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Preface

This dissertation presents the development of a method for
reliability analysis based on exponential failure distributions.
It has been said, if you can excuse the humor, that "we can learn
from our mistakes.” The current emphasis on reliability and
maintainability is a recognition that we must prepare to learn
from the failures before we start to design. Reliability is a
study of the past that determines the future. I truly hope that
this work will make that task easier.

I owe a great debt to my advisors, Dr. Panna B. Nagarsenker
and Oc. B. N. Nagarsenker, for all their efforts on my behalf.
They knew where ] was going long before I even started on the
right path. Their firm guidance was much appreciated.

I must, also, gratefully acknowledge the contribution made
by Lt. Col. Walt Seward. His suggestions helped to make great
improvements in the final draft.

Most of all, this work is for Suzan. She believed in me so
strongly, she carried me past all the rough places. My love is

hers, always.

Kennath N. Cole
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Abstract

One of the most frequently used methods for studying
reliability is the comparison of fFailure data. The analysis of
fFailure data can be made in a wide variety of ways, but the
formulas used are usually restricted to special cases of the
number of samples, the number of failures, and the expected
underlying distribution of failures.

This investigation defines a generalized 1likelihood ratio
test criteria for exponential failure distributions that is
applicable to any number of samples with varying sample sizes.
The formulas have been implemented in C-language programs as
practical algorithms for reliability analysis.

In addition, a software system has been develaoped that
allows simple construction of programs that will generate tables
of test criteria percentage points or automatically compute the
test value for multiple data files and report the result of the
test. The system includes a screen oriented editor working with
a line compiler for generating the test programs. The software
is designed to operate on the UNIX (a trademark of Bell Labs)

operating system.
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f Chapter I

N

! Introduction

i

'x, The management and maintenance of complex systems is an area

L~

V\ of great importance to the Air Force, as well as to private

&

) industry. The achievement of reliable and maintainable equipment
):

A; does not happen by accident. In the Air Force, it is mandated

"

::} that these characteristics must be considered throughout the

[k

. entire equipment life cycle, including the planning, designing,

K)

&

A developing, producing and supporting efforts (Ref. MIL-STD-785A).

Wy

;%j A key concept in this task is the analysis of statistical data to

gf determine the reliability and maintainability of those systems.
ﬂ? The formulas used to determine these characteristics can be

2; complex and, often, change significantly for each set of data to

el be examined (Ref. MIL-STD-785A, MIL-STD-781C). New developments

b\

‘§j in nrnumerical analysis are providing mathematical methods that
.w‘-

f?? allow computation of the necessary statistics across a useful

Y

5 range of data distributions.

‘xﬁ

K0 Problem Statement

e 1

[\ n

A The goal of this research effort was to derive exact and

l‘ﬁ asymtotic censored distributions in a computable form and to

R

P explore the development of a computer environment to apply

aly

N statistical analysis to reliability problems.

ﬂﬁ Background

D) ——————————

] The general concepts of reliability and maintainability are

ta¥,

. well established. Reliability is used to describe how “failure

' 1-:,’

b2

Lﬁ
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free” a system is likely to be over a given time interval. In
other words, reliability is the probability that a system will
not fail over a specific number of operations or aover a specified
period of time. Maintainability is the likelihood that the system
can be kept in a defined condition using prescribed maintenance
methods. When we have designed and built a reliable system, we
would like to keep it that way (Ref. AFR BO-5, Epstein 13853:437).
Quantative evaluation of these characteristics has come with the
advent of more complex systems. The result has been the
requirement that minimally acceptable standards be established
and met by new systems in all phases of their life cycles (Ref.
AFR B0O-5, MIL-STD-785A). Engineers and managers must be familiar
with the tools necessary to evaluate these characteristics.

These tools may be computer programs that can evaluate sets
of data, mathematical formulas for the statistics that apply, or
simply, rule-of-thumb judgements for making the decisions that
are necessary. Each of these tools has advantages as well as
problems.

Typically, rule-of-thumb solutions require expertise on the
part of the user for good results. While this type of evaluation
can be performed quickly and should not be ignored when applied
by someone experienced in the field, there is a strong dependence
on the user to understand the applicability of the rule and the
implications of the result. This expertise is not always
available to the system manager.

Correct application of formulas requires less expertise in
the field of application but, in many cases, more in

mathematics. Selection of the proper formula for a particular

1-2
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i:ﬁ case, and its cealculation and interpretation, may require a
;&h} statistician, The statistic that is used often depends, Ffirst,
7}% upon the type of decision that is needed and, second, upon the
%Ei amount or type of data available (Ref. AFM B0-5, Hogg and Craig
h:ﬁ 1878, Lawless 1982:29-31). For example, graphical examination or
ﬁh¥ "goodness of Ffit” tests can be used to determine if the data
ﬁ?l could be from an assumed underlying density. The Chi-Square test
kéf would then be selected if the sample size is 30 or greater, and
o the hypothesized density is discrete. A decision based on
gﬁg calculations, without an assurance of correctness, is less than
éﬁ: desireable.

;Nf‘ Computer programs can provide the user with answers quickly
;*ig and accurately. There is, again, the problem of applying the
?ﬁﬁi program where it is not designed to be used or writing a program
3$iﬁ which properly implements the mathematical solution. It 1is
$5ﬁ possible, however, ta have a program that is properly designed
:?g and documented to allow the user to apply modifications or
;gr, parameters that would adjust the program for the application
'jﬁf required.

iﬁ% Reliability and maintainability characteristics are

determined by the liklihood of an event. For reliability, it is

the likelihood of a system failure. Maintainability relates to
the likelihood that the system is in a certain condition.
Usually, these characteristics are determined from a relatively
small sample and projected for the future of a large number
units. This projection can successfully be made if the expected

frequency of the event can be determined from the data available.

A R R g g A gt
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In other words, if the distribution of occurances of an event is
known, then the characteristics of that distribution can be
assumed for the event and the probabilities of future events can
be determined (Ref. Trivedi 1882:2-3).

In many of these situations, the problem becomes testing
whether there are significant differences among the wunderlying
distributions of a number of samples. The result could determine
that the known characteristics of one group may be assumed for
another, or that multiple samples may be considered as a whole.

There are many examples of this type.

Example 1: A particular ajircraft part is being built by tuwo

different manufacturers. Is there a significant difference in

the reliability or maintainability of the two parts?

Example 2: A part is being maintained at several different

equipment depots around the country. Is there a significant

difference in the maintenance results at each depot?

Example 3: The failure times of several electronic computers are
recorded. How close do the computations of the failure rate for
each computer need to be before we can consider them to have the

same reliability”?

Example \4: A new design is to be tested. The results will be

compared with data collected on the old model. Is there =a

significant difference in reliability between the two systems?

The frequency situations where we wish to compare the

characteristics leads to the decision that a generalized method

Y OO SN FLIC LR R AT I C KGNy .4 AlS
SR R T s
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.\

‘2 for comparing the underlying distributions should be one of the
B\

'S'ﬁ’ First problems to be studied.

o

;5‘ As described in Chapter @2, the expaonential failure

distribution 1is, perhaps, the most often used distribution for

R
R
- p

lifetime modeling. Its use can be justified For mast complex

‘:}.—
o

systems with long lifetimes and wherever the failure rate can be
S demonstrated to be constant over a period of time (Ref. Lawless
)

“# 1882). This research examines the comparison of samples from

exponential failure distributions.

“R’ A partial solution to the comparison of exponential

K

ﬁﬂ distributions was developed by Epstein in 1953 for the restricted
L)

'l

S case of only two samples with the same number of failures in each

i sample. The goal of this dissertation is to extend this analysis
>$§ to the general case for more than two samples with unequal
Y numbers of failures in each sample. The mathematical formulas
iﬁg for these calculations are developed in the next chapters.

E%ﬁ In addition, a computer environment is developed which
'j demaonstrates the application of these procedures to reliability
;?5 problems, It should be noted that computer solutions for special
f:f cases (e.g. FfFixed number of samples, data sets of equal sample
.tf size, etc.) have been 1mplemented using standard programming
2:§ languages (Pef. Amell 1984, Lawton 13884). The environment
;%; developed in this dissertation is intended to provide a higher (

level of support when applying a gerneral solution which can be

v

:: parameterized to the special cases required.
\

R

)

‘¢

i Approach

30 This chapter has presented an introduction to this research.
:5.\
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The details of this work are provided in the following chapters.

PR

9,

b The second chapter presents the mathematical background and
" development of the formulas needed for using the likelihood ratio
LN,

f criteria in the most general case. The next chapter gives the
;: development of the statistic for testing for equality of the
; means of several exponential populations. The fourth and fifth
g

%: chapters show the derivation of the exact and asymtotic forms of
g' the cumulative distribution function ((C.D.F.> of the test
y statistic.

’ [ ]

a: The sixth chapter describes the application of these results
’ ’

% to problems similar to the examples given in the first chapter.
; Then, the seventh chapter discusses a computer programming
a

} environment that would support this application. The Ffinal

:; chapter contains the conclusions and recommendations for future

work.
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Chapter 11

Background

To effectively analyze the reliability of RAir Force systems,
or any systems, the measurements and concepts of reliability must
be precisely defined. In many cases, we wish to study the
characteristics of a large number of nearly identical systems.
Wwhere actual operational conditions and complex systems are
concerned, no two systems can be exactly alike. The failures of
such systems cannot be expected to occur at exactly the same
moment . But, if a large number of nearly identical systems are
examined, when goperating under similar conditions, then their
failures can be discussed in probabilistic terms. The analysis
aof system reliability must be, therefore, based on concepts from
probability theary.

These fundamental concepts of probability and reliability
are presented in this chapter. Discussion begins with the
applicability of the exponential probability distributicon ta the
study of complex systems. Then, we focus on the definition of
the exponential distribution and those related distributions that
are necessary for cur later presentations. The concepts of
'reliability’, 'failure rate’, and ’'mean time between failures’
are defined and their characteristics are examined for the case
where the wunderlying distribution of failures 1is expcnential.
System lifetime models are, also, discussed for the exponential
case. Finally, we define Type Il censoring and show how the

probability density Ffunction 1is modified when testing is

R N R R R A AT S AT LR RS F TORLS AT AR N O 108 SRR R g NS ERTY, N
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suspended after a certain number of failures has occurred.

The concepts and definitions that are presented in this
chapter can be found in many text books on probability or
reliability theory (Ref. Lawless, 13882; Kapur, 18977; Trivedi,
13882>. They are presented here in a concise form. In addition,
several theorems, not generally found in these texts, are
given in detail to provide the basis for the work presented in

the following chapters.

Exponential Distribution

Most models for component and system life and reliability
are based on the exponential distribution, which plays much the
same role in reliahility theory that the normal distribution
plays in sampling theory. 1t has been pointed out by Drenick
(Ref. 1860: 680-6380) that wunder some (reasonably?) general
conditions, the distribution of the time between failures tends
to the exponential as the complexity and the time of operation
increase. Early work by Sukhatme (Ref. 13937) and then by Epstein
and Sobel (Ref. 1953, 1954, 1955) and Epstein (Ref. 1954, 1360)
provided several results and popularized the exponential
distribution for lifetime modeling, particularly for industrial
life testing. Many others have contributed statistical methods
for applying the exponential distribution. The bibliographies of
Mendenhall (Ref. 1958), Govindarajulu (Ref. 196%) and Johnson and
Kotz (Ref. 1970: Chapter 18) give some idea of the large number
of papers in this area prior to 1870 (Ref. Lawless 1382).

In addition, the exponential failure distribution is also

important because it can be derived from the constant hazard

e-e
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‘gg fFunction, or failure rate, as will be discussed in a later
fEE section. When considering complex systems with long (several
i y years and thousands of hours of operation) lifetimes, the
;ﬁ; unstable periods of system installation and wearout can be set
=

"ﬁ% aside. The 1long period of a relatively fixed inventory
-~ maintained by routine repair procedures can be examined as a
.f population with a stable, constant failure rate (see Figure 2.1).
»;? This situation is typical of many systems in the Air Force
o inventory. Complex weapon systems like aircraft and motorized
i:? vehicles are, ideally, stable populations that are expected to
%; have 1long useful lifetimes. Supply system inventory items that
?f. are repairable systems in their ocwn right can alsc be modeled in
gﬁ' this way. System managers need to monitor changes in the Failure
ﬁ;ﬁ rate to properly evaluate the value of the maintenance programs
I being used.

_»:.\_

732 Thus, study of the exponential failure distribution has been
;?T selected as the focus of this research. Mathematically, a random
i) variable X is said to have an expcnential distribution if it has
?:' a probability distribution function (p.d.f.) of

Aty 0

% f L (:’L) @.1)

s (x) N e exp o

3

3.;’_ for % > 0. Wwe can write » X~ EXP(®) » to mean that X 1is
ft distributed exponentially with the p.d.f. of Eq. (2.1).

.gﬁi In our case, the random variable is the "time to failure” of
3; an individual system. The term ’'time’ will refer to the unit of
VA measure for the system, although the actual measurement may be in
;:: distance, operations, running time, flights, or any other
\§3
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measurable unit that is significant tc a particular system.
Generally, the lowercase letter 't’ will be used to represent

this 'time’ in the formulas used in this paper.

Chi-Squared and Gamma Distributions

Having identified the exponential distribution as the

assumed distribution of failure times for the samples in this

study, there are two other distributions that are important in our

work; the Chi-Squared and Gamma distributions. They are both
directly related to the exponential distribution, These
distributions will appear when we look at the total test time for
type I1 censored samples, later in this chapter.

A random variable, X, 1is said to have a Chi-Squared

distributiaon if the p.d.f. of X is

Coy = &XP (.E’!) xo‘;‘-l
22 (")

2.2>

2
for » > O. we will write » X~ X (h) ”» where we mean to use
the Chi-Squared distribution with the p.d.f. of Eq. (2.22.
A random variable, X, has a Gamma distribution with

parameters a and b if the p.d.f. of X has the form

- -1
g(x) = exp(‘g) ><(L

b [ (o)

2.3

For » > O and we will write " X ~ G(a,lo) " to denote this,
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X
zi From an examination of the defining p.d.f.’'s of the
)
?* exponential, Chi-Squared, and Gamma distributions, we can deduce
r the following equivalences:
Y X~X"(n) = G(%,2) 2.4
e
2
2 X~G(a,R)=z X~ X <?.a) (2.5)

4 X ~EXP(®) = X~ G(,8)

(2.6)

and we must alsoc make note of the relations expressed in the

iﬁ following theocrems.
!‘1
"
A,’!' Theorem 2.1: Let X~G(a,b) , then eX ~ G(Q,Cb), where c > O.
~;
4ol
'5 Proof: Let y = cx. Then dy/dx = c and x = y/c.
v S —————
g The p.d.f. of Y is:
K- 4y a—l x) |
‘ —
; feyy = g(x)l } exp ) ¢ 2.7)
- k dy E“F(o.) o7 ¢
ﬁ: So,
«Q.
o
a -1 - a-! -y .
@)1 () e
o
T () € b))
3
}:
o
Therefore, cX ~ CQ(Q,C\D).
by
.
bt
:3, 2-5
6
.:,;
.
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Theorem 2.2: {Ref. Barr and Z2ehna 1383: 25B) Let X‘u-Xn be

independent random varaibles with Moment Generating Functions
m.6.F.y My (far 1 = 1,2,...n.
19

Then the M.G.F. of Q‘X‘*Qz 2. F C\nxn is

M) = Mxl(cn‘h)- MXSO\JZ) ngﬁr&) 2.9

where Mx(t)is the M.G.F. of Xi .
8

Theorem 2.3: Let X\.UX; be independent random variables such
n n

that X'\~ G(Q-L.‘o) . Then ZX\. ~G(a)\3), where O = Z Q.
L L

Proof: By Theorem 2.2,

MX‘+X2+...1X (6) = :\_-\: Mx‘_(u

n

(-bt) (-t % (-t

_(Zay
(1- %) ("“Q) (2.10)

1

Therefore, é XLN G(Q-B) where Q =,Zno‘i :

val L2
Theorem 2.4: Let X,---Xn be identical and independently
n
distributed ¢i.i.d.) EXP(®). Then Z X.~ Gn,0) .
(g}

Proof : XLN EXP(@} implies X;~Cq<\,e> by Eq. ¢2.6).

