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Preface

The purpose of this study was to compare Minimum Dis-

tance estimation techniques to the Method of Moments and

quasi-clustering techniques when applied to mixed exponen-

tial and mixed normal distributions. A Monte Carlo simula-

tion was performed, using the Anderson-Darling goodness-of-

fit statistic as a distance measure for the Minimum Distance

method. Finally, the mean-square error was used as the per-

formance criteria in the comparison step.

I wish to thank my thesis adviser, Dr. Albert H. Moore,

for suggesting this topic and also for his constant encourage-

ment and assistance. I am also deeply indebted to iLt. Mark

Gallagher and Capt. Greg McIntyre for their invaluable assist-

tance in the development of the computer software. A word of

thanks is also given to my parents, Randall and Nedra Benton,

for their long-distance words of encouragement and support.

Finally, I would like to extend my appreciation to my husband,

Fred, for typing the thesis and for his undying sacrifice

and understanding during the past few months.

R. Nicole Benton-Santo
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Abstract
Minimum Distance estimation was used to calculate

estimates of the mixing proportion of the mixture of two

normal distributions and the mixture of two exponential

distributions. The estimation was carried out by using the

Golden Search technique to minimize the Anderson-Darling

goodness-of-fit statistic. A Monte Carlo simulation was run

for both distribution mixtures, varying the mixing propor-

tions from .25, .5 to .75 with sample sizes of 100 for the

normal mixture and 750 for the mixture of exponentials.

The simulation was run 500 times for each parameter combin-

ation.

An ad hoc quasi-clustering technique was used to obtain

the initial estimates for the parameters of the mixed normal

while the method of moments technique was used to obtain

initial estimates for the mixed exponential parameters.

These estimates were then used to start the minimum distance

routines which were used to obtain new estimates of the mix-

ing proportions.

Finally, the mean square errors were calculated for use

as a means of comparison for the different estimation pro-

cedures.,
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MINIMUM DISTANCE ESTIMATION OF

A MIXING PROPORTION

I. Introduction

In recent years, there has been an increasing interest

in system reliability by the military. This interest has

been spurred by the higher cost of new technology weapon

systems. By the use of statistics, a system's ability to

perform a given mission and its reliability can be predicted.

This prediction and related predictions can be used to pro-

cure superior systems by the use of multi-criteria decision

analysis or as an aide to improving reliability through en-

gineering design. These are only a few examples of the many

uses of reliability theory by the military, however, the

first step in the process is reliability parameter estima-

tion.

Every system's time-to-failure can be determined by a

probability density function (p.d.f.) and its associated

cumulative distribution function (c.d.f.) or by a mixture

of p.d.f.'s and their associated c.d.f.'s. Classically, the

functional form of this c.d.f. is hypothesized by one of the

classical distributions, based on a set of test data. After

the functional form has been hypothesized, its associated

1



parameters must be estimated. Prediction of system failure

rates depends largely on how well these parameters are esti-

mated using the test data. Many methods have been used for

this estimation, for example, the method of moments, linear

maps, and maximum likelihood estimation (MLE). All of these

methods are widely accepted and are well documented for com-

mon distributions and a few distribution mixtures. The final

step in the process is to perform a goodness-of-fit test

which measures the distance between the estimated distribu-

tion and the hypothesized sample distribution function.

Recently, a new technique known as minimum distance

estimation, has been developed which, in a sense, "reverses"

the above procedure. The functional form of the distribution

is still hypothesized, however, the parameters of the p.d.f.

are chosen so as to minimize the goodness-of-fit statistic.

This procedure has been applied to most of the classical

distributions with good success. However, the process has

not been widely used when investigating mixed distributions.

The objective of this research is to compare the initial

parameter estimates obtained from the method of moments and

quasi-clustering techniques to those obtained by the use of

minimum distance estimation. In doing this, the search for

a better estimation technique will be advanced.

2



II. Estimation

When the military uses a probability density function

to approximate or describe a system's reliability, many of

the parameters associated with the p.d.f. are unknown and

must be estimated. There are several widely accepted

methods used for this estimation, such as the Method of

Moments, the Method of Maximum Likelihood, the Method of

Least Squares and Bayesian Estimation. Of these, the Method

of Moments and Maximum Likelihood have been the most widely

used. Recently, a new method has come under investigation.

This new method is known as Minimum Distance Estimation.

With all of these different methods of estimation available

the question of which method provides the best parameter

estimates arises.

Criteria of Good Estimators

Basically, there are four criteria that are used either

individually or collectively to define good estimators.

