
-AtG2 GW RELIABILITY ANALYSIS BASED ON
EXPONENTIAL FAILURE -in

DISTRIBUTIONS AND DEVEL (U) AIR FORCE INST OF TECH
MRIGHT-PATTERSON AFS OH SCHOOL OF ENGI K N COLE

UNCLASSIFIED 19 DEC 86 AFIT/DS/ENG/86-06 F/G 12/3 ML

_IllllllllllollEhhEEEmhshhhhE
EllElEEEllEll
* EllEEEEElllIhE

lilt O L6

16

'III * .8

'11125 LA Nil1.4 111116

S MICROCOPYf RESOLUTION TEST CHART *

A"

Ai - IFa--

11N5;111 11-

UM FILE COPY "I (7

0

COF

Co V

RELIABILITY ANALYSIS BASED ON
EXPONENTIAL FAILURE DISTRIBUTIONS

AND DEUELOPMENT OF A
SUPPORTING COMPUTER ENUIRONMENT

DISSERTATION

Kenneth N. Cole
Captain, USAF

AF IT/DS/ENG/86-06

DTIC
".\ JUL 2 7 1987

DEPARTMENT OF THE AIR FORCE E
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

jY~ d~ ~n ~a~ b~ appCov4

AFIT/DS/ENG/B6-O6

RELrABrLITY ANALYSIS BASED ON
EXPONENTIAL FAILURE DISTRIBUTIONS

AND DEVELOPMENT OF A
SUPPORTING COMPUTER ENVIRONMENT

DISSERTATION

Kenneth N. Cole
Captain, USAF

AFIT/DS/ENG/B6-06

Approv/ed for public release; distribution unlimited

UNCLASSIFIED . .

SECURITY CLASSIFICATION OF THIS PAGE - ' --

REPORT DOCUMENTATION PAGE omNo 07040 8

Is. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

UNCLASSIFIED
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release;
2b. DECLASSIFICATION /DOWNGRADING SCHEDULE distribution unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

AFIT/DS/ENG/86-06

68. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
(If appilkable)

School of Engineering AFIT/ENG

6c. ADDRESS (City. State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Air Force Institute of Technology
Wright-Patterson AFB, Ohio 45433

$a. NAME OF FUNDING/SPONSORING 18b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATIONJ (If applicable)

Sc ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT ITASK WORK UNIT
ELEMENT NO. NO. NO ACCESSION N(

11. TITLE (Include Security Classification)

K': Reliability Analysis Based on Exponential Failure Distributions and
.Develonm-nt o f ; (innort-ing flnmpniter Fnxirnnmcnr#f

12. PERSONAL AUTHOR(S)
Kenneth N. Cole, B.S., B.S.E.E., M.S.E.. Cat.. USAF
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT

PhD Dissertation FROM TO = 1986 December 21 R
16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP Reliability, Failure Analysis,
12 01 Statistical Tests, Statistical Analysis

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

This investigation defines a generalized likelihood ratio test criteria for
exponential failure distributions that is applicable to any number of sample
with varying sample sizes. The formulas have been implemented in C-
language computer programs as practical algorithms for reliability analysis.

In addition, a software system has been developed that allows simple
construction of programs that will generate tables of test criteria percenta
points or automatically compute the test value for multiple data files and
report the result of the test. The system includes a screen oriented editor
working with a line compiler for generating the test programs. The
software is designed to operate on the UNIX,(a trade mark of Bell Labs)
operating system. . . -

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
MUNCLASSIFIED/UNLIMITED 0 SAME AS RPT. 0 DTIC USERS UNCLASSIFIED

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c OFFICE SYMBOL

Panna B. Nacarsenker (513) 255-7210 AFIT/ENC

DDForm 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIFD

4 ' S I''"-u' a -",' ' w_ . '. a, ..- ' . . . _ .

AFIT/DS/ENG/6-06

RELIABILITY ANALYSIS

BASED ON EXPONENTIAL FAILURE DISTRIBUTIONS

AND DEUELOPMENT OF A SUPPORTING COMPUTER ENVIRONMENT

DISSERTATION

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree oF

Doctor of Philosophy Acces s,- I r

DTIC 'Au /
e-, ..

*...
ByC

Kenneth N. Cole, B.S., B.S.E.E., I.S.E.E.

Captain, USAF i

December 1986

Approved for public release; distribution unlimited

i 4 /

AFIT/DS/ENG/86-06

RELIABILITY ANALYSIS

BASED ON EXPONENTIAL FAILURE DISTRIBUTIONS

AND DEVELOPMENT OF A SUPPORTING COMPUTER ENVIRONMENT

Kenneth N. Cole, B.S., B.S.E.E., M.S.E.E.
Captain, USAF

Approved:

i + ... , .+ ,--. C A, L . . ,.-<4 ': f -

Accepted:

Dean, School oF Engineering

ii

Preface

This dissertation presents the development of a method For

reliability analysis based on exponential Failure distributions.

It has been said, if you can excuse the humor, that "we can learn

From our mistakes." The current emphasis on reliability and

maintainability is a recognition that we must prepare to learn

From the Failures before we start to design. Reliability is a

study of the past that determines the Future. I truly hope that

this work will make that task easier.

I owe a great debt to my advisors, Dr. Panna B. Nagarsenker

and Dr. B. N. Nagarsenker, For all their efforts on my behalf.

They knew where I was going long before I even started on the

right path. Their firm guidance was much appreciated.

I must, also, grateFully acknowledge the contribution made

by Lt. Col. Walt Seward. His suggestions helped to make great

improvements in the Final draft.

Most of all, this work is For Suzan. She believed in me so

strongly, she carried me past all the rough places. My love is

hers, always.

Kenneth N. Cole

'V

oaf" I 4ii"U

p..

Table of Contents

Page

Preface . iii

List of Figures. vi

List of Tables........................vii

List of Symbols. viii

Abstract xi

1. Introduction................... 11

Problem Statement 1-1
Background.....................1-1
Approach......................1-5

ii. Background.......................2-1

Exponential Distribution.........................2-2
Chi-Squared and Gamma Distributions. 4
Mean Time Between Failures 2-B
Reliability Function................2-B
Failure Rates 2-10
Hazard Function 2-11
Lifetime Models 2-12
Type II Censoring

III. The Test Statistic and Its Moments 3-1

Likelihood Ratio Test 3-1
Derivation of the LPT For Testing p
Exponential Distributions. 3-3
Derivation of the h-th Moment of
the Statistic 3-8

IU. Exact Distribution of the Statistic. 1

Lemmas * , , 4 1
Derivation of the Probability Functions I-

U. Asymtotic Expansion of the Exact Distribution . . . 5-1

Lemmas.......................5-1

Derivation of the Asymtotic Expansion.-2

iv

*1r

Table of Contents (continued)

Page

VI. Application of Results 6-1

Approach to Solution 6-1
Application of Theorems 6-2
Assumptions and Data 6-3
An Example Problem.................6-5
General Problem Considerations.............6-7

VII. Programming Environments to Support
Mathematical Tools....................7-1

Environment Definition...............7-3
An Example Environment.................7-5

VIII. Suggestions and Recommendations 8-i

Statistical Package Implementation- 2
Automatic Programming Environments- 2
Improvements to Processing Speed...............-3
Application to Other Failure Distributions . . B4

Bibliography...........................BIB-i

Appendix A: Calculation of Adjustment Factors........A-i

Appendix B: Tables of Exact Computation of Statistic . . B-1

Appendix C: Tables of Asyintotic Computation of Statistic C-i

Appendix 0: Language Syntax..................0-1

*Appendix E: System Operating Manual................E-1

Appendix F: Program Listings......................F-i

t .. .~y * *. . V -

v-'

List of Figures

Figure Page

2.1 Hazard Function Over System Lifetime 2-13

3.1 Samples From Several Exponential
Distributions 3-

6.1 Failure Data for A-TD Navigation Computers 6-6

7.1 IMSL Data From Populations
With Different MTBF 7-6

Example Solution Using the SAE System 7-B

E.1 SAE Directory Structure and Files E-2

F.1 SAE Basic Program Structure F-4

F.2 Math Basic Program Structure F-5

.vi

List of Tables

Table Page

B-I Percentage Points of L for Two Samples
with Equal Number of Failures B-3

B-2 Percentage Points of L for Three Samples
with Equal Number of Failures B-4

B-3 Percentage Points of L for Four Samples
with Equal Number of Failures B-S

B-4 Percentage Points of L for Five Samples
with Equal Number of Failures B-6

B-5 Percentage Points of L For Six Samples
with Equal Number of Failures B-7

B-6 Percentage Points of L for Two Samples
with Unequal Number of Failures B-B

B-7 Percentage Points of L for Three Samples
with Unequal Number of Failures B-9

C-I Percentage Points of L for Two Samples
with Equal Number of Failures B-2

C-2 Percentage Points of L for Three Samples
with Equal Number of Failures B-3

C-3 Percentage Points of L for Four Samples
with Equal Number of Failures B-4

C-,f Percentage Points of L for Five Samples
with Equal Number of Failures B-S

C-5 Percentage Points of L For Six Samples
with Equal Number of Failures B-6

0-i Language Reserved Words D-5

D-2 Language Tokens D-5

E-I Editor Commands E-S

E-2 SecondarW Editor Commands E-6

E-3 Compiler Error Messages E-7

E-4 SAE Compiler Statements E-9

E-5 SAE Compiler Reserved Words E-I1

vii

1 ,'' N - , " , . . . ,...

List of Symbols

Br(.) :Bernoulli Polynomial of degree r and order 0.

113(PC) :Beta Function of p and q.

C.D.F. :Cumulative Density Function.

, E(X) :Expected value of a random variable X.

EXP(x) :Exponential Function with MTBF - x.

h(t), :Hazard function of t.

-"0 :Null hypothesis that all samples have the same mean.

.lxlpq) :Incomplete Beta Function defined as

TX p, O - X 9- (-) ,-

where /g(,) is the Beta function.

i.i.d. :Independent and Identically Distributed.

:Percent of total Failures that occur in the ith sample.

L :Likelihood Ratio Test criteria 2 to the power p/R

M.G.F. :Mloment Generating Function - the mathematical expectation
of a random variable X such that

if it exists.

,%%

, viii

4

List of SWmbols ,:continued)

M.T.B.F. :Mean Time Between Failures

p :Number of data samples being compared.
S"

p.d.f. :Probability Density Function.

rL :Number of failures in the ith sample.

R :Total number of failures in all samples.

P(t) :Reliability function of t.

11 :Total time on test for items studied in ith sample.

A

: aximum likelihood estimator of mean life in ith sample.

. :Maximum likelihood estimator of mean life of entire

population.

:Likelihood ratio test criteria.

:Adjustment factor (see Appendix for computation).

:Mean Time Between Failures (TBF) or mean time before
failure is equal to Mean Time Till Failure :MTTF) for a
single parameter exponential failure distribution.

- :Equivalence symbol - denotes the equivalence of two
rstatements.

:Is distributed

ix

List of Symbols (continued)

exptx) :Exponential Function of x e

X('X) :Chi Squared distribution with parameter x.

Wa(c6) :Gamma distribution with parameters a and b.

:Gamma Function of x.

:Probability that the event will occur.

7X

x

AF I T./DS/ENG.86-06

Abstract

One of the most Frequently used methods for studying

reliability is the comparison of failure data. The analysis of

failure data can be made in a wide variety of ways, but the

Formulas used are usually restricted to special cases of the

number of samples, the number of failures, and the expected

underlying distribution of failures.

This investigation defines a generalized likelihood ratio

test criteria for exponential failure distributions that is

applicable to any number of samples with varying sample sizes.

The formulas have been implemented in C-language programs as

practical algorithms for reliability analysis.

In addition, a software system has been developed that

allows simple construction of programs that will generate tables

of test criteria percentage points or automatically compute the

test value for multiple data Files and report the result of the

test. The system includes a screen oriented editor working with

a line compiler for generating the test programs. The software

is designed to operate on the UNIX (a trademark of Bell Labs)

operating system.

xi

~ ~ ,* *%%; ~-*~.~ > i-: ~ "a

Chapter I

Introduction

The management and maintenance of complex systems is an area

of great importance to the Air Force, as well as to private

industry. The achievement of reliable and maintainable equipment

does not happen by accident. In the Air Force, it is mandated

that these characteristics must be considered throughout the

entire equipment life cycle, including the planning, designing,

developing, producing and supporting efforts (ReF. MIL-STD-7B5A).
1.

A key concept in this task is the analysis of statistical data to

determine the reliability and maintainability of those systems.

* The Formulas used to determine these characteristics can be

*.- complex and, often, change significantly for each set of data to

be examined (ReF. MIL-STD-785A, MIL-STD-781C). New developments

in numerical analysis are providing mathematical methods that

allow computation of the necessary statistics across a useful

range of data distributions.

Problem Statement

The goal of this research effort was to derive exact and

asymtotic censored distributions in a computable form and to

explore the development of a computer environment to apply

statistical analysis to reliability problems.

Background

The general concepts of reliability and maintainability are

well established. Reliability is used to describe how "Failure

1-1

I'v- . u

'a

free" a system is likely to be over a given time interval. In

other words, reliability is the probability that a system will

not fail over a specific number of operations or over a specified

period of time. Maintainability is the likelihood that the system

can be kept in a defined condition using prescribed maintenance

methods. When we have designed and built a reliable system, we

would like to keep it that way (Ref. AFP 80-5, Epstein 19S3:437).

Quantative evaluation of these characteristics has come with the

advent of more complex systems. The result has been the

requirement that minimally acceptable standards be established

and met by new systems in all phases of their life cycles (Ref.

AFR 80-5, NIL-STD-785A). Engineers and managers must be familiar

with the tools necessary to evaluate these characteristics.

These tools may be computer programs that can evaluate sets

of data, mathematical Formulas for the statistics that apply, or

simply, rule-of-thumb judgements for making the decisions that

are necessary. Each of these tools has advantages as well as

problems.

Typically, rule-oF-thumb solutions require expertise on the

part of the user for good results. While this type of evaluation

can be performed quickly and should not be ignored when applied

by someone experienced in the Field, there is a strong dependence

on the user to understand the applicability of the rule and the

implications of the result. This expertise is not always

available to the system manager.

Correct application of Formulas requires less expertise in

the field of application but, in many cases, more in

mathematics. Selection of the proper formula for a particular

1-2

1&

case, and its calculation and interpretation, may require a

statistician. The statistic that is used often depends, first,

upon the type of decision that is needed and, second, upon the

amount or type of data available (ReF. AFM 80-5, Hogg and Craig

1978, Lawless 1982:29-31). For example, graphical examination or

"goodness of Fit" tests can be used to determine if the data

could be from an assumed underlying density. The Chi-Square test

would then be selected if the sample size is 30 or greater, and

the hypothesized density is discrete. A decision based on

calculations, without an assurance of correctness, is less than

desireable.

Computer programs can provide the user with answers quickly

and accurately. There is, again, the problem of applying the

program where it is not designed to be used or writing a program

which properly implements the mathematical solution. It is

possible, however, to have a program that is properly designed

and documented to allow the user to apply modifications or

parameters that would adjust the program for the application

required.

* Reliability and maintainability characteristics are

determined by the liklihood of an event. For reliability, it is

the likelihood of a system Failure. Maintainability relates to

the likelihood that the system is in a certain condition.

Usually, these characteristics are determined From a relatively

Ismall sample and projected For the Future of a large number

units. This projection can successfully be made if the expected

Frequency of the event can be determined From the data available.

1-3

*,00 1P'

-N*~,

In other words, if the distribution of occurances of an event is

known, then the characteristics of that distribution can be

assumed for the event and the probabilities of future events can

be determined (Ref. Trivedi 1982:2-3).

In many of these situations, the problem becomes testing

whether there are significant differences among the underlying

distributions of a number of samples. The result could determine

that the known characteristics of one group may be assumed for

another, or that multiple samples may be considered as a whole.

There are many examples of this type.

Example 1: A particular aircraft part is being built by two

different manufacturers. Is there a significant difference in

the reliability or maintainability of the two parts?

Example 2: A part is being maintained at several different

equipment depots around the country. Is there a significant

difference in the maintenance results at each depot?

Example 3: The Failure times of several electronic computers are

recorded. How close do the computations of the failure rate For

each computer need to be before we can consider them to have the

same reliability?

Example 4: A new design is to be tested. The results will be

compared with data collected on the old model. Is there a

significant difference in reliability between the two systems?

The Frequency situations where we wish to compare the

characteristics leads to the decision that a generalized method

1-4i

1;q a ! a~~i~1. ,~

for comparing the underlying distributions should be one of the

first problems to be studied.

As described in Chapter 2, the exponential failure

distribution is, perhaps, the most often used distribution for

lifetime modeling. Its use can be Justified for most complex

systems with long lifetimes and wherever the failure rate can be

demonstrated to be constant over a period of time (Ref. Lawless

1982). This research examines the comparison of samples from

exponential failure distributions.

A partial solution to the comparison of exponential

distributions was developed by Epstein in 1953 for the restricted

case of only two samples with the same number of failures in each

sample. The goal of this dissertation is to extend this analysis

to the general case for more than two samples with unequal

numbers of failures in each sample. The mathematical formulas

for these calculations are developed in the next chapters.

In addition, a computer environment is developed which

demonstrates the application of these procedures to reliability

problems. It should be noted that computer solutions for special

cases (e.g. fixed number of samples, data sets of equal sample

size, etc.) have been implemented using standard programming

languages (Ref. Amell 1980, Lawton 1984). The environment

developed in this dissertation is intended to provide a higher

level of support when applying a general solution which can be

parameterized to the special cases required.

Approach

This chapter has presented an introduction to this research.

1-5

4,.
--" " ' :. ': A " * " " """°" ' ".~%-** "w, / .- "' ".5 ,-,, . ' ", ' ' " * ., , .p' , ",,

The details of this work are provided in the following chapters.

The second chapter presents the mathematical background and

development of the formulas needed for using the likelihood ratio

criteria in the most general case. The next chapter gives the
|q.

*development of the statistic for testing for equality of the

means of several exponential populations. The fourth and fifth

chapters show the derivation of the exact and asymtotic forms of

the cumulative distribution function (C.D.F.) of the test

statistic.

The sixth chapter describes the application of these results

to problems similar to the examples given in the first chapter.

Then, the seventh chapter discusses a computer programming

environment that would support this application. The final

chapter contains the conclusions and recommendations for future

work.

a 1-6

ml'

Chapter II

Background

To effectively analyze the reliability OF Air Force systems,

or any systems, the measurements and concepts of reliability must

be precisely defined. In many cases, we wish to study the

characteristics of a large number of nearly identical systems.

Where actual operational conditions and complex systems are

concerned, no two systems can be exactly alike. The failures of

such systems cannot be expected to occur at exactly the same

moment. But, if a large number of nearly identical systems are

examined, when operating under similar conditions, then their

Failures can be discussed in probabilistic terms. The analysis

of system reliability must be, therefore, based on concepts From

probability theory.

These fundamental concepts of probability and reliability

are presented in this chapter. Discussion begins with the

applicability of the exponential probability distribution to the

study of complex systems. Then, we focus on the definition of

the exoonential distribution and those related distributions that

are necessary For our later presentations. The concepts of

'reliability', 'failure rate', and 'mean time between failures'

are defined and their characteristics are examined for the case

where the underlying distribution of failures is exponential.

System lifetime models are, also, discussed for the exponential

case. Finally, we define Type II censoring and show how the

probability density function is modified when testing is

2-1

% D

suspended after a certain number of failures has occurred.

'V The concepts and definitions that are presented in this

chapter can be found in many text books on probability or

reliability theory (Ref. Lawless, 1982; Kapur, 1977; Trivedi,

1982). They are presented here in a concise form. In addition,

several theorems, not generally found in these texts, are

given in detail to provide the basis for the work presented in

the following chapters.

Exponential Distribution

Most models for component and system life and reliability

are based on the exponential distribution, which plays much the

same role in reliability theory that the normal distribution

plays in sampling theory. It has been pointed out by Drenick

(Ref. 1960: 680-690) that under some (reasonably) general

conditions, the distribution of the time between failures tends

to the exponential as the complexity and the time of operation

increase. Early work by Sukhatme (Ref. 1937) and then by Epstein

and Sobel (Ref. 1953, 1954, 19SS) and Epstein (Ref. 1954, 1960)

provided several results and popularized the exponential

distribution for lifetime modeling, particularly for industrial

life testing. Many others have contributed statistical methods
4:.

4/, for applying the exponential distribution. The bibliographies of

Mendenhall (Ref. 1958), Govindarajulu (ReF. 1964) and Johnson and

Kotz (Ref. 1970: Chapter 18) give some idea of the large number

of papers in this area prior to 1970 (Ref. Lawless 1982).

In addition, the exponential failure distribution is also

important because it can be derived from the constant hazard

2-2

V.-

V .

V
function, or failure rate, as will be discussed in a later

section. When considering complex systems with long (several

years and thousands of hours of operation) lifetimes, the

unstable periods of system installation and wearout can be set

aside. The long period of a relatively Fixed inventory

maintained by routine repair procedures can be examined as a

population with a stable, constant Failure rate (see Figure 2.1).

This situation is typical oF many systems in the Air Force

inventory. Complex weapon systems like aircraft and motorized

vehicles are, ideally, stable populations that are expected to

have long useful lifetimes. Supply system inventory items that

are repairable systems in their own right can also be modeled in

this way. System managers need to monitor changes in the Failure

rate to properly evaluate the value oF the maintenance programs

being used.

Thus, study of the exponential Failure distribution has been

selected as the focus of this research. Mathematically, a random

variable X is said to have an exponential distribution iF it has

a probability distribution Function (p.d.F.) of

* ,'. for x > O. We can write " X-XP " to mean that X is

distributed exponentially with the p.d.F. of Eq. (2.1).

In our case, the random variable is the "time to Failure" of

an individual system. The term 'time' will refer to the unit of

measure For the system, although the actual measurement may be in

distance, operations, running time, Flights, or any other

2-3

--. "- .,

measurable unit that is significant to a particular system.

Generally, the lowercase letter 't' will be used to represent

this 'time' in the Formulas used in this paper.

Chi-Squared and Gamma Distributions

Having identified the exponential distribution as the

assumed distribution of Failure times For the samples in this

study, there are two other distributions that are important in our

work; the Chi-Squared and Gamma distributions. They are both

directly related to the exponential distribution. These

distributions will appear when we look at the total test time For

type II censored samples, later in this chapter.

V A random variable, X, is said to have a Chi-Squared

distribution if the p.d.F. of X is

(,X) (2.2)

For x > 0. We will write "X- . " where we mean to use

d the Chi-Squared distribution with the p.d.F. of Eq. (2.2:1.

A random variable, X, has a Gamma distribution with

parameters a and b if the p.d.F. of X has the Form

exp (:D (2.3)

For x > 0 and we will write " Q(-. (- " to denote this.

2-

From an examination of the defining p.d.F. 's of the

exponential, Chi-Squared, and Gamma distributions, we can deduce

the following equivalences:

xv G (:x (2) .S)

X X() x 9 (2.6)

and we must also make note oF the relations expressed in the

Following theorems.

Theorem 2.1: Let X 0 then CX- Q(o ,c6)) where c > 0.

Proof: Let W - cx. Then dW/dx - c and x -/c.

The p.d.f. of Y is:

exp ,,.-, (2.7)
~6 C2'

So,

(9 ' ex() 01- 1~~ 9 (2.8:)

= r(O) C cA)~ r(co.

Therefore, C.AX qO.C)

I
2-5

U

Theorem 2.2: (Ref. Barr and Zehna 1983: 258) Let X,.. Xn be

independent random varaibles with Moment Generating Functions

(r.G.F.) M t)For i - 1,2,...n.

Then the M.G.F. of ,1X 0.(z 4+O..n"Yti is

where MC(*t)is the rl.G.F. of X

Theorem 2.3: Let Xl.. 'Xn be independent random variables such

that X'. G (0,)) ' Then XL cG(o,) where 0-i

Proof: By Theorem 2.2,

n

IT 1A-(kC)

(2.10)

Therefore, CA (Q' where ZI,.

Theorem 2.4t: Let),*(be identical and independently

¢11

distributed (i.i.d.) (9Q.Then Zxi C4y'G

Proof': Xj'EIXP(G) implies by Eq. (2.6).

Then, by Theorem 2.3, For a sum of independent Gamma

distributions

2-6

..........................

Lz C(2.11)

Therefore 2

Theorem 2.5: If X +) then ,,
b

Proof: ') ck'(,.) 3) implies '2 XQ ,(oL ,(o,,
by Theorem 2.1 and this is equivalent to X22)by Eq. (2.5).

Therefore, ')+ 6"

Theorem 2.6: Let X,...Xn be i.i.d. EXP(G).
n

Then ZT ~(,where 1 - 2 (

Proof: Since X,..×.4are i.i.d. EXP(e), T-C(NQ) by Theorem

2 Then by Theorem 2.5, must be a Chi-Squared

distribution with 2n degrees of freedom. That is

ZT (2.12)

Now, we have defined the underlying failure distribution for

the samples and the related distributions that we will need for

later work. The following sections present the Fundamental

concepts of system reliability with specific reference to the

the exponential Failure distribution.
2

2-7

Mean Time Between Failures

The 'mean time between Failures' (MTBF) is the expected time

during which the system will perform satisfactorily. It is

assumed that the system being examined is being renewed through

maintenance and repairs. This is typical of complex military

hardware systems during its useful life. However, this does not

include systems that may be categorized as 'one shot' situations

such as ammunition or solid Fuel rocket engines. The discussion

in this research is limited to maintainable systems that are

repaired or replaced to support a constant inventory. The [TBF

is defined as

m@0

0

where F(t) is the probability density Function defining the

distribution of Failures. The MTBF For the exponential density

Function can be written as

So, the NTBF is equivalent to the defining parameter oF the

exponential Failure distribution Function, theta, From Eq. (2.1).

The Failure distribution Function is, also, directly related to

the reliability function defined in the next section.

Reliability Function

'Reliability' can be defined as the probability that the

2-B

' ' "

system will meet its requirements under given conditions for a

specified unit of cycles. These cycles may be measured in time,

completed operations or distance where applicable to the system

being studied.

It is obvious that the purpose intended for the system

actually determines the type of reliability measure that is most

meaningful. The degree of Function necessary For the system to

perform its mission can vary among systems and among the

different tasks performed by a single system. Each operation of

a system may have a different reliability. Also, the reliability

of a system may vary at different points in its life, whether

that life is measured in time, operations or distance.

In the Following discussions, the term 'Failure' is used to

mean the system is not able to perform as required. It must be

noted that this failure, in the case of a large or complex

system, refers only to a particular operation under study. There

may, or may not, be other operations which are dependent upon the

success of this one and their respective reliabilities will,

therefore, be effected.

The reliability Function is the probability that the system

will not Fail before a certain time. Mathematically, this can be

written as

R(N 9(x>+z (2.15)

where X is a random variable denoting the time of failure. If X

has a density Function F(t), then

(2.16)

2-9
41

If the time to failure is described by the exponential density of

Eq. (2.1) then the reliability function can be written as

For t > 0. So, we can see that the reliability function for a

system having an exponential failure density is dependent only

upon the MTBF of that density. Thus, any comparison we can make

between the sample's MTBFs is equivalent to a comparison of the

corresponding reliabilities of the systems represented by the

samples.

At the beginning of this chapter we stated that the

exponential failure distribution could be assumed for a system

demonstrating a constant failure rate. More precisely stated,

the hazard Function for the system must be constant. The terms

'Failure rate', 'hazard function' and their relation to the

system 'lifetime model' are discussed in the next sections.

Failure Rate

The likelihood of failure occuring within a certain period

of time t,> t.] can be expressed as the difference of the

reliabilities at each time. Thus, the integral of the failure

density, over a specific period of time, can be expressed as

either

t

2-10

or

The rate at which failures occur during a time period is

defined as the likelihood that a failure per unit time occurs in

the interval, assuming that a failure has not occured before the

beginning of the interval. This 'Failure rate' is

(g X ?2) C 2.20)

This failure rate is shown as a function of time. As stated

before, the unit might be time, operations, or distance,

depending the nature of the system under study.

* ,; Hazard Function

The 'hazard function' is the instantaneous failure rate.

The hazard Function indicates the change in the failure rate at

any moment in the life of the system. This is often more

significant than the failure rate at that moment, because it

indicates whether the system reliability is improving or

decreasing. For example, the stabilization of the instantaneous

failure rate could indicate the end of the system installation

phase or break-in period. Likewise, an increase in the hazard

function value could indicate improper maintenance procedures or

the beginning of system wearout.

Equations may be derived, showing the relationships among

2-11

..'4 •. . .. ,

the three Functions; the failure distribution FCt), the

reliability Function R(t), and the hazard Function h(t). These

equations show that any two of these Functions can be obtained

From the third.

C2.21)
t

When the Failure density Function is exponential, the hazard

Function becomes h(t) - 1/MTBF, where MTBF - , From Eq.

(2.14).

Lifetime Model

The 'lifetime model' is a statement of how the hazard

Function is expected to vary over the life of the population.

Figure 2.1 shows a typical case with three areas of variance.

From to to ti represents the failures due to material or

manufacturing defects. The second phase, From t4 to t2

represents the random Failures associated with unusual or extreme

conditions. Finally, the remainder of the curve, beyond 4t ,

shows an increase in failures due to wearout of the equipment.

This study is concerned with the period of time where the

Failures can only be attributed to unusual conditions. Between

t, and 4 , the hazard Function is constant. IF the hazard

2-12

-" I 061".,

h~t)
I I
I I

Time

(ReF. Kapur and Lamberson 1977:22)

Figure 2.1 Hazard Function Over System Lifetime

function is given by

h(+.I= V

where 0 is a constant, the functions For failure density and

reliability can be found. Eq. (2.22) can be used to find the

reliability Function.

t

eXISM 4 = ex(t(2.25)
0

and Eq. (2.22) can be used to find the p.d.F. for failures.

P-)(9(2.26)

Thus, the assumption of a constant hazard function implies an

exponential density function for system failures.

That completes our discussion of the exponential failure

distribution and how it relates to the cases we wish to study.

We now turn our attention to the data collected for the samples

2-13i1I

to be compared.

Type II Censoring

Actual data of the Failures in a population of systems often

comes with restrictions that make the analysis more difficult.

It is rare that the failure time is known for every member of the

population, or, even, for every member of the sample.

'Censoring' occurs when the exact failure times are known only

For a portion of the population. Right censoring is the case

when, for a portion of the population, it is known only that they

did not fail before a certain time. Right censoring is very

common in failure, or lifetime, analysis.

One Form of right censoring is called Type II censoring. A

Type II censored sample is one in which only the r smallest

Failure times are recorded in a random sample of n items. The

value of r is determined before the test is begun. All n items

are tested simultaneously, but the test is terminated when the

first r items have failed. The probability density function of

the samples with known failure times can be computed by

Qn,

- .. (2.27)

where f(t) is the p.d.F For each member of the sample that failed

at time +-L and is the reliability function for the

remaining (n - r) members of the population.

If the members of the sample have an exponential Failure

distribution, Eq. (2.1), with the reliability Function of Eq.

,2-14
'p

I

(2.25), Eq. (2.27) becomes

9r

(r-r xpSl/ (a1. + (rh)](2.28)

which is the Joint probability density function of all the

members of the sample.

Now, we can state a theorem about the total testing time for

all the members of a type II censored sample.

Theorem 2.7: Let T be the total time on test defined as

r
=I

T]> ~~ 4- (n -r) tr (2.29)

where the tLj are distributed exponentially with p.d.F.'s of

Eq. (2.1) for i - 1.. .r. Then T is a random variable whose

distribution is G ,@)

Proof: Let t6 *...r be the first r ordered observations of a

random sample of size n from an exponential distribution

described by Eq. (2.1). Then we can show that the quantities W

for i - 1,2.. .r, defined by

'vi (2.30)

For i 2.. .r, are i.i.d., also with p.d.f. (2.1).
r

Let =,Iw Then the Jacobian is given by

2-15

(W>W'r)(2.31)__ (n-r)

So,

(b,.. r) # ,..fr) n, - (2.32)

r

r Ce-2P (2.33)

-H - (2.34)

Therefore, the are i.i.d. E" P(e), which implies that their

sum, T-' (r').