Then, by Theorem 2.3, for a sum of independent Gamma

distributions

e e e e e A Mt T E Yt e, v
N ‘"‘h‘w: \“’ -'--"’- y “ ‘».-' -‘_‘-“!J_ '.".h
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L; X, ~ G(é,|,9> : 2.11)

Therefore _Z‘ XLN G(n,@)

Theocrem 2.5: If X"' G(Q,\O), then E-b)-(-N 12 (2_0.)

Proof : 'Y o~ C\(G b) implies % ~ G\(Q.a—é) = G(ow 2-),

2
by Thecrem 2.1 and this is equivalent to X (20) by Eg. (2.5).

Therefore, %’\’ ’Xa<20~3 .

Theorem 2.6: Let X,.--X“ be i.i.d. EXP(@)
Then Z_—@IN 'Xa<2_n) . where | = ;XL

Proof: Since x‘.--Xn are 1i.i.d. EXP(@) s T"'G(Y\,@) by Theorem
2.4. Then by Theorem 2.5, aT/@ must be a Chi-Squared

distribution with 2n degrees of freedom. That is
2T ~ 2‘(2\“) (2.12>

Now, we have defined the underlying failure distribution for
the samples and the related distributions that we will need for
later work. The following sections present the Ffundamental
concepts of system reliability with specific reference to the

the exponential failure distribution.
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Mean Time Between Fa:ilures

The 'mean time between failures’ (MIBF) is the expected time
during which the system will perform satisfactorily. It is
assumed that the system being examined is being renewed through
maintenance and repairs. This is typical of complex military
hardware systems during i1ts useful life. However, this does not
include systems that may be categorized as 'one shot’ situations
such as ammunition or solid fuel rocket engines. The discussion
in this research is limited to maintainable systems that are
repaired or replaced to support a constant inventory. The MIBF

is defined as
o

MTRE = E(X) = S’c £ dx (2.13)

@

where f(t) 1is the probability density Ffunction defining the
distribution of failures. The MTBF for the expanential density
function can be written as

o9

MTRF - {%ee(%)de - 0

¢

2.14)

So, the MIBF is equivalent to the defining parameter of the
exponential failure distribution function, theta, from Eg. (2.1).
The failure distribution function is, also, directly related to

the reliability function defimed in the next section.

Peliability Function

’Reliability’ can be defined as the prcbability that the
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ﬁé system will meet 1ts requirements under given conditions for a
i‘ specified unit of cycles. These cycles may be measured in time,
'5& completed operations or distance where applicable to the system
,%; being studied.

3% It is obvious that the purpose intended for the system

actually determines the type of reliability measure that is most

~;ﬁ meaningful . The degree of function necessary for the system to
§§‘ perform its mission can vary among systems and among the

different tasks performed by a single system. Each operation of
tsé a system may have a different reliability. Also, the reliability
132 of a system may vary at different points in its 1life, whether

that life is measured in time, operations or distance.

Cf In the following discussions, the term 'fajilure’ is used to
-

M mean the system 1is not able to perform as required. It must be

noted that this Ffailure, 1in the case of a large or complex

jﬁ. system, refers only to a particular operation under study. There
,.'-_’.:
kﬂ may, or may not, be other ocperations which are dependent upon the
; success of this one and their respective reliabilities will,
1%,
Wi therefore. be effected.
-_{
s
e The reliability function is the probability that the system
£ will not fail before a certain time. Mathematically, this can be
O
’ written as
‘s" »
2 R&) = P(x>t) (2.15)
o
iy where X 1s a random variable denoting the time of failure. If X
L
P,
s has a density function £(t), then
)
l"
MU (2.167
-,':
W
e
n .Q' a_s
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7
&k If the time to failure is described by the exponential density of
y
a% Eq. (2.1) then the reliability function can be uwritten as
N*_‘.‘
A o0
" \ (—9 ) -t
e Q(h\ = S/eexp /g duj = exp( /e) (2.17)
o £
l‘"l
w
! for t > O. So, we can see that the reliability function for a
!' N
& ' system having an exponential failure density is dependent only
R)
gs‘ upon the MIBF of that density. Thus, any comparison we can make
B
between the sample‘s MIBFs is equivalent to a comparison of the
1IN
4; corresponding reliabilities of the systems represented by the
e
?S samples.
.. al
*t At the beginning of this chapter we stated that the
;?j exponential failure distribution could be assumed for a system
~ud
‘E‘ demonstrating a constant failure rate. More precisely stated,
b
o the hazard function for the system must be constant. The terms
'3§ 'Failure rate’, ‘hazard function’ and their relation to the
rl
?:; system ’lifetime model’ are discussed in the next sections.
o
»
AL,
o Failure Rate
Py
l»; The likelihood of failure occuring within a certain period
t“i of time Ct.)tél can be expressed as the difference of the
(3™
f:: reliabilities at each time. Thus, the integral of the failure
N
% density, over a specific period of time, can be expressed as
*
"."
# . either
o\
o t o =
e £ (w) ¢ Cw)d
Lo = _ (2.19)
i W) dy (4 dy 4) dy
0".
i t L, L
.: ),
W
¥
oy
t:|
:,": E-lo
!"..
A%
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t?
S ff(updus = R - R, (2.19>
k

L]

The rate at which failures occur during a time pericd is
defined as the likelihood that a failure per unit time occurs in
the interval, assuming that a failure has not occured before the

beginning of the interval. This ’failure rate’ is

Rk -k (2.20)
(&) =
Htwtlt G‘.{'EJ Q(\:\\

This failure rate is shown as a function of time. As stated
before, the unit might be time, operations, or distance,

depending the nature of the system under study.

Hazard Function

The ’'hazard Ffunction’ is the instantaneous failure rate.
The hazard function indicates the change in the failure rate at
any moment in the 1life of the system. This is often more
significant than the failure rate at that moment, because it
indicates whether the system reliability is improving or
decreasing. For example, the stabilization of the instantaneous

failure rate could indicate the end of the system installation

phase or break-in period. Likewise, an increase in the hazard
functiaon value could indicate improper maintenance procedures or
the beginning of system wearout.

Equations may be derived, showing the relationships among

2-11

LS

. ..,
. -.\.n_ a4,

SN\l L AR K




' .‘.-"‘_ “ "" . . »;
o t":";%'t 2 'n.“:‘k'gJ yﬁ\g‘l’b?l WYy

the three functions; the failure distribution Ff(t), the
reliability function R(t), and the hazard function h(t). These
equations show that any two of these functions can be ohbtained

from the third.

O]
Q(h} (e2.21)

£
h(&) exp [‘ Sﬂh(‘ﬁ)d\ﬂ 2.22)

exp {' S:\f\(ﬁp d‘-’)] (2.23)

h ()

£ &)

1)

R&)

when the failure density fFunction is exponential, the hazard
function becomes h(t) = 1/MIBF, where MIBF = , from Eq.

2.14).

Lifetime Model

The ’lifetime model’ is a statement of how the hazard
Function is expected to vary over the life of the population.
Figure 2.1 shows a typical case with three areas of variance.
From t, to t, represents the failures due to materiel or
manufacturing defects. The second phase, from ¢, to t,
represents the random failures associated with unusual or extreme
conditions. Finally, the remainder of the curve, beyond ta ,
shows an increase in failures due to wearout of the equipment.

This study is concerned with the period of time where the

failures can only be attributed to unusual conditions, Betwean
f, and tz , the hazard function is constant. If the hazard
e-12
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RN Figure 2.1 Hazard Function Over System Lifetime
::of,ln

.
;V Function is given by

A

s::::. h(t) = I/Q (2.24)

e

dgty!

ey where 9 is a constant, the functions for Ffailure density and
(

‘ﬁ reliability can be found. Eq. (2.22) can be used to find the
] reliability Function.

1395

gty

K s t

5_“. -t

W R&) = exp [ S\ﬂ(upc\tj] s exP( /e) (2.25)

) ®

v

B

N and Eq. (2.22) can be used to find the p.d.f. for failures.
e

ot X

"uﬁ:b

1 4
u;}g- g’(‘ﬂ = hy e_xp[‘ Sﬁh(us‘)d(ﬁ] 2 \éexp (-t/@) (2.26)

o0

th

1

%Qﬁ Thus, the assumption of a constant hazard function implies an

o exponential density function for system failures.

h -\,

%ﬁ: That caompletes our discussion of the axponential failure

¥ e

il

‘f} distribution and how it relates to the cases we wish to study.
We now turn our attention to the data collected for the samples

2-13
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g to be compared.

1w

)
A Type 11 Censoring

.i Actual data of the failures in a population of systems often
l: comes with restrictions that make the analysis more difficult.
Lk It is rare that the failure time is known for every member of the
’G population, or, even, for every member of the sample.
E 'Censoring’ occurs when the exact failure times are known only
g for a portion of the population. Right censoring is the case
i\ when, for a portion of the population, it is known only that they
E did not Ffail before a certain time. Right censoring is very
;5 common in failure, or lifetime, analysis.

'? One form of right censoring is called Type Il censoring. A
vé Type 11 censored sample is one in which only the r smallest
L failure times are recorded in a random sample of n items. The
i: value of r is determined hefore the test is begun. Rll n items
% are tested simultaneously, but the test is terminated when the
0 fFirst r items have failed. The probability density function of
;x the samples with known failure times can be computed by

A8

35 ) ‘

oo Ly L) Ly Rt .27

he

o

h where f(t) is the p.d.f for each member of the sample that failed
. at time L;_ and Q({'r) is the reliability function for the
. remaining (n - r>) members of the population.

:t If the members of the sample have an exponential failure
b

. distribution, Eg. <(2.1), with the reliability function of Eq.
-. 2-14
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i:.
. (2.25), Eq. (2.27) becomes
L5
i?' r\
7
K | exp { (Z t + (n-ﬂtr)] 2.28)
(r\ r‘\ L2
A
<
23S
b which is the joint probability density function of all the
R members of the sample.
[
. Now, we can state a theorem about the total testing time for
"
"
uﬁ all the members of a type II censcored sample.
)
A‘!
t: Theorem 2.7: Let T be the total time on test defined as
,1'!
o r
a
5 T = zth +(n-r3£r (2.29)
<. t=1
b -:.
. q"“ ,
’ where the tLS are distributed exponentially with p.d.f.’'s of
oy
Nh Eq. 2.1) for 41 =1...r. Then T is a random variable whose
1)
. )
o distribution is Q(r Q).
iJ!c
;ﬁ Proof: Let 'tufz,usfr be the first r ordered observations of a
}‘I '
o random sample of size n from an exponential distribution
Dl
:g described by Eq. (2.1). Then we can show that the quantities \MQ
) for i = 1,2...r, defined by
i
-, \’\/n = n f,
'g

it
3
"

<n“'—+l)(t"'"ti-,) (e.30)
R for £t = 2...r, are i.i.d., also with p.d.f. ¢2.1).

r
—_—
Let | = ZE VJi. Then the Jacobian is given by

M
‘.;;;a.- 2

-
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.';ij,' (W,.. W) | - n! | c2.31)
X (t,-..t.) (n-r)!
:;;: Sol
.._q"
e

f,0) (—r\-n—\?\\, 2.32>

-
~
€
3
%
)

> -
-
-"
2
1

\ S wy
6" exp (‘ ;%) (2.33)

3%
e r —w
koo ‘ﬂ‘ exp( /@)
1 b = 69 (2.34)
i; =l
A ,
Fa
A Therefore, the WLS are i.i.d. EXP(@), which implies that their
v sum, | ~ C,(r‘,@},
Q% In this chapter we have described the exponential Ffailure
%ﬁ& distribution and discussed its importance in the study of complex
e
') systems or systems demonstrating a constant hazard function. We
;;b have defined the reliability function and demonstrated how &
'ﬂé comparison of system reliabilities may be accomplished by a
“*; comparison of the underlying failure distribution Functions. In
“i limiting our study to the exponential case, we can directly
w.':
- relate a comparison of the MIBF for a system to its reliability.
,I
- We have also defined the type [IIl censored sample and shown,
0
e by wusing relationships between several related distributions,
o
ng that the total time on test, for such a sample, is a random
P
variable with a Gamma distribution defined by the number of
2
;ﬁh failures, r, and the MIBF of those failures.
3
h“'Q
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<;: We are now ready to define the likelihood ratio test for
‘-‘( comparing the MIBF’'s of several type Il censored samples from
. populations with exponential failure distributions. This test

*QQ statistic is presented in the next chapter.
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;;ﬁ Chapter 111

f:? The Test Statistic and Its Moments
33
5& As we suggested in the first chapter, there are many cases
R': where we must determine if different samples could have heen
‘xé taken from the same population. Generally, this is dore by
jgg comparing the values of specific parameters of the population’s
f;ﬁ distribution (e.g. mean, variance, or both). The value of the
}q{ parameter is estimated from the data for each sample and then

l’gﬁ compared toc an estimate of the same parameter for the entire

_di population. Of course, to make these estimates comparable, we

Qgg\ must assume that all the sample populations have the same

QSE' underlying distribution. We are assuming an exponential failure
ii distribution for all sample populations.

o0 In this chapter, we define the test statistic for the null

if; hypothesis that the samples have equal means. Then we derive the

%f; moments of the statistic. In the next chapters, we will develop
E% the density Ffunctions that can be used to compute significance
iﬁf points of the test statistic.

X
ﬁf_ Likelihood Patio Test

ﬁ%ﬁ One method commonly used for testing composite hypotheses is

"Eﬁv the Likelihood Patio Test (LRT). As the name suggests, this is a

;{E ratio of the two likelihood functions. We can define this more

‘Eﬁ precisely as follows.

2\2 First, we define the likelihood function of the sample. Let
}; t,,_,én be the failure times of a sample of size n. Then the
ot
:: \
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likelihood function that the set of failures, t, has occurred
given the MIBF for the underlying distribution, L(t',9>, is

defined by

L(t;@) = :ﬁ: g(’&}@) ) (3.1)

where g(f;,;Q) is the p.d.f. of ‘t; for i = 1,2,...,n.
Now, let D be a parametric space of dimension p. Suppose
that H, is the null hypothesis that a collection of parameters

@=(QUGU...QP) are allowed to take values in a region within D.

l_(ﬁ : é} € Eza (3.2)

when D‘DéD. Under the alternative hgpothesis,u,. the parameters

are allowed to take values is some other region [X , Ssuch that

H| Qe D (3.3

where D = DQU Dn

As we allow the parameters to vary over the region ‘)g there
is some point, or set of points, where the likelihood function
takes its maximum value for the particular sample x,gn‘at L-(X,'@) .

If the parameters are allowed to range over the entire space D,

then

x ] hY Max , (3.4
rencqo L (X’ Q) > oeao¢ L (X’ Q>

[RY - oy
-
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The ratio L7X) where

gf?ﬁ L—<X}€9) €3.5)
LG = =
s L(X;9)

is called the likelihood ratio criterion for testing \lﬂ against

ll . Our test of \AQ versus \4‘ will be to reject LX¢ when

L) < C

where the constant C is chosen such that P[L(x)<C\\-\¢] = &
where X is the desired level of significance (Ref. Blake
1973:309). For example, if the level of significance is 0.05,
then there is a five percent probability that the tested
hypothesis will be rejected when it is actually true. In other
words, a five percent chance of mistakenly saying the MIBF's of
the samples are not the same.

OQur objective 1is to obtain the cumulative distribution
function of the likelihood ratio, in a computational faorm, soO
that the value of C can be found for any level of significance,
number of samples or number of failures. The first step is to
define, precisely, the likelihood ratioc criteria for multiple

samples.