These criteria are

1. Invariance and Unbiasedness

2. Consistency

3. Efficiency

4. Minimum risk invariant and minimum variance unbiased

(29:73)
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It is up to the user to decide which of the above

criteria is most important, however, the estimation methods

listed previously all produce estimates which fit at least

some of the above criteria. Following chapters will contain

explanations of the most commonly used methods, and the new-

est method, when applied to mixed distributions.
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III. The Mixed Model

As was stated in the introduction, any system's time-

to-failure can be determined by a p.d.f. and its correspond-

ing c.d.f. or by some mixture of p.d.f.'s and their corres-

ponding c.d.f.'s. In fact, quite often a system can exper-

ience more than one type of failure, for example, fatique

failure or a sudden electrical failure. When this is true,

instead of using a single distribution to describe the time-

to-failure, the mixed model is applicable. Actually, many

problems involving mixtures arise in several different

fields of study other than reliability theory, for example,

biology (13) and remote sensing and space applications

(4,32). This explains the ever increasing interest in para-

meter estimation for the mixed model.

Mathematically, a k-fold mixed c.d.f. is defined as

n n

Fx(x) PiFxi(x) O<p<l and I Pi =1 (3.1)

and a k-fold mixed p.d.f. is defined as

n

fx(X) Pifxi(x) (3.2)

where

Fxi(x) - the ith subpopulation c.d.f.

fxi(x) - the ith subpopulation p.d.f.

0 < p < 1 - the mixing proportion parameter

5



It has been common practice to assume that the distributions

in a mixture belong to the same family, but differ in para-

meter values.

Previous Research

With a few exceptions most of the previous research in-

volving estimation of the parameters of mixed distributions

involves the Method of Moments, Maximum Likelihood and

Bayesian techniques, all of which have been proven to be

difficult. Such researchers as Hosmer(12,21,22), Cohen(9),

Tan and Chang(7), Hasselblad(16), Hill(18), Day(11), Bowdon

and Dick(6), and James(25) have all considered the problem

of estimating the parameters in mixed normals. These are

only a few of the authors of extensive literature involving

the mixed normal. This extensiveness is due to the diverse

applications of the mixed normal.

The second most widely explored mixture is that of the

exponential. Cohen(9), Hill(18), Hasselblad(17), Rider(34)

Boardman(5), Ashour and Jones(2) and Hader and Mendenhall

(15) have all researched the area. A few researchers have

extended this research to the mixed Weibull, Falls(14) and

Rider(35) using the method of moments and Kao(26) using a

graphical method, for example.

In all of this research nearly all of the authors are

in agreement about the difficulty of the estimation problem,

due to the complexity of the equations. In the following

chapters, the Method of Moments, the Method of Maximum Like-

6



lihood and Minimum Distance estimation will be briefly de-

veloped, including the required equations.

7



IV. Estimation Techniques and Mixed Distributions

The Method of Moments

One of the oldest and simplest methods for deriving

point estimators is the Method of Moments. Due to its

lack of sophistication, this method has its faults. For

example, the estimators are usually not unbiased or the

most efficient. However, on the positive side, the method

is relatively easy to employ, it provides consistent estima-

tors, and most importantly, it often provides estimators

when other methods fail to do so. (30:360)

The kth moment about the origin of a random variable

is defined as

Wk - E (yk) 
(4.1)

and can be found by taking the kth derivative of the cor-

responding moment generating function if it exists, and

evaluating it at t-0. Mathematically, we can write

Wk - dkm(t)/dtk it.0 (4.2)

The corresponding kth sample moment is the average

m'k " 1/n Yik (4.3)

p8



The method of moments assumes that these sample moments will

be good estimates of the corresponding population moments

and that the needed population moments exist. Since the

population moments are the functions of the population para-

meters, the corresponding equations can be equated and solved

for the desired parameters. In other words, "Choose as esti-

mates those values of the parameters that are solutions of

the equations Wk - m'k, k-1,2,...,t, where t equals the

number of parameters." (30:357)

Moments of the Mixed Normal

In this research, a mixture of two normally distributed

populations is being examined. The normal cumulative dis-

tribution is defined as

(y) . (2 w #2)-1/2 exp -1/2 (y-A/e) 2 dy (4.4)

and the normal probability density function is defined as

f(y) - (exp -(y-#A) 2/2 W2) (2 9 1 )-1/2 (4.5)

where 9)0, is the standard deviation or the scale parameter

- S ( u ( S , is the mean or the location parameter

-S ( y (S

Therefore, the mixed c.d.f. will be

9



1(x) - pL x(2 r 1 2- 1/2 exp -1/2(y- #./ #i) 2 dy

+ (1-p) (2f 22)-1/2 exp -1/2(y-16 2 /q 2 )
2 dy (4.6)

Prom this c.d.f. it can be seen that there are a total of

five parameters ( 01, 12 W2, .22, p) that must be estimated.

Therefore, the first five moments must be derived.

