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0.0 Introduction to Final Report

The following is the final report on "New Directions in the Digital

Signal Processing of Image Data (Image Modeling for Exploitation, Project

No. 4594)" Contract Number F30602-82-K-0151. The report consists of two

volumes. The first presents the work accomplished in descriptive, but

summary form and lists the publications and presentations supported by the

contract. This first volume fulfills the requirement of the final report on

the contract. The second volume is optional and is a compilation of the

published articles, theses or dissertations, and project reports produced

from this contract. The first volume is divided into six major sections

corresponding to the six major taskz comprising this report. Within each

section are described the results of the relevant task along with its cited

references and its publications.

The numbering of the compiled publications in the second volume is the

same as that in the first volume for ease of reference. The accomplishments

of the contract were voluminous and truly noteworthy, as evidenced by sheer

magnitude of the entire report and the number of published articles and

theses emanating from it.
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1.0 TARGET DETECTION AND ROTATION-INVARIANT PATTERN RECOGNITION

1.1 TARGET DETECTION BY CORRELATION

In this task, we investigated the problem of scene matching with a

reduced resolution reference scene. The completed work appears in the

Master's degree project (thesis) report of H. Kidorf [1.3-1].

in this thesis we investigate the problem of scene matching by matched

filtering when the target scene and the reference scene are of different

resolutions. As is well known, the solution to the matched filter problem

under additive white noise conditions is the correlation receiver. The

effect on the performance of this target detector is desired under various

imaging conditions: radial blurring, azimuthal blurring and with additive

white noise. Additionally, we examine system performance when the reference

scene resolution is reduced to that equivalent of the target.

This investigation is composed of the following steps:

1. Generation of a set of blurred test images

2. Correlation with a reference image (either high resolution or

blurred)

3. Examination of peak correlation as a function of the degree of blur

4. Generation of noisy images and analysis as in Steps 2 and 3.

Blurred images are first produced in polar coordinates using a

combination of the Circular Harmonic Transform (CHT) to implement azimuthal

blurring, and convolution with a gaussian filter in implement radial

blurring. The resultant image is then interpolated to values that comprise a

cartesian grid.
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After acquiring a set oi images witl varying iadia] and a:. muthll bltr,

noise is added in various amounts. Analysis i-; thern carrie( out to

determine the effects of the varied parameters oii the petformance of image

cross-correlation.

In this thesis it was found that compared to the effects of azimuthal

blur. radial blur has a lesser effect on the performance of scene matching

by correlation. A comparison of the rates at which radial blur and

azimuthal blur lessen the peak correlation of these blurred target images

with the unblurred reference image shows that radial blur degrades this

performance measure 58% slower than azimuthal blurring does. Additionally.

the reduction of peak correlation as a function of radial blur was found to

display a threshold-like behavior, i.e. correlation of radially blurred

images with greater than 65% of their high frequency content removed results

in the peak correlation being reduced by the effects of blurring at a rate

more than four times faster than with those images with blur levels below

this threshold.

Investigation into the effect on correlation performance of adding

noise to the images was quantified and data presented so that trade-offs can

be considered between the addition of noise and the acceptance of increased

blur. With use of this data each of the three parameter- are

interchangeable (though not equivalent) in considering thei- effect on

cross-correlation so, for instance, the Lruction 'in correlation perfornance

due to radial blur can alternatively be thought of in terms of the addition

noise or in terms of equivalent azimuthal blur.

An additional area of investigation was the inve;tigation of the effect

of performing scene matching by correlation ur Fng a reduced resojut ioO

reference image rather than matching thc blurred test image withi a hiuh
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resn ution one. It was discovered that when matching a slightly blurred

iriage theit the degradation suffered was only slight. But, as the degree of

blur of the test image increased, the performance of correlation decreased

significantly.

The work in this thesis also demonstrated the ability to simulate the

real world images obtained with limited resolution sensors and sampled at

less than optimal sampling rates. This tool proved useful in the

investigation into the effects of lessened resolution on image correl: :4ion.

1.2 ROTATION-INVARIANT PATTERN RECOGNITION

The problem of recognizing a target pattern regardless of its

orientation is the subject of this task.

1,2
In two recent interesting papers by Hsu and co-workers, the method

of circular harmonic function (CHF) expansion is suggested for achieving

rotation-invariant pattern recognition by either optical or digital means.

This promising approach indeed does detect targets regardless of orientation

but seems to require - at least based on our experience - high SNR and/or

high contrast imagery. Hsu's test statistic, i.e.. the function of his

observation, is a scalar, a situation essentially forced on him because of a

property of his algorithm.

In the paper "Rotation-invariant Pattern Recognition Using a Vector

Reference" by R. Wu and 11. Stark [1.3-2] we present a modification of the

CHF expansion algorithm that enables us to use vector statistics. In turn,

us-ng vector statistics we can detect and locate targets in poor SNRs and

low-contrast imagery without sacrificing rotation invariance. Instead of

using correlation with a single harmonic and establishing an optimum



expansion center, we use multiple harmonics combined with a less-than-

optimum expansion center.

In another paper "Rotation-Invariant Pattern Recognition Using Optimum

Feature Extraction" by R. Wu and H. Stark [1.3-3, 1.3-4] we consider the

problem of detecting a target regardless of its orientation when it is known

that the target must be from one of two classes. We assume significant

random intraclass variability, a complication which requires techniques fron:

statistical pattern recognition for amelioration. The Foley-Salr.moi

transformation for selecting optimum features from random training sautple

is used to solve the problem.

By combining vector rotation-invariant signatures with sequeutial

projection onto optimum subspaces for enhancing class,: separahil'ty we havr

been able to achieve rotation-invariant recognition with a high degree of

accuracy. The use of vector signatures enables correct reccgnition in

relatively poor signal-to-noise environmepts where other retiods might

3
fail. Optimum feature extraction enables object-clas:s reccgnition when

strong statistical variations exist within the object classes. We have.

demonstrated this property even when ore object is embedded in another (as F

is embedded in B).

Some of these gains are brought about at the expens:e of g-,reater

computational com[lexity. The number of harmonics N needed to recognize an

object depends on the complexity of the object and i: detemined fiorn tests.

Thus, to a first app~oximation, our algorithln :-,quires Ni tme,: as :.any

computations as Hsu's. On tl,, other hand. we do not need to see:ch foi a

proper expansion center. The derivation (f the opt tur. subs]:aces f. r

feature selection is computationally inten!;ive but is; done only once. i.e..

before the actual recognition problemr begins. The ,:oject ion of the
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s'gr:_.-urcs [Z. onto tie optimum subspaces requires only a matrix

niutiplication. In the worst case, only three sequential tests need to be

,!one f¢ r separating two classes. In situations where processing time must

be .errt -iw. a high-speed array processor of a microprocessor dedicated tu

the recognitiun probers can be used.

in thIE two Car-lier rapets, '1.3-2, 1.3-31 we considered the problem of

how a :ac .ine-vi-'!on system might iecugnize an object in a two-dimensional

,2-D) scene. an :nage) r, adJcss of the orientation of the object.