Derivation of the LRT for Testing p Exponential Distributions

Suppose that there are p exponential distributions as shouwn

in Figure 3.1, Each has an exponential Ffailure distribution

function as defined by Eq. f2.12. Now, select a sample of size

N{ from each population. The samples are not, necessarily, of
3-3




population 1 e population i e population p

EXP(S,) EXP(9) EXP(S,)

t, <‘) t( (’) tp (’)
ty(C) 't;OT) tpO?)
r<€n, rn<n; e < Np

Figure 3.1. Samples From Several Exponential Populations

the same size. Failure data is collected for each sample as
described for type II censored samples. Let
t, (St @<t (<. £¢,(7) 3.7

be the Ffailure times of the first /,; items in the i-th sample.

Let the total test time for each sample be

r
T, = 286 = (e-r)E () 2.0
j=

for i =1 ... BpB. Then 7” C3<",l>bg Theorem 2.7. Now, we
shall state a theorem defining the likelihood ratio criterion for
testing the hypothesis that all the populations have the same
MIBF against the general alternative. Then, we will find the
moments of the test criteria to prepare for the derivation of the

cumulative distribution function.

RO ,,l.n, X nn. A l.‘ Yon .l. 't : N'h"h\ h"l“ .‘. "t“.o."" "l:‘!ln 1, . X) !’"Ju".!""n‘!‘n‘?h oty ’imm
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Theorem 3.1: The likelihood ratio criterion for testing

Ll” L 0,6, ... - G;P €2.9)

for p exponential distributions, against the general alternative

is given by

Q (3.10)

I
—_
where Q’-.er; .5 are defined by Eq.
[

and the (3.8).

Proof: We know that the joint p.d.f. of ¢,()% t,@e.. €t ()
is given by
. | |\
g(ﬂ Q) - ‘ \ (-@_) exp( \) 3.11)

<n1‘ﬂ3. . S

for the i-th sample. So, the combinad likelihood is

L(x;0.8,.6)- KT | ee(g)] e

where

n, !

K= T ey

Under the null hypothesis \—\,, we have @;=G for all i, where Q

is unknown. So, the likelihood function under 1J¢ is given by

ofa, l ..0'. f ] ,.l' l" I'q.i



L0 KT L) ere (%) |

We then estimate G; by maximizing the likelihood.

P
o Let R’Z Y.. Then
L=

¥, l R P :
" L (X’ @) = |< <6) exp L%T;/@) €3.14)
X By taking the natural log

P n L(x:0) = WK -RWO-2T g  @ua®

el

i Taking the derivative

g dln L(X;8) - ; : (3.18
: R

L=\

- and setting this equal to zero the maximum for L(X;Gﬁ is found

~ i
‘3 @ - -‘Z,TL/Q (3.17)

Under the unrestricted model, we know that the maximum likelihood
-, estimator of ég is

and A

P : ¢3.18)
‘t::: QL = _r“/r '
[ 5

,Eﬁ for the i-th sample (Ref. Trivedi 1982:483).

So, if we substitute our value for © from Eq. (3.17) into Eq.

et (3.13) we get

- 0 OO O T O Y OOV SO L P AN NN i L
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s and

o mox L (X;8) = K 22— oxo (-2) (3.205

!‘l'. L R
L X e € Dp <Z T" >

4 where K is defined by Eq. (3.13), For the unrestricted case, we
w1y A

substitute for @;_ from Eq. (3.18) into Eq. (3.12) giving

mox L(X:0.0.) - Kfr exp [_T"/(Ti/ﬁﬂ

P
)
‘ 1§
Lt T i (3.21)
:E:: 0eD (‘\,/Q) -

5 P Rt
i = \{'}:Y\ (%—LTQ"?GQB (3.22)

e and, again, K is defined by Eq. (3.13). So, the likelihood ratio

bty from Eq. (3.20) and Eq. (3.22) is given by

ég mox | (xX:0) Rgﬁ_ (Ts.)q

'>\ - 8<%¢ = ¢3.23)

B w25 L;0.0) (TR TT(m

or

A
—x =T Q{“ (3.24%)

DXt 4
CRENIOOLA N

e K o
OSSO SO

0y




1. |‘

ﬁm

o

X

Q; Derivation of the h-th moment of the Statistic

k)

o

»ﬁﬁ With the test statistic defined by Theorem 3.1, we now wish
& to find its moments which will be used in the next chapter to
[

:,% obtain the density function and the cumulative distribution of
:fq the test statistic. We begin by stating a theorem.

‘4&4 Theorem 3.2: The h-th moment of the statistic defined by Theorem
“

il 3.1 when \4¢ is true is

e R e -hny
noN hy _ R 1 () v 04 T (e (hel)) €3.25)
.: ‘ £0) INCICEH RS ()

Proof: The h-th moment of the statistic in Eq. (3.10) is
a3 Rh hr
b e AN :
\h R T, P>
e, E(l)“ e gTr — - d dT,...dTP (3.262
% =1 .
! II‘Q ] 5& -
.5::;; T7>¢

R e hn P .
hn E[}TTL exp (O'GZT:- (3.27)

ol'r
e “do”

i.: where F’Cﬁﬁ is the p.d.f. of Tz . For justification of the
¥y operation in Eq. (3.27), see Stekloff (Ref. 1914) and Wilks CRef.

1967>. Now, define

f:_;‘ @(o—) - F [il-‘-Tthexp (U._ZP"R)] (3.28)

|'| 3-8
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t.fﬁ S (R (5 apuer £

o ©)~ _TT‘T'-L P(Mexp(6ZT)dT,..dT,  c3.29

Bl L= L)

. T>@

v

Do

ReX Recall from Eq. ¢3.8) that 1.~ G(x,0). so, Eq. 2.3 can e

b

ot used as the p.d.f. of the test times and Eq. (3.29) takes the

i; ) £

’%:'l : orm

LR

; 8 P hr; g e .\’{“ -ll

B @«T): S"ST.VTL exp (O.Zﬁ\“m)ﬂ---“f (3.30)
. R I YR |

o T>9 :

B

I Then

Eiﬁ' l P h

“ 2t @((ﬂ = gSW R A oT -T; (3.31)

el ) JRLE e (T B0 ar]

i B T >@

R

. - T (hr+n) 3.3

Ly T e n ! \ norn

o Ther = ()

AN W v N

Pl

[ah 14 o »

o Which simplifies to

t"

¢ ‘1: hr

i.. ! P e‘_ . P r“ r: hat

E"". @ (o) = Tr — T (i +h?}m €3.33>

"".‘% v2 P(r{) L:. (\ -~ GQ.:) [} t .

Under the null hypothesis we have g;_’@ for all i = 1,2...p.

So, Eq. (3.33) can be simplified to
p

@(03= Q" TU T )

(S ]

J’_]‘_ r__‘(r:) <\_ 0@7Rh+ﬁ

(3.3

- .
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Rh
¢
@(o—) = T\" (3.35)
iT ey rnem (1-06Y°
P
where $=Rh+*R and R= gh
Now, we pause to consider the derivatives of (\- O'QX >
- -%-1
d/dc“ (1-00Y* = -s(1-00) " (-0) (3.36)

= sQ(\- c@)'““\

cl/d (\_3@) . 50 (s (1-00) U (:0) (3

.37)
- 5 (50 (- Q) &0 @7
/olor(\ 00) 5« 5 (s+0). (5er-D S (1-o@Y T 3.38)
So,
.. -s -Rh
d/olcf (1-o0) p g  '® s
r=-Rhn rﬂ(Q\\*’QB
Using Eqs.(3.39) and (3.35) in Eq. (3.27) we have
EQ)- R 7 Cd 7@
TJ:Q T ey TR
So,
Rh
hp rﬂ(\"\f\w‘» (3.41)

E() - BL®r

[T(Rn+R) i )

3-10




is the h-th moment of the statistic given by Eq. (3.10). This
proves the theorem.

In the Ffollowing chapters we will use the moments of the
statistic to derive the probability density function and then the

exact and asymtotic forms for the C.D.F. of the test statistic.

3-11
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&i‘ Chapter IV
ik
:"':- Exact Distribution of the Statistic
M
‘sﬁ . e
HSN In the previous chapter, we defined the test statistic for
\ 1]
W8y
ﬂ% comparing the MIBF's of several populations, with exponential
A A
' distributions, by a ratio of likelihoods. In order to apply this
SN
 :§ statistic it is necessary to know the probability distribution
W
'g$ for its values and have a cumulative distribution function from
eenr which we can compute the expected value of the statistic for a
V%J . : .
ﬂy given probability.
Y
;u* In this chapter, we obtain the cumulative distribution
: fFunction of the test statistic in a computational form. The
.. -
Nad
f; inverse Mellin Transform is used to obtain the probability
T
SAS
e distribution from the moment function that was derived in the
[ ]
. last chapter. Then the asymtotic expansion of the Gamma function
Rl
P
1?3 is used to obtain a computable form of the cumulative
AN distribution Ffunction of the statistic.
)
l.-J
ait: Lemmas
K.
72& The following results are needed for the derivations
** presented later in this chapter.
200
o |
b&, Lemma 4.1: (Ref. Anderson 1958:20%) The following expansion for
(XY
253N the natural log of the Gamma function holds:
e
L I r—ﬂ e
-j n <X+\r\\ = ,n(2?> + (x«-h—‘/g) \nx
h _.f-
o "
i -x -2 8., (h) +R__(x) (4.1)
;::. > rer Clra) xT ™ '
?Q;
4
' "‘: 4-1
[
L L4
::::’5."-'.’- Rl - . - - - LI \.- -“.." “w \."u T N ) » '-_\ - - W ™ 0 L] - LM - "V‘i ™ - - '."J,",I.‘ - - -
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where Qm(X) is the remainder, such that \Qm(xy\é C‘/xm\ for
some constant C independent of x. ESP(FB is the Bernoulli

Polynomial of degree r and order unity defined by

texp(ht) _ g % B,.(W)

4.2)

exp(t) -\ r=¢
The first three polynomials are

B, (h)

B, () = W-l*

3 3 2 \

B, () = W- (s (B
Lemma 4.2: (Ref . Kalinin and Shalaevskii 13871) Let the
asymtotic series )éa X converge to the function g(x) in the
neighborhood of x = @ (or be its asymtotic expansion when

x = @#). we then have
3
exp (%(Xﬂ = 1~ i— B;X 4.3)

where the coefficients B

N satisfy the recurrence relation

)
B = + 2k, By 5> |
d k-

\

and %¢’ \

R L R R A AR R LR « g J
‘.ﬂ_ﬂ__h 1._{.‘_1. '{‘m\, {"' o, n.:f.n...[\i_.ﬂ.f..’m}n“" _:3‘



9
R
;' Lemma 4.3: (Ref. Norlund 1916, Nair 1940) Let @(4:)‘- E(Xt) be
§ the moment function of a random variable X with density function
" F(x). 13 (E(£3=O<t—k> with the real part of t tending to
: infinity, then @(&.\ has the following exact representation as a

factorial series:

(4.4)

i (tra)
@ © = ‘—ﬁLt+a+\<+n3

where a is a constant.

Derivation of the Probability Functions

» Now, we are ready to state our goal and derive the C.D.F. of
&

Q the statistic.

) L_ A

. Theorem 4.1: Let ":\ Then the cumulative distribution
[
;Q function of L is given by

N

,¢ Y_1

¥

' m+0 (4.5)

: F‘(X\ = K ZQ Ix \mto v 5 ( )

' \/‘Qm-\-&-\-v-vl:)

o

N where

(5. k) -
L=l i‘: Y'CQ\() ) (P-\)

(2~> TF\(Rk ye. F(Q) §=

7N

‘ (R-8)
m= — )

’ 9

o also ° v

g o.i =Y ke B 0 RIZG
v= 5 Q= 2 ) L 12

- 2

"

1

-
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Proof:

Replacing h by ph/R in Eq.

(3.28Y it follows that

(’“r « (R)-ph)

E(Lh)‘-'- R T—‘(Q\W (‘

4.6)
Y—2Q+§*{) L) Y—aﬁ)
P
Let r}/ﬁ = \<-\ , SO that Z_ \<.‘ =
Then we have, from Eq. (4.6),
-ehk:
? v
E(Lh> _ () T Lke T {Rven) k. | 7

Using the inverse Mellin Transform,

T (Rrph)

the density function of L is

given by
g r“(g) s &)ZH TI-B< rﬂQm\n\\«‘] ah (4.8)
A = TTRQ\O Wi ] \._‘<Q+p\'\3

Q-'\_ao

Define pm =

So, we have

L4 o0

R—-S , where 8 is a convergence factor chosen later.

WPM*S*Pk3\1 dh (4.9)

P
g [~1(F§3 ~h-1 [T k
kx\ = —3 X
2w WITR)

Now, define k=w\+k,

have

..1'4."1' -‘r$ pLL o & ‘l'(."«. N{.\‘:." " ... () n"

so that h= ‘t-m ,

T (pm+8eph)

and from Eq. (4.9) we

‘,.-.l‘" i o N B V. -- T N » A
h.l...!'"n{‘\ q..,u N ' 3 ' \ .'..l'l“' .l.q.l-:,.“,..l‘

‘-’l.c.i!'r t'
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a0

-pk (k-
S = — ) g't"“'n L™ e da
U (pt8)

(4.103

or ] aoo
M-l —— ‘P"“\'“\'.
) i J
%KX\ ) r—‘(ﬁy X L\.?‘ \(L SX @Qt) &t 4.112
IE‘_QRk:) 2wi e
where

Using Lemmas 4.1 and 4.2 we have

@(’c\ ) [(Z?YP_V,T?KSK-»Z {VD Qv ] @aa
LY Y Iy

and the q- coefficients are determined by

q = _)r: ?“Ak%"k

and the ﬁ\ coefficients are given by

(Y (B (8)- Z B (k)]

i

A, - ~(rae) "

¥

-

for r 21\ .

'*-"\."\ \
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Then Egq. (4.122 shows that

Dw | O

(4.130

with the real part of t tending to infinity. Therefore, by Lemma

‘$.3, @(’L\ can be expressed as a factoral series:

v e -y o o
@@3 = KZ’R‘\I P—V.}I\:kt 2] éQ; ‘\,_Tr;f—i%”.bx (4.14)

where a is a convergence factor chosen such that R\= @,

giving Q=<"V\)/2 (see Appendix A). Also,
2

with Q | and

D = i\‘C-L O
k=i !

L)\"

with ’D-t';'\ and

o B (0) - B, (s
CL"A ) < m Y‘(r‘«-\\

Using Eq. (4.192 in Egq. (4.13), we integrate the series term by
term (since a factoral series is uniformly convergent in a half

plane (Ref. Doetsch 18713), giving

4-6
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- = R. X Q-x)
‘§kX) k( ;§¢ L ‘ﬂﬂCV+L\ (4.15)

where

Y Ay Rkl TR
K- L] M o
TR

Now, choose ) such that 1\\=Cb in Eq. (4.10),

This gives us

S - [(ék[')-l] /6 (p-1) C4.18)

(see Appendix A3. The C.D.F. can now be obtained from Eq. (4.

by integrating.

E = 3 <. Ix("\ﬂx,\nl \/‘<m+°~\ (%.175
\— <X\ K LZT ) \ r‘(m+c\+v+ﬁ

where K is defined by Eg. (4.15J) and ]T,(f) is the Incomplete

Beta function with parameters p and g, defined by

X

T, (e Q) = X —(—Q(i\
R VL CRY

where /3(() is the Beta function.

We now have a computable form of ¢the C.D.F. Ffor

statistic L. This will allow us to directly determine

115
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probability that the value of the statistic is less than or equal
) to a given value when the tested hypothesis, \l¢ , is true. In
the next chapter, we will derive an asymtotic form of this
"\ distribution that will be useful in computations where the

N numbers of samples and failures are high.
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Chapter VU

Asymtotic Expansion of the Exact Distribution

In Chapter 3, we defined a test statistic for comparing
multiple samples from populations with exponential Ffailure
distributions. The distribution function, derived in Chapter 4,
allows us to directly compute the probability that the statistic
is less than or equal to a given value when the MIBF’'s of the
populations are, in fact, equsal. In cases where the number of
samples or failures are large, it is useful toc have an alternate
method of calculating the cumulative probability. Ideally, this
method would provide a more efficient calculation method and
asytotically approach the exact value of the probability Ffor
larger parameter values.