The moment generating function for the normal distri-

bution is

exp ( st + (t2 #2)/2 (4.7)

Taking the first five derivatives and evaluating at t-0, we

get the following moments:

( I+& 2t)ex( At+(t2 #2)/2)It.o - A (4.8)

62 exp( ut+(t 2  C2)/2) + ( M+ U 2 t) 2 exp( At+( g2t2 )/2) It.0
M A 2+ q 2 (4.9)

12(W+12t)exp(At+(t2q2)/21+ 2(M+a 2t)( 2 )

exp(pt+(t 2 q 2 )/2) + ('p+q2t)3exp(it+(t2C2)/21t. 0

- 3At 2 + # 3 (4.10)

W2162exp(,pt+(t2e2)/2) + (OA+q 2 t) 2 exp(#Mt+(t 2 q 2 )/2

+ 21 4exp(jit+(t 2 # 2 )/2) +2# 2 (0+# 2 t) 2

exp( pt+(t 2 q 2 )/2) + 3( a+W2 t) 2 (v 2)

exp(.*t+(t 2 u 2 )/2) + (.I+12t)4exp( it+(t2q2)/2) Ituo

10



3o4 + 6o2,A2 + )A4  (4.11)

[2( A +2t)( g 4 ) + 2()&+62t)(2 4 + 6o 4 ( +a 2 t)

+ 4( A+92t)3( C2)] exp(At+(t202)/2)

+ ( J+ 92t)exp( $&t+(t 2 1 2 )/2) 1,4+q2 ( A"+ 2t)2

+ 2r4+2o 2 (Ii+@ 2 t)2 + 302(A +@ 2 t) 2 + (A&+ #2t)411t.- 0

JAS + 10 )3 S2 + 15 js 04 (4.12)

These five moments, when equated to their corresponding

sample moments and rearranged to accommodate the mixture,

yield the following equations which, when solved, provide

the five parameter estimates.

X /n PM 2 + (1-p) 0 2  (4.13)

Xi2/n .p(M,&12+j12) + ( 1 -P)( 2 2+ 2 2) (4.14)

I Xj3/n p(31A1 #12 + 1 3 ) + (1-p)(302 622 + A 2 
3 )  (4.15)

X,4/ p(3 014 + 6 f l + Al4)+ (1-p)(3 024

+ 6 22 $422 + P 2 3) (4.16)

IXl5ln - p 15 + 10 Ai 3 6i2 + 15M 3 1 4 ) + (1-p) A 2 5

+ 10 1 2 3 022 + 15 02 624) (4.17)

Moments of the Mixed Zxponentill

The second distribution that will be used in this

11



research is the exponential. The exponential c.d.f. and

p.d.f. are respectively,

F(t) - 1-exp(-t/o ) t>0 (4.18)

f(t) - (1/ )exp(-t/G ) , t>0, # >0 (4.19)

From the above we get the mixed c.d.f. of

F(x) - p(l-exp(-x/ 1)) + (1-p)(1-exp(-x/ 02)) (4.20)

As with the normal, we can see that there are three parime-

ters ( 01, 02, P) that must be estimated. This requires

the first three moments which can be derived from the expo-

nential moment generating function. This function is

Nx  (t) = (1- 0 t) -_1  (4.21)

As before, we take the first three derivatives and evaluate

at t-0 to yield the following,

1 *(1- *t)- 2 It. 0  - (4.22)

2. 2 0 2 (1- Ot)-3 It.0 - 2,2 (4.23)

3. ** 3(1- t)- 4 It.o - 6 3 (4.24)

12



Once again, equate the above population moments to their

corresponding sample moments and rearranged for a mixture

to obtain the required equations.

xi/n - p 0 1 + (1-p) @2 (4.25)

x12/n - 2p #12 + (1-p)2 922 (4.26)

Sx1 3/n + 6p #13 + (1-p)6 023 (4.27)

The Method of Maximum Likelihood

The Method of Maximum Likelihood is a much more sophis-

ticated method of estimation than the method of moments.

In being so, it is more difficult to apply, however, the

the method is usually better than the method of moments and

yields asymptotically best estimators which explains its

popularity.

The method begins with a random sample from a probabil-

ity density function with unknown parameters. The likeli-

hood function is now defined as the Joint density function

of the n random variables, and can be written as,

a

L -il fx (xi; * ) (4.28)

where 0 is an unknown parameter

If the random sample is from a multiparameter density func-

tion, then

13



n
L -il fx (xi, Gi 02, 3'....'I k) (4.29)

The maximum-likelihood estimators (MLE) of the parameters

are the values of the parameters which maximize L or equiva-

lently in L. Quite often these values are the solutions to

the following equations.

alnL/c oi - 0 i-1,2,...,k (4.30)

(29:82)

Maximum-Likelihood Estimation and the Mixed Normal

Maximum-likelihood estimation of the mixed normal, in

its long history, has proven to be very difficult. This

difficulty arises largely in the fact that the likelihood

equations do not have an explicit solution and instead,

must be solved by iterative methods.

