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Preface

The purpose of this study was to compare Minimum Dis-
tance estimation techniques to the Method of Moments and
quasi-clustering techniques when applied to mixed exponen-
tial and mixed normal distributions. A Monte Carlo simula-
tion was performed, using the Anderson-Darling goodness-of-
fit statistic as a distance measure for the Minimum Distance
method. Finally, the mean-square error was used as the per-
formance criteria in the comparison step.

I wish to thank my thesis adviser, Dr. Albert H. Moore,
for suggesting this topic and also for his constant encourage-
ment and assistance. I am also deeply indebted to 1Lt. Mark
Gallagher and Capt. Greg McIntyre for their invaluable assist-
tance in the development of the computer software. A word of
thanks is also given to my parents, Randall and Nedra Benton,
for their long-distance words of encouragement and support.
Finally, I would like to extend my appreciation to my husband,
Fred, for typing the thesis and for his undying sacrifice
and understanding during the past few months.

R. Nicole Benton-Santo
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‘ Abstract
‘QMinimum Distance estimation was used to calculate
estimates of the mixing proportion of the mixture of two
normal distributions and the mixture of two exponential
distributions. The estimation was carried out by using the
Golden Search technique to minimize the Anderson-Darling
goodness-of-fit statistic. A Monte Carlo simulation was run
for both distribution mixtures, varying the mixing propor-
tions from .25, .5 to .75 with sample sizes of 100 for the
normal mixture and 750 for the mixture of exponentials.

The simulation was run 500 times for each parameter combin-
ation.

An ad hoc quasi-clustering technique was used to obtain
the initial estimates for the parameters of the mixed normal
while the method of moments technique was used to obtain
initial estimates for the mixed exponential parameters.
These estimates were then used to start the minimum distance
routines which were used to obtain new estimates of the mix-
ing proportions.

Finally, the mean square errors were calculated for use

as a means of comparison for the different estimation pro-

ceduresﬁ\
1\
\
S
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MINIMUM DISTANCE ESTIMATION OF
A MIXING PROPORTION

I. Introduction

In recent years, there has been an increasing interest
in system reliability by the military. This interest has
been spurred by the higher cost of new technology weapon
systems. By the use of statistics, a system's ability to

perform a given mission and its reliability can be predicted.

This prediction and related predictions can be used to pro-
cure superior systems by the use of multi-criteria decision
analysis or as an aide to improving reliability through en-
gineering design. These are only a few examples of the many
uses of reliability theory by the military, however, the
first step in the process is reliability parameter estima-
tion.

Every system's time-to-failure can be determined by a
probability density function (p.d.f.) and its associated
cumulative distribution function (c.d.f.) or by a mixture
of p.d.f.'s and their associated c.d.f.'s. Classically, the
functional form of this c.d.f. is hypothesized by one of the
classical distributions, based on a set of test data. After
the functional form has been hypothesized, its associated




parameters must be estimated. Prediction of system failure
rates depends largely on how well these parameters are esti-
mated using the test data. Many methods have been used for
this estimation, for example, the method of moments, linear
maps, and maximum likelihood estimation (MLE). All of these
methods are widely accepted and are well documented for com-
mon distributions and a few distribution mixtures. The final
step in the process is to perform a goodness-of-fit test
which measures the distance between the estimated distribu-
tion and the hypothesized sample distribution function.
Recently, a new technique known as minimum distance
estimation, has been developed which, in a sense, "reverses"
the above procedure. The functional form of the distribution
is still hypothesized, however, the parameters of the p.d.f.
are chosen so as to minimize the goodness-of-fit statistic.
This procedure has been applied to most of the classical
distributions with good success. However, the process has
not been widely used when investigating mixed distributions.
The objective of this research is to compare the initial
parameter estimates obtained from the method of moments and
quasi-clustering techniques to those obtained by the use of
minimum distance estimation. 1In doing this, the search for

a better estimation technique will be advanced.
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II. Estimation

When the military uses a probability density function
to approximate or describe a system's reliability, many of
the parameters associated with the p.d.f. are unknown and
must be estimated. There are several widely accepted
methods used for this estimation, such as the Method of
Moments, the Method of Maximum Likelihood, the Method of
Least Squares and Bayesian Estimation. Of these, the Method
of Moments and Maximum Likelihood have been the most widely
used. Recently, a new method has come under investigation.
This new method is known as Minimum Distance Estimation.
wWith all of these different methods of estimation available
the question of which method providgs the best parameter

estimates arises.

Criteria of Good Estimators

Basically, there are four criteria that are used either
individually or collectively to define good estimators.

These criteria are

1. Invariance and Unbiasedness
2. Consistency
3. Efficiency

4. Minimum risk invariant and minimum variance unbiased

(29:73)

.