In this chapter we obtain the asymtotic expansion of the

/R
test statistic, Lﬁ=<\ . This asymtotic form of the distribution

is wvalid for moderately large sample sizes (total number of

failures above 100).

Lemmas

As in the derivation of the exact distribution, the
definition of a lemma will help to simplify the derivation of the
asymtotic expansion, The major step in the derivation of the
asymtotic form of the C.D.F. is the expansion of a ratic of Gamma
functions. Lemmas 4.1 and 4.2 can combined to fForm the following

lemma.
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Lemma 5.1: (Ref. Nagarsenker and Nagarsenker 1984:358) It

follows immediately from Lemmas 4.1 and 4.2 that the following

expansion for the ratio of two Gamma functions holds:

[ (ms+a)
M (msvaav+k)

where the coefficients C:kr satisfy the following recurrence

relation:

r
| X
C‘k,\" ) —T-: Z )Rk’sc‘k\r.

j= >
C. =

k,@

and

Ak‘r“ r‘(r‘ﬂ\ [B‘” (oevak) - B, L“\’]

Jerivation of the Asymtotic Expansion

In proving the following theorem we expand Gamma Ffunctions

found in the distribution Eq. (4.5).

Theorem 5.1: The asymtotic expansion of the distribution of L,

in terms of m increasing, is given by

k
Foo s Tmrany+ 2 2200 s

where

]

R |
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as were stated for the exact form of the C.D.F. in Theorem 4.1.

In addition,

:Sr = .Zi E33]:x(}n+o3v*«f)‘vvé
y =

AN
and

"
\A/L - ZTkC'L,r'-k
) ke

—Y; =7 ﬂxr

where ;lr. is defined in Eq. (4.12) and Clgr is defined by Eq.

(4.14%).

Proof : Using Lemma 4.1 on the definition of X in Eg. (4.5) we

obtain

1,

K:mv[\+l~5+_§_...’) (5.3)
me 3

when 8 is chosen so that T:" ¢ This results in the same value
for & (Eq. (5.2)) that was necessary to make £\|=§D in the
previous chapter,Eq. (4.16) (see Appendix A). Also, the —r;

coefficients are related to the /\r coefficients of Eq. (4.12) by

¢ '11-.—&‘.)- 2. (5.

k We can now use Lemma 5.1 in Eq. (5.3) to obtain
¥
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(5.5)
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K which can easily be expressed in the form given in Eq. (5.3).
Rl The following corollary to Theorem S.1 can be used to
fats further simplify the calculations when only two samples are

oS considered and the number of failures is the same in each sample.

- Corollary 5.1: If P=?- and \<|=\<?_=\/2, then the asymtotic

R expansion of the distribution becomes

: FCX\ — Ix <m+a)v\ (5.6)

J, and is precisely the same as the exact distribution of L.
-,_'t" !
‘rﬁ Proof: First, when P'—‘l Theorems 4.1 and 5.1 give us |
o o

KT, -\ \

V= —/ = (5.7)

y z = 2

st

A

:“' Q: l-v _ \/ (5¢8)
Ve

el and ‘<, = kz means that

Je4Y

Y
"'- 8 = [</ 4 ‘\] /62 = (5.9)
My

'.‘"‘ ‘ and

R
i R-S
0 m= 22 _ R | (5.10)
P 2 4
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In Theorem 5.1 (Eq. ¢(5.2)), it can be shown that the ~Sr
coefficients all become zero for these values. In Theorem ‘4.1
(Eq.(%.5)), the values of ‘?1 become zero for i > O and both

Egqs. (4.5) and (5.2) then become

FOx) = Ix <“‘*‘1)V3 (5.11)

Thus, the corollary holds for two samples with esqual numbers of
failures.

Now, we have a test atatistic (Thecrem 3.1) and two methods
of calculating the cumulative probabilities Ffor its value
(Theorems 4.1 and 5.1). Although these equations are more
complex that [ would like to try on a slide rule, it would be
straight forward to apply these thecrems to any number of samples
containing failure data, compute the value of the statistic,ik 2,
and determine the probability that the statistic was less than or
equal to that value when the samples came from populations with
the same failure distributions,

In the next chapters, we will discuss the practical
application of these results to the types of problems described

in Chapter 1 and the development of supporting computer software

to provide solutions for the most general cases.
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'*& Chapter VI

oy

mp Application of PResults

5: In Chapter 1, several examples were given, of problems which
Asﬁ could be solved by analysis of failure data. In this chapter a
“ method for solving these problems is discussed. AN approach for
N

ﬁ; the analysis 1is defined in the first section. Then, the
b,

*ﬁ application of the thecorems from Chapters 3, 4, and S are
T

- discussed. The data and assumptions are examined and, finally, a
.

{2 sample problem is presented to demonstrate the application of the
N
:#f mathematical results.

| M

-
o

f} Approach to Solution

)

o All the example problems from Chapter 1 may be solved in the

same way. The approach is, simply, to determine if samples taken

from each group could have come from the same distribution by

!;E examining the expected MTBF of each sample.

;) In Chapter 2 it was shown that it is reasonable to assume

:; the underlying distribution of failure times 1is exponential.

:Ef This exponential distribution can be defined by a single

‘ parameter. the MTBF (mean-time-between-failures).

';% Relationships were also presented among the characteristics
~

j: of the exponential distribution, showing the reliability and

;\ hazard functions are determined by the MIBF. Then, all of the

“fs example problems can be reduced to a comparison of MIBF’'s For

T&S samnles of failure times from each situation under study. The

;; difference in MTBF’s can be translated to a difference in failure
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gﬁ rate, reliability, or maintainability, by application of the
gt appropriate formula from Chapter 2.

;wﬂ The test criteria defined by Theorem 3.1 is only capable of
’{P indicating whether a significant difference exists among the
,bé samples tested. It cannot indicate the amount of difference or
Shf the particular sample that varies from the others. It is
‘?Q important to understand this limitation of the analysis.

:&% Application of this work to Air Force systems will provide a
;-; new tool for managers to analyze failure data of complex systems.
Qg Procedures are well documented for testing and verifying
iﬁg reliability data for Air Force systems (Ref. MIL-STD-781C). In
%h, other words, a sample of failure data may be used to esitmate the
%Z MIBF for the system, or verify the projected MIBF given by the
gél system designers. However, there is no existing procedure to
k: directly compare several samples of failure data. The theorems
55: presented in this work can he used to compare samples directly
gég and indicate the significance of the difference in the MIBF's of
‘ﬁﬁ any number of samples.

e

598 -

35 Application of Theorems

:Ff There are three theorems that may be applied in this
ﬁ?i analysis. Theorem 3.1 defines the test criteria and must be
'> E applied to determine the value of L(X) for the samples being
‘fﬂ considered. Computation of the criteria requires three pieces of
fﬁu information for each sample; the number of items under test (n),
;gﬁ the number of items that failed (r), and the failure times of
00 those items (tfkl], k = 1..,.r3. In the most general case, these
?:ﬁ values will vary for each sample.

-
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:?E The other two necessary theorems may be applied through
.;? tables or computed directly. Theorem 4.1 and Theorem S.1 define
2 the cumulative distribution function of the test criteria in
&% exact and asymtotic Fforms, respectively. The cumulative
iﬁ distribution function gives the probability that the test
j&. criteria will be less than or equal to the given value. These
Zﬂf theorems may be used to generate tables for the simplest cases
}- (as provided in Appendicies B and C), where the samples all
41t contain the same number of failures.

E‘j The theorems may also be applied to specific cases where
2&3 tables are not wusually available. The test criteria is
%; applicable to problems where several samples may contain
;gé different number of failures from test populations of different
lﬁ sizes. Percentage point values for such specific cases cannaot
:;) generally be found in tables.

éﬁ In any case, a level of significance must be selected to
éﬁ determine the decision point for the test criteria. As stated in
9;1 Chapter 3, the hypothesis that the samples came from the same
ZE distribuiton will be rejected when L(X) < C, where C is chosen so
‘ég the probability that L(X) < C, when the hypothesis is true, is
:x squal to the level of significance. Thus, if the level of
:Eﬁ significance 1s small, the chance of mistakenly saying the
?ﬁ distributions are not equal is also small.

B>

2&& Assumptions and Data

kﬁ There are both assumptions and data necessary for making
:ij these calculations. It is always important to be certain that
o

¥
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gé@ the assumptions are valid and the data is appropriate before the
:%a results of the analysis can be considered useful.
ﬁ"’ The only assumption made during the development of the
kﬁi theorems was that the failure times are distributed
%gg exponentially. This 1is a reasonable assumption based on works
{qb referenced in Chapter 2.

:ii Data used in the calculations is of two types. First, there
SE; 1s the collected failure times of the items under study. The
R other data is the subjective data from which a decision point is
'gé established for the calculations.

‘:2 The theorems were developed for ’'type Il censpgred samples’
;ﬁ; as described at the end of Chapter 2. This means that the
}j 'sample’ data necessary includes only the number of items under
'§§ test n), the number of items that failed before the test was
;ft stopped (r), and the amount of time each ’'failed’ item had bheen
§i€ operating when the failure occurred (tLk] for k = 1...r). This
2&; data 1is required for each populaticon to be considered in the
A%% analysis. Figure 3.1 shows a picture of this information for a
;ﬁ: variable number of populations (p). Note that the size of the
;;ﬁz populations and their respective samples are not required to be
~{? equal. It is also not necessary for the test durations to be the
\iﬁ same.

o

;?? As discussed in the previous section, the level of
té; significance needs to be defirned to determine the value of the
‘§§2 statistic at which the hypothesis should be rejected. This is a
52; subjective determination which may have a direct effect on the
Lo reported result. In other words, if the statistic indicates that
féﬁ the hypothesis should be rejected (the samples did not come from
.ij
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the same distribution) and there is still a 0.1 probability that
the samples came from the same distribution, should it be
reported that they are the same or not? Management factors
should determine the allowable error.

Some assistance in making this judgement can be obtained 1in
knowing the likelihood of the test criteria value being less than
or equal to the computed value when, in fact, the sample
populations have the same failure distribution. This is obtained
by direct calculation of the C.D.F. wusing Theorems 4.1 or 5.1
with the sample and failure count data for the particular
situation.

When this technique is used with the normal calculation and
comparison of the test statistic, additional information about
the validity of the comparison is provided. For example, if the
test criteria indicates the hypothesis (that the samples have the
same MIBF) should be rejected and the C.D.F. value is large then
the test should be considered less reliable than when the C.O0.F,
is smaller. Also, 1if the test criteria indicates that the
samples have the same MIBF but the C.D.F. is small, the test may,
again, be misleading. It is important toc consider both values as

providing important information for the analysis aof the data.

An Example Praoblem

To demonstrate the steps necessary 1n applying this
analysis, a sample problem is presented in the following
paragraphs.

Suppose two manufactures are developing a new navigation
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Able Company’'s Baker Company’s
NC?4% Navigation Computer B357 Navigation Computer
17 Test Units 17 Test Units
4 Failures during test 4 Failures during test
Failure Times (Hours) Failure Times (Hours)
0.7 1.5
1.6 2.3
3.0 6.7
S.1 8.5
Figure 6.1. Failure Data for A-70 Navigation Computers
computer for wuse in the A-70 aircraft. Each manufacturer has

provided a number of production units tu be tested by the Air

Force. The number of units under test and the failure data is
provided in Figure 6.1. The problem is that each manufacturer
claims their units are more reliable that their competitors. It

must be decided if there is a significant difference in their
reliabilities. Since there are only two samples taken from
populations of equal sizes and each test is stopped after the
same number of failures have occurred, then, the test ratio can

be simplified to:

AT T, (6.1)
(T, "Taya

where 17 and 1;_ are the sums of the test times defined by Eq.

L (x) =

(3.8>.
The 1level of significance is chosen to be 0.1 for this

example. Calculation of the statistic for the data of Figure 6.1




ii- using Eq. (6.1) gives L(X) = 0.934432. Table B.1 in the appendix
$4 shows that the decision point for these values is 0.6398207, so
S the hypothesis must be accepted at this level of significance.
In other words, the statistic indicates that the failure data may

ST have come from populations with the same exponential

,;‘ distributions so, neither manufacturer’s units are significantly
:ég better than the other.

f”§ If, as we mentioned earlier, the cumulative probability for
{} the statistic is calculated. The likelihood that the statistic
zgé is less than or equal to 0.393%432 when the samples come from
;Eé populations with the same failure distribution is found to be
SEE 0.475, or 47.5%. This large value reinforces our decision that
.Eg the samples may have come from populations with the same failure
-_%i distribution. In fact, we could have compared the data using a
L;ﬂ level of significance as high as 0.475 and the statistic, still,
'EEE would indicated that the hypothesis should be accepted.

:?51 This procedure for analysis of sample data could be
Ti_ implemented in a computer program that would only require the
“;E; cperator to provide the data, in stored files, and the level of
;%S significance for the analysis. Such a program would only require
_ﬂ; an implementation of the theorems presented and the steps
:5; described for this simple example. However, to provide computer
;ig support for the most general problem requires that we address
S some additional prnblems.

fif

3

,3;‘ General Problem Considerations

ko In the most general application of this work, it would be
i
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useful to provide a computer system that supports all
necessary uses of the theorems. Not only should should we
provide a program which would compare the MTBF'’'s of any number of
samples, of any size, but, we should also provide a method for
generating tables of percentage points, as given in Appendix B,
for the exact calculations, or Appendix C, for the asymtotic form
of the function.

In a program designed to compute either table values or a
comparison of sample data, there are several things that must be
established for the program, and known by the user, for the
program to provide a useful solution. These qualifications

include the method of caluclation (exact or asymtotic), the

R w

a

accuracy of the calculation, and the maximum number of samples

T
. v
AN

that may be compared (if any?.

The accuracy of the results will depend on the number of
terms used to compute the probability using the Cumulative
Distribution Function of the statistic. Examination of the forms
for the mathematical solution of the C.D.F. indicates that, 1in
both the exact and asymtotic functions, there is a need to
establish a limit for the number of terms that will be included
when computing the probability. It is generally not practical to
compute an infinite number of values in a computer program. So,

in &all the computer programs provided, the programmer or system

operator establish the number of terms to be used and, therefore,
the accuracy of the calculations.

Obviously, it would be possible to provide a program that
simply provides a solution to a given problem at a stated

"y accuracy . However, a computer system that supports a general
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application of this analysis would be more useful because the

operator could tailor the system to his current needs and then
re-adjust the parameters to satisfy his Future needs. Ideally,
this would not require as much work or expertise as the original
programming effort to design and implement the system. The next
chapter discusses the implementation of a software system to

provide this type of computer support.
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‘23 Chapter VII

2§? Programming Environments to Support Mathematical Tools

o

:bﬁ The development of a mathematical sclution is generally not
,,* an end in itself. To be practical, the solution must be made
. intoc a usable algorithm for solving a problem. Obviously, the
;ﬁi algorithm should be tested and verified or proven to be correct.
;{i Then the solution may be used in the study of other problems, or
g to provide answers to specific questions within the solution
533 space of the original problem. All of these uses (testing,
?;‘ continued development, and generation of data) may be provided
i: for if the algorithm is created within an appropriate environment
é% which supports these operations.

ai Providing a single environment for all of the algorithm's
P users would i1ncrease the communication amang the participants 1in
i: the problem’s solution. Let’'s classify the users of the
5: aigorithm into two groups. 'Managers’ have the questions which
i_ must be solved by 'mathematicians’ and the answer must be stated
,E; 1in a form the manager can comprehend.

AZi The manager 1is the originator of the problem which the

algorithm attempts to solve. He defines the problem and
determines the boundaries of the problem space and the solution
space. The manager 18 also the end-user of the algorithm which
sol/es the problem. Thus, the problem is oporiginally stated by
the manager and the sclilution must be usable and understandable to

him, If the problem 1s not splved 1n an envirgnment known to the

mnanager., 1t must be translated intc that form before it is




useful. This is a step we wish to avoid.

