-exp(-2at/T8)]}/2 (5-6)

where at is the varying sample time between the arrival of
events. As g2 increases, so does P(ti+1-) increase;
therefore, K(ti) will increase toward a value of one, and
the filter will begin to rely more heavily on the
measurement update.

With a sensitivity analysis, we assume that the filter
g? matches a hypothetical true g2, which is used in the true

state dynamics model,

Xst (t1+1) = Opt (t1sa2,t1)xme (t1) + Ba(ti)u(ts) + wae (ty)
(5-7)
where wa: (t1) is a zero-mean, white Gaussian, discrete-time,
stochastic process with a variance as given in Equation
(5-6). As we increase the true g2 (and the filter g2
correspondingly), the magnitude of the random fluctuations
beam undergoes increases, and the filter must depend more
heavily on the measurements which come from the stochastic

truth model. Therefore, as the true g2 increases and the
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actual RMS value of excursions of the beam increase, so

R
L

ot e e

should the average RMS error. The results in Table 5-6

confirm this.

. TABLE 5-6

) , The Sensitivity Analysis Results for g2
b g (cm2 /gsec)t/2 Average
by - Filter True RMSe % Comments
SN 0.02 0.02 2.419 -1.2% |K(t1) decreases
Y.
?i 0.2 0.2 2.448 - Noninal conditions
oS H’n
P 2.0 2.0 3.743 [+53.9% |K(t:1) increases
% 7
Y 5.3.3 Beam Dispersion - R The particle beam is said
- 1 -
' to have a Gaussian-shaped dispersion as measured with
\J
:‘ b0 respect to the surface of the photodetector. Because the
DY
: ) beam is assumed to have Gaussian distribution (see Eguation
[\
; l 2-1), it can be represented statistically by the true mean,
- ‘ ®st (t), and the true "variance"”, Rt (t). As Rt (t) increases,
.
; 2 the signal-induced events spread over a larger area of the
oy detector, making it more difficult to estimate the center of
. =
E ’ the beam, and forcing the filter to rely more heavily on its
j* E; internal dynamics model. Although Table 5-7 supports this
& concept, the filter is relatively insensitive to equal
&
' changes in both the true and filter R's.
<
+5] 'c
vl.
. \J
-~
§ Y
Y
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-~ TABLE 5-7

The Sensitivity Analysis Results for R

?ﬁ R (cm2) Average
::,r X Filter True RMS, % Comments
?‘:\ v 0.05 0.05 2.437 -0.4% |Depend on zs (t1)
5 0.5 0.5 2.448 - Nominal conditions
- 5.0 5.0 2.475 +1.1% |Depend on filter
By
»
fj 5.3.4 Signal-to-Noise Ratio - SNR The signal-to-
2 noise ratio is the ratio of the number the signal events to
8 the number of noise events that arrive over a period of
time. Within the context of this simulation, the filter SNR
) is used to estimate the noise rate parameter (the SNR is
n defined in Equation (4-24),

ame (t,r) = [n/(tr~to)]1/[SNRt -L] (5-8)

The true SNR is used to generate the the actual noise

parameter rate used to generate the noise events. Thus,

6 when the SNR is decreased, we expect to see the increase of

y noise events to drive up the time-averaged RMS error, as
depicted in Table 5-8. The table shows a discrepancy in
that the time-averaged RMS error shows a slight increase
when the SNR is increased. After reviewing the results from
the robustness analysis (see Section 5.4.4), one can see
that the controller is highly insensitive to changes in SNR,

and that the small deviations of time-averaged RMS error is
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within the sample statistical error. This is also supported

-
[4

X by the fact that the different noise arrival rates will

cause different random-number generated signal- and noise-

" induced event patterns (i.e., the same random number

" generator seed was used throughout the study, and changes in

signal or noise parameter rates will alter the simulation

rx,

pattern of signal- and noise-induced events by requiring

.
3 'n..
¥ X different numbers of calls to the random number generator).
¥ =
L
5 TABLE 5-8
¥
a ~»
g 2-3 The Sensitivity Analysis Results for SNR
:j SNR Average
h Filter True RMSe % Comments
2 . 2 2 2.469 +0.9% |1/3 noise events
; 20 20 2.4438 - Nominal conditions
[\ »
b 200 200 2.466 | +0.7% |Nearly noise free
P
¢

5.3.5 Expected Number of Signal-Induced Events - n

I The expected number of signal events is used to calculate
" the filter's maximum amplitude of the rate function, as by
N
P4
e Equation (4-22),
b ]
-
8
At = ne/[(2NRe)2/2 . (tr-to)] (5-9)
A

which, in turn is used by the filter to calculate the

>

8 conditional probability that a signal-induced event did
) ;f occur (see Equations (2-1) and (2-27). The true n is used
; .
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o to calculate the signal arrival rate, as(t). As both the

true and filter n are decreased by equal amounts, the filter

. must rely more heavily on the filter dynamics model because
- the mean Meer filter sample period is increased. Therefore,
{ﬁ we should expect the time-average RMS error to increase as
! shown in Table 5-9. The RMS error statistics may be

> slightly affected by differences in the random-number

E generated signal- and noise-induced event patterns caused by
5 a change in the signal parameter rate. The n=1000

i performance run was not accomplished because the expected

§‘ results did not warrant the high computer costs. More

“ signal events should slightly increase the filter's

g: accuracy. The n=10 performance run should have produced an

unstable system (according to findings in Chapter 6) because

-

the mean sample period of 10 seconds would place the poles

of the discrete-time controller far outside the unit circle,

e
HAA

but the perfectly matched filter time constants prevented us

<R

from seeing the instability.

v
- TABLE 5-9
The Sensitivity Analysis Results for n

b
e n (signal events)| Average
- Filter True RMS. % Comments
n: 10 10 2.540 +3.8% [Emphasis on filter
I internal dynamics
‘. model
s 100 100 2.448 - Nominal conditions

1000 1000 - - Not performed
%
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5.3.6 Target Time Constant - 1r The target

b ie S

acceleration time constant is used in the target shaping

filter which simulates the target dynamics. The shaping

filter is a linear, time-invariant system driven by a

A

stationary white Gaussian noise process that has a mean of

zero and a variance of Qr. The target dynamics position

[ ¢
N

process is modeled as the double integral of exponentially

time-correlated acceleration; a third-order Markov process

ot

that is the output of a third order shaping filter which is

o |

shown in FPigure 5-3. By definition, the white noise process

| A

& =24

+ a(t) w(t) p(t)
w(t) —y |dt dt |——9| |dt |

1/1+

Pigure 5-3. Target Shaping Filter

=

od

Sa has a power spectral density (PSD) magnitude of Qr and an
- infinitely wide bandwidth as shown in

B Figure 5-4a. When this white noise is passed through a
i: first-order lag filter, as is done in the target shaping
)

P

N

[ 4
<
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Figure 5-4. PSD Functions: a) White Noise, b) Target
Acceleration

filter, it becomes the acceleration of the target, and has a

power spectral density function of

2012 /711 Qr
PSDa (w) = = (5-10)
w2 + (1/711)2 w + (1/17)2

where the variance (mean squared value) of the target

acceleration is defined as
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B or? = (RMSa)? = %Qr Tr (5-11)

A plot of the acceleration power spectral density function

S 4
.-
o S

is shown in Figure 5-4b. The effects of reducing rr would

increase the bandwidth of the target acceleration and lead

A

to faster dynamics, but with a much smaller amplitude as

R
b v shown in Figure 5-5. The overall results of a small 7r is a
. n lower RMS. (assuming Qr is held constant). Therefore,

smaller 7+ should lead to smaller time-averaged RMS errors

-,' -
VX E TN

e E as shown in Table 5-10.
a
'-’ ‘-
A TABLE 5-10
-f Ry The Sensitivity Analysis Results for 7r
2“
;ﬁ - Tr (sec) Average
ﬁ, 2 Filter True RMSe % Comments
&
1.0 1.0 1.325 -45.9% |or2=0.05, PSD=0.1
" g 2.5 2.5 1.882 -23.1% |or2=0.125, PSD=0.625
AN
S 5.0 5.0 2.225 -9.1% |or2=0.25, PSD=2.5
o 10.0 10.0 | 2.448 -  |Nominal: or?=}¥, PSD=10
% 100.0 100.0 2.685 +9.7% |or2=5.0, PSD =1000
jﬁ Note: PSD is calculated for PSD(w=0), i.e., the low
o frequency asymptotic value at w=0.
n
.
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5.3.7 Target Dynamjcs Noise Strength - Qr The target
dynamics noise strength is the strength of the white
Gaussian noise used to drive the shaping filter. Although
it does not effect the bandwidth of the target acceleration,
it directly affects the amplitude of the power spectral
density function as can be seen by setting w to zero in

Equation (5-10):

PSD(w=0) = QrTr?2 (5-12)

Therefore, an increase in Qr will increase the RMSa (see

Equation (5-11)) and should result in an increase in RMS

error. Table 5-11 confirms this. The true Qr is the actual

white noise strength used to drive the shaping filter, where

the filter Qr is used by the Kalman filter in the target

state estimate and covariance propagation equations.

TABLE 5-11

The Sensitivity Analysis Results for Qr

Qr (cm?/sect) Average
Filter True RMSe % Comments
0.01 0.01 1.461 -40.3% |or2=0.05, PSD=1
0.1 0.1 2.448 - Nominal: or?=), PSD=10
1.0 1.0 4.644 +89.7% |or2=5.0, PSD=100

Note: PSD is calculated for PSD(w=0).




== e

L’
1%

WPV TUWW T TR TR T ITTERFEETERETERTRRETT R ETTETIE7TENERN SV RMITETRITR TR RIT

5.3.8 Evaluating 11 and Qr with the Target

Acceleration Power Spectral Density Maximum Set to 10.0

Although it appears that the filter is much more sensitive
to Qr, one more analysis is required to confirm this. For
this analysis, the amplitude of the low frequency asymptote
of PSD (see Figure 5-5) is held constant, and T1r is varied.
The results in Table 5-12 show that, for targets with the
same low frequency acceleration PSD characteristics, those
which can exhibit more violent maneuvering (i.e., the T1r is
smaller, or the acceleration process bandwidth 1/1r is

larger) are much more difficult to track.

TABLE 5-12

The Sensitivity Analysis Results for PSD

PSD = 10.0 (cm2 /Hz) at w=0
Filter True Average
Tt Qr Tt Qr RMSe. %
1.0 10.0 1.0 10.0 5.384 +119.9%
10.0 0.1 10.0 0.1 2.448 -
100.0 0.001¢ 100.0 0.001 1.089 -55.5%
Note: PSD is calculated for PSD(w=0).

5.3.9 Target Measurement Noise Variance - Rr The
target measurement noise variance indicates our confidence
in the measurement model. As the measurements becomes more
severely corrupted, the measurements assume a wider and

flatter Gaussian distribution centered around the true
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target position, and the variance, which is represented by
the true Rr, increases. The filter Rr is the filter's value
representing the actual Rr. As the filter Rr increases, the
Kalman filter gain decreases and the filter must rely more
heavily on its internal dynamics model, and tracking is more
difficult with less precise sensors. Therefore, an increase
in Rr should result in a higher time-averaged RMS error.

Table 5-13 confirms this.

TABLE 5-13

The Sensitivity Analysis Results for Rr

Rr (cm2) Average
Filter True RMS. % Comments

0.05 0.05 1.518 -38.0%|Relies on measurements
which are precise

0.5 0.5 2.448 - Nominal conditions

5.0 5.0 4.473 +82.7%|Relies on filter's
model and measurements
are imprecise

5.4 Robustness Analysis

The purpose of the robustness analysis is to evaluate
the controller's performance when the embedded Kalman or
Meer filters mismodels the "real world”. 1Initially, all the
parameters are set to the nominal conditions, and then the
true parameters are evaluated one at a time at values above
and below the nominal condition to simulate the effects of

the filters mismodeling the "real world". The results from
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the robustness analysis are evaluated against a baseline
defined by the results of the sensitivity analysis.