It is up to the user to decide which of the above
criteria is most important, however, the estimation methods
listed previously all produce estimates which fit at least
some of the above criteria. Following chapters will contain
explanations of the most commonly used methods, and the new-

est method, when applied to mixed distributions.
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III. The Mixed Model

As was stated in the introduction, any system's time-
to-failure can be determined by a p.d.f. and its correspond-
ing c.d.f. or by some mixture of p.d.f.'s and their corres-
ponding c.d.f.'s. In fact, quite often a system can exper-
ience more than one type of failure, for example, fatique
failure or a sudden electrical failure. When this is true,
instead of using a single distribution to describe the time-
to-failure, the mixed model is applicable. Actually, many
problems involving mixtures arise in several different
fields of study other than reliability theory, for example,
bioclogy (13) and remote sensing and space applications
(4,32). This explains the ever increasing interest in para-
meter estimation for the mixed model.

Mathematically, a k~fold mixed c.d.f. is defined as

n n
Fy(X) = z P1Fxj (X) 0<p«<1l andiz1 pj =1 (3.1)
i=] =

and a k-fold mixed p.d.f. is defined as

fy(x) = ;i Pj £xj (%) (3.2)
where

Fxi(x) = the ith subpopulation c.d.f.
fx;(x) = the ith subpopulation p.d.f.

0 < p <1 = the mixing proportion parameter




It has been common practice to assume that the distributions
in a mixture belong to the same family, but differ in para-

meter values.

Previous Research

With a few exceptions most of the previous research in-
volving estimation of the parameters of mixed distributions
involves the Method of Moments, Maximum Likelihood and
Bayesian techniques, all of which have been proven to be
difficult. Such researchers as Hosmer(12,21,22), Cohen(9),
Tan and Chang(7), Hasselblad(16), Hill(18), Day(ll), Bowdon
and Dick(6), and James(25) have all considered the problem
of estimating the parameters in mixed normals. These are
only a few of the authors of extensive literature involving
the mixed normal. This extensiveness is due to the diverse
applications of the mixed normal.

The second most widely explored mixture is that of the
exponential. Cohen(9), Hill(18), Hasselblad(17), Rider(34)
Boardman(5), Ashour and Jones(2) and Hader and Mendenhall
(15) have all researched the area. A few researchers have
extended this research to the mixed wWeibull, Falls(l4) and
Rider(35) using the method of moments and Kao(26) using a
graphical method, for example.

In all of this research nearly all of the authors are
in agreement about the difficulty of the estimation problem,
due to the complexity of the equations. 1In the following

chapters, the Method of Moments, the Method of Maximum Like-




lihood and Minimum Distance estimation will be briefly de-

veloped, including the required equations.




IV. Estimation Techniques and Mixed Distributions

The Method of Moments

One of the oldest and simplest methods for deriving
point estimators is the Method of Moments. Due to its
lack of sophistication, this method has its faults. Por
example, the estimators are usually not unbiased or the
most efficient. However, on the positive side, the method
is relatively easy to employ, it provides consistent estima-
tors, and most importantly, it often provides estimators
when other methods fail to do so. (30:360)

The kth moment about the origin of a random variable

is defined as

wy = E (YK (4.1)
and can be found by taking the kth derivative of the cor-
responding moment generating function if it exists, and
evaluating it at t«0. Mathematically, we can write

W = am(t)/atk It-o (4.2)

The corresponding kth sample moment is the average

n
m'y = 1/n; v,k (4.3)




The method of moments assumes that these sample moments will
be good estimates of the corresponding population moments

and that the needed population moments exist. Since the
population moments are the functions of the population para-
meters, the corresponding equations can be equated and solved
for the desired parameters. In other words, "Choose as esti-
mates those values of the parameters that are solutions of
the equations 'y = m'y, k=1,2,...,t, where t equals the

number of parameters."” (30:357)

Moments of the Mixed Normal

In this research, a mixture of two normally distributed
populations is being examined. The normal cumulative dis-
tribution is defined as

piy) =f (2% ¢2)°1/2 exp -1/2 (y-u/@)? dy (4.4)
and the normal probability density function is defined as
f(y) = (exp -(y-m)2/262) (20 w)"1/2 (4.5)
where €)>0, is the standard deviation or the scale parameter
-® <Cu <® , is the mean or the location parameter

~-®ody<®

Therefore, the mixed c.4.f. will be




vl

X
F(x) = PL (2w ¢,2°/2 oxp -1/2(y- 4,/ ¢,)2 dy
+ (1-p) (2:122)'1/2 exp -1/2(y-p 2/12)2 dy (4.6)

Prom this c.d.f. it can be seen that there are a total of
five parameters ( p,. M,, 012, czz. p) that must be estimated.
Therefore, the first five moments must be derived.