The mathematician is the technician and must create an
algorithm Ffor solving the problem. He must understand the
manager’'s problem in the form it is presented or translate it to
a domain where he can operate. His working environment must
provide for the application of standard mathematical techinques
with predictable results. He must be able to create algorithms
that not only provide a solution for the manager, but also may be
used as components of other problems, not yet defined.

With the current trends towards standardization within
military computer systems, it is becomming more likely that the
managers and mathematicians described here will have access to
compatable computer systems. A common environment which supports
the needs of both users could increase productivity by increasing
the communication, and thus the understanding, between these two
groups. Such an environment should be a 1living entity that
provides, for the mathematician, a place for new tools to be
created, modified and tested, and for the manager, a place to use
those tools and provide feedback to their designer.

In general, the support provided by programming environments
18 limited to text editors, languages, and Ffile manipulation
routines that perform specific transformations (Ref. Barstow
1984:189-200, Taylor and Standish 1985:302). General purpose
languages (e.g. Fortran, Pascal, C, etc.) contain only minimal
support Ffor mathematics., The basic functions of addition,
multiplication, division, subtraction and, sometimes,
erxponentistion are available. More complex functions must be

provided by libraries of subroutines. Some of these libraries

s R R R R R



jg are extensive <(e.g. IMSL) and contain routines that can be
;% applied in many cases. However, the most recent solutions to
‘W mathematical problems are often not available in such libraries.
?E It may also be found that the language of choice may not have
:: access to the libraries that are needed. Computer support for
& reliability and maintainability studies is hampered by all these
L
:: problems.
:ﬁ' Environments and program libraries (such as, S, IMSL, and
Y BMDP) that provide statistical routines are, generally, limited
ii to fundamental statistical functions (e.g. t-tests, analysis of
%: variance and covariance, generation of histograms, etc.). These
i functions may be combined to perform more complex work, but, only
%& BMDP provides a survival analysis function (Ref. Dixon et al.
"
b 1983:576, Francis 1981).
o, A system supporting statistical analysis should provide the
P features of a good operating system with enhancements to assist
N in the special needs of the users. These enhancements are the
;; tools which will be developed and used in the environment. Other
;{ features should include user-freindliness, use of common or
{ popular structures and organization, and the ability to grow and
change to meet new requirements. These Features have made the
g; UNIX operating system one of the most popular in use today (Ref.
k-

Kernigan and Mashey 1881:25)

Environment Definition

We will now define the goals for a Statistical Analysis

Environment (SAE). This environment is not intended to have all

\*;:g:z:;wli-f:;z:mi%iw;mmﬂ
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the desirable features of such a system. It is only provided to
demonstrate how an existing operating system may be enhanced to
provide useful tools for the design, development and use of
statistical algorithms.

The SAE should be designed to run in an established
operating system. An operating system that supports mathematical
and text manipulations is a necessary foundation for a successful
environment. The SAE should be an enhancement to the operating
system; not a restriction. The user should be able to select
from any of the tools offered by the operating system, as well as
those provided in the SAE.

The tools provided in the SAE should include an interpreter
or compiler of some type, which would allow the user to urite
programs to analyze data files. A stored program systam is
necessary to allow algorithms to be used repeatedly and modified
for varying needs or improvements. Mathematical theorems, such
as those developed in the previous chapters, may be applied in
many different ways to assist in solving problems in a large
domain. Providing a fixed programmed solution to a particular
problem is not efficient use of the effort required to produce
the mathematical theorem.

A syntatical editor should be incorporated in the system to
assist the user in writing valid programs. Such a specialized
editor is typical of interactive programming environments like
Smalltalk, MENTOR, Interlisp and others (Ref. Winograd 1973:1%-
16).

Useful information should be available to the user at all

times. Information about the proper use of avalilable commands,




o
:ﬁ current status of the system or editor, and information about
§§ errors committed in programming. 'Help’ functions can provide
o much of this information from stored text files (e.g. 'man’ in
"é UNIX and ’help’ in UMS).
1': The SAE system should be designed to be extensible in
'a; several ways. The environment should allow the use of any new
&: programs that are provided for the resident operating system.
;* This would allow new tools to be created independently to perform
o data handling, pre- and post-processing of data or results,
:& generation of information displays, real-time processing of
i? failure data or new methods of analysis.
}i Modifications should be allouwed in the language to
g? incorporate new mathematical methods or improve those already in
‘? use. The 'help’ information data should be able to be modified
\ to incorporate corrections, improvements, and user tailored
4E§ information to personalize the system to the programmer’s needs.
¥$ In fact, modifications should be allowsd to all parts of the
i environment program. This would allow the user a choice when new
ijé tools or features are needed. The SAE should be a living entity
.f: that changes to meet the needs of its users.
;J
\;5 An Example Environment
;é In the course of developing the software to apply the

mathematical theorems of chapters 3. 4 and S, a minimal SAE
system has been created. To demonstrate the application of this
environment the following paragraphs describe the use of the

system to analyze faillure data i1n two seperate cases,

N M AL M W e
AR TAUAE AT LE B, SL G SRG R Y




[ - - B - i b an e - 0 a 3 - PN EN N T FFREN EN TR &7 BTV KAy

Ny
'I‘. L]
B
. ". K
P
i File: d2 File: d3 File: d4
‘;‘ 10 items tested 10 items tested 10 items tested
¥ ]
. ﬁ Failures at Failures at Failures at
wy 305.19 75.54 2.52
b 71.68 17.17 5.06
N 28.73 6.68 1.56
" $1.71 9.68 2.56
v, 38.11 8.78 2.56
o S8.45 14.11 't . 04
' 96.36 23.34 7.11
A 32.30 7.32 1.77
v 32.28 7.32 1.77
. 24.62 5.41 1.14
L)
L)
‘ \
v
Y
.ﬁﬂ Figure 7.1. 1IMSL Data From Populations Wwith Different MIBF's
V',
>
i
fx The first case is the comparison of failure data that has
~Q
f:ﬂ been generated from known exponential distributions, using an
B!
e "IMSL’ library functian. Data was generated fFor MIBF’'s of 2, 3,
R
)
'~ and 4t (see Figure 7.1) and is contained in files named ’'d2’, 'd3’
4.8
ki and 'd4', respectively. wWwe know what the results of the
i
“) comparison should be; that the samples did not come from
,i'l ,1
3d populations with the same failure distribution. However, we will
»
& perform the analysis to demonstrate how the system would indicate
2
this result.
W
rf Before we compare this data, we must use the environment to
) .'-
15 create a program that will perform the analysis. There are three
=" or four parameters that must be assigned in the definition of the
L
:ﬁ program, as we mentioned at the end of Chapter 6. The method of
L
v calculation, ecact or asymtotic, must be specified. The
e accuracy of the result must be specified 1n the terms to be used
P
o
o
b )
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‘F;' in the calculations. Then the maximum number of samples to be
er compared, needs to be stated. The last two parametecrs are
S necessary to define the amount of storage needed by the program,
§$‘ internally.
}; There is one more parameter that may be specified when the
3&‘ program 1is defined, the level of significance. This 1is the
4t
ﬁ% probability that the statistic will indicate that the samples do
ﬁﬁ not come from populations with the same failure distribution,
i when in fact, they do. It may be convenient to have a program i
Ei that always uses the same level of significance, such as, the |
;;é case uwhere similar comparisons will be done several times on
?& different sets of data. The more general case will require that %
ﬁﬁ the level of significance be entered by the user when the program
ifz is run. The same data mray, then, be tested at different levels
k of significance by the same program.
;;z These parameters are defined in the ’'SAE’ programming
s&; language. The ’'definition program’ containing these commands is
Z)' then compiled, which creates the ’test program’ which will
;&& evaluate sample data in the way just specified. The program can
g'% be used as often as necessary to compare any sets of data to
e
A which the parameters of the program apply. The definition
i;ﬁ program may also be modified at any time and used to create
i é another test program for evaluating sample data.
— An example showing the use of the environment to analyze the |
.é; data of Figure 7.1 is shown in Figure 7.2. In the case shown,
%g the ‘definition program’ was previously created using a simple
n text editor. The SAE system contains an editor which assists the
“;E programmer by providing immediate compilation of the edited text
2
e, 7-7
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SAE > cat test.src

-- Test program

enviranment (maxterms = 7, method = asymtotic);
"test?” = 1lrt (samples = 10);

SAE > mv test.src test7.src
SAE > c test7.src
SAE Compiler, Version 0.2
Compiling test?7.src:
1 -- Test program
2 environment (maxterms = 15, method = exact);
3 “"testlSe” = lrt (samples = 10);
Summary: 3 lines 0O error
SAE > testlSe dl d2 d3
Likelihood Ratio Test Program Version 2.0
Exact Method for calculating test criteria
Maximum number of terms used: 15
10 Samples may be given
Level of significance will be requested later
Summary:
Test criteria from data files = 0.203618

Enter desired level of significance: 0.1

Probability that LRT value is less than or equal to 0.203618
when the sample populations have the same failure rate = 0.000

Reference point @ 0.100 Significance = 0.730246
Therefore:
.. Samples CANNOT be assumed to have come from populations
with the same failure distributions

SAE >

Figure 7.2. Example Solution Using the SAE System

by the system compiler. The use of the SAE editor would make it
unnecessary to compile the 'definition program’ after editing.

More details are given in Users Manual (Appendix EJ.
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In the example shown in Figure 7.2, the exact method was
used with 8 maximum of 15 terms in the calculations. The maximum

value of 10 samples is does not restrict the program to only be

EE; used with exactly 10 samples but, allows the same test program to
5;& analyze up to that number of sample files. The final parameter,
i level of significance, was not defined for the program, which
éﬂ means that the test program will prompt the user to provide a

value each time it is run. The test program, ‘testlSe’, may be
used as often as necessary, uwhere these parameters are adequate
for the analysis.

When ’'testlSe’ is executed, the parameters have been
determined are displayed as a program header. In this case, the
maximum number of terms, the maximum number of samples, and the
methaod of calculation, are all provided for the user. The test
criteria is calculated and, because it was not specified when the
program was defined, the level of significance is requested from
the user.

At this point, the ’'p-~value’ or ’'probability value’' |is

computed for the test criteria value computed Ffrom the data

given, This is the probability that the test criteria value is
less than or equal to the given value when the populations do, in
fact, have the same failure distribution, In other words, it is
the probability that the normal evaluation of the test criteria
would IMPROPERLY indicate that the samples were NOT from
populations with the same failure rates. If this value is less
than one tenth of a percent, then only zero will be given.

This ’'p-value’ 1s the switching point for the level of
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WF‘ significance. If the level of significance requested is less
:;; than or equal to the ’'p-value’ computed, then, the test program
'~5 will indicate that the samples ’'cannot be assumed to have come
;;ﬁ from populations with the same failure distributions.’ On the
;:3 other hand, if the level of significance is higher than the ’'p-
:”f value’ the test will indicate that the samples 'may have come
-%i from populations with the same failure distribution.’ The user
iiﬁ has the freedom to select the value he desires and is given
R complete knowledge about how the selection of the level of
{%é significance will affect the results of the test.

E;ﬁ When the 1level of significance was determined by the
‘f; programmer and cannot be changed for the test program being used,
;?; the ’p-value’ is, still, computed to show the relative value of
szé the decision made by the program. Thus, the user is always given
 §' the information needed to properly interpret the program results.
';? In this way this environment has assisted the programmer to
(ﬁé use the method of analysis in the most general applications. The
5? programmer is restricted to the proper procedure for the analysis
‘ ﬂ but not limited in the data he may analyze or the significance of
¢$ the results. It is the user’s responsibility to only apply the
K ; analysis where 1t 1is appropriate; to samples whose expected
Py

;ﬁf failure distribution is exponential, where the data Ffits ¢the
'j; definition of a type !l censored sample.

; The operation of the SAE system is described 1n more deta:il
gﬁ: in Appendix E. This system is not intended to be a complete
:Eéz environment, but only to demonstrate that an environment could be
e useful 1i1n the applicaticon of complex mathematical solutions for
‘E?; data analysis. Recommendations for expansion of this concept anrd
s 7-10
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further development of the theoretical work are presented in the

next chapter.




Chapter UIII

Summary and Recommendations

Comparing the reliabilities of several complex syscems can
ofter be reduced <to a8 comparison of their underlying failure
distr:but:ions. where these failure distributions are
exponent.al. the compar:son further reduces to examination of the
mean-t.me-betuwee~-fa:lures (MNIBF» Ffor the systems. In 1853,
Epste:n crcouvided a procedure using a likelihood ratio test
stat.s%.Cc for comparing the MIBF of two exponential distributions
based c~ sample fa:lcre cata. The technique was limited to

ccmpar.:Tg CT.y twC sarples containing exactly the same number of

Tr.s d.ssertat.cr preserts the der:vation of a 1likelihood
rat.Z test Cr.ter.:a <rat .s apolicable to multiple samples,
ccota:"™."g a.~cst a~y ~urmber cf failures. The significant
2~ s zz-tai~ed 1~ the derivation of the h-th moment of

tre stat.st.c Trecrem 2.2 anrd the subsequert derivation of the

e ac: T-ecrem~ 4 .. a~d as,rmtctic Theorem S.1 forms of the
como.3%. e digtribotioe forcticm
I andit.on +~e acc.i1cat:cr f this work 18 discussed

e "e~s. e., a2 a co~ooter scfruare erviragnment has been created

.v.o» a..C.s & crogrammer tc o easily Ccreate programs  which
R Ll - Salle *he tes® Cr.%er.a . a8 practical manner., There are a
c.omres Sf U rert.uTs gt migtt bhe taker to extend the work done
e e
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fi Statistical Package Implementation
;F% An obvious suggestion concerning the implementation of the
;ﬁ test criteria would be to extend the environment to 1include an
%ﬁ existing library of programs (e.g. IMSL, BMDP, etc.) and allow
s%& the wuser to incorporate these functions into programs similar to
;L 'table’ and ’'lrt’. It might be of more practical value. houwever,
y
’;EE to implement these test criteria in a form that could be included
;;ﬁ in an existing library or data base environment. As previously
an mentioned in the text, survival analysis functions are generally
iE? lacking in the statistical packages available now.
X
Automatic Programming Environments
N
Y The SAE provides a small level of automatic programming to
:h the user. The environment allows the user to define some
kﬁ important characteristics of the program in a simple language.
f;& This system 1limits the wuser’'s access to the details of the
-
'Eﬁ analysis technique. However, it assists the user in applying the
P procedure correctly by reducing his/her elements of concern to
those that directly affect the results of the test: the accuracy
of the result. the number of samples that may be compared, the
i- level of significance for the compariscon, and the method of
'ii calculation (the choice of exact or asymtotic C.D.F.).
E; Once these parameters are identified, the S5AE system
4K zcmeoiler uses the UNIX 'make’ facility to construct the program
,;' as reguested. The new program may then be used repeatedly to
a~a.,ze di.fferent sets of data 1n exactly the same way. If the
" oL A .s destroyed or no longer of use, a new copy may be
~ 8-2
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created easily with the same aor different craracter:st:ics.
Application of rnew techrnigues from art:.fic:al irtell.gerce
work may helnp to develon future sy stems with e -pandead
capabilities i1n th.:s area. Autcmat:c programming techrigques are
currently beirg used :n other areas to .1"crease the speec and
accuracy w.th which programs are created. The comple %ty of the
tasy i1nvcivved 1~ programmirg will demand that tre types of
programs created beccmes more spec.al:zed as the power of the

automated techniques i1ncrease.

Improve the ProcesszngﬁSoeed

A problem with the :mpiementati:on of trese formoias 18 that
they are dependert on the creatior of several sets of series
coefficients. This 1s a time consum.ng task. MNcre thar half of
the evecution time '58°. average, based con 60 computat:i:ons of 2 to
S samples with from 3 to 100 failures per sample. 1s spent or the
creation of the ccefficient vajues. Of course, the number of
terms requested for accuracy of the computat:ons wil: affect this
timing. But, Ffor lower number of fa:lures 1n each sample, more
terms are necessary for accuracy of the result. Consideration
should be givern to findirg a more efficient 1mplementation of the
formulas than ras been dcnre here.