In this chapter we have described the exponential Failure

distribution and discussed its importance in the study of complex

systems or systems demonstrating a constant hazard Function. We

have defined the reliability function and demonstrated how a

comparison of system reliabilities may be accomplished by a

comparison of the underlying Failure distribution Functions. In

-v. limiting our study to the exponential case, we can directly

relate a comparison of the MTBF For a system to its reliability.

We have also defined the type II censored sample and shown,

by using relationships between several related distributions,

that the total time on test, for such a sample, is a random

variable with a Gamma distribution defined by the number of

Failures, r, and the MTBF of those Failures.

2-16
.4i

We are now ready to define the likelihood ratio test for

comparing the MTBF's of several type II censored samples from

populations with exponential failure distributions. This test

statistic is presented in the next chapter.

.

p,

2-1

9. s' % p.~

Chapter III

The Test Statistic and Its Moments

As we suggested in the first chapter, there are many cases

where we must determine if different samples could have been

taken from the same population. Generally, this is done by

comparing the values of specific parameters of the population's

distribution (e.g. mean, variance, or both). The value oF the

parameter is estimated From the data for each sample and then

compared to an estimate of the same parameter For the entire

population. OF course, to make these estimates comparable, we

must assume that all the sample populations have the same

*.- underlying distribution. We are assuming an exponential Failure

distribution For all sample populations.

In this chapter, we define the test statistic For the null

hypothesis that the samples have equal means. Then we derive the

moments of the statistic. In the next chapters, we will develop

the density Functions that can be used to compute significance

points of the test statistic.

Likelihood Ratio Test

One method commonly used For testing composite hypotheses is

the Likelihood Patio Test (LPT). As the name suggests, this is a

ratio of the two likelihood Functions. We can define this more

precisely as Follows.

First, we define the likelihood function of the sample. Let

ti.. , be the failure times of a sample of size n. Then the

3-1

9

likelihood function that the set of failures, t, has occurred

given the MTBF for the underlying distribution, L (), is

defined by

n

TF (3. 1)

where is the p.d.F. of tk For i - 1,2 ... ,n.

Now, let D be a parametric space of dimension p. Suppose

that PO is the null hypothesis that a collection of parameters

GO(Q,)Z,... p) are allowed to take values in a region within 0.

U0 : - (3.2)
/

when D D. Under the alternative hypothesis,4 ,, the parameters

are allowed to take values is some other region DI, such that

I:" 0 F- DI (3.3)

where D= DoU .

As we allow the parameters to vary over the region DO there

is some point, or set of points, where the likelihood Function

takes its maximum value for the particular sample X,fl1Q.XL (XG)

-' If the parameters are allowed to range over the entire space D,

then

M .3.

3-2

*1t

The ratio LX-X) where

L (x --
D(

is called the likelihood ratio criterion fo- testing "o against

V.4,. Our test of versus , ill be to reject A. when

L (x \ "-
:3.6)

where the constant C is chosen such that P L(x)eC\'0] = X

where X< is the desired level of significance (Ref. Blake

1979:309). For example, if the level of significance is 0.05,

* then there is a five percent probability that the tested

hypothesis will be rejected when it is actually true. In other:.4.

words, a five percent chance of mistakenly saying the rTBF's of

the samples are not the same.

A: Our objective is to obtain the cumulative distribution

function of the likelihood ratio, in a computational form, so

that the value of C can be found for any level of significance,

number of samples or number of failures. The first step is to

define, precisely, the likelihood ratio criteria for multiple

samples.

Derivation of the LRT for Testing p Exponential Distributions

Suppose that there are p exponential distributions as shown

in Figure 3.1. Each has an exponential failure distribution

Function as defined by Eq. (2.1). Now, select a sample of size

n[from each population. The samples are not, necessarily, of

V'1i 3-3

2:

'a * •" *-

population 1 ... population i ... population p

EX P(G, Ex P ((C) E(X (0

,,t(, ji() to(.')

tt (r,

Figure 3.1. Samples From Several Exponential Populations

the same size. Failure data is collected for each sample as

described For type II censored samples. Let

be the Failure times oF the first r" items in the i-th sample.

Let the total test time for each sample be

.((rn- r) ,(3.)3)

For i-i ... p. Then (0- bW Theorem 2.7. Now, we

shall state a theorem defining the likelihood ratio criterion for

testing the hypothesis that all the populations have the same

MTBF against the general alternative. Then, we will Find the

moments oF the test criteria to prepare for the derivation of the

cumulative distribution Function.

3-"4

Theorem 3.1: The likelihood ratio criterion for testing

W in.G -0 .. ° P 09

For p exponential distributions, against the general alternative

is given by

,-, .T, (Tv/r
'A (3.10)

where and the L5 are deFined by Eq. (3.8).

ProoF: We know that the joint p.d.F. of LL(')€ C.2)

is given by

fit (3.11)

For the i-th sample. So, the combined likelihood is

L (x;O ,o,...oe P (3.12)

where

" rlLj

iK
LZI

Under the null hypothesis I, we have O -O for all i, where 0

is unknown. So, the likelihood Function under W is given by

3-5

L T'e- (3.13)

We then estimate 0 bW maximizing the likelihood.
P

Let IR% r. Then

LI (OR x P

By taking the natural log

In L~~;)(3.15)

Taking the derivative

~P

(X (3.16)

and setting this equal to zero the maximum For is Found

at

_v C3.17)

Under the unrestricted model, we know that the maximum likelihood

estimator oF G is

A

Q0 = -[r- (3.18)

L

For the i-th sample (ReF. Trivedi 1982:483).

So, if we substitute our value For Q From Eq. (3.17) into Eq.

(3.13) we get

3-6

mOXL (x;,> k \Txp (3.19)
1 01

and

i ,-,, x L O ×< -- xp
D. IT (3.20)

where K is defined by Eq. (3.13). For the unrestricted case, we
A

substitute For GL From Eq. (3.18) into Eq. (3.12) giving

e r.>/T-L rL(3.21)

e x ip(3.22)
Lai L

and, again, K is defined by Eq. (3.13). So, the likelihood ratio

From Eq. (3.20) and Eq. (3.22) is given by

or

9 A

IIL=% 'R

when and I@- .

3-7

Derivation of the h-th moment oF the Statistic

With the test statistic defined by Theorem 3.1, we now wish

to find its moments which will be used in the next chapter to

obtain the density function and the cumulative distribution of

the test statistic. We begin by stating a theorem.

Theorem 3.2: The h-th moment of the statistic defined by Theorem

3.1 when WO is true is

Pr ? -hr.E , (R-) _T _ " 0_ (3.25)

Proof: The h-th moment of the statistic in Eq. (3.10) is

RI 9.,. T '"' OL

F where P(i h p.d.f, of T For justification of the

operation in Eq. (3.27), see StekloFf (Ref. 131) and Wilks (Ref.

l1967). Now, define

',r+

_eT (3.27)

3-8~

I. i C L T C (3.29)

10

Recall From Eq. (3.8) that TrL)Q),. So, Eq. (2.3) can be

used as the p.d.F. oF the test times and Eq. (3.29) takes the

Form

S(- L~ 0- L.X (3.30)

Then

-L (3.31)

I SorEq. 3.33 (3.32)

po

i r

Which simplifies to

.,,: " ((_ ' ~ .[-V(. .

(o-)= TV T' T (333)

L.-I

Under the null hpothesis we have Ofor all 1 1,2... p.

So, Eq. (3.33) can be simplified to

-. IT F'((m.011
(11(0-

(3.3 4)

p 3-9

16

Q9 (3.35)

where and
9-S

Now, we pause to consider the derivatives of (_o0).

i -0

fd0- r (3.36)

1) 0-(3.37)

Using Eqs.(3.39) and (3.35) in Eq. (3.27) we have

=t (3 .38)

So,

, 03.33-10

.o

|

is the h-th moment of the statistic given by Eq. (3.10). This

proves the theorem.

In the following chapters we will use the moments of the

statistic to derive the probability density Function and then the

exact and asymtotic forms For the C.D.F. of the test statistic.

,1

p

.

3-11

Chapter IV

Exact Distribution of the Statistic

In the previous chapter, we defined the test statistic for

comparing the MTBF's of several populations, with exponential

distributions, by a ratio of likelihoods. In order to apply this

statistic it is necessary to know the probability distribution

for its values and have a cumulative distribution function from

which we can compute the expected value of the statistic for a

given probability.

In this chapter, we obtain the cumulative distribution

Function of the test statistic in a computational Form. The

inverse Mellin Transform is used to obtain the probability

distribution from the moment Function that was derived in the

last chapter. Then the asymtotic expansion of the Gamma function

is used to obtain a computable Form of the cumulative

distribution function of the statistic.

Lemmas

The following results are needed For the derivations

presented later in this chapter.

Lemma 4 L.: (Ref. Anderson 9S58:20) The following expansion for

the natural log of the Gamma Function holds:

'7--

,..
--9:× a

0 -(-hv5I-

where ~Rr.X) is the remainder, such that \Q(.xwA- C-I,'rl for

some constant C independent of x. 8r(V is the Bernoulli

Polynomial of degree r and order unity defined by

-exp) .2)

The First three polynomials are

B, ()= - - lt

. Lemma 4.2: (Ref. Kalinin and Shalaevskii 1971) Let the

asymtotic series , X converge to the function g(x) in the

neighborhood of x -0 (or be its asymtotic expansion when

x - 6). We then have

e X XO.3)

where the coefficients satisfy the recurrence relation

and

4-2

Lemma 4.3: (Ref. Norlund 1916, Nair 1940) Let C)'. E(x) be

the moment function of a random variable X with density function

FCx). If (=((O-) with the real part of t tending to

infinity, then C(t has the Following exact representation as a

factorial series:

where a is a constant.

Derivation of the Probability Functions

Now, we are ready to state our goal and derive the C.D.F. of

the statistic.

Theorem 4.1: Let L Then the cumulative distribution

Function of L is given by

where

-- I

9

also

4-3' N i.' .<..'.::<.:o2. ...;'...:: .: ..P.-I - .. /.;' ..: ; .: ¢>......; ..

Proof: Replacing h by ph/R in Eq. (3.26) it Follows that

E (L-% (Lt. .6)

Let so that I.K=\.

Then we have, From Eq. (q.6),

F(0

Using the inverse rellin TransForm, the density Function of L is

given by

bV 4

DeFine in= -S , where S is a convergence factor chosen later.

So, we have

Now, define t:rn4 +, so that - , and From Eq. (L.9) we

have

-

,, CxC- *. 10_) o

C.- Leo

or

~Y Z~L

where

Using Lemmas Li.1 and 4.2 we have

+(N. 12)

where V -

and the coefficients are determined by

_L
rrr

with = .
19

19

and the Ar coefficients are given by|P

for r >

4-S

Then Eq. (4.12) shows that

_(Lt (.13)

with the real part of t tending to infinity. Therefore, by Lemma

'.3, LAJ can be expressed as a Factoral series:

.

where a is a convergence factor chosen such that

giving O = 0-V (see Appendix A). Also,

with and

r

D.~~ D.-

with . ' 1 and

Using Eq. (4.19) in Eq. (4.13), we integrate the series term by.'
term (since a factoral series is uniformly convergent in a half

plane (Ref. Doetsch 1971)), giving

'1-6

,,,,,

where

1P L

js -

Now, choose such that A, = in Eq. (4.10).

This gives us

P k

(see Appendix A). The C.D.F. can now be obtained From Eq. ('.11)

by integrating.

l-0

I_.

Rx/\ + Cl (M+k (. 17)

CI ("+C,+ Vi +7

where K is defined by Eq. (4.1S) and Jk)is the Incomplete

Beta Function with parameters p and q, defined by

1..(, 9-)

where ./.)is the Beta Function.

We now have a computable Form of the C.D.F. for the

statistic L. This will allow us to directly determine the

4-7

probability that the value of the statistic is less than or equal

to a given value when the tested hypothesis, W is true. In

the next chapter, we will derive an asymtotic form of this

distribution that will be useful in computations where the

numbers of samples and failures are high.

,4-8

Chapter U i

Asymtotic Expansion of the Exact Distribution

In Chapter 3, we defined a test statistic for comparing

multiple samples from populations with exponential failure

distributions. The distribution Function, derived in Chapter ',

!. *. allows us to directly compute the probability that the statistic

is less than or equal to a given value when the r1TBF's of the

populations are, in fact, equal. In cases where the number of

samples or Failures are large, it is useful to have an alternate

method of calculating the cumulative probability. Ideally, this

method would provide a more efficient calculation method and

asytotically approach the exact value of the probability for

larger parameter values.

In this chapter we obtain the asymtotic expansion of the

test statistic, L . This asWmtotic Form of the distribution

m ris valid for moderately large sample sizes (total number of

Failures above 100).

Lemmas

As in the derivation of the exact distribution, the

definition of a lemma will help to simplify the derivation oF the

asymtotic expansion. The major step in the derivation of the

asymtotic form of the C.D.F. is the expansion of a ratio of Gamma

functions. Lemmas q.1 and 4.2 can combined to form the following

lemma.

Va%
, 5-1

.4

Lemma 5.1: (ReF. Nagarsenker and Nagarsenker 19B':359) It

follows immediately From Lemmas 4.1 and 4.2 that the Following

expansion For the ratio of two Gamma Functions holds:

Sr~ (SM)

where the coeFFicients Ck r satisFW the Following recurrence

relation:

and

Derivation of the Asymtotic Expansion

In proving the Following theorem we expand Gamma Functions

=- Found in the distribution Eq. (4.5).

Theorem 5.1: The asymtotic expansion of the distribution oF L,
,.4

in terms oF m increasing, is given by

Fmx !7 o(y~~aA (5r C.2)
rV' m

where

V

5-2

1l

P

ILL=)-]/ -) , M , , .P
. 1o z

as were stated For the exact Form of the C.D.F. in Theorem ',I.

In addition,

r

Sr

and

Tr

where Ar is defined in Eq. (4.12) and ry- is defined by Eq.

(. 1).

Proof: Using Lemma 4.l on the definition of K in Eq. (4.5) we

obtain

+ (5.3)

when is chosen so that -0. This results in the same value

For S (Eq. (5.2)) that was necessary to make A,= in the

previous chapter,Eq. (4.16) (see Appendix A). Also, the Tr

coefficients are related to the Ar coefficients of Eq. (4.12) by

We can now use Lemma 5.1 in Eq. (5.3) to obtain

5-3

1ei

Fm + +~ L2- ' V__O

which can easily be expressed in the Form given in Eq. (5.3).

The Following corollary to Theorem 5.1 can be used to

Further simpliFy the calculations when only two samples are

considered and the number oF Failures is the same in each sample.

Corollary 5.1: IF p-a and ,= /- . then the asymtotic

expansion oF the distribution becomes

Fk> ~C5.6)

and is precisely the same as the exact distribution oF L.

ProoF: First, when p= Theorems 4.1 and 5.1 give us

_P-i /
P - = -

(5.7)

and k, means that

-and

(5.10)

9,s-

In Theorem 5.1 (Eq. (5.2)), it can be shown that the

coefficients all become zero for these values. In Theorem 4.1

(Eq.(.5)), the values of R, become zero for i > 0 and both

Eqs. (4.5) and (5.2) then become

R)= TIX (Y+LV (5.11)

Thus, the corollary holds For two samples with equal numbers of

failures.

Now, we have a test itatistic (Theorem 3.1) and two methods

of calculating the cumulative probabilities For its value

(Theorems 4.1 and 5.1). Although these equations are more

complex that I would like to try on a slide rule, it would be

straight forward to apply these theorems to any number of samples

containing failure data, compute the value of the statistic,

and determine the probability that the statistic was less than or

equal to that value when the samples came from populations with

the same failure distributions.

In the next chapters, we will discuss the practical

application of these results to the types of problems described

in Chapter 1 and the development of supporting computer software

to provide solutions for the most general cases.

5-5

SChapter VI

Application of Results

In Chapter 1, several examples were given, of problems which

could be solved by analysis of failure data. In this chapter a

method for solving these problems is discussed. An approach For

the analysis is defined in the first section. Then, the

application of the theorems from Chapters 3, 4, and S are

discussed. The data and assumptions are examined and, Finally, a

sample problem is presented to demonstrate the application of the

mathematical results.

Approach to Solution

All the example problems from Chapter 1 may be solved in the

same way. The approach is, simply, to determine if samples taken

from each group could have come from the same distribution by

examining the expected MTBF of each sample.

In Chapter 2 it was shown that it is reasonable to assume

the underlying distribution oF failure times is exponential.

This exponential distribution can be defined by a single

parameter, the MTBF 'mean-time-between-failures).

Relationships were also presented among the characteristics

*of the exponential distribution, showing the reliability and

hazard functions are determined by the (lTBF. Then, all of the

example problems can be reduced to a comparison of MTBF's For

samoles of failure times From each situation under study. The

difference in TBF's can be translated to a difference in failure

6-1

)V k I& N

rate, reliability, or maintainability, by application of the

appropriate formula from Chapter 2.

The test criteria defined by Theorem 3.1 is only capable of

indicating whether a significant difference exists among the

samples tested. It cannot indicate the amount of difference or

the particular sample that varies from the others. It is

important to understand this limitation of the analysis.

Application of this work to Air Force systems will provide a

new tool for managers to analyze Failure data of complex systems.

Procedures are well documented for testing and verifying

reliability data for Air Force systems (Ref. IL-STD-781C). In

other words, a sample of Failure data may be used to esitmate the

MTBF For the system, or verify the projected MTBF given by the

system designers. However, there is no existing procedure to

directly compare several samples of Failure data. The theorems

presented in this work can be used to compare samples directly

and indicate the significance of the difference in the TBF's of

any number of samples.

Application of Theorems

There are three theorems that may be applied in this

analysis. Theorem 3.1 defines the test criteria and must be

applied to determine the value of LCX) for the samples being

considered. Computation of the criteria requires three pieces of

information For each sample; the number of items under test (n),

the number of items that Failed (r), and the failure times of

those items (tlk], k - 1.. .r). In the most general case, these

values will vary For each sample.

6-2

V 10

The other two necessary theorems may be applied through

tables or computed directly. Theorem 4.1 and Theorem 5.1 define

the cumulative distribution function of the test criteria in

exact and asymtotic forms, respectively. The cumulative

distribution function gives the probability that the test

criteria will be less than or equal to the given value. These

theorems may be used to generate tables for the simplest cases

Cas provided in Appendicies B and C), where the samples all

contain the same number of Failures.

The theorems may also be applied to specific cases where

tables are not usually available. The test criteria is

applicable to problems where several samples may contain

different number of Failures from test populations of different

sizes. Percentage point values for such specific cases cannot

generally be found in tables.

In any case, a level of significance must be selected to

determine the decision point for the test criteria. As stated in

Chapter 3, the hypothesis that the samples came from the same

distribuiton will be rejected when L(X) < C, where C is chosen so

the probability that L(X) < C, when the hypothesis is true, is

equal to the level of significance. Thus, if the level of

significance is small, the chance of mistakenly saying the

distributions are not equal is also small.

Assumptions and Data

There are both assumptions and data necessary for making

these calculations. It is always important to be certain that

6-3
'Q4

4.'j

the assumptions are valid and the data is appropriate before the

results of the analysis can be considered useful.

The only assumption made during the development of the

theorems was that the failure times are distributed

exponentially. This is a reasonable assumption based on works

referenced in Chapter 2.

Data used in the calculations is oF two types. First, there

is the collected Failure times oF the items under study. The

other data is the subjective data from which a decision point is

established for the calculations.

The theorems were developed for 'type II censored samples'

as described at the end of Chapter 2. This means that the

'sample' data necessary includes only the number of items under
.

test (n), the number oF items that failed before the test was

stopped (r:,, and the amount of time each 'Failed' item had been

operating when the failure occurred Ctlk3 For k - l...r). This

data is required for each population to be considered in the

analysis. Figure 3.1 shows a picture of this information For a

variable number of populations (p). Note that the size oF the

populations and their respective samples are not required to be

equal. It is also not necessary for the test durations to be the

same.

As discussed in the previous section, the level oF

significance needs to be defined to determine the value oF the

statistic at which the hypothesis should be rejected. This is a

subjective determination which may have a direct effect on the

reported result. In other words, if the statistic indicates that

4., the hypothesis should be rejected (the samples did not come from

. 6-4

the same distribution) and there is still a 0.1 probability that

the samples came from the same distribution, should it be

reported that they are the same or not? Management factors

should determine the allowable error.

Some assistance in making this Judgement can be obtained in

knowing the likelihood of the test criteria value being less than

or equal to the computed value when, in Fact, the sample

populations have the same failure distribution. This is obtained

by direct calculation of the C.D.F. using Theorems 4.1 or 5.1

with the sample and failure count data for the particular

situation.

When this technique is used with the normal calculation and

comparison of the test statistic, additional information about

the validity of the comparison is provided. For example, if the

test criteria indicates the hypothesis (that the samples have the

same MTBF) should be rejected and the C.D.F. value is large then

the test should be considered less reliable than when the C.D.F.

is smaller. Also, if the test criteria indicates that the

.1 *. samples have the same MTBF but the C.D.F. is small, the test maW,

again, be misleading. It is important to consider both values as

providing important information for the analysis of the data.

An Example Problem

To demonstrate the steps necessary in applying this

analysis, a sample problem is presented in the Following

paragraphs.

Suppose two manufactures are developing a new navigation

6-5

N

Able Company's Baker Company's
NC74 Navigation Computer B357 Navigation Computer

17 Test Units 17 Test Units

L Failures during test 4 Failures during test

Failure Times (Hours) Failure Times (Hours)

0.7 1.5
1.6 2.3
3.0 6.7
5.1 8.5

Figure 6.1. Failure Data for A-70 Navigation Computers

computer For use in the A-7D aircraft. Each manufacturer has

-. provided a number of production units tu be tested by the Air

Force. The number of units under test and the failure data is

provided in Figure 6.1. The problem is that each manufacturer

claims their units are more reliable that their competitors. It

must be decided if there is a significant difference in their

reliabilities. Since there are only two samples taken From

populations of equal sizes and each test is stopped after the
same number of failures have occurred, then, the test ratio can

be simplified to:

where and are the sums of the test times defined by Eq.

(3.8).

The level of significance is chosen to be 0.1 for this

example. Calculation of the statistic for the data of Figure 6.1

6-6

using Eq. (6.1) gives LCX) - 0.934432. Table B.1 in the appendix

shows that the decision point for these values is 0.698207, so

the hypothesis must be accepted at this level of significance.

In other words, the statistic indicates that the failure data may

have come from populations with the same exponential

distributions so, neither manufacturer's units are significantly

A better than the other.

If, as we mentioned earlier, the cumulative probability for

the statistic is calculated. The likelihood that the statistic

is less than or equal to 0.934432 when the samples come from

,-2 populations with the same failure distribution is found to be

0.475, or 47.5%. This large value reinforces our decision that

the samples may have come from populations with the same failure

distribution. In fact, we could have compared the data using a

level of significance as high as O.i7S and the statistic, still,

would indicated that the hypothesis should be accepted.

This procedure for analysis of sample data could be

implemented in a computer program that would only require the

operator to provide the data, in stored Files, and the level of

significance For the analysis. Such a program would only require

an implementation of the theorems presented and the steps

described for this simple example. However, to provide computer

support for the most general problem requires that we address

some additional prnblems.

General Problem Considerations

In the most general application of this work, it would be

6-7

,N. -'. .. " " '. ' -;',. - "- W, .',

useful to provide a computer system that supports all

necessary uses of the theorems. Not only should should we

provide a program which would compare the MTBF's of any number of

samples, of any size, but, we should also provide a method for

generating tables of percentage points, as given in Appendix B,

For the exact calculations, or Appendix C, for the asymtotic Form

of the function.

In a program designed to compute either table values or a

comparison of sample data, there are several things that must be

established for the program, and known by the user, for the

program to provide a useful solution. These qualifications

include the method of caluclation (exact or asymtotic), the

accuracy of the calculation, and the maximum number of samples

that may be compared (if any).

The accuracy of the results will depend on the number of

terms used to compute the probability using the Cumulative

Distribution Function of the statistic. Examination of the forms

For the mathematical solution of the C.D.F. indicates that, in

both the exact and asymtotic functions, there is a need to

establish a limit for the number of terms that will be included

when computing the probability. It is generally not practical to

compute an infinite number of values in a computer program. So,

in all the computer programs provided, the programmer or system

operator establish the number of terms to be used and, therefore,

the accuracy of the calculations.

Obviously, it would be possible to provide a program that

simply provides a solution to a given problem at a stated

accuracy. However, a computer system that supports a general

6-8

" ". 4* - " "

application of this analysis would be more useful because the

operator could tailor the system to his current needs and then

re-adjust the parameters to satisfy his future needs. Ideally,

this would not require as much work or expertise as the original

programming effort to design and implement the system. The next

chapter discusses the implementation of a software system to

P provide this type of computer support.

.,

.1£2

p-. -

- 4 " °. . . . u - '-°' ' ' " "" " " . . .- % • , % • ,

Chapter VII

V Programming Environments to Support Mathematical Tools

The development of a mathematical solution is generally not

an end in itself. To be practical, the solution must be made

into a usable algorithm for solving a problem. Obviously, the

,"4' algorithm should be tested and verified or proven to be correct.

Then the solution may be used in the study of other problems, or

to provide answers to specific questions within the solution

space of the original problem. All of these uses (testing,

continued development, and generation of data) may be provided

For if the algorithm is created within an appropriate environment

' " which supports these operations.
4 .

Providing a single environment for all of the algorithm's

users would increase the communication among the participants in

the problem's solution. Let's classify the users of the

aigorithm into two groups. 'Managers' have the questions which

must be solved by 'mathematicians' and the answer must be stated
'P

in a Form the manager can comprehend.

The manager is the originator of the problem which the

algorithm attempts to solve. He defines the problem and

determines the boundaries of the problem space and the solution

space. The manager is also the end-user of the algorithm which

solves the problem. Thus, the problem is originally stated by

1the manager and the solution must be usable and understandable to

him. If the problem is not solved in an environment known to the

manager. it must be translated into that Form before it is

.
~7-1

4.4.7) -, , " ,.,-, -LL" ..". .. ' , ... '..- " ,...- :, , • , , , ,".., . -... -. .' ""'...- , o ' m- '

useful. This is a step we wish to avoid.

The mathematician is the technician and must create an

algorithm for solving the problem. He must understand the

manager's problem in the form it is presented or translate it to

a domain where he can operate. His working environment must

provide for the application of standard mathematical techinques

with predictable results. He must be able to create algorithms

that not only provide a solution for the manager, but also may be

used as components of other problems, not Wet defined.

With the current trends towards standardization within

military computer systems, it is becomming more likely that the

managers and mathematicians described here will have access to

compatable computer systems. A common environment which supports

S the needs of both users could increase productivity by increasing

the communication, and thus the understanding, between these two

groups. Such an environment should be a living entity that

provides, for the mathematician, a place for new tools to be

created, modified and tested, and for the manager, a place to use

U." those tools and provide Feedback to their designer.

In general, the support provided by programming environments

is limited to text editors, languages, and file manipulation

routines that perform specific transformations (Ref. Barstow

1'8' :199-200, Taylor and Standish 1S85:302). General purpose

languages (e.g. Fortran, Pascal, C, etc.) contain only minimal

support For mathematics. The basic Functions of addition,

multiplication, division, subtraction and, sometimes,

exponentiation are available. More complex functions must be

provided by libraries of subroutines. Some of these libraries

7-2
I44 :, ' ? : .:.-;,. .i . ' ,./ z " %-

are extensive (e.g. IMSL) and contain routines that can be

applied in many cases. However, the most recent solutions to

mathematical problems are often not available in such libraries.

It may also be found that the language of choice may not have

access to the libraries that are needed. Computer support for

reliability and maintainability studies is hampered by all these

problems.

Environments and program libraries (such as, S, IMSL, and

BMDP) that provide statistical routines are, generally, limited

to fundamental statistical functions (e.g. t-tests, analysis of

variance and covariance, generation of histograms, etc.). These

functions may be combined to perform more complex work, but, only

BMDP provides a survival analysis Function (ReF. Dixon et al.

1983:S76, Francis 1981).

A system supporting statistical analysis should provide the

Features of a good operating system with enhancements to assist

in the special needs of the users. These enhancements are the

tools which will be developed and used in the environment. Other

features should include user-freindliness, use of common or

popular structures and organization, and the ability to grow and

change to meet new requirements. These features have made the

UNIX operating system one of the most popular in use today (Ref.

Kernigan and Mashey 1981:25)

Environment Definition

We will now define the goals For a Statistical Analysis

Environment (SAE). This environment is not intended to have all

7-3

the desirable Features oF such a system. It is only provided to

demonstrate how an existing operating system may be enhanced to

provide useFul tools For the design, development and use of

statistical algorithms.

The SAE should be designed to run in an established

operating system. An operating system that supports mathematical

and text manipulations is a necessary foundation For a successful

environment. The SAE should be an enhancement to the operating

system; not a restriction. The user should be able to select

From any of the tools offered by the operating system, as well as

those provided in the SAE.

The tools provided in the SAE should include an interpreter

or compiler OF some type, which would allow the user to write

programs to analyze data Files. A stored program system is

necessary to allow algorithms to be used repeatedly and modified

4. for varying needs or improvements. Mathematical theorems, such

as those developed in the previous chapters, may be applied in

many different ways to assist in solving problems in a large

domain. Providing a Fixed programmed solution to a particular

problem is not efficient use oF the effort required to produce

the mathematical theorem.

A syntatical editor should be incorporated in the system to

assist the user in writing valid programs. Such a specialized

editor is typical oF interactive programming environments like

i... Smalltalk, MENTOR, Interlisp and others (ReF. Winograd 1973:1-

16).

Useful information should be available to the user at all

times. Information about the proper use of available commands,

7-4

current status of the system or editor, and information about

errors committed in programming. 'Help' functions can provide

much of this information From stored text files (e.g. 'man' in

UNIX and 'help' in VMS).

The SAE system should be designed to be extensible in

several ways. The environment should allow the use of any new

programs that are provided for the resident operating system.

This would allow new tools to be created independently to perform

data handling, pre- and post-processing of data or results,

generation of information displays, real-time processing of
V

failure data or new methods of analysis.

Modifications should be allowed in the language to

incorporate new mathematical methods or improve those already in

use. The 'help' information data should be able to be modified

to incorporate corrections, improvements, and user tailored

information to personalize the system to the programmer's needs.

In fact, modifications should be allowed to all parts of the

environment program. This would allow the user a choice when new

tools or Features are needed. The SAE should be a living entity

that changes to meet the needs of its users.

An Example Environment

In the course of developing the software to apply the

mathematical theorems of chapters 3. 4 and 5, a minimal SAE

system has been created. To demonstrate the application of this

environment the Following paragraphs describe the use of the

qsystem to analyze Failure data in two seperate cases.

7-5

"- . .'-*.-S.,'-. .-

File: d2 File: d3 File: d4k

10 items tested 10 items tested 10 items tested

Failures at Failures at Failures at
305.19 75. 54 24.52
71.68 17.17 5.06
29.73 6.68 1.56
'±1.71 9.68 2.56
38.11 8.76 2.56
59. 45 14.11 Lt.04
96.36 23.34 7.11
32.30 7.32 1.77
32.28 7.32 1.77
24.62 S. 41 1.14

Figure 7.1. IMSL Data From Populations With Different MTBF's

The First case is the comparison of Failure data that has

been generated from known exponential distributions, using an

'IMSL' library function. Data was generated for MTBF's of 2, 3,

and L (see Figure 7.1) and is contained in files named 'd2', 'd3'

and 'd'±', respectively. We know what the results of the

comparison should be; that the samples did not come From

populations with the same Failure distribution. However, we will

perform the analysis to demonstrate how the system would indicate

this result.