The moment generating function for the normal distri-

bution is
exp (ut + (1:2 62)/2 (4.7)

Taking the first five derivatives and evaluating at t=0, we

get the following moments:
(u+o2t)exp( ut+(t?202)/2) |y o = 4 (4.8)

czexp( ut+(t2 62)/2) + (u+ czt)zexp( 'R L] cztz)/z)lt_o

- u2 2

+ g (4.9)
02‘(p+¢2t)oxp( pt+(t202)/2]+ 2(u+ot)( g2
exp( ut+(t2¢2)/2) + (p+¢2t)3exp(ut+(t2'2)/2't_o

s luel s 3 (4.10)

Czllzixp(utd»(tzOz)IZ) + (u+@2t)2exp( ut+(t?2 ¢2)/2
+ 20%xp(ut+(t202)/2) 4202 yu+ 02t)?
exp ( ut+(t2 02)/72) + 3¢ p+czt)2( e?
oxp( ut+(t202)72) + (u+02t)%exp(ut+(t202)/2) te0

10




W

=308+ 6022 4+ pud (4.11)

[2(p+ 02t)(ed) + 2(u+02t)(20% + 604 (u+ ot
+ a(p+a)dy 12)] exp( pt+(t202)/2)
+ (p+olt)exp(ute(t2a2)/2) l¢‘+¢2(u+ o2t)2
+20%202(p+alt)2 + 302 (pu+a2t)2 + (u+ czt)‘“t_o

# -uS+10u302 4150t (4.12)

These five moments, when equated to their corresponding
sample moments and rearranged to accommodate the mixture,
H yield the following equations which, when solved, provide

the five parameter estimates.

zxiln < pM; + (1-p) My (4.13)
S x.2/n
S x 30
S x4/

P“‘lz* “12) + (1*9)(#22*' 022) (4.14)

P(Iuy, 0,2+ w3 + (1-pr(3m, 02+ wyY) (a1l

[ ]
+

P30,  + 60,2424 w4+ (1-pr(30,t

2

+

6122‘42 + u23) (4.16)

insln

p(w,5+10m,70,2 ¢ 154, 6,4 + (1-p) (4,5

+

10“23 ’22 + 15 “2 '2‘) (4.17)

Moments of the Mixed Exponential

The second distribution that will be used in this

11
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research is the exponential. The exponential c.d.f. and

p.d.f. are respectively,
F(t) = 1-exp(-t/e ) t>0 (4.18)
f(t) = (1/0 Yexp(-t/e¢ ) , t>0, 0)>0 (4.19)
From the above we get the mixed c.d.f. of

F(x) = p(l-exp(-x/ 0,)) + (1-p)(l-exp(-x/ 05)) (4.20)
As with the normal, we can see that there are three parame-
ters ( ¢;, ¢, p) that must be estimated. This requires
the first three moments which can be derived from the expo-

nential moment generating function. This function is

My (t) = (1-0t)7? (4.21)

AS before, we take the first three derivatives and evaluate

at t=0 to yield the following,

1. o(1-0t)2 lc-o - (4.22)

2. 20%(1-0¢)"? It-o - 202 (4.23)

3. 603(1-0t)"4 |t_° - 603 (4.24)
12




Once again, equate the above population moments to their
corresponding sample moments and rearranged for a mixture

to obtain the required equations.

:Exiln =po; + (1-p) 0, (4.25)
}Exizln = 2p 012 + (1-p)2 022 (4.26)
2x13/n + 6p .13 + (1-p)6 ’23 (4.27)

The Method of Maximum Likelihood

The Method of Maximum Likelihood is a much more sophis-
ticated method of estimation than the method of moments.

In being so, it is more difficult to apply, however, the
the method is usually better than the method of moments and
ylelds asymptotically best estimators which explains its
popularity.

The method begins with a random sample from a probabil-
ity density function with unknown parameters. The likeli-
hood function is now defined as the joint density function
of the n random variables, and can be written as,

n

Le 0o, (xc0) (€.28)

where ¢ is an unknown parameter

If the random sample is from a multiparameter density func-
tion, then

13




n
L = 1[-11 fy (X4, 07,045, 03,..., 0%) (4.29)

The maximum-likelihood estimators (MLE) of the parameters
are the values of the parameters which maximize L or equiva-
lently 1ln L. Quite often these values are the solutions to

the following equations.

dlnL/J ey = 0 i=1,2,....k (4.30)
(29:82)

Maximum-Likelihood Estimation and the Mixed Normal

Maximum-likelihood estimation of the mixed normal, in
its long history, has proven to be very difficult. This
difficulty arises largely in the fact that the likelihood
equations do not have an explicit solution and instead,
must be solved by iterative methods.

Given

f; = frequency of the observations (4.31)
qgq = /(27 ‘jz)l/z exp(-(xy - u4)2/2 042 (4.32)
we can let

Qq = 21 934 Py (4.33)

so that the log of the likelihood function is approximately

14




n
- L = z fi Ln(Qi) (4.34)
i=1

If we take the partial derivatives and set them equal to
zero we get the following set of equations that must be
solved iteratively,

n
- 2 -
0 = dL/ buj = glfi/oi quij(xi Mj)/ d'j Jj=1,2,...,k (4.35)
>
- 2 3 4.
0= 9L/ adj = itlfi/oi piqij (x4 Mj) /dj j=1,2,...,k (4.36)
n
0= dL/ apj = Zlfi/oi (qij—qik) j’l,Z,...,k—l (4.37)
Two possible methods for solving these equations could be
Newton's Method or the method of Steepest Descent.

