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CONVERSION FACTORS, NON-SI TO SI (METRIC)
UNITS OF MEASUREMENT

Non-SI units of measurement used in this report can be converted to SI

(metric) units as follows:

Multiply By . To Obtain
cubic feet . - 0.02831685 © cubic metres -
éegrees (angle) '0.01745329 radians
feet | ; ~0.3048 metres
g's (stgndafd free fall) 9.80665 metres per

. ' : ' second squared
inches : 25.4 millimetres
kilotons (nuclear equivalent ‘ - 4,184 terajoules

of TNT) ‘
megatons (nuclear equivalent 4,184 ' petajoulés

of TNT)
pounds (force) per square inch ‘ 6.4757 kilopascals
pounds (mass) 0.4535924 kilograms
pound (massg) per.cuﬁic foot ©16.01846 kilograms per

cubic metre

tons (2,000 pounds, mass) 907.1847 kilograms
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VULNERABILITY EVALUATION OF THE
KEYWORKER BLAST SHELTER

CHAPTER 1

INTRODUCTION

1.1 BACKGROUND

At the time this study was initiated, several civil defense policy op~-
tions were being analyzed for pretection of industrial capability and key

workers. One option under consideration called for a program of construction

~ of blast shelters to protect key workers remaining in nigh-risk areas during a

national security crisis. - In support of this option, the Federal Emergency
Management Agency (FEMA) tasked the US Army Engineer Division,.Huntsville
(HND), to design the 100-man Keyworker blast shelter. The design required an
earth-covered shelter to resist the radifation and blast effects of a 1-MT
nuclear detonation at the 50-psi béak overpressure level, The first design
was based on conventional blaat sheltér‘design procedures that neglect soil-
structure interaction, , i

The design of the 100-man Keyworker blast shelter has evolved from the
original overly conservative design to 1its present form based on experimental
and analytical investigations performed by the US Army Engineer Waterways Ex-
periment Station (WES) and the END. Reductions in conétfuction costs as the
result of labor and material savings and less stringent backfill specifica-~
tions were made without advefsely affecting the strucdtural performance, The
design modifications were validated using small-scale static and dy;amic tests
during the design process. A prototype demonstration- test of the shalter was
conducted in MINOR SCALE, a high explosive (HF) 8-KT nuclear simuldtion. The
shelter survived at the predicted 75-psi* peak overpressure level (measﬁred
bressﬁres were approximately 60 psi) witﬁ minor damage (1/8-inch permanent
midspan roof deformation), , .

This report describes the retest of tha prototype shelter using the High-
Explosive §imulagion xeéhnique‘(HEST)ito simulate the airblast component of a

large-yield nuclear detonation.

% A table of factors for converting non-SI units of meagurement to SI
(metric) units is presented on page v.

1
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.2 OBJECTIVES
The objectives of this test were to study the large deformation behavior
of the Keyworker blast shelter and to study the in-structure shock environment

during an overload condition.

1.3 SCOPE

The prototype sheltef that su-vived the MINOR SCALE HE event with negli-
gible damage was retested in & HEST environment. Th§ predicted simulation for
the test was a 1-MT yield at 160-psi peak overpressure. The shelter was
tested in fully fun§t10n§1 form as in MINOR SCALE. Also, instrumented anthro-
pomorphic mannequins were used to study occupant survivability, They were
placed in sitting and standing bositions. and the motioﬁs were recorded using
high-speed'photography and acéeleratioh data, The diesel éenerator and ‘air

moving equipment were tésted pretest and posttest to investigate equipment

survivability.
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CHAPTFR 2

. TEST PROCEDURES

2.1 GENERAL

The prototvpe Keyworker blast shelter used in this study was constructed
during Y 85 on White Sands Missile Range (WSMR) in New Mexico for the Defense
Nuclear Ajene» (DNA) sponsored HE event, MINOR SCALF. 7The structurc incurred
negligible damaga during the MINOR SCALE test in Juna 1985. A ratest of the .
structure was performed on 12 August 1986 using the HEST to simulate the nu-
clear airblast envi, mment. The development of the HEST procedure is de-
scribed by Wornpler and others (1978), and {ts use in similar tests is de-
scrib:d by Kiger (1981).