Before we compare this data. we must use the environment to

create a program that will perform the analysis. There are three

or four parameters that must be assigned in the definition oF the

program, as we mentioned at the end of Chapter 6. The method of

calculation, e:<act or asymtotic. must be specified. The

accuracy of the result must be specified in the terms to be used

-p 7-6

...

in the calculations. Then the maximum number of samples to be

compared, needs to be stated. The last two parameters are

necessary to define the amount of storage needed by the program,

internally.

There is one more parameter that may be specified when the

program is defined, the level of significance. This is the

probability that the statistic will indicate that the samples do

not come from populations with the same failure distribution,

when in Fact, they do. It may be convenient to have a program

that always uses the same level of significance, such as, the

case where similar comparisons will be done several times on

different sets of data. The more general case will require that

the level of significance be entered by the user when the program

is run. The same data may, then, be tested at different levels

of significance by the same program.

These parameters are defined in the 'SAE' programming
4.,

language. The 'definition program' containing these commands is

then compiled, which creates the 'test program' which will

evaluate sample data in the way just specified. The program can

be used as often as necessary to compare any sets of data to

which the parameters of the program apply. The definition

program may also be modified at any time and used to create

another test program for evaluating sample data.

An example showing the use of the environment to analyze the

data of Figure 7.1 is shown in Figure 7.2. In the case shown,

the 'deFinition program' was previously created using a simple

text editor. The SAE system contains an editor which assists the

"V programmer by oroviding immediate compilation of the edited text

7-7

SAE > cat test.src
-- Test program
environment (maxterms - 7, method - asymtotic);
"test7" - irt (samples - 10);

SAE > mv test.src test7.src

SAE > c test7.src

SAE Compiler, Version 0.2

Compiling test7.src:

1 -- Test program
2 environment (maxterms - 15, method - exact);
3 "testlSe" - Irt (samples - 10);

Summary: 3 lines 0 error

SAE > testlSe dl d2 d3

Likelihood Ratio Test Program Version 2.0

Exact Method for calculating test criteria
Maximum number oF terms used: 15
10 Samples may be given
Level of significance will be requested later

Summary:
Test criteria from data files - 0.203618
Enter desired level of significance: 0.1

Probability that LRT value is less than or equal to 0.203618
when the sample populations have the same failure rate - 0.000

Reference point @ 0.100 Significance - 0.790246
Therefore:
... Samples CANNOT be assumed to have come from populations

with the same failure distributions

SAE >

Figure 7.2. Example Solution Using the SAE System

by the system compiler. The use of the SAE editor would make it

unnecessary to compile the 'definition program' after editing.

More details are given in Users Manual (Appendix E).

I7.

7-

In the example shown in Figure 7.2, the exact method was

used with a maximum of 15 terms in the calculations. The maximum

value of 10 samples is does not restrict the program to only be

used with exactly 10 samples but, allows the same test program to

analyze up to that number of sample Files. The final parameter,

-- level of significance, was not defined For the program, which

means that the test program will prompt the user to provide a

value each time it is run. The test program, 'testlSe', may be

used as often as necessary, where these parameters are adequate

For the analysis.

When 'testISe' is executed, the parameters have been

determined are displayed as a program header. In this case, the

maximum number of terms, the maximum number of samples, and the

method of calculation, are all provided for the user. The test

criteria is calculated and, because it was not specified when the

program was defined, the level of significance is requested From

the user.

At this point, the 'p-value' or 'probability value' is

computed For the test criteria value computed From the data

given. This is the probability that the test criteria value is

less than or equal to the given value when the populations do, in

Fact, have the same failure distribution. In other words, it is

the probability that the normal evaluation of the test criteria

would IMPROPERLY indicate that the samples were NOT from

populations with the same failure rates. If this value is less

than one tenth of a percent, then only zero will be given.

This 'p-value' is the switching point For the level of

7-9

significance. IF the level of significance requested is less

than or equal to the 'p-value' computed, then, the test program

will indicate that the samples 'cannot be assumed to have come

from populations with the same Failure distributions.' On the

other hand, if the level of significance is higher than the 'p-

value' the test will indicate that the samples 'may have come

From populations with the same Failure distribution.' The user

has the Freedom to select the value he desires and is given

complete knowledge about how the selection of the level of

significance will affect the results of the test.

When the level of significance was determined by the

programmer and cannot be changed For the test program being used,

the 'p-value' is, still, computed to show the relative value of

the decision made by the program. Thus, the user is always given

the information needed to properly interpret the program results.

In this way this environment has assisted the programmer to

use the method of analysis in the most general applications. The

programmer is restricted to the proper procedure for the analysis

4but not limited in the data he may analyze or the significance of

the results. It is the user's responsibility to only apply the

analysis where it is appropriate; to samples whose expected

failure distribution is exponential, where the data fits the

, p.definition of a type II censored sample.

The operation of the SAE system is described in more detail

in Appendix E. This system is not intended to be a complete

9-, environment, but only to demonstrate that an environment could be
'.

useful in the application of complex mathematical solutions For

data analysis. Recommendations For expansion of this concept and

7-10

...

Further development oF the theoretical work are presented in the

next chapter.

A:

N

N.m",i

In

-° 9

.Jm
.g .,
_1 *J

J,, ' ,;...,. ;- .- , . . " -. - -. - ". . . .

Chapter UIII

Summarg and Recommendations

Comparing the reliabilities of several complex syszems can

often be reduced to a comparison of their underlging failure

distr.b.tions. where these failure distributions are

exoonential, the comDarisor further reduces to examination of the

mea--time-bet.ee--failures (rITBF) for the systems. In 1953,

Eoste.n crc.-ided a procedure using a likelihood ratio test

statistic For -oOMDaring the ITBF of two exponential distributions

based c- samole failre data. The technique was limited to

zc-mar:-p o- , twc samoles containing exactlg the same number of

f a 1I.-'es.

This dissertaticr preserts the derivation of a likelihood

.atlc test citeria tl-at is apoiicable to multiple samples,

cc-tal-l-; a'-zst a-, -jmber of failures. The significant

-t71t-t- ;s :z=tai-ed i- tne derivation of the h-th moment of

the starst c P-ecrem 3.2 and the subsequent derivation of the

e :' --ec-e- i.- and asmtctlc Theorem 5.1' forms of the

" a: .. ." te azc 1latlcr if this work is discussed

e e-s. e-. a-z a z .c-ter scftare en'.,ironment has been created

-.- a s a 'rT a-'er tc eas~.i create programs which

a aractizaI manner. There are a

- - . -.- "' -:;t be ta.e- to extend the work done

- 8-.

. * , .- -. . .. <. . . • . . F . .-.. > ;t > -.' - *-.*-'.*** "'.'*>i~ (- ;

Statistical Package Implementation

An obvious suggestion concerning the implementation of the

test criteria would be to extend the environment to include an

existing library of programs (e.g. IMSL, BMDP, etc.) and allow

the user to incorporate these Functions into programs similar to

'table' and 'Irt'. It might be of more practical value, however,

to implement these test criteria in a Form that could be included

in an existing library or data base environment. As previously

mentioned in the text, survival analysis functions are generally

lacking in the statistical packages available now.

Automatic Programming Environments

The SAE provides a small level of automatic programming to

the user. The environment allows the user to define some

important characteristics of the program in a simple language.

This system limits the user's access to the details of the

analysis technique. However, it assists the user in applying the

procedure correctly by reducing his/her elements of concern to

those that directly affect the results of the test; the accuracy

of the result, the number of samples that may be compared, the

level of significance for the comparison, and the method of

"*'." calculation (the choice of exact or asymtotic C.D.F.).

' Once these parameters are identified, the SAE system

comciler uses the UNIX 'make' Facility to construct the program

-as reuested. The new program may then be used repeatedly to

I"8..ze different sets of data in exactly the same way. IF the

S- '-a ., destroyed or no longer of use, a new copy may be

8-2

'AO %** * * ~

created easily with the same or different characteristics.

Aoolicatior of new techniques From artificial ite.l;gerce

work mag helm to develop future sqstems with e'oanded

caaabilities in this area. Automatic orogramming techn'iques are

currently~ being used jn other areas to increase the sceed and

accuracy with which programs are created. The commle ng of the

tasK invoved In. programming will demand that the t.qoes of

programs created becomes more soecialized as the mower of the

automated techniques increase.

Improve the Processing Speed

A problem with the imalementation of these form-ias is that

they are deoendent on the creation of sev'eral sets of series

coefficients. This is a time consuming tasi . Mocre than half of

the execution time '68% average, based on 60 computations of 2 to

5 samples with from 3 to 100 failures per sample is spent on the

creation of the coefficient values. Of course, the number OF

terms requested For accuracg of the computations will affect this

'Stiming. But, For lower number of failures in each sample, more

terms are necessary for accuracy of the result. Consideration

should be giv.er to findirg a more efficient implementation of the

formulas than has been done here.

Parallel processing systems offer a definite possibilitW to

imoroving the speed of the caicuiations. The two dimensional

coefficients 'C' coold be computed irdemendent.g From the pq and

'A, coefficients in the current software imolementation these

coefficients are named 'Cjr, 'U', and 'Ar'. resoecti-eig. in the

software listings giver in rPhendi, F-. Zz'crre~'t processing of

8-3

j.AS P

these two distinct paths in the computation of the coefficients

would significantly reduce the processing time. Implementation

of these computations as concurrent 'tasks' on a multi-

tasi.ing'single-mrocessor system might also improve the speed of
-a,

* the computations, however, this would be more dependent upon the

operating system's task control parameters.

Parallel processing may also be applied to the system level

of the SAE by making the editing and interpreting concurrent

tasks. The SAE system editor currently calls the compiler to

evaluate a part of the text each time a modification is made to

any line in the editor. A compiler running concurrently with the

editor might improve characteristics of that tool. Usually, the

SAE programs are very small C3 or It lines) and, so, there is not

a lot of time to be gained in this area.

-.
. Application to Other Failure Distributions
-a

hIh~le all of the suggestions just made relate to the

computer programming aspects of this effort, that does not

diminish the usefulness of the mathematical work. The techniques

used to deri'.'e the h-th moment of the test criteria have been

available to mathematicians for a long time ,Ref. Steklof 1914,

Wilks 196'. Their application is this work should create some

interest to find other cases where they may be applied.

In particular. since this work considered the single

parameter ex<oonential distribution, the First step would be to

apply a similar approach to the case of the two parameter

e-,ponential Failure distribution. Dr. B. N. Nagarsenker, my

8-4

advisor in this work, is currently exploring this problem. If he

is successful, further work should include the examination of

distributions that are close1W related to the exponential.

8-S

Bibliography

Aho, Alfred U. and Jeffrey D. Ullman. The Theory of Parsing,
Translation, and Compiling, Uolume II: Compiling. Englewood
CliFFs, New Jersey: Prentice Hall, Inc., 1973.

Barr, Donald R. and Peter W. Zehna. Probability: Modeling
Uncertaintg. Reading, Massachusetts: Addison-Wesley Publishing
Co., 1983.

Barstow, David R. "A Display-Oriented Editor For INTERLISP,"
Interactive Programming Environments, edited by David R. Barstow,
Howard E. Shrobe, and Erik Sandewall, New York: McGraw-Hill Book
Co., 1SBk.

Barrett, William A. and John D. Couch. Compiler Construction:
TheorW and Practice. Chicago, Illinois: Science Research
Associates, Inc., 1979.

Blake, Ian F. An Introduction to Applied Probability. New York:
John Wiley & Sons, Inc., 1979.

Buxton, John N., and Larry E. DruFFel. "Rationale For STONEMAN,"
Fourth International Computer Software and Applications
Conference, 66-72, Chicago, Illinois: IEEE, 1960.

Department of the Air Force. Reliability and Maintainability
Program For Systems, Subsystems, Equipment, and Munitions, AFR
80-S/AFSC/ASD Sup 1, Washington: HO USAF,.

d' Department of Defense. Requirements For Reliability Program (For
Subsystems and Equipment), rIL-STD-785B, Washington: Government
Printing OFFice, 15 September 1980.

----- Reliability Tests Exponential Distribution, MIL-STD-781C,
Washington: Government Printing OFFice, 21 October 1977.

Dixon. W. J. et. al. ed. BMDP Statistical Software, Berkeley,
California: University of California Press, 1983.

Drenick. P. F. "The Failure Law of Complex Equipment," Society
For Industrial and Applied Mathematics, Uol 8, 680-690, 1960.

Epstein, B. "Statistical LiFe Test Acceptance Procedures,"
Technometrics. ,2:' L35-146. 1960.

------ "Truncated LiFe Tests in the 'Exponential Case," Ann.
Math. Stat., '25', 555-564. 155.

Epstein, B. and !1. Sobel. "Sequential Life Tests in the
Exponential Case," Ann. flath. Stat., '26) 82-93. 1955.

BIB-i

Bibliography (continued.

---- "Some Theorems Relevant to Life Testing From an
Exponential Distribution," Ann. (lath. Stat., '25) 373-381. 1954.

--. "LiFe Testing," J. Am. Stat. Assoc.. (48' 486-502, 1953.

Francis, Ivor. Statistical Software: A Comparative Review, New
York, N.Y.: Elsevier North Holland, Inc., 1981.

Govindarajulu, Z. "A Suplement to Mendenhall's Bibliography on
Life Testing and Related Topics," J. Am. Stat. Assoc., :59)

1231-1291, 1964.

Hogg, Robert V. and Allen T. Craig. Introduction to Mathematical
Statistics (Fourth Edition). New York: Macmillan Publishing
Co., Inc., 1978.

Johnson, N. L. and S. Kotz. Continuous Univariate Distributions,
Vols. 1 and 2. Boston, Massachusetts: Houghton Mifflin, 1970.

Kapur, K. C. and L. R. Lamberson. Reliabilitu in Encineerina
Design. New York: John Wiley & Sons, Inc., 1977.

Kernigan, Brian W., and John R. Mashey. "The UNIX Programming
Environment," Computer, l4:4 25-34 (April 1981).

Lawless, J. F. Statistical Models and Methods For Lifetime Data.
New York: John Wiley & Sons, Inc., 1982.

Lawton. David J. Asymtotic Expansions of the Distribution of
Test Statistics Associated with Several Two Parameter Exponential
Distributions. MS Thesis, MATH 8D-1, Engineering School, Air
Force Institute of Technology (AU), Wright-Patterson AFB OH,
December 1984.

Mendenhall, W. "A Bibliography on LiFe Testing and Related
Topics," Biometrika, 1:45) 521-543, 1958.

Nagarsenker, B. N. "On a Test of Equality of Several Exponential
Survival Distributions," Biometrika, 67 (2): 475-478, Great
Britain (January 1980).V>.

Nagarsenker, B. N. and P. B. Nagarsenker. "Distribution of LRT
for Testing the Equality of Several 2-Parameter Exponential
Distributions," IEEE Transactions on Reliability, 34 (1): 65-68
(April 1985).

------ "On a Test of Equality of Two-Parameter Exponential

Distributions," Statistics & Probability Letters, 2: 357-361,
North Holland: Elsevier Science Publishers B. V. (December
198't).

BIB-2

/ Bibliography .continued)

Nagarsenker. B. N. and J. Suniaga. "Distributions of a Class of
Statistics Useful in rultivariate Analysis," Journal of the
American Statistical Association, 'B 1382):472-4't5 (June 1983'1.

Stekloff. W. "Quelques Applications Nouvelles de la Theorie de
Fermeture au Problems de Representation Approchee des Functions
et au Problems des Moments." Memories de l'Academie Imperiale des
Sciences de St. Petersbourg. Vol XXXII. No. 4. 1914.

Subrahmaniam K. "On the Asymtotic Distributions of Some
Statistics Used For Testing Equality of Sums," The Annals of

& Statistics. 3 1.,: 916-925 1KJuly 19'5).

Sukhatme, P.U. "Tests of Significance for Samples of the X2
Population with Insulation Aging Tests," Ann. Eugen., ,8:' 52-56,
1937.

Trivedi. Kishor S. Probability and Statistics with Reliabilit.
Queuing, and Computer Science Applications. Englewood Cliffs,
New Jersey: Prentice-Hall, Inc.. 1982.

Wilks, Samuel S. "On the Distributions of Statistics in Samples
from a Normal Population of Two Variables with ratched Sampling
of One Variable," S.S. Wilke: Collected Papers Contributions to
Mathematical Statistics, T. W. Anderson, ed., New York: John
Wiley & Sons, Inc., 1967.

Winograd, Terry. "Beyond Programming Languages," Communications
of the ACM, 22:' 391-401 (July 1979).

------ "Breaking the Complexity Barrier (Again.," Proceedings of
the ACM SIGPLAN-SIGIR Interface Meeting on Programming Languages
- Information Retrieval. Gaithersburg, Maryland: ACM, 1973.

,- BIB-3

b

Appendix A

Calculation of Adjustment Factors

The purpose of this appendix is to show the calculation of

the convergence Factors defined in Chapters 4 and S. These

factors are delta (6) which is defined by

when making a substitution in Eq. (.B) For 2 and CL , which

is a constant necessary to apply Lemma 4.3 to Eq. (.12). The

*values of these Factors are calculated in the Following sections.

Calculation of Delta

Delta is an adjustment Factor defined, in Chapter 4, to set

A t (A.2)

where

Ar ' r j. I I CA.3)

from Eq. (4.12) where p is the number oF samples and kL is

the percentage of Failures contained in the i-th sample (Eq.

(C.5). Sr is the Bernoulli Polynomial of degree r and order

unity. The second polynomial is

,SA

A-

Now, can be written

a- L - JCA .S)

L

Setting the left-hand aide to zero and expanding the Bernoulli

PolWnomials to get

k~. I(A.6)
Computing the summation gives

-7 - CA.7)

and, then combining terms

,A.8)

p0

Since, p must have an integer value greater than 2, delta is

dunined by

as stated in Chapter 4.

In Chapter 5, the value oF delta depends on Tr . These

coefficients have a relationship to the Ar coefFicients oF

Chapter 4. In Fact,

CA.10)

A-2

as stated in Eq. (5.). It is obvious that the same value of

delta, as derived above, will satisFU the requirement that

as stated In Chapter 5. This value of delta will now be used to

calculate the required value for CL , the other convergence

factor used in Chapters 4 and 5.

Calculation of 0,

The value of 0L is chosen such that the coefficient R1 is

zero. The Q- coefficients are defined in Eq. (4.14) bU

k

where R, = and

rD ,r -= 2: k C... (A,._" ,. 13)

where DL0) I and

Also, from Eq. (.12)

r (A.15)

Sr Ir

.A-3

end

(A. 16)

The value of ' can be found from

where A1=0 from the discussion of delta in this appendix.

So, ir Rl(F is desired, then

which means

co ([a& i~f~v) A. 19)

Expending tho Bernoulli PolWnomials gives

0, 4. Y (0"'-J ?(G+ V)- (/ A. 20)

which reduces to

(=V CA.21)

or C 4..- as stated in Chapter 4.

Thus, the values oF the convergence factors a and (, have

, been calculated to meet the requirements speciFied in Chapters 4

and S.

A-4

Appendix B

Tables of Exact Computation of Statistic

This appendix contains percentage point tables generated

From application of the exact Form of the cumulative distribution

function (C.D.F.) oF the statistic. The tables were generated

using a maximum of 20 terms. Similar tables, containing the same

information can be generated by defining a 'table' program For

the SAE environment with the following commands:

environment (maxterms - 20, method - exact);
"table" - table (

samples - (2,6,1),
failures - (3,100,5),
alpha - (0.1, 0.05, 0.025, 0.01)

A more detailed explaination can be found in Appendix E.

The tables provide percentage points of the statistic L

which is Function of the statistic, lambda, given in Theorem 3.1.

The necessary equivalences are:

p = number of samples

r - number of Failures per sample

- likelihood ratio defined bW Theorem 3.1

R - total number of failed items C - pr)

The First five tables are For situations where the samples

have an equal number of failures. The last two tables are

pro ided to demonstrate the use of these theorems For cases where

B-1

the number of Failures is not the same For eac semp.e

Corresponding tables generated using the aswmtot ic e-evas.o"

of the exact C.D.F. are provided in Appendi' E

'4

'I.

i

4, "

K 9".

'B-2

Table B-i

Percentage Points oF
L - /

F or
T.c Samples with Equal Number oF Failures

Level oF Significance

r0 1 0.05 0.025 0.01 0.005

3 C.613-51 0.500527 0.4050L7 0.303874 0.2435S6
C.698207 0.600707 0.513780 0.415398 0.352607

5 C. -5228 0.668244 0.590'33 0.498895 0.438088
6 0.90694 0.716537 0.646769 0.562583 0.505173
7 0.818608 0.752684 0.689725 0.612381 0.558654
8 0.839978 0.780716 0.723487 0.652237 0.602059
9 0.856858 0.803074 0.750687 0.684790 0.637889
I0 0.8"0525 0.821313 0.773052 0.711846 0.667915
11 0.881814 0.B3E472 0.791757 0.734671 0.693414
:2 0.891295 0.849267 0.807629 0.754175 0.715323
13 0.899370 0.860209 0.821261 0.771027 0.734340

0906329 0.869674 0.633096 0.785731 0.750997
15 0.912390 0.877941 0.843466 0.798669 0.765703
16 0.917714i 0.885223 0.852626 0.8101L*1 0.770780
17 0.922429 0.891686 0.860775 0.820382 0.790483
18 0.926633 0.897461 0.868072 0.829577 0.801015
19 0.930405 0.902652 0.874644 0.837880 0.810543
20 0.933808 0.907343 0.880593 0. 85*1 0.819204
25 0.946814 0.925338 0.903500 0.874576 0.85286-
30 0.955550 0.937483 0.919039 0.894493 0.875981
35 0.961821 0.946230 0.930269 0.908956 0B9282-
40 0.966552 0.952831 0.938765 0.919935 C.90564t

4 5 0.970224 0.957988 0.95416 0.928552 C. 9:-
50 0.973176 0.962129 0.95075 0.935495 C 9F3BHb
55 0.975595 0.965527 0.955158 0.9i1208 C 9371-
60 0.977614 0.968366 0.958832 C.945993 C 93' ±

65 0.979325 0.970772 0.961949 0.95005-
70 0.980793 0.972839 0.964628 0.9535P ..-...
75 0.982066 0.974632 0.9669S± C9559- 4--.

80 0.983181 0.976204 0.968994 0 9s9?r-,
85 0.984165 0.977592 0.9-096 2
90 0.985040 0.978827 0.T'2 0C U
95 0.985824 0.979933 0.S-3B U

100 0.986530 0.980929 0.3 . ,

4."

e*.

-A182 686 RELIABILITY ANALYSIS BASED ON EXPONENTIAL FAILURE 2/3
DISTRIBUTIONS AND DEYEL (U) AIR FORCE INST OF TECH
MRIGHT-PATTERSON AFB OH SCHOOL OF ENGI K N COLE

NCLASSIFIED 19 DEC 86 AFIT/DS/ENG/86-86 F/G 12/3 NL

Illmlllllllll
ElllEEEEEllllI
ElllEEEEE~lllE
ElllEEEEEEEllE
ElEllEEEEIhEEE
llEEEEEEEElIEE

11.5 11111 .4 I

MICROC[OPY RESOLUTION IIST CHAR1

I -

L 136

IgI ,-

• ' - r ' " * ,MAO,'

Table B-2

Percentage Points of L -

for
Three Samples with Equal Number of Failures

I Level of Significance
Failures 1

r I 0.1 0.05 0.025 0.01 0.005

L 0.541845 0.454030 0.378431 0.297548 0.248114
5 0.61827S 0.535089 0.463141 0.382721 0.331341
6 0.671736 0.595989 0.528815 0.451535 0.400699
7 0.712246 0.643136 0.580754 0.507508 0.458322
8 0.743947 0.680606 0.622674 0.553611 0.506519
9 0.769405 0.711050 0.657134 0.592096 05LI7224
10 0.790286 0.736252 0.685921 0.624640 0.581956
11 0.807717 0.757443 0.710306 0.652175 0.611883
12 0.8M283 0.775505 0.731215 0.676533 0.637906
13 0.835150 0.791077 0.749334 0.697520 0.660723
14 0.846135 0.80L639 0.765182 0.715981 0.680878
is 0.855751 0.816555 0.779157 0.7323q0 0.698805
16 0.864238 0.827105 0.791571 0.746932 0.714847
17 0.871784 0.836512 0.802670 0.760028 0.72928
18 0.878536 0 .84951 0.812651 0.771843 0.742342
19 0.88614 0.852563 0.821675 0.782557 0.754208
20 0.890113 0.859465 0.829873 0.792314 0.76503B
25 0.911265 0.886130 0.861689 0.830*11 0.807509
30 0.925593 0.904298 0.883494 0.856726 0.837017
35 0.935938 0.917471 0.899367 0.875983 0.858699
40 0.943759 0.927457 0.911437 0.890683 0.875299
45 0.99B79 0.935289 0.920923 0.902271 0.888i12
50 0.954797 0.9L159L 0.928574 0.911639 0.899033
55 0.958837 0.946781 0.934876 0.919369 0.907809
60 0.962214 0.951121 0.940157 0.925856 0.915183
65 0.965079 0.954807 0.944645 0.931378 0.921465
70 0.967540 0.957977 0.9L8508 0.936134 0.926881
75 0.969677 0.960731 0.951866 0.940274 0.931599
80 0.971550 0.963146 0.95814 0.93910 0.935745
85 0.973205 0.965281 0.957421 0.947129 0.939417
90 0.974679 0.967183 0.959744 0.949999 0.942692
95 0.975998 0.968887 0.961827 0.952573 0.945632

100 0.977187 0.970422 0.963704 0.95I895 0.948285

B - t
%do

Table B-3

Percentage Points oF L =

For
Four Samples with Equal Number of Failures

• : Level of Significance

Failures I
r 1 0.1 0.05 0.025 0.01 0.005

S 0.521563 0.443317 0.378008 0.307225 0.263112
6 0.583391 0.509907 0.446843 0.376314 0.330959
7 0.631452 0.562920 0.502938 0.434348 0.389247
8 0.669762 0.605914 0.5L9209 0.483282 0.439209
9 0.700961 0.641390 0.587881 0.524868 0.482201
10 0.726835 0.671114 0.620610 0.560526 0.519426
11 0.748625 0.696353 0.648627 0.591373 0.551883
12 0.767219 0.718038 0.672859 0.618284 0.580382
13 0.783268 0.736860 0.694009 0.641944 0.60557*
14 0.797257 0.753347 0.712623 0.66289' 0.627984
is 0.809558 0.767903 0.729124 0.681565 0.648035
16 0.820457 0.780847 0.743849 0.698304 0.666072
17 0.830180 0.792431 0.757068 0.713390 0.682378
18 0.838907 0.802857 0.768998 0.727055 0.697187
19 0.846783 0.812290 0.779819 0.739487 0.710692
20 0.853927 0.82086 0.789676 0.79506 0.723057
25 0.881555 0.85t*197 0.82B184* 0.795506 0.771910
30 0.900403 0.877088 0.854802 0.826638 0.806181
35 0.914081 0.893774 0.874292 0.849565 0.831529
40 0.92457 0.906475 0.88917* 0.867147 0.851029
'15 0.932598 0.916*65 0.900909 0.88105 0.86691
50 0.939156 0.924528 0.910399 0.892329 0,879049
55 0.94*55l 0.931172 0.918231 0.90165 0.889451
60 0.949067 0.936741 0.924804 0.909493 0.898207
65 0.952903 0.941477 0.930400 0.916176 0.905679
70 0.956202 0.9'5553 0.935221 0.921940 0.912130
75 0.959070 0.9*9098 0.939317 0.926963 0.917755
80 0.96158 0.952211 0.943103 0.931378 0.922704
65 0.963808 0.954964 0.946367 0.935291 0.927091
90 0.965788 0.957'18 0.949276 0.938781 0.931008
95 0.967563 0.959618 0.951886 0.9%1915 0.934525
100 0.969163 0.961602 0.95*241 0.944743 0.937701

B 5
VS.

Table B-4

Percentage Points of L - 2
for

Five Samples with Equal Number of Failures

I Level of Significance
Failures I

r 1 0.1 0.05 0.025 0.01 0.005

6 0.511852 0.441912 0.383279 0.319062 0.278*68
7 0.564710 0.498157 0.'k1165 0.377245 0.335876
8 0.607562 0.544621 0.489861 0.427346 0.386169
9 0.6L2911 0.563499 0.531173 0.470611 0.430174

10 0.672523 0.616434 0.5665'8 0.508178 0.k68781
11 0.697665 0.64*648 0.597120 0.S41009 0.502802
12 0.719264 0.669066 0.623768 0.569892 0.532936
13 0.738010 0.690391 0.647180 0.595*64 0.559770
14 0.754428 0.709167 0.667858 0.618242 0.583789
15 0.768924 0.725819 0.686353 0.63867 0.605395
16 0.781813 0.7*0683 0.702891 0.657021 0.624922
17 0.793348 0.754032 0.717791 0.673647 0.642647
18 0.803730 0.766082 0.731282 0.688759 0.658803
19 0:813123 0.777015 0.743553 0.702550 0.673585
20 0.821661 0.786976 0.7S4760 0.715184 0.687157
25 0.85*8Lk8 0.825911 0.798802 0.765178 0.741138
30 0.877638 0.852842 0.829480 0.800317 0.779336
35 0.894251 0.872570 0.852061 0.826342 0.807755
40 0.906895 0.887640 0.869370 0.896381 0.829711
Lts 0.916840 0.89526 0.883059 0.862282 0.B47177
50 0.924867 0.909140 0.894154 0.875205 0.861401
55 0.931481 0.917076 0.903327 0.885914 0.873207
60 0.937026 0.923737 0.911039 0.894932 0.883162
65 0.941740 0.929409 0.917612 0.902631 0.891669
70 0.945798 0.934295 0.923281 0.909278 0.899022
75 0.949328 0.938549 0.928220 0.915077 0.905442
o80 0.95226 0.942286 0.932562 0.920180 0.911095

85 0.955167 0.9i5595 0.936409 0.924704 0.916110
90 0.957610 0.948544 0.939841 0.928743 0.920590
95 0.959800 0.951191 0.942922 0.932371 0.924616
100 0.961775 0.953579 0.945702 0.935648 0.928254

B - 6

Table B-5

Percentage Points of L - ,
for

Six Samples with Equal Number of Failures

I Level of Significance
Failures

r I 0.1 0.05 0.025 0.01 0.005

7 0.507662 0.443757 0.389965 0.330565 0.292616
8 0.553651 0.492349 0.439869 0.380822 0.34239S
9 0.592052 0.533547 0.482802 0.424873 0.386631
10 0.624529 0.568809 0.519973 0.463575 0.425918
11 0.652316 0.599270 0.552382 0.497720 0.460882
12 0.676338 0.62581 0.580839 0.527994 0.49210s
13 0.697299 0.649129 0.605993 0.55974 0.520098
ilt 0.715740 0.669758 0.628370 0.579140 0.5*5301
15 0.732085 0.688129 0.648392 0.600892 0.568085
16 0.746668 0.704590 0.666403 0.620561 0.588766
17 0.759756 0.719418 0.682686 0.638424 0.607611
18 0.771568 0.732843 0.697'75 0.65'713 0.624846
1 0.782279 0.7k5053 0.710962 0.669621 0.640661
20 0.79203S 0.7S6203 0.723310 0.683313 0.655221
25 0.83013 0.800013 0.772102 0.737816 0.713493

30 0.856470 0.830521 0.806334 0.776421 0.755058
35 0.875745 0.852973 0.831655 0.805162 0.786153
4*0 0.890462 0.870182 0.851135 0.827379 0.810273
LI5 0.902065 0.883790 0.866582 0.8'5060 0.82S20
50 0.911446 0.894818 0.879129 0.859463 0.845231
55 0.919189 0.903936 0.889522 0.871420 0.858297
60 0.925687 0.911601 0.898271 0.88150 0.869331
65 0.931219 0.918134 0.905737 0.890124 0.878774
70 0.935984 0.923768 0.912183 0.897576 0.886946
75 0.910132 0.928677 0.917804 0.904082 0.89086
80 0.943775 0.932992 0.922749 0.909811 0.900380
85 0.947000 0.936815 0.927133 0.914895 0.905967
90 0.949876 0.940226 0.931047 0.919437 0.910962
95 0.952*56 0.93287 0.934562 0.923519 0.915*53
100 0.951783 0.946050 0.937736 0.927208 0.919513

B-7
MI

Table 8-6

Percentage Points of L -

for
Two Samples with Unequal Number of Failures

Level of SigniFicance is 0.5

, -, uPercentage I Total Number oF Failures - R

of Failures
per Sample 1 10 20 60 100

0.50 0.50 0.66824365 0.82131333 0.93748256 0.96212923
0.45 0.55 0.66807749 0.82126096 0.93747601 0.96213015
0.40 0.60 0.66755956 0.82109744 0.93745503 0.96212238
0.35 0.65 0.66662578 0.82080144 0.93741700 0.96210830
0.30 0.70 0.665165B 0.82032925 0.93735617 0.96208578
0.25 0.75 0.66287789 0.81959629 0.93726135 0.96205065
0.20 0.80 0.6593*591 0.81843068 0.93710946 0.96199434
0.15 0.85 0.66355281 0.81643861 0.93684615 0.96189658
0.10 0.90 0.64306243 0.81251018 0.93630917 0.96169657
0.05 0.95 0.61368872 0.80204031 0.93471112 0.96109370

p.

ki

B -8

or , - - . - .. . - -. . . ,. . . . , - . -. - , , ..