Given

fi - frequency of the observations (4.31)

- 1/(2r a j2 )1 /2 exp(-(xi - A j)2/2qj2  (4.32)

we can let

0- qij pj (4.33)

so that the log of the likelihood function is approximately

14



n

L I fi Ln(Qi) (4.34)

If we take the partial derivatives and set them equal to

zero we get the following set of equations that must be

solved iteratively,

n
0 L/ p, -iifi/Qi pjqij(xi - pj)/ oj 2  Jl2...k(.5

o ~ ~ s -dL f-2 J-1,2,...,k (4.35)

n

0 - oL/ - fi/Qi piqij (x, .- J) 2 /4lj 3 J-1,2,...,k (4.36)

n

0- 6L/ pj " ifi/Qi (qij-qik) J-1,2,...,k-1 (4.37)

Two possible methods for solving these equations could be

Newton's Method or the method of Steepest Descent.

(16:432-436)

Maximum Likelihood Estimation and the Mixed Exponential

Similarly, for the mixed exponential where,

fj(x) - i0 exp(-x/l ) for x>O (4.38)

and

g(x) g pjfj(x) (4.39)

we can write the log of the likelihood function as

L - ln g(xj) (4.40)

15



By taking the partial derivatives, equating them to zero,

and simplifying as illustrated by Hasselblad (1966), we

get the following equations which must be solved by

"successive substitution" iteration. (17:1462)

n

Pi(v+i) - pjv/N fj(xk)/g(xi) (4.41)
i=1

0j(v+l) fj(v)(xi)xi/g(v)(xi/ f jlV)(Xi/g(V)(xi) (4.42)

where v+1 - current iteration

v - last iteration

16



V. Minimum Distance Estimation

Minimum Distance estimation is a relatively new estima-

tion technique which is in the forefront of statistical

research. The method was first developed by J. Wolfowitz in

a series of articles beginning in 1952.(36,37) In these arti-

cles he developed the method as a means of deriving "super-

consistent" estimators when classical methods failed to. (36:

1953). During the following years much work was done in the

field of minimum distance applications to classical distribu-

tions. Much of this work was done by Dr. Albert Moore and

his thesis students. For example, Hobbs, Moore and James(19)

investigated minimum distance estimation and the three para-

meter Gamma distribution while Hobbs, Moore, and Miller(20)

applied the method to the three parameter Weibull. Very

recently minimum distance estimation has been under study for

robustness. Parr and Schucany(33) were two of the first :.o

investigate this area and did show that minimum distance

techniques provide robust estimators for the location para-

meters of symmetric distributions. Since then Daniels(10)

applied Parr's methodology to the generalized t distribution,

and Miller(31) to the three parameter Weibull, among others.

Wolfowitz's minimum distance method begins by defining

the distance between two distribution functions as

(Fl,F2 ) - sup IF1 (X) - F2 (x)I (5.1)

17
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where sup means supremum.

The method is in no way tied to this definition and can be

applied with many different definitions of distance. (36:10)

For the purpose of this research however, the above definition

of distance will be used.

The method next selects a random sample of size n

from a known distribution and determines the empirical dis-

tribution, Sn(X). The empirical distibution is defined as

Sn(X) - number of values < x / total number in sample (n) (5.2)

and is a non-decreasing step function with jumps of size 1/n

at each observed value. (3:269)

The final step is to determine the parameter estimates

by minimizing the calculated distances between the empirical

distribution function and the true or hypothesized distribu-

tion. There are several different distance measures that

are commonly used for this step, including the Kolmogorov-

Smirnov, the Cramer-von Mises, and the Anderson-Darling

statistics.

Kolmogorov-Smirnov

The Kolmogorov-Smirnov statistic is defined as

D - supIF(x) - Sn(X)l (5.3)

18



In other words, the largest absolute deviation between the

hypothesized distribution and the empirical distibution.

Computationally,

D - max(D+ , D-) (5.4)

where D+ and D- are defined as follows

D+ = max((i/n) - zi), 1 <i< n (5.5)

D- = max(z i - (i-l)/n), 1 <i< n (5.6)

and

zi = F(xi) (5.7)

(3:269-270)

Cramer-von Mises

The Cramer-von Mises distance technique is defined by

Snf [Sn(X)-F(x)J 2 (F(x))dF(x) (5.8)
-0

where (F(x)) is a weighing factor or computationally

n

W2 [ 1/(12n)+ 1 Izi - (21-l)/2n 1 2(5.9)

where zi is defined as before. (24:17)

19



Anderson-Darling

The Anderson-Darling distance measure is the measure

used for this research. It is a special case of the Cramer-

von Mises distance measure where

,(F(x)) - 1/F(x)(1-F(x)) (5.10)