V.' ca- i :, zt:c hu, 2-2 r(tution-Invariant pattern recognition. There

4
,urar , b r,~ c~acck., , t1,; ,roblem including those of Hu, Smith

:1 ". . ",'v a ari' ,6 whu uccec moment invariants. Fourier

7 8,9
2 :' t: wue u'1 by Zol It r.. ok or an otheis. Casasent and

d :t..o: *cift o.,r-, * 
- -

, and rotc:tion-invariant 2-D recognition

'rT. , r :-c:F.r! -.. Iri I " t Iansf.rms. Arsenault and co-

w P T ,i rave ric oc..' tvhe r prbIerm in a novel way, using the

C f f t ( i ".r t'or-ho 1 monjc functior (CHF) expansion for rotation-

T.',):Iiant Ic t ,n '. tn i tFe ir approach that we have extended in

r ,^ r; . 2,e o'f , Fur,,cso (,f t! "s ;aper i to show that scale-invariant

Tfcroirt icr car !'(- tc l. :y and efficiertly incorporated in the CHF algorithm

toyir, riut rotat-ion/acale-Lnvar jint recognltion.

i , cu rl ir-,x jroh,]m "< tht of haying a machine recognize a three-

ona (3-D _, cc t. in t S al a moc:t of the proposed techniques seem

T ( 1, T rr r ,f res t f Drv 2- s tnvgst igations. For example, 3-D

ec(gni t .r. t ,' Fouri r scriptoi:r of the boundary curve was used by

11 12
r 4a rd a or, PT-n i .* jd d i s d Fal! usled 3-D moments that are
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invariant under position, size, and orientation changes. 3-D airciift

13
identification bas been investigated by using Fourier descriptor- 1and

14
moment Lnvar ats.

Numerous irvest iat ons 4r both 2-D and 3-D machine recognition are

cited in the above references. A rui;ber of papers deali ng with 2-D and 3-D

recognition wer read at ; recent meeting on machine vision; brief abstracts

15
of this mecting are available. In general, however, research in 3-D

recog1nition iJluPn. teu tvu major problems: the storage of vast amounts of

reference ddta and the computational complexity involved in estab is hng a

match betweep the test ubiect ard one of the references. Thereforp

extracting and eatching featuLes of images rather than matching the images

themselves is the tiend in 3-D recognition research.

Our major objective of this paper is to describe a 3-D machine-

recognition procedure that uses the robust rotation- and scale-invariant

recognition ability of the CHF/Mellin-transforw approach, which will be

described in the next section. Of course, to understand the 3-D problem we

must necessarily be more restrictive in our assumptions regarding the

degrees of freedom in the positions of the test object. In this regard, the

most critical assumption is that there is only one degree of rotational

uncertainty in the object's position. If we think of the object as being at

the origin of E 3-D Cartesian coordinate system, then we allow a random

angular displacement about the y axis but not about the x and z axes.

Despite this restrictive assumption, we believe that our results can be

useful in a number of robot-vision situations.

The central result of this research is a new data-mapping procedure

from 3-D observation space to 2-D feature space based on pseudotomography.
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The 2-D feature data are organized into a signature inage from w] 7oh ;cale-

and rotation-invariant features are extracted. Scale invariance is obtained

by using the Mellin transform; rotation invariance is obtained by using CHF

coefficients. The particular signature image that we chose has the

following properties: (1) it incorporates ir one 2-D image information

about all the views of the object. (2) it is easily piocessed to obtain

invariance with respect to scale, (3) it is invariant with respect to

brightness changes, (4) it is easily processed to obtain invariance with

respect to rotation, (5) it is& invariant with respect to lateral shifts of

the rotation axis about which the 3-D object is viewed. (6) it is invariant

with respect to vertical translation of the object, and (7) it gave robust

performance. The work appears in tie paper, "Three-Dimensional Object

Recognition from Multiple Views" by F. Wu and H. Stark [1.3-5].

1. Y-N. Hsu, H. H. Arsenault, and G. April, Appl. Opt. 21, 4J12 (1982).

2. Y-N. Hsu and H. H. Arsenault, Appl. Opt. 21.4016 (1982).

3. R. Wu and H. Stark, "Rotation-Invatiant Pattern Recognition Using a

Vector Reference," Appl. Oct. 23.838 (1984).

4. M. K. Hu. "Visual pattern recognition by moment invariants," IRE Trans.

Inf. Theory IT-8. 179-187 (1962).

5. F. W. Smith and M. H. Wright, "Automatic ship photo interpretation by
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6. R. Y. Wong and E. L. Hall, "Scene matching with invariant moments,

"Comput. Graphics Image Process. 8, 16-24 (1978).

7. C. T. Zahn and R. Z. Roskies. "Fourier descriptors for plane closed

curves," IEEE Trans. Comput. C-21, 269-281 (1972).

8. G. H. Granlund, "Fourier preprocessing for hand print character

recognition," IEEE Trans. Comput. C-21, 195-201 (1972).
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10. D. Casasent and D. Psaltis, "Position, rotation and scale invariant

optical correlation". Appl. Opt. 15. 1795-1799 (1976).

11. C. W. Richard, Jr., and H. Hemani, "Identification of three-dimensional

objects using Fourier descriptors of the boundary curve," IEEE Trans.

Syst. Man Cybern. SMC-4, 371-378 (1984).

12. F. A. Sadjadi and E. L. Hall, "Three-dimensional moment in vatiants."

IEEE Trans. Pattern Anal. Mach. Intell. PAMI-2. 127-136 (1980).

13. T. P. Wallace and P. A. Wintz "An efficient three-dimensional airciaft

recognition algorithm using normalized Fourier descriptors." Comput.

Graphics Image Process. 13, 99-126 11980).

14. S. A. Dudadi. K. J. Breeding, and R. B. McGhee, "Aircraft

identification by moment invariant," IEEE Trans. Comput. C-26, 39-45

(1977).

15. Advance program of 1985 Winter Meeting on Machine Vision, Lake Tahoe,

Nev. (Optical Society of America, Washington, D.C., 1985).
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2.0 IMAGE RECOVERY FROM INCOMPLETE INFORMATION

2.1 DESCRIPTION OF COMPLETE WORK

Two major journal articles [2.2-1, 2.2-2] and the Ph.D. dissertation of

A. Levi [2.2-3] describe the results of the investigation of image recovery

from incomplete information. We shall present the abstracts and conclusions

of these works. Further details, derivations and results are found in the

body of these works.

The first paper is "Signal Restoration from Phase by Projections onto

Convex Sets" (POCS) by A. Levi and h. Stark [2.2-11. In this paper we have

discussed the RFP (restoration from phase) problem using a new iterative

algorithm known as POCS (projections onto convex sets). The method allows

from any number of a prior known image constraints to be incorporated in the

algorithm provided that these can be associated with convex sets. We have

discussed methods of approximately optimizing the relaxation parameters and

shown thereby that a significant improvement in performance can be obtained.

We have shown experimentally that the method of POCS failed to provide

a unique restoration for signals that violated the uniqueness requirements

1
discussed by Hayes and herein. Finally, we have compared POCS with the

well-known HLO RFP algorithm 2 and shown that the POCS algorithm performs

essentially as well as the other while ensuring strong convergence in the

finite-dimensional case. A demonstration in which POCS yielded convergence

while the HLO method did not was furnished.

The second paper is "Image Restoration by the Method of Generalized

Projections with Application to Restoration from Magnitude" by A. Levi and

H. Stark [2.2-2]. The method of projections onto convex sets can be used to
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solve many problems in image restoration. e.g.. restoration ftom phase.

spectral extrapolation, and signal recovery in computer-aided tomography.