Table 8-7

Percentage Points of L -A
for

Three Samples with Unequal Number of Failures
Level of Significance is 0.5

Percentage I Total Number of Failures - R
of Failures
per Sample 10 20 60 100

0.33 0.33 0.34 0.38374316 0.62865090 0.85946431 0.91350162
0.30 0.30 0.'I1 0.38321532 0.62842843 0.85942966 0.9134BB32
0.26 0.26 0.47 0.38187782 0.62786298 0.85934144 0.91345444
0.23 0.23 0.54 0.37969493 0.62693256 0.85919570 0.91339844
0.20 0.20 0.60 0.37647907 0.62554158 0.85897628 0.91331407
0.17 0.17 0.67 0.3718k652 0.62348715 0.85864841 0.91318784
0.13 0.13 0.7q 0.36509887 0.62035853 0.85813902 0.91299131
0.10 0.10 0.80 0.35502593 0.61525808 0.85727662 0.91265730
0.07 0.07 0.87 0.339L0541 0.60589024 0.85555703 0.91198531

8- 9

w v- . ", -' m ,, " A,

Appendix C

Tables of Asymtotic Expansion of Statistic

This appendix contains percentage point tables generated

From application of the asymtotic expansion of the cumulative

distribution function (C.D.F.) of the statistic. These tables

were generated using a maximum of 7 terms. Similar tables

containing this data can be generated bW defining a 'table'

program for the SAE environment with the Following commands:

environment (maxterms - 7, method - asymtotic);
"table" - table C

samples (2,6,1),
failures - (3,100,5),
alpha - (0.1, 0.05, 0.025, 0.01)

A more detailed explaination can be found in Appendix E.

The tables provide percentage points of the statistic L

which is function of the statistic, lambda, given in Theorem 3.1.

The necessary equivalences are:

L - P9

p - number of samples

r -number of Failures per sample

I likelihood ratio defined by Theorem 3.1

R - total number of failed items (- pr)

The five tables are for situations where the samples have an

equal number of Failures. Corresponding tables generated bW the

exact C.D.F. are provided in Appendix B.

C 1

0-~ -

Table C-1
Percentage Points oF L " ,..JIQ

for

Two Samples with Equal Number oF Failures

i Level oF SigniFicance
Failures I

r 1 0.1 0.05 0.025 0.01 0.005

Lj 0.698207 0.600706 0.513779 0.415398 0.35A2607

5 0.752728 0.668244 0.590*33 0.'8889 0.438088
6 0.790694 0.716537 0.646769 0.562583 0.505173
7 0.818608 0.75268 0.689725 0.612381 0.55865
8 0.839978 0.780716 0.723487 0.652237 0.602059
9 0.856858 0.803074 0.750687 0.684790 0.637889
10 0.870525 0.821313 0.773052 0.711846 0.667915
11 0.881814 0836472 0.791757 0.734671 0.693414
12 0.891295 0.849267 0.807629 0.754175 0.715323
13 0.899370 0.860209 0.821261 0.771027 0.73340
14 0.906329 0.869674 0.833096 0.785731 0.750997
15 0.912389 0.877941 0.843466 0.798669 0.765703
16 0.917714 0.885223 0.852626 0.810141 0.778780
17 0.922429 0.891686 0.860775 0.820381 0.790483
18 0.926633 0.897461 0.868072 0.829577 0.801015
19 0.930405 0.902652 0.874644 0.837880 0.810S43
20 0.933808 0.907343 0.880593 0.845k41 0.81920k
25 0.946814 0.925338 0.903500 0.874576 0.852867
30 0.955550 0.937483 0.919039 0.894493 0.875981

U- 35 0.961821 0.9'6230 0.930269 0.908956 0.892827
40 0.9665L2 0.952831 0.938765 0.919935 0.905647
Li5 0.970224 0.957988 0.945*16 0.928552 0.915730
50 0.973176 0.962129 0.95076* 0.935k95 0.923868
55 0.975595 0.965527 0.955158 0.941208 0.930572
60 0.977614 0.968366 0.958832 0.945993 0.936192
65 0.979325 0.970772 0.961949 0.950057 0.9*0971
70 0.980793 0.972839 0.964628 0.953552 0.9*508
75 0.982066 0.974632 0.966954 0.956591 0.9*8661
80 0.983181 0.976204 0.968994 0.959256 0.951800
85 0.98165 0.977592 0.970796 0.961613 0.954578
90 0.985040 0.978827 0.972400 0.963712 0.957054
95 0.985824 0.979933 0.973837 0.965594 0.959273

100 0.986530 0.980929 0.975132 0.967290 0.961275

C -2

Table C-2

Percentage Points of L - 2
for

Three Samples with Equal Number of Failures

I Level of Significance
Failures I

r 1 0.1 0.05 0.025 0.01 0.005

4 0.543618 0.452491 0.376639 0.295521 0.245982
5 0.617586 0.534185 0.462046 0.381413 0.329905
6 0.671310 0.595418 0.528105 0.450657 0.399710
7 0.711966 0.642754 0.580271 0.506895 0.457619
8 0.743753 0.680338 0.622330 0.553168 0.506004
9 0.769265 0.710856 0.656881 0.591769 0.546836

10 0.790182 0.736106 0.685730 0.624388 0.581658
11 0.807638 0.757331 0.710159 0.652278 0.611649
12 0.822421 0.775417 0.731099 0.676377 0.637719
13 0.835101 0.791007 0.749241 0.697394 0.660571
14 0.846095 0.804582 0.765106 0.715878 0.680753
15 0.855718 0.816508 0.779094 0.732254 0.698701
16 0.864211 0.827066 0.791518 0.746861 0.714760
17 0.871761 0.836479 0.802626 0.759967 0.729210
18 0.878517 0.844923 0.812614 0.771792 0.742279
19 0.88L597 0.852539 0.821643 0.782512 0.7S4154
20 0.890099 0.859444 0.829845 0.792276 0.76990
25 0.911258 0.886119 0.861674 0.830391 0.807'83
30 0.925588 0.904292 0.883486 0.856714 0.837002
35 0.935936 0.917466 0.899362 0.875976 0.858690

%0 0.93757 0.927454 0.911433 0.890678 0.875292
%5 0.949877 0.935287 0.920920 0.902267 0.888408

50 0.954796 0.9%1593 0.928572 0.911636 0.899030
55 0.958836 0.946780 0.934875 0.919367 0.907807
60 0.962213 0.951121 0.940156 0.925855 0.915181
65 0.965078 0.954807 0.944644 0.931376 0.921463
70 0.96750 0.957976 0.948507 0.936133 0.926880
75 0.969677 0.960730 0.951866 0.940273 0.931598
80 0.971550 0.963145 0.954813 0.943910 0.935744
85 0.973205 0.965281 0.957421 0.947129 0.939416
90 0.974678 0.967182 0.959744 0.949998 0.942692
95 0.975998 0.968886 0.961826 0.952572 0.945631
100 0.977187 0.970422 0.963705 0.95i896 0.948287

C -3

Table C-3

Percentage Points of L -
for

Four Samples with Equal Number of Failures

I Level of Significance
Failures I

r I 0.1 0.05 0.025 0.01 0.005

Lk 0.435576 0.353429 0.287789 0.220114 0.180040
5 0.519104 0.440349 0.374628 0.303447 0.259138
6 0.S81831 0.507968 0.444570 0.373675 0.328100
7 0.630404 0.561591 0.501349 0.432454 0.387154
8 0.669025 0.604967 0.548059 0.481885 0.437642
9 0.700425 0.640692 0.587024 0.523811 0.481002

10 0.726432 0.670585 0.619955 0.559708 0.518490
11 0.748315 0.695943 0.6'8116 0.590729 0.551140
12 0.766976 0.717714 0.672452 0.617768 0.579783
13 0.783073 0.736600 0.693681 0.641524 0.605085
14 0.797099 0.7S3134 0.712353 0.662548 0.627579
15 0.809'28 0.767727 0.728900 0.681277 0.647696
16 0.820348 0.780700 0.743662 0.698061 0.665785
17 0.830089 0.792307 0.756909 0.71318 0.68213
18 0.838829 0.802751 0.768863 0.726878 0.696978
19 0846717 0.812200 0.779702 0.739335 0.710511
20 0.853869 0.820787 0.789575 0.750713 0.722899
25 0.881525 0.85155 0.828130 0.795434 0.771824
30 0.900386 0.877063 0.85L770 0.826596 0.806130
35 0.914069 0.893758 0.874271 0.849538 0.831496
40 0.924449 0.906464 0.889160 0.867128 0.851006
45 0.932592 0.916457 0.900899 0.B81041 0.866474
so 0.939152 0.924522 0.910391 0.892319 0.879037
55 0.94458 0.931167 0.918225 0.901646 0.8894'2
60 0.949065 0.936738 0.92L800 0.909487 0.898200
65 0.952902 0.941474 0.930396 0.916171 0.905673
70 0.956201 0.945551 0.935218 0.921936 0.912125
75 0.959068 0.949097 0.939415 0.926959 0.917751
80 0.961583 0.952209 0.943101 0.931376 0.922701
85 0.963807 0.954963 0.946365 0.935289 0.927089
90 0.965788 0.957417 0.949275 0.938780 0.931005
95 0.967563 0.959617 0.951885 0.941913 0.934523
100 0.969163 0.961601 0.954241 0.944744 0.937704

C 4l

' %

Table C-4

Percentage Points of L -, PAZ
for

Five Samples with Equal Number of Failures

.'-" Level of Significance
Failures I

r 1 0.1 0.05 0.025 0.01 0.005

-t 0.351917 0.278926 0.222i34 0.165922 0.133342
5 0.440177 0.367031 0.307601 0.241799 0.206520
6 0.508*38 0.437878 0.378741 0.314022 0.273162
7 0.562373 0.495334 0.437919 0.373534 0.331883
8 0.605897 0.542576 0.87471 0.424558 0.383121
9 0.641685 0.581974 0.529368 0.46B471 0.*27808

- 10 0.671595 0.615267 0.565155 0.506505 0.466913
11 0.696946 0.643737 0.596023 0.539678 0.501304

" 12 0.718695 0.668342 0.622889 0.568817 0.531719
13 0.737553 0.689806 0.646466 0.594*58 0.558769
14 0.75*056 0.708687 0.667310 0.617513 0.582955
15 0.768616 0.725420 0.685863 0.638036 0.604694

-. 16 0.781556 0.740349 0.702478 0.656505 0.624327
17 0.793131 0.753749 0.717440 0.673207 0.612139
1s 0.8035*5 0.7658*1 0.730982 0.688380 0.658365
19 0.812964 0.776807 0.7*3294 0.702222 0.673205
20 0.82152q 0.786796 0.754536 0.71q899 0.686825
25 0.851775 0.62581 0.798681 0.765022 0.710956. 30 0.877595 0.852785 0.829408 0.800223 0.779225

35 0.89*223 0.872533 0.85201* 0.826281 0.807683
1*0 0.906876 0.887615 0.869339 0.846339 0.82966115 0.916627 0.899508 0.883036 0.862253 0.847142

50 0.924857 0.909127 0.694137 0.875183 0.861375
55 0.931474 0.917066 0.903315 0.865898 0.873187
60 0.937020 0.923730 0.911029 0.894919 0.863146
65 0.91736 0.929402 0.917604 0.902620 0.891657
70 0.95795 0.934290 0.923274 0.909270 0.899013
75 0.949325 0.938515 0.928215 0.915070 0.905434
80 0.952423 0.942283 0.932558 0.920174 0.911088
85 0.955165 0.9*5592 0.936406 0.92*699 0.916105
90 0.957608 0.94852 0.939838 0.926739 0.920586
95 0.959798 0.951169 0.942919 0.932368 0.924612

100 0.961774 0.953578 0.945701 0.935649 0.928258

.4.

p."

4 0 -

. .a'. ..-s

Table C-5

Percentage Points of L -
for

Six Samples with Equal Number of Failures
-4.

Level of Significance
Failures 1

r I 0.1 0.05 0.025 0.01 0.005

4 0.284224 0.220055 0.171781 0.12±820 0.098436
5 0.374293 0.307027 0.253589 0.198315 0.165258
6 0.445891 0.379186 0.324356 0.265428 0.228802
7 0.503523 0.438937 0.384585 0.324612 0.286343
8 0.550663 0.488808 0.*358q8 0.376272 0.337520
9 0.589829 0.530877 0.q79730 0.421337 0.382794

10 0.622833 0.566749 0.517578 0 .60782 0. 22857
11 0.650993 0.597649 0.550482 0.495580 0.'$8'07
12 0.675287 0.624517 0.579307 0.526173 0.'90079
13 0.696450 0.648076 0.604742 0.553474 0.518421
i4 0.71505 0.668890 0.627335 0.577891 0.543897
15 0.731509 0.687407 0.6L7526 0.599842 0.566900
16 0.746185 0.703982 0.665672 0.619670 0.587757
17 0.759348 0.718902 0.682063 0.637662 0.606745
18 0.771219 0.732401 0.696939 0.654055 0.624097
19 0.781978 0.744672 0.710499 0.669050 0.60010
20 0.791775 0.755872 0.722907 0.662815 0.654652
25 0.830001 0.799834 0.771883 0.737542 0.713177
30 0.856388 0.830415 0.806202 0.776255 0.754865
35 0.875692 0.852905 0.831570 0.80505 0.786027
40 0.890426 0.870135 0.851077 0.827305 0.810186
'*5 0.902039 0.883756 0.866541 0.845007 0.829457
50 0.911428 0.894793 0.879099 0.859423 0.845185
55 0.919175 0.903918 0.889499 0.871390 0.858261
60 0.925676 0.911587 0.898253 0.881481 0.869304
65 0.931210 0.918122 0.905722 0.890105 0.878752
70 0.935977 0.923759 0.912171 0.897561 0.886928
75 0.940126 0.928669 0.917794 0.904070 0.89072
80 0.943770 0.932986 0.922741 0.909801 0.900368
85 0.946996 0.936810 0.927127 0.914887 0.905957
90 0.949873 0.940221 0.931041 0.919430 0.910954
95 0.952453 0.943283 0.934557 0.923513 0.915446

4/. 100 0.95*781 0.946048 0.937734 0.927207 0.919517

C-B

Appendix 0

Language Syntax

This appendix contains a brief description of the language

* syntax that is supported by both the editor and compiler of the

Statistical Analysis Environment (SAE). The first section

contains a description of the language statements and their

various forms. Then tables of the reserved words and language

tokens are given and, Finally, the language syntax is defined in

a set of eighteen syntax rules.

Ne

2."

4-

°4.

"-S.-T

D-1

9.4. o ' ",, a
" " 'a "- **.. , p " . .< '..' .. " ./ . 2,- ' :.. -: aA- . ,-. .' . V ',- . ' ,,-, - - ---

Language sWntax discussion:

Environment definition statement:

ENVIRONMENT;
ENVIRONMENT (<environmentarguments>);

IF no argument is given, then defaults are used For all
elements oF the environment.

Multiple arguments are separated bW commas.

Environmentarguments:

MAXTERMS - n

Set the maximum number oF terms to be used in calculating
the values of the CDF. This is not necessarilW the number oF
terms that will be used ... that number is determined at runtime,
however, it cannot be greater than 'n'.

The default is MAXTERMS - 10.

METHOD - EXACT : ASYMTOTIC

Include the program modules necessarU For using the Exact or
AsWmtotic form For the CDF of the statistic.

The default is EXACT.

Program definition statement:

"<program_name>" - CTABLE 1 LRT) E(<argument_list>)];

This defines the program to be created. The <programname>
is the File name of the executable program created. This File
name is surrounded bW double quotes ("). The <argument-list>
defines the variables for the specific tUpe oF program to be
created.

* The TABLE generation program will create a table oF
percentage point values For the ranges given in the

* <argument._list>.
The LRT program will accept data File names at run-time,

then compute the test criteria and the percentage point necessaru
to determine whether the samples could have come From the same
distribution.

D-2

x %tiwM4

Argument list:

The following arguments may appear in the <argumentlist>
for a TABLE program:

SAMPLES - <integer> 1 RANGE (<start>, <stop>, E<increment>3)

The number of samples may be given as a single integer or a
range of values. A table will be generated for each number of
samples in the range.

The default is SAMPLES - 2.
The minimum number of samples is 2.
The default increment is 1.

FAILURES - <integer> I RANGE (<start>, <stop>, E<increment>])

The number of failures occurring in each sample may, also,
be given as a single value or a range. A line will be generated
in each table for each number of failures in the range.

The default is FAILURES - 3.
The minimum number of failures in each sample is SAMPLES+.
The default increment is 1.

ALPHA - <Fraction> (<Fraction>,<Fraction>,<Fraction>,<Fraction>)

The level of significance is represented by the value alpha.
Alpha is usually in the range from 0.15 to 0.005, however, any
values greater than zero and less than one (0 < alpha < 1) may be
used. From one to four values may be given for alpha, separated
by commas. A column will be generated in each table for each
value of alpha.

The default is ALPHA - 0.10.

.The Following values may be included in the definition of an
LRT program:

SAMPLES - <integer>

For the LRT program, the maximum number of samples must be
defined. This only means that any number of samples, up to the
maximum, can be used with the program at run-time.

The default is SAMPLES - 2.

ALPHA - <Fraction>

The level of significance is represented by the value of
alpha. IF no value is specified then the user will be prompted
to provide a value at run-time. The value may be in the range 0
< alpha < 1.

0-3

L.4

Comments:

-- <comment>

Comments begin with two dashes C'--.) and are terminated bw
the end of the line. The comments maw appear anuwhere on the
line, but all text to the right of the dashes is assumed to be
comment.

-s0,

. D1I?

. Y -s -

Table D-i

Language Reserved Words

Complete word Abbreviation

ALPHA AL
ASYMTOTIC AS

ENVIRONMENT EN
EXACT EX
FAILURES FA
LRT LR
MAXTERMS MA
METHOD ME
RANGE RA
SAMPLES SA
TABLE TA

Table D-2

Language Tokens

Symbol Description

EOL End of line
SIMICOL Semicolon
EQUALS Equal sign
LPAREN Left parenthesis
RPAREN Right parenthesis
COMMA Comma
INTEGER Integer value
FRACTION Fraction value (real)
FILENAME File name variable
RESUD Reserved words

|'

Syntax Rules Notation:

h::- definition
<.> non terminal element

' terminal element

[.] optional element (zero or one occurance)
C.) repeated element (one or more occurances)

I(.)] optional repeated element (zero or more occurances)
E all characters except the new line character
, or
C.) precedence determination
<EOL> end of line

Note: White space is ignored between elements.
Terminal elements are surrounded by single quotes.

Syntax Rules:

4. 1. <compilation unit> ::- <command>

2. <command> ::- <environment cmd> ';'

I <program cmd>
<comment _stmt>

*- : 3. <environment cmd> ::= 'ENUIRONMENT' ['C' C<env list>) ')']

L. <env list> ::- <env.arg> 1 <env list> ',' <env _arg>

S. <env.arg> ::- METHOD '-' ('EXACT' 1 'ASYITOTIC')
_ 'MAXTERMS' '-' <int>

6. <program cmd> :: '"'<Filename>'"' '-' <program deF>

7. <program deF> ::- 'TABLE' ['(' <table .list> ')' I

I 'LRT' E'C' <lrt list> ')f I

B. <table list> ::m <table arg> <table arg> , <table list>

. 9. <lrt .list> ::- <lrt. arg> : <lrt.arg> ',' <lrt list>

10. <table.arg> ::- 'SAMPLES' '-' (<int> 1 <range def>)
, 'FAILURES' 'm' (<int> : <range deF>)

'ALPHA' '-' <alpha list>

11. <Irt arg> ::m 'SAMPLES' 'm' <int>
- 'ALPHA' '-' <Fraction>

12. <alpha list> :: <Fraction> : <Fraction> ', ' <alpha list>

13. <range deF> ::= 'RANGE' '(' <int> ,' <int> ' ,' <int>])

0-B

14. <Filename> ::- 'CanW non-whitespace printing chars except ...2'

15. <int> ::- '1..9' [(<digit>)] '0'

16. <Fraction> ::- 'O'] '.' [<int>)]

17. <digit> ::- '0..9'

18. <comment stmt> :E:- '--' ['CE') <EOL>

!0-

I

.

_I

W-D-7

Appendix E

SAE Operating Manual

Introduction

The Statistical Analysis Environment (SAE) is a programming

environment created specifically to assist in performing

reliability analysis. The current capabilities of the system

pr ovide For the analysis of Failure data by determination of the

likelihood that several samples came from distributions with the

same mean-time-between-Failures (MTBF). The Following sections

describe the operation of the SAE.

.1

SAE Startup

To begin operation of the SAE system, the current directory

must contain the executable files 'sae' and 'sae.shell'. The

execution of the 'sae' program will print a header line and begin

running the shell program. Complete operation of the SAE

system's 'compiler' and 'help' Functions will require additional

Files and a specific directory structure (for details, see the

Following sections). The directory structure and Files are shown

in Figure E.1.

The system is designed to be run on the UNIX (trademark of

Bell Labs) operating system and was developed on the Berkley

Uersion 4.2 UNIX. Assuming the standard percent prompt From the

UNIX C-shell program, the SAE system operation begins like this:

E-I

,...

Current Working Directory

see

se.shell
math.make

Help Math

help.help defs.h
help.editor env.h
help.compiler table.h
help.exit lrt.h
help.table table.c
help.lrt lrt.c
editor.commands compute.c
editor.language prob.c

beta.c
coefs.c
bernpolW.c

Object

compute.0
* prob.o

beta.o
coeF5s.0
bernpoly.o

Figure E.l. SAE Directory Structure and Files

% sao

Welcome to the Statistical Analysis Environment

SAE >

When the prompt 'SAE >' appears the system is ready to accept

commands. In general, any valid UNIX command may be given.

However, there are some restrictions in calling programs which

conflict with SAE program names. These anomolies are discussed

in the following sections.

E-2

SAE Commands

There are only six SAE commands. These are, simply:

exit or quit - return to UNIX,
editor - run the SAE editor,
compile - run the SAE interpreter,
table - execute a program named 'table',
lrt - execute a program named 'Irt',
help or ? - run the SAE help system.

These commands may be given in any abbreviated form that does not

conflict with another SAE command. For example, the editor may

be called 'ed', 'edit', 'adi', or 'editor' but not 'e' because

that could not be descriminated from the exit command.

Standard UNIX commands may be given in the normal manner,

except in cases where their names would conflict with the name of

an SAE command. Then the UNIX command may be entered with a back

slash preceeding it. For example, '\ed' is the command necessary

to run the UNIX editor instead of the SAE editor.

There one other important restriction on the execution of

UNIX commands. The current working directory may not be changed.

The execution of any non-SAE command is done by starting a copy

of the UNIX C-shell program and executing the UNIX command within

that shell. Any changes to the working directory are not

exported to the SAE shell. This is necessary because the

locations of the 'Math' and 'Help' directories are important to

the proper operation of the SAE editor, compiler and help

functions.

E-

, ' E-3

.4

SAE Editor

The SAE editor is a small screen-oriented text editor For

creating SAE language programs. The editor may be entered with a

specific File to be edited. Example commands are:

SAE > ed <- no File to edit
SAE > editor textFile <- 'textfile' is edited
SAE > edit Help/help.me <- 'help.me' in the Help

directory is edited

The editor is limited to 15 lines of text to edit. A longer File

will be truncated when it is read into the editor. However, only

the edited version will be changed. The original File will not

be modified.

A backup File is always created when the edited File is

saved. The backup File is given the complete name of the edited

File, with the extension '.bak' appended to the end.

Commands within the editor are generally given by single

characters. The list of available commands will appear at the

bottom of the screen by pressing the 'H' key For help. A list of

reserved words and language statement formats will appear in the

same place in response to the 'L' key. Also, a display of the

editor's status may be seen by using the 'S' key. Pressing the

same key again will clear the bottom of the screen of any of

these displays. These and other editor commands are listed in

Table E.l. Many of these are similar to the commands of the UNIX

editor 'vi', although not as extensive.

There are Four secondary editor commands (see Table E.2).

These commands are speciFically For reading and writing

04

Table E. 1

Editor Commands

Command Description

i begin insert mode
a begin append mode
o insert a new line and begin insert mode
<ESC> end insert or append modes
r replace a character
dd delete a line
x delete a character
v erase and redraw the screen
22 save the editor contents and exit to SAE
C turn on/off the compiler
H turn on/off the help display
S turn on/oFF the status display
L turn on/off the language help display
: execute secondary editor command

information to and From the editor. The write command (':w

<Filename>') will write the entire contents of the editor to the

File named. IF no File is given in the 'write' command, the File

named previously (when the editor was started) will be used. The

current contents of the File are moved to a backup version.

The exit command (':e <Filename>') performs exactly as the

write command and then exits to the SAE shell. The quit command

(':q') leaves the editor without saving the contents.

The last secondary command For the editor is the read

command (':r <Filename>'). This will read the contents of the

given File into the editor at the line Following the current

cursor position.

The compiler can be used with the editor to advise the user

when proper commands have been created. Upon entering the

editor, the compiler is turned oFF. To start the compiler, press

E-5
I
.1

Table E.2

Secondary Editor Commands

Command Description

w write edited text to a File
r read text from a File to editor
q quit the editor without saving contents
e save the editor contents and exit to SAE

the 'C'. On the right side of the screen, a single character

will give the status of each line of text. There are three

possible values; a period '.' indicates a valid language

statement, a dash '-' indicates a partial statement with no

errors, and the letter 'E' indicates an error. If the status

-display is turned on (press 'S') the error message will appear at

the bottom oF the screen For the line at the current cursor

position. If the 'C' is pressed again, the compiler will be

turned off and the right side of the screen will be blanked. The

compiler error messages and status characters are summarized in

Table E.3.

IF the compiler is on at the time the editor contents are

written to a File (with the ':e', ':w' or '22' commands) then the

program will be executed as if the File were compiled outside the

editor. IF the compiler is turned off, the File will only be

Vstored as text.

N

SAE Compiler

Outside the SAE editor, the SAE compiler may be run on any

E-6

.N.

Table E.3

Compiler Error Messages

Not compiled
UALID
VALID - Incomplete line
ERROR - Non-specific
ERROR - Invalid character
ERROR - Expected Filename or ENVIRONMENT
ERROR - Expected semicolon or left paren
ERROR - Expected comma or right paren
ERROR - Expected semicolon at end of command
ERROR - Expected argument (see language help)
ERROR - Expected equal sign
ERROR - Expected integer
ERROR - Expected TABLE or LRT
ERROR - Expected Fraction
ERROR - Expected integer or RANGE
ERROR - Expected left paren
ERROR - Expected right paren
ERROR - Expected comma
ERROR - Invalid integer or Fraction
ERROR - Invalid File name
ERROR - Invalid word in source

-p

text File by giving the command "compile <Filename>". The File

will be interpreted exactly the same as if it were in the editor.

V alid statements will be executed and invalid statements will

generate error messages (see Table E.3). The contents of the

source File will be written back to the standard output device

with error messages Following the line in which they occurred.

The file output will be Followed by a summary stating the number
4 ..

of lines read and the number of errors that were Found. IF there

are no errors, the statements will be executed.

The result of execution will be a program. There are two

types of programs that may be generated by the system. First, a

'table' program can be used to generate a table of percentage

E-7

I

point values For applying the statistic developed in this

dissertation. This table maw be used to evaluate a number of

samples to determine if they may have come from the same

distribution. The table values are only For cases where there

are exactly the same number of failures recorded For each sample.

A single percentage point will be computed by the program For

each specific case of three values; the number of samples, the

number of Failures in each sample, and the level of significance

(alpha).

The second type of program (Irt) will accept faliure date

"1 and compute the specific percentage point needed. Then the

program will make a statement on whether the samples may have

come from the same distribution, based on the given level of

significance. This program will operate interactively, accepting

failure data From disk-Files and prompting the user for

*. information that is not provided.

Specific information on the execution of the 'Irt' and

'table' programs is provided in the Following sections. Here we

are concerned with the creation of the programs by the compiler.

The compiler statements provide For the input of value defaults

and ranges that determine the operating features of the resulting

programs. There are only three types of statements that are

acceptable to the compiler; comment statements, environment

statements and program statements. The general forms for these

statements are given in Table E.i.

Comment statements may appear at any place in the program.

They begin with two consecutive dashes '--' and are terminated bW

the end of the line. Comment lines are ignored by the compiler

E-B

Table E. 4

SAE Compiler Statements

-- A comment <CR>

Comments are terminated by the end of the
line and may appear at any point in the line.

environment (maxterms - n, method - (exactlasymt));

J Environment statement may appear only once
in the program. Parentheses are necessary
if either argument is present. 'n' must
be a positive integer.
Defaults: maxterms - 10, method - exact.

1 "File-name" - table (samples - Cn 1 rangeCnl,n2,n3)),
failures - Cn 1rangecnl,n2,n3)),
alpha - rl, r2, r3, r4);

Table program definition may contain three
arguments. 'n' must be a positive integer.
'r' must be a positive fraction less than

.4 one. 'nl' is the starting value. 'n2' is
the ending value. 'n3' is the increment.
Defaults: samples - 2, Failures - 5,

alpha - 0.10, n3 - 1.

"File-name" - Irt (samples - n, alpha - r);

Lrt program definition may contain two
arguments. 'n' must be a positive integer.
'r' must be a positive fraction less than
one.
Defaults: samples - 2, alpha - 0.10.

and are not passed on to the resulting program in any way.

Environment statements begin with the reserved word

'environment' and define two important features of the 'Irt' and

'table' program. The First Feature is the method uned to compute

the COF of the test criteria, either exactly or asymtotically.

The mathematical implications will not be discussed here.

E-9

However, there are some simple considerations. IF there are only

two samples to be compared, the exact method is calculated

slightly faster, but, there is no significant difference in the

values produced by either method. IF there are more than two

samples and the number oF Failures in each sample is large

(greater than 50), the asymtotic method is more efficient.

The second Feature determined by the environment statement

is the maximum number of terms used in the calculations For

either method. For only two samples, this number is not used in

the calculations. However, for more than two samples the number

oF terms necessary For the same accuracy is inversely

proportional to the number oF failures in each sample. That is,

more terms are necessary when Fewer Failures have occurred in

each sample. More than twenty terms are necessary for the most

general use (e.g. generating tables with a wide range of values).

Ten terms are sufficient if the number of Failures remains above

about 40 in each sample. In general, the asymtotic method

requires Fewer terms, usually about half, For the same accuracy

as the exact method.