Parallel preccessing systems offer a definite peossibility to
impresing the speed of the calcuiat:ons. Tre twc dimensional

coeffi:cients 'C' could be computed irdeperdently from the ‘g’ and

A’ coefficients 1n the currert scoftware :mplementaticn ' these

coefficients are named 'Cir’', 'Q'. and 'Ar . respectively. 1n the

scftware list:ngs giver 1n Apperd:- F'. CZcrzurrent processing of
8-3




these two distinct paths 1in the computation of the coefficients
would significantly reduce the processing time. Implementation
of these computations as concurrent ‘'tasks’ on a multi-
tasi.ing ‘single-processor system might also improve the speed of

the computati:ons, however, this would be more dependent upon the

operating system’'s task control parameters.

Parallel processing may also be applied to the system level
of the SAE by making the editing and 1i1nterpreting concurrent |
tasks. The SAE system editor currently calls the compiler tao
evaluate a part of the terxt each time a modification is made to
any line 1n the editor. A compiler runmning concurrently with the
editor might i1mprove characteristics of that tool. Usually, the
SAE programs are very gsmall (3 or 4 lines) and., so, there is not

a logt of time to be gained 1n this area.

Applicaticn to Other Failure Distributions

while all of the suggestions just made relate toc the
computer programming aspects of this effort. that does not
diminish the usefulness of the mathematical work. The techniques
used to derive the h-th moment of the test criteria have been
a.-ailable to mathematic:ans for a long time (Ref. Stekloff 1391Y%,
Wilks 1967 . Their anplication 18 th:s work should create some

interest to find other cases where they may be arpl:ied.

. In particular. since this work considered the single
$$ parameter erxponential distribution, the first step would be to
"

>, apply & sai1milar approach to the case of the two parameter

eyponential failure distribution. Dcr. B. N. Nagarsenker, my




advisor in this wark, 18 currently exploring this problem. If he

is successful, further work should include the examination of

P S

" distributions that are closely related to the exponential.
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Appendix A

Calculation of Adjustment Factors

The purpose of this appendix 1s to show the calculation of

Y. the convergence factors defined i1n Chapters 4+ and 5. These

Y factors are delta ( 8§ ), which i1s defined by

!.

st R-§

Coes mp = K- (A.1)

Y

o when making a substitution in Eq. (4.8) for R and & , which
...:

.hﬂ is & constant necessary to apply Lemma 4.3 to Eq. (4%.12). The

A

Ral: values of these factors are calculataed in the foliowing sections.
’v

LY,

A0

:'j Calculation of Delta

N

iy Deltas is an adjustment Factor defined, in Chapter %, to sat
::_' A\ = g

- (A.2)

38

) where

J

» r

e N - 1) R () ZBM(S\()

o r N or Tt CA.3)

'vﬁ I"(r"ﬁ- )P

s

“ »

. From Eq. (4.12) where P is the number of samples and kL is

N

o the percentage of Ffailures containad in the i-th sample (Eq.

B s,

? (4.5). Ebr is the Bernoulli Polynomisl of degree r and order
v unity. The second polynomial is

oy

e %
‘\-} “
7 |

R B.(h= k-h+Y (A.4) |

2 (3 |
Y
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Now, A\ can be written

- B <5\<\
D= 5o (B8 b

Setting the left-hand side to zero and expanding the Bernoulli

Polynomials to get

-1 t ey 5 (SkE-Skoe k)
@’-‘ é;[<§ 8 \/103 LG( o © ] (A.B)

Computing the summation gives

_— [(SL‘ g, \/(05 _ 81’ PS—G—EZ\(‘)‘J CA.7)

and, then combining terms

@+ 32 {8en-4((ER)-1]

Since, P must have an integer value greater than 2, delta is

defined by

S- {(él{-' —I]/é(p-l) (A.9)

as stated in Chapter 4,
In Chapter 5, the value of delta depends on _T} . Thase

coafficients hava a relationship to the ’&r‘ coefficients of

Chapter t. In fact,




oA

o,
»

as stated in Eq. (5.4). It is obvious that the same value of
delta, as derived above, will satisfy the requirement that
T = @ (A.11)
)
as stated in Chapter S. This value of delta will now be used to

calculate the required value for Q , the other convergesnce

factor used in Chapters 't and 5.

Calculation of Q

The value of Q is chosen such that the coefficimsnt Q.

zero. The Ek coafficients are defined in Eq. (%.1%)> by
k
Q (A.12)
Z k-y k-)> clk

=9

where Rg'-' 1 and

chbk D; v (A.13>

"" k<1

where E)%aﬂ ] and

C.=(

LY Y‘(r‘ﬂ

[B (o) - Bm@uvn)] (A.14)

Also, from Eq. (4.12)

l. (A.15)
r

is
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>3 and

5 v= (@D

5 : (A.16)

o The value of Q‘ can be found from
A = = (R.17)
: RD s+ R0, = q = A4

v where £X|=Q5, from the discussion of delta in this appendix.
R so, if R =@ is desired, then

g @ = D¢,\ = C’¢.. D|J¢
&

(A.18)
%f which means
b
b @_ ' [ )] CA.19)
RS T = / a) - A+
Cy = % [B. (@) - B (asv
;\5 Expanding the Bernoulli Polynaomials gjves
STy
4. Y
A0 ! z_ Vo 2 \ (A.20)
g @ - /2[0‘ 0 % -y (aen) -l
W
i
b which reduces to
!e:
?I
Q= v-2av-v?
4
.4¢.:
7 (1-v)
o or G = —_ as stated in Chapter ‘4.
"h a
QS} Thus, the values of the convergence factors & and O have
ﬁ »
$¢- been calculated to meet the requirements specified in Chapters 4
Wl
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Appendix B

Tables of Exact Computation of Statistic

This appendix contains percentage point tables generated
from applicatiaon of the exact form of the cumulative distribution
function (C.D.F.) of the statistic. The tables were generated
using a maximum of 20 terms. Similar tables, containing ths sams
information can be generated by defining a 'table’ program for
the SAE environment with the following commands:

environment (maxterms = 20, method = exact);

"table” = table (
samples = (2,6,1),
Failures = (3,100,5),
alpha = (0.1, 0.0%5, 0.025, 0.01)
b

A more detailed explaination can be found in Appendix E.
The tables provide percentage points of the statistic L

which is function of the statistic, lambda, given in Theorem 3.1.

The necessary equivalences are:

7R

L= A

p = number of samples

r = number of failures per sample

>
[}

likelihood ratio defined by Theorem 3.1

total number of failed items ( = pr)

1} yaanaos
o
'

Lon ya'sl
A

The Ffirst five tables are for situations where the samples

LS N WS

have an aqual number of failures. The last two tables are

provided to demonstrate the use of these theorems for cases whare
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the number of fallures 13 not the same for each samp.e
Corresponding tables generated us:ing the asymtotic expans.o”

of the exact C.D.F. are provided :n Appendi-
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Tatble B-1

?/Q
Percentage Ppints of L = P

for
Twc Samples with Equal Number of Failures

Level of Significance
‘ta..ores
r 0.1 0.0S 0.025 0.01 0.005

3 C.613751 0.500527 0.405047 0.303874 0.243556
R C.6968207 0.600707 0.513780 0.415398 0.352607
S C.~527¢28 0.6682't4 0.590%33 0.4988395 0.438088
5 0.730684 0.716537 0.646769 0.562583 0.505173
7 0.818608 0.752684 0.688725 0.612381 0.558654
8 ©.833978 0.780716 0.723487 0.65e237 0.602059
S 0 .856858 0.803074 0.750687 0.684790 0.637883
10 0.B87052% 0.821313 0.773052 0.711846 0.667915
11 0c.B81B1l4 0.838472 0.791757 0.734671 0.693414
2 0.881285 0.843267 0.807628 0.754175 0.715323
13 0.89837¢ 0.860208 0.821261 0.771027 0.734340
: 0.9063e3 0.8639674 0.B330396 0.785731 0.750997
15 0.9123380 0.877341 0.B843466 C.798668 0.765703
16 0.817714 0.885223 0.852626 0.810141 0.778780
17 0.82242s8 0.891686 0.860775 0.820382 0.7390483
18 0.326633 0.897461 0.868072 0.828577 0.801015
18 0.93040S 0.30265¢2 0.B87164' 0.837880 0.810543
£0 0.833808 0.907343 0.8B805S83 0.B45414 0.B8138204
25 0.346814 0.925338 C.S803500 0.874576 0.85eB6”
30 0.855550 0.837483 0.3918039 0.B894433 0.875981
35 0.861821 0.846230 0.930269 0.3808856 C.B88282"
40 0.966542 0.952831 0.838765 0.818935 Z2.380564%”
4S 0.870ce 0.957988 0.945416 0.82855¢2 c.8.5730
S0 0.873178 0.862129 0.950764 0.835435 C S2386F
55 0.975585 0.965587 0.955158 0.39412C8 C . 93c="0
60 0.977614 0.968366 0.3958832 0.8453983 C 836 . 37
65 0.973325S 0.970772 0.9613483 0.85005" To9woes
70 0.980733 0.3728338 0 .964628 0.9535¢%7 ST P
75 0.3882066 0.3974632 0.966354 C.85&59. e
B0 0.98318B1 0.3876204 0.968394 0.8582%¢F oo
85 0.984165 0.877592 C.870736 Z o Bele - !
30 0.3985040 0.3978827 0.972«0C oo e !
as 0.9858624 0.8738833 0.€73873° SRR
160 0.986530 0.980323 C.87%=. o
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Table B-2

%
Percentage Points of L = )\
for
Three Samples with Equal Number of Failures

| Level of Significance

Failures !
ol I 0.1 0.05 0.0e5 0.01 0.005
% 0.544845 0.45%030 0.378431 0.297548 0.248114
5 0.618279 0.535089 0.463141 0.382721 0.331341
6 0.671736 0.595989 0.528815 0.45153S 0.4006389
7 0.712246 0.643136 0.580754 0.507508 0.1583¢e2
6 0.743847 0.6B0606 0.6228674 0.553611 0.506519
S 0.763405 0.711050 0.657134 0.592088 0.547224
10 0.730286 0.736252 0.685921 0.624640 0.581956
11 0.807717 0.757443 0.710306 0.652475 0.611683
12 0.828483 0.775505 0.731215 0.676533 0.637906
13 0.835150 0.791077 0.749334 0.697520 0.660723
14 0.846135 0.804633 0.765182 0.715981 0.6B80878
15 0.855751 0.8186555% 0.779157 0.73e340 0.698805
16 0.864238 0.82710S 0.781571 C.746932 0.7146847
17 0.871784 0.83651¢2 0.802670 0.760028 0.7238284
18 ¢.878536 0.841951 0.812651 0.771843 0.74234c2
19 0.e84614 0.852563 0.82167S 0.782557 0.754208
20 0.8390113 0 .B539465S 0.829873 0.792314 0.765038
25 0.9112865 0.886130 0.861689 0.830411 0.807508
30 0.3925583 0.904298 0.BB83484 0.856726 0.837017
35 0.935938 0.917471 0.8899367 0.875983 0.8586389
40 0.943758 0.827457 0.911437 0.830683 0.875299
45 0.949879 0.835289 0.,3820323 0.80ee71 0.888¢1e
50 0.954797 0.941594 0.928574 0.811B639 0.8838033
855 0.958837 0.946781 0.934B876 0.8193€69 0.807808
50 0.962214 0.951121 0.940157 0.925856 0.3815183
BS 0.865079 0.954807 0.344645 0.831378 0.921486S
70 0.3867540 0.8957977 0.848508 0.3936134 0.826881
75 0.969677 0.960731 0.951866 0.840274 0.931599
80 0.971550 0.8963146 0.954814 0.843910 0.935745
85 0.973205 0.965281 0.957421 0.9471e9 0.939417
[0 0.974679 0.867183 0.959744 0.8493999 0.842692
95 0.97539398 0.968887 0.961827 0.95e573 0.84563e
100 0.877187 0.97042e2 0.863704 0.954895 0.3848285
4

>,

" » -l " - i "y - "e
WG, UK l.’!o.‘,n.‘.;".u‘,c DRV, dmbadadnid

~

LAY ’fﬁ,f" '-‘ ;

“' :r‘. nr‘\-ﬂ P ‘r,‘f}‘ ’ ;{‘




Failures

0.521563
0.583381
0.631452
0.6639762
0.700961
0.726835
0.748625
0.767218
0.783268
0.797257
0.B8039558
0.820457
0.830180
0.838807
0.846783
0.853927
0.881555
0.900403
0.914081
0.924457
0.932588
0.938156
0.8944551
0.848067
0.952803
0.856202
0.958070
0.961584
0.963808
0.965788
0.967563
0.969163

ol w2 wehb hELL WAL AL WY

Table B-3
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7
Parcentage Points of L =‘1/h
for
Four Samples with Equal Number of Failures

Level of Significance

0.443317
0.508307
0.562820
0.605314
0.6%1390
0.671114
0.6396353
0.718038
0.736860
0.753347
0.767303
0.780817
0.792431
0.802857
0.812230
0.820865
0.854197
0.877088
0.893774
0.906475
0.916465
0.Se24528
0.931172
0.836741
0.841477
0.845553
0.943098
0.952211
0.954964
0.957418
0.959618
0.961602

0.378008
0.446843
0.502838
0.548209
0.587881
0.620610
0.648627
0.672859
0.694009
0.712623
0.723124
0.743849
0.757068
0.768998
0.779818
0.788676
0.828184
0.854802
0.874282
0.889174
0.3900808
0.9103938
0.918231
0.9e4804
0.930400
0.9352e1l
0.939417
0.943103
0.846367
0.849276
0.951886
0.954241

0.3072a85
0.376314
0.434348
0.83282
0.524868
0.560526
0.591373
0.618284
0.6%184%4
0.662884
0.681565
0.698304
0.7133380
0.7270S5
0.738487
0.750846
0.7385506
0.826638
0.849565
0.867147
0.881054
0.8923e8
.901654
.9089493
.916176
. 92180
. 926863
.931378
.935231
.938781
.941815
944743

0O000000O0O0DOO0

0.263112
0.330853
0.388247
0.438208
0.482201
0.519426
0.551883
0.580382
0.605574
0.627984
0.648035
0.666072
0.682378
0.697187
0.710682
0.723057
0.771810
0.806181
0.831529
0.851023
0.8664391
0.8738049
0.888451
0.8388207
0.905673
0.812130
0.817755
0.922704
0.927091
0.831008
0.934525
0.937701
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Failures !
ol ! 0.1
(] 0.5118%2
7 0.564710
8 0.607562
=] 0.642911
10 0.672523
11 0.68768B5
12 0.719264
13 0.738010
14 0.754428
15 0.768924
16 0.781813
17 0.7893348
18 0.803730
18 0.813123
20 0.821661
25 0.854848
30 0.877638
35 0.894251
40 0.906885
45 0.3916840
S0 0.924867
15153 0.931481
60 0.937026
1215] 0.841740
70 0.945798
75 0.3438328
80 0.852426
85 0.955167
[0 0.957610
a5 0.9539800
100 0.961775%

Table B-%

Percentage Points of L - X
for
Five Samples with Equal Number of Failures

Level of Significance

0.441812
0.488157
0.544621
0.583493
0.616434
0.64't648
0.669066
0.680331
0.709167
0.725818
0.740683
0.754032
0.766082
0.77701S
0.786876
0.825811
0.85284e2
0.872570
0.887640
0.899526
0.909140
0.917076
0.823737
0.823409
0.934295
0.938548
0.942286
0.845585
0.94B854%4
0.851181
0.853573