However, image-restoration problems involving nonconvex constraints cannot

be handled by the method of projection onto convex sets in a fashion that

ensures convergence. The restotation-fiom-magnitude (RFM) problem is such a

case. To handle the RFM as well as other nonconvex constraints, we describe

an algorithm known as generalized plojections and discuss its properties.

When sets are nonconvex, it is possible for the algorithm to exhibit

pathological behavior that is never manifest in convex projections. We

introduce an error criterion called the summed-distance error (SDE) and show

under what circumstances the SDE is a monotonically decreasing function of

the number of iterations. Near-optimum performance of the algorithm is

achieved by relaxation parameters. Comparisons with other RFM methods are

furnished for synthetic imagery.

o We have found that the number of iterations required to restore an

image may generally be reduced by 30% or more by using relaxation

parameters compared with the method of pure projections.

o The variation of the SDE with relaxation parameter X2 shows the

following behavior. For a small number of iterations, the minimum

is relatively sharp, and relatively small deviations from the

optimum value of X 2 degrade the performance as measured by the SDE.

As the number of iterations goes up, however, the minimum becomes

shallower, and small deviations from the optimum value have

relatively little effect. In nearly all cases, the range of the

optimum value of X2 was in the range 1.5-3.0.

2 a~mm mm m ummn~ m m
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o Unlike with the extrapolation problem, the use of the two-level

constraints in the RFM problem gives much better results than those

obtained without it.

o An important observation is that the SDE j(f ) cannot be used eithern

as a measure for the true error or to compare different algorithms.

In fact, it can be shown that, for the algorithm. J(f ) is alwaysn

smaller than the error li en II - Ilf - fn 11 •

o In many cases we observed tunnel behavior for large interation

number n [i.e., the change in f from iteration to iteration and the
n

corresponding change in J(f ) becomes negligible]. The poorn

restonations with relativtly low J(f ) after 1000 iterations
n

exhibited in some of the examples support the asmumption that traps

exist. These examples also demonstrate the importance of detecting

traps and tunnels and of finding ways of getting out of them by

changing the algorithm.

1. M. H. Hayes. "The reconstruction of a multidimensional sequence from

the phase or magnitude of its Fourier transform," IEEE Trans. Acoust.

Speech Signal Process. ASSP-30. 140-154 (1982).

2. M. H. Hayes, J. S. Lirm, and A. V. Oppenheim, "Signal reconstruction

from phase or magnitude," IEEE Trans. Acoust. Speech Signal Process.

ASSP-28. 672-680 (1980).

The abstract of A. Levi's Ph.D. dissertation [2.2-3] follows.

This dissertation deals with the problem of restoring images from

incomplete information by the method of alternating projection onto convex

sets (POCS) and its extension: the method of generalized projections (MGP).

the investigation discussed herein are both theoretical and experimental.
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We demonstrate the weak convergence property of the POCS algorit.m when the

relaxation parameters (RP) are varied from iteration to iteration. We then

demonstrate how the RP's can be optimized to accelerate convergence. We

illustrate the utility of these theoretical results by restoring a finite-

size (space-limited) image from the phase of its Fourier transform. This

problem is the well-known restoration from phase problem. We comipare our

result with the standard solution (the Hayes-Lim-Oppenheim, or HLO, method).

The superior convergence properties of the POCS method over the HLO method

is demonstrated by several examples in which the HLO method diverges while

the POCS method does not.

The MGP and its application to problems which involve non-convex type

constraints, is derived. The MGP is a two-step algorithm which possesses

the property of set-distance-reduc tion for certain values of the RP's. We

show that this property does not extend to algorithms with more than two

steps (or two operators) in one iteration, but the restriction to two steps

is not very restrictive in practice because several image constraints can be

combined into one set. A performance measure called summed distance error

(SDE) is defined and is shown to be useful for monitoring and controlling

the algorithm. Pathological phenomena called traps and tunnels are defined

and shown to occur in the MGP when non-convex sets are involved. They are

responsible for the observed convergence to non-valid solutions or very slow

convergence to valid ones.

The MGP algorithm is applied to the problem of restoring a signal when

we are given only the magnitude of its Fourier transform (the restoration

from magnitude (RFM) problem). We show that the MGP method incorporates

other algorithms for the RFM problem such as the Gerchberg-Saxton (GS;

method and Fienup's output-output algorithm. Methods of optimizing the RP's
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on a per-step and per-cycle basic are described and the per-cycle method is

shown to significantly improve the convergence rate. The method of MGP is

shown to be useful for detecting traps and tunnels and for possibly getting

out of them. Experimental demonstrations showing the effects of noise on

the restoration are also furnished.

We close the dissertation by proposing several unresolved research

problems that warrant furthei investigations.
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3. A. Levi. Image Restoration by the Method of Projections with
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Rensselaer Polytechnic Institute, Troy. NY 12180, December 1983.
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3. POST DETECTION PROCESSING OF PHOTON-LIMITED, BLURRED IMAGES

3.0 INTRODUCTION

The focus of the investigation of means to restore photon-limited and

blurred images was to develop new techniques where the image statistics were

unknown and the processing could be realized in real-time with dedicated

hardware. We describe here three new techniques which gave very good

results with fast processing.

3.1 TWO STEPS ADAPTIVE, ROBUST ESTIMATOR

The first is a two-step procedure which restores low light-level images

regarded by a linear space-invariant blur. The presentation of the results

of the research occurred at the SPIE Annual International Symposium on

Optics and Electro-Optics in San Diego, California in August 1984 with

publication of a full article in the symposium's Proceedings [1]. As the

blurred image is incident on the photo-detector array, the first step

attempts to estimate the blurred image from the collection of photocounts

from the array. The optimum linear minimum mean squared estimator (LMMSE) is

obtained by solving an equation by Grandell [2] for estimating the intensity

in a doubly stochastic Poisson field. The error of the optimum LMMSE

estimator is orthogonal to the photocount process. Hence this error may be

treated as additive and uncorrelated noise in the next step, which forms an

estimate of the true object from the first steps estimate of the incident

(blurred image) intensity. It is accomplished through an application of thv

constrained LMMSE (deconvolution) method set forth by Hunt [3]. An adaptive

windowing technique generates sample statistics for the two-step estimator.
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Hence the method requires no prior knowledge of image statistics to

accomplish recovery of the object. The processing is very fast because the

required sample statistics for the estimators and the window size logic are

calculated recursively and the estimates are linear ones of point

intensities. A full description of the estimators and their derivations is

presented in the aforementioned paper [1]. Pere we shall just describe some

of the simulation results.

The system for generating a blurred, photon limited image and the two-

step restoration procedure are illustrated in Figure 1. The linear blur

1
matrix H acting upon the original image f has elements h(i,j) JK

.J-l and j=0,l....K-i. The Poisson noise generator for a given

parameter il produces the array of photocounts g = g(i,j) which are each

-1
scaled by n1 for display of the photon-limited, blurred image gd' The

received or input signal-to-noise ratio is defined to be

SNR. =((f_(f))2)

SNR. - 2(-f>
I <(gd-f)2 >

where <x> denotes the spatial sample average over the array x. The restored

or output signal-to-noise SNR is defined as above with the estimate f0

replacing gd"

The two test images used in our simulations are the face images of a

man and woman. For each of these images, Poisson noise degradation with

different parameter iq and degrees of lineal motion blur were simulated and

then restored. Shown in Figure 2 is one typical example of a degraded image



with Poisson noise parameter i=0.125 and 4x4 (J=K=4) blur and its

restoration. With blur, the restored image is not as sharp and appears

slightly more noisy with an SNR improvement of 7.3 dB. The improvement with

blur is higher than without blur, because the blurring procedure produces

further degradation from the original image and the est.mator partially

deblurs it.