The program statements are used to create 'table' and 'Irt'

programs. The statement is an assignment of a program

description to a File name (see Table E.4). The program is

identified by the reserved words 'table' and 'lrt' and the

definition is completed by the specification of the argument

values; samples (the number of samples to be compared), Failures

(the number oF Failures in each sample) and alpha (the level oF

significance for the percentage point).

E-10

Table E.5

SAE Compiler Reserved Words

Reserved Word Abbreviation

ALPHA AL
ASYMTOTIC AS
ENUIRONMENT EN
EXACT EX
FAILURES FA
LRT LR
MAXTERMS MA
METHOD ME
RANGE RA
SAMPLES SA
TABLE TA

The 'Failures' argument is not allowed in the definition of

an 'lrt' program because the number of Failures is taken directly

From the data Files that are read during program execution.

Also, there can only be one value assigned to 'samples' and

'alpha' (the level of significance).

The value of 'samples' in the 'Irt' program is not very

important. It is only the maximum number of samples that may be

processed by the program. For example, if the maximum is set to

10, any number of samples (From 2 to 10) may be compared by the

program. The value oF 'alpha' is, also, not absolutely necessary

to the statement. IF 'alpha' is not set in the 'irt' program

definition, the program will prompt the user For a value during

operation. More details of the 'Irt' program's operation are

given in a later section.

In the 'table' program definition, each of the arguments may

be assigned more than one value. The 'range' can be specified

E-11

.' .

For the 'samples' and 'Failures' arguments by specifing the

values of initial-value, maximum-value, and incremental-value, as

shown in Table E.4. The level of significance ('alpha') may have

up to Four values (separated by commas). A table will be

. generated by the program For each distinct value of 'samples'.

There will be a column in each table For each value of 'alpha'

-and a row For each value of 'Failures'.

It is important to remember that the environment may be

defined only once in every program. However, a valid SAE program

may contain many 'table' and 'lrt' definition statements.

Abbreviations may be used For any of the reserved words

listed in Table E.5. The compiler does not descriminate between

capital and small letters in reserved words. So, 'Exact' would

be accepted as well as 'eXaCt' For the same word. This is not

true For File names given within the required quotes. Any

printing characters, except blanks, may legally appear in a File

V name. It may be helpful to read the next two sections on the

operation of the 'table' and 'lrt' programs before beginning to

use the compiler.

SAE Table

The SAE table command will execute a program named 'table'.

In general, this is not very useful, because most table

generation programs created by using the SAE will not be named

'table'. The command is included more to provide easy access to

a 'help' information File on the use of the table programs

created by the compiler and their default argument values.

E-12

Table generation programs will execute with no user inputs

w. and generate the tables specified in the 'table' definition

statement used to create the program. The table will appear at

the standard UNIX output which may be re-directed using standard

C-shell Features (e.g. '>' and '>>').

SAE Irt

The SAE lrt command is, mostly, Just for reference to an

appropriate 'help' File. Like the table command, a file named

'lrt' will be executed. However, unlike the table programs, user

input is usually necessary. There are three important features

of 'lrt' programs for the user to know. First, if the level of

significance was set when the program was created, then it cannot

be changed while the program is running. If it was omitted in

the definition statement, the program will prompt the user for a

value during each execution. There is no default value for

'alpha'.

Second, the names of the data files must be provided to the

program. There must be one data file for each sample. The names

may be given in the calling statement for the program or the

program will prompt the user. For example, 'lrt datal data2',

'lrt data3 data2 datal' and 'lrt' are all valid program calls.

Only in the last case will the program prompt the user for data

Files.

The third important point is the organization of the data

files. Each data File is expected to contain a list oF Failure

times for the sample. These may appear in any acceptable UNIX

format for real numbers (e.g. 1.2, 0.5, l.3E2, etc.). There is,

E-13n94

however, one more value that is needed; the sample size. That

is, the number of items under test in the sample, not the number

of failures (which can be calculated From the size oF the data

File). The sample size is expected to be an integer value given

as the First entry in the data File. IF this is not true For the

data files to be used, the program can prompt the user. The file

name must be prefixed with a dash ('-') to tell the program that

the sample size is not included in the data file. For example,

the command 'lrt -datal data2 -data3' would indicate that only

the second data File contains the sample size within the File.

The user would be prompted to supply the sample sizes For the

First and third Files when they are read.

The 'lrt' program outputs the computed value For the test

criteria, the percentage point at the given level of

significance, and a statement indicating the decision indicated

.- by the values computed. As with the 'table' program, these

values are sent to the UNIX standard output device.

SAE Help

The SAE help command is provided to allow the user easy

access to an organized system of information Files. The command

is given as 'help <argument>' where <argument> is the name of the

subject disired. The question mark CM) may be used in place of

the command name 'help'. Examples of help commands are:

SAE > he exit <- exit information
SAE > ? <- general help information
SAE > ? editor.commands <- list 'Help/editor.commands'
SAE > help c <- compiler information

E-14
.4-

The arguments may be SAE command names or specific File

names in the Help directory. SAE command names maw be given in

the same manner as would be accepted by the SAE shell parser.

For example, 'h ed' would get information about the SAE editor

and 'h c' would provide the compiler's description. IF the

argument is not a valid SAE command, the help program searches

'a For a File with the name 'Help/xxx' where 'xxx' was the argument

given in the command, as in 'help xxx'.

All help-information Files are expected to be Found in a

directory named 'Help' in the current working directory. Files

are then named in two parts. First, the name of the program that

is intended to read them is given. This is Followed by a period

and some indication of the specific information contained in the

File. For example, a File with information about the SAE editor

For use with the system help command would be named

'help.editor'. So, a File with editor command information For

use by the editor would be named 'editor.cmds'.

IF there are no arguments given in the help command, then

the First lines of all Files referenced by the UNIX path name

S. 'Help/help.'' are displayed. These Files are intended to be used

_.9 For describing SAE commands and the First line contains the name
"'p.

of the command and an indication of its usage. IF more Files are

,.' added to the Help directory, they should Follow this Format.

- Expansion oF the SAE System

The SAE system is designed to be extensible is several ways.

This allows the user a choice when new tools or features are

E-15

-. . , --- aa-o.z'-& ;:' 4

needed.

The shell of the environment allows any UNIX programs to be

executed, even command lists. This allows the user to create

programs outside the SAE environment using any tools that are

available within the UNIX system.

Programs may also be made an explicit part of the SAE by

modifying the SAE-shell programs to properly handle the program

name according to the SAE conventions. This will not restrict

the use of the program to the SAE, but only make calling the

0 program easier (only enough of the program name to make it unique

V. need be entered For SAE commands).

The final method for adding a program to the SAE involves

modification of the programs that are linked together and loaded

'."*' as the SAE, such as the editor and the shell, itself. This will

increase the speed of execution but, obviously, increase the size

of the SAE program. For small Functions that may be used often,

this proceedure should be considered. Another drawback to this

method is that program cannot be used when the SAE is not loaded.

Limitations of the SAE Environment

There are only a few limitations within the SAE environment.

The most important is that the current working directory cannot

, be changed. This was done to make it easier to find the help-

information Files which are stored in a sub-directory. This

means that each directory in which the SAE is used can have it's

own help-inFormation, tailored to the needs of the user. Other

methods could have been used but this was simple and does not

seriously restrict the user while giving the ability to modify

E1

E-16

help Files.

Another limitation of the SAE is also one of its strengths.

That is, the ability of the programmers to modify almost

everything about the environment can lead to destruction of the

system. The environment's integrity is dependent upon the users

adhering to good programming practices and obeying common sense

regarding the protection of valuable programs and information.

-SAE Programs

The next appendix of this dissertation contains listings of

the programs that make up the SAE. Copies of these programs may

also be obtained from the author or by contacting the AFIT School

of Engineering, Wright-Patterson Air Force Base, Dayton, Ohio,

4k5433.

Sample Operation of the SAE

The remaining pages of this appendix contain an example of

the use of the SAE system. As mentioned in the first section

'SAE Startup', the first command to the UNIX system is 'sae' to

. begin operation of the SAE shell program. Comments to explain

the commands being used are boxed to keep them seperate from the

normal output. All user commands are underlined to make the

system responses obvious.

It should also be mentioned that this example does not

contain a demonstration of the SAE editor. It was not practical

to show the editor displays in this type of listing. Instead,

- the SAE language program was created beforehand, using another

UNIX system editor. Operation of the editor is explained in

detail in other sections of this appendix and the displays are

'p 4E-1

• " " " "" ' ,', , "v ".'-"%'. "-'. ' - - .". - .' . .< ". . .." .". -. ".Z,--.,' v - ". . -"- ."

seif-explanitorW during operation.

E-18

r) '.A -JzL

Script started on Tue Nov 18 11:42:11 1986

I starting the SAE I
+---------------------------

Welcome to the Statistical Analysis Environment - Version 1.2

SAE > h ---------------------------
SAE Help command, Version 2.0 1 SAE help command called I

I with no argument
Command Description + ---------------------------

compile SAE Language Compiler.. 'compile [file]'

editor SAE Syntatical Editor.. 'edit EFile]'

exit SAE Exit command.. 'exit' or 'quit'

help Help information is displayed.. 'help Ecmd]'

table 'table' is a compiler program statement

SAE > ? h ------------------------- +

SAE Help command, Version 2.0 1 information on 'help' 1
------------------------- +

help Help information is displayed.. 'help [cmd]'

The 'help' command selectively displays the information in e
'Help' subdirectory of the current working directory.

With no specified 'command', the first line of each help-information
file is displayed. This should give a list of commands and simple
descriptions.

If a 'command' name is given, then the entire file named 'help.command'
is displayed. For example 'help help' will display this file.

Any unique abbrevation of the command name may be given.
The back-slash '\' may be used to escape From this shell's parser and
execute a UNIX command with the same name Ceg. the editor 'ex' can
be run by using '\ex').

SAE > help compi ---------------------------- +
SAE Help command, Version 2.0 1 information on 'compile' I

compile SAE Language Compiler.. 'compile [File]'

Run the compiler on a source file.
Compiler will echo the lines of the file and indicate any errors

after each line.
A summary of the number of lines compiled and errors found will be

printed at the end of the File listing.
The commands in the file will be executed if there are no errors.

E-19

. .-

1UNIX commands may be called ...

I e.g. 'man', 'is', any aliases or script commands, etc.
Fl+--

SAE > is -R
Functions Help Math Source b720.1 b720.2
b720.3 dl d2 d3 datal data2
direct math.make sae sae.shell tablelO.src testl~e
testl5e.srC

Help:
editor .commands editor .reserved help .compiler
help.editor help.editor.commands help.exit
help.help help.lrt help.table

Math:
Object Output asymt.lOO bernpoly.c beta.c

S.coef's.c compute.c def's.h env.h env.sav
lrt.c lrt.h makefile prob.c table.c
table.h

Math/Object:
*bernpoly.o beta.o coef's.o compute.o prob.o

Source:
Object Version cp.compile.c cp.err.c
cp.token.c ed.cmd.c ed.disp.c ed.E'unctions.c
ed.help.c ed.misc.c ed.table.c makefile
sae.compile.c sae.edit.c sae.h sae.help.c
sae.main.c sae.parser.c sae.shell.c status.h
tokens.h window.h

Source/Object:
cp.compile.o cp.err.o cp.token.o ed.cmd.o
ed.disp.o ed.Functions.o ed.help.o ed.misc.o
ed.motion.o ed.table.o sae.compile.o sae.edit.o

Vsae.help.o sae.parser~o

Source/Version:
sae .shell

--

1an SAE program has been created containing a comment
Iand two statements defining a program For comparing
up to ten samples

--

SAE > cat test.src
-- Test program
environment (maxterms - 15, method - exact);
"testiSe" - lrt (samples - 10);

SAE > my test~src testlSe.src

E-20

SAE > c testl5e.src - - - - - - - - - - - - - - -
: compile the SAE program to :

SAE Compiler, Version 0.2 1 create the executable UNIX I
i program 'testlSe' I

Compiling testlSe.src: ------------------------------

I -- Test program
2 environment (maxterms - 15, method - exact);
3 "testl5e" - irt (samples - 10);

Summary: 3 lines 0 error

SAE > cat datal data2 + ---------------------------
17 I data Files From example :
0.7 1 given in Chapter 6 i
1.6 --------------------------- +
3.0
5.1

17
A' 1.5

2.3
6.7
8.5

SAE > testl5e datal data2 1 run the program on the data I
+---4

Likelihood Ratio Test Program Version 2.0

Exact Method for calculating test criteria
Maximum number of terms used: 15
10 Samples may be given
Level of signifidance will be requested later

Summary:
Test criteria from data Files - 0.934432
Enter desired level of significance: 0.1

Probability that LRT value is less than or equal to 0.934432
when the sample populations have the same Failure rate - 0.475

Reference point @ 0.100 Significance - 0.6980-
Therefore:

.. Samples MAY have come from populations with the same
failure distributions.

--

1 Results indicate that at that level of significance the 1
I samples may have the same MTBF's. Also, notice the
: probability value of 0.'17S. This is the level of
1 significance at which the test would have switched its i
1 indicated result. Sometimes this is called the
I 'p-value' For the statistic and this data.

4 ---

i

E-21

, ' ' ,i-., Z~~-t J -% " - ' - -" -" -" ' ' ' ' - '

4 -- -

I Now, we will test a more realistic set of data. The
data Files named 'b720' contain Failure data From i

I Boeing 720 airconditioning systems compiled during a i
I study by Proschan in 1963. Since, all three samples I
I are from the same population of systems, we would i
expect that they have the same Failure distribution. I

1 Note that there are diFFerent numbers of Failures and
I sample sizes in these data Files.

--- +

SAE > cat b720.*
27 sample size

Failure times
1 k 11 16 18 18 24 31 39 46 51 54 63 68

23 sample size

Failure times
7 9 14 16 16 22 31 34 34 36 37 57 58 62 65

29 sample size

Failure times
10 14 20 23 24 25 26 29 44 4q S 56 60 61

SAE > testl5e

Likelihood Ratio Test Program Uersion 2.0

Exact Method For calculating test criteria
Maximum number of terms used: 15
10 Samples may be given
Level of significance will be requested later

Enter File name of First sample: b720.1
Enter File name of next sample: b720.2
Enter File name of next sample: b720.3
Enter File name of next sample:

Summary:
Test criteria From data Files - 0.958349
Enter desired level of significance: 0.5

Probability that LRT value is less than or equal to 0.S58359
when the sample populations have the same Failure rate - 0.5S9

Reference point @ 0.500 Significance - 0.95207
* Therefore:
*: .. Samples MAY have come From populations with the same

Failure distributions.

E-22

* SAE > testlSe b720.1 b720.2 b720.3

Likelihood Ratio Test Program Version 2.0

Exact Method For calculating test criteria
Maximum number of terms used: 1S
10 Samples may be given
Level of significance will be requested later

Summary:
Test criteria from data files = 0.958349
Enter desired level of significance: 0.6

Probability that LRT value is less than or equal to 0.958349
when the sample populations have the same failure rate - 0.549

Reference point @ 0.600 Significance - 0.964449
Therefore:

Samples CANNOT be assumed to have come from populations
with the same Failure distributions

--

: The test was run twice, at different significance
I levels, only to indicate that the results can be forced 1
: to accept or reject the hypothesis by level selected. i
-- 4

--

1 The last portion of this demonstration is the use of'
1 the table generating Feature of the system. For I
I simple cases, where the sample size and number of i
: Failures are equal, tables can be useful for applying I
I the test where the computer program cannot be run.

SAE > cat tablelO.src
-- Test program
en (maxterms - 10, method - asymtotic);
"tablelO" - ta

(samples - range(2,4,1),
failures - range(3,10,1),
alpha - (0.1, 0.05, 0.025));

4.. SAE > tablelO

SAE Table Generation Program Version 2.0

Asymtotic Method is used in calculating the test criteria
10 Terms used

E-23

Percentage points of L - lambda to the power of (p/R)
p - 2 samples
R - 2 x (number of Failures in each sample)

Level of Significance
Failures 0.100 0.050 0.025
per sample

3 0.615765 0.0'4265 0.411661

L 0.699068 0.602382 0.516920

5 0.753169 0.669122 0.592130
6 0.790948 0.717051 0.647779
7 0.818767 0.753009 0.690372
8 0.840085 0.780935 0.723924
9 0.856933 0.803227 0.750995
10 0.870579 0.821425 0.773278

Percentage points of L - lambda to the power of (p/R)
p - 3 samples
R - 3 x (number of failures in each sample)

F uLevel of Significance
Failures 0.100 0.050 0.025
per sample

4 0.545448 0.455703 0.382178
5 0.618568 0.535975 0.465266
6 0.671892 0.596504 0.530110
'7 0.712338 0.643458 0.581593
18 0.744004 0.680819 0.623244
9 0.769443 0.711198 0.657537

10 0.790312 0.736358 0.686216

Percentage points of L - lambda to the power of (p/R)
p - 4 samples

R - 4 x (number of failures in each sample)

Level of Significance

Failures 0.100 0.050 0.025
per sample

5 0.520677 0.443047 0.379236
6 0.582797 0.509675 0.447580
7 0.631036 0.562729 0.5034i01
8 0.669460 0.605760 0.549511
9 0.700735 0.641265 0.s88086
10 0.726662 0.671012 0.620753

SAE > exit

E-2

04

Appendix F

Program Listings

This appendix contains the program listings For the SAE

system. The First pages contain a summary oF the program Files

and their contents. Next, Figures F.l and F.2 show the

relationships among the SAE Files and the Math Files

respectively. Finally, the program listings are presented.

F-

",

• .

F- 1

SAE Programs List

File Name Contents/Modules

make~ile UNIX makeFile For the SAE programs
*sae.h definitions common to all SAE programs

status.h definitions of compiler status values
tokens.h definitions oF language reserved words and tokens
window.h definitions of direct screen manipulation functions
sae.main.c main (sae)
sae.shell.c main (sae.shell)
sae.help.c help
sae.edit.c edit
sae.compile.c compile

cpline
cp.token.c token

ckword
readnumber
readfi lename

cp.compile.c cparse
setoutputon
setoutputoFf

cp.err.c errtext
sae parser c parser

parseck
ed.disp.c initdisplay

readydisplaW
reFreshdisp
switchdisplaW
ckdisplaW
updatedisplaW
switchcFlag

ed.help.c inithelp
switchhelp

* switch lang
* readhelp

refreshhel p
ckhelp

ed.table.c cklocy
cklocx
length
tabnewlime
tabdeletelime
lastline
inittable
writetext
readtext
tableread
tablewrite
compileline
compileall
clearcompi le

F-2

ed.cmd.c cmdcmd
cmdinit
cmdprint

ed.misc.c motion
getkeW
motioninit
mvcursor
ederror

ed.Functions.c edappend
edinsert
edinsertln
eddelline
eddelchar
edreplacechar
edwrite
edread
edredraw
edinit
edexit
edcommand

Math Programs List (Asymtotic and Exact Computations)

File Name Contents/Modules

math.make UNIX makeFile For the math Functions
deFs.h definitions common to all programs
env.h definitions modified by 'environment' command

'table.h definitions modified For 'table' program
lrt.h definitions modified For 'lrt' program
irt.c main (Irt)
table.c main (table, asymt, exact)
compute.c readFile

computelrt
- '~computepct

prob.c newton
prob

beta.c betap
ibeta
beta
loggam

bernpolW.c bernpolU
b
com

coeFs.c modR
modS
createCJr
Queue

F-3
9 O

V. ~Sam. shl

seprse saelp saecompe saeedit

4F-

PS

ltab

Figure F.2 Math Basic Program Structure

F-

• F-5

#00*

#** Statistical Analysis Environment

#01 File: mekeFile
#*04 Original: 20 September 198S - K N Cole
*~ Current: 15 October 1986 - K N Cole

#00.

#00 Contains UNIX make instructions For SAE
#00 *

OBJECTS - Object/sae.edit.o Object/sae.help.o\
Object/sae.parser.o Object/ed.Functions.o\
Object/ed.help.o Object/ed.misc.o\
Object/ed.cmd.o Object/ed.disp.o\
Object/ed.table.o Dbject/see.compile.o\
Object/cp.token.o Object/cp.compile.o Object/cp.err.o

CFLAGS - -c

saeeshell: sae.shell.c $(OBJECTS)
cc -o sae.shell sae.shell.c SCOBJECTS) -lcurses -ltermlib
my ./sae.shell LUersion
my sae.shell

sae: sae.main.c
cc -a sae sae.main.c -lcurses -ltermlib

Object/ed.misc.o: ed.misc.c sae.h window.h
cc S(CFLAGS) ed.misc.c
my ed.misc.o Object

Object/ed.Functions.o: ed.Functions.c sae.h window.h
cc SCCFLAGS) ed.Functions.c
my ed.E'unctions.o Object

Object/ed.table.o: ed.table~c stetush saech window.h
cc SCCFLAGS) edtable.c
my ed.table.o Object

Object/sae.parser.o: sae.parser.c sae.h
cc S(CFLAGS) sae.parser.c
my sae.parser.o Object

Object./sae.compile.o: sae.compile.c tokens.h status.h sae.h
cc SCCFLAGS) sae.compile.c
my sae.compile.o Object

Object/cp.compile.o: cp.compile.c tokens.h status.h sae.h
cc SCCFLAGS) cp.compile.c
my cp.compile.o Object

Object/cp.token.o: cp.token.c tokens.h status.h sae.h
cc S(CFLAGS) cp.token.c
my cp.token.o Object

F-6

Object/cp.arr.o: cp.err.c tokens.h status.h sae.h
cc SCCFLAGS) cp.arr.c
my cp.orr.o Object

Object/sae.edit.o: sae.edit.c sae.h
cc SCCFLAGS) sae.edit.c
my sae.edit.o Object

Objsct/sae.belp.o: sae.help.c sae.h
cc SCCFLAGS) sae.help.c
my sae.help.o Object

Object/ed.help.o: ecl.help.c sae.h
cc SCCFLAGS) ed.hulp.c
my ed.help.o Object

Object/ed.cmd.o: ed.cmd.c
cc SCCFLAGS) ed.cmd.c
my ed.cmd.o Object

Object/ed.disp.o: ed.disp.c sae.h
cc S(CFLAGS) ed.disp.c
my ed.disp.o Object

F-7

Statistical AnalUsis Environment

SAE DEFINITIONS

*S File: sae.h
*e Original: 29 April 1986 - K N Cole
** Current: 6 October 1986 - K N Cole

#ifndeF TRUE
#deFine TRUE 1
#endiF
#iFndeF FALSE
#deFine FALSE 0
#endiF
#deFine boolean int

#define EDLINES 1s
#deFine EDCOLS 80
#define MAXLINE EDCOLS-2
#deFine MAXTEriP 256
#deFine MAXCOMMAND 80
#deFine TABSIZE 8
#deFine ERRORCODE 999

#define NOLINE ~'

#define UPLN \013'
#define DOWN \012'
#deFine LEFT \b'
#define RIGHT 1\014'
#define ESC '\033'
#deFine BELL '\007'
#define TAB \to

#deFine CR \r'
#deFine NL \n'
#deFine BLANK '

#deFine EDITOR 0 /0 shell command codes 5/

#deFine HELP 1
#deFine TABLECMD 2
#define LRTCMD 3
#deFine COMPILER
#deFine RETURN S
#deFine EXIT 6

/0 COMPILER output Files 0/
#deFine CPENUFILE "Math/env.h"
#deFine CPTABLEFILE "Math/table.h"
#deFine CPLRTFILE "Math/lrt.h"

/0 SYSTEM HELP command definitions 0/

#deFine COMPILERHELP "compiler"
#deFine EDITORHELP "editor"

F-B

#deFine TABLEHELP "table"
#define LRTHELP "lrt"

#define EXITHELP "exit"

#define HELPHELP "help"

/0 EDITOR HELP program definitions /

#deFine EDHELPFILE "Help/editor.commands"
#define EDLANGFILE "Help/editor.reserved"
#deFine HELPLINES 7 /0 number of lines /
#deFine HELPCOLS 70 /0 number of columns 0/

#deFine HELPINDT 5 /0 beginning column 0/

#define HELPSTART 16 / beginning line 0/

/0 DISPLAY program definitions
#define DISPLINES 7 /0 number of lines 0/

#define DISPCOLS 70 /0 number of columns 0/

#define DISPINDT S /0 beginning column 0/

#deFine DISPSTART 16 /0 beginning line */

/0 COMMAND program definitions /

#define CMDLINE 1s /0 line number of command line 0/

/0 COMPILER program definitions */

#define MAXSYMBOLS 20 /0 maximum size of symbol storage 0/

#define MAXWORD 80 /0 maximum size of filename 0/

#deFine DEFMXTERMS 10
#define DEFMETHOD 1 /0 1 EXACT 0 ASYMTOTIC l
#define DEFSAMPLES 2
#define DEFALPHA 0.1
#define DEFINC 1

*

Vj

q

..... a ~ ~ aa.. aa... aa..a..... .. .-aa,-, . a ... a .aa ,a , ; _aa. T _

Statistical Analysis Environment
MAIN

oo File: sae.main.c
*. Original: 14 April 1986 - K N Cole

,m Contains Modules:
main - MAIN program routine

"" Calls Modules
sae.shell - shell program (sae.shell.c)

#include <stdio.h>
#include <curses.h>

mainC)

int status, procid;

10 Display Introduction */
printf'("'nWelcome to the Statistical Analysis

Environment - Version l.2",n");

/0 Save current screen characteristics 0/

savettyo;

I Start SHELL program 0/
iF ((procid - Fork()) -- 0)

e.: *xecl("/bin/csh", "csh", "-c' ', "sae.shell", NULL);

while (wait(&status) !- procid); wait for shell to terminate
iF (status) resettyG; /0 reset terminal characteristics 0/

/0 Exit when SHELL program terminates 0/
exitF;
)

~F-IO

Statistical Analysis Environment
SHELL

" File: sae.shell.c *
Original: 7 April 1986 - K N Cole

," Current: 6 October 1986 - K N Cole

#include <stdio.h>
#include "sae.h"
char argstoreCMAXCOMAND]; /* command line storage .'

main()
/0 Main program loop.., prompt - read - execute

int procid, status;
char *argpointer;

S"while (TRUE) C
* printf("\nSAE > "); / prompt .'

argpointer - argstore;
Egets(argpointer, MAXCOMMAND, stdin); /0 read command line
switch Cparser(&argpointer)) C '* read and execute */
case EDITOR: /0 run EDITOR *1

edit(argpointer); break;
case HELP: /* display COMMAND EXPLAINATIONS '/

help(argpointer); break;
case TABLECMD: /0 run TABLE program 0/

swstem("table"); break;
case COMPILER: /. COMPILE program '

compile(argpointer); break;
case EXIT: /0 exit to operating system ",

putc,''\n',stdout.); exit(); break;
case RETURN: / ignore simple returns '

break;
-, default: /0 try to execute UNIX system command "

argpcinter - argstore;
while (*argpointer && (Oargpointer !- NL)' argpointer+ ;
.argpointer - NULL;
procid - fork',;
if 'procid -- 0)
execlf'.bin/csh "csh", "-c", argstore, NULL,;

else if (procid -- -1)
printf("'n*** Cannot Execute Command ";s'.n", argstore',;

else C
while 'wait(.&status:' , procid);
if ,status)
printFK"\nb* Error in E-ecuting Command 's'\n",argstore);

break;

%F-l

L."z.. %... __k v--. --

/ iooooooooooo.oooooooooomm I omQ m~o oooooooooomoo

V Statistical Analysis Environment 0*

*0 "PARSER *0

*0 File: sae.parser.c
0* Original: 7 April 1986 - K N Cole
*" Current: 6 October 1986 - K N Cole

00 Contains Modules:
*0 parser 00

*0 parseck 00

#include <stdio.h>
#include <ctype.h>
#include "sae.h"

int
parser2arg)
char 0 arg;
/0 parser - parses the input For valid crmmand names. Returns boolean

indication For valid command inputs.

int value;
char Oargpointer;

argpointer - *arg;
switch (*argpointer) C

case 'c':
value - parseck(argpointer,"ompiler", COMPILER); break;

/0 compiler 0/

case 'e':
switch C(*++argpointer)) C

case 'X':

value - parseck~argpointer,"it", EXIT); break;
/0 exit 0

case 'd':
value - parseck(argpointer,"itor", EDITOR); break;

/0 edit 0/

deFault:
value - ERRORCODE; break;

break;
case 'q':
value - parseck(argpointer,"uit", EXIT); break;

/0 exit 0/

case 't':
value - parseck(argpointer,"able", TABLECID); break;

/0 table 0/
case '1':

F-12

%-

value - parseck(argpointer,"rt", LRTCD); break;
/0 Irt 0/

case 'h':
value - parseck(argpointer,"elp", HELP); break;

/0 help 0/
case '?':

value - HELP; break;
case '\n ':
case '\r':

value - RETURN; break; /0 onlw a return '

case '\\'"
value - ERRORCODE; break;

default:
value - ERRORCODE; break; / error 0/

)

/0 move pointer to beginning of arguments ... after command word 0/
while (Oargpointer && !isspace(Oargpointer)) argpointer++;
while (Cargpointer && isspace(Oargpointer)) argpointer++;
Oarg - argpointer;

return(value);
}

int
parseck(argpointer,cp,n)
char Oargpointer, Ocp;
int n;
/0 parseck - checks the remainder of the command word after the

parser has given Found the First letter to be valid.
0/
C
int value;

value - ERRORCODE;
while ((++argpointer) -- Ocp) cp++;
if (isspace(Oargpointer)) value - n;
return(value);
)

F-13

["'r = . - '.-g V --- - - .. .- ,-% %. '

Statistical Analysis Environment
HELP COMMAND

*o File: sae.help.c
** Original: 7 April 1986 - K N Cole
o Current: 20 October 1886 - K N Cole

*S Contains Module:
SO help - display HELP information

#include <stdio.h>

#include <ctype.h>
#include "sae.h"

help(arg)
/0 help - SAE system help command

displays selected information from the Help directory
' 0/

char Oarg;
C
char Oc[803, 0s, 09s;
int code;

printf("SAE Help command, Version 2.O\n\n");

if C(arg) C /* append the proper File name to Help/help 0/
s m arg;
strcpy(c,"cat Help/help.");
code - parser(&s);
switch (code) C

- case COMPILER: strcat(c,COMPILERHELP); break;
case EDITOR: strcat(c,EDITORHELP); break;
case LRTCMD: strcat(c,LRTHELP); break;
case TABLECMD: strcat(c,TABLEHELP); break;
case EXIT: strcat(c,EXITHELP); break;
case HELP: strcat(c,HELPHELP); break;
default:

ss M S; /0 otherwise Just print the File given 0/
while (95g && !isspaceC*ss)) ss++;
if ('ss) *ss++ - NULL;
strcpW~c,"cat Help/");
strcat(c,s);

system(c);N)
else C

/ print the First line of each File named 'help.xxx' 0/
printF("Command\t\tDescription\n ------- \t\t ----------- \n");
system("head -1 Help/help.* i grep -v \,"->\" : cat -s");

F

%3

F-I

Statistical Analysis Environment
EDITOR WINDOW COMMIANDS

SFile: window.h
**Original: 29 April 1986 - K N Cole

Current: 8 September 1986 - K N Cole

#define ewmoveCy,x) UOIDCwmoveCeditor,y,x))
#deFine ewclrtoeol() LOID~wclrtoeolCeditor))
#define ewgetcho) VOID~wgetch~editor))
#deFine ewdeletelnC) UDIllCwdeletelnCeditor))
#derine ewdelcho) L.ODCwdelchCeditor))
#deFine ewtouchC) LOIDCtouchwin~editor))
#define ewclear) kOIDCwclear~editor))
#define ewreE'reshC) VOID~wrafresh~editor))
#define ewaddchCU,x,ch)

VOIDCwmove(editor, y, x)-ERR?ERR: waddch~editor, ch))
#deFine awinsch(y,x,ch)

V.OlfCwmove~editor,y, x)--ERR?ERR: winsch~editor, ch))
#deFine ewinsertinCy)

VOIDCwmoveCeditor,y, O)--ERR?ERR: winsertinCeditor))
#define ewgetyx(W,x) W - editor-> _cury, x - editor-> _curx
#define ewcharCy,x) (editor-> _.EWJ[x] & 0177)
#deFine ewcursor()

tODCwmove~editor,editor->-cury, editor-> _curx))

VV

VX

/ ***************************S*************************

Statistical Analysis Environment
EDITOR

** File: sae.edit.c
Original: 7 April 19B6 - K N Cole

A* Current: 6 October 1986 - K N Cole

o. Contains Module: Be

edit - EDITOR main program

#include <stdio.h>
#include <ctype.h>
#include "sae.h"

extern void edappendC), edcommandC), edinserto), eddellineC),
edinsertlnC), edreplacecharC), edredrawC),
eddelchar(), edwrite(), edinitC), switchcflagC),
switchhelp(), switchlango), switchdisplaW();

extern boolean cmdcmd(;

boolean cflag;

editCarg)
char Oarg;
C

boolean done;
char OeditFile;

/0 Display Editor Signon Message and initialize windows o/
printF("\nSAE Editor, Uersion 1.3\n\n");

/0 Prepare the filename and initialize the editor o/
editFile - arg;
cflag FALSE;
if (arg) C
while C(arg && !isspaceC(arg)) arg++;
Oarg - NULL;
}

edinit(editfile);

/0 Main program loop 0/
done - FALSE;
while (!done) C

switch Cedcommand()) C
case 'a': /0 append mode 0/

edappend,:cFlag); break;
case 'i': /0 insert mode /

edinsert(cflag); break;
case 'd': /0 delete line .'

eddellineCcFlag); break;
case 'C': / toggle automatic compiling e,

F-i6

1

-. switchcFlag(&cFlag); break;
case 'H': /I toggle help display 0/

switchhelpo); break;
case 'L': /. toggle language display 0/

switchlang(); break;
case 'o': /0 open a new line 0/

edinsertlno); edinsert(cFlag); break;
case 'r': /0 replace character .

edreplacechar(cFlag); break;
case '5': /0 toggle statistics display 0/

switchdisplayC); break;
case 'v': /0 redraw screen */

edredrawo); break;
case 'X': /* delete character 0/

eddelchar(cFlag); break;
case '2': /0 exit editor 0/

edwrite(editfile); done- TRUE; break;
case ': ': / process line commands 0/

done - cmdcmd(); break;
default: / invalid command

break;
)

edexit(,;

-1-7

>'"

F-1

9l

-,.