A HFST test involves the detonation of high explosives distribured in a
charge cavity on the ground surface above the structure, The charge'cavityfis
covered writh soll overburden to momentarily confine the blast pressure tco sim-
ulate the peak overpressure and overpressure decay of a nuclear detonation.
This chapter dgscribes the gtructural model, the test procedure,.and the

instrumentation.

2.2 STRUCTURAL DETAILS

‘ Construction and structural details for the shelter are given by Woodson
and Slawson (1986). ' Construction drawings for the shelter were provided by
HND., Floor plan and elevation views of the shelter are shown in Figure 2.1,
A pretest view of the shelter before backfilling is shown in Figure 2.2. The
three-bay shelter design had the following nominal details: ' '

1. Clear span of 10 feet, 11-1/2 inghes.-

2. Clear height of 8 fee;, 6 inches.

3. Wall and floor thickness of 9 inches.

4, 'Average roof thickness of 10-1/4 inches.

5. Average span-to-thickness (L/t) ratio of 12.8,

6. Average eftective depth (d) to tension steel of 7-3/8 inches at the
slab midspan (measured from the compression face, top, of the slab to the cen-

troid of the tension steel), which ylelds an average tensile steel ratio of

0.010 at midspan,




7.\ Average depth (d') to the compression steel of 3-3/8 inches at the

slab midspan (measured from the compression face, top, of the slab to the cen-
troid of fhe compression steel), which }ields an average compression steel
ratio of 0.0033 at midspan.

8. Average tension (top) and comﬁression (bottom) steel ratios at the
roof support of 0.011 and 0.0036, respectively. :

9. Average roof span-to-effective depth (L/d) ratio of 17.8,

10, Transverse steel ratios of gpproximately 0.002 in the roof, walls,
" and floor.

11. Americ:n Society for Testing and Materials (ASTM) Grade 60 reinforc-
ing steel, . . o

12, Concrete design stréngth of 3,000 psi.

13, Depth-of-burial (DOB) of 4 feet.

Roof reinforcement consisted of No, 6 truss and straight bars spaced at
'6 inches on center. A truss bar was formed by bending a straight bar so that
it would provide tension reinforcement at all locations along the fopf span
(i.e., located near the bottom face of the slab at midépan'and near the top
face of the slab at the supports). Two truss bars, -a top straight bar, and a -
bottom straight bar provided the reinforceﬁént in a typical 18-inch sectfon of
the roof slab., Exterior wall principal reinforcement consisted of No. 5 ver-
tical bars spaced at 6 inches on center in each face of the wall. No. 3
single-leg stirrups were gpaced at 12 inches on center with alternate rows
staggered 6 inches in the exterior walls. Interior gall principal reinforce-
ment ~onsisted of No. J vertical bars spaced at 12 inches on center with no

stirrups, . .
The shelter for Minor Scale contained the mechanical equipment requi;ed

to circulate air to sustain up to 100 occupants. This equipment included a
Deutz Model F1/2L511 6-KW diesel generator for ~2lectrical power, two fans with
a capacity of 5,000 cfm each for air intake and exhaust, a chain-operated -
butterfly valve ratea at 150 péi to seal the air exhaust stack during the
button-up mode, and duct work to carry intaké oir to each bay.. Also included

were fluorescent and incandescent lighting.




2.3 INSTRUMENTATION

Recorded electronic data {nclude: {1) airblast pressure; (Z) roof and
wall interface pressure; (3) soil stress; (4) free-field, structure, and man-
nequin accelerations; (5) and structure deflections.