Tracking performance is highly insensitive to the changes in
most of the true beam parameters, and by definition, this is
a demonstration of excellent robustness characteristics (at
the chosen nominal conditions). The notable exception is
the beam time constant, for which the results indicate a
possible stability problem. Some poor robustness
characteristics were demonstrated for all three target
parameters, of which, the target dynamics noise strength was
selected as the parameter best suited for on-line adaptive
estimation.

5.4.1 Beam Time Constant - 1p Originally, the true Ts
was to be evaluated at plus and minus one order of magnitude
of the nominal filter ts so that the results would
correspond to the sensitivity analysis, but severe
computational difficulties led to run-time computer failures
before the simulations could be completed. To be able to
collect useful data, the true 18 was evaluated at plus five
percent and minus four percent of the nominal filter Tte. In
all, five robustness analyses were conducted with true Ts
equal to 19.2, 19.6, 20.0 (nominal conditions), 20.4, and
21.0 seconds. The results of the analyses are presented in
Table 5-14. The respective plots of RMS errors between the
target and the beam position, and the mean and standard
deviation of the error between the true and filter beam

state are shown in Figures 15-6 through 15-15.
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:‘Eﬁ ;3_: The results indicate a severe stability robustness
R ' problem. When the true 1s is simulated at the values 19.2
f. or 21.0 seconds, the results in the both table and in the
3,

Y plots indicate that the controller's performance is

L suffering from a strong instability. Growing RMS values and
;' E standard deviations that increase with the severity of the
o,
\ mismodeling strongly support the concept that a stability
P R
WL problem exists. These findings led to a sensitivity
,:“ s'g evaluation of the controller gains and a stability analysis
IR

::'. of the PI controller.

‘ot Y

R4 3',

TABLE 5-14

i) -:‘)'

T The Robustness Analysis Results for T

' T8 (sec) Average Minimum Maximum Tuned
s Filter True " RMSe RMSe (t1}) RMSe (t1) RMSe %
;; B\ 20 19.2 80.080* 4.555 338.690* | =2.448 * %
‘ ! 20 19.6 4.779 2.920 7.030 =2.448 |+195%
e - 20 20.0 2.448 2.165 2.737 2.448 -
Ry r;}: 20 20.4 4.687 2.949 7.062 =2.448 |+191%
o Pal

1
et 20 21.0 96.719* 5.301 364.960* | =2.448 ® %

; =

~

j Note: % This is the percentage of difference between the
SRy average RMS error and the tuned RMS error, which
;j is based on or approximated from the results of

- the sensitivity analysis (i.e., Tst=Tet).
K- m * These values and the results from the Meer filter
hs covariance analysis (see Figure 5-7) indicate that
: the controller frequently became unstable before
‘:: é the completion of the run (before 100 seconds).
0 ** Extremely large values.
I
4 *
W) 1
o
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The reason for the controller gain sensitivity
evaluation is to see if the gains are sensitive to changes
in Ts. If the controller gains are found to be highly
sensitive to changes in Ts, it is possible that the poles of
the full-state feedback system are being driven outside the
unit circle, because of the gains, Gec*, rather than due to
the effects of the Meer filter being in the loop. This
requires that the controller gain equations, Equations
(3-65) through (3-70) be solved for different values of Ts.
The results in Table 5-15 suggest that the controller gains
are relativity insensitive to changes in Ts.

The results of the stability analysis are in Chapter 6,
indicating that the stability robustness problem is induced
by mismodeling of the real world in the Meer filter dynamics
model. Since this is a totally different form of analysis,
it is separated into a different chapter. Because we do not
know the cause of the instability (at this point in time),
the beam time constant would not be suitable for on-line

adaptive estimation.

TABLE 5-15

Sensitivity of the Controller Gains to Changes in Ts

T Ge1* Ge12* Geia* Gecira* Gea* E

19.0 1.2413 ~1.2938 -1.0265 -0.4897 0.2747 1.0760
20.0 1.2422 -1.2921 -1.0252 -0.4880 0.2744 1.0746

21.0 1.2431 -1.2906 -1.0240 -0.4874 0.2740 1.0733
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5.4.2 Beam Propagation Noise Strength - g& The

controller is rather insensitive to mismodeling of the beam

«

propagation noise strength, as is shown in Table 5-16.

‘- TABLE 5-16

::' 8. The Robustness Analysis Results for g2
W g? (cm2®/sec) Average Tuned

g Filter True RMSe RMSe %
Y 0.2 0.02 2.427 2.419 +0.3%
A

;‘-: 0.2 0.2 2.448 2.448 -
S

B 2 0.2 2.0 4.032 3.743 +7.7%

5.4.3 Beam Dispersion - R The controller is rather

¥
i insensitive to mismodeling of the beam dispersion parameter

as can be seen from the results in Table 5-17.

o ! TABLE 5-17
l.b
3 . The Robustness Analysis Results for R
B
i
'€ R (cm?) Average Tuned
eadill o Filter True RMSe RMSe %
by
by 0.5 0.05 2.439 2.437 | +0.1%
L]
N o 0.5 0.5 2.448 2.448 -
R . 0.5 5.0 2.549 2.475 +3.0%
L 2
W
& o
&
)
VS

% 125
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5.4.4 Signal to Noise Ratio - SNR The results in

Table 5-18 indicate that the controller is completely

insensitive to SNR parameter mismodeling.

TABLE 5-18

The Robustness Analysis Results for SNR

SNR Average Tuned
Filter True RMS. RMSe. %
20 2 2.496 2.496 0.0%
20 20 2.448 2.448 -
20 200 2.466 2.466 0.0%

5.4.5 Expected Number of Signal-Induced Events - n

The controller is slightly sensitive to mismodeling of the
number of signal evénts, as the results in Table 5-19
indicate. Note concerning the data -- the tuned (baseline)
RMS error for nt =200 is only an approximation and no data
was collected at that value during the sensitivity analysis
(see Table 5-9). The effect is depicted in Table 5-19 as
approximations in the "Tuned RMS." column. Also, changes in
the signal arrival rate will cause different random-number
generated signal- and noise-induced event patterns, which
could have contributed to the statistical differences in the

time-averaged RMS errors.
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TABLE 5-19

The Robustness Analysis Results for n

n (signal events) Average Tuned
Filter True RMSe RMSe %
100 10 2.522 =2.540 -0.7%
100 100 2.448 2.448 -
100 200 2.468 =2.448 +0.8%

5.4.6 Target Time Constant - 11 The controller

appears to be highly sensitive to target time constant
mismodeling when true target time constant is less than the
filter time constant (see Table 5-20). This is as
anticipated, since a small true 1r is a harsher target to
track than one with a long true Tr. This lack of robustness
indicates that the controller underreacts to the much
quicker target even though the target RMS acceleration has
decreased substantially (refer to Table 5-10 or Equation
(5-11) to see the relationship between 1+ and RMS
acceleration). Meanwhile, a much slower target dynamics
characteristic in the real world allows the controller to
track the target easily. The improvement over the tuned
({baseline) value is not easily explained. It is doubtful
the entire 1.3 percent difference can be explained as a
statistical error since both the baseline sensitivity
analysis and the robustness analysis used the same signal-

and noise-induced event pattern.
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TABLE 5-20

The Robustness Analysis Results for Tt

Tr (sec) Average Tuned
Filter True RMS. RMSe %
10 i 2.087 1.325 +50.7% i
10 10 2.448 2.448 -
10 100 2.649 2.685 -1.3%

5.4.7 Target Dynamics Noise Strength - Qr The

controller is highly sensitive to target dynamics driving
noise strength mismodeling as indicated by the results in

Table 5-21. Because of the high sensitivity and the fact

that this is a parameter over which the target has the most

control, it was selected for on-line adaptive estimation.

TABLE 5-21

The Robustness Analysis Results for Qr

Qr (cm?/sec?) Average Tuned

Filter True RMSe RMSe %
1.0 0.01 3.340 1.460 +128.8%
0.1 0.01 2.035 1.460 +39.4%
0.1 0.1 2.448 2.448 -
0.1 1.0 4.998 4.644 +7.6%
0.01 1.0 7.300 4.644 +57.2%

Note: The filter assumed value of Qr was changed for
first and last entries.
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A 5.4.8 Evaluating vr; and Qr with the Target {
{

Acceleration Power Spectral Density Maximum Set to 10.0 4

In this robustness study, the true parameters 1vr and Qr are y

varied while the maximum PSD was held to a constant value of

10.0 cm as defined by Equation (5-12). The results in Table
5-23 confirmed the overall controller sensitivity to Qr, but
the findings are not as extreme as the results from the B,

M)

previous two sections might have suggested.

R

TABLE 5-~22 g

n A3
0 The Robustness Analysis Results for Constant PSD

_ PSD = 10.0 (cm? /Hz) N

‘ Filter True Average Tuned .

T Qr Tt Qr RMS. RMS. % .

“ 1

10 0.1 1 10.0 6.810 5.384 +26.5% .

g

; 10 0.1 10 0.1 2.448 2.448 - ;

| 10 0.1 100 0.001 1.995 1.089 +83.2% g

Note: PSD is calculated for PSD(w=0).

5.4.9 Target Measurement Noise Variance - Rr Table g

5-22 shows that the controller is most sensitive to Rr N
mismodeling when the measurement of the target state is much »

T more severely corrupted by noise than the filter assumes.

This is expected. The importance of this analysis lies with 2

{ the target's ability to deceive or corrupt tracking by way E
\ of jamming the controller's sensors. ?
s

) .;
1 v

0
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TABLE 5-23

The Robustness Analysis Results for Rr

Rr (cm?) Average Tuned
Filter True RMSe RMSe. %
0.1 0.01 1.623 1.518 +6.9%
0.1 0.1 2.448 2.448 -
0.1 1.0 6.324 4.473 +41.4%

5.5 Evaluating the Multiple Model Adaptive Controller

This section presents the results obtained during the
evaluation of the MMAC design described in Section 3.5.
The adaptive controller is composed of three elemental PI
controllers, eaéh tuned to a prespecified uncertain
parameter value, Qr, the target model white noise strength.
The first and third elemental controllers are based on the
target's upper and lower limits of Qr, where Qri:1 represents
the white noise strength of a benign trajectory (Qri1=0.01
cm?2 /sec®), and Qra is the maximum white noise strength
associated with evasive maneuvering (Qr3=1.0 cm?/sec®). The
middle elemental controller is based on an intermediate Qr
equal to 0.07 cm2 /sec3, as opposed to the previous nominal
value of 0.1 cm? /sec®. This value of dynamics target noise
strength was selected from a series of trial tests, each
composed of 20 simulation runs. It was found that as Qr:
approached either the upper or lower limits, the adaptive
controller had difficulty distinguishing Qrz from the other

Qr's, and the controller error increased.
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A successful adaptive controller must meet two
important criteria. First, the adaptive controller must
improve robustness significantly to warrant the additional
computational load of an adaptive structure. This can be
evaluated by comparing the Monte Carlo analysis results of
the MMAC against a baseline performance, the sensitivity
analysis results, and the robustness analysis results. The
baseline performance is the best possible performance that
can be expected of the adaptive controller. The baseline
performance is done by informing the adaptive controller of
the true Qr and setting the probabilistic weighting of the
"correct" elemental controller to one. The baseline
performance in this evaluation used the filter-estimated
states, because the filter states were used to generate the
results found in Sections 5.1 through 5.4. (An alternative
method could assume an "ultimate"” baseline controller to
have access to the truth states, but this is an artificial
assumption that yields an unrealistic baseline of
performance.)