Statistical Analysis Environment
00 EDITOR FUNCTIONS

00File: ed.functions.c
Original: 7 April 1986 -K N Cole 0

00Current: 6 October 1986 -K N Cole

SContains Modules: 0

edinit *

edexit
edappend

* edinsert
edinsertln 0

eddelline 0

eddelchar 0

edreplacechar
edwrite
edread

0* edredraw *

*0 edcommand 0

#include <stdio.h>
#include <ctype.h>
#include <curses.h>
#include "-sae.h"
#include "window.h"

extern void edread(), cmdinito, initdisplay(), inithelp(),
inittableo, motioninit(', cmdprintC), tablereadC),
tablewriteo), mvcursoro), tabnewlineC), writetextC),
clearcompileo);

extern char Oreadtext(), motion(), getkeW();
extern mnt length(), compileallO);
extern boolean cflagtrueo;

WINDOW *editor;
char templine[rlAXTEMP];

F-l8

void
edinit(arg)
char Oarg;
/0 edinit - initializes the edit window as required by the 'curses'

package.
0/

/0 Initialize terminal window
if (initscr() -- ERR)

printF("0'0 Error during screen initialization ***\n\n");
else C

raw(); noecho(); nlc);

/0 initialize editor windows 0/
if ((editor - newwin(EDLINES,EDCOLS,0,0)))
printf("'' 0 Error during editor window initialization 000 \nkn");

else C
ewclearo;
cmdinit(arg);
initdisplaWC);
inithelp();
inittable();

if (arg) edread(arg,O); /0 read File into editor 0/
else cmdprint("No Edit File");

motioninito; /0 set original position of editor 0/
)

2

void
edexit(cFlag)
boolean cFlag;
/0 edexit - prepares edit window to exit the editor

/0 clear bottom oF screen and exit to shell
moverO,16);

clrtobot();
reFresho;
endwino;

F-iS

void
edappend cf lag)
boolean cFlag;
/0 edappend - append text to the cur-rent edit cursor location

int ey,ex;
extern void edinsertC);

ewgetwx~ey, ex);
iF Clength~eW)) mvcursor~eW,ex4-);
edinsert(cf lag);

void
edinsert(cflag)
boolean cFlag;
/0 edinsert - append text before the current edit cursor location

char c;
char sa, *as;
mnt eW,ex,tx,cx;

ewgetyx~eW , x),
ss - readtext(ey); /0 pointer to cur-rent text line 0/
if (as -- NULL) C
writatext~eW, NULL);
ss - readtext~eW);

strcpWCtempline, ss); /0 copW current line to templine 0

as s + ex; / pointer to point of insertion 0
s - templine + ex; /* pointer to point of insertion 0/
tx - 0; /0 length set to current position/
while (Cc - ewgetcho) ESC) C

switch Cc) C
case CR:
case NL:

*a++ - NL; sa -NULL; /0 terminate line 0!
4.tabnewline~eyl, ss); /0 new line 0/

writetext(eW++o, templine); /0 finished line 0/
tx - 0; ex - 0; /0 reset pointers 0/
ss - readtext~eW);
strcpW~templine, ss);

* 5~ - tempIJlJ.ine;

if CcFlag) compileline~eW-l);
* mvcursor (eW ,ex);

break;
case TAB:

iF C(length~eW)+tx+TABSIZE) < F1AXTEr1P) C
for (cx -1; cx <- TABSIZE; cx++) C

F-20

if' (ex < MAXLINE) swinsch(eW,ex,BLANK);
ex++; 09++~ - BLANK;

tx -tx + TABSIZE;
ewmove~eu , x);

else ederror~i);

case LEFT: bek

if' Ctx > 0) C
ex--; ewmove~eyex);
ewdeichoC;
tx-; 5--;

else ederror~i);
break;

default:
if' C(length~eu)+tx~l) < IIAXTEIIP) C

if' (ex < MAXLINE) ewinsch~eu,ex~c);
tx++; ex++; *5+- C; ewmove~ey,ex);

j~s.*else ederror~i);
break;

mvcursorCey,ex);

-s NULL;

str-cat~templine, ss);
writetcxtCey, templine);
if' Ccf'lag && tx) compilelineceW);
mvcur-sorCey,ex + Ctx ? -1 :0));

F-21

void
edinsertlnC)
/0 edinsertin - insert a line at the current editor cursor position.

int ey, ex;

ewgetwx(eu, ex);
tabnewlineC++eW, NULL);
mvcursor Ce , 0);

void
eddelline~cFlag)
boolean cFlag;
/* eddelline - delete the line at the current editor position.

int cy, ex;

ewgetyx(eW, ex);
ewdeletelno;
tabdeleteline~eW);
iF~ (c~lag) compileallO;
mvcursor(eW, 0);

void
eddelchar~c~lag)
boolean cFlag;
/0 eddelchar - delete a character at the current editor

cursor position.

mnt eWyex;
char Os, Ost;

ewgetux~ey,ex);
iF (length(eW)) C
ewdelchO);
a - (char *') (Cint) readtext(ey) + ex)
iF (s !- NL) while (Cs) Cs - C(s+1); s++e;)
else ederror~i);
if (cFlag) compileline~ey);
mvcursor~ey,ex);

else ederror~l);

F-22

NO t
4,AMA

void
adreplacechar cE lag)
boolean cflag;
/0 edreplacechar - replaces the character at the cur-rent

editor cursor location.

int eu,ex;
char Os, c;

ewgetyxCey, cx);
N s - readtextCeW);

if C*Cs +4 ex) !- NL) C
awaddch~ey,ex,c - ewgetcho));
0Cs + ex) - C;

else eder-ror~l);
if (cFlag) compilelineCeu);
mvcursorC eW, cx);

F-23

void
edwrite~outfile)
char Ooutfile;
/0 edwrite - opens the Fle named by (outFile) and writes

the contents oF the edit buffer to the File.
If the 'cFlag' is true, the file is compiled.

FILE *Fp;
/* prepare command to make backup copy 0/

strcpuCtempline, "mv ");
strcat(templine,outfile);
strcat~templine," ");
strcat~tompline,outfile);
strcat(templine, ".bak");
system(templine); /0 make backup file 0/

if CFp - FopenCoutFile, "w")) C
sprintF~templine, "Writing %s\r", outfile);
tablewriteCfp);
FcloseCEp);
if CcFlagtrue())

iF Ccompileall() -- 0) C
setoutputono;
compileall();
setoutputoFFO;

else
sprintF~templine,"Cannot open %s For output", outFile);

cmdprint~templine);

F-2

1'%- *,V L

void
edread(infile,ey)
char *infile;
imt ey;
/0 edread - opens the file named by (infile) and reads

the contents into the editor.

FILE *fp;

if (Fp - Fopen(inFile, "r"))
C
sprintf(templine, "Reading %s\r",inFile);
cmdprint(templine);
tableread(fp,ey);
fclose(Fp);

else sprintf(templine, "Cannot open %s", infile);
cmdprint(templine);

void
edredraw()
/0 edredraw - redraws the edit window by forcing the screen to

be cleared and then redrawn. * NOT the same as 'ewreFresho)'.

C

clearok(curscr,TRUE);
ewtoucho);
ewrefresh();

F

" F-25

char
edcommando)
/0 edcommand - returns a single character command code

C

char c;

while (!Cc - motiono));
switch Cc) C

case 'd': /0 delete mode 0/
switch CgetkeWC)) C

case 'd': /0 delete line 0/
c - 'd'; break;

case 'c': /0 delete character 0/
case BLANK:

c - 'x'; break;
default:
c - NULL; break;

break;

case 'Z': /0 save and exit 0/
if (getkeo) '2') c - NULL;
break;

default: break; /0 single character command */
}

return(c);v:;:)

',

q

F-26

Statistical Analysis Environment
EDITOR

- File: ed.cmd.c
Original: 7 April 1986 - K N Cole

*' Current: 28 April 1986 - K N Cole *0

oo Contains Modules:
cmdinit
cmdclear
cmdprint
cmdcmd

#include <stdio.h>
*include <curses.h>
#include "sae.hh>
#include "window.h"

extern WINDOW Oeditor;

WINDOW *command;
char sourceFileEMAXCOMMAND];

~/ SSSSWS*S@SSS@@@*SSSS SSSS.S*SOSSOO***SS00500S*@000S0000e

void
cmdinit(arg)
char Oarg;
/0 cmdinit - initialize the command line window.

Copg input filename to storage.
0/
{

if (arg) strncpy(sourcefile, arg, MAXCOMMAND-l);
else sourceFile[O] - NULL;

command - newwin(I,80,CMDLINEO);
wclearCcommand);

void
cmdclear()
/0 cmdclear - clear the command line

wmove(command, 0,0);
wclrtoeol'command);
)

F-27

ItP..

void
cmdprint(s)
char 05;

int ey, ex;

ewgetux(ey , x);
wmove(command,O,O);
wclrtoeol(command);
waddstr (command, s);
wrefresh (command);
mvcursor Cey ,ex);

F-2

boolean
cmdcmd()
/0 cmdcmd - read and process commands.

C

boolean exit;
char cmd, filename1AXCDMAND3, Oc;
int ey,ex;

exit - FALSE;
cmdprint(": ");
cmd - wgetch(command);
switch (cmd) (
case 'q': /0 QUIT command 0/

cmdprint(": quit");
exit - TRUE;
break;

case 'r': /* READ command 0/
ewgetWx(eW,ex);
cmdprintC": read input File: ");
c - filename;
echoo;
while CCOc - wgetchCcommand)) !- CR) c++; *c - NULL;
noecho();
if (filenameC03) edread(eW, filename);
else cmdprint("Read what?");
break;

case 'e': /0 EXIT command */
cmdprint(": exit output file: ");
exit - TRUE;

case 'w': /* WRITE command 'I

if (!exit) cmdprint(": write output File: ");
c - Filename;
echoo);
while ((c - wgetchCcommand)) !- CR) cf+; Oc - NULL;
noecho);
if (FilenameEO3) edwriteCfilename);
else if (sourcefileEO3) edwrite(sourceFile);
else cmdprintC"Write what?");
break;

default: I DEFAULT 0I
cmdprint("What?");
break;

)
return(exit),;

F-29
04

-. Statistical Analgsis Environment
EDITOR HELP

go File: ed.help.c
Original: 7 April 1986 - K N Cole

*m Current: 24 April 1986 - K N Cole *0

mm Contains Modules: so
6o inithelp

readhelp
switchhelp
switchlang
refreshhelp 00

ckhelp so

#include <stdio.h>
#include <curses.h>
#include "sae.h"

extern void edredrawo);
/0 global window and flags '/

WINDOW Ohelpwindow;
boolean helpon, langon, helpready, langready;

void
.inithelp()

/0 inithelp - initialize the help window and flags

helpwindow - newwin(HELPLINES,HELPCOLS,HELPSTART,HELPINDT);
helpon - FALSE;
langon - FALSE;
helpreadW - FALSE;
langreadW - FALSE;

F

.d. . .- " . . , ', , . - . - - . - , •• ,

void
readhelp()
/0 readheip - r-eads the help or language files into the window

FILE *hp;
char templnEHELPCOLSJ;
mnt hy;

if Chelpon) C
if ('Chp - fopen(EDHELPFILE, "r-")))
cmdprint("0 ERROR 00 Editor Help File NOT Found");

else if (langon)
if C!Chp -fopenCEDLANGFILE, "r-")))

cmdprintC"*** ERROR 101 Editor Language File NOT Found");
if Chp) C

for (hy - 0; hy < HELPLINES; hy++) C
fgets~templn, HELPCOLS-l ,hp);
wmoveChelpwindow,hy,O);
wpr-intwChelpwindow, tempin);

FClose(hp);

void
5WitchhelpC)
/0 sWitChhelp - change the on/Off state of the help display

if (helpon) C
helpon - FALSE;
edr-edr-awo);

else C
helpon - TRUE;
langon - FALSE;
if ('helpr-eady) C
readhelp();
helpr-eadW - TRUE;
langr-eadW - FALSE;

if (ckdisplayo)) 5WltchdispiayG;
touchwin(helpwindow);
wreFresh(helpwindow);

F-31

or.

void
switchlangC)
/0 switchiang - turns OFF the helpdisplay and ON the language display

if (langon) C
'V langon - FALSE;

edredrawC);

else C
langon - TRUE;
helpon - FALSE;
if (!langready) C

readhelpC);
langready - TRUE;
heipready - FALSE;

if CckdisplayC)) switchdisplayo);
touchwin(helpwindow);
wrefresh~helpwindow);

void
refreshhelpo)
/0 reFreshhelp - refresh the help window if necessary

if (helpon :1 langon) C
touchwint'helpwindow);
wrefresh~helpwindow);

boolean
ckhelpo)
/0 ckhelp - show the condition of the flag 'helpon'

return~helpon);

F-3

w%sV * ~~*~ .Z~f'V * kk A
'L A~X. A6&'

00S

00Statistical Anal~sis Environment 5
EDITOR DISPLAY

*'File: ed.disp.c .

Original: 7 Apr-il 1986 - K N Cole
Current: 24i October 1986 - K N Cole

* Contains Modules:
initdisplaW
switchdisplaW
re~reshdisp
updatedisplaW
ckdisplaw
switchcflag

-. cflagtrue

#include <stdio.h>
#include (curses.h>
#include "sae.h"

extern void clearcompileC), switchhelpo),
setoutputoffC);

extern boolean ckhelp0;
extern int lengthc), lastlineC), statcodeC), compileallC);
extern char Oerrtext();

WIND3OW Odisplay;
bool displa~on, cpon;

void

C
display - newwin(DISPLINES,DISPCOLS,DISPSTART,DISPINDT);

* displaWon - FALSE;
cpon - FALSE;

F-3

2 Z

void
switchdisplaWC)

if (displayon) C
ciispla~on - FALSE;
wclear~displaW);
wrefreshCdisplaW);

else C
displa~on - TRUE;
if Cckhelpo) switchhelp();
touchwin~displaW);
wreFreshCdisplay);

void
refreshdisp()
/0 refreshdisp - refresh the display window .., if 'dispia~on'

if (displayon) C
A touchwin(displaW);

wrefresh~displaW);

void
updatedisplaW(u, x)
irit y,x;

wmove~displau,l,2);
wprintw~display,"Line %~2d Column %2d W, , x);
wmove(displaW, 1,50);
if (cpon) wprintw~displaW,"Compiler ON")
else wprintw~displaW, "Compiler OFF");
wmove~displa,3,2);
wprintw(display,"Line length: %2d Last line: %2d",
* lengthCU-l), lastlineC));

wmove(displaW,5,2);
if (cpon) wprintw~displaW, "Compiler Miessage: *,s",

errtext(statcode(W-l)));
else wclrtoeol(displaW);
refreshdispo);

PF-34

boolean
ckdisplaW C)
/0 ckdisplau - return the current value of the 'displayon' flag

returnCdisplayon);

void
switchcflag~cflag)
int *cFlag;
/0 switchcf lag - change the mode of editor operation

to (or from) using the compiler.

if COcflag) C
*cFlag - FALSE;
cpon - FALSE;
wmove~displaW, 1,50);
wprintwCdisplay, "Compiler OFF");
clearcompile C);

else C
*cflag - TRUE;
cpon - TRUE;
setoutputoff C);
wmoveCdisplau,1,50);
wprintw~displaW, "Compiler ON)

compileall();

boolean
cf lagtrue()
/0 cflagtrue -returns value of 'cpon' flag

raturn(cpon);

F-3S

Statistical Analysis Environment
EDITOR

*m File: ed.misc.c
'm Original: 7 April 1986 - K N Cole
*" Current: 24 October 1986 - K N Cole

DO *0

*o Contains Nodules:
mvcursor

ederror
getke
motion
motioninit

#include <stdio.h>
#include <curses.h>
#include "sae.h"
#include "window.h"

extern void cmdprintC), cmdclear();

extern WINDOW *editor;

int xpos; /* horizontal position storage 'I

void
mvcursor(ey,ex)
int ey,ex;
/0 mvcursor - moves the cursor by the specified location in the

edit window.

updatedisplayCey+l,ex+1);
ewmove(eW,ex);
ewtoucho);
ewreFreshC);

F-36

void
*derror(n)
int n;
/0 ederror - editor error routine.
4,

{

int ey,ex;

ewgetuxle ,ex);
switch (n) C

case 1:
cmdprint("\007"); /0 just ring bell !
break;

default:

cmdprint("Editor Error... Incorrect Command.\007");
break;

mvcursor(eW,ex);

F

-'V

I'J

-S,

N F-37

char
getkey()
/0 getkey - accepts command strings from the edit window and

translates the "termcap" strings for arrow keys.
0/
C
char c;
char input[SJ, cap[5], Otemp;
int leng;

if M(c -ewgetch()) < ' 1 () c > ') C
iF Cc -- ESC) C

inputID) - c;
tgetstrC "kd" ,cap);
leng - strlen~cap) -1;

temp - &input~l];
while (leng > 0) Ctemp++ - ewgetch(); leng--;)
Otemp -NULL;
iF (strcmp(cap,input)l -- 0) c - DOWN;
else C

tgetstr("ku" ,cap);
iF Estrcmp(cap,iriput) -- 0) c - UPLN;
else C

tgetstr("kd" ,cap);
iF Cstrcmp(cap, input) -- 0) c -LEFT;
else C

tgetstr("kr" ,cap);
iF 1:strcmp'cap,input)- 0) c P IGHT;
else c -NULL;

return~c);

F- 38

char
motion()
/0 motion - moves the cursor in the edit window in response to

valid motion commands.

bool ismotion, error;
char c;
int ey,ex;

ismotion - TRUE; error - FALSE;
ewgetyx(eW,ex);
cmdclearo;

/0 assume we are in a valid position */
,* check new position only

mvcursorCey,ex);
switch Cc = getkeyO)) C
case UPLN: if (!(error - !cklocy(ey-1))) C

ex - xpos;
if (ex < length(ey)) ex - length(ey);

break;
case DOWN: if (!(error - !cklocy~ey+l))) C

ex - Xpos;
if (ex < length(ey)) ex - length(ey);

break;
case BLANK:
case RIGHT:
case TAB: if (!(error - !cklocx(ey,ex+l):,)

xpos - + ex;
break;

case LEFT: if (!(error - !cklocx(ey,ex-l:1))
xpos - -- ex;
break;

case CR: if (!(error - !cklocy(ey+l)))
- ey++;

xpos - ex -0;
break;

default: ismotion - FALSE; xpos - ex; break;

if (error' ederrorCl,;
if ,ismotion :1 error) c - NULL;
else xpos - ex;
mvcursor(ey,ex);
return(c,;

F-39

V. v

void
motioninitC)
/0 motioninit - initializes the editor motion position at the

time oF entrW to the editor.

xpos - 0;
mvcursor (0,0);

F

'.

-4

Fii

66 Statistical AnalWsis Environment

EDITOR

mm File: ed.motion.c
66 Original: 7 April 1986 - K N Cole 06

am Current: IS September 1986 - K N Cole 66

66 Contains Modules: 66

66 motion
66 getkey 66

66 motioninit

mvcursor 66

#include <stdio.h>
#include <curses.h>
#include "sae.h"
#include "window.h"

extern WINDOW Oeditor;

int xpos; /0 horizontal position storage 6/

void
mvcursor(ey,ex)
int ey,ex;
/0 mvcursor - moves the cursor by the specified location in the

edit window.
6/
C

updatedisplay(ey+l,ex+l);
ewmovecey,ex);
ewtoucho;
ewrefreshC);

}F-4

P.

f-p

char
getkeyo)
/0 getkeW - accepts command strings From the edit window and

translates the "termcap" strings for arrow keys.

char c;
char input(S], cap(S], Otemp;
int leng;

if M(c -ewgetcho)) < ') Cc > '))C

if Cc mmESC) C
inputEO) - c;

tgetstrC "kd" ,Cap);
leng - strlen(cap) -1;

temp - &input[l);
while Clang > 0) COtemp++ - ewgetch); leng--;)
otemp - NULL;
if Cstrcmp~cap,input) -- 0) c - DOWN;
else C

tgetstrC "ku" ,cap);
if Cstrcmp~cap,input) -- 0) c - UPLN;
else C

tgetstrC "kd" ,cap);
if Cstrcmp~cap,input) -- 0) C - LEFT;
else C

tgetstrC "kr",cap);
if Cstrcmp~cap,input) -- 0) c F IGHT;
else c mNULL;

return~c);

F-'i2

char
motionC)
/0 motion - moves the cursor in the edit window in response to

valid motion commands.

bool ismotion, error;
char c;
int ey,ex;

ismotion - TRUE; error - FALSE;
ewgetyx(ew,ex);

/0 assume we are in a valid position 0/

/0 check new position onlW
mvcursor(eW,ex);
switch (c - getkegC)) C

case UPLN: if ('(error - .cklocyCeW-l))) C
ew--;
ex - Xpos;
if (ex < length(ey)) ex - length(ey);}

break;
case DOWN: if (!(error - !cklocy(ey+l))) CeW++;

ex - Xpos;

if (ex < length(eU)) ex - length(ey);)

break;
case BLANK:
case RIGHT:
case TAB: if (!(error - !cklocxCey,ex+l)))

xpos M -+8x;
break;

case LEFT: if (!(error - !cklocxCey,ex-l)))
Xpos " -- ex;
break;

case CR: if ((error - !cklocg(ey+l)))
ey++;

xpos - ex " 0;
break;

default: ismotion - FALSE; xpos - ex; break;

if (error) ederror(1);
if (ismotion :I error) c NULL;
else xpos - ex;
mvcursor(ey,ex);
returnrc);

~F-43

i 4

void
motioninitC)
/0 motioninit - initializes the editor motion position at the

time of entrW to the editor.

xpos - O;
mvcursor(0,0);

F-h4

j.

Statistical Analysis Environment
ED ITORP0

00 00

00 File: ed.table.c 0
00 Original: 29 April 1986 - K N Cole *
00 Current: 17 September 1986 -K N Cole 0

SContains Modules: 0

0 cklocy 0

0: cklocx
length 00

sO tabnewline *
tabdeleteline
lastline 00
inittable *0

0: writetext 0

00 readtext 00
0 tableread 0

0: tablewrite 0

clearcompile 0

0 compileall 0*

0: compileline 0

statcode

#include <stdio.h>
#include <curses.h>
#include "sae.h"
#include "status.h"
#include "window.h"

extern WINDOW *editor;
extern void cpreseto), mvcursor(), ederr-orO);

'U extern mnt cplineC);

* typedeF' struct linereF'
* C

char *text; /0 pointer to text of' the line 0/
mnt length; 1* length of' line 0/
mnt status; /0 compiler status of' the line 0/
mnt cstate; /0 state of' the compiler after checking 0/
) linetype;

linetype tablestore[EDLINES];
linetype Oedtable[EDLINESJ;
mnt lastln, errct;
char temptext[lIAXLINE+1J;

F-'iS

p p *** - - 9Jill-

boolean
cklocW(eu)
int eW;
/0 cklocy - verifies the given line location (ey) in the

edit window.

boolean valid;

valid - C(e >- 0) && (e < lastln));
return(valid);

boolean
cklocxCeW,ex)
int ey,ex;
/0 cklocx - verifies the given column location (ex) on the

line Ce) in the edit window.

boolean valid;

valid - cklocy(ey);
iF (valid)
valid - C(ex >- 0) && (Cex+l) <- edtable~eW]->length));

return(valid);
}

int
length(ey)
int eW;
/0 length - returns the current length of line 'ey'.

return(edtable[eW]->length);
}

F-a

void
tabnewline~ey, s)
int ow;
char '5t;

/0 tabnewline - creates a new line in the table at the screen
location given by CeW). The text is taken from the string
pointed to by Cs).

int ct;
linetype *pW;

V extern void writetext();

if ((lastin < EDLINES) && Cey <- lastin)) C
if Cey < lastln) C

pW - edtablellastln);
for (ct - lastin; ct > ey; ct--)

adtablelctJ - edtablelct-l);
edtable~eWJ - py;
ewinsertln(ey);

writetext(eW,s);
lastln -lastln + 1;

void
tabdeleteline(ey)
mnt ey;
/0 tabdeleteline - deletes the line at location Cey) From

the file.

mnt ct;
linetype 'Pu;

if C(eW >- 0) && Cey < lastln)) C
pW edtableley);
for (ct - eW; ct < lastln-1; ct+'K' C

edtable~ct) - edtablelct~lJ;

edtablellastln-1] - Pu;

cfree(py->tSXt);
pW-)text - NULL;

* py->cstate - 0;
py->length - 0;
py->status - NONE;
lastin -lastln-l;

F- 7

int
lastlineC)
C
return~lastln);

void
inittableo)
/0 inittable - initializes the indicators of the amount of text

in the window.

mnt ey;

lastin -0;

for (ey -0; ey < EIJLINES; eW++) C
ewaddch(ey,ONOLINE);
edtableleyJ - &tablestore~eW];
edtable~ey]->text - NULL;
edtable~eyJ->cstate - 0;
edtable~eWJ->length - 0;
edtable~eyJ->status - NONE;

-Fp4

i

void
writetext(ey, s)
int ey;
char 05;
/0 writetext - replaces the current line (ey) text with the new

string (5).

linetype Opy;
boolean space;

iF C(Cy >- 0) && Cey <- lastin)) C
pW - edtable~eW];
iF (py->text) space - TRUE;
else C

iF (py->text - (char 0) calloc(rIAXLINE,sizeoF(char)))
space - TRUE;

else space - FALSE;

ewmove(ey,O);
ewclrtoeol(0;
iF (space) C

iF (s) C
strncpy~py->text,s,I1AXLINE);
pW->length - strlen~py->text);
wprintw~editor, py->text),;

else C
pW->text[0J - NULL;
py->length - 0;

else printF("000 Unable to allocate memory For 'text' ~~~

char
readtext(ey)t
int ew;
/0 readtext - returns a pointer to the text referenced by

the screen position line Cey).

char Os;

iF ((ey >- 0) && eW < lastln)) s -edtable~eyJ->text;

else sq - NULL;

return(s);

I"

void
tableread(Fp, ey)
FILE *Fp;
int eW;
/0 tableread - read file into the editor starting at

screen line 8)

if (Cey >- 0) && Cey <- lastin)) C
while (Fgets(temptext, MAXLINE, Fp) && (lastin < EDLINES))

2tabnewline(ey++, temptext);

void
tablewrite(Fp)
FILE *'Fp;
/0 tablewrite - writes the contents oF the edit table out

to the File referenced by (Ep).

int ey;

for Cey - 0; eW < lastln; eW++) C
Fputs(edtable~eW]->text, Fp);

clearcompilet)
/0W clearcompile - clears the compiler status characters

From the screen.

int eW;

if (lastln)
for (ey 0; ey < lastln; eW++) C

ewaddch Ce , STAT CDL,BLANK);
*dtableCey)->status - NONE;

F-5o

int
compileallo)
/0 compileall - compile all the lines currently in the editor

init ey, stat, state, sW, sx;

ewgetyx(sW,sx); /1 save cursor location *
errct - 0; state - 0;
cpreset C);
if Clastln)
for Cey -0; eW < lastln; eW++) C

stat -cpline(edtable~ey]->text, &state);
if (stat !- VALID) errct++;
edtable~eW)->status - stat;
edtable~ey]->cstate - state;
switch (stat) C

case VJAL ID: ewaddch~eW, STATCOL, UALIDSTAT); break;
case PARTLJLD: ewaddch(e , STATCOL, PAPTSTAT); break;
case UNCKD:
case NONE: ewaddch~ey ,STATCOL, BLANK); break;
default: ewaddch(eW,STATCOL, ERRSTAT);

mvcursor~sy, sx),; /0 reset cursor 0/
return(errct);

void
compileline~ey)
int ey;

int ty, stat, state;

if Cey > 0)C
ty - ey-l;
while ((ty >- 0) && (edtable~tW]->status V ALID)) ty--;
ty - ty +1;

else ty - eu;

for C; ty <- ey; ty+0-+) C
stat - cpline(edtable~tW]->text, &state);
edtable~tWJ-->status - stat;
edtable~ty)-)cstate - state;
switch (stat) C
case VJALID: ewaddch~ty ,STATCOL,VLALIOSTAT); break;

* case PARTVLD: ewaddch(ty ,STATCOL, PARTSTAT); break;
case UNCKD:
case NONE: ewaddch(ty ,STATCOL, BLANK); break;
default: ewaddch(ty ,STATCOL, ERPSTAT);

F-Si

int
statcode(ey)
int. ew;
/0 statcode - returns the status code For the line Cey).

.1 mt stat;

if C(ey >- 0) && Cey < lastin)) stat -edtable~eyJ->status;

else C
stat - NONE;
ederrorCi);

return(stat);

F-52

, .