This weighting factor causes more emphasis to be placed upon

the tails of the distribution. (24:18) The statistic can

be computed by

A2 -=- (F,(2i-1)(ln(zi) + ln(l-zn+_i)))/n i - n (5.11)

where zi is defined as before.(1:765) For the mixed normal

A2  - (22i-)(in( 2 ) -1/2exp [1/2(y- Ui/ u, )2 dy

+ ( x-pf' (2V 2 ) F12[1/2(y- 9 2/ 12 )2dy)
+ In(l- n(-i2w 0 I F /2exp 1/ y / a 1) 21dy

+ (I-p "Ln -li (2T 22)-1/2exp[-1/2(y - / 2 / 0 2 )
2 dy))j /n

-n (5.12)

and for the mixed exponential

A2 - [-[E(2i-1)(ln(p(1-exp(-xi/ el) + (1-p)(1-exp(-xi/ 82))

+ ln(1-(p(1-exp(-n+li/ 01)) + (1-p)(1-exp(-n+1_i/ 02))))]

/nj-n (5.13)

20



These are the equations which will be minimized in this

research to obtain the minimum distance estimate of p where

all other parameters have been previously estimated and are

assumed true.

21



VI. Methodology

The methodology developed in this thesis assumes that

the underlying distributions are mixtures of distributions

from the families of the Normal distributions and the One-

Parameter Exponential distributions, as defined in equations

4.6 and 4.20 respectively. In 1984, Woodward, Parr and

associates applied Minimum Distance techniques to the mixed

normal, the mixed double exponential, and the mixed t-distri-

bution.(27) In Parr's research, the distance measure chosen

was the Cramer-von Mises goodness-of-fit statistic which

differs from the current research. However, this research

is an extention of Parr's study.

Monte Carlo Simulation

Monte Carlo simulation techniques have been widely used

in previous parameter estimation studies. The technique

allows you to specify a particular underlying distribution

from which to draw the sample and, in doing so, allows the

performance of the estimators to be checked. The Monte

Carlo simulation applied to this research consists of the

following steps.

(1) Generate the data from the specified distributions.

(2) Determine the initial parameter estimates either

by using the Method of Moments or quasi-clustering

22



techniques.

(3) Determine the Minimum Distance estimates of p, using

the estimates of step two as starting values.

(4) Compare the performance of the estimators.

Each of these steps will be explained in detail in the

remainder of this chapter. At this point, it should be sta-

ted that the computer time required to accomplish this simu-

lation was very great. This limited the number of cases

that could be investigated.

Sample Generation from the Mixed Normal

Six samples from the mixed normal distribution were

generated using the method described by Parr and associates

(27). The first step was to generate 100 standard normal

deviates by use of the IMSL subroutine GGNPM(23). The second

step in the process was to determine which component of the

mixture the deviate would be assigned to. This was done by

first selecting the desired mixing proportion, then genera-

ting 100 (0,1) uniform deviates from the IMSL subroutine

GGUBS (23). The normal deviates were assigned to the first

component if the uniform deviate was less than the mixing

proportion, p, and to the second if it was greater than p.

The final step was to scale the normal deviates according to

the assigned component. An observation from fi(x) - Y where

23



Y was the standard normal deviate, and an observation from

f2(x) a Yb where b>O and is defined as the difference in

location parameters. The parameter combinations used were

p-.75 PlO.00 42-2.32 fl 62-I1

p-.75 i-0.0 42-3.6 #1- 6 2 -1

p-.50 #10.0 02-2.56 elm 62=1

p-.50 l- 0 .0 P2=3.76 6l = 62-1

p-.25 #Ui=0.0 P22.32 61 62.1

p-.25 #1-0.0 u2=3.6 fi = 62-1

These combinations were selected so that the analysis of

this study could be compared to that of Parr (27).

Sample Generation from the Mixed Exponential

Sample generation for the two component mixture of one

parameter exponentials was much simpler than that of the

mixed nornal. Nine samples of size 750 were generated using

the IMSL subroutine GGEXT(23). This subroutine automatically

generates deviates from a specified mixture and therefore

requires no manipulation. The generated samples had the fol-

lowing parameter combinations.
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p-.75 01=2.0 #2=0.5

p-.50 0l-2.0 0200.5

p-.25 0l-2.0 #2=0.5

p-.75 01-i.0 02-0.5

p-.50 01-1.0 #2-0.5

p-.25 81-1.0 #2=0.5

p-.75 01-3.0 02-0.5

p-.50 01-3. 02-o.5

p-.25 013. 92-0.5

These parameter values were chosen to give varying degrees

of separation between the two components.

After the samples were generated the initial parameter

estimates had to be determined. This turned out to be a

very difficult task.