Comparison with other methods is complicated by the use of different

test images and degrees of Poisson noise and by inconsistencies in

definitions of signal-to-noise ratios. Another factor is the amount of

processing or degree of computational complexity involved in different

schemes. For example, Lo and Sawchuk used noisier test images and a

different definition of signal-to-noise ratio [4]. Kasturi [5] compares

several kinds of estimators on less noisy images than ours and his SNR

calculations include the image means. The better estimators give good

perceptual results, but use prior statistical knowledge and significant

processing. The estimator here does compare favorably with these efforts,

however, especially considering the robustness and adaptivity of the method

and the relatively small processing requirements.

3.2 MINIMUM ERROR, MAXIMUM CORRELATION ESTIMATOR

One of the deficiencies of current image estimators is that the

estimation error or noise, although uncorrelated with the data image has

positive correlation with the true object. In principle, therefore, the

estimation noise can be further processed to extract more information about

the object. To remove this deficiency, a new estimator is proposed which

attempts simultaneously to maximize the correlation between the estimate



(or, equivalently, minimize the correlation between the error and the

object) and minimize the mean squared error. It turns out that this is an

optimization problem with competing objectives. The solution is a

compromise between the usual minimum mean squared error (Wiener) estimator

and an inverse filter.

A simple example to illustrate the need of the double criterion is as

follows. Consider a scalar case where the observed random variable Y equals

the sum of the object variable (signal) X and independent noise N, i.e.,

2 2
Y=X+N and the signal and noise variances, a and a are equal. Assume thatX n

the random variables have zero mean. Consider two possible estimates X of

2

X, X=Y and X=O. The mean squared error of the first estimate is o and that
n

2
of the second is a . Pence their estimation errors are equal. From ax

perceptual point of view, it is certainly better to see X=Y than X=O, which

is no information at all. One quantitive measure of the difference betwecn

the two estimates is the correlation of their error with the signal. For

X=Y the correlation between the error and the signal X is zero, whereas, for

2
X=O, the correlation between the error and the signal is a . Hence, forx

equal error, we choose the estimator which has the smaller correlation

between its error and the signal.

The case of signal plus uncorrelated noise can be visualized

vectorially as shown in Figure 3. When we select a linear estimator X=aY,

the variation of the constant a between 0 and 1 moves the estimator from the

2 2
tail to the tip of the vector Y from a mean squared error of a to a with

X n

an interim minimum of 2 (a 2+ 2)-1 when the error vector is
rmin x n n



perpendicular to Y. The correlation of the error with the signal moves from

2
a at the tail to zero at the tip. Therefore, if one moves from the minimu,

x

error point toward the tip of Y, there is a trade-off of increased error for

increased error-signal correlation. In Figure 4 the mean-squared error d(a)

is plotted against the error-signal correlation c(a) as a varies from 0 to

1. The plot shows that a maximal trade-off point of error for correlation

may be realized, depending on definitions of allowable range.

The convexity of the c-d locus versus a was proved and the optimization

problem of minimizing c(a) and d(a) simultaneously over a takes the form of

min (w c(a) + w 2d(a)]

a

with weighting coefficients w1 and w 2* The choices of w I and w 2 are

subjective, but reasonable choices are the reciprocals of the ranges of the

corresponding weighted variables. The ultimate objective function is

a 
2 c(a) + a 

2 d(a) 2 2 >2

f(a) n x X- n
2 c(a) + a d(a) a 2 <a

x nx n

with the minimizing a=a

2 2
1 I 1 x

a - +
o 2 2 2 2 2 2max[s ,2 I 2 +o

x n x n



resulting d and c of

( n 2 2
4o 2tin x -nX -- CX l

d(a ) =

02

(+ 2C 2 2
4+ 2'min XC <1:

n/

22

n-

2 22 2 -1
with c. ma (a +) , the minimum mean squared error. When the

o22
signal-to-noise ratio a 2/ is either very large or very small, the

x n

resulting mean squared error d(a ) is close to the minimum. However, when
0

neither case applies, a small additional error is traded for a larger amount

of error-signal correlation. This work and all subsequent derivations and

results in image restoration with this double criterion appear in the Ph.D.

dissertation of Woo-Jin Song [6] and [8]. In his dissertation Song also

extended the previous scalar random variable cas0 to stationary continuous

and discrete image fields. The resulting digital linear restoration filter

characteristic, which we call the minimum error, maximum correlation (MEMC)

filter is



max [Ini, n) S (i, n) , S (LI, r) I
x n

J*

r (nlI) SX (m, n) 1 (7,-,

1 x i2
max (J. r)( (r.n) 5' ( ,n) ( , )

X p

where I(ir,n) is the sanrpled point tspread function of the linear blur and

S (m,n) and S (ni,n) are the discrete power spectra of the object and noise,
x n

respectively.

Blurred inmages in additive Gaussian noise were simulated by the

computer and restored through the above filter. The point spread functions

of the blur were Gaussian with 8x$ support and lineal with 4x4 support. In

Figures 5 and 6 are shown comparative results of estimation with the double-

criterion (MEC) and the Wiener Filter', using lineal blur and signal-to-

noise ratios of 13 and 10 dB. It is evident that the NEUC filter produces

the sharper image at the expense of more "spotting". At the lower signal-

to-noise ratio, the sharper image even with more noti.;eable nspottingn is

preferred by most observers than the fuzziness in the Wiener filtered inage.

In Figure 7 are the same filter comparisons with no blur and 0 dB SNR. here

the relative sharpness of the double-criterion restored image is even more

pronounced.

3.3 ADAPTIVE WINDOWING AND NONLINEAR FILTERING

Traditional and new estimators which derive their spectral estimates by

averaging over regions of an image produce restorations of noisy images

which are noisy in the flat areas due to insufficient smoothing and somewhat
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fuzzy in the edge regions due to attempted noise smoothing. The problem

arises partly because the regions over which the spectral parameters are

estimated (the so-called analysis windows) contain boah flat areas and edges

and are appropriate for an average of both, but not separately for either.

If the analysis window contains elements truly representative of the current

picture element, then the estimate of the true object intensity at the point

would be improved. A new scheme for adaptive windowing was tried in

conjunction with subsequent non-linear filtering. We will describe the

technique briefly and show some of the results, which are truly impressive.

Let us assume for the moment one-dimensional data where the degradation

2
is additive, uncorrelated stationary noise of variance y . Assume a window

length LK has been set for the kth data element. An activity index Sk isof legts

computed from the sample variance in that window. If Sk ( Tk , a threshold

inversely proportional to LkI then the next window Lk+ 1 = Lk + 2 unless it

has reached a preset maximum. If Sk ) T k  then the window length is

decremented by two. The sample mean mk and sample variance V k are

calculated within the window straddling the kth image element of intensity

to produce the signal estimate xk by

max[O,V k-0 2
k  = ek  + Vk ' _ (Yk-mk)"

Although the estimate appears linear in its form, it is nonlinear because of

the nonlinear dependence on V which in turn is a nonlinear function of the
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data. The mean, variance, window length, and error can be computed

recursively, thereby reducing the computational requirements. The extension

of the scheme to two dimensions is straightforward, except that the shape of

the analysis window needs specification. For simplicity, square windows are

chosen.