Instrumentation locations are shown in Figures 2.3 and 2.4. Test data
were recorded on 32-channel Sangamo Sabre III and V FM magnetic tape recorders
located in an {nstrumentation trailer approximately 1,000 feet from the shel-
ter. A zero~time channel was recorded on each data tape to establish a commcn
time reference for the data. The data were recorded at 120 in/s, digitized‘at
200 kHz, and plotted. The data plo:i are presented in Appendix A. Recovered
data wés very good. The only nonusable data record was from gage D1,

In additiorn to the recorded electronic data, the responses of the manne-
quins were monitored by high-speed photbgraphy. A pretest view of the manne-
quins 1is shown in Figure 2.5. '

2.3.1 Airblast Pressure Gages
Ten Kulitc Model HKS-11-375 airblast pressure (AB) gages with ranges of
5,000 psi were used to measure blast pressure at eight locations on the ground

surface around and above the shelter.

" 2.3.2 Interface Pressure Gages
Twenty .Kulite Model VM-750-5 interface pressure (IF) gages with ranges of
200‘and 500 psi were used at locations on the shelter roof and on one wall to

measure soil-roof/wall interface stresses,

2.3.3 Soil Stress Gages
Eleven Kulite Model LQV-080-LR soil stress (SE)} gages were used to mea-
sure the vertical free-field stress at locations ranging from near the ground

surface to near the base of the shelter. These gages had ranges of 200 psi.

2.3.4 Accelerometers

Sixteen Fndevco accelerometers were used to measure free-field, struc-
ture, and mannequin accelerations. Two Model 2262C accelerometers (AFF- 1,-2)
were used to measure vertical accelerations at the roof and floor levels of
the shelter in the free-field. These gages had ranges of 1,000 g's. Four
Model 2262CA gages (AF-1 to AF-4) with ranges of 200 g's were used to measure.
- vertical Floor accelerations. Four HMndel 2262C gages (AR-1 to AR-4) with

ranges of 1,000 g's were used to measure vertical roof accelerations.




Triaxial acceleration measurements were
Model 2262C accelerometers with ranges o
with the accelerometers (AM1-X, -Y, -Z)
ankle, Mannequin 2 was sitting on a bot
(AM2-X, -Y, -=Z) mounted in its chest cav
were mutually perpendicular horizontal ¢

Y measurement was the vertical componen

2.3.5 Deflection Gages

Roof (D=1 to D-4) and wall {DW-1) d
Celesco Model PT-101-~10A-7559 high-frequ
with ranges of 10 inches.. Gages were lo
all three bays of the structure for rela
monts and at midheight, midlength of one

measurement.

2.3.6 High-Speed Photography
High~speed photdgraphy was used ins
sponse of the mannequins, The two camer

Redlake Co., Cambel, Calif.), running at

2.4 TEST CONFIGURATION

The test configuration is shown in
cluded instrumentation of the structure
of 4 feet above the shelter roof, constr
charge cavity with sand overburden, and

through 2.9 document test preparation.

de on the mannequins using
25 g's.
ounted on the outside of its left

Mannequin 1 was standing

tom bunk with the accelerometers
ity.
pmponents of acceleration, while the

The X and Z measurements
4

 of acceleration (see Figure 2.4).

I

cated at roof and floor midspans in

flection measurements were made using

ncy position/displacement transducers

tive roof-floor deflgction'measure-

bay for wall displacement

ide the shelter to monitor the re-
8 used were Locams (manufactured by

approximately 400 frames per second.

Figure 2.6,
Fnd free—~field, backfilling to a depth

The test procedure in-

ucting the charge cavity, covering the

detonation of the charge. Figures 2.7

The HEST procedure consists of the detonation of high explosive primacord

(pentae;ythritol tetranitrate, or PETN)
The

cavity consisted of a wooden framing sys|

ground surface above the structure.

in a charge cavity constructed on the
60-foot-square by 4~foot-thick charge
tem covered with plywood. The

195 strands of 400-gr/ft primacord were

the charge cavity. ‘

uniformly distributed at midheight of

Each strand of primacord was detonated simultaieousiy at

one end by strands of 100-gr/ft primacord that were wrapped around a blasting

cap. The pressure generated by the det%nation was mcmentarily confined by

4 feet of sand overburden that covered the charge cavity.