The Monte Carlo analysis for the actual adaptive

controller and baseline controller uses the following test

format: from t=0.0 to t=50.0 seconds, the true Qr is set to

0.01, and the first 40.0 seconds are used to let the system
transients die out. At t=50.0 seconds, the true Qr is
changed to 1.00 and the target enters its evasive
maneuvering phase of the test. At t=80.0 seconds, the true

Qr is reset to 0.01, and the target resumes a benign
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trajectory. Data is taken over three periods of time. The
overall RMS error is calculated by averaging from t=40.0 to
100.0 seconds, while the controller's ability to adapt to
the benign trajectory is measured by averaging from t=40.0
to 50.0 seconds, and the controller's ability to adapt to
the evasive maneuvering is measured by averaging from t=70.0
to 80.0 seconds. The speed and effectiveness of the
adaptation is indicated from the the time history of the RMS
values, which can be observed in Figures 5-16 and 5-17.

The results in Table 5-24 show that the adaptive
controller does an excellent job of estimating the true Qr
representing the evasive maneuvering, where performance is
most critical. Large errors here could result in the loss
of lock on the target (i.e., the target moves off the
detector array). Also, the adaptive controller does a good
job of adapting to the Qr appiopriate for a return to a
benign trajectory, although the performance is not as good.
The data provided by the sensitivity analysis provides a
baseline of the best performance the PI controller could
attain if it had access to the true Qr. The differences
between this baseline and the MMAC baseline demonstrate the
degradation in tracker performance due to using on-line
adaptation and selecting only three discretized values of Qr
for the MMAC structure. The data provided by the robustness

analysis shows what the results would have been if we did

not use on-line adaptive estimation of Qr.




e o e
P

=l

- o o >
AR

-
s

X, ’-'
Mokl s e

-
o

Lo

;

&

i
i
4
5
K

« %
rhN

Ty ¢
i s

=N

X35

VY |

) A
A

4

e
g

Ty

L

T RTT Y Ty 24 g ard -y
o4 -m""m » s aar ans ans g e |

ERROR (CM)
1.0 20 30 40 S50 €0 7.0 8.0

0.0

L L d e 1 1 )] A 4 '

40.0 45.0 $0.0 $5.0 60.0 65.0 70.0 75.0 8.0

Pigure 5-16.

85.0 90.0 95.0 100.0
TIME (SEC)

MMAC RMS Error Between the Target and the Beam

8.0

7.0
r

€.0

ERROR iCM)
20 30 40 S.0

1.0

0.0

L.

4 L b, 4 2 L 3 Nl o ;e

40.0 45.0 sC.0 §s.0 60.C 65.0

OGO OO it L 4
e e B U My 00T )\.a"!,_l,‘?).Q. Bl .

70.0 75.0 80.0 85.0 SC.0 8s.0 100
TIME (SEC)

Figure 5-17. Baseline RMS Error
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TABLE 5-24

Results of the MMAC Analysis

MMAC MMAC Sensi- Robustness:
Qr1=0.01|Baseline| (actual)| tivity: Average RMS.
Qr2=0.07 |Average |Average |Average
Qra=1.00 RMSe RMSe RMSe Qr=0.01 Qr=0.1 Qr=1.0
Overall 3.139 3.546 - - - -
40<t<100
Qr=0.01 1.634 1.736 1.461 - 2.034 3.340
40<t<50
Qr=1.00 4.657 4.643 4.644 7.300 4.998 -
70<t<80

The performance of the MMAC algorithm is dependent upon

significant differences between the residual characteristics

in the

associated with the individual elemental controllers

Figure 3-6).

residual,

"correct"

rk (tl)r

and

"mismodeled"

elemental filters

(see

If the magnitude of the "correct" filter

is much larger than the "mismodeled"

filter residuals (relative to the internally computed

residual variances,

Ak (t1)),

then Equations

(3-79) and

(3-80) will cause the "correct" probability, pk (ti1), to

increase until the "mismodeled" filter probabilities reach

their lower bounds.

residuals are indistinguishable,

If the

"correct"

and "mismodeled"

the filter will

inappropriately select the "correct" model based on the

HRTA T I G SR T N R S NI N M S P o
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smallest magnitude of variance residual, Ax (t:). If this

e
- . on

.‘-.->
R
5

> happens, the controller probabilistic weighting will be

.
-
-

erroneous, because the magnitudes of Ax (ti1) are independent

W

lég &: of both the residuals and the correctness of the different
%ﬁ = elemental controllers [1,13].

E Although the actual residual values of the filters

?§T y within the adaptive controller structure were not collected,
ﬁﬁi Fj the probabilistic weightings were recorded. The plots in
o E Figure 5-18 are from the first two Monte Carlo runs and

;s ~ suggest the adaptive controller had little difficulty in

;? N distinguishing the "correct" elemental filter/controller

%; . from the "mismodeled"” filter/controllers.

E§ t: The second important criterion that should be used when

evaluating an adaptive tracker is how quickly the tracker

’v‘
(-~
\

;3 can detect and respond to changes in target dynamics noise
'gl Eé strength. By definition, parameters are more slowly varying
in \ (if they vary at all) than the states [13]. Unfortunately,
)" E~ the true Qr is controlled by the target, and although it

'§ g: varies slowly when it is compared to the target states, the
T ’ target can quickly change Qr with respect to the one second
q; & controller sample period used in this study. (This is

unrealistically long, but has been chosen to be constant

pal o with the previous feasibility studies [8,20,27].)
;i Therefore, it is important to see how fast the MMAC can
&

adapt to changes in Qr. The data is taken from a single
g simulation run that lasted 2,000 seconds, with the initial

Qr set to 0.01 cm?/sec®. At 65 seconds, and at every 100

NN ; AN TN ﬂ’i'&' i}iﬁlﬂ
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seconds thereafter, the true Qr is increased to 1.0
cm? /sec’, and at 90 seconds and at every 100 seconds
thereafter, the true Qr resumes 0.01 cm?/sec?.

The results in Table 5-25 indicate that the adaptive
controller takes approximately five seconds to detect a
change in Qr, and it is somewhat slow in adapting to the new
Qr. In addition, it takes the adaptive controller much
longer to react to a decrease in Qr than it takes to react
to an increase in Qr. When you go from benign to a harsh
trajectory, [rx2/Ax] of the benign filter k becomes very
large while the corresponding term in the filter based on a
harsh trajectory model is small, so the probabilities
calculated in Equation (3-79) causes the probability
weighting to shift to the latter filter. However, when the
actual trajectory switches back to a benign trajectory, the
value of [rx2/Ax] in the mismatched filter is not
extraordinarily large compared to that of the matched
filter, so the probability weighting shift is not as rapid
[11,15]. This effect can be observed in Figures 5-16 and 5-
17. A possible solution to quicken the adaptive
controller's reaction to changes in Qr is to increase both
the controller and Kalman filter sample rates. The other
problem of the filter/controller slowly adapting to a
decreasing Qr is inherent to the design, and has been
previously noted in other studies of multiple model adaptive

algorithms ([11,15].
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5
3 TABLE 5-25
Adaptive Filter Time Response to Increasing
' and Decreasing Qr
{Ei A. Qr increases from 0.01 to 1.00.
Sample . Time responses in seconds
! Statistics to te ts tr
) % (mean) 5.30 8.45 6.90 13.75
A
a o (std dev) 2.27 8.11 6.70 7.04
a! B. Qr decreases from 1.00 to 0.01.
Sample Time response in seconds
o Statistics to ta* ts* tr*
f (mean) 5.05 31.5 20.5 36.5
o o (std dev) 2.06 15.3 25.8 15.2

‘Note: The sample population is n=20, except when denoted
by *, then n=19 (i.e., the 2000 second run from which
this data is tabulated, terminated before the
information on te, ts and tr was available). The
samnpled data is in Appendix D.

-

"ﬁ)'\ ,\

Definitions:

to - the delay time is the time it takes the adaptive
controller to react first to a new Qr.

ﬁ ts - the settling time is the time required by the
L) "correct" elemental filter to reach a px>0.5,
and stay above it thereafter. It is measured

g from the time the adaptive controller first
> reacts to the new Qr.

tr - the rise time is the time it takes the "correct"
. elemental filter to surpass a px of 0.75.
i; Note: This is within 10 percent of the upper

bound. It is measured from the time the
adaptive controller first reacts to the new Qr.

the transition time is the time it takes the
“correct" elemental filter to detect and react
to a change in Qr. ¢tr = tp + tg

tr
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5.6 cConclusions

Five different Monte Carlo analyses were accomplished.

The first four evaluated the non—-adaptive PI controller

-
s,

while the fifth examined the MMAC. It was found that the PI

=

controller performed best with a 10:1 ratio between the cost

weighting elements X:: and Xss, and that the

estimator/controller suffered no detrimental effects when

B35

the Meer filter's depth was reduced from three to one. The

performance was found to be the most sensitive to equal

A~ ]

changes in Qr (the target dynamics driving noise strength)

| 224

and Rr (the measurement corruption noise variance) in both

the truth model and the filters, while 18 (the beam time

r‘- l,

constant) and Qr were the parameters that yielded the most

significant robustness difficulties. The severe lack of

O R R

robustness characteristics with respect to T8 appears to be

a stability problem which will be discussed in Chapter 6.

The target driving noise strength was selected for on-line
adaptive estimation, and the adaptive controller performed

well.
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VI. PI CONTROLLER STABILITY ANALYSIS

The purpose of this chapter is to evaluate how the Meer
and Snyder-Fishman filters affect the stability of the PI
controller. The motivation behind this analysis is to
isolate the stability robustness problem mentioned in
Section 5.4.1, and if possible, identify the reasons the PI
controller lacks robustness with respect to the beam time
constant. The source of the instability is believed to lie
within one of three areas: with the mismodeling of the
filter's state transition matrix (¢), within the inherent
structure of the Meer filter, or with the varying sample

period which is the product of the Poisson process for

. measurement event times.

The chapter will start by evaluating the stability of
the PI full-state feedback controller structure that uses
the steady-state gains found in Table 3-1. The generic PI
controller structure is time-invariant and linear;
therefore, showing that the poles of the system lie inside
the unit circle (. -domain) will prove that the closed loop
system with a full-state feedback controller structure is
asymptotically stable in the global sense (a form of zero-
input stability). Then, the Meer filter is cascaded with
the controller transfer function, and the stability is
evaluated as functions of the Meer filter sample rate and
the filter gain. Because the sample rate of the Meer filter

is not fixed, the system is no longer time-invariant, such
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a simple stability evaluation is not possible. A rigorous
proof of global stability for stochastic control systems
that use either the Meer or Snyder-Fishman filters in
conjunction with Kalman filters does not exist. 1Instead, an
ad hoc method is employed where the effects of different
sample rates are evaluated as being time-invariant, and the
zero—-input stability analysis is used to evaluate the pole
movement within the stochastic controller. Next, a
stability demonstration is used to verify that an analogous
Kalman filter for this application is stable and inferences
are drawn to the possible sources of instability within
Snyder-Fishman filter. Last, we need to analyze the effects
the Meer filter structure has on the Snyder-Fishman filter

equations, and thus the effects the Meer filter structure
has on the PI controller. The emphasis in this chapter is
not to provide the rigorous conditions for global stability,
but to analyze the possible causes of the controller's
instability. In other words, we are looking for answers to

the findings in Section 5.4.1.