(16:432-436)

Maximum Likelihood Estimation and the Mixed Exponential

Similarly, for the mixed exponential where,

fj(x) = 1/0 exp(-x/0 ) for x>0 (4.38)
and
g(x) -2:1 Py£q(x) (4.39)

we can write the log of the likelihood function as

L = g 1n g(xy) (4.40)

15




By taking the partial derivatives, equating them to zero,
and simplifying as illustrated by Hasselblad (1966), we
get the following equations which must be solved by

*successive substitution” iteration. (17:1462)

n
pi(V+i) = ij/N 121 fj(xk)/g(xi) (4.41)

n n
0, (VHL) 2 D £ (V)xiyxy/g{V) (x ///EZ £ (V) (%79t V) (x 4.42
3 1213 (x4)%x4/9 (x4) &4 (%479 (x4) ( )

where v+l = current iteration

v = last iteration

16




V. Minimum Distance Estimation

Minimum Distance estimation is a relatively new estima-
tion technique which is in the forefront of statistical
research. The method was first developed by J. Wolfowitz in
a series of articles beginning in 1952.(36,37) In these arti-
cles he developed the method as a means of deriving "super-
consistent" estimators when classical methods failed to. (36:
1953). During the following years much work was done in the
field of minimum distance applications to classical distribu-
tions. Much of this work was done by Dr. Albert Moore and
his thesis students. For example, Hobbs, Moore and James(19)
investigated minimum distance estimation and the three para-
meter Gamma distribution while Hobbs, Moore, and Miller(20)
applied the method to the three parameter Weibull. Very
recently minimum distance estimation has been under study for
robustness. Parr and Schucany(33) were two of the first ‘o
investigate this area and did show that minimum distance
techniques provide robust estimators for the location para-
meters of symmetric distributions. Since then Daniels(10)
applied Parr's methodology to the generalized t distribution,
and Miller(31) to the three parameter Weibull, among others.

Wolfowitz's minimum distance method begins by defining

the distance between two distribution functions as
(Fy ,Fy) = s;zp Fy(x) - Fy(x) (5.1)

17




where sup means supremum.

The method is in no way tied to this definition and can be
applied with many different definitions of distance. (36:10)
For the purpose of this research however, the above definition
of distance will be used.

The method next selects a random sample of size n
from a known distribution and determines the empirical dis-

tribution, S,(x). The empirical distibution is defined as

Sp(x) = number of values < x / total number in sample (n) (5.2)

and is a non-decreasing step function with jumps of size 1/n
at each observed value. (3:269)

The final step is to determine the parameter estimates
by minimizing the calculated distances between the empirical
distribution function and the true or hypothesized distribu-
tion. There are several different distance measures that
are commonly used for this step, including the Kolmogorov-
Smirnov, the Cramer-von Mises, and the Anderson-Darling

statistics.

Kolmogorov-Smirnov

The Kolmogorov-Smirnov statistic is defined as

D = sup(F(x) - Sp(x) {5.3)

18

D

L\



In other words, the largest absolute deviation between the
hypothesized distribution and the empirical distibution.
Computationally,

D = max(D*, D7) (5.4)

where DY and D~ are defined as follows

pt = max((i/n) - z4), 1 i< n (5.5)
D™ = max(z; - (i-1)/n), 1 <i< n (5.6)
and
zy = F(x4) (5.7)
(3:269-270)

Cramer-von Mises

The Cramer-von Mises distance technique is defined by

w0 2
w2 = o7 [spea-Fn]” v Eeo)are (5.8)
-0

where (F(x)) is a weighing factor or computationally
n

w2 - [1/(12n)l+2;.[zi - (21-1)/2n]° (5.9)

where z; is defined as before. (24:17)

19




Anderson-Darling

The Anderson-Darling distance measure is the measure
used for this research. It is a special case of the Cramer-

von Mises distance measure where
V(F(x)) = 1/F(x)(1-F(x)) (5.10)

This weighting factor causes more emphasis to be placed upon
the tails of the distribution. (24:18) The statistic can

be computed by

n
_ a2 -l- (20 (2i-1)(1n(z4) + 1n(1—zn+l_i)))/n] - n (5.11)

i=1

where z; is defined as before.(1:765) For the mixed normal

[ [Z(zi 1)(1n<;3/'(21r ag 2) 1/2exp[ -1/2(y- 1/ @) ]dy

+ (1- pf (27 0 ,2) l/2exp[-1/2(y po! o’z)zldy)

+ 1n(1- (%""'(21 0,2) 1/2exp[ ~1/2(y- 4,/ 07) ]dy

+ (1- p.)l:(“""(ZT 0’2 ) l/zexp[ 1/2(y- uy/ dz)zldy))l /n]

- n (5.12)

and for the mixed exponential

[ lz:(Zi -1)(ln(p(l-exp(-x4/ 64) + (1-p)(l-exp(-xy/ @3))
+ 1n(1-(P(1-eXp(-Xpp1_1/ 01)) + (1-P) (1-eXp(-Xp41_1/ 62)))))]
/n]l-n (5.13)

20




These are the equations which will be minimized in this
research to obtain the minimum distance estimate of p where
all other parameters have been previously estimated and are

assumed true.