Statistical Analysis En.ironment
PAPSEP STATUS 00

"" File: status.h
*0 Original: 29 April 1986 - K N Cole
mo Current: 15 September 1986 - K N Cole 00

#define NONE 0 /0 no status ,
#oefine UNCKD 1 unchecked line 0/

#define UALID 2 , valid line ,/
#define PAPTVLD 3 .'alid incomplete line 0/

#define EPPOP 4 /0 non-specific error 0/

#define INULDCHAP 5 ," invalid character
#deFine EXFE 6 /0 expected filename or ENUIPONMENT' /

#define EXSL 7 "0 expected semicolon or left parenO/
#define EXCP 8 /0 expected comma or right paren 0/

#define EXS 9 ' expected semicolon 0/

#define EXA 10 /0 expected argument 01

#define EXE 11 "" expected equal sign 0/

#define E'XI 12 / expected integer
#define EXTL 13 , expected TABLE or LPT 0/

#define EXF 1' " expected fraction 0'

#define EEA 15 expected EXACT or ASY!1TOTIC 0l

#define EY.IP 16 /" expected integer or RANGE 0/

#define EXL 1-" expected left paren
#define EXP 16 /0 expected right paren /

#define EXC 19 " expected comma
, #define IIULONU1l 20 " invalid number 0/

#define INULDFN 21 "0 invalid file name
#define INULOWD 22 / invalid word in text 0/

#define MAXEPPOR 23 size of error tabble ./

#define STATCOL 78/ column to display status 0

#define VALIDSTAT '* indicates a valid statement 0/

#define PAPTSTAT '-' / indicates a partial statement 0

#define EPPSTAT 'E' ' indicates an error 0/

'r. F-53

,%

A I1T 6" RELIABILITY ANALYSIS BASED ON EXPONENTIAL FAILURE
DISTRIBUTIONS AND DEVEL (U) AIR FORCE INST OF TECH
N RIGT-PATTERSON AFB OH SCHOOL OF ENGI K N COLE

UNCLASSIFIED 19 DEC 86 AFIT/DS/ENG/B6-06 F/G 12/2 ML

lllllllllllllI
llllllllmollllEIIIohEEEEohhIEhmhEEEEEmhhhE

p8

111.25 111L 13.2

'IVII % .

Statistical Analysis Environment
TOKEN DEFINITIONS

oo File: tokens.h
Original: 29 April 19B6 - K N Cole

*. Current: 6 October 1986 - K N Cole

'Tokens

#define MAXTOKEN 9

#define EOL 0 /0 end of line or comment 0/
#define FRACTION 1 '0 fraction value Creal) 0/
#define INTEGER 2 /0 integer value 0/
#define FILENAME 3 "/ program file name 0/
#define COMMA /0 , */

#define SEMICOL 5 /1 ; 0/
#define EQUALS 6 /0 - 0/
#define LPAREN 7 ./ C 0/
#define RPAREN 8 /) 0/

#define RESUD 9 / reserved word 0/

/0 Reserved Words 5/

#deFine MAXFESUD 10

#define ALPHA 0
#define ASYMTOTIC 1
#define ENVIRONMENT 2
#define EXACT 3
#deFine FAILURES 4
#deFine LRT S
#define MAXTERS 6
#deFine METHOD 7
#deFine SAMPLES 8
#deFine TABLE 9
#define RANGE 10

#deFine LANGSIZE 2 ((MAXRESVD+1)

F-S4

~~V

Statistical Analusis Environment
SAE COMPILER

* File: sae.compile.c
Original: 7 April 1986 - K N Cole

** Current: 9 October 1986 - K N Cole

** Contains Modules:
cpline
compile

#include <stdio.h>
#include <ctype.h>
#include "sae.h"
#include "status.h"
#include "tokens.h"

extern void cpreseto), setoutputon(2, tokenreset();
extern int cparseo), tokeno);
extern char Oerrtext();

char slineEMAXLINE3;

i nt
cpline(s,state)
char 09;
int Ostate;
/ cpline - Compile a line (9:s.

Returns a status indicator from the list in (status.h).
Modifies the state variable to show the new state of the compiler.

5/
C

unsigned status;
int t, v;
char Osptr;

status - VALID;
sptr - s;
while ((status -- VALID) && Ct - token(&sptr,&v))) C

if ,:t < 0) status - -t;
else status - cparse(state, t, v);
I

if ((status -- uALID) && state) status PARTVLD;
else if (status - ALID) *state - 0;

return(status);

F-SS

void
compilel'arg)
char Oarg;
C
FILE Ofp;
int errct, lnct, state;
unsigned ecode;
char Oc;

printf("SAE Compiler, Version O.2\~n\n");

errct - 0;
lnct - 0;
state - 0;

/0 prepare the filename 0/
c warg;
while (c 9& lisspace(Oc)) c*+;

-c NULL; /0 place a null after the filename 0/

if (Oarg) C
if (fp - fopen(arg, "r")) C /I0 open the file

printfC:"\nCompiling *is:\n",arg);
cpresetC'; tokenreset0?;
while (fgets(sline, tIAXLINE, fp)) C

/0 compile each line as it is read 0
lflct++;
ecode - cpline~sline,&state);
if (Cecode - VALID) 1! (ecode - PAPT'JLD)) C

else C
printf("%d %s 00 s\n", lnct, sline, errtext(ecode));
errct++;

printf("'\nSummary: %d lines %d error\n", lnct, errct);
if '::errct -m 0) 9& (state -- 0)) C
rewind(fp);
cpresetQ; tokenreset();
setautputonoC;
state - 0; /0 re-compile with output
while (Fgets(sline, r1AXLINE, Fp))

ecode - cpline(sline,&state),;

Ec lose C Fp);

else printF("Compiler: Cannot open input File.\.n");

else printf("Compiler: No input file.\n");

F-56

Statistical Analysis Environment
SAE COMPILER

SFile: cp.compile.c
Original: 7 April 1986 K N Cole

SCurrent: 9 October 1986 -K N Cole

*~Contains Modules:
cparse
setoutputaff
setoutputon
cpreset

:include (stdio.h>
#include <ctype.h>
#include "sae.h"
#include "status.h"
#include "tokens.h"

extern mnt intsymbolo);
extern float floatsymbol();
extern char Owordsymbolo);

/0 globals for info storage *
booleen setdefenv - FALSE,

outputon -FALSE,

envFlag, sflag;
char Ofilename, cmdlineE8O)3;
mnt stmttype;

/0 environment values *
mnt mxterms, method;

/0 table and lrt values 0/
int alphact;
mnt tsamples, tmxsamples, tincsamples,

tFail, tmxFail, tincFail;
float talphaC3);

F-S7

int
cparse~state, token, v)
int *state, token, v;
/0 cparse - determine the next state of the compiler given

the input (state) and the next (token).
Returns a status value (see status.h).

int status, i;
FILE *Fp;

status - VALID;
switch (*state) C
case 0: switch (token) C

case PESUD: if (v -- ENVIRONMENT) C
if (envflag) status -EXTL;

else C
stmttupe - 0;
*state - 1;

else status - EXFE; break;
case FILENAME: *state -3;

if (!setdefenv) C
mxterms -DEFfIXTERIS; method - DEFMETHOD;
3

filename wordsumbolCv);
break;

default: status -EXFE;
) break;

case 1: switch(token) C
case LPAREN: *state -2; break;
case SEIIICOL: *state -0;

setdefenv - TRUE;
mxterms - DEFMXTERMS; method - DEFIIETHOD;
envf lag - TRUE;
if (outputon) C

if (fp - fopenCCPENVFILE, "w")) C
fprintf(fp, "*def ins rAXTERMS\t?~d\n",mxterms);
if (method -- 1)

fprintf(fp, "#define EXACT\t\tl\n");
Fclose(fp);

break;
default: status - EXSL;
) break;

case 2: if (token -- RESUD)
switch (v) C

case METHOD: *state - 5; break;
case MAXTERMS: *state - q*; break;
default: status - EXA;

F-5B

* p..

elso status -EXA;
break;

case 3:
case '*:

case 5: if (taken -- EQUALS) *state - *state + 3;
else status - EXE;
break;

case 5: if (token -- RESUD)
switch Cv) C

case TABLE: *state - 9; stmtt~pe - 1;
tsamples - DEFSAMPLES;
tmxsamples -tsamples;

tincsamples -1;

tFail -tsamples + 1;
tmxfail -tFail;

tincfail -1;

telpha[03 - DEFALPHA;
aiphact - 1;
break;

case LRT: Ostate - 10; stmtt~pe -2;

tsamples - IJEFSAiIPLES;
aiphact - 0;
break;

default: status - EXTL;

else status - EXTL;
break;

case 7: if (token INTEGER) C
mxterms -intsWmbol~v);

*state -11;

else status - EXI;
break;

case 8: if (token -- RESVD) C
*state - 11;
if (v -- EXACT) method - 1;
else if (%- -- ASYriTOTIC) method -0;

else status - EXEA;

else status - EXEA;
break;

case 9: switch(token) C
case LPAREN: *state m12; break;
case SEMICOL: 'state -0;

if Coutputon) C
if ('envflag) C
envf lag - TRUE;
austemC "cr rath/env 5ev Math/any~")

if Cfp - fopen(CPTABLEFILE, "w")) C
fprintf(fp, "#define PINIT\t~d\n",tsamples);
fpriritf(Fp, "#define PMAX\tOd\n",tsamples);
fprintf(fp, "#define PINC\tl\n");
fprintf(fp,"#define RINIT\,t*,d\n",tfail);
fprintf(fp, "*deFine RrAX\t~d\n",tfail);

F-59

~' .* ~ ~ ~" *~.%

FprintF(fp,"#dufine RINC\tl\n");
fprintfCfp,"#define ALPHAl\t%4.3f\n",talphaEO]);
fprintf(fp,"#define MAXALPHA\tl\n");
fclosecfp);
)

strcpu(cmdline,"make -F math.make -s table;
my Math/table ");

strcat(cmdline,filename);
if (fork) -- 0) C

sWstem(cmdline);
exito);
I

break;
default: status - EXSL;
) break;

case 10: if (token -- LPAREN) *state - 13;
else if (token -- SEMICOL) C
*state - 0;
if Coutputon) C

if (!envflag) C
envFlag - TRUE;
sustem("cp Math/env.say Math/env.h");
}

if (fp - fopen(CPLRTFILE, "w")) C
fprintf(Fp,"#define MAXSAMPLES\t0d\n",tsamples);
Fclose(Fp);})

strcpW(cmdline,"make -F math.make -s Irt;
mv Math/Irt ");

strcat(cmdline,filename);
if (fork() -- 0) C

system(cmdline);
exit C;
I

)
)

else status - EXSL;
break;

case 11: if (token -- COMMA) *state - 2;
else iF (token -- PPAREN) *state - 26;
else status - EXCR;
break;

case 12: if (token -- RESUD)
Vswitch (v) C

case FAILURES: sflag - FALSE; *state - 14; break;
case SAMPLES: sflag - TRUE; *state - 14; break;
case ALPHA: *state - 15; break;
default: status - EXA;
I

else status - EXA;
break;

case 13: if (token -- RESUD)
switch (v) C

case SAMPLES- *state - 16; break;

F-60

case ALPHA: *state - 17; break;
default: status - EXA;
)

else status - EXA;
break;

case 14:
case 1S:
case 16:
case 17: if (token -- EQUALS) 0state - *state + 4;

else status - EXE;
break;

case 18: if (token -- INTEGER) C
if (sflag) C

tsamples - intsymbol(v);
tmxsamples - tsamples;
tincsamples - 1;

else C
tfail - intsWmbol(v);
tmxfail - tfail;
tincfail - 1;
}

Ostate - 22;

else if ((token -- RESUD) && (v RANGE)) *state - 23;
else status - EXIR;
break;

case 19: if (token -- FRACTION) C
talpha[O] - floatsUmbol(v);
alphact - 1;
*state - 22;

else if (token -- LPAREN) *state -2;

else status EXF;
break;

case 20: if (token INTEGER) C
tsamples - intsymbol(v);
*state - 25;

else status - EXI;
break;

case 21: if (token -- FRACTION) C
alphact - 1;
talphaEO] - floatsymbolCv);
*state - 25;
I

else status - EXF;
break;

case 22: if (token -- COMMA) *state - 12;
else if (token -- RPAREN) *state - 26;
else status - EXCR;
break;

case 23: if (token -- LPAREN) *state 27;
else status - EXL;
break;

F-61

case 24*: if (token -- FRACTION) f
talphacflj - floatsymbol~v);
aiphact - 1;
*state - 28;

else status - EXF,
break;

case 25: if (token -- COMMA~) *state - 13;
else if (token -- RPAREN) *state - 26;
else status - EXCR;
break;

case 26: if (token -- SEIIICOL) C
'state - 0;
if (stmttype -- 0) C I' environment '

envFlag - TRUE;
if Coutputon) C

if (Fp - fopen(CPENVFILE, "w")) C
fprintF(Fp, "#define NUM\t~d\n",mxterms);
if (method -- 1)

Eprintf(fp, "#define EXACT\tl~.n");
Fclosecrp);

else if (stmttype -- 1) C I' table program '
if (outputon) C

if (!envflag)C
envflag - TRUE;
s~stem("cp Nath/env.say Math/eny~")
3

if CFp - fopen(CPTBLEFILE, "w")) C
FprintF(Fp, "#deFine PINIT\t6/d\n",tsamples);
EprintF(fp, "*deFine PrAX\t*,d\n",tmxsamples);
fprintF(Fp, "#deFine PINC\t~d\n",tincsamples);
Fprintf(fp, "#define RINIT\t,.d\n",tFail);
FprintFCfp, "#deFine Rr1AX\t~d\n",tmxfai1);
fprintFCFp, "#define RINC\t~d\n",tincFail);
For (i - 0; 1 < aiphact; i++)
FprintfCFp, "#deFine ALPHAld\t",,.3F\n",

i+l,talpha[13);
FprintF(Fp, "#deFine MAXALPHA\t~d\n",alphact);
EcloseCEp);

strcpW(cmdline,"make -F math.make -s table;
mv lath/table")

strcat(cmdline, Filename);
iF (Fork() -- 0:1 C

system~cmdline);
exito);

else iF (stmttype -- 2) C /0 Irt program 0/
if (outputon) C

if (!envFlag) C

F-62

4 envf'lag - TRUE;
Swstem("'cp rlath/env sav ninth/an.Y~h)

if' Cf'p - Fopen(CPLRTFILE, "w~")) C
f'printfCf'p, "*def'ine MAXSAr1PLES\t~d\n",tsamples);
if' Caiphact -- 1)

f'printFfCfp, "#def'ine ALPHA\t",*L.3f'\n",talpha[O]);
F'close(f'p);

strcpW(cmdline, "make -F math.make -s lr-t;
my Math./lrt)

str-cat(cmdline, Filename);
if' CForko) -- 0) C

system~cmdline);
exit();

else status - ERROR;

else status - EXS;
break;

case 27: iF (token -- INTEGER) C
if (s~lag) (
tsamples - intsymbol(v);
tmxsamples -tsamples;

tincsamples -1;

else C
tfail -intsymbol~v);
tmxFail - tfail;
tincFail - 1;

*state - 29;

else status - EXI;
break;

case 2B: if (taken -- COMMrA) *state -31;
-telse if' (token -- RPAREN) *state 22;

else status - EXCR;
break;

case 29: if (token -- COMMIA) Ostate - 30;
else status - EXC;
break;

case 30: iF (token -- INTEGER) C
if' (sflag) tmxsamples - intsymbolC,.v);
else tm>xFail - ints~mbol(v);
*state - 32;

else status - EXI;
break;

case 31: if' (token -- FRACTION) C
talphall - floatsumbollv);
alphact -2;

Ostate -33;

F-63

else status - EXF;
break;

case 32: if (token -- COMMA' *state -3;
else if (token -- PPAPEN) C

if (sFlag) tincsamples - OEFINC;
else tincFail - DEFINC;
*state - 22;

else status - EXCR;
break;

case 33: if (token -- COMMA) *state - 35;
else if (token -- PPAPEN) 0state - 22;
else status - EXCR;
break;

case 34: if (token -- INTEGER:) C
if (sFlag) tincsamples - intsUmbol(v);
else tincFail - intsymbol(v);
*state - 36;

else status - EXI;
break;

case 35: if (token -- FRACTION) C
talphaE23 - FloatsWmbol(v);
alphact - 3;
lstate 37;

else status - EXF;
break;

case 36:
case 39: if (token -- RPAREN) *state - 22;

else status - EXR;
break;

case 37: if (token -- COMMA) *state - 38;
else if :token -- PPAPEN *state - 22;

y. else status - EXCR;
break;

case 38: if (token -- FRACTION) C
talphaE33 - Floatsymbol(v);
alphact -;
Ostate - 39;

else status - EXF;
*! break;

default: status - ERROR;

return(status);

f-6Li

44

7~~ --- --

,e%

5etoutpwtorn-
/- setoutouton - enables the parser to generate '.h' and

'mai:efile' commands.

Opposite of 'setoutputofl-'1.

outputon - TPUE;
)

-.1d

setcutoutoFF-
,/e setoutputoff - disables the parser from generation of output.

OPDosite of 'setoutputon).
*/

Out~utOf - FALSE;
}

cpreset,.,
. coreset - resets initializing values for compiler.

enflag - FALSE;
OutmutOn " FALSE;

"

.

.o

* F-SS

IN

Statistical Analysis Environment
SAE COMPILER

=" File: cp.token.c
*o Original: 7 April 1986 - K N Cole
== Current: 1S October 1986 - K N Cole

*= Contains Modules:
readword
readnumber
readfilename
token
tokenreset

#include <stdio.h>
#include <ctype.h>
#include "sae.h"
#include "status.h"
#include "tokens.h"

struct resvdword C
char *word;
int value;

langtableELANGSIZE] - C
"AL", ALPHA,
"ALPHA", ALPHA,
"AS", ASYMTOTIC,
"ASYMTOTIC", ASYMTOTIC,
"EN", ENVIRONMENT,
"ENVIRONMENT", ENVIRONMENT,
"EX" EXACT,
"EXACT", EXACT,
"FA", FAILURES,
"FAILURES", FAILURES,
"LR", LRT,
"LRT", LRT,
"MA", MAXTERMS,
"MAXTERMS", MAXTERMS,
"ME", METHOD,
"METHOD", METHOD,
"SA", SAMPLES,
"SAMPLES", SAMPLES,
"TA", TABLE,
"TABLE", TABLE,

"PA" RANGE,
"RANGE", RANGE
};

~F-66

tWpedef struct, sWmref C
it token;
it ivalue;
float rvalue;
char wordEMAXWOPD3;
) asjmtwjpe;

sumtupe sUmtabIUEMAXSYMBOLS);
int nextsUmbol;

F-67

char
topper: c)
char c;
{

char cc;
if ((c > 'a') 98 Cc <- 'z')) cc - c - 32;
else cc - C;
return(cc);
)

~/......**........***.*...*...*..*..***u....*.....*........ /

Int
readword(sptr, v)
char 00sptr;
int 0'/;
/0 readword - reads a reserved word from the line pointed to

bW (sptr). Returns a token and sets (v) to the value of
the reserved word.

{

int n, t;
char Ow, 0S;

for ,'n - 0; n < LANGSIZE; n++) C
w - langtable[n].word;
S - Osptr;
while Cw && (topper(*s) -- Ow)) Cs++; w++;)
if Ow 11 isalpha(Os)) t - -INVLDWD;
else C

t m PESVD;
y- langtableEn].value;

while ,:isalpha('O*sptr)) (Isptr)++;
break;
)

)

return,:t);

F-68

int
readfilename~sptr, ns)

char *Osptr;
mnt fls;

/0 readfilename - reads a file name from the line pointed to
bW (sptr).

char OCqW;
int t,ct;

w - .+Csptr);
c - symtablelns).word;
ct - 0;
while Clisspace(*w) && ((Ow ! ")&& isprint(Ow))) C

if (++ct -- MXWOPO) break;

*I + - W +
-c NULL;

iF (Ow -- "'') C
t - FILENAME;
*sptr -+w

else t =-INULDFN;

return(t);

F-63

irit
toint(c)
char c;
C
int ;
if C(C >- '0') 9& Cc <- '9')) v -c -'0';
else %, - NULL;
return(v);

int
readnumber(sptr, ns)
char *Osptr;
int nl5;
C

char 0c;
int t, iv;
float rv, dv;

t - -IN..LDNUM;
c - *sptr; iv - 0; r'i 0.0; dv -0.1;

while (Oc && isdigit(Oc)) C
iv - (10 0iv) + taint(Oc);
C++;

if (iv~ > 0) t -INTEGER;

if (*c)C

while COc 99 isdigitCc)) C
r- rv + (toint(Oc) 0 dv);

dv - dv / 10;

rv - (float) iv + r-v
if :rv > 0.0) t - FRACTION;

if (Oc S& !isspaceCOc))
switch (0c) C
case ''
case ''

case ''

case 'i:breake;

default: t - -INVLONUI;

if (t !- -INVLDNUI) C
symtablelnsJ.rvalue -rv;
symtabletnsl.i,.alue - iv;
*sptr - c;

return(t);

F-70

int
token(sptr, j)
char *Osptr;
int ;
/0 token - reads the string pointed to bW (sptr) and

returns tokens based on the language (tokens.h).
The value C(y) is set to a reference to the specific
reserved word or an index to the symbol table CsWmtableC]).

0/
C
int tt, n;

o" - 0; tt - 0;
while (*Osptr && isspace(*Osptr)) (Csptr)+-; /0 skip spaces 0/

if (nextsymbol -- MAXSYMBOLS) nextsymbol - 0;

if (O'sptr -- '"') C /0 read filename 0/
if ((tt - readfilename(sptr, nextsymbol)) -- FILENAME)

Ov - nextswmbol++;
I

else if (isdigit(*Osptr) H1 (*Osptr -- '.')) /0 read number 6!
if ((tt - readnumber(sptr, nextswmbol)) !- -INULDNUM)

*v - nextsymbol++;
}

else if (isalpha(C'sptr)) C /0 read reserved word
tt - readword(sptr, v);
I

else switch (*(Osptr)++) C
case NULL: tt - EOL; break;
case '-': if (*Osptr -- '-') tt -EOL;

else tt - -INVLDCHAR;
break;

case '; : tt - SEMICOL; break;
case '(': tt - LPAREN; break;
case ')': tt - PPAREN; break;
case ', -: COMMA; break;
case '-: - EQUALS; break;
default: tt -INULDCHAR; break;

return(tt);

F-71

int
intaymbol (v)
it v;

C
it vv,

if ((-j >- 0) && Cv <- nextsymbol),) vv -symtable~v3.ivalue;
else V. - 0;

return~vv);

Float
f loatsymbol Cv)
it v;
C
Float vv;

if ((v >- 0) 99 (v <- nex<tsymbol)) vv -symtablelv).rvalue;
else vv - 0.0;

return(v.v);

char
wordsymbol(Cv)
it v;

char *,'v;

if C'v >-0) 99 <v - nextswmbol.) vv a smtableCvJ.word;
else v'-NULL;

return(vv);

void
tokenreseto)
/0 tofrenreget - initialize the symbol table pointer to top

nextsymbol -0;

F-72

Statistical Analysis Environment *0

SAE COMPILER

** File: cp.err.c
Original: ? April 1986 - K N Cole

00 Current: 15 October 1986 - K N Cole

00 Contains Modules:
errtext 00

#include <stdio.h>
#include "status.h"

/0 status and error information 1

char Oerrtable[] - C status code 0/
/0 NONE

"Not compiled", /0 UNCKD 0/

"VALID", /0 VALID
"VALID - Incomplete line", /0 PARTULD 0/
"ERROR - Non-speciFic", /0 ERROR
"ERROR - Invalid character", /* INULOCHAR 0/

"ERROR - Expected Filename or EJUIRONlENT". /0 EXFE 0/

"ERROR - Expected semicolon or left paren", ' EXSL 0/

"ERROR - Expected comma or ri;ht paren", /0 EXCR 0/

"ERROR - Expected semicolon at end of command", /0 EXS 0/

"ERROR - Expected argument (see language help)", /0 EXA 0/
"ERROR - Expected equal sign", /0 EXE 0/

"ERROR - Expected integer", /6 EXI 0/
"ERROR - Expected TABLE or LRT", /0 EXTIL 0/

"ERROR - Expected Fractic", /0 EXF 6/

"ERROR - Expected EXACT or ASYriTOTIC", .0 EXEA 0/

"ERROR - Expected integer or RANGE", /0 EXIR 0/

"ERROR - Expected left 7aren", /* EXL
"ERROR - Expected righl paren", / EXR
"ERROR - Expected comm ", , EXC 0/

"ERROR - Invalid integer or Fraction", /0 INULDNUM 0'
"ERROR - Invalid File name", 10 INULDFN 0/

"ERROR - Invalid word in source" /0 INULDWD 0/
};

V.

4W

f- 3

~/ .oo..e..*eeeDea.*...esseeea...ee.*ea...*s...*e.*..e...e* /

char
errtextCecode)
int ecode;
/0 errtext - returns a pointer to the error explaination

string when given a valid compiler error code.
0/
C

char Os;

s - NULL;
if ((ecode >- 0) && Cecode < MAXERROR)) s - errtablelecode];

return(s);
)

° ~

I'.-..

File: math.make

Current: 25 October 1986
#0 Capt. XN Cole

M IakeFile for SAE math functions.

OBJECTS - Math/Object,,bernpolW .0 rath/Object/coefs .0

rath/Object/prob .o Math/Object /beta .o

CFLAGS - -c -0

Source files for modules

table: S(OBJECTS) Iath/table.c Math/deFs.h Iath/env.h rath./table.h
cc -0 -o Math/table rath/table.c SCOBJECTS) -lm
rm table.o

irt: SCOBJECTS) Math/lrt.c rath/Object/compute.o Math/deFs.h\
Math.lenv.h Math/lrt.h

cc -0 -o Math/Irt Math/lrt.c Math/Object/compute.o\
SCOBJECTS) -lm

rm lrt.o

rath.'Object'/prob.o: Iath/prob.c rath/defs.h
cc SCCFLAGS) tath/lprob.c
my prob.o rath/Object

rath.'Object/compute.o: Math/compute.c Math/deFs.h rath/llrt.h
cc S(CFLAGS) !ath/compute.c
mv~ compute.o Math/Object

Math/Object./bernpoly.o: Math/bernpoly.c Math/deFs.h
cc S(CFLAGS) Math/bernpolW.c
my bernpoly.o Math/Object

Math./Object/coeFs.o: Iath/coeFs.c rath/deFs.h rath./env.h
cc SCCFLAGS) !ath/coefs.c
my coeFs.o Math/Object

Math/Object/beta.o: Math/beta.c rath/deFs.h
cc S(CFLAGS) rath'lbeta.c
my beta.o Math/Object

F-75

Makefilm v 3.0

Modified v 3.0 2 Oct 86
* Create LPT program and simplify Table program

Modified v 2.0 25 Sep 86
Combine Asymt and Exact directories

Original v 1.0 26 Apr 85
Create executable program from original source code

#

#*w by Capt. Kenneth N. Cole 0

For Dr. P. Nagarsenker 0
AFIT/ENC 0

OBJECTS - Object.-bernpoly .0 Object.IcoeFs .0
Object.'prob.o Object/beta.o

CFLAGS - -c -0

Source files For modules

table: SCOBJECTS) table.c defs.h table.h
cc -O -o table table.c SCOBJECTS) -Im
rm table.o

irt: $(OBJECTS) lrt.c Object/computa.o deFs.h lrt.h
cc -0 -o lrt lrt.c Object.'compute.o SCOBJECTS) -Im
rm lrt.o

Object/prob.o: prob.c defs.h
cc SCCFLAGS) prob.c
mv prob.o Object

Object/compute.o: compute.c deFs.h lrt.h
cc S(CFLAGS) compute.c
my compute.o Object

Object/bernpolW.o: bernpolW.c deFs.h
cc S(CFLAGS) bernpoly.c
mv bernpolW.o Object

Object.Icoefs.o: coefs.c defs.h env.h
cc S(CFLAGS) coefs.c
mv coefs.o Object

Object'lbeta.o: beta.c defs.h
cc S(CFLAGS) beta.c
mv beta.o Object

F-76

* File Name: deFs.h

Function: This File contains the definitions
necessary for the table and percent
programs.

*' THIS FILE IS INCLUDED IN EACH PROGRAM CODING.

History: 9 May 6 - Original by
Capt. Kenneth N. Cole

' general info /
#define boolean int
#define TRUE 1
#define FALSE 0

#define LIN1VAL 0.0000001
#define NEWTONLI1IT 26 .* attempts to reach limit 0/

#define MAXANSWER 80 /0 string storage size /

S/ .. *0....0***..00..000.005000.005S e..05 /

55 File Name: en.,.h (default file'

.' "" Function: This File contains the definitions
*0 necessary for the table and Irt

*" 5' program environment definition. 5.

50 THIS FILE IS INCLUDED IN EACH PROGRAM CODING. 05

* History: 9 Nay 86 Original by
Capt. Kenneth N. Cole

#define EXACT 1 /0 size of arrays

#deFine NUM 10

SF-77

o File Name: table.h

* Function: This file contains the definitions
necessary For the table program.

History: 9 May 86 - Original by
Capt. Kenneth N. Cole

.' TABLE program info ./
/0 range of failures

#define FINIT 4 .10 start: at least 4 0/
#define RINCl 1
#define PINC2 S
#define RSHIFT 20
#define PSET 20
#define RMAX 100

/0 range of number of samples *
#define PINIT 2 ' must be at least 2 0/
#define PrAX 6

#define ALPHA1 0.1
#define ALPHA2 0.05
#define ALPHA3 0.025
#define ALPHA4 0.01

#ifdef ALPHA4
#define MAXALPHA '-I
#else
#ifdef ALPHA3
#define MAXALPHA 3
#else
#ifdef ALPHA2
#define MAXALPHA 2
#else
#define MAXALPHA 1
#endif
#endif
#endif

F-'1B

File Name: lrt.h

*0 Function: This file contains the definitions

necessarW for the Irt program.

History: 9 Ma W 86 - Original by
Capt. Kenneth N. Cole

LPT program info *l
#define rINFAIL 2 /0 minimum failures per sample ./
#define MAXANSWE. 80 .'* length of user response £/
#define r1AXSAtPLES 10 /0 default number of data samples 0/

#define ALPHA 0.01 ' default level of significance 0/

F-.9

-U

U,..

, ,

F_,

.1:

U°.,

** File Name: bernpoly.c *0

* Contains Modules: com, b, bernpoly

o Current: 26 Sep 86

#include <math.h>
#include "defs.h"

extern int arraysize;
extern long float barrayg[;

M Module Name: com
= Function: Calculates the number of possible

combinations
** Inputs: n, i

Outputs: com (long float)
Calling Modules: b, bernpoly

* History: 8 May 85 - Capt. K.N. Cole
translated From pascal
(Original by Capt. Mark Amell)

long Float
com~n,i)int n,i;

C
long Float prod, En, Fi, Fj;

Fn n;
fi i;
Fj F n - fi;
prod - 1.0;
while (fi > 0.0)

prod - prod * (En / fi:,;
Fn fn- 1.0;
Fi - Fi - 1.0;

while (fj > 0.0)

prod - prod * (En / fj:';
Fn - fn - 1.0;
fj - Fj - 1.0;
I

return(prod);

F-8O

Module Name: b
m Function: Calculates the Bernoulli numbers 0
@0 and stores them in array (barray) *0

*" Inputs: none

Outputs: none 0
Calling Modules: bernpoly

0@ 0@

History: 8 May 85 - Capt. K.N. Cole
@0 translated from pascal Se

0 :(Original by Capt. Mark Amell)
00 00

@@@.@@00000000000000000000000.000000000000.00000..000000/

void
b()

long Float sum;
int i,j;

barrayEOj - 1.0;
for (j 1; j <- (arraysize+l); J++', C

sum 0.0;
for (i - 0; i <- (J-1); i++)

V sum- sum * com(J-l,i) barray[l];
barrayEJ] - (-1.0 0 sum:,/CJ 1);
}

for (j - 1; j <- (arraysize+l); j++) C
if (CbarrayEJ] < 0.0000001) && (barrayEJ] > -0.0000001))

barrayEJ] - 0.0;

h4

*~ F-8l

.4%

Module Name: bernpolW
* Function: Evaluates Bernoulli polynomials

*0 Inputs: n, x

Outputs: bernpoly (long Float)
*0 Calling Modules: ArCoeF, create jr

* History: 8 May BS - Capt. K.N. Cole
00 translated From pascal

(Original by Capt. Mark Amell) 00

boolean bFlag - FALSE;

long Float
bernpoly :n, x)
int n;
long Float x;

int i;
long Float sum, power;

sum - 0.0;
power - 1.0;

iF ClbFlag) C
bFlag - TRUE;
bC); /0 initialize barray 0/
I

For (i - n; i >- 0; i--) C
sum - sum + com(n,i) * barrayli) * power;
power - power x;
I

return (sum);

4-e

A

F-8

.4

,000

00 File Name: beta.c

Contains Modules: beta, betap, ibeta, loggam

Current: 29 Sep 86

#include <math.h>
#include "defs.h"

*0 Module Name: loggam 00

00 Function: Computes the natural log of the Gamma 00
0* function of n 00

00 Inputs: dx *0

*0 Outputs: loggam (long float) 00

00 Calling Modules: beta, prob *0

00 History: 1 Maw 85 - Capt. K.N. Cole 00

*0 translated from pascal program 00

00 (Original by Capt. Mark Amell) 00

long float
loggam (dx)

long float dx;
C
long float rdo,dy,dterm,de,da,db,domeg,dlggm;
long float ds,dz,dw,dv,du,dt,dr,dq,dp;

rdo - 0.0;
dy - dx;
dterm - 1.0;
de - 1.0;
domeg - 1.0e25;
da - 0.9999999999;
db - 1.0000000001;
dlggm - domeg;
if Cdx >- rdo) C

dlggm - rdo;
if (Cdx <- da) 11 Cdx >- db)) C

if (Cdx <- (da4de)) 1I (dx >- (db+de))) C
while ((dy-18.00) <- 0.0) C

dterm - dterm 0 dy;
dy- dy + de;

ds - de / (dy 0 dy);
dz - (long float) 0.0054i02564i025610;
dw - (long float) -0.001917526917526918;
dv - (long float) 0.000817508417518*18;
du - (long float) -0.000S9S23809S2360952;

F-83

% , A

dt - (long Float) 0.0007936507936507937;
dr - (long Float) -0.002777777777777778;
dq - (long Float) 0.08333333333333333;
dp - (long Float) O.91B9385332046727;
dlggm - ((dy - 0.5) 0 log(dy)) + dp - dy - log(dterm);
dlggm - dlggm + CCC(((dz ds + dw) ds + dv)

ds + du) 0 ds + dt) * ds + dr) * ds + dq) / dy;

return(dlggm);
}

* Module Name: beta
i Function: Calculates the beta Function of (p,q)

Inputs: p, q a

* Outputs: beta (long Float) a

" Modules Called: loggam
"" Calling Modules: ibeta

a" History: 1 May 85 - Capt. K.N. Cole "a
" translated From pascal a

(Original by Capt. Mark Amell)

long Float
beta (p, q)
long Float p,q;
C
long Float temp;

temp - exp(loggam(p) - loggam(q) - loggam(pq));
return (temp);

M

F--8

*5 S.