6.1 Derivation of the PI Controller Transfer Functions

In a linear, time-invariant system, we find that the
stability is determined by the location of the poles in the
system transfer function. A system is said to be
asymptotically stable if and only if all the poles lie
within the stable region. For the continuous system, the
stable reqion is defined as the left-hand plane of the

Laplace s-domain plot. Analogously for the discrete system
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ﬁ model, the stable region is defined as the area inside of
. ‘ the unit circle of a z-domain plot. In other words, a
.,‘. i discrete, linear, time-invariant system model, such as the
; ;5 closed loop system with deterministic full-state feedback PI
Q b controller, is asymptotically stable if and only if all the

poles of the discrete closed loop transfer function lie

=

K within the unit circle (i.e., have a magnitude less than
. !
) W one) .
' & The first step is to analyze the stability of the
S
KN deterministic PI controller loop shown in Figure 6-1. The
N 3 transfer function is formed by solving the pseudo-integrator
" equation,
P4
o
S z .
i alz) = (ye (2) - yr (2)] (6-1)
A z -1
.
VI
R
o feedback control equation,
&
¥ ¥ u(z) = ~Geiye (2) - Gezq(z) + yr(2) (6-2)
i ¥
: S and the plant equation in terms of yc (z)/yr (2). The plant
é' equation is found by taking the impulse transform of a zero-
> L
‘N order hold attached to the plant dynamics model,
S Ye (S) = Gzos (s)P(s)U* (s) (6-3)
\ o
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where Gzox (8) is the transfer function (in the Laplace
domain) representing a zero-order hold and P(s) is the plant

transfer function

Gzon (s) = [1 - exp(ats)]/s (6~-4)
1
P(s) = ——— (6-5)
s - 1/1st¢

and then transforming it into the z-domain,

T8t [1-exp(-at/Tst)]
Ye (Z2) = GzonP(2Z)u(z) = -u(z) (6-6)
Z - exp(-at/Tst)

where

GzoxP(z) = Z[[1 - exp(-st)/s][1/(s + 1/18t)]} (6-7)

The deterministic PI controller transfer function is

ye (2) Tot [1-exp(-at/Tet )] [2(Gca+1)-1]

WV FTE R T MR TR ERT TR THRTT TN TS

yr (2) [z-exp(-at/Ts:)] [2-1]
+71t [1-exp(-at/Tet )] [Z2(Gec1+Gc2)-Ge1 ]
(6-8)
Assuming we want to know the location of the poles for the
nominal conditions (at=1.0 seconds, Tst1=20.0 seconds,

Gc1*=1.2422, and Gca2*=0.27436), Equation (6-8) becomes
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3 ye (2) .7654[z - .7847]
= - (6-9)
! yr (2) 22 - ,4719z + .2605

The poles of the closed loop system with deterministic PI

Sk,

full-state feedback controller transfer function are located

B

at p1=0.7982 and p2=-0.3263 which are well inside the unit

\ circle, and therefore the deterministic controller is

| ¢

R asymptotically stable.

& -? The next step is to derive the stochastic PI controller

g v loop transfer function with Meer filter in the loop. For

| g simplicity, the Kalman filter, which is used to estimate the

reference variable, will be removed from the overall

b v controller structure, and its stability will be verified in

i Section 6.3. This can be done because the Kalman filter

f transfer function is not included in the feedback loop of

N the regulator associated with the tracker. Therefore,
o

| instead of analyzing the stability of the PI tracker, we

will analyze the stochastic PI regulator, and this

simplification will not effect the pole/zero movement of

-

A

interest [14].

h=) |

The stochastic controller loop transfer function is

derived in the same manner as was the deterministic

: '3 controller transfer function, except that an approximation
% to a Meer/Snyder-Fishman filter is included in the feedback
fu

loop (see Figure 6-2). Note that the approximation being

"
" made is that a fixed sample period is being used rather than

) iy taking measurements at times dictated by a Poisson process.

SR

L v

[]

| 145

RO, LOL Bt O J S NV Y SPAINC AT Ag > X ” BN MW T O™ 1O > W, T AP NS T
“'»'.';‘?!.‘ u"f. A AN \:. P :’\‘.ra.bs.!h .,'l.!’l‘, e ,"Q AN J" !l; LS !h?l:‘!'\ '.‘0. ..h...h‘..le "ﬂ‘.?!‘!‘.’ T 2 '-54 Yy %, '1 !h “h! ,l, B N ‘ “".’mm h..‘



I8T7[043U0) Id OF3IBBYD03IS *Z-9 aanbyy

Y T N WY W W R W WY WY W Y W N T ey

@38 ardues
Burdaea =3v e e e -
| _
i -
Lo J(z) oz (Z) X \
HOSN3S _
|
- — |
ro LA 2E z|||l%><4ma |
+ ‘ I
bl N ©
¥3LTTd NVHHSIJd-YIAANS/¥IIN -
'mu
R
(Z) .x
AvV13qg (Z) %
IVYO3ILNI-0AN3sd |
llllll _ | ——— - - - = _ i
‘SL/T o+ m | M (Z)b- ! +
T +cora o wvsa s e g MUY
(z) "A=( T L LI LI " AR (Z) 4
. LNVd I
(®) 8) N |
A ) ILyf Av1aa _
P _J__ _
(Z) L

T MEOVS B OGS KOO s DER CSS Gl ALl B AR 55n Sl s 1 aF




bl WV TR e N R TR W T e R Ry R e T d TS s aSE e Yy w o NeTer e e e woow e ¥Ve

. Thus, the approximation results in a Kalman filter structure
. as shown in Figure 6-2. Such an approximation is made only
‘ in an attempt to discern basic stability robustness
characteristics of the loop, possibly as a function of a
chosen fixed sample period, to gain insights into the actual
behavior of a Meer or Snyder-Fishman filter in the loop.

Therefore, the transfer function is formed by solving the

i
A equations for the approximated Meer (or Snyder-Fishman)
§ filter,
o~
o zK(z)yc (z) + Bau(z) [1-K(2)]
£ (z) = (6-10)
~ z - o [1-K(2)]
IN:
" the pseudo-integrator,
~
D z
q(z) = (& (2) - yr(2)] (6-11)
z -1

3.'5- the feedback control,

»

< u(z) = -Ge1R* (z) - Ge2q(z) + yr(2) (6-12)
-~ and the plant model, Equation (6-6), in terms of

:ﬁ yc (2)/yr (z). The term Ba is the discrete-time control input
l)‘

matrix and can be calculated from Equation (3-60). The

stochastic PI controller closed loop transfer function is:

s B
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ye (Z) [Tet (1-exp(~at/Tst))][Z(Gez2+1)-1][2-0®s (1-K(2))]

yr (2) z3 + z2 [A+D-C] + z[B-AC-E] - BC

(6-13)
where

A

[1-K(2)] [Bd (Ge1+Gc2 ) -0 ] -1

B = [1-K(2)][®8-BaGc1]

C = exp(-at/Tst)

D = 18tK(2) [Ge1+Gc2] [1-exp(-at/Tatr )]

E = 8¢ K(2) [Ge1][1-exp(—at/Tst )]

6.2 The Zero-Input Stability Analysis

The purpose of the zero-input stability analysis is to
see what conditions will drive the stochastic PI controller
unstable. Two variables of the Meer filter will be
analyzed. First, the stochastic filter will be set to a
steady-state condition with a "fixed" sample period of one
second. This is to simulate a rather well behaved Poisson
distributed sample process in which the time "between"
events has closely approximated the mean signal arrival rate
of one second between events. The reasoning is that we need
to define some sort of baseline to be able the calculate a
filter gain. Then, we want to vary the time to the "next"”
signal-induced event (for the varying sample period
analysis, we will discount the effects that noise-induced

events have on the simplified Meer filter gain) and observe
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the effects that different sample periods have on the

.
.
4

controller's pole locations. In other words, we want to see

» .
-

in an approximate manner how the Poisson distributed sample

3 IS rate will affect the controller's stability. Theoretically,

ﬁ - as the time to the "next" event is increased, one or more

v E poles will migrate beyond the limits of the unit circle, and

SE . the controller is forced to operate in the unstable region

b 4 for the duration of that sample period [28]. ‘
’l:, g Second, the controller's stability will be evaluated ‘
g - with respect to changes in the Meer filter gain, K(ti).

3 § Unlike Kalman or Snyder-Fishman filters gains, the

} < simplified Meer filter gain (assuming a filter depth of one)

Q; N is a function of the filter's residuals (see Section 2.5);

R~ i therefore, the Meer filter is susceptible to large swings in

# filter gain due to noise-induced events. As it will be

seen, this can have a significant effect on the stability of

* R W 36 S e
& .
ra’ o’

a controller.
-l ! The effects that a varying sample rate and changing
is E: filter gains have on controller stability can be evaluated
’; ) by solving for the stochastic PI controller closed loop
{ é: transfer function, Equation (6-13), for a range of different
' - sample periods and filter gains. This is done by solving
i)

the state transition matrix, os, for the "next" sample

]

period. The control input matrix, Be, is calculated from

‘.

".‘.
’I' \‘
O N

Equation (3-60) for the controller sample rate of one Hertz

‘.

(i.e., a sample period of at=1l second). For the evaluation
§ ; of the varying sample rate, the filter gain is calculated
4 149

1 ) ™ NN A L PR LT Y IS AT e TIEA T AT A ‘-.'\.‘u".‘.'--.'.... -‘.\‘,:-\\ “r"‘."h“‘
x,".vl‘.""%* Py .‘\':“'.“.: !,h‘. l\,,ﬁa e L -’Q'n?t 'y .hq- ' ;,.\.f\}‘o.#,)u'y.i!lt (R " ‘"\' A TLy ,'(" h ‘\"." \ ’.’ ¥/ - \ A '. " v " \ )

LI Y "y
Nt q'\'.

ol




ol
i
.u‘. ‘.
? from the Snyder-Fishman covariance equations (see Equations
t: (2-11) and (2-14), where P(ti-1*) is calculated for the
& ‘ steady-state condition defined by a "fixed" sample period of
:.: :‘ one second and P(ti-) is calculated for the duration of the
1y "next" sample period. The filter gain is calculated from
VIS P(ti-) using the Snyder-Fishman filter gain equation,
Equation (2-15). Changes in the filter gain are evaluated
:: g by solving the stochastic PI controller transfer function
! ” for a range of different filter gains at different sample
: ) periods.
g
Iy 1. 6.2.1 The Effects of a Varvying the Sample Perjod It
' was found that the PI feedback controller (using Meer filter
Z to estimate the beam states, and operating under nominal

‘ conditions) is driven unstable for sample periods that are
‘4 longer than 3.368 seconds. This can be observed from the
E "._ stochastic controller root locus plotted in Figure 6-3.
1 . Although sample periods longer than 3.368 seconds occurs
”' N only 3.45 percent of the time (as calculated from Equation
i, : (4-17), and assuming £s=1.0 signal-induced event per
. second), it means that the filter is operating in tha
g ‘?‘ unstable region for 15.05 percent of the time (as calculated
3 by integrating over the Poisson density function from
S t1=3.368 to tisme).
:: The effect of mismodeling T was also studied, and the
:‘ . results showed (see Appendix C) that the controller becomes
' E unstable at shorter sample periods when the true vs is
.ﬁ ’ decreased from the Meer filter-assumed value.
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6.2.2 The Effects of a Varving Stochastic Filter Gain
The analysis was done with the sample period set to 1.0 and
3.5 seconds, and the gain was varied from 0.0 to 1.0. That
is, the filter gain in this analysis was calculated across
its entire range, and the filter gain was not based on a
specific filter beam dynamic driving noise strength, g2, nor
a measurement noise variance, R. The results for a sample
period of one second demonstrated that the controller is
stable for the entire range of the filter gain (see Table
6-1). This is expected, for we effectively evaluated the
controller as if it were using a Kalman filter instead of a
Meer filter. The controller is third order, but the filter
employs a pole-zero cancellation (during ideally modeled
conditions and not true for robustness), and the effects of
the filter within the controller structure is never felt.
This is not the case when the controller's sample period is
3.5 seconds long. The controller is only stable for values
of K(ti) that are less than 0.27. This is a relatively
small filter gain, which indicates that the filter assumes
that its internal dynamics model is relatively accurate
during that sample period. The results suggest that the
stability of the controller is highly sensitive to the
magnitude of the filter dynamic¢ driving noise strength, g2,
which is used to calculate the filter gain. The higher the
g2, the more susceptible the stochastic controller is to

being driven unstable by long sample periods (particularly




- .
e

.l .l‘l

if the filter—-assumed model does not match the real world

exactly, which is always the case).