21




VI. Methodolo

The methodology developed in this thesis assumes that
the underlying distributions are mixtures of distributions
from the families of the Normal distributions and the One-
Parameter Exponential distributions, as defined in equations
4.6 and 4.20 respectively. 1In 1984, Woodward, Parr and
associates applied Minimum Distance techniques to the mixed
normal, the mixed double exponential, and the mixed t-distri-
bution.{27) 1In Parr's research, the distance measure chosen
was the Cramer-von Mises goodness-of-fit statistic which
differs from the current research. However, this research

is an extention of Parr's study.

Monte Carlo Simulation

Monte Carlo simulation techniques have been widely used
in previous parameter estimation studies. The technique
allows you to specify a particular underlying distribution
from which to draw the sample and, in doing so, allows the
performance of the estimators to be checked. The Monte
Carlo simulation applied to this research consists of the
following steps.

(1) Generate the data from the specified distributions.

(2) Determine the initial parameter estimates either

by using the Method of Moments or quasi-clustering

22
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techniques.

(3) Determine the Minimum Distance estimates of p, using

the estimates of step two as starting values.

(4) Compare the performance of the estimators.

Each of these steps will be explained in detail in the
remainder of this chapter. At this point, it should be sta-
ted that the computer time required to accomplish this simu-
lation was very great. This limited the number of cases

that could be investigated.

Sample Generation from the Mixed Normal

Six samples from the mixed normal distribution were
generated using the method described by Parr and associates
(27). The first step was to generate 100 standard normal
deviates by use of the IMSL subroutine GGNPM(23). The second
step in the process was to determine which component of the
mixture the deviate would be assigned to. This was done by
first selecting the desired mixing proportion, then genera-
ting 100 (0,1) uniform deviates from the IMSL subroutine
GGUBS (23). The normal deviates were assigned to the first
component if the uniform deviate was less than the mixing
proportion, p, and to the second if it was greater than p.
The final step was to scale the normal deviates according to

the assigned component. An observation from f,(x) = Y where

23




_—y

m**

Y was the standard normal deviate, and an observation from
fo(x) = Y+b where b>0 and is defined as the difference in
location parameters. The parameter combinations used were

P=.75 “1-0-0 “2-2-32 ‘1" ‘2-1

pP=.75 ul-0.0 [l2-3o6 ‘l- ‘2-1

P=.50 u4;=0.0 ,=2.56 @)= 0,=1

P=.50 U;=0.0 U,=3.76 @)= g,=1

p-.25 ul-0.0 ﬂ2-2.32 ‘1' ‘2'1

P=.25 M;=0.0 f5=3.6  0,= Oy=1

These combinations were selected so that the analysis of

this study could be compared to that of Parr (27).

Sample Generation from the Mixed Exponential

Sample generation for the two component mixture of one
parameter exponentials was much simpler than that of the
mixed nornal. Nine samples of size 750 were generated using
the IMSL subroutine GGEXT(23). This subroutine automatically
generates deviates from a specified mixture and therefore

requires no manipulation. The generated samples had the fol-

lowing parameter combinations.
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p=.75 0,=2.0 0,=0.5
p=.50 0,-2.0 0,=0.5
p=.25 0,=2.0 0,=0.5
p=.75 0,=1.0 0,=0.5

| p=.50 0,-1.0 9,=0.5
p=.25 0,=1.0 0,-0.5

i p=.75 0,=3.0 0,=0.5

J p=.50 0,=3.0 0,=0.5

} p=.25 0,=3.0 9,=0.5

1

These parameter values were chosen to give varying degrees

of separation between the two components.

’ After the samples were generated the initial parameter
estimates had to be determined. This turned out to be a

very difficult task.

Initial Parameter Estimates for the Normal Mixture

Due to the complexity of both the Method of Moments
equations(4.13-4.17) and the Maximum Likelihood equations
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(4.35-4.37), the solutions to these equations are both dif-
ficult and time consuming to obtain. Because of this an
alternate method was chosen. In Woodward and Parr's paper
(27), they obtained starting values for the ML technique from
an easy to implement quasi-clustering technique. In their
final analysis these initial estimates were found to be high-
ly competitive with the maximum likelihood estimates. For
this reason and because of its simplicity, this technique was
selected for use in this research and it is explained below.
First u,< u, is assumed to be true. Next, the initial
estimate of the mixing proportion, py., is allowed to take on
the values of .1,.2,...,.9 only. The sample is then ordered
and divided into two subsamples, Y,,Y,,...Y, and Y +1, ...Yq,
for each allowed p, value, where n; = np rounded to the
nearest integer. The initial estimate of p is the value p,

that maximizes

p(1-p) (m;-my)2 (6.1)
where my is the sample median of the jth subsample.
The choice for the estimates of u, and u, are the corres-
ponding m; and m, values of the above p estimate. Finally,
the estimates of 612 and 612 are determined by the
following equations.