The depth of the

charge cavity, the height of the overbu den, and the charge density

6
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(0.0464 pounds of explosive per cubic foot of charge cavity volume) were

designed to simulate the peak overpressurs aﬁd pressure decay of a 1-MT nu-
clear detonation at 160-péi pedak overpressure, ¥

The procedure for testing the structure cailed for the air intake and ex-
haust to be closed (button-up mode) during the test since blast valves were

not included for this structure.

2,5 STRUCTURAL MATERIAL PROPERTIES

Steel reinforcement and concrete'atrengths for the shelter were réported
by Woodson and Slawson (1986) for the shelter as tested in MINOR SCALE. Spec-
1fications for the shelter called for ASTM Grade 60 reinforcing sceél and
3,000-psi concrete (comnressive «trength at 28 days). Based on tensile tests
on seven random samples, the roof steel (No. 6 bars) had mean yield, ultimate,
and rupture strengths of 61.6, 95.5, and 80.4 ksi, reapectively. The corre-

. sponding standard deviations for these values were 1.27, 0.53, and 1.34 ksi,

Five random samples of the wall principal steel (No. 5 bars) were tested
in tension until rupture. The mean yield, ultima;e, and rupture strengths
were 75,2, 115.4, and 98.1 ksi, respectively.’ The corresponding standard de-
viations were 0.88, 1.09, and 2.44 ksi.

The roof and walls were cast from 10 batches of concrete. The mean 28-
day concrete compressive strength for the roof and w 1lls was 2,260 psi with a
standard deviation of 280 psi. Concrete ages ranged frdm approximately 2 to
4 months by the time the shelter was tested during MINOR SCALE (27 June 1985).
At that time, the mean concrete compressive strength was 3,240 psi with a
standard deviation of 480 péi. This increase in strength was greater than
expected. An additional 14 months elapsed before the HEST teat was performed
(concrete ages of 16 to 18 months). A conservative estimate (from a désign
perspective) of the concrete compressive strenéih.on test day was taken as -

3,3G0 psi since ro concrete testing was performed at that time.

2.6 BAUKFILL MATERTAL PROPERTIES

AND TEST BED PREPARATION

The backfill consisted of a 2-foot-thick concrete sand blanket around the
structurd with blow sand filling the remainder of the ¢xcavation to a level
4 feet above the shelter roof. The backfill was placed in 8-inch lavers and

compacted “o at least 95 percent of the soil's maximum Proctor density.
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Compaction was provided by a Bomrg BW160RD1 roller/compactor and a Dynapac
Model CM-10 gasoline-powered vibrator. Density and moisture content were con=-

trolled during backt,{11 placeﬁent using a Trbxler nuclear density gage.

The concrete sand was a loca.ly obtained sand made from crushed rock ma-
terial that classified as a brown sand (SP) by the Uniffed Soil Classification
System (USCS) (US Army Corps of Engineers 1960) with a maximum Proctor dry
density of 110.9 lb/ft3 and an optimum moisture content of 8.5 percent. Based
on the results of six samples during backfill placement; the.mean wet density,
dry density, and moisture content of the concrete sand were 118,1 1b/ft3,
109.6 1b/ft3, and 7.8 percent, respectively, The corresponding standard devi-
ations were 2.0.1b/ft3, 1.7 1b/ft3, and 0.7 percent. Thé cdncrcte sand was
compacted to 99 percent of 1ts maximum Proctor density. The results of direct
shear'tests indicated that the sand had an angle of internal friction of
36 degrees, .