TABLE 6-1

Stochastic Filter Pole/Zero Placement as a Function of K(ti)

Pole locations (nominal condition)

Filter at = 1.0 seconds at = 3.5 seconds
Gain P1 P2 p3 P1 P2 ps
1.00 .7982 -.3263 .0000 .8183 -3.8484 .0000
0.90 .7982 -.3263 .0951 .8183 -3.4365 .0111
0.75 .7982 ~.3263 .2378 .8183 -2.8248 .0338
0.50 .7982 -.3263 .4756 .8183 -1.8375 .1032
0.25 .7982 -.32613 .7134 .8183 -.9711 .2949
0.10 .7982 -.3263 .8561 .8183 -.6075 .5657
0.00 . 7982 -.3261 .9512 .8183 -.4560 .8395

Zero locations (Note: the zz/ps cancellation at at=1.0)

Filter at = 1.0 seconds at = 3.5 seconds
Gain 23 22 21 Z2

1.00 . 7847 .0000 .7847 .0000

0.90 .7847 .0951 .7847 .0839

0.75 .7847 .2378 . 7847 .2099

0.50 .7847 .4756 .7847 .4197

0.25 . 7847 .7134 .7847 .6296

0.10 .7847 .8561 .7847 .7555

0.00 .7847 .9512 .7847 .8395

6.3 The Stability of the Kalman and Snyder-Fishman Filter

Equations

This section applies the second Lyapunov stability
theory to the homogeneous portion of the Kalman filter to

show that it meets the zero-input stability criteria. Then,

the same stability criteria will be applied approximately to
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X

the Snyder-Fishman filter and although the stochastic

particle beam model is technically stable, an observability

problem is apparent. The stability criteria to be used in

this section presents a set of non-restrictive conditions

Cun,

for which the Kalman filter algorithm is asymptotically

A8

stable in the global sense. Asymptotic global stability is

the strongest form of stability, which means that, given any

y S |
P

initial condition within a defined region, its state plane

3

trajectory will always converge to an equilibrium point [3].

2

’
-

If that system is linear and asymptotically stable, there

| =)

will be only one equilibrium point. This is an important
N concept, because for linear systems, the sufficient

N conditions of asymptotic stability are indistinguishable

i from conditions for bounded input-bounded output (BIBO)
stability [12]. When BIBO stability criteria are applied to
§ the filter, it means that, for a bounded input into the
filter, the output (state estimate) will be bounded. If the
! region of the initial conditions that meet the stability
ﬁs criteria is expanded to include the entire state space, then
: that system is said to be stable in the global sense. 1If
V: 23 the system model upon which the Kalman filter is based is
'; - stochastically controllable with respect to the points of
L o entry of the dynamics driving noise we (.,-), and
,‘ :.2 stochastically observable from the points of exit of the
. measurements from the system model, then the filter is
E & asymptotically stable in the global sense [12,14].
P
y :
4
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Therefore, a Kalman filter as defined by the target
model in Section 3.1, is said to be stochastically
controllable if there exist positive numbers a and B8,
O<ax<p<=, and a positive integer N, such that, for all

i2N,

1

al s I O(ty ,t3)Ga(ty-1)Qa(ty-1)GaT (ty-1)0T (t1,ty) s BI
Jst=Neyg

(6-14)
and is said to be stochastically observable if there exist
positive numbers a and B, 0<a<f<e, and a positive integer N,

such that, for all i2N

1
al £ & O (t3 ,t1 JRT (3 )R- (L5 )H(ts)o(t; ,t1) < B (6-15)

J=1-N¢+tg

Because Equations (6-14) and (6-15) are bounded both above
and below, this is a stronger condition than just using the
positive definiteness of the controllability and
observability gramians. If the target model upon which the
Kalman filter is based is stochastically controllable and
observable, then the filter is asymptotically globally
stable. For time invariant system models, we would only
need detectable and stabilizable to ensure stability of the
filter (10].

When Equation (6-14) is applied to the target model, it

becomes:
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1 A% Qa ABQa ACQ4
cl £ 2 ABQa B2 Qq BCQa < Bl (6-16)
J=1-Ned ACQa BCQa C2Qa

where
A = 1s[at - B}
B=1[1 - C]
C = exp(-at/Ts)
Qa = the discrete target dynamic driving noise strength

At = t1 - ty (Note: ti-t; is not the sample period)

Because Q4 does not equal zero, and the matrix in Equation
(6-16) is a positive definite for all forward running time,
there will always be positive a and B such that 0<a<f<e;
therefore, the target model is fully controllable.

When Equation (6-15) is applied to the target model, it

becomes
1 1/Rr -at/Rr C/Rr
al £ I -at/Rr at2 /Rt -atC/Rr < BL (6-17)
Jal-Ne+12 C/Rr -atC/Re C2 /Rr
where

C = exp(—-at/Ts)
Rt = target measurement variance

at = t; - ty ({Note: backwards time)

Because R does not equal zero or infinity, and the matrix in

Bquation (6-17) is positive definite for all backwards
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running time, there will always be positive o and f such
that 0<a<B<e; therefore, the target model is fully
observable.

Since the target model upon which the Kalman filter is
based is fully controllable and fully observable, the filter
is uniformly asymptotically stable in the global sense.
Uniformly stable implies that the system in stable for all
time, regardless of what absolute time it is. The same
observations can be made by referring to the target shaping
filter in Figure 5-3. It is obvious that model is
controllable from the entry point of the white noise, and
observable from the point of extraction of the target
position state.

When the same zero-input stability criteria is applied
to the homogeneous part of a Kalman filter that approximates
the Snyder-Fishman filter, the Poisson distributed sample
rate does not violate any condition which define
controllability and observability. Note that the Kalman and
Snyder-Fishman filter structures are almost identical (see
Section 2.2).

When stochastic controllability Equation (6-14) is
applied to the particle beam model, the resulting expression
is

1

as I Qaexp(-2(t1-ty)/Tts] S B (6-18)
Jzli=-Ne+}
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As long as Q4 does not equal zero, and none of the sample

periods are allowed to approach « (theoretically possible

with the Poisson process), then there shall be positive

numbers o and f where 0<a<B<e, and the model used for the

LS

basis of the filter design will be controllable.

>

Stochastic observability is also met. This can be

shown by applying Equation (6-15) to the stochastic particle

&

by beam model to attain

ﬁ 1

¥ a < £ exp[2(ti-ty)/T8]/R < B (6-19)

J=1=N+1

But, a fundamental observability problem could arise for the

:ﬁ longer sample periods, because as the length of the sample
i period grows, the upper bound must grow at an exponential
rate. Regardless, the Snyder-Fishman filter equations are
E; technically asymptotically stable assuming we define the
range of the Poisson process intervals between measurements
! as not to include infinity.

o

6.4 Stability Insights on the Meer Filter Structure

This section will re-evaluate the method in which the

w4

Meer filter gain is calculated for a filter depth of one,

§ with particular emphasis on gaining an understanding of the
uﬂ
severe robustness problems associated with mismodeling of
-2
4 the beam time constant, vs. As it was shown in Section 2.5,

the Meer filter gain, Ru(ti), is related to the Snyder-
Fishman filter gain, Ksr (ti), by the following expression

. for a depth of one:
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. Ru(ti1) = p1 (t1)Ksr (t1) (6-20)

i & \
"z ;: where p: (ti) is the probability that the event at ti was

Q - signal induced (see Equation 2-27). As the filter residual,

Al 5 r(ti), increases, p: (ti) decreases. 1If the mismodeling of |
g. - Ts is severe enough, the residual will be large enough so

k @ that p1 (ti1) will approach zero and drive the Meer filter

N :’, gain to zero regardless of the Snyder-Fishman filter gain.

: - This suggests the possibility that the Meer filter structure

can severely inhibit the robustness of the controller, and

=2
!

, . that the apparent instability might be in part caused by or
ok at least aggravated by a robustness problem.

The concept is that the combined effects of long

»
.

LF sample periods and mismodeling T will cause large
t} residuals. Ideally, a large residual indicates that the
4 event is most likely noise-induced, and the event receives a

~ 4
J

probabilistic weight as such. But, if the true center of

i .

b :ﬁ the beam is offset from the filter's estimate of the center,
.ﬁ - then the Meer filter will begin to weight a large number of
; % signal-induced events as being noise-induced (see Figure
. 6-4). It appears that the filter could counteract this

*\ E effect. As more events are labeled noise-induced, the time
y ;; between signal events will appear to increase, and the

’ N filter covariance will increase. This will cause the

H E elemental Snyder-Fishman filter to rely more on the incoming
_ .

L
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‘ filter-assumed true rate function
rate function (see Equation (2-1))
&
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§ [ — 7 N~ o
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K

Figure 6-4. True Beam Offset from Filter Beam:

g Rt=R¢=0.5 cm, r(ti1)=1.0 cm

.S

~

d measurements. This does happen, but it is to no avail

.y because the elemental Snyder-Fishman filter gain is

= multiplied with the probabilistic weight that it was a

‘ signal-induced event, pi1 (t1). This product forms the Meer
filter gain. As the filter beam center diverges from the

E? true beam center, pi1 (ti) approaches zero and forces the Meer
filter gain to zero. Meanwhile, no new measurements are

! incorporated, and the filter never recovers.