0120y = ((mp-r;+25)) / [6745)2 (6.2)
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‘zz(o) - ((tz(‘75)-m2) / .6745)2 (6.3)
where rj(q) is the gth quartile from the jth cluster.

Initial Parameter Estimates for the Exponential Mixture

The Method of Moments technique was chosen to obtain
the starting estimates for the case of the mixed exponential.
The moment equations were defined in Chapter 4, equations
(4.25,4.26,4.27). The first attempt to solve these equations
was made using the method of false position. These attempts
failed however. 1Instead of converging they diverged and
therefore a new method was searched for. The method selected
was that of Paul Rider(34).

Rider suggested combining the three moment equations.

In doing so and then simplifying, the following quadradic is
obtained

6(2m'12-m'2) 9j*2 + 2(m'3-3m'1m'2) oj* + 3m'22—2m'1m'3 =0 (6.4)
where m'; is the ith sample moment. (34:144)
The roots this quadratic are estimates of ¢, and #, and in

this research they were obtained by the use of the IMSL sub-

routine ZQADR.(23) With these two estimates an estimate of
p can be obtained from

PY = m'y - 8,%)/( 0" - 0,") (6.5)
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Minimum Distance Estimates

After obtaining the initial estimates, the minimum dis-
tance estimates of the mixing proportion were found for both
the normal and the exponential mixture. Refer to Chapter 5
for the explanation of minimum distance methods.

The distance measure selected for this research was the
Anderson-Darling goodness-of-fit statistic. 1In other words,
the parameter estimates were selected so as to minimize this
statistic. The method used to perform this minimization was
the Golden Search. The following is a general algorithm for
the method. (28)

Assumption: f(x) is unimodal on [a,b] and r =.618034

Step 0. Let x=a and X=b

xL-!- r (Y-E)

XR=X+I (X-X)

Step 1. Evaluate f(x;) and f(xg)

Step 2. f(x) » f(xR):i-xR ; Xg=Xp,

Xp, = X-r(X-x)

f(xL) < f(xR)$§_-xL H XL-XR

28




Step 3. If L<€ , stop x Sx*s X

Otherwise, go to step 1.

For this research f(x), the Anderson-Darling statistic, is
defined in equation 5.12 for the mixed normal and in equation
5.13 for the mixed exponential. € was chosen to be .0001,
and the intial values of a and b are D and 1 respectively,
since 0<p«1.

In this research, when evaluating f(x) the c.d.f. for
the appropriate distribution must also be evaluated. 1In
the case of the mixed normal however, the c.d.f. must be
approximated. This approximation was performed by the IMSL
subroutine MDNOR. (23)

Comparison Criteria

After both parameter estimations have been found, the
process is repeated 500 times. This is done for both the
mixed normal and the mixed exponential. Using the estimates
from the 500 replications, the mean square error for both

mixing proportion estimates was calculated by

5
MSE = 1/5002 (py-p)?2 (6.6)
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A comparison of the two different MSE calculations gave the
indication of which estimation was best.

A sample of the computer code used to implement the
above simulation for the mixed exponential can be found in
the appendix. It should be noted once again that computer
time needed for the program was very large when run on AFIT's

SSC computer system.
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VI. Conclusions and Recommendations

Summary
This thesis compares the Method of Moments and quasi-

clustering estimation techniques to Minimum Distance tech-
niques when used to estimate the mixing proportions of mixed
one parameter exponentials and mixed normals, respectively.
The Method of Moments estimates were used as the baseline
for the mixed exponentials, while the quasi-clustering esti-
mates were the baseline for the mixed normals. This compar-
ison was carried out by a computer routine which performed

a Monte Carlo simulation, then calculated the mean square

errors. These errors were used as the criteria for comparison.

Conclusions

At the beginning of this research it was hoped that the
minimum distance estimation technique would provide better
estimates than the baseline techniques. 1In the case of the
mixed exponential this does not appear to be true as can be
seen in table I. However, the small mean square errors show
both estimators to be good and despite the fact that the
Method of Moments technique appears better, it has problems.

First of all, the method of moments technique requires
very large sample sizes in order to ensure that the roots of
equation 6.4 are positive.!/32:144) Even in the case of the

sample size of 500 used for this research, one of the para-

31




meter combinations still became infeasible. (Denoted on
table 1 by *). On the other hand, the minimum distance tech-
nique will converge in relatively few iterations with any
decent initial estimates, ie. educated guesses, graphical
estimates, etc. Secondly, the method is much more difficult
to apply than the minimum distance routine due to the compli-
cated moment calculations. For this reason, and due to the
closeness of the mean square errors, the method of minimum
distance is recommended.

In the case of the mixed normal, the results were much
different. Parr's analysis, which used the Cramer-von Mises
statistic, had results indicating similar mean square errors
for the minimum distance and the clustering estimation tech-
niques. In the current research however, the clustering
method proved to be superior. This was due to the inability
of the Anderson-Darling statistic to distinquish between
the .75 and the .25 mixing proportions. For this reason,
use of the Anderson-Darling statistic as a distance measure

for the minimum distance technique, when applied to mixed

normals, is not recommended.