This adaptive, nonlinear estimator was applied successively to a noisy

one-dimensional simulated waveform, a scan line of a noisy image, noisy

images using one-dimensional windows, and images using square windows. In

all cases, the edge or detail features are preserved and the flat contrast

areas show almost imperceptible noise. In fact, the image restorations are

remarkably sharp and clean. One example is presented here to give evidence

to those assertions. Shown in Figure 8 is the original mans face image and

2
the same image with additive, white Gaussian noise of variance a = 489. In

Figure 9 appear restorations by the new adaptive window, nonlinear filter

and the minimum mean-squared error or Wiener filter. Note the clarity and

sharpness of the new filter's restoration compared to that of the Wienez

filter. It is also surprising that the mean-squared error of the Wiener

filter is smaller (82.22) than that of the new filter (87.76). Such a

result is convincing evidence that mean squared error is not a good measure

of visual error. Details and results appear in [9] and the Ph.D.

dissertation of W. J. Song [6].

The adaptive window algorithm can also be utilized in other estimation

paradigms . In this regard, we also incorporated it into the two step

estimation procedure for blurred, photon-limited images described earlier.

The estimate bk of blurred intensity bk at the kt h image point from the

number of photodetector counts gk is



m k/A ,if Vk = 0

k m 2 + max [0, Vk - Ik] g , otherwise

Xmax [Vk' m k]

where X is the Poisson rate parameter, and mk and Vk are the estimates of

the mean and variance, respectively, of the image at point k taken in the

analysis window. The mean-squared error, used as the noise in constrained

deconvolution of the blur in the second step, is

d = /X2 if Vk = 0

mk max [0, Vk - mk 1  , otherwise

X2V

The derivations of these formulas and the subsequent results appear in

Song's dissertation [6]. A sample of these results appear in Figure 10. In

Fig. 10(a) is a test image degraded by 4x4 lineal motion blur and corrupted

by Poisson noise with n=0 .5 . The result of the first-step estimation of the

blurred image appears in Fig. 10(b). The blurred signal to noise ratio

(SNR) increased by 6.6 dB from 10.9 to 17.5 dB. The second step constrained

deconvolution of the blurred image plus the estimation noise appears in Fig.

10(c) for one value of a constraint parameter. There is considerable

improvement in visual quality from both steps of the restoration procedure.

It is evident that adaptive windowing produces superior reconstructions than

the fixed window algorithm given in Section 3.1.
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Figure 2: Degraded and restored Man images

(A) Noisy image, no blur q=. 125, SNR L7.9dB

(B) Restoration of (A). SNR =14.5dB

(C) Noisy image, 4x4 blur rn=. 125,SNR =6.5dB

(D) Restoration of (C), SNR =13.8dB
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(b) (C)

Figure 5: Restoration of image degraded by 4x4 lineal motion blur

2
and additive white Gaussian noise of variance c =54

(SNR=17dB): (a) blurred, noisy image; (b) image restored

by Wiener filter; (c) image restored by MEMC filter.
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(a)

(b) (c)

Figrue 6: Restoration of image degraded by 4x4 lineal motion blur

2=
and additive white Gaus:ian noise of variance o 135

n

(SNR=l3dB): (a) blurred, noisy image; (b) image restored

by Wiener filter; (c) image restored by MEMC filter.



AWGN: SNR 0 ( dB, no blur.

Figure 7: Simulated noisy image and restoratioins b - Wiener-
and MEMC filters. Top is noisy image, bottom left
is Wiener, and bottom right is MEMC restoration.
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Mi

(a) (b)

Figure 8: Original and noisy mans face image..

(a) Original "mans face" image
2

(h) Image in additive noise of a = 489

(S/N=IOdB).
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(a) (b)

Figure 9: Comparison of restnrat ions of image in Figure 8 h )

(a) Filtered "tace' image by -U adaptive Itilttv:

(b) "Face" image restored by Wiener Filter.
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(a)

(b) (C)

Fig. 10: (a) Photon-limited image with 4x4 motion blur, 0)=0.5)

(b) Estimated image from first step (before deblurring)

(c) Final restored image after second step.
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4.0 FAST HIERARCHICAL ALGORITHMS FOR MOTION ANALYSIS

The results of this task are documented in detail in a Master's degree

thesis [4.3-1], and a Masters degree project report [4.3 3]. The former

presents a comparative study of correlation measures used in motion analysis

and then proposes a multi-step approach. The latter report presents a

method of motion representation based on image segmentation using pyramidal

data structures and shows how the algorithm work for different image

sequences. Excerpts from these reports follows.

4.1 CORRELATION AND THE MULTI-RESOLUTION, FLOW-THROUGH ALGORITHM

Correlation is commonly used in motion analysis to discover the

correspondence among local image patterns in a scquence of image frames.

However a variety of such measures can be employed and these may differ

widely in performance and in computational cost. In this first half of this

study [4.1-1] five basic correlation measures are compared. Performance is

determined empirically as a function of image content (spectrum) and in the

presence of various types of image degradation.

A multi-step approach to motion analysis is proposed in the second half

of the study. Decomposition of the analysis into distinct steps and

independent channels means that the computations may be performed in

parallel pipelined hardware. Data is said to "flow-through" the system

because analysis is uniform: a fixed sequence of operations is applied to

all images and to all positions within each image, independent of image

content.
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4.1.1 PERFORMANCE OF LOCAL CORRELATION MEASURES

Correlation between local regions of two or more images may be used to

detect pattern displacements, and hence object motion. However correlation

can yield incorrect pattern matches. Of the five correlation measures

examined, direct correlation consistently gave the highest error rates.

Performance was particularly poor when the mean value of a local pattern was

large compared to its variance, or when patterns to be matched differed in

mean or contrast. Variance normalized correlation consistently gave the

lowest error rates. No errors were obtained with this measure in the

absence of relative image distortion. However, in the presence of noise its

performance was only slightly better than other measures. Since the other

measures require considerably less computation than variance normalized

correlation these may be preferred under appropriate image conditions.

Correlation following Laplacian filtering is particularly effective when the

image contains high frequency components and any noise is restricted to low

frequencies. Even the binary correlation performs well under these

conditions. However both measures are very susceptible to high frequency

noise. Therefore, the Laplacian correlation appears to be the most

attractive of five measures studied. However this measure should not be

used in the presence of high frequency noise.

4.1.2 PERFORMANCE OF MNF

We have described a system in which motion analysis is carried out in

three distinct steps. First, each image in a motion sequence is passed

through a set of filters to obtain a corresponding set of band-pass copies.
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Second. a optimum nine "motion channels" are formed within each frequency

band from original twenty-five channels, each "tuned" to motion in a

particular direction and velocity. Finally, the outputs of these simple

channels are combined in groups of three to form four compound motion

channels, each tuned to a particular orientation, the outputs of the four

orientation channels are compared and combined into a single motion estimate

for each sample position within the frequency band. Each group of three

channels has two outputs, a velocity estimate and a confidence measure. By

comparing channel outputs, it is possible to determine whether motion is

within textured image region, near a prominent image contour, or near an

occluding edge. Channel outputs are combined in the manner appropriate for

each of these cases in step 3.