% This led to the hypothesis that some of the robustness

’ can be recovered by computing the filter R as a function of

? some time-weighted average of the previous N residuals. By

) increasing the filter R when the most recent residuals are

32 consistently larger than originally anticipated, the Meer

Lx filter is told to look for the signal-induced events across

a larger section of the detector (see Figure (6-5)). The

160
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b - Detector Array
g * Figure 6-5. True Beam Offset from Filter Beam: |
Rt=0.5 cm, Rt=1.0 cm, r(ti)= 1.0 cm

& advantage of this concept is that most of the signal-events
” ji can be recovered, and the filter should have much better
p - robustness with respect to the mismodeling of the beam time
% :; constant. The robustness analysis found that the controller
¢ . is rather insensitive to increases of the filter R (see
vﬂ Section 5.4.3), and although the larger filter R will cause
f ? filter to weight more noise-induced events as signal-
' induced events, this should have no significant effect on
! the RMS tracking error. This conclusion is drawn from the

5 results found during the sensitivity and robustness analyses
X ' conducted on the beam dispersion parameter (see Sections
3 E 5.3.3 and 5.4.3).
i A This concept was simulated through a measurement model
V % that received 1000 events. The true beam had a dispersion

é: parameter Rt of 0.5 cm, and was located at the center of the

) detector. The measurement model was offset from the true
E E beam center by a prespecified residual. The simulation
s included noise-induced events as specified by the SNR, and
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TABLE 6-2

The Filter's Probabilistic Weight that an Event Was Signal-
Induced as a Function of Rr and the Filter Residual

(Simulated Results: Sample Population = 1000 events)

1. Re=0.5 Filter residual: r = 2z - R (cm)
Probability 0.0 0.5 1.0 1.5 2.0 2.5 3.0

B (1) .973 .965 .938 .851 .655 .454 .255
1.05p1<.99 .889 .754 .506 .371 .124 .019 .007
.995p1 €. 95 .081 .197 .291 .185 .300 .137 .021
.955p1 <. 90 .003 .024 .080 .097 .081 .103 .038
.90sp1 <.75 .004 .005 .065 .146 .039 .145 .068
.755p1 <.50 .003 .001 .024 .102 .117 .083 .126
.505p1 <. 30 .000 .002 .008 .034 .085 .016 .082
.30sp15.15 .001 .005 .005 .031 .067 .053 .077
.155p1 <.05 .004 .005 .001 .017 .081 .111 .0S3
.055p15.00 .015 .016 .020 .017 .106 .333 .528

2. Re=1.0 Filter residual: r = zs - 8 (cm)
Probability 0.0 0.5 1.0 1.5 2.0 2.5 3.0

Pr (t1) .986 .986 .975 .971 .935 .844 .667
1.05p1<.99 .970 .958 .849 .558 .434 .201 .047
.99<8p1 <. 95 011 .021 .122 .374 .267 .295 .265
.955p1 <. 90 .002 .003 .005 .036 .135 .092 .125
.908p1 <. 75 .004 .003 .002 .013 .116 .201 .065
.758p1 <.50 .002 .006 .003 .006 .025 .117 .178
.505p1 <. 30 .001 .001 .001 .000 .007 .048 .140
.30s8p1 <.15 .004 .002 .003 .001 .002 .022 .076
.155p:1 <. 05 .003 .002 .001 .000 .002 .011 .047
.055p1 <.00 .003 .004 .014 .012 .012 .013 .054

3. Re=2.0 Filter residual: r = zs - % (cm)
Probability 0.0 0.5 1.0 1.5 2.0 2.5 3.0

b1 (t1) .997 .996 .993 .991 .985 .980 .963
1.0<p:1<.99 .976 .980 .980 .962 .834 .598 .476
.99<p1 <. 95 .015 .008 .007 .025 .148 .371 .382
.95<p1 <. 90 .005 .004 .004 .003 .003 .012 .097
.908Sp1 <.75 .003 .006 .003 .003 .004 .007 .031
.755p1 <¢.50 .001 .000 .001 .003 .003 .003 .000
.50<p1 <. 30 .000 .001 .001 .001 .000 .002 .002
.30<p1 <. 15 .000 .001 .002 .001 .002 .000 .003
.15<p1 <.05 .000 .000 .002 .002 .001 .001 .002
.055p1 <.00 .000 .000 .000 .000 .005 .006 .007

Note: Ri¢=0.5, SNR=20 (952 signal-induced events, 48 noise-
induced events)
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the simulation was conducted with the filter R equal to 0.5,

> 1.0 and 2.0. The results are in Table 6-2, and confirm the

' idea that, as the offset increased, p: (ti) would decrease,

o and that an increase in R could compensate for the offset ‘
and still be able to identify the most severely degrading

\
E noise-induced events properly. Under nominal conditions and ‘

assuming a filter residual equal to 0.0 cm, the filter
generated an average probability that an event was signal-

induced, P, of .973. More significant is the fact that

w3

L]
-

the Meer filter was able to distinguish the most severely

degrading noise-induced events by giving them an appropriate

probabalistic weighting of .05 or less. As the filter

e
:' residual increased to 3.0 cm, P decreased to .255, and the
= filter had great difficulty in distinguishing the signal-
induced events. But, as the filter beam dispersion (Rt) is
SE increased, the Meer filter was able to identify more of the

signal-induced events and up to some point, be able to

1 4
5 ]

distinguish the most severly degrading noise-induced events. |

P

6.5 Conclusions

The controller stability evaluation led to several

AR

conclusions. First, the apparent controller instability is

Y5

really a combination of an intermittent instability problem
and a stability robustness problem. Second, it appears that
there are three sources of the controller instability. The
varying sample rate (based on the mean signal parameter rate
of one event per second) can drive the controller unstable

. during the longer sample periods. The mismodeling of Ts can
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lead to large residuals, especially during the longer sample
periods. Finally, as the residuals increases, the Meer
filter structure will assume that more of the incoming
measurements are noise-induced and the filter will
inadvertently drive the Meer filter gain to zero. All three
of these problems can be rectified. First, by insuring the
design has a much higher mean signal rate parameter, we can
reduce the chance that a controller will be driven unstable
by a long sample period. Second, developing on-line
adaptive estimation of T3 can reduce the large residuals.
Third, by on-line computing of the filter R as a time-
weighted average of the recent filter residuals, we can
inhibit the Meer filter from misdiagnosing the signal-
induced events as being noise-induced, and thereby, keep the

Meer filter structure from driving the filter gain

inappropriately low.
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VII. CONCLUSION AND RECOMMENDATIONS

7.1 gconglusion

Five Monte Carlo analyses and a PI controller stability
analysis were performed. The first Monte Carlo analysis
looked at seven different cost weighting matrices in an
effort to minimize the steady state RMS tracking error, and
to enhance the robustness of the PI controller. The
significant finding was that a 10 to 1 ratio between the
cost weighting element on the states, Xi:1, and the cost
weighting element on the pseudo-integral term, Xss, resulted
in the lowest RMS error. This prevents Xss from inducing
any degrading oscillations into the controller, while
allowing the controller to minimize previous tracking errors
and compensate for non-linear disturbances. The results of
next Monte Carlo analysis demonstrated that the Meer filter
structure can be reduced to a depth of one without any
apparent degradation of the controller's performance. This
reduction in filter depth should lead to significant savings
in on-line computer processing. The third and fourth Monte
Carlo analyses were the sensitivity and robustness analyses.
The results showed the PI tracker performance was most
sensitive to equal changes in the true and filter target
dynamics driving noise strengths (Qr) and to equal changes
in the true and filter target measurement noise variances
(Rr). This means that a PI controller with perfectly tuned

Meer and Kalman filters (i.e., the filters have access to
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b the true parameters), was most sensitive to the changes in
ﬁ the true Qr and Rr. When the controller was evaluated

' ‘ without access to the truth model's parameters, it was found
@ :i that parameter variations in the beam time constant, T8, and
;: N Qr caused the most significant robustness difficulties. The
Ry last Monte Carlo analysis evaluated the on-line adaptive

v‘ -, estimation of Qr. The results showed that the multiple

; N model adaptive controller performed well.

@ §§ Because the PI controller lacked robustness with

" respect to the beam time constant, Tr, an in-depth stability
W :'_.3 analysis was performed on the PI controller. This was

composed of a zero-input stability analysis on both the

ol

deterministic full-state feedback and stochastic PI

controllers, a controllability and observability evaluation

-

A of the Kalman and Snyder-Fishman filter,equatioﬂs, and an

’ &5 analysis on the Meer structure. The apparent stability

¥ problem was do to the combined effects of a low signal rate

; ' parameter that frequently lead to long, destablizing sample

r :2 periods, the mismodeling of ts that can lead to large

? " signal-induced residuals, and an inherent design problem

‘; '3 that would allow the Meer filter to evaluate the large

X e signal-induced residuals as being noise-induced. All three
N

3 o2 problems can be corrected by using a higher signal rate

s %‘ parameter, by developing on-line adaptive estimation of Ts,

j: and by calculating the filter target measurement noise

[

variance, Rr, as a function of the time-weighted average of

v the residual.
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7.2 Recommendations

These recommendations are divided into two parts. The
first part will suggest ways to improve SOFE and the SOFE
user-defined subroutines that provide for the Monte Carlo
analyses in this thesis. They are as follows: (1) The
large number of runs (200) and the long settling time
required for the controller (the first 50 seconds of each
run) were based on Zicker's research [27], and it appears to
be excessive. It is recommend that the number of runs and
the length of the initial transient response be reviewed.
This could save a considerable amount of computer time.

(2) It is suggested that the length of the detector array
(L) be increased. It was found that the target frequently
exceeded the 10 cm. length of the detector, especially
during conditions other than nominal. Alternatives would be
to change the scales so that 10 centimeters would correspond
to a large physical field of view, or change the plant or
target model gains to reduce the RMS tracker error.

(3) It is suggested that the software be updated. The SOFE
program used for this research was complied in May 1982 and
was written in FORTRAN 4. The current version of SOFE was
written in FORTRAN 77 and developed using top-down
structured programming, and the current version (Version
2.5) is supported by a new user's manual. The problems with
using an older version of the software is the increasing
difficulty in obtaining technical support and the inherent

difficulty of reading FORTRAN 4 code. (The only SOFE (i.e.,
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not user-defined) subroutine altered by Meer was "ADVANS";

ol -
L

? i therefore, this should be the only subroutine in the SOFE

.‘ source code that would have to be rewritten.) Second, if

é % the simplified Meer filter (i.e., with a filter depth of

2 one) is accepted for all further research, much of thee

; & existing Meer filter code can be deleted. Most of the Meer

% W filter code is overhead used to support greater filter

} Q depths. This should result in a much more efficient code.

! z} The second half of the recommendations suggests ways of

E ¥ improving the filter's stability robustness. They are as

jf g follows: (1) Use a higher signal rate parameter that will

SRS generate a higher mean sample rate. This will insure that

E 3 the controller is stable more than the current 85 percent of

: i the time for nominal conditions. (2) Develop on-line

; adaptive estimation of vs, which could be accomplished

:: a through multiple model adaptive methods. If the Meer filter

i is kept at a filter depth of one, this should be a simple

Y ! task. The goal is to reduce the large residuals that occur

: g during the mismodeling of vs. (3) Develop a variable filter

: ” R which is always larger than the true R and is evaluated as

2 3 a function of the time-weighted average of the the most

; - resent residuals. This should be done with the intent of

) @ keeping the mean conditional probability that an observation
ﬁ was signal-induced, fi1 (ti1), near the true (based on the

. v truth model simulation of signal and noise rates) value of
é P1. At the same time, the filter R must be kept small

j R enough to be able to identify the severely degrading noise
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events. The goal is to maintain stability robustness by

Y
S
Pt

preventing the Meer filter from driving p: (ti) to extremely

low values, which would effectively "shut down" the filter

Ve

ey,

measurement model. (4) Consider using implicit model-

o oy o e

following (see Section 3.4 and Appendix A) as a means to

L2

enhance the controller's robustness and to obtain good

response characteristics [16]. Once the PI controller

X'

B

T _—a -

demonstrates good robustness for all meaningful parameter

f g variations, the effects of unmodeled beam dynamics and

g : timing delays can be studied. (5) Consider reducing the RMS

$ 2 tracker error by increasing the gain of the particle beam

E; é' plant (see Section 5.3.1 and specifically Equation (5-2)).

;L ~ - This can be done be increasing the control input gain

h

3 i matrix, B(t) (for this application, B is a scalar). The

} v effects of different control input gains can be analyzed
% with frequency domain techniques (like using Bode plots).

:5

X«

R R

k3
o'y R
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. Appendix A
Alternate Cost Weighting Methods

N

\l

<

This appendix will derive the implicit model-following

g method [16,19]), and discuss the LQG/LTR (linear quadratic
N Gaussian/loop transfer recover) Dual Method of Kwakernaak
Q“‘

)

and Sivan [10]. Both of these methods are designed to

enhance the controller's stability robustness.