The blow sand was processed from on~site material. It classified as a

. brown silty sand (SF-SM) by the USCS and had an angle of internal friction of

32 degrees (based on direct shear tests). The maximum Proctor dry density was
106.2 lb/ft3, and the optimum moisture content was 8.8 percent. Based on the
results of 36 samples during backfill placement, the mean wet density, dry
density, and moisture content of the blow sand were 112.1 1b/ft3,

fOl.? 1b/ft3, and .10.2 percent, respectively. The corresponding standard .de-
viations were 4.3 1b/ft3, 3.1 1b/ft3. and 2.9 percent. The blow sand was com-

pacted to 95 pefcent of 1ts maximum Proctor density.
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Figure 2.9,

b. Detonation. ' '

Detonation of the HEST charge cavity.
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CHAPTER 3

TEST RESULTS

3.1 STRUCTURAL DAMAGE

The HEST test of the prototype shelter was performed on the structure
that survived the MINOR SCALE YE event. The condition of the shelter prior to
the HEST test was essentially undamaged. '

Structural damage during the HEST retest of the shelter was significant.
Roof deflection profiles for euch bay of the shelter are shown in Figure 3.1
(bay 3 is closest to the entryway). The maximum permanent roof deflection was
approximately 17 inches for bay 1, 8 inches for bay 2, and 13 inches for
bay 3. The exterior Bays (1 and 3) received more damage than the interior
bay (2) as expected. The roof response mode is described as a combination of
shear and flexure. Overall views of the damaged roof are shown in Figures‘B.Z
and 3.3. No roof steel appeared to be broken in the exposed areas.

For bay 1, the embedded angle to walli connection failed as tﬁe resultlof
large shear deformations of the roof slab at the exterior wall, The angle
(shown in Figure 3.4) supports the metal roof decking. The maximum shear de-
formation of the roof slab at the face of the exterior wall was approximately
10-f/2 inches. At the interior support, approximatély 7-3/4 inches of shear
deformation occurred in the first 15 inches of the clear span. Shear deforma-
tion accounted for approximately 54 percent of the total permanent deflection
(17 inches). An interior view of the roof slab for bay 1 is shown in
Figure 3.5. ‘

Shear response accounted for approximately 44 percent of the total per-
manent deformation (8 inches) of bay 2. Measured shear deformations of |
3-1/2 inches were noted at each wall for the interior bay. The shear defor-
mation occurred over an area that extended 15 to 16 inches from the face of
the walls. Figure 3.6 shows a posttest interior view of bay 2.

Bay 3 behaved almost identically to bay !. The embedded angla connection

failed over nearly the entire length of the exterior wall. Approximately

'9-1/2 inches of shear response occurred in the roof slab at the face of ‘the

exterior wall, and approximately 6-1/2 inches of shear deformation occurret
over the first 16 inches of the span from the face of the interior wall.

Shear deformation accounted for approximately 62 percent of the .total

18
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permanent midspan deflection. An interior view of bay 3 s shown 1in Fig-
ure 3.7, and a view of the 2xposed top roof reinforcement at the exterior wall

of bay 3 is shown in Figure 3.8.

The walls and floor slabs survived with only minor cracking. The entry-
way was severely damaged during this test, as shown in Figures 3.2 and 3.9.
However, the test configuration did not load the entryway in the same mannef
as a nuclear detonation. The tops of the entryway shafts were covered with
steel plates to support the soil overburden cerringvthe HEST cavity. The
HEST cavity did not cover the entryway openings but did extend to the edge of
the entryway. Therefore, only the sides of the entryway closest to the shel-
ter were loaded. In a nuclear event, all sides and the interio: of the entry-
way would be loaded. The entryway was still ugsable after the test exéept that
it was filled with debris from the HEST cavity (mostly overburden soil). The
HEST test did not retest the blast door. .