0.383278
0.44116S
0.4839861
0.531173
0.5665'8
0.597120
0.623768
0.647180
0.667838
0.686353
0.702881
0.717781
0.731282
0.743553
0.754760
0.798802
0.829480
0.852061
0.868370
0.8B83058
0.894154
0.903327
0.911038
0.917612
0.923e281
0.9e28e20
0.93256e
0.936409
0.939841
0.8423ee
0.845702

0.319062
0.37724S
0.427346
0.470611
0.508178
0.541008
0.569892
0.595464
0.618242
0.63B86%7
0.657021
0.673647
0.688753
0.702550
0.715184
0.765178
0.800317
0.826342
0.846381
0 .862282
0.87520S
0.88S914
0.854932
0.902631
0.908278
0.815077
0.920180
0.924704
0.928743
0.932371
0.835648

0.278468
0.335876
0.386169
0.430174%
0.468781
0.502802
0.532936
0.559770
0.583783
0.605395
0.6243ee2
0.6%26'%7
0.658803
0.67358S
0.687157
0.741138
0.779336
0.807755
0.829711
0.847177
0.861401
0.873207
0.883162
0.881669
0.893022
0.90S't4e
0.911085
0.916110
0.820580
0.924616
0.92825%




Table B-S

R
Percentage Points of L - A

for
Six Samples with Equal Number of Failures

Failures |
r 1 0.1
7 0.507662
8 0.553651
9 0.532052
10 0.624523
11 0.652316
12 0.676338
13 0.697299
14 0.715740
15 0.73208%
16 0.746668
17 0.759756
18 0.771568
19 0.782279
20 0.732035
25 0.830138
30 0.856470
35 0.875745
40 0.880462
49 0.902065
SO 0.911446
=1 0.919183
60 0.925687
65 0.931218
70 0.935984
75 0.940132
(2]6] 0.84377S
85 0.847000
90 0.949876
95 0.952456
100 0.954783

Level of Significance

0.443757
0.182343
0.533547
0.568808
0.588270
0.625681%
0.649129
0.669758
0.688129
0.704530
0.719418
0.7328%3
0.745053
0.756203
0.800013
0.830521
0.852973
0.870182
0.8837380
0.834818
0.903836
0.811601
0.918134
0.923768
0.928677
0.932992
0.93681S
0.840ee26
0.943287
0.846050

0.3839965
0.439863
0.'182802
0.518873
0.552382
0.580833
0.605993
0.628370
0.648382
0.666403
0.682686
0.697475
0.710862
0.723310
6.772102
0.806334
0.831655
0.851135
0.B866582
0.878123
0.889522
0.8398271
0.805737
0.81e183
0.817804
0.822749
0.827133
0.931047
0.834562
0.837736

0.330565
0.380822
0.'124873
0.463575
0.487720
0.527994
0.554974
0.579140
0.600882
0.620561
0.638424
0.854713
0.668621
0.683313
0.737816
0.776421
0.805162
0.827379
0.845060
0.859463
0.871420
0.88150%
0.890124
0.897576
0.904082
0.908811
0.91488S
0.918437
0.923518
0.927208

0.292616
0.342339S
0.386631
0.425918
0.460882
0.49210S
0.520098
0.545301
0.568085
0.588766
0.607611
0.624846
0.640661
0.655e221
0.713483
0.7550S8
0.786153
0.810273
0.829520
0.845231
0.858297
0.869331
0.878774
0.886846
0.884086
0.800380
0.905367
0.8103962
0.91545S3
0.919513



Percentage Pogints of L = P

Table B-6

for

e

Two Samples with Unequal Number of Failures

Level of Significance is 0.5

Percentage
of Failures
per Sample

Total Number of Failures = R

—— — — ——————— — ——— ——————————— — T t— - ——— ———— — — ————— —— T G > " - _— f———— ———— —————

0.85

0.66824365
0.66B807749
0.667553S6
0.66662578
0.66514658
0.66287789
0.65934581
0.65355281
0.643062%3
0.61368872

0.82131333
0.821260386
0.82109744
0.8208014
0.8203232S
0.819539629
0.81843068
0.81643661
0.81251018
0.8020'%031

0.93748256
0.93747601
0.83745503
0.93741700
0.93735617
0.93726135
0.83710846
0.83684615
0.83630917
0.93471112

0.86212823
0.9621301S5
0.86212238
0.96210830
0.86208578
0.86205065
0.9618843
0.96183658
0.96169657
0.86108370




Table B-7
e
Percentage Points of L -
for
Three Samples with Unequal Number of Failures
Level of Significance is 0.5

Percentage ! Total Number of Failures = R
of Failures !
per Sample i 10 20 80 100
0.33 0.33 0.34 0.38374316 0.62865090 0.85946431 0.91350162
0.3 0.30 0.41 0.3B832153¢2 0.62842843 0.85942966 0.91348832
0.26 0.26 0.47 0.38187782 0.627862398 0.85934144 0.9134544Y4
0.23 0.23 0.54 0.379639493 0.62693256 0.85818570 0.91339844
0.20 0.20 0.860 0.37647907 0.62554158 0.85837628 0.91331407
0.17 0.17 0.87 0.37184652 0.62348715 0.8586'18%1 0.91318784
0.13 0.13 0.74 0.36509887 0.62035853 0.858133902 0.91299131
0.10 0.10 0.80 0.35502583 0.61525808 0.85727662 0.91265730
0.07 0.07 0.87 0.335405'1 0.60588024 0.85555703 0.91188531
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Appendix C

Tables of Asymtotic Expansion of Statistic

This appendix contains percentage point tables generated
from application of the asymtotic expansion of the cumulative
distribution Ffunction (C.D.F.) of the statistic. These tables
were generated using a maximum of 7 terms, Similar tables
containing this data cen be generated by defining a 'table’
program for the SAE environment with the following commands:

environment (maxterms = 7, method = asymtotic);

"table” = table (
samples = (2,6,1),
Failures = (3,100,533,
alpha = (0.1, 0.05, 0.0285, 0.01>
X

A more detailed explaination can be found in Appendix E.
The tables provide percentage points of the statistic L

which is function of the statistic, lambda, given in Theorem 3.1.

The necessary equivalences ars:

LY
L= A R

p = numher of samples
r = number of failures per sample
A = likelihood ratio defined by Thecrem 3.1

R = total number of failed items ( = pr)

The five tables are for situations where the samples have an
equal number of failures. Corresponding tables generated by the

exact C.0.F. are provided in Appendix B.

--------
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Table C-1
R
Percentage Points of L = A
for

Two Samples with Equal Number of Failures

Failures

0.698207
0.752728
0.7390684
0.818608
0.8333978
0.856858
0.870525
0.88181%
0.891285
0.838370
0.906328
0.812388
0.817714
0.39224a3
0.926633
0.930405
0.833808
0.946814
0.955550
0.961821
0.966542
0.97022%
0.973176
0.975585
0.877614
0.973325
0.880793
0.982066
0.883181
0.98%165
0.985040
0.398582'
0.8B6530

Level of Significance

0.600706
0.668244
0.716537
0.752684
0.780716
0.803074
0.821313
0.836472
0.8438267
0.860208
0.86967
0.877841
0.885223
0.8981686
0.897461
0.902652
0.807343
0.825338
0.937483
0.946230
0.85e2831
0.9573988
0.962129
0.965527
0.868366
0.970772
0.972833
0.974632
0.976204
0.877582
0.878827
0.879833
0.980828

0.513778
0.590433
0.646768
0.688725
0.723487
0.750687
0.7730Se
0.781757
0.807628
0.821261
0.833086
0.843466
0.852626
0.860775
0.868072
0.8746'4
0.880593
0.803500
0.3918038
0.830269
0.83876S
0.845416
0.950764
0.955158
0.958832
0.961949
0.364628
0.866954
0.968994
0.8707396
0.372400
0.973837
0.87513e2

0.415338
0.1498835
0.562583
0.612381
0.652237
0.684730
0.711846
0.734671
0.754175
0.771027
0.785731
0.798663
0.81014%1
0.820381
0.8238577
0.837880
0.845414
0.874576
0.894433
0.3908856
0.9138935
0.928552
0.935485
0.941208
0.9453983
0.3950057
0.953552
0.956591
0.9539256
0.961613
0.863712
0.965584
0.867290

0.352607
0.438088
0.505173
0.558654
0.602059
0.637883
0.667915
0.693414
0.715323
0.734340
0.7508997
0.765703
0.778780
0.790483
0.801015
0.810543
0.819204
0.852867
0.8758981
0.89e8a27
0.905647
0.815730
0.3823868
0.930572
0.936192
0.940971
0.945084
0.948661
0.951800
0.954578
0.957054
0.958273
0.86127S
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Wy Table C-2
5 R
:';:: Percentage Points of L = A
) for
‘ Three Samples with Equal Number of Failures
»
;2 ! Level of Significance
R Failures |
r i 0.1 0.05 0.0285 0.01 0.00S

4 0.543618 0.452491 0.376639 0.2395521 0.2'45982 !
5 0.61758B6 0.534185 0.'1620146 0.381413 0.32390S
7y 6 0.671310 0.595418 0.528105 0.450657 0.339710
7 0.711966 0.64275% 0.580271 0.506895 0.457618
8 0.743753 0.680338 0.622330 0.553168 0.506004

e 9 0.769265 0.710856 0.656881 0.591769 0.546836
VN 10 0.790182 0.736106 0.685730 0.624388 0.581658
oy 11 0.807638 0.757331 0.710158 0.652278 0.611649
oo 12 0.822421 0.775417 0.731098 0.676377 0.637719
n 13 0.835101 0.791007 0.749241 0.697394 0.660571
{2 14 0.846095 0.804582 0.765106 0.715878 0.680753
e 15 0.855718 0.816508 0.779084 0.732254 0.698701
R 16 0.864211 0.B827066 0.791518 0.746861 0.714760
sk 17 0.871761 0.836479 0.802626 0.759967 0.729210
N 18 0.878517 0.844923 0.812614 0.771792 0.742279
o 19 0.884597 0.852539 0.821643 0.782512 0.754154
20 0.8300383 0.B859444 0.829845 0.792276 0.7643990

R 25 0.911858  0.886119 0.861674 0.830391 0.807483
e 30 0.925588 0.904292 0.883486 0.856714 0.837002
% 35 0.935936 0.917466 0.899362 0.875976 0.858690 |
vl 40 0.943757 0.927454 0.911433 0.890678 0.875292
1% 45 0.949877 0.935287 0.820920 0.902267 0.888408
2 50 0.954796 0.941593 0.928572 0.911636 0.893030
R sS 0.958836 0.S46780 0.934875 0.918367 0.907807
o 60 0.962213 0.951121 0.940156 0.925855 0.915181
N 65 0.965078 0.954807 O.944644 0.931376 0.921463
a 70 0.967540 0.957976 0.8948507 0.936133 0.826880
o 75 0.969677 0.960730 0.951866 0.840273 0.931538
. B0 0.971550 0.963145 0.954813 0.943910 0.935744
S 8s 0.973205 0.965281 0.957421 0.947129 0.939416
N 90 0.974678 0.967182 0.959744 0.949998 0.942692
0 as 0.975998 0.966886 0.961826 0.952572 0.945631
ﬁd 100 0.977187 0.870422 0.963705 0.954896 0.948287
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Ay Table C-3
ﬁﬁ R
0 Percentage Points of L = A
) for
Qﬁ“ Four Samples with Equal Number of Failures
'y
\34 i Level of Significance
D! Failures |
: r ! 0.1 0.05 0.02e5 0.01 0.005
(e 4 0.435576 0.353429 0.287789 0.220114 0.180040
AN 5 0.518104 0.440349 0.374628 0.303447 0.2538138
&‘, 6 0.581831 0.5073968 0.444570 0.373675 0.328100
Ky 7 0.630404 0.561581 0.501349 0.432454 0.387154
8 0.663025 0.604967 0Q.54B0583 0.1481885 0.437642
iy S 0.700425 0.640682 0.587024 0.523811 0.481002
o 10 0.72643e2 0.670585% 0.6139955 0.5538708 0.518430
Lo 11 0.748315 0.695343 0.648116 0.5380729 0.551140
:,: 12 0.766976 0.717714 0.672452 0.617768 0.579783
ﬂh* 13 0.783073 0.736600 0.693681 0.6%1524 0.605085
i s 14 0.7970938 0.753134 0.712353 0.662548 0.627579
A 15 0.8039428 0.7687727 0.728300 0.681277 0.647686
5:& 16 0.820348 0.7B80700 0.743662 0.698061 0.66578%
f:{ 17 0.830088 0.7392307 0.7563039 0.713184 0.682134
Q;? 18 0.838823 0.802751 0.768863 0.726878 0.696978
Ay 19 0.846717 0.81e200 0.7738702 0.739335 0.710511
20 0.85386S3 0.820787 0.789575 0.750713 0.722883
umﬁ 25 0.881525 0.854155 0.828130 0.785434 0.771824
“Vﬁ 30 0.900386 0.877083 0.854770 0.826586 0.806130
;\a 35 0.314063 0.883758 0.874271 0.8439538 0.831486
3&\ 40 0.924449 C.906464 0.889160 0.867128 0.851006
) 415 0.93258e 0.916457 0.8008398 0.8B81041 0.866%74
) =10] 0.939152 0.924522 0.910391 0.832319 0.8739037
ﬁm 55 0.944548 0.931167 0.918225% 0.901646 0.88344e2
. BO 0.9438065 0.936738 0.924800 0.908487 0.898200
P B85 0.852902 0.S41474 0.930386 0.916171 0.3805673
‘Qy 70 0.956201 0.945551 0.935218 0.921936 0.31e125
\ 75 0.853068 0.843097 0.938415 0.826959 0.817751
BO 0.861583 0.3952208 0.943101 0.831376 0.9228701
L 85 0.963807 0.954863 0.846365 0.935289 0.827089
- 30 0.965788 0.957417 0.943927% 0.938780 0.931005
- 95 0.967563 0.953617 0.951885 0.941913 0.3934523
'tf 100 0.968163 0.961601 0.954241 0.944744 0.937704
dd’r!
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Table C-4

7
Percentage Points of L =7 R
for

Five Samples with Equal Number of Failures

i Level of Significance

Failures !
r i1 0.1 0.05 0.025 0.01 0.005
4 0.351917 0.278926 0.222434 0.1659e22 0.133342
S 0.440177 0.367031 0.307601 0.244733 0.206520
6 0.508438 0.437878 0.378741 0.314022 0.273162
7 0.562373 0.495334 0.437919 0.373534 0.331883
8 0.605897 0.542576 0.487471 0.424558 0.383121
8 0.641685 0.581974 0.529368 0.468471 0.427808
10 0.671585 0.615267 0.565155 0.506505 0.466913
11 0.696346 0.643737 0.586023 0.539678 0.501304
12 0.7188685% 0.668342 0.622883 0.568817 0.531718
13 0.737583 0.683806 0.646466 0.594584 0.5587683
14 0.754056 0.708687 0.667310 0.617513 0.582955
15 0.768616 0.7285420 0.6858863 0.638036 0.604694
16 0.781556 0.740349 0.702478 0.656505 0.624327
17 0.783131 0.753749 0.717440 0.673207 0.642133
18 0.803545 0.765841 0.7303982 0.688380 0.658365
19 0.B12964 0.776807 0.743234 0.70eee2 0.86873205
c0 0.821524 0.7886736 0.754536 0.714889 0.686825S
5 0.854775 0.825814 0.7398681 0.765022 0.740956
30 0.877585 0.852785 0.823408 0.800223 0.779225
35 0.834e23 0.872533 0.852014 0.826281 0.807683
40 0.3806876 0.8BB7615 0.869339 0.846339 0.829661
45 0.8168B27 0.8393508 0.883036 0.862253 0.84714e
SO 0.924857 0.808127 0.894137 0.875183 0.861375
55 0.931474 0.917066 0.803315 0.8BB5838 0.873187
60 0.837020 0.923730 0.911029 0.8394919 0.8B83146
65 0.941736 0.9e3s402 0.917604 0.90e620 0.B881B6S7
70 0.8457395 0.934290 0.923274 0.808270 0.8389013
75 0.94832% 0.838545 0.9e8215 0.915070 0.905434
80 0.952423 0.942283 0.932558 0.920174 0.911088
85 0.955165 0.945589¢2 0.836406 0.92469S 0.916105
S0 0.957608 G.3848542 0.839838 0.928739 0.920586
95 0.9597398 0.851188 0.8423189 0.832368 0.924612
100 0.3961774 0.953578 0.845701 0.3935649 0.S28es8
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2 Table C-5
o R
ﬁ, Percentage Points of L = X
N for
Y Six Samples with Equal Number of Failures
o3 P R B R
:-'_j ! Level of Significance
Failures !