Initial Parameter Estimates for the Normal Mixture

Due to the complexity of both the Method of Moments

equations(4.13-4.17) and the Maximum Likelihood equations
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(4.35-4.37), the solutions to these equations are both dif-

ficult and time consuming to obtain. Because of this an

alternate method was chosen. In Woodward and Parr's paper

(27), they obtained starting values for the ML technique from

an easy to implement quasi-clustering technique. In their

final analysis these initial estimates were found to be high-

ly competitive with the maximum likelihood estimates. For

this reason and because of its simplicity, this technique was

selected for use in this research and it is explained below.

First #11 #2 is assumed to be true. Next, the initial

estimate of the mixing proportion, p0 , is allowed to take on

the values of .1,.2 ...... 9 only. The sample is then ordered

and divided into two subsamples, Y1 ,Y2 .... Yn and Yn+l .. Yn,

for each allowed P0 value, where nj - np rounded to the

nearest integer. The initial estimate of p is the value p0

that maximizes

p(1-p)(ml-m 2 )2 (6.1)

where mj is the sample median of the Jth subsample.

The choice for the estimates of #1 and 02 are the corres-

ponding m, and m2 values of the above p estimate. Finally,

the estimates of a 2 and al2 are determined by the

following equations.

W12(0) - ((ml-rl(' 25 )) / .6745)2 (6.2)
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p22(0) - ((r2 (.75 )-m2 ) / .6745)2 (6.3)

where ri(q) is the qth quartile from the jth cluster.

Initial Parameter Estimates for the Exponential Mixture

The Method of Moments technique was chosen to obtain

the starting estimates for the case of the mixed exponential.

The moment equations were defined in Chapter 4, equations

(4.25,4.26,4.27). The first attempt to solve these equations

was made using the method of false position. These attempts

failed however. Instead of converging they diverged and

therefore a new method was searched for. The method selected

was that of Paul Rider(34).

Rider suggested combining the three moment equations.

In doing so and then simplifying, the following quadradic is

obtained

6(2m'1
2-m' 2 ) j2 + 2(m' 3-3m'im' 2 ) *j* + 3m' 2

2-2m'lm' 3 - 0 (6.4)

where m'i is the ith sample moment. (34:144)

The roots this quadratic are estimates of 0 1 and 02 and in

this research they were obtained by the use of the IMSL sub-

routine ZQADR.(23) With these two estimates an estimate of

p can be obtained from

S(m'1 - 02 )/( 0 - 02*) (6.5)
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Minimum Distance Estimates

After obtaining the initial estimates, the minimum dis-

tance estimates of the mixing proportion were found for both

the normal and the exponential mixture. Refer to Chapter 5

for the explanation of minimum distance methods.

The distance measure selected for this research was the

Anderson-Darling goodness-of-fit statistic. In other words,

the parameter estimates were selected so as to minimize this

statistic. The method used to perform this minimization was

the Golden Search. The following is a general algorithm for

the method.(28)

Assumption: f(x) is unimodal on [a,b] and r a.618034

Step 0. Let x-a and -b

xL=Y-r (Y-x)

XR-x+r(7-x)

Step 1. Evaluate f(xL) and f(xR)

Step 2. f(xL) & f(xR):>-xR ; xR.XL

XL -

f(xL) a f(xR)*E>XL ; XLfXR
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XR - x + r(R-x)

L R-x

Step 3. If L<E , stop x x* x

Otherwise, go to step 1.

For this research f(x), the Anderson-Darling statistic, is

defined in equation 5.12 for the mixed normal and in equation

5.13 for the mixed exponential. f was chosen to be .0001,

and the intial values of a and b are D and 1 respectively,

since 0<p<l.

In this research, when evaluating f(x) the c.d.f. for

the appropriate distribution must also be evaluated. In

the case of the mixed normal however, the c.d.f. must be

approximated. This approximation was performed by the IMSL

subroutine MDNOR.(23)

Comparison Criteria

After both parameter estimations have been found, the

process is repeated 500 times. This is done for both the

mixed normal and the mixed exponential. Using the estimates

from the 500 replications, the mean square error for both

mixing proportion estimates was calculated by

MSE 1/50I (Pi-p) 2  (6.6)
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- Im

A comparison of the two different MSE calculations gave the

indication of which estimation was best.

A sample of the computer code used to implement the

above simulation for the mixed exponential can be found in

the appendix. It should be noted once again that computer

time needed for the program was very large when run on AFIT's

SSC computer system.
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VI. Conclusions and Recommendations

Summary

This thesis compares the Method of Moments and quasi-

clustering estimation techniques to Minimum Distance tech-

niques when used to estimate the mixing proportions of mixed

one parameter exponentials and mixed normals, respectively.