The metal decking on the underside 'of the roof separated from the wall.
above the blast door, as shown in Figure 3.10. The comnnection of thq embedded
angle to the wall failed. This allowed crushed concrete to fall inside the
shelter. '

In general, the metal deéking was very successful in its dual role of
providiﬂg roof construction formwork and preventing concfeté rvhbhle from fall-

iﬁg from the damaged roof slab.

3.2 DAMAGE TO NONSTRUCTURAL
AND SUPPORT SYSTFMS

The stud w;ll that i1solated the generator failed as a result of excessive
roof deflection (see Figure 3.7). Although this failure was not important
strucrurally, it would lead to excessive noise levels inside the shelter bays
for occupants as descvibed by Woodson and Slawson (1986).

The exhaust stack/roof slab connection was distressed, as shown in Fig-

ure 3,11, The eghaust‘penetration detail was critical because of the large

- masses suspended there. The combined weight of the exhaust fan, butterfly

valve, and connector was approximately 1,100 pounds. Although damage did
occur at the exhaust penetration, the exhaust system was functicnal after the
test, The generator and fuel tank were undamaged during the test.

Another area of concern was the intake fan support, which attached the

260~pound intake fan to the shelter. This detail survived with only minor

19




concrete cracking. Roof-mounted electrical conduits and fluorescent light

fixtures failed during the test as the result of excessive roof deflection.

3.3 RIGID-BODY MOTION

WSMR performed pretest and posttest surveys on the four corners of the
roof of the shelter. The survey indicated that the structure moved
1-1/2 inches downward during the test. Damage to the floor slab (minor crack-

ing) did not indicate that this much rigid-body motion occurred.

3.4 MANNEQUIN MOVEMENT

The final positions of the mannequins were unchanged from pretest loca~-
tions. High~speed photography was used to monitor mannequin motion during the
test. The camera setup and mannequin locationé are shown in Figure 2.5, The
two cameras viewing the mannequin motion operated at approximately 400 frames

per second. Analysis of the high-speed film is included in Chapter 4.

3.5 ‘RECOVERET DATA

Data for this test included electronic instrumentation and high-sg :ed
photography. Jata recovery was very good for the airblast pressure gages,
soll stress gages, accelerometers, interface pressure gages, and deflection
gages, All recovered data are presented in Appendix A. The data are refer-
enced to a common zero time and are displayed with time in millisecords as the

abscissa.

20
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Figure 3.2. Posttest view of the shelter showing
entryway damage. '

Figure 3,3, Posttest view of the shelter roof.
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Interior view of bay l showing the failure of

the embedded angle to wall connection.
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Figure 3.4,
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Figure 3.7,

Interior view of bay 3.
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Figure 3,8. Expcsed top of roof reinforcement, bay 3.

Figure 3.9. Interior view of entryway damage.
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Figure 3.10. Damage above the blast door.
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Figure 3.11, Posttest view of the exhaust stack.
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CHAPTER 4

- ANALYSIS

4.1. ANALYSIS OF FREE-FIELD AND

STRUCTURE LOADING DATA

The VSBS computer program (Kiger, Slawson, and Hyde 1984) used to predict
roofvresponse requires the input of structure, backfill, and loading parame-
ters. From this data, the single-degree-of-freedom (SDOF) model of the shel-
ter roof is formulated. Calculations of the resistance function and the
effective roof loading require additional calculated or input variables. This
chapter analyzes the recovered data téldetermine the experimental values of
nuclear weapon simulation, loading wave velocity, lateral soil pressure co-
efficient, troof reflection factor, attenuntion'faétcr. arching factor, and
loac factor. The experimentally observed variables are compared with calcu-
lated or assumed valués used in the VSBS program, and response calculations

are presented. In addition, in-structure shock and survivability are

investigated.