B |

To be able to derive the implicit model-following cost

N
‘g function, we must start with the general form of the cost
- function:
-
i’ tu+
Je = E{¥xT (tner1)Xrx(tnsr) + KIxT (t)Wxx (L) (L) +
to

oy

+ uf (t)Wua (t)u(t) + 2X7T (t)Wxu (t)ul(t)]ldt (A-1)

Because we are designing for steady state, the cost function

can be re-defined as:

A = <2B

o [ti1+1
Je = K% I J [xT (£)Wxxx(t) + u' (t)Wauwu(t)
t=0 ]ty

5

‘- + 2x7 (t)Wxeult)]dt (A-2)




Now, for all ts[t:i,ti+:), x{(t) is described by:

t
x(t) = o(t,t1)x(t1) + J e(t,7T)B(T)u(r)dr
ti
t
+ o(t,7)G(T)u(T)dB(T) (A-3)
ti
and u(t) = u(ti) , and u(ti) is constant over the entire

sample period; therefore we can define

t
B*(t,t1) = J o(t,r)B(T)dr (A-4)
ti

Therefore, the deterministic form of Equation (A-3) is
x(t) = o(t,t1)x(t1) + B*(t,t1)ulty) (A-5)

and the last integral term in BEquation (A-3) has been
dropped because the only effect it will have on the cost
function is in the form of a loss function, defined as

Lr (t1), and because it cannot be affected by the control
input [14]. Said another way, the first part of an assumed

certainty equivalence design is the synthesis of the LQ

b %j deterministic optimal controller, so the stochastic driving
b ) term can be neglected. By substituting Equation (A-5) into
ﬁ Equation (A-2), we get
& 174
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o {tie+n
Je = K I [ [(xT (1 )OT+uT (t1 )B*7T )Wxx (Ox(t1)+B*u(t:))
1=0]¢ts
+ uf (t1 )Wwsu(ts)
+ 2(xT (t1)QT+ut (ty )B*T )Wxuu(ty)]dt
o [ti+1
=K% 1I KIxT (t1)OTWxxOx(t1)
1=0 )¢y
+ uf (t1 )B*TWxxB*u(ty) + uf (t1 )Wuuu(ty)

+ ut (ty )B*TWxuu(ti) + uf (t1 )WxuTB*u(ty)

+ 2xT (t1 )@TWxxB*u(ts) + 2xT (t1)®TWxuu(ty)]dt

and since x(ti) and u(ti) are constants, this becomes

L] ti1+1
Je = ¥ I [J_{_’(tx)[ (OTWxx®)dt-x(ti)

1=0 ti
tie

+ ut (t1) (B*TWxxB* + Wau + B*TWxu + WxaTB*)dt-u(t:)
t1
tien

+ 2xT (t1) (OTWxxB* + OTHxu)dt-ul(t:) (A-6)
t1
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By substituting Equation (A-6) into

. '.' ;

Je = %.! (xT (t1)X(t1)x(t1) + uT (t1)U(ts lu(ty)

1=0
s + 2xT (t1)S(t1)u(ty)]dt (A=T)
% it yields
C'- ti1+1
J X(t1) = (T (t,t1 )Wxx®(t,t1))dt (A-8)
ti
o t1e1
ﬁ U(ty) = (B*T (t,t1 )WxxB*(t,t1) + Wuu
ti
o + B*T(t,t1)Wxu + WxuTB* (t,t1))dt  (A-9)

sS(t1) (@T (t,t1 )WxxB* (t,t1) + OFT (t,t1)Wxu)dt (A-10)

i Jtut

ti

LR
Ny

Y‘.
. [N}

u By definition, X(ti) and Wxx (t) are symmetrical positive
) semi-definite, U(t:i) and Wuu (t) are symmetrical positive
»
E‘ definite, and S(ti1) and Wxe (t) are defined such that the
" expression
a:
(X(t1) - S(t1)U-1(t1)S(t1)T]
E is positive semi-definite.
T Instead of using the quadratic cost term
E; XT(t)Wxx (t)x(t) in the integral in the integral on Equrtion

(A-2) that is used to drive x(t) to "zero", we can define a

&«

model of desired characteristics as:

LA
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(t) = FEx(t)yn(t) (A-11)

and then put a quadratic penalty on the deviations of the

actual system outputs (y = Cx) from those characteristics:

{Y - FuylTWyy (g - Enyl
= {Cx - FuylTWyy (CX - Fnyl
= [[CF-FuC]x + CBul™Wyy { [CE-FuC]lx + CBul} (A-12)

The XTWxuu quadratic cost term in Equation (A-2) is replaced
with
(Y - FuylTWyuu = {[CF-FxClx + CBujTWyuu (A-13)

Therefore, the implicit model-following cost function is:

o {tien
Ji = %X I {[CE-FuClx + CBul™Wyy { [CF-FxClx + CBul
1=0J1t
+ u'Weayu + ([CF-FnuClX + CBulTWywuldt (A-14)

Using the same derivation as above, this can be written as

Jr = ¥ I [xT(t1)Xr(t1)x(ts) + ut (ty)Ur(ts)ulty)
10
+ 2XT (t1 )81 (t1)ult1)])dt (A-15)
where
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ti+n
Xi(t1) = J {®T (t,t1) (CF-FuC)TWyy (CF-FxC)O®(t,t1)}idt (A-16)
t1

tis+1
U (t1) = J {[(CF-FuC)B* (t,t1 )+CB]TWyy [ (CF-FnC)B* (t,t1 ) +CB]
t1

+ Weu + [(CE-ExC)B* (t,t1)+CB]TWs

+ WyoT [(CE-FxC)B* (t,t1)+CB]ldt (A-17)

i+

Si{ty) = J {®T (t,t1) (CF-FuC)THWyy [(CF-FxC)B* (t, ti1 ) +CB]
t1

+ OT (t,ty1) (CF-FuC)TWyu ldt (A-18)

If we were to use the implicit model-following in the
PI tracker as described in Section 3.3.2, we would use the
same augmented states which include a pseudo-integral term,
C(ti1) would be defined by Equation (3-56),

B(ti1)=[1 0 0 0 0)JT, and @(t,t;i) would be

F A 0 0 0 0
0 1 at D 0
o(t,ty) = 0 0 1 C 0 (A-19)
0 0 0 B 0
1 -1 0 0 1
L J
where

= exp(-at/Ts)

A
B = exp(-at/1r)
C =111 - B]

D

= 17 {at - C]
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At = t - ti

The cost weighting matrices Wxx (t), Wxu (t) and Wuu of
the general cost function, and Wyy (t) and Wyu (t) of the
implicit model-following method must be selected as to
represent the physical objective we are trying to accomplish
with the individual states. For example (see Equation

(3-62)),

Hxx (t) = Wyy () =

oo N
(== Iy
[oNeNoNeNe
OCO0OO0O0O

0
0
0 (A-20)
0
1l

will drive the error betwéen the target and the beam states
to zero, while applying a 10 to 1 ratio to the pseudo-
integral term. The 10 to 1 ratio is suggested because it
delivered the best performance (see Section 5.1). The cost
weighting matrix, Wyy (t), must be symmetrical, positive

semi-definite, and the Wyu (t) term must be such that
[Xr (t1)-Sr (L1 )U-2 (L1 )S1T(t1)])

is a positive semi-definite matrix.

As the result of the implicit model-following
technique, Equation (A-11) is embedded into the cost
function, and the desired model does not appear explicitly

in the final controller structure. That is, the additional
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states used to achieve the desired characteristics of the

controller are not augmented to the original system model
states. Implicit model-following gives us the flexibility
to select the model of the desired closed loop system
characteristics by allowing us to choose Fy to have a
desired eigenstructure. 1In other words, we can select Fx in
such a manner as to place the poles and orient the
eigenvectors to develop a controller with good loop shape
(desirable feedback control characteristics) and enhance
robustness ([2].

Another method that can be used to enhance robustness
is LQG/LTR Dual Method of Kwakernaak and Sivan (10]). This
is a specific method of choosing Wxx that enhances the
syster stability robustness at the plant output. This is
done by treating the Kalman filter (or Snyder-Fishman filter
as it would be the case for this application) as a dynamic
compensator and using it to establish good loop shapes in
order to achieve good command following, good disturbance
rejection and low sensitivity to plant variations from the
nominal conditions. Then Wxx is chosen iteratively as some
initial Wxx value plus the q2CTVC, where V is a positive
definite weighting matrix and q* is a scaler that is
increased to acheive as much of the desirable robustness
characteristics as possible in the implementable filter-

controller structure.
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Appendix B

Qutline of SOFE Operations

B.1 Structure of the Software

This section provides a functional outline of
subroutines used in SOFE [7,21] for this application. The
lower case letters are the internal SOFE subroutines, and
the upper case letters are the user-defined subroutines.
Because a shaping filter was used to generate the target
trajectory rather than using an externally generated

trajectory, the following subroutines were not called:

w2 B S s A R G W .

span, TRAJO, move, interp, icsevu, or icsicu.

SOFE

)

*2%* Problem Initialization »»»
f—sofebd

~——advano

——splita——-nzrcio

——getx (twice)

—getpt. Zroize

L

g B MB

4
-

(Calculates ax from SNR)

|
&
:

Dy B
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C)———m *#%2% Run Initialization #x»

—getx (twice)

—aetps
——INITJ
—AMENDO*
——GETMEAS (Generates times to first
}——ESTIX0—— signal and noise events)
L_—SFPROP
——FQOGENO
——SNOYSO*
——XFDOTO* * These subroutines are called,
but are not used.
——XSDOTO*
L out —[1]—GETRS
©-——  *** Propagation Cycle ##» | (2] —GETRN
——advans-—————ESTIX—— — SFUPDAT—+——CALCSUM
—COLLAPS
(1] -GETTRS
L——&Eﬂﬂﬁbér——{z[2]—ﬁﬂliﬂ
——SFPROP (3] -FEEDBK
p—Lkutmer—deriv——XSDOT
—XEFDOT
——sNoYs —FQGEN
—f{pppft——2zroize
——out ——out L—asysp

(1)
(2]
(3]

- if it was a
- if it was a
- 1if at=l1l (se

signal event, then...
noise event, then...
¢c), then calculate u(t:)
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®

*ax Update Kalman Flter Equations #»=*=
(The Meer filter is updated as
part of the Propagation cycle)

2 5= G M .

3 |
' ———psqrt
5 |—HRZ
£ sqrs
) ———QUut
:. E *** Tnjects Non-Linear Disturbances into Plant #*x*
' & AMEND (called but not used for this thesis)
out

S
e
l.' i
é< End of

5, Run?
g, 3&
. End of
B ﬁ Simulation?
{. End
k>, i
R e
K . Notes:
1,
v GETRS, GETRN, HRZ and SNOYS use the function GAUSS (see

BEquations (4-12) and (4-16) for HRZ and SNOYS)

o=

GETTS and GETTN use the function Poisson (see Equation
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Subroutine "out" calls several different subroutines
and collects the data required for the SOFE output
file, and by SOFEPL for statistical reduction of the
tracker and filter state errors (see Equations (4-1)
through (4-9)).

Definitions of the Subroutines:

advans controls propagation between measurement updates

advano initializes advans

asysp adds GQGT together for: dP/dt=FP+PFT+GQGT, the
differental form of Equation (3-4).

deriv evaluates the derivatives of the filter and truth
states

fppft adds FP+PFT together.

gauss Gaussian random number generator

getpf reads the initial covariance matrix, Po

getx reads in the initial truth and filter states, Xo

kutmer Kutta—-Merson integration algorithm

nzrcio reads the non-zero input from the disk

out outputs all scheduled data

psqrt ta;?: fhe Cholesky upper triangular square root of

1

sofebd reads the PRDATA block data file from the disk
PRDATA is the SOFE simulation specification
file.

splita partitions the unlabeled common block ‘'A' into
the states, filter covariances and other data

sqgrs squares the Cholesky square root to form P(t:)

valdta validates the input data

xsplus performs the measurement update on the filter and
truth model.