The Method of Moments estimates were used as the baseline

for the mixed exponentials, while the quasi-clustering esti-

mates were the baseline for the mixed normals. This compar-

ison was carried out by a computer routine which performed

a Monte Carlo simulation, then calculated the mean square

errors. These errors were used as the criteria for comparison.

Conclusions

At the beginning of this research it was hoped that the

minimum distance estimation technique would provide better

estimates than the baseline techniques. In the case of the

mixed exponential this does not appear to be true as can be

seen in table I. However, the small mean square errors show

both estimators to be good and despite the fact that the

Method of Moments technique appears better, it has problems.

First of all, the method of moments technique requires

very large sample sizes in order to ensure that the roots of

equation 6.4 are positive.f32:144) Even in the case of the

sample size of 500 used for this research, one of the para-
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meter combinations still became infeasible. (Denoted on

table 1 by *). On the other hand, the minimum distance tech-

nique will converge in relatively few iterations with any

decent initial estimates, ie. educated guesses, graphical

estimates, etc. Secondly, the method is much more difficult

to apply than the minimum distance routine due to the compli-

cated moment calculations. For this reason, and due to the

closeness of the mean square errors, the method of minimum

distance is recommended.

In the case of the mixed normal, the results were much

different. Parr's analysis, which used the Cramer-von Mises

statistic, had results indicating similar mean square errors

for the minimum distance and the clustering estimation tech-

niques. In the current research however, the clustering

method proved to be superior. This was due to the inability

of the Anderson-Darling statistic to distinquish between

the .75 and the .25 mixing proportions. For this reason,

use of the Anderson-Darling statistic as a distance measure

for the minimum distance technique, when applied to mixed

normals, is not recommended.

Suggested Research

Extending the above research to include mixed Weibulls

is suggested. Due to the strength and versatility of the

Weibull distribution as a failure model, this extension

could be a powerful aid in the search for better parameter

estimation techniques.
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TABLE I.

Simulation Results for Mixtures of

Two Exponential Components

True Mean Mixing Estimator MSE

Values Proportion

1 = 2.0 .75 MDE .0428782

2 = 0.5 Moment .0339208

.50 MDE .0281973

Moment .0208788

.25 MDE .0159149

Moment .0134047

1 = 1.0 .75 MDE

2 =0.5 Moment *

.50 MDE .0910827

Moment .0862087

.25 MDE .105535

Moment .101567

1 - 3.0 .75 MDE .0381142

2 - 0.5 Moment .0235877

.50 MDE .0265675

Moment .0136226

.25 MDE .011018

Moment .00732790
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TABLE II.

Simulation Results for Mixtures of

Two Normal Components

(equal shape parameters)

True Mean Mixing Estimator MSE

Values Proportion

1 = 0.0 .75 MDE .122337

2 = 2.32 Clustering .0183400

1 = 0.0 .50 MDE .0338620

2 = 2.56 Clustering .0114600

1 = 0.0 .25 MDE .332602

2 = 2.32 Clustering .0194600

1 = 0.0 .75 MDE .153062

2 = 3.6 Clustering .00726004

1 = 0.0 .50 MDE .0221589

2 = 3.76 Clustering .00671999

1 " 0.0 .25 MDE .309898

2 = 3.6 Clustering .00826004
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APPENDIX: COMPUTER CODE

C
c
C This program generates estimates of the mixing pro-
c portion fo two exponential distributions using the
c both the Method of Moments and the Minimum Distance
c estimation techniques.
C
C

real samp(750),true(3),temp,min(3),mse,a,b,c
real sammom(3),meanl,mean2,estip,x,y,z,msemom,tempt(

3 )
real xl,yl,zl
integer nr,n,m,d,ier
complex zsm,zlg
common true(3)
double precision dseed
external ggext

nr-750
true(l)= 2.0
true(2)- .50
true(3)- .25
mse-0.0
msemom-O.0
print*,'
print*,'exponential: meanl=2.0,mean2=.50,p=.25'
print*,' I
dseed-295847397.dO

C

c
c Begin the iteration loop
c
c

do 10 k-1,500
sammom( 1 ) =0.0
sammom(2)-0.0
sammom( 3) -0.0
p-.25
true(1)m2.0
true(2)-.50
true(3)=p
xml-2
xm2-.5
nr-750

c
c
c Generate deviates from a mixture of two exponentials
c by the use of the IMSL routine GGTEXT and sort the
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c data.
C

C
call ggtext(dseed,p,xm,xmr2,flr,samp,ier)
print*,'I
do 500 1-1,749

d-i+1
do 400 J-d,750

if (sainp(i) .gt. samp(j)) then
temp-sanp( i)
sanip(i)-sainp(j)
samp(j )-temp

end if

400 continue

500 continue

C

c
c Calculate the first three sample moments.
c
c

do 600 i-1,750
saxnmom(l)-samnzom(1 )+samp(i)
sammom( 2)-sanmzom(2)+samp(i)**2
sammom( 3)-sammom( 3)+samp(i)**3