Module Name: ibeta
. Function: Calculates the Incomplete beta Function o

* Inputs: p, q, x
** Outputs: ibeta (long float)
** Modules Called: beta
, Calling Modules: prob, betap

** History: I MaW 85 - Capt. K.N. Cole 55

translated from pascal
(Original bW Capt. Mark Amell)

long float
ibeta (p, q, x)
long float p, q, x;
C
long float bint,pp,qq,dp,dq,xx,rxx,t,d,b,s;
int ick,iq,ip,iqm,i;

bint - 0.0;
if ((Fabs(x) <- 1.0e-17) : (x 1.0)) bint x;

else C
pp - P;
qq - q;
ick - 0;
xx " X;
iq - (int) floor(q);
dq - (long float) iq;
ip - (int) floor(p);
dp - (long float) ip;
if ((dq q) H: (dp -- p)) C

if (dp p) C
iq - ip;
pp - q;
qq - p;

ick - 1;
xx - 1.0 - x;

t = (long Float) 1.0;
rxx - xx / (1.0 - xx);
bint - t;
iqm - iq - 1;
if Ciqm 0)

for Ci - 1; i <- lqm; i++) C
d - (long Float) i;
t - t rxx (0 qq-d) / (pp+d);
bint = bint + t;
if ((logl0Crxx) + loglOt)) > 32)

bint - 1.0e36;
break;

F-15

else C
if Cxx > (pp/Cpp+qq))) C

pp m-q
qq - p
xx - 1.0 - X;
ick -1;

)itm(og la)10
bt - (long float) 1.0;

iq - (int) (qq + Cl.0-xx) * pp+qq));
*~ -m (long float) iq;

if Ciq -- 0) C
t - 1.0 - xx;
bint - t

else C
if (iq !- 1) C
rxx - xx /(1.0 - xx);
iqm - iq -1;

for Ci - 1; 1 <- iqm; I++) C
d - (long float) I.;
t m t *rxx C qq-d) / (pp~d);
bint -bint + t

t -t xx 0 qq-a) / (pp+s);
bint bint + t

while (Ci < 101:1
&& Cfabs~t/bint) > 0.0000000000000000000000001)) C

d m (long Float) i;
t - t *(pp + qq + d - 1.0) / (pp + s + d) xx;
bint -bint + t
i + 1;

b -beta~p,q);

bint m exp~pp 0 log~mm)) 0exp(Cqq-l.0)

* logCl.0-xx)) .' (blpp) 0 bint;
v IF (ick -- 1) c

bint m 1.0 - bint;

return (bint);

F-B6

Module Name: betap
m Function: Calculates the inverse beta function*5*

* Inputs: alpha, p, q
_ Outputs: betap (long Float)

** Modules Called: ibeta
Calling Modules: newton

History: 1 MaW 85 - Capt. K.N. Cole
translated from pascal
(Original by Capt. Mark Amell)

long Float
betap (alpha, p, q)

long Float alpha, p, q;
C
int jJ,jend,j,i;
long float dp,dl,dif,dlx,dux,dmp,decr,dmpu,

dm,dn,du,dfd,dabf,dfune,
espl,esp2,esp3,esp4;

boolean flag;
long float dargES], dFun[S];

espl - l.Oe-180;
esp2 - l.Oe-13;
esp3 - l.Oe-l1;
esp4 - l.Oe-lO;
dp - alpha;
dm - p;
flag - TRUE;
dn - q;
du - 1.0;
if (((dp 0 (du - dp)) < 0.0)H(C(dm < 0.0)11(dn < 0.0)))
dmp - 0.0;

else if ((dp 0 (du-dp)) -- 0.0)
dmp - alpha;

else if (dm -- 1.0)
dmp - du - exp ((du/dn) 0 log(du -dp);

else if (dn -- 1.0)
dmp - exp((duidm) * log(dp));

else C
Flag - FALSE;
dl = 0.0;
dif - 1.0/3.0;
dl-' - -dp;
dux - du-dp;
ii - 0;
dmpu - 0.0;
jend - 3;
while '(Jj < 25) && (!Flag) C

if (ii -= 25) jend m 3;

F-87
1 " - " , .:." .. ', f % ' ," . ' .''

ii - i+ 1
j - 1;
whi.le Ci <- jend) 99 (!Flag:') C

dmp -(du~dl).,2.0;

i - 1
if (((du-dl) < espi) 11 ((Cdu-dl'. < (esp2*dp))

&& Cdl > esp2))
flag - TRUE;

else
while (Ci < 3) 9& (!Flag)) C

darg~iJ - dl + Cdu-dl) 0 diF 0i
dfunli] - ibeta(dm,dn,darg~i3) - dp;
if (dFunliJ - 0) dmp - dargC13;
if Cdfunlii - 0)
flag -TRUE;

else if C~dfunE~.] < 0.0) && Ci -2:') C
dl -darg[23;

dlx -dfun[23;

else if Cdfunl13 > 0.0) C
du -dargti];

dux -dfunliJ;

if Ci -- 2) C
dl -darg[l);

-~ dlx - dfun[lJ;

else
i - 2;

if (!Flag) C
jend -2;

dmp -(du+dl)/2.0;

dfd dux-dix;
if ((dFd < esp3) && (dfd < (esp4*dp)))

Flag - TRUE;

if (!Flag) C
decr dux * Cdu-dl) / dFd;
dmp -du - decr;
if (((dmp-dl: < esplD

H1 (CCdmp-dl)l < esp2)1 && Cdl > esp2:K')
Flag - TRUE;

if (!Flag) C
dfun[3J - ibeta(dm, dn, dmp) - dp;
dabF- fabs(dFunE3J);
dFune dFun[3J;

Sif (((dabF < esp3)1 && (dabF < (esp4 0 dp,','
!I ((dmp < espi) H! (((du-dmpu.) < esp2)
&(du > o.SbS999999999:1:1 H1 'dFunC33 -- 0.0)))

Flag -TRUE;

F-88

iF ('Flag) C
iF (dFunC3] < 0.0) C

if (decr < (0.9 0 (du - dl))) C
dl - dmp;
dlx - dFune;

else C
dmpu - dmp;
dmp - 5.0 0 (dmp - dl) + dl;
d~une - ibeta(dm, dn, dmp) - dp;
if (dFune -- 0.0)

Flag - TRUE;
if (!Flag) C

if (dFune < 0.0) C
dl - dmp;
dlx dFune;

2

else C
du - dmp;
dux - dFune;
dl - dmpu;
dlx - dFun[3];

else C
if (decr >- (0.1 ' (du - dl))) C

du - dmp;
dux - dFune;
}

else C
dmpu - dmp;
dmp - du - 5.0 * decr;
dFune - ibeta(dm, dn, dmp) - dp;
if (dFune -- 0.0)

Flag - TRUE;
if (!Flag) C

if (dFune < 0.0) C
du - dmpu;
dux - dFunE3J;
dl - dmp;
dlx - dFune;
}

else C
du - dmp;
dux - dFune;

2))))}))

return(dmp);

F-89

F Pile Name: coeFs.c

Contains Nodules: Oueue, ArCoef, createCr,
createAjr, createWjr,
modR, modS

Current: 30 Sep B6

*include <math.h>
#include "defs.h"
#include "env.h"

extern long Float bernpoly(), ibetaQ;
extern long Float ka[];

long Float R[NUM+lJ, SENUM+l];
long Float ArENUM+13, Q[NUM+lJ, TrENUM+lJ;
long Float AJr[NUM+lJENUM+lJ;
long Float CjrENUM+I]CNUM+l3;
long Float WjrENUM+1I]ENUM+l3;
int arraysize - NUM;

long Float barrayENUM+2J;

#ifdeF EXACT
boolean exact - TRUE;
#else
boolean exact - FALSE;
#endiF

F-90

.4..

N Nodule Name: ArCoeF
Function: Calculates the Ar coefficients For

module Queue
CC Inputs: p. delta

o Outputs: none
0 6 Global Tables Used: kal)

o Global Tables Changed: ArC] CC
CC Calling Nodules: Queue CC

CC HistorW: Dec 84 - Capt K N Cole

5 Nov 85 - Modified for new Formula CC

void
ArCoeF(p,delta)
long float pdelta;

long Float Factor, partial;

int i, k;

ArCO] - 1.0;
Factor - 1.0;
For(k - 1; k <- arraysize; k++:, C

Factor - Factor 0 -1.0 / p;
for (partial - 0.0, i - 0; i < p; i+4)

partial - partial + bernpolylk~l, delta C kaCi])
/ exp(logCkaCi3) * k);

ArEk] - (Factor/,:long Float)(k ,k+l)))
C CbernpolgCk4ldelta) - partial),

I

4

%

F-91

L ".. .

" ..

1010 Module Name: Queue 00

o Function: Calculates the 0 coefficients for 00

module modR 00

e Inputs: p, 1, delta 00

Outputs:
, Global Tables Used: ArE]
SGlobal Tables Changed: Q[3

Calling Modules: modR

e History: Dec 84 - Original by Capt. Mark F. Amell
a0 1 May 85 - Headers Added - K. Cole

8 May 85 - Converted to C-language (KNC) "
19 Aug 85 - No changes For Exact model

void
Queue (p, 1, delta)
long Float p, 1, delta;
C
int i, k;
long Float sum;

ArCoef~p,delta);
1[03 - 1.0;

for ,i - 1; i <- arraysize; i++.1 C
for Csum - 0.0, k - 1; k <- i; k++)
sum - sum + k * ArEk] QEi-k;

QEi] - Cl.0/,:long Float) i) * sum;
F

}

-F-.

g. !

t' "V 2, ",.' ! , :'r' ' - 'o , " "*'s . ." "- V. "-' J*. * S.,' ", .. ' ;...- .. *. . ..-

N nodule Name: createAjr
Function: Build the Ajr ccefficients

Inputs: a, v
Outputs: none
Global Tables Changed: AjrE]
Calling Nodules: createCJr

H1storW: Dec 84 - Original bg Capt. Mark F. Amell m
8 May B5 - Headers Added - K. Cole '4

4., 19 Aaug 85 - No Changes For Exact model m

void
createnJr a,v):
long float a,v;

int l~m.rt;
long float sign, temp;

for (m - 0: m <- arraysize; -+m) Ajrm][O] - 1.0;

for (sign = 1.0, 1 - 1: 1 <- arragszze, ++) C
-" rt - i:

temp - bernpoly'rt,arraysze,a);
for (m - 0; m <- arrasize; --m)
AjrCm[l] - (signC'l *

. (temp-bernooly'rtarraysize,a+v+m"K',:
€ . sign - sign -

'--'3

N2

• ,5%,

.%.
4,'F ,

i .*.,. • ,.. -,, .,, ,- . , .•.-.,,., ... , ' , '--,,,.,, , " ,, ..., , .. -. ..._F-.93. ..,..

. Module Name: createCjr
o Function: Creates the Cjr coefficients for modR

o' Inputs: a, v a.
o Outputs: *0

Global Tables Used: AjrC]
Global Tables Changed: CjrE]

m Calling Modules: modR

, History: Dec 84 - Original by Capt. Mark F. Amell
0~ 6 May 85 - Headers Added - K. Cole
*0 19 Aug 65 - No Changes for Exact model

void
createCjr(a.*.')
long Float a,v;
C

int l.m,k;
long Float sum;

' create jrca,.,*)
For .m - 0: m <- arraWsize; m++)

NCjr~m]EO] - 1.0;
For ,:1 - 1; 1 <- arraysize; l++) C

for i'm - 0. m <- arraysize; m++.') C
For :sum - 0.0, k - 1; k <- 1, k++)
sum - sum * k AjrCm][k] * CjrlmJCl-k];

CJrEm]ElJ - sum ((long Float) 1;

F

.\P•

9F-

' odule Name: modR
SFunction: Creates the P coefficients for the

Function prob
o Inputs: a, v, p, t, delta

Outputs:
, Global Tables Used: QC], Cir:3

Global Tables Changed: PC]
" Calling Modules: main oe

S* History: Dec 84 - Original by Capt. rlar' F. Amell
i May 85 - Headers Added - K. Cole

P 8 May 85 - Converted to C-language (KNC o
0@ 19 Aug 85 - No Changes for E-act model

void
modP ca, v, p. t, delta
long Float a, v, p, t, delta;

long Float sum;
int i,k;

V createCjr 1- a,",
QueueCp,t,delta);
REO] - 1.0;
for i - 1; I <- arraysize; i

+ ' C
for "sum - 0.0, k - 1; k <- 1; k++*)

sum - sum - RCl-kJ 0 CjrC1-k][].
PE1i (0[1] - sum.) Cjr[1][0;

F.

f-MR

'S0

00 Module Name: createWjr
00 Function: Creates the Wjr coefFicients for modR

e0 Inputs: none

o Outputs: none 00

Global Tables Used: CjrEJ, ArE]
** Global Tables Changed: WjrE3, TrE)
e* Calling Modules: modS

HistorW: 20 Oct 85 - Original bW Capt. K.N. Cole ,

.%

4,void

createWJr(,
C
int ik,m;
long Float sum;

TrEO] - 1.0,

for 1 - 1; 1 <- arr-asize; I- :) C
For "sum - 0.0, k - 1; k <l i; k++)

sum - sum + ,.long float', k 0 (-Ar~k]) , TrEi-k];
TrEm] - 'l.O''long Float) i', 0 sum;

for 'i - 0; i <- arraUsize; i+) WjrEi][O] - 1.0;

for 'i - 1; i <- arrausize; i++)
For 1m - 0; m <- arrasize; m *, C

for 'sum - 0.0, : - 0; k <- i; k++)
sum - sum + ,'TrEk) * CjrEm][i-k]);

wjrEm]Em) - sum;

["F

~F-96

I000 000000000 00000000000 @ @ 0000

@0 Module Name: modS

* Function: Creates the S coefficients for the
@0 function prob

** Inputs: a, v, p, t, x, m
e Outputs: none
,* Global Tables Used: RE3, WJrEJ3
" Global Tables Changed: SE]
** Calling Modules: newton

@0 History: 20 Oct 85 - Original bW Capt. K.N. Cole 00

boolean WjrFlag - FALSE;

void
modS (a, v, x, m)
long Float a, v, x, m;
C

long float sum;
int i,k;

if (!WjrFlag) C /0 create WJr coefficients Of
createWJro);

.:" WjrFlag - TRUE;

SE03 - 1.0; /0 create S coefficients 0/

for (i - 1; i <- arraWsize; i++) C
for (sum - 0.0, k - 1; k <- i; k++)

sum - sum + (REk] 0 ibeta(m+a, v+k, x) * WjrEk][i-k]);
SEI] - sum;

''}

F-97

" ":

File Name: prob.c

*Contains Modules: pr-ob, newton

SCurrent: 30 Sep 86

*include <stdio .h
#include (math.h>
#include "cefs.h"

extern long Float loggemC), ibetao), betapC);
extern void modSO);
extern long Float RE3, kaE), SE);
extern boolean exact;
extern int arraUsize;

F-9B

SModule Name: prob
SFunction: Computes the distribution Function of x

SInputs: delta, a, v, p, m, x, limit
Outputs: prob (long Float)

SGlobal Tables Used: R13, SE3, kall
SCalling Modules: newton

SHistory: 1 MaW 85 - Capt. K. N. Cole

long float
prob (delta, a, v, p, t, m, x, limit)
long float delta, a, v, p, t, m, x;
mnt limit;
C
mnt i,k;
long Float tsum, t2, t3, Ki;

if (exact) C 'exact method 0/
tsum - 0.0;
t3 - (p *m) +- delta; /0 R 5

For (k -0, t2 - 0.0; k < (int) p; k++) C
tsum -tsum + ((t3 0 kalk] - 0.5) *log(kalki));
t2 - t2 + loggam(t3 0 kalk));

Ki exp(loggam~t3) - t2 + tsum + (v log((2.O 3.l~lS19)/p)));

for (i - 0, t2 - 0.0; i <- limit; i++) C
tsum - exp~loggam(m+a) -loggam(m+a+v+i));

t2 - t2 + REiA 0 tsum *ibeta~m~a, v+i, x);

tsum - Ki 0 t2;

else C /0 Aaymtotic Method 0
modS(a,v,t,x,m);
tsum - ibeta(m+a, v, x);
For (i - 1; 1 <- limit; i++)

tsum - tsum + (SEA) exp(i * log(m)));

return(tsum)';

F-)

*Module Name: , neto
*Function: Calculates the percentage point using

SO Newton's approximation method
55Inputs: delta, a, v, t, p, m, alpha, R @

55Outputs: newton C(long float)
*Calling Modules: table, camputepct

SHistorWj: 1 MaW B5 - Capt. K. N. Cole 5

long float
newton~delta, a, v, t, p, m, alpha, RR)
long float delta, a, v, t, p, m, alpha;
int RR;

long float z[NEWTDNLIMIT+2), paENEWTONLIMIT-23;
long float up, x, sign;
mnt k, done, limit;

z113 - betap~alpha,PR-t,v);
if Cp <- 3.0)

Zels - zEl) + 0.05;

if CzEl] > 0.05) Z123 - z1l) - 0.05;
else z[23 - zElJ.'2.0;

X - Z113;

limit - arrausize-1;
sp - prob~delta,a,v,p,t,m,X, limit);
pa[l) sp;

done FAPLSE;
for (k -2; Ck <- NEWTONLIMIT) && !done; k++)

if (ztk] ') 1.0) z~k) - zEk-1J + ((I - z~k-l)) /2.0);
x - k]

up - prob~delta, a, v, p,t, m,X,limit);

pack) - up,
if Cfebs~sp-alpha) < 0.0000001) done - TRUE;
else

z~k+i] - ztk] - Cz~k)-z~k-lJ) (sCp-alpha) /(sp-pa~k-i]);

if Czck~lJ < 0.0) zck~iJ - ztk) 2.0;
if (Cup > 1.0) 11 Cup < 0.0)) C

printfC"\nNewton.c: Incorrect Prob Value %f %f \n",x,sp);
done - TRUE;

return(z~k-1));

F-100

File Name: table.c

o Module Name: main
Function: This is the main program for the

percentage point table generation

0 HistorW: 8 MaW 85 - Original bW
Capt. Kenneth N. Cole

*0 2S Oct 86 - Modified for SAE system .5

#include <stdio.h>
#include "defs.h"
#include "table.h"

extern long float R13, S13;
extern boolean exact;
extern int arraWsize;
extern void modRo;
extern long float newtono, prob);

long float kaEPMAX I);

long float alistEMAXALPHAJ - C ALPHAi,
#ifdef ALPHA2

ALPHA2,
#ndif
#ifdef ALPHA3

ALPHA3,
#endif
#ifdef ALPHA4

ALPHA5t
#endIf
• 2;

main)
C

long float p, m, v, a, t, RR;
long float temp, prb, sum, delta;
int i, k, r;

/0 print header to identify program .'

printfC"*,nSAE Table Generation Program Version 2.O\n");
if (exact) C

printf("\,nExact Method is used in calculating
the test criteria\,n");

printf(" Maximum number of terms used is %d\n",arraysize);
k)

else C
printf("\,nAsymtotic Method is used in calculating

the test criteria\.n");

F-101

printF(" %d Terms used\n",arraysize);

for 1"p - PINIT; p <- PMAX; p - p + PINC)
loop on number of samples 0/

C

v - (p - 1.0) / (long float) 2.0;
a - C1.0 - v)/ (long float) 2.0;
t - (p 1.0) / (6.0 0 p);
for (i - 0; i < p; i++) kaEiJ - 1.0/p;

for Ci - 0, sum - 0; i < p; i++) sum - sum + 1.0/kaCi];
delta - (sum - 1.0) / ((p - 1.0) * 6.0);

modR~avptdelta); / initialize coefficients .'

printF("\n\n"); 11 print table header */
printf("Percentage points of L - lambda to the power (p/R)\n");
printF," p - %g samples \n", p);
printF(" R - %g x

(number of Failures in each sample)\n\n",p);
printF(" Level of SigniFicance\n");
printf("Failures 'k.3f",ALPHAI);

#iFdef ALPHA2
printf(" 04.3F",ALPHA2:,

#endiF
#iFdeF ALPHA3

printf(" L.3f",ALPHA3);
#endif
#iFdeF ALPHA4

printf(" %.3F",ALPHA4);
#endiF

printf("',nper sample\n");

For ,:r - PINIT; r <- PMA>:; r - r + PINC) C

if (r < (p+l:': r - ,int) (p + 1); /0 minimum value r - p4l '
printf,("',.n %4d", r);

m - (,:p (long Float) r) - delta) / p;

For (k 0 0; k < MAXALPHA; k++) C .e loop through alpha values 0/
prb - newton(delta,a,vt,p,m,alist[k],Cp-:long float') r));
printf(" B,6F", prb);

~printf("\n\n"),;

F-102

SFile Name: compute.c

*Module Names: readFileo)
computelrto)S
computepctoC

Function: Computes the LP.T Criteria and percentage

InptO point from the info stored.

readfile(fn)
00 computepct(alpha)

*0Outputs: 0

(long float) computelrt()
(long float) computepct()

Calling Modules: 0
main (lrt.c)

SHistory: 9 Sep 8S5 - Original by
Capt. Kenneth N. Cole

#include <stdio.h>
#include (math.h>
#include <ctype.h)
#include "deFs.h"
#include "lrt.h"

extern void modRo);
extern long float newton(), probo);

int sampcount - 0; /0globals

int fail - 0;
mnt sampfail[rIAXSArIPLES);
long float sampsumEf1AXSAt1PLES], sampsizeEHAXSA1PLES];
long float kaU1AXSAMPLES+1J;

F-103

01 *0

M Module Name: readfile
e Function: read data Files For the LRT program

*' History: 8 May 85 - Original by
Capt. Kenneth N. Cole

25 Oct 86 - Modified For SAE system

int
readFile(Fn)
char *Fn;
/0 readFile - reads the data File named (Fn) and

returns (TRUE) if all the information is provided

FILE *Fp, *Fopeno);
boolean error, getn;
char Oc, s[rAXANSWER];
int n, r;
long Float t, tt, maxt;

if (sampcount -- MAXSAMPLES) error - TRUE;
else C

error - FALSE; getn - TRUE;
maxt - 0.0;
c - Fn;

while (isspace(Oc)) c++;
if (Oc -- '-') C
printF("Enter Sample Size: ");
Fgets(s,MAXANSWER,Fp);
sscanf(s, " Od", &n);
C++;

getn - FALSE;
}

iF (fp - Fopen(c, "r")) C
if (getn) Fscanf(Fp, " d ", &n);
r - 0; tt - 0.0;
while (!FeoF,Fp)) C

t - 0.0;
fscanF(Fp, "%lF ", &t);
if (t !- 0.0) C

iF Ct > maxt) maxt - t;
tt - tt + t;~r+ ;

else
while (!FeoF(Fp) && (Fgetc(Fp) ! ",n'));

)

fclose(fp);
if (n < r) error - TRUE;

F-104

if CCtt -- 0) ::Cr -- 0)) error TRUE;

else C
printF("Readfile: can't open data file -> %s\n", c);
error - TRUE;

if C'error) C
tt - tt + CCn - r-) maxt);
5ampsumlsempcount) tt;
sampsizoEsampcountJ n;
sampFaillsampcount) r;
sampcount++;

returnC!error);

F-0

K%

/, .e.....*..*.****************.*..... *...***...**

* Module Name: computelrt
SFunction: compute the LRT value For the data read m

o History: 8 May 85 - Original bw
00 Capt. Kenneth N. Cole

25 Oct 8s - Modified For SAE system

long float
computelrt C)
/0 computelrt - Compute the test criteria From the data

contained in the global variables (sampcount, sampsum,

sampsize, and sampfail).
S/
C

long Float numer, denom, lrt, tempi, temp2, sum;
int i, J;

if (sampcount >- 2) C
sum - 0.0; Fail - 0; /0 total the Failures .'

For (i - 0; i < sampcount; i++) C
Fail - fail + sampFailEi];
sum - sum + sampsumEi3;

numer - 0.0; /0 compute the numerator 0/
For (i - 0; i < sampcount; i++) C
templ - log(sampsumEiJ/(long 7loat) sampFailEi3J;
for (temp2 - 0.0, J - 1; j <- sampFailCi3; J++)

temp2 - temp2 + templ;
numer - numer + temp2;
)

numer - numer 0 ((long Float) sampcount/(long Float) Fail);

denom - 0.0; /0 compute the denominator */
for (i - 0; i < sampcount; i++) C

denom - denom + log(sum / (long Float) Fail);
}

Irt - numer - denom;
" -["irt - exp~irt);

return(irt);

F-106

M' Module Name: computepct
Function: compute the percentage point needed

o History: 8 May 85 - Original by
* Capt. Kerneth N. Cole

25 Oct 86 - Modified for SAE system

void
computepct(alpha,lrt,pct,prb,limit)
long Float alpha,lrt;
long Float *pct, Oprb;
int limit;
/* computepct - Compute the percentage point necessary for

evaluating the LPT criteria at the values given
by the global variables (sampcount, sampsum, sampsize
sampfail and fail).
Also, compute the probability that the value of the criteria
is less than or equal to the LPT value given.
Values are stored in the locations pointed to by
pct -> percentage point For alpha value given, and
prb -> probability value.

5/
C

long Float m, v, a, t, delta, p, temp;
int i;

p - (long Float) sampcount;
V - (p - 1.0) / (long Float) 2.0;
a - (1.0 - v)/ (long Float) 2.0;
t - (p + 1.0) / (6.0 * p);

for (i - 0; i < sampcount; i++)
kaEi] - ,:long Float) sampfailCiJ *' (long Float) fail;

For (i - 0, temp - 0; i < sampcount; i-+) temp - temp + l.0/ka~i];
delta - (temp - 1.0) / ((p - 1.0) " 6.0);

modF(a,v,p,t,delta); /0 initialize coefficients

m - (,long Float) Fail - delta) ./ p;
*prb - prob(delta,a,v,p,t,m,lrt,limit);
Opct - newton(delta,a,v,t,p,m,alpha,Fail);

I.

F-107

/ ***.*....e...*.*........****************...***..**.*..*

00 O

00 File Name: lrt.c
00 0

00 Module Name: main
** Function: Computes the LPT Criteria From the input m

data provided.
** Modules Called: computelrt, computepct, readFile '

o History: 9 Sep 85 - Original by
Capt. Kenneth N. Cole

#include <stdio.h>
#include <ctype.h>
#include "deFs.h"
#include "env.h"
#include "lrt.h"

extern long float computelrt();
extern void computepctG';
extern int readfile();

main(argc, argv)
int argc;
char Oargv[3;
C
int p, sc;
char FnErAXANSWER], sEMAXANSWER3, 0c;
long Float C, prb, alpha, irt;

/0 print header to identiFy program 0/
printF("\,nLikelihood Ratio Test Program Version 2.0'.n");
#ifdef EXACT
printf("\,nExact Method For calculating test criteria"n");
printF(" Maximum number oF terms used: ;d',n",NUM);

-- #else
printF("\nAsymtotic lethod for calculating test criteria'n")i;
printF(" 'd Terms used\,n",NUM);
#endif
printf(" %d Samples maW be given,,n",MAXSAMPLES;
#iFdeF ALPHA
printF(" %q.3f Level oF signiFicance'n",ALPHA);
#else
printF(" Level oF signiFicance will be requested latern''

4#endif
p - 0; /0 initialize sample counter 0'
iF ':argc > 1) C '0 sample Filenames given in call 0/
while (--argc > 0)

iF ,readfile *++argv)) p++;

else C /0 no arguments ... prompt For inputs '

printF,7"Enter File name oF First sample: ");
gets(s);
while 0s) C

F-108

iF' :sscanFlcs, ''%5'', F'n))
if (reedF'ile(F'n)) p+.+;

printf'("Enter file name oF next sample:)

gets 5.';

if' (p > 1:) C
printF("'nSummary: \n");
Irt - computelrtc';
printF'("Test criteria From data Files - *%g\n", irt);

*iFdeF ALPHA
alpha - ALPHA;

#else
printF'("Enter desired level of' signiFicance:
5canFC"%lF", &alpha);

#end iF
computepct~alpha,lrt,&C,prb,NUI);
printF("".nProbability that LPT value is less than

or equal to %g~n",lrt);
printFC" when the sample populations have the

same Failure rate";

printf'("Pef'erence point T %4.3F' SigniFicance - gvn", alpha, C);
printV"ThereFore:\n");
if' 'rt < CD C
printF'"... Samples CANNOT be assumed to have come

From populations~n");
pr-intF(" with the same Failure distributions'n");

else C
printV'' ... Samples MA~Y hav~e come From populations

with the same'n");
printF7' Failure distributions.'n");

else
printf"-'nLPT: can't compute LPT From less than TWO samples'n'n';

F- lOS

.Vita

Capt. Kenneth N. Cole received Bachelor of Science degrees

in Business Management From the University of Maryland, in 1967,

and Electrical Engineering From the University of Florida, in

1980. He has also received the M.S.E.E degree from the Air Force

Institute of Technology (AFIT), in 1983.

From 1980 to 1982 Captain Cole was a Development Systems

Engineer for the Air Force Aeronautical Systems Division at

Wright-Patterson Air Force Base, Dayton, Ohio. He began Full-

time studies at AFIT in June 1982. He has an assignment to the
,%

Air Force Weapons Lab, Kirtland Air Force Base, Albuquerque, New

Mexico, beginning in January, 1987.

Capt. Cole is a member oF the Tau Beta Pi and Eta Kappa Nu

engineering honor societies and of the Association for Computing

Machinery and the IEEE Computer Society.

Permanent Address: 245 Aspinwall Road

Troy. Michigan '8098

VITA-1N

FI-I
I 0 o

Ad e