AMEND used to inject non-linear disturbances into the
beam dynamics (not used - variable VTRK set
to 0)

AMENDO initializes AMEND (not used)
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ESTIX

ESTIXO

FQGEN
FQGENO
HRZ
HRZ0

SNOYS

SNOYSO

USRIN

INITJ

XFDOT
XFDOTO
XsSDoT
XSDOTO
GETTS
GETTN

LAMBN

GETRN

GETRS

GETMEAS

SFUPDAT

oW IR TR gTT TeRER A TTTeTUTURT .

used to control the Meer filter updates and
propagation cy :les

used to initialize the Meer filter propagation
cycle

calculates the non-zero elements in F(t) and Q(t)
initializes F(t) and Q(t)

calculates Hr (t1), rr(ti), Ar(t:) and 2zr (t1)
initializes Hr (to)

used to inject the white noise into the target
shaping filter and the beam dynamics model

initializes SNOYS (not used)

reads USR1DAT block data file from disk, does
initial filter and gain calculations, sets up
truth and filter parameter, prints out non-
scheduled data

initializes the Meer filter states and covariance
matrices

filter state derivatives

alternate method for initializing XFDOT (not used)
truth state derivatives

alternate method for initializing XSDOT (not used)
generates the time to the next signal event
generates the time to the next noise event

generates the noise rate parameter (see Equation
(4-24))

generates the spatial location of the noise event,
rx (see Equation (2-2))

generates the spatial location of the signal
event, rs (see Equation (2-1))

generates the time to the next signal, noise or
measurement update

get the next event and updates the Meer filter
(see Equations (2-3), (2-13) through (2-15)
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COLLAPS implements either the "best half" or "merge"
algorithms (see Section 2.4)

POISSON Poisson random number generator (see Equation

25 3B 03 e

" (4-18))
o
ﬁ; & SFPROP propagates the Meer filter (see Equations (2-4)
& through (2-7), (2-10) and (2-11))

W FEEDBK calculates u(ti) (see Equation (3-63))

i

,,’\ .
S CNTGAIN calculates Gc* and E (see Equations (3-64) and
Kt 13 (3-65))

SR

B.2 Subroutines Modified to Implement the MMAC

A 'n

x

e, FQGEN, FQGENO, HRZ, HRZO, XFDOT and XSDOT were

modified to included the increase in dimensionality of

y ' e
=

Xre(t1), Xre(to), Xre(ty), Xre{to), Er(t), Qr(t), Br(t:1),

:é 1} Pr (to) and Hr (t1), which occurred as a result of embedding

Q',. i the 3 elemental controllers into SOFE. The measurement |
ﬁf updates were done recursively, using the same measurement

:é :E:: for all three elemental filters. The elemental filter
o residuals, rx (ti), and residual variances, Ax (ti1) (see

-

Equation (3-80)), were calucated in subroutine HRZ, and the

probability that an elemental filter was correct, px (ti)

e
224

(see Equation (3-79)), was calculated in a new subroutine

:: § called CPROB. Because the control input was the

ﬁ] probabalistic sum of the elemental control inputs (see

-::; & Equation (3-82)), subroutine FEEDBACK was replaced with a
§ r. new subroutine called MMAC. CNTGAIN was modified to

3 ) calculate the elemental steady-state controller gains,

Gex* (ax), and they were a function of the discretized

)

uncertain parameter, ax. SNOYS was modified to extend the

ol
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white noise to all the elemental filter/controllers, and

USRIN had to be modified to accommodate the additional

’I filter/controllers. The parameter variations were simulated
|

|

@ through subroutine ESTIX, and initialized in ESTIXO.

v~ LN

y wt |
v

.y
N e
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Appendix C

— o ——— e . .

Sample Rates

Q C.1 Pole/Zero Locations for 1pt+=19.0
e At pole(1l) pole(2) pole(3) zero(1l) zero(2)
ﬁ .01 .99731 .81799 ~.21466 .82532 .78471
o .5 .84321+3.017096 -.26176 .78703 .78471
1.0 .74763 .79959 -.32636 .75103 .78471
~ 2.0 .48560 .81479 -.52990 .68687 .78471
o 3.0 .31488 .81769 -.85387 .63136 .78471
- 3.5 .25903 .81862 -1.05451 .60630 .78471
- 4.605 .17996 .82017 -1.55394 .55625 .78471
ﬁ 5.0 .16120 .82060 -1.74383 .53992 .78471
10.0 .06537 .82386 -4.19311 .38312 .78471
Y The PI controller goes unstable at at>3.369.

N

C.2 Pole/Zero Locations for 18t1=19.6

3 at pole(1l) pole(2) pole(3) zero(1) zero(2)
o .01 .99732 .81799 -.21465 .82532 .78471
.5 .84267t3.016724 -.26175 .78703 .78471

l 1.0 .74969 .79878 -.32632 .75103 .78471
M 2.0 .48742 .81461 -.52973 .68687 .78471
3.0 .31649 .81752 -.85382 .63136 .78471

1 3.5 .26049 .81845 -1.05478 .60630 .78471
,: 4.605 .18113 .81999 -1.55572 .55625 .78471
' 5.0 .16229 .82041 -1.74642 .53992 .78471
. 10.0 .06609 .82364 -4.21612 .38312 .78471

The PI controller goes unstable at at>3.369.
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C.3 Pole/Zero Locations for 1pt=20.0

at pole(1l) pole(2) pole(3) zero(1) zero(2)

0.0 1.0 .81786 -.21466 .82613 .78471

) .01 .99733 .81799 -.21466 .82532 .78471
i i .1 .97299 .81930 -.22234 - .78471
. Ej .25 .93059 .82244 -.23606 - .78471
¢ .50 .84290+3j.01648 -.26175 .78704 .78471
.75 .80872+5.03280 -.29157 - .78471

& 1.0 .75103 .79822 -.32629 .75103 .78471

g v 2.0 .48858 .81449 -.52963 .68687 .78471
‘ 3.0 .31712 .81741 -.85378 .63136 .78471
K 3.5 .26142 .81834 -1.05494 .60630 .78471
' @ 4.0 .21939 .81911 -1.27438 .58280 .78471
' 4.605 .18167 .81988 ~1.55878 .55625 .78471
I 5.0 .16299 .82030 -1.74806 .53992 .78471
§: 10.0 .06655 .82351 -4.23078 .38312 .78471

Y

The PI controller goes unstable at at>3.368.

M
RN

C.4 Pole/Zero Locations for 1pt4=20.4

,..
‘.

at pole(l) pole(2) pole(3) zero (1) zero(2)

ﬁ .01 .99735 .81799 -.21466 .82532 .78471
.5 .84311+5.01624 -.26174 .78704 .78471

: - 1.0 .75235 .79766 -.32627 .75103 .78471
i F 2.0 .48970 .81438 -.52953 .68687 .78471
p - 3.0 .31851 .81730 -.85375 .63136 .78471
3.5 .26231 .81824 -1.05510 .60630 .78471

4.605 .18260 .81976 -1.55793 .55625 .78471

5.0 .16367 .82019 -1.74964 .53992 .78471

10.0 .06699 .82337 ~-4.24494 .38312 .78471

The PI controller goes unstable at at>3.368.
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C.5 Pole/Zero Locatjons for 13:¢=21.0
at pole(1l) pole(2) pole(3) zero(1l) zero(2)
.01 .99736 .81799 -.21466 .82532 .78471
.5 .84343+3.01588 -.26174 .78704 .78471
1.0 .75431 .79679 -.32624 .75103 .78471
2.0 .49130 .81422 -.52939 .68687 .78471
3.0 .31992 .81714 -.85370 .63136 .78471
3.5 .26359 .81808 -1.05532 .60630 .78471
4.605 .18363 .81960 -1.55947 .55625 .78471
5.0 .16464 .82002 -1.75189 .53992 .78471
10.0 .06762 .82318 -4.26528 .38312 .78471

The PI controller goes unstable at at>3.368.

C.6 Egujvalent Determinjstic Full-State Feedback Controller
Transfer Function Derived in the s-Domain

Ye (8) 8 + Gea2*
= (C-1)
Yr (8) s(s + 1/7tet) + Ge1* (8 + Gc2*/Ger*)

Assuming we want to know the location of the poles for

Gc1*=1.2422 and Gc2*=0.27436, Equation (C-1) becomes

Ye (8) s + .27436
= (C-2)
Yr (s) (s + 1.024365) (s + .267835)

These equations are the continuous-time, s-domain form of

Equations (6-8) and (6-9).
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Appendix D

Sample Data Used to Calculate the Statistics in Table 5-25

In an effort to estimate the time it takes the MMAC to
adapt to changes in Qr, a single Monte Carlo simulation run
of 2000 seconds was performed. The uncertain parameter, Qr,
was varied from 0.01 to 1.00 cm?/sec®, and the following

data was collected.

Qr Increasing Qr Decreasing

from .01 to 1.0 from 1.0 to .01

Sample to tr ts tr to tr ts tr
1 4 1 1 5 7 34 21 41
2 9 7 6 16 6 16 8 22
3 4 2 1 6 3 20 8 23
4 4 2 1 6 6 17 4 23
5 3 12 12 15 3 33 26 36
6 7 2 2 9 4 38 31 42
7 4 16 16 20 6 62 52 68
8 7 1 1 8 5 32 13 37
9 4 8 8 11 3 34 27 37
10 3 11 11 15 3 71 66 74
11 5 19 18 22 2 21 10 23
12 5 22 22 27 4 36 26 40
13 5 7 6 12 5 31 18 36
14 6 10 2 16 3 8 3 11
15 8 2 2 10 8 25 15 33
16 1 30 14 31 8 24 17 32
17 5 2 1 7 10 23 10 33
18 9 2 1 11 5 46 18 51
19 6 11 11 17 5 27 17 32
20 9 2 2 11 5 - - -

to, ta, ts and tr are defined in Table 5-25.
Times are in seconds (or number of sample periods, at=1.0)

See Table 5-25 for more detail.
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Block #18 - Subject Terms

Poisson Process, Stochaatic Egitmation, Target Tracking

Block #19

— Abstrict .

The goal of this research vas to)develop:. realizable
proportional-plus-integral (PI) feedback tracker to control
& neutral particle beam. The design is based on detecting
the photo-electron events that are emitted from a laser-
excited particle beam and the observed events are used by a
Meer filter to locate the beam’a centerline. The observed
events are modeled by a Poisson space-time process and are
composed of both signals and noise<induced events. The Meer
filter is a stochastic multiple model adaptive estimator
vhich is composed of a bank of Snydor;?i-hman filters and is
designed to distinguish the signal-induced events from the
noise-induced events. A target model is developed from a
Gauss-Markov acceleration process, and the target states are
estimated by a Kalman filter. ; The "optimal" PI controller
design is based on thg_linnnquu.drntic (LQ) controller
synthesis tochn:guc/ind the "assumed® certainty equivalence
property, and the Kalman filter provides the reference
(target) states vhile the Meer filter supplies controlled
(beam) states. he objectives of the research wvere to (1)
select the “best® cost weighting matrices that minimize the
RMS tracker error and enhance robustness, (2) simplify the
Meer filter for easier on‘line usage, (3) complete full<.
scale sensitivity and robustness analyases over all the
Kalman and Meer filter pasrameters, and (4) develop on-line
adaptive estimation of those parameters that great'r affect
stability robustness and tracker performance. ' Dur. the
research, an apparent stability problem vas uncovereu, °nd a
fifth objective was to identify the source of the"
instability, and to propose a solution that would insure
stability during parameter variations.
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