4.1.3 CONCLUDING REMARKS

As demonstrated by the results, the combination of Laplacian pyramid

structures together with the MMF strategy has proven to be a powerful

technique for motion analysis. The power of the technique developed in the

study lies in its simplicity, computational efficiency and its high

accuracy.

4.2 MULTI-RESOLUTION SPLIT AND LINK SEGMENTATION ALGORITHM

The need for representing motion in digital images is motivated by

applications in transmission of video and in artificial intelligence. In

the first type of application, bandwidth compression in the image processing

sense is sought; we attempt to transmit less data to communicate the
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required information about the image. In the second type of application, we

attempt to give the computer a primitive understanding of how objects move

and an ability to track this motion without necessarily recognizing the

objects. A method of motion representation based on image segmentation

which lends itself to these applications is presented in this work [4.1-3]

along with results from its software implementation.

The segmentation scheme presented here gives excellent results for a

variety of images. The segments in the image are represented by links and

segment values. The information provided by these links and segment values

is contained in a pyramid structure which is suitable for analysis. Our

motion algorithm uses the same representation for an image as the

segmentation algorithm and is capable of updating the links and segment

values given an estimate of displacement without the necessity of obtaining

an entirely new segmentation. If we are willing to accept a processed image

with quality not quite suitable for viewing but suitable for analytic

purposes, then we have met our goals for representing motion.
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5. TEXTURE MODELING AND DISCRIMINATION

5.0 INTRODUCTION

The focus of this task has been the development of stochastic models

for texture and the related problems of developing and evaluating various

texture classification and discrimination algorithms. Motivation for this

work has been the following important image processing problem: segment an

image field into disjoint regions which may possess the same average gray

level but differ in the spatial distribution of gray levels. These two

characteristics of an image are generally referred to as tone and texture,

respectively. Our interest has been concerned with the latter. While

somewhat elusive to defint. precisely, the most generally accepted definition

of texture at present is that it consists of a basic local order or quasi-

homogeneous pattern which is repeated in a "nearly"' periodic manner over

some image region which is large relative to the size of the local pattern.

Our work in this area can be conveniently classified into three broad

categories:

1.) Develop useful stochastic texture models and characterize

their properties.

2.) Develop model-based texture classification/discrimiiation

algorithms on the basis of statistical decision theory

concepts.

3.) Evaluate and characterize the performance of various texture

classification/discrimination algorithms under identical

conditions.

We will discuss each of these areas separately.
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5.1 STOCHASTIC TEXTURE MODELS

We have considered several classes of stochastic texture models

including:

1.) 2-D autoregressive moving average (ARMA) processes.

2.) 2-D random tessellation processes.

3.) The 2-D random grain model.

4.) 2-D Markov random fields (MRF's).

In what follows we will describe our work in each of these areas separately.

5.1.1 2-D ARMA MODELS

These models have been used extensively in one form or another in a

variety of image processing applications although a comprehensive systematic

study of this class has never been provided. Specifically, the 2-D ARMA

process is generated recursively according to

S. a S + b -W ij j , (5.1)
, (k.)e'k i-kj- ) 8  k, i-kj-'

a b

where (W. .} is a 2-D i.i.d. sequence and both+ Va and D are specified1,3 a b

subsets of a non-symmetrical half plane Z=(kO,U>O} (k:1, -1). Assuming

a row-by-row raster scanning pattern, the sequence (S is then generated

as a causal filtering operation over past outputs and present and past

inputs. A special case of (5.1) is the 2-D separable Gauss-Markov model

with

Si, j=PlSi.l,j+P 2 Si, j-l-PlP 2 Si ._ljl+Wi, j, (5.2)

where O_1p i<1l, i=1,2 represent horizontal and vertical pixel-to-pixel cor-

relation coefficients, respectively, and (Wi'j ) is an i.i.d. zero-mean

+ The prime, as in D' in (2.1), is intended to denote exclusion of the

point (0,0). a
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Gaussian sequence with common variance -- (1- 2 )1P2deidintrso

-- deine inters o

the variance of the assumed stationary sequence IS..1. Similarly, it's
S 1,*)

possible to define a 2nd-order separable 2-D Gaussian process as

2 2,
S " . ak - S ik,j_ +W., (5.3)

k=O _0 , ik~- ,

where again (W. .} is an i.i.d. zero-mean Gaussian sequence. The cor-1, J

responding coefficients can then be expressed in terms of pole locations in

the vertical and horizontal spatial frequency planes as illustrated in Table

5.1. More specifically, r. and ., i=1,2, are the radial and angular posi-1 1

tions, respectively, of the separable discrete system transfer functions,

H.(z), generating IS. .). This is illustrated in Fig. 5.1.1 1,3

It can be shown that the input sequence [W. .1 in the 2nd-order case1,3

must possess variance

azaa 2. (r4)( r )(,_2r 2cos29 r )(1-2r cos2e +*r 4 (5.4)

For example, if either H (z) or H2 (z) possesses a pole on the unit circle

then :T-=0. We assume, of course, that initial conditions are chosen to
w

result in stationary conditions.

Due to the separability, the 2-D autocorrelation sequence is given by

R(m,n)='wR WmR2(n), (5.5)

where

R (k)=_1 0 H.(z)H.(z,-)zk- dz; i=1,2. (5.6)
i 2TJ~ , I I

C1

In particular, it's easily seen that the correlation coefficients in the

vertical and horizontal directions, respectively, are now given by



coefficient value

a 0,1 2r 2cosP 2

2, 2

a 1 0  2r 1cose

a -4r ~~1 r os l s

24r r 2cos 1 os
a 1 ,12 1 2

_2

a1  2r 2r Cos.-

a2 ,1  2 1 r2cs 2

a 
-r 2r2

2,2 1 2

Table 5.1

Coefficient Values for 2-D Second-Order Auto-

regressive Process.
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Pole Locations of Filter H (z. i=1,2



IJkl ]- r sin[(ikJ-1) };
pitk) = sine i

Note, in particular, that tpi(k)1 1 for i=1,2. However, unlike the first-

1ki
order case, where pi (k)=p i  , the autocorrelation is no longer

exponentially decreasing in k due to the sint s idsil terms within brackets.

This property can be useful in modeling a wider range of textures than pos-

sible with the 1st-order model. Additional results on the 2nd-order model

can be found in [5.11.

Our interest in ARMA models has been in developing their statistical

properties, such as autocorrelation functions, joint p.d.f's, etc., and in

developing methods for fitting these models to real-world texture samples.

With regard to the latter activities we have been specifically concerned

with developing maximum-likelihood (ML) estimates of the ARMA model

parameters, particularly when observed in the presence of added noise.

5.1.2 RANDOM TESSELLATION PROCESS

This class of random fields !1a been studied extensively in the past

(cf. [5.2]-[ 5.4]) and this aspect of the investigation has constituted an

extension of past efforts. The construction procedure we have considered

results in a tessellation of the plane into convex regions by an ap-

propriately defined field of random lines which form the boundaries of these

regions. The density of these random lines, or edges, is defined in terms

of a rate parameter X. Gray levels are then assigned within elementary

regions to possess correlation coefficient p with gray levels in ctntiguous

regions. For example, the gray levels can be generated by a 2-D ARMA model.

Given a particular partitioning scheme then, the random fields are com-

pletely defined in terms of the two parameters X and p. The parameter X

represents the edge business associated with an image while p is indica-

tive, at least on an ensemble basis, of the edge contrast . For p large

(in magnitude) and negative there is an abrupt almost black-to-white or
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white-to-black transition across an edge boundary. If p>O, on the other

hand, the transition across an edge boundary is much more gradual. It is

relatively easy to define these parameters for wide classes of imagery data.