y r 1 0.1 0.05 0.0es 0.01 0.005
M. e e
.{f o 0.284224 0.220055 0.171781 0.124820 0.098436
‘:} 5 0.374293 0.307027 0.253583 0.138315 0.165258
Wt B 0.445881 0.379186 C.324356 0.2654c8 0.228802
> 7 0.503523 0.438937 0.384585 0.324612 0.286343

8 0.550663 0.488808 0.435848 C.376272 0.337520

2 9 0.588829 0.530877 0.478730 0.421337 0.382734
SH 10 0.822833 0.566749 0.517578 0.460782 0.422857
T 11 0.B650933 0.537643 0 .550482 0.4395480 0.458407
o 12 0.6875e87 C.624517 0.579307 0.526173 0.4380073
W 13 0.6388B6450 0.648076 0.604742 0.553474 0.518421
£» 14 0.71504S 0.668880 0.62733S% 0.577891 0.5438397
" 15 0.731508 0.687407 0.647526 0.5389842 0.566300
" 16 0.746185% 0.70398¢2 C.B6B5672 0.6818670 0.587757
.:; 17 0.7539348B 0.718302 0.6B20863 0.637662 0.60674S
fﬁ. 18 0.771218s 0.732401 0.6963933 0.B654055 0.624087
. 13 0.7813978 0.74467¢2 0.710488 0.6638050 0.6840010

={9] 0.791775% 0.75587¢2 0.7223907 0.682815 0.854652
e 25 0.830001 0.73939834 0.771883 0.737542 0.713177
Lf: 30 0.856388 0.830415 0.806202 0.776255 0.754865
o 35 0.875682 0.8523905 0.831570 0.805054 0.786027
j;} 10 0.830426 0.870135 g.851077 0.827305 0.810186
o 45 0.802033 0.8B83756 0.866541 0.845007 0.B828457
) 18] 0.911428 0.8347393 0.873089 0.8538423 0.845185

Y SS 0.819175 0.39033918 0.8839499 0.871380 0.858261

j 60 0.925676 0.911587 0.8388253 0.881481 0.863304
{R BS 0.831210 0.818122 0.3805722 0.830105 0.878752

. 70 0.9353977 0.923759 0.812171 0.8397561 0 .B886928
X 78 0 .940126 0.3e8663 0.8177394 0.3804070 0.894072
. 80 0.843770 0.332986 0.8e2741 0.3808801 0.3800368
A 85 0.946986 0.836810 0.827127 0.914887 0.805857
':ﬁ 80 0.349873 0.340c221 0.931041 0.3818430 0.910854
xi 85 0.8521453 0.3843283 0.934557 0.9e35113 0.915446
P 100 0.954781 0.946048 0.837734 0.927207 0.918517
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§ Appendix D

‘. Language Syntax

ket This appendix contains a brief description of the language
;f' syntax that is supported by both the editor and compiler of the
5:¥ Statistical Analysis Environment (SAE). The first section
contains a description of the language statements and their
various forms. Then tables of the reserved words and language
NN tokens are given and, finally, the language syntax is defined in

a set of eighteen syntax rules.
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Language syntax discussion:

Environment definition statemant:

ENVIRONMENT;
ENVIRONMENT (<environment _arguments>);

If no argument is given, then defaults are used for all
eslements of the enviranment.
Multiple arguments are separated by commas.

Environment _arguments:
MAXTERMS = n

Set the maximum number of terms to be used in calculating
the values of the CDF. This is not necessarily the number of
terms that will be used ... that number is determined at runtime,
however, it cannot be greater than 'n’,.

The default is MAXTERMS = 10.

METHOD = EXACT ! ASYMTOTIC
Include the program modules necessary for using the Exact or

Asymtotic form for the CDF of the statistic.
The default is EXACT.

Proggam definition statement:

"<program_name>” = {TABLE ! LRT ) [(<argument list>)];

This defines the program to ba created. The <program_name>
is the File name of the executable program created. This Ffile
name 1is surrounded by double quotes ("), The <argument_list>

defines the variables for the specific type of program to be
created.

The TABLE generation program will cresate a table of
percentage point values for the ranges given in the
<argument list>.

The LRT program will accept data file names at run-time,
then compute the test criteria and the percentage point necessary
to destermine whether the samples could have come from the same
distribution,
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Qrgument list:

The following arguments may appear in the <argument_list>
For a TABLE program:

SAMPLES = <integer> ! RANGE (<start>, <stop>, [<increment>])

The number of samples may be given as a single integer or a
range of values. A table will be generated for each number of
samples in the range.

The default is SAMPLES = 2.

The minimum number of samples is 2.

The default increment is 1.

FAILURES = <integer> | RANBGE (<start>, <stop>, [<increment>1)

The number of failures occurring in each sample may, also,
be given as a single value or a range. A line will be generated
in each table for each number of failures in the range.

The default is FAILURES = 3.

The minimum number of failures in sach sample is SAMPLES+1.

The default increment is 1.

ALPHA = <fraction> ! (<fraction>,<fraction>,<fraction>,<fraction>)

The level of significance is represented by the value alpha.
Alpha is usually in the range from 0.15 to 0.005, however, any
values greater than zero and less than one (0O < alpha < 1) may be
used. From one to four values may be given for alpha, separated
by commas. A column will be generated in each table for each
value of alpha.

The default is ALPHA = 0.10.

The following values may be included in the definition of an
LRT program:
SAMPLES = <integer>

For the LRT program, the maximum number of samples must be
defined. This only means that any number of samples, up to the
maximum, can be used with the program at run-time.

The default is SAMPLES = 2.

ALPHA = <fractiomn>

The level of significance is represented by the value of

alpha. If no value is specified then the user will be prompted
to provide a velue at run-time. The value may be in the range O
< alpha < 1,
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% Comments:
~- <comment>

) Comments begin with two dashes (’'--') and are terminated by
o the end of the line. The comments may appear anywhere on the
N line, but all text to the right of the dashes is assumed to be
Jﬁ‘ comment .
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Table D-1
Language Reserved Words
Complete word Abbreviation
ALPHA AL
ASYMTOTIC AS
ENVIRONMENT EN
EXACT EX
FAILURES FA
LRT LR
MAXTERMS MA
METHOD ME
RANGE RA
SAMPLES sAa
TABLE TA
Table D-2
Language Tokens
Symbol Description
EOL End of line
SIMICOL Semicolon
EQUALS Equal sign
LPAREN Left parenthesis
RPAREN Right parenthesis
COoMMA Comma
INTEGER Integer value
FRACTION Fraction value (real)
FILENAME File name variable
RESUVD Reserved words
D-S
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Syntax Rules Notation:

:om definition

<.> non terminal element

! terminal element

£.1] optioconal element (zero or one occurance)

{.2 repeated element (one or more occurances)
C({.2]) optional repeated element (zero or more occurances)
E all characters except the new line character

or
¢.) precedence determination
<EQL> end of line

Note: UWhite space is ignored between elements.
Terminal elements are surrounded by single quotes.

. 2 B P AR Mhan ARa ate Ate 2 0 Aip At g Sl f m'“u"u!"'!u"IIII—

Syntax Rules:

1., <compilatign unit> ::= <command>

2. <command> ::= <environment cmd> °’;’

| <program_cmd> ';
i <comment_stmt>

3. <environment cmd> ::= *ENUVIRONMENT’ C’'(C’ {<env list>} 3’1

Y. <env list> ::= <env arg> | <env_list> '’ <env _arg?>

S. <env arg> ::= METHOD ’'=' C(’EXACT' | ’ASYMTOTIC’>
! "MAXTERMS® ’'=' <int>

6. <program_cmd> ::= '"’'<filename>’'”’ '=’ <program def>

7. <program def> ::= 'TABLE’ [’(’' <table list> ')’ 1
| PLRT’ C'C’ <1lrt _list> ')’ 1]

B. <table list> ::= <table arg> | <table_arg> ’',’ <table list>
9. «lrt list> ::= <1lrt arg> | <1lrt arg> ’,’ <lrt list>
10, <table arg> ::= 'SAMPLES’' ’'=' (<int> | <range def>)
i FAILURES’ ’'=’ (<int> | <range def>)
i ALPHA’ '=' <alpha_list>

11, <«lrt arg> ::= 'SAMPLES' ’'=’ <int>
! 'ALPHAR’ ’'=’' <«fraction>

12. <alpha list> ::= <fraction> | <fraction> ’',’ <alpha list>

13, <range def> ::= 'RANGE’ ¢’ <int> ', <int> [',' <int>]1 ')’
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e 14. <filename> ::= ’{any non-whitespace printing chars except '"'}’
W 1S. <int> ::= '1..9’ [{<digit>}] ! 'O’

16. <«fraction> ::= [’0’'1 ’.’ [{<int>2}]

" 17. <digit> ::= ’0..9’

A
? ' 18. <comment stmt> ::= '--’ C’'{E}’] <EOL>
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Appendix E
SAE Operating Manual

Introduction

The Statistical Analysis Environment (SAE) is a programming
environment created specifically to assist in performing
reliability analysis. The current capabilities of the system
provide for the analysis of failure data by determination of the
likelihood that several samples came from distributions with the
same mean-time-between-failures (MTBF). The following sections

describe the cperation of the SAE,.

SAE Startup

To begin operation of the SAE system, the current directory
must contain the executable files ’'sae’ and ’sae.shell’. The
execution of the ’'sae’ program will print a header line and begin
running the shell program. Complete operation of the SAE
system’s ’‘compiler’ and ’'help’ functions will require additional
fFiles and a specific directory structure (for details, see the
following sections). The directory structure and files are shown
in Figure E.1.

The system is designed to be run on the UNIX (trademark of
Bell Labs) operating system and was developed on the Berkley

Version 4.2 UNIX,. Assuming the standard percent praompt from the

UNIX C-shell program, the SAE system operation begins like this:




Current Working Directory

sae
sae.shell
math.make

N | .
l l

Help Math
help.help defs.h
help.editor env.h
help.compiler table.h
help.sxit lIrt.h
help.table table.c
help.lrt Irt.c
editor.commands compute.c
editor.language prob.c

beta.c
coefs.c

bernpoly.c

|
Object

compute.o
prob.o
beta.o
coefs.o
bernpoly.o

Figure E.1.

When the
commands.
However,

conflict

SAE Directory Structure and Files
% sas
Welcome to the Statistical Analysis Environment

SAE >

prompt °'SAE >’ appears the system is ready to

In general, any valid UNIX command may be
there

with SAE program names.

in the following sections.

are some restrictions in calling programs

accept
given.

which

These anomolies are discussed
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%,, SAE Commands

o There are only six SAE commands. These are, simply:

I;‘:;“

K exit or quit - return to UNIX,

3] editor - run the SAE editor,

Qk compile - run the SAE interpreter,

g table - execute a program named ’table’

gl irt - execute a program named ’lrt’,

‘%L help or 7 - run the SAE help system.

0

%ﬁ' These commands may be given in any abbreviated Form that does not

‘@f conflict with another SAE command. For example, the editor may
(]

1)

)

i“ be called ’'ed’, ‘edit’, 'edi’, or ’editor’ but not 'e’ because

)

ﬁwt that could not be descriminated from the exit command.

ﬁJc Standard UNIX commands may be given in the normal manner,

2

fﬁ} except in cases where their names would conflict with the name of

) f\

%h1 an SAE command. Then the UNIX command may be entered with a back

A slash preceeding it. For example, ’'\ed’ is the command necessary i

‘g

% to run the UNIX editor instead of the SARE editor.

]
¥ There one other important restriction on the execution of
z$< UNIX commands. The current working directory may not be changed.

(N
f\; The execution of any non-SAE command is done by starting a copy
[}
AR
{ﬂﬂ of the UNIX C-shell program and executing the UNIX command within
25Y that shell. Any changes to the working directory are not
>

o |
j:{ exported to the SAE shell. This is necessary because the ;

‘!

J i
(;ﬁ locations of the ’'Math’ and 'Help’ directories are important to
"A‘ the proper operation of the SAE editor, compiler and help
o functions.
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{:; ) SAE Editor
W
o The SAE editor is a small screen-criented text editor for
S

&ﬁ creating SAE language programs. The editor may be entered with a
e

ﬁ@ specific file to be edited. Example commands are:

‘ﬂ_
K ; SAE > ed <- no file to edit

&f SAE > editor textfile <- ’'textfile’ is edited

RN, SAE > edit Help/help.me <- 'help.me’ in the Help
L directory is edited

l‘o‘l.

LA )

»n} The editor is limited to 15 lines of text to edit. A longer file
Y

‘Q; will be truncated when it is read into the editor. However, only
g} the edited version will be changed. The original file will not
L o#

o be modified.

.r_:.:

jz. A backup file is always created when the edited file is
E .r_'.:

?{ saved. The backup file is given the complete name of the edited

file, with the extension ’'.bak’ appended to the end.

3
ggg Commands within the editor are generally given by single :
{{ﬁ characters. The 1list of available commands will appear at the
:éf bottom of the screen by pressing the 'H' key for help. A list of
;%: reserved words and language statement formats will appear in the
:?i same place in response to the 'L’ key. Also, a display of the
editor’s status may be seen by using the 'S’ key. Pressing the

same key again will clear the bottom of the screen of any of
these displays. These and other editor commands are listed in
Table E.1. Many of these are similar to the commands of the UNIX
editor 'vi’, although not as extensive.

There are Ffour secondary editor commands (see Table E.2).

These commands are specifically Ffor reading and writing

Aﬂu&\"fﬂa\“ﬁdnﬂkﬁ*“fﬂ{
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an Table E.1

«

b Editor Commands

¥,

M Command Description

[ i begin insert mode

s a begin append mode

o insert a new line and begin insert mode

- <ESC> end insert or append modes

,: r replace a character

i) dd delete a line

< X delete a character

" v erase and redraw the screen

22 save the editor contents and exit to SAE

. Cc turn on/off the compiler

- H turn on/off the help display

g S turn on/of f the status display

" L turn on/off the language help display

4 : execute secondary editor command

<

R

D

¥ information to and from the editor. The write command C’:w
o <filename>’) will write the entire contents of the editor tc the
‘a file named. If no file is given in the ’'write’ command, the file
Eo ™

.S named previously (when the editor was started) will be used. The

current contents of the file are moved to a backup version.

&

2 The exit command (’':e <filename>’) performs exactly as the
.1

L write command and then exits to the SAE shell. The quit command
“‘ (’:q’) leaves the editor without saving the contents.

n

- The last secondary command for the editor is the read
"

b2 command (’':r <filename>’). This will read the contents of the
b

= given file into the editor at the line following the current
&

>, cursor position,

.

: The compiler can be used with the editor to advise the user

when proper commands have been created. Upon entering the

N editor, the compiler is turned off. To start the caompiler, press
>

Y E-5

q

Wi

"
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4 Table E.2
K
e Secondary Editor Commands
¥
,#2 Command Description
"2 w write edited text to a fFile
W r read text from a file to editor
q quit the editor without saving contents
Q‘ e save the editor contents and exit to SAE
a
o
the 'C’. On the right side of the screen, a single character
;3 will give the status of each line of text. There are three
., 'h\.\
' possible values; a period ’'.’' indicates a valid language
&y
)
4 e statement, a dash ’'-’ indicates a partial statement with no
.
" L4 o
:ﬁ errors, and the letter 'E’ indicates an error. If the status
¥ f-