600 continue
sammom(1) -sammom( 1)/750
sammom( 2) -sammom( 2)/750
sammom( 3 )samrnom( 3)/750

c
C
c Find the moment estimators by use of the IMSL rou-
c tine ZQADR. This routine finds the roots of a qua-
c dratic.
c
c

print*,'
nr-750
m- 3
n-2
xl-sammom( 1)
yl-sammom (2)
zi-sammom( 3)
X-X1
y-yl

a-6* (2*x**2-y)
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b-2* ( z.3*x*y)

c-3*y**2-2*x*z
call zqadr(a,bc,zsm,zlg, jer)
print*, 'sainmom check', (sanlmom(i) ,i-1,3)
meani-real (zig)
mean2-real (zsm)
estip- (sarnmom(1) -mean2) /reanl-mean2)
print*,Imethod of moments estimates' ,meanl ,mean2,estip

c
c
c Calculate the minimum distance estimates by using
c the Golden Search method to minimize the Anderson-
c Darling Goodness-of-fit statistic.
c
c

tempt(l)-true(1)
tempt(2)-true(2)
tempt(3)-true( 3)
true (1 )-meani
true (2) -mean2
true(3)-estip
call mindis(nr,samp,m,min)
print*,'I
print*, 'minimum distance estimates'
print*, 'iteration ',k
print*, (min(i) ,i-1,3)

c
c
c Calculate the mean square error for the minimum dis-
c tance and the method of moments estimators.
c
c

mse-mse+(min( 3)...p)**2
msemom-msemom+ (estip-p) **2

3.0 continue
mse-mse/500
msemom-msemom/ 500

print*,'I
print*, 'mse- ',mse
print*,'I
print*, 'msemom- ',msemom
stop
end

c
c
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c Subroutine gof. Calculates the Anderson-Darling gof
C statistic for the Golden Search routine.

C

subroutine gof(nr,samp,m,adgof)
real samp(750),true(3),adgof,curnl(750),cum2(750),z(750)
real sum,tenp
commion true(3)
integer nr,m,i
nr- 750

do 10 i-l,nr

cuml(i)-1-exp(-1*samp(i)/true(2))
z(i)-true(3)*cuml(i)+(l-true(3))*CUM2(i)
if (z(i).lt.0.001)then

Z(i)-0.001
end if
if (z(i).gt.0.000)then

z(i)-.999
end if

10 continue
sum-0 .0
do 20 i-l,nr

sum- sum+temp
20 continue

adgof-( (-1*sum)/nr)-nr
return
end

c
C
c Subroutine mindis. Calculates the minimum distance
c estimates by means of a golden search
c
c

subroutine mindis (nr,samp,m,min)
real samp(750),true(3),min(3,),nr,m,adgof,fa,fb,step,r,a
real b,left,right,fleft,fright
integer i
common true(3)

step . 01
r.618034

a-0.0
true(3).0.0
call gof(nr,samp,m,adgof)
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fa-adgof
b-l.0
true (3) -left

call gof(nr,samp,ni,adgof)
fleft-adgof
true( 3)-right
call gof(nr,samp,m,adgof)
fright-adgof
i-a

40 continue
if(fleft.lt.fright) then

b-right
fb- fright
right-left
fright-fleft
left-b-r* (b-a)
trueC 3)-left
call gof(nr,samp,m,adgof)
fleft-adgof

else
a-left
fa-fleft
left-right
fleft-f right
right-a+r* (b-a)
true( 3)-right
call gof(nr,samp,m,adgof)
fright-adgof

end if
i-i+l
if(abs(fb-fa) .gt. .000l.and.i.lt.200)then

go to 40
else

go to 50
end if

50 continue

min(l)-true(l)
min(2)-true(2)
min(3)-true(3)
print*,.'I
print*, 'adgofl
print* ,adgof
return
end
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Minimum Distance estimation was used to calculate

estimates of the mixing proportion of the mixture of two

normal distributions and the mixture of two exponential

distributions. The estimation was carried out by using the

Golden Search technique to minimize the Anderson-Darling

goodness-of-fit statistic. A Monte Carlo simulation was run

for both distribution mixtures, varying the mixing propor-

tions from .25, .5 to .75 with sample sizes of 100 for the

normal mixture and 750 for the mixture of exponentials.

The simulation was run 500 times for each parameter combin-

ation.

An ad hoc quasi-clustering technique was used to obtain

the initial estimates for the parameters of the mixed normal

while the method of moments technique was used to obtain

initial estimates for the mixed exponential parameters.

These estimates were then used to start the minimum distance

routines which were used to obtain new estimates of the mix-

ing proportions.

Finally, the mean square errors were calculated for use

as a means of comparison for the different estimation pro-

cedures.
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