In previous work [5.21-[5.41 we have been able to evaluate the second-

order properties of this class of random field under the assumptions that

the line processes generating the tessellation are themselves generated by

either a Poisson or a periodic process. It can be shown that these two ex-

amples are special cases of renewal point processes with Gamma distributed

interarrival distribution

-1
f(x) = x _ exp{-x/ }; x-0, (5.8)

7( )6*

-x
with =1.2 .... and 0=1/) for fixed X>O. For =1 we have f(x)=e , cor-

responding to the caz: of Poisson partitions, while for .=W, f(x)=b(x-l/k)

corresponding to periodic partitions with fixed spacing .=l/X. Clearly, the

quantity plays the role of a homogeneity parameter. For small the

mosaic appearance is that of a tiling of the plane by random rectangles. As

increases the tiling becomes more and more regular or periodic.

In (5.5] we have been able to develop the second-order properties of

the 2-D random tessellation process when the tessellation is generated by a

pair of mutually independent renewal point processes with Gamma distributed

interarrival distribution as given by (5.8). This work then represents a

considerable extension of our abilities to characterize the second-order

properties of the 2-D random tessellation process.

Other methods have been studied as part of this effort, including the

use of the Voronoi and Johnson-Mehl tessellations (5.6], [5.71, to provide

the underlying partitioning of the plane. In the Voronoi tessellation the
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centers of regions, called seeds, are distributed according to a 2-D spatial

point process with rate parameter X. The elementary geometric regicns then

consist of all points closer to a given seed than to any other seed. In the

Johnson-Mehl tessellation, the seeds are distributed according to a space-

time point process with spatial rate parameter X and temporal rate parameter

v. The elementary regions then grow isotropically with spatial velocity

In this case some seeds may fail to generete regions if their spatial loca-

tion is overcome by regions associated with previously distributed seeds.

While these partitioning schemes represent interesting generalizations of

the 2-D random tessellation process, we have met with little success in

characterizing the resulting second-order properties.

5.1.3 2-D RANDOM GRAIN MODEL

This class of image models have alternatively been called random grain

models, Boolean Models, bombing models, etc. Our approach has been to con-

sider these models as the output of suitably defined spatial filters excited

by a marked spatial point process (5.81 at its input. For example, suppose

that the filter is space invariant and can be described in terms of its

point spread function h(&). Consider exciting this filter by a marked spa-

tial point process described in terms of the triple (x., a., .1 where x I
--1 1 1 _-

are the event locations, and (a.) and '.1 are marks representing amplitude
1 1

and rotation to be assigned to the characteristic response of the f'lter to

the spatial impulse at the corresponding locations (xi. The field at the

filter output is then described by

f(x)=  aihi(1-&i,(,9

where h (i)=h(Aix) with A. the unitary matrix

C OS" r

A - ]. i -



2

The net resultsirt tha t ff(A), xaR ) is given by the superposition of a num-

ber of randomly weighted and rotated versions of the original point spread

function h(j) replicated at random spatial positions. In this sense the

resulting random field resembles the so-called low-density shot processes

evolving according to a single temporal parameter. The description of the

field in terms of filtering operations not only provides a phenomemological

construction procedure for generating the field but allows the application

of existing and well-developed techniques for analyzing the statistical

propertie of I-D low-density shot processes.

This class of 2-D random fields can be extended to include nonisometric

transformations of a basic point spread funct.on h(x). Here the field

(f(x),IeR is obtained as a randomly weighted superposition of versions of

h(&) which has undergone scaling in addition to the rigid body motions of

translation and rotation. As an illustrative example, suppose the field is

described according to (2.9) and the sequel w'tt now

cose. sinO
A.- - 1 i ie 2.i

-1i 1-

with b , appropriately defined random variables subject only to the con-

straints b1 0 and 0 1. This transformation has an interpretation as a

rotation by i radians followed by separate scaling of the orthogonal car-

tesian coordinate axes. Furthermore, suppose that the basic point spread

function h(l) is described by

h(x) { .

2 2 2

where is the ordinary Euclidean norm. The corresponding

response hi(I)=h(AiX) is then elliptical in shape as illustrated in Fig. .

.ismsmmim ,=iIm ii nm I I I I II III~m~ Immm



-II-

x2

X? 
X1

h i 
'

Figure 5.2

Characteristic Response of Random Grain

Stochastic Image Model
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with major and minor axes b. and r.b., respectively, each rotated by .1 1 1

radians.

Other choices for the basic point spread function h(x) are, of course,

possible. For example, consider the sinusoidal response

sih(IxI. } (5.13)
h(x) 11

or even the exponential response

h(x) = exp{-1x1 12) (5.14)

A reasonably complete characterization of the 2-D random grain model

has been provided in [5.9]. This has included evaluation of second-order

properties.

5.1.4 2-D MARKOV RANDOM FIELDS

Recent developments in the theory of 2-D MRF's provide a powerful al-

ternative to existing stochastic fields as a texture model. The 2-D MRF

attempts to extend the familiar I-D Markov property to 2-D. More specifi-

cally, a 2-D MRF is defined by the property that the conditional p.d.f. of

the gray level at any point in the image plane given values of all the other

points depends only upon the gray levels at pixel positions in a specified

neighborhood of the point in question.

Through its relationship with the so-called Gibbs random field (GRF).

it can be shown that the joint p.d.f. of the MRF defined on a specified lat-

tice assumes a precise functional form. Furthermore, this functional form

can generally be defined in terms of a small number of physically meaningful

parameters. These parameters can then be adjusted so that the resulting

realizations of the MRF closely resemble real-world textures.

A detailed treatment of the construction and properties of MRF's ap-

pears in [5.10). Here we demonstrated how the parameters of the NRF can be
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matched to real-world textures by ML estimation techniques. In this work we

also developed ML techniques for texture classification and segmentation and

demonstrated the efficacy of these techniques through experiments on real-

world texture samples.

5.2 OPTIMUM MODEL-BASED TEXTURE CLASSIFICATION/
DISCRIMINATION ALGORITHMS
Our efforts in this area have been concerned with developing ML-based

texture classification/discrimination schemes based upon specific stochastic

texture modeling assumptions. This work was begun in [5.11] where use was

made of the 2-D random tessellation process described previously. The ap-

proach was to first reduce the data to its spatial gray-level co-occurrence

matrix. Then ML classification/discrimination schemes were developed using

as observations the elements of the spatial gray-level co-occurrence matrix.

Under some ergodic assumptions on the underlying tessellation model, it was

possible to explicitly compute the class-conditonal log-likelihood

functionals. This approach has been shown to be quite effective when ap-

plied to real-world imagery.

In [ 5.12] this initial alroach was extended to arbitrary stochastic

texture models through an adaptive technique for estimating the unknown

parameters appearing in the class-conditional log-likelihood functional.

This approach was shown to provide excellent classification performance on

real-world texture samples. The difficulty was .hat it required training

data consisting of homogeneous observations from each of the possibly un-

known texture classes. The approach then, while useful fok texture

classification, was not useful for texture segmentation since homogeneous

training data is generally not available.



-55-

As part of the present effort we developed a technique for estimating

the structural parameters of the underlying stochastic image model directly

from the data itself. These estimates are then used in the technique of

(5.111. with some additional simplifications, to provide a fully adaptive

model-based approach to texture segmentation. The results are described in

[5.131.