Suggested Research

Extending the above research to include mixed weibulls
is suggested. Due to the strength and versatility of the
Weibull distribution as a failure model, this extension

could be a powerful aid in the search for better parameter

estimation techniques.
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TABLE I.

Simulation Results for Mixtures of

Two Exponential Components

True Mean Mixing Estimator MSE
Values Proportion
1 = 2.0 .75 MDE .0428782
2 = 0.5 Moment .0339208
.50 MDE .0281973
Moment .0208788
.25 MDE .0159149
Moment .0134047
1 = 1.0 .75 MDE
2 = 0.5 Moment *
.50 MDE .0910827
Moment .0862087
.25 MDE .105535
Moment .101567
1 = 3.0 .75 MDE .0381142
2 = 0.5 Moment .0235877
.50 MDE .0265675
Moment 0136226
.25 MDE .011018
Moment .00732790
33
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TABLE

II.

Simulation Results for Mixtures of

Two Normal Components

(equal shape

parameters)

True Mean Mixing Estimator MSE

vValues Proportion

1 = 0.0 .75 MDE .122337

5 = 2.32 Clustering| .0183400
1 =0.0 .50 MDE .0338620
2 = 2.56 Clustering | .0114600
1 = 0.0 .25 MDE .332602

2 = 2.32 Clustering | .0194600
1 = 0.0 .75 MDE 153062

2 = 3.6 Clustering | .00726004
1 = 0.0 .50 MDE .0221589
2 = 3.76 Clustering |.00671999
1 = 0.0 .25 MDE .309898

2 = 3.6 Clustering |{.00826004
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APPENDIX: COMPUTER CODE

B Y T 2 2222382322223 2222 222222 2 s sttt sttt dd

This program generates estimates of the mixing pro-
portion fo two exponential distributions using the
both the Method of Moments and the Minimum Distance
estimation techniques.

AKEAAKAKXAKAKAKRAKAAKKARKKAKRKRKKERAKRKRKAKAAKRARRKAARA R AR RAR KRR AR KK

real samp(750),true(3),temp,min(3),mse,a,b,c

real sammom(3),meanl,mean2,estip,x,y,z,msemom,tempt(3)
real x1,yl,zl

integer nr,n,m,d,ier

complex zsm,zlg

common true(3)

double precision dseed

external ggext

nr=750

true(l)= 2.0

true(2)= .50

true(3)= .25

mse=0.0

msemom=0 .0

print*,'

printx*,'exponential: meanl=2.0,mean2=.50,p=.25"'
printx, ' !

dseed=295847397.40

AAAEKKKEKEKEAKKA KKK KAAKKAKAKAKEKREARAKAKKRKRAKARKRA KA AR AR KA KKk

Begin the iteration loop

2 2 222223523323 3333 3333332332242 222222 s Lt

do 10 k=1,500
sammom(1l)=0.0
sammom(2)=0.0
sammom(3)=0.0
pP=.25
true(l)=2.0
true(2)=.50
true(3)=p
Xml=2

Xm2=.5

nr=750

L2 2222 SRR 22 R it s g bR a2

Generate deviates from a mixture of two exponentials
by the use of the IMSL routine GGTEXT and sort the

35




Lot

noon

400

500

annonoan

600

noononnonn

data.

122 22233328 33 822 2222222322222 22 2222 2222222 3 2 &
call ggtext(dseed,p,xml,xm2,nr,samp,ier)
print*,' !
do 500 i=1,749
d=1i+1
do 400 j=d,750

if (samp(i) .gt. samp(j)) then
temp=samp(1)
samp(i)=samp(J)
samp(j)=temp

end if
continue

continue

1333332333353 2822802ttt s s

Calculate the first three sample moments.

AAKKKEKAKKKARRKEKEARAAKRKAREKRAAKAKRRAKAKRAAARARKRRARRAKRRAR AR A AR AR A KA KK

do 600 i=1,750
sammom(1l)=sammom(l)+samp(i)
sammom(2)=sammom(2)+samp(i)**2
sammom( 3 )=sammom( 3)+samp(i)**3
continue
sammom(1l)=sammom{1l)/750
sammom(2)=sammom(2)/750
sammom( 3)=sammom(3)/750

AAEKKKAAKEKEALEAK ALK AR KRRAAARKKAKRKAKAAKRARKRRARKRKRANKRRARKRRAKRRRRKKRKA K

Find the moment estimators by use of the IMSL rou-
tine ZQADR. This routine finds the roots of a qua-
dratic.

22 2R R R SRRttt 2 2 bR i s st R i s i sty s S

print*,*
nr=750

m=3

n=2
Xl=sammom(1)
yl=sammom(2)
Zl=sammom( 3)
X=Xl

y=yl

zZ=21

au6* (2Xx**2-y)
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b=2* (2~3*x*y)

Cu3RyXX2-_2%x*xZ

call zgadr(a,b,c,zsm,zlg,lier)

print*,'sammom check', (sammom(i),i=1,3)
meanls=real(zlg)

mean2=real(zsm)

estip=(sammom(1l)-mean2)/meanl-mean2)

print*, ‘method of moments estimates',meanl,mean2,estip

AARARARRRRRRRRRRARARARA AR RRARAARRAREANAARARARRNRAARRNR RN R RN R RN

Calculate the minimum distance estimates by using
the Golden Search method to minimize the Anderson-
Darling Goodness-of-fit statistic.