A second major contribution of this effort has been to develop ML-based

texture classification/discrimination techniques using a MRF model of

texture. This approach, as reported in [5.101, is shown to be quite effec-

tive in the classification/discrimination of real-world textures at a

reasonably small computational expense. It's felt that this approach offers

an attractive performance/complexity alternative to the schemes described in

[5.111-[5.131.

5.3 EVALUATION AND CHARACTERIZATION OF TEXTURE CLASSIFICATION/
DISCRIMINATION ALGORITHMS

In this work we have attempted to explore the performance of various

existing texture discriminants operating on identical and carefully control-

led stochastic texture models. More specifically, we have concentrated upon

the texture features described by Haralick [5.14]. These features, which

are extracted from the spatial gray-level co-occurrence matrix, were

originally proposed on an ad hoc basis. Unfortunately, there is little in-

formation available on how to choose critical parameters, such as the

separation distance, d. Furthermore, there has never been any comprehensive

work performed to establish the conditions (e.g., the class of underlying

stochastic texture models) under which these features provide effective dis-

crimination and conditions under which they can be expected to fail.

Finally, there has never been any work directed toward establishing the



relative performance of texture classification/discrimination procedures

based on the Haralick features compared to optimum model-based algorithms,

such as developed separately under this effort.

In [5.151 we describe the results of a comprehensive study of the rela-

tive performance of the Haralick features for a variety of stochastic

texture modeling assumptions. This work has included ARMA models, as well

as 2-D random tessellation processes. The results are quite useful in

providing information on how to choose key parameters for the Haralick fea-

tures and in identifying conditions under which the Haralick features either

provide effective discrimination or fail to do so.
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6. EFFICIENT ALGORITHMS FOR PHOTO-INTERPRETATION

The results of this task are reported in two documents, Removal of

Cloud Shadows from Aerial Photographs by S-P. Shu [6.3-1] and ISES - An

Image Segmentation Expert System for Aerial Photographs Based on the Use of

Edge and Texture Features by S-P. She [6.3-2]. We shall present summaries

of the work from the documents.

6.1 CLOUD COVER REMOVAL AND COMPENSATION

The objective of this project, the results of which are reported in

[6.3-1], is to develop an algorithm compensating for extreme variation in

scene illumination caused by cloud shadows in order to obtain a uniformly

bright image display. A sample aerial photograph was provided for this

purpose as well as two reference points, one underexposed due to cloud

shadows and one overexposed.

An elegant algorithm has been developed successfully. The algorithm

can determine cloud shadow edges under various criteria, divide the image

into partial images along the cloud shadows edges, compensate for the

brightness of each partial image, reconnect the compensated partial images

into one high-quality image without visible connection edges and add

heuristics to save computation time and improve the quality of the resultant

image. The Cloud Shadow Modeling technique is used to model cloud shadows

in aerial images by mathematical expressions and to add artificial cloud

shadows into aerial images.
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CLOUD SHADOW REMOVAL SCHEME

The Cloud Shadow Removal Scheme is illustrated by the following steps;

(1) Get Input Sample Image Ii(i.j)

An input sample image, such as Fig. 1, is obtained by digitizing

the film of the sample aerial photograph using the Prime Computer

System in the RPI Image Processing Lab.

(2) Determined Cloud Shadow Edges

A fuzzy-edge detection scheme, developed by the author, is used to

determine the tight and loose bounds of cloud shadow edges in the image

I. (ij).1

(3) Divide Sample Image Along Cloud Shadow Edges

The image I.(ij) is divided into left and right part images,
1

denoted by IL(i.j) and I R(i,j) respectively. The overlay image from

IL(i.j)and IR(ij) is denoted I M(i.j).

(4) Compensate Image Brightness

The images IL(i,j). and IM(i,j) are compensated by algebraic gray-

level transformation, histogram equalization, and mean & variance

transformation techniques. The compensated images are denoted I Ll(i~j)

IRl(i.j) and IMl (i.j). respectively.

(5) Recombine Partial Image

The compensated images ILl, I RI and IM1 are recombined into one

image I (ij) as in Fig. 3 by the overlay image connection technique.
g

This technique was developed by the author for recombining partial

images into one image without visible connection edges.



-61--

The algorithm for the removal of cloud shadows from aerial photograph

has been successfully implemented on the Prime Computer System in the RPI

Image Processing Lab.

The provided sample image is shown in Fig. 1. By this algorithm, the

resultant output image is obtained as shown in Figs. 2 and 3, in which the

right part cloud shadow was removed and the entire image was enhanced to

higher quality.



Fig.

Original Sample Image I,-,

Resolution: 512 x 512 pixels
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Resultant Image .

Resolution: 5112 x 512 Pixels



Resultant Image r

Resolution: 512 x 512 pixels
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to try to develop an image-segmentation system that would have the same

advantages but without the disadvantages. The ISES presented here comes

close to achieving the goal, having achieved excellent experimental

results.

In the ISES, the A* algorithm (AI minimum-cost-graph search) was

applied for both heuristic edge extraction (HEE) as well as for region

formation (.:F). The A* algorithm is a powerful scheme in AT for searching

desirable paths under a well-defined cost function. The cost funct ion in PF

was defined with both edge-features and texture-feature parametErs. thus

permitting the RF procedure to use edge and texture features! simultaneovuusiy

for optimal path search. This apptoach demr;t J he , f A'

approach in simultaneously handling vari i :ma.-. , . : a-

and texture features. Based on the ,inir antou: :ye I !ie ar:U ,',,

features under a rule-based expert.-systni cont j he -, :O.t I

first solution for eliminating edge gaps and n s . The.:i . ..

Wgap and micro-edge problems had nt beer izove,! tfi , f 1-, at'v i I

detection techniques.

The localized brightnerss ompensat ion LB( ir F ,.

good preprocessing scheme for the I ES. 1)ut i a.' ;A !: , ,, 4 ,-,,

enhancement scheme. This gene! i-I i zed LBC f r a,',. r h~at, r .

first localized image-enhancement ;cheme. 1 ! 1 1.

Pnhancement algorithm using rule-based expei t ,;v: t qm'. ! .ij

The HEE in the ISES is a new useful edge/hur(tia , 14 t :t .r.

obtain ing one-pixel -wide edges ot boundar iv:; t r m r t4al m. 'E .m,),,, I

texture cl assi f icat ion, the HEE . r, Uvided mu, h m , !;pat i i , " i(i ! l it ' V , 4

boundaries. The one-pixel-wide edge;/'bol ar l ed Aan I,- fao 1 1 . i tV r, t,, k 0 1

chain codes for various image process iny app I at it,: . It I ;! I , it .i



one-pixel-wide edge/boundary is wore useful than a non-one-pixel-wide edge

boundary. The edge thinning operation in the HEE is a ne(.w (effi~ient

algorithm for obtaining one-pixel-wide edges or boundat ies.

The knowledge-based controller in the ISES is a rulebavied e-xj,.rt

system model. It controls all the processing of the ISE'. fi, 13 PdTr.;

manipulat ine, t he itra '.e pr(,cesEsirg ool (I.B(. HEY. an,! PF *tinit ur

modify inE the dIdt a set inl the iaja,_ tact base. ta.ir .i

eg~:. er-tt-retkt otr.E:i.k I l( 4, r. 1.
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