ARAREKKRARARARXRAARARARARRRRRARRRARARARRAARRRARRRRARARNRRRARARNRRK

tempt(1l)=true(l)
tempt(2)=true(2)
tempt(3)=true(3)
true(l)=meanl
true(2)=mean2
true(3)=estip

call mindis(nr,samp,m,min)
print*,* !

print*, 'minimum distance estimates'
print*,'iteration ',k
print*, (min(i),i=1,3)

AAKKKKKRKKKAKR KRR NKARRRRRNAKARRARRRARARKRKRANRARAKNRKRKRRNRAARNRKRK KK

Calculate the mean square error for the minimum dis-
tance and the method of moments estimators.

REKKKEEKREKRKRARARRRAKEKRRARRRRRRRRARRRARRKARRRARNRKARRRARAR KR KA KKK

mse=mse+(min(3)-p)**2
msemom=msemom+ (estip-p)**2
continue

mse=mse/500
msemom=msemom/500

printx,' !

print*, ‘mse= ', mse
printx, '

print*, 'msemom= ', msemom
stop

end

KEKRAKEREKREARARARARRRR A KRR ARAARRRARKRRRRARKRRRRKR AR AR K
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Subroutine gof. Calculates the Anderson-Darling gof
statistic for the Golden Search routine.

AARKXRARRARNRRRRR AR R RRRARARRRRARRRRARRARAARRRRAANAAANRRANRRNRKRKK

subroutine gof(nr,samp,m,adgof)

real samp(750),true(3),adgof,cuml(750),cum2(750),2(750)
real sum,temp

common true(3)

integer nr,m,t

nr=750

do 10 i=l,nr
cuml(i)=l-exp(-l*samp(i)/true(l))
cum2(i)=l-exp(-l*samp(i)/true(2))
z(i)=true(3)*cuml(i)+(l-true(3))*cum2(i)
if (z(1).1t.0.001)then
z(1)=0.001
end if
if (z(1i).gt.0.000)then
2(1)=.999
end if
continue
sum=0.0
do 20 i=)l,nr
temp=(2*i-1)*(alog(z(i))+alog(l-z(nr+l-1)))
sum=sum+temp
continue
adgof=((-1*sum)/nr)-nr
return
end

AAKKAKXKAKA R AR AR AR KA RKR KA KRR RKRKRKAKRKA KRR AR KKK KKK

Subroutine mindis. Calculates the minimum distance
estimates by means of a golden search

ARKRAKRKE KKK R KA AR K AKERRKARRKRKRAKRAKRKRKR AR KRR KR KRR KKK K

subroutine mindis(nr,samp,m,min)

real samp(750),true(3),min(3),nr,m,adgof,fa,fb,step,r,a
real b,left,right,fleft,fright

integer i

common true(3)

step=.01

r=.618034

a=0.0

true(3)=0.0

call gof(nr,samp,m,adgof)
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fa=adgof
b-l.o
true(3)=left

call gof(nr,samp,m,adgof)
fleft=adgof
true(3)=right

call gof(nr,samp,m,adgof)

fright=adgof

i=0

continue

if(fleft.lt.fright) then
b=right
fb=fright
right=left
fright=fleft

left=b-r*(b-a)
true(3)=left
call gof(nr,samp,m,adgof)

fleft=adgof
else
a=left
fa=fleft
left=right
fleft=fright
right=a+r*(b-a)
true(3)=right
call gof(nr,samp,m,adgof)
fright=adgof
end if
i=i+1
if(abs(fb-fa).gt..0001.and.i.1t.200)then
go to 10
else
go to 50
end if
continue

min(l)=true(l)
min(2)=true(2)
min(3)=true(3)
print=x,'
printx*, 'adgof!
printx, adgof
return

end
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Minimum Distance estimation was used to calculate
estimates of the ni;ing proportion of the mixture of two
normal distributions and the mixture of two exponential
distributions. The estimation was carried out by using the
Golden Sea;ch technique to minimize the Anderson-Darling
goodness-of-fit statistic. A Monte Carlo simulation was run
for both distribution mixtures, varying the mixing propor-
tions from .25, .5 to .75 with sample sizes of 100 for the
normal mixture and 750 for the mixture of exponentials.

The simulation was runm 500 times for each parameter combin-
ation. )

An ad hoc quasi-clustering technique was used to obtain
the initial estimates for the parameters of the mixed normal
while the method of moments technique was used to obtain
initial estimates for the mixed exponential parameters.
These estimates were then used to start the minimum distance
routines which were used to obtain new estimates of the mix-
ing proportions.

Finally, the mean square errors were calculated for use
as a means of comparison for the different estimation pro-

cedures.