4.1.1 Nuclear Weapon Simulation

Estimates of the nuclear weapon yield and peak pressure that best fit the
recovered airblast pressure rccords are required to define the ground surface
loading function.  The weapon simulationa were Qetermined by comparing the
data records with the Speicher and Brode (1981) definitions of the pressure-
éime higstories of various yield surface hursts. Best fits of yleld and peak
overpressure were deterinined for each pressure record, and a collective fit of
all the records was performed to determine the average simuiation. In addi-
tion, the best fit peak overpressure for a 1<MT surface burst was determined
since the desired simulation was 1-MT at 160 psi. 'The fits were made using
the principle of least squares on the impulse-time record of the airblast data
and the Speicher-Brode function, The procedure used is presented in mcre de-
tail by Mlakar and Walker (1980) and was modified for-impulse comparison by
Mr. James Baylot of WES. 'Fits were made using 50 and 100 ms of data.

The best 50-ms fit to all the data records was 58 KT at 226--psi peak
overpressure. The best I-MT fit for 50 ms was 159-psi peak overpressure,
These two fits are presented in Figure 4.1. A coﬁparison of the pressure-time

histories of the best fit and best 1-MT fit is shown in Figure 4.2, Table 4.1
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summarizes the results of all the weapon fits.

4.1.2 Loading Wave Velocity

Loading wave velocities were calculated based on the arrival time of the
vertical stress wave at the soil .stress gages located at various depths in the
free field. The gages wefe placed in groups for comparison. The gages in
each group were located at different depths in a plane perpendicular to the
direction of détonation so that the ground surface above each gage was loaded
by the blast wave at the same time. The'méan loading wave velocities deter-
mined from group 1 (SE-1, -2, -3, -4, -5, -6, and -7) and group 2 (SE-8, ~9,
énd -10)‘were 1,150 and 1,170 ft/s, respectively. It is recommended that a
loading wave velocity of 1,160 ft/s be used (or structural reszponse

calculations,

4,1.3 Lateral Soil Pressure Coefficient

The latefai soil pressure coefficient (ratio of horizontal to vertical
soil pressures) was determined by comparing the peak vertical free-field
stresses with peak horizontal wall interface stresges at the same depth of
burial. Based on a comparison of *the data from gages IF-18 with SE~9 and IF-
19 with SE-10, the experimental lateral soil pressure coefficient was 0.6.
Stress amplification resulting from reflection at the wall-soil interface may
haye increased the experimental coefficient slightly. However, 0.6 is a rea-

sonable value for the backfill used in this test.

4.1,4 Roof Reflection Factor
The loads on the roof of 2 buried structure are increased initially be-
cause of reflection of the loading wave. This increase in peak stfess de-
creases rapidly as the result of tensile wave reflectionsa érom the concrete-
air 1ntgrfacé at the bottom cf the roof slab and from wa'e interactions with
the free soil surface, Therefore, the duration of the amplified stress spike
is a function of the roor thickness, the loading wave velocity in éhe backfill
and in the roof slab, the backfill material properties, aﬁd the depth of
burial. The duration of the reflected spike was determined from the roof.
interface pressure data and was found to be approiimately 4.7 ms.
The roof reflection factor was determined by comparing the peak roof
interface stresses with the peak soil stress at the roof level. The mean ex-
~perimental value of the roof reflection factor is 1.99. If the interface pres-

I sure gagés near the supports are excluded, the mean reflecticn factor is 1.6,
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4,1,5 Attenuation Factor

The attenuation of peak stress with increasing depth is due to both the
spatial decay of the shock front and hysteretic losses in the soil. The VSBS
program modifies the soil surface loading by an attenuation factor to calcu-
late the roof loading and the thrust in the roof caused by the horizontal wall
loading. " For this reasonm, the attenuation factors at the roof level and at
the midheight of the structure are required. Based on a comparison of peak
soil stresses at fhese locations with the best fit nuclear weapon simulation
at the ground surface (58 KT, 226 psi for 50 ms), experimental attenuation
faccors of 0,78 and 0.62 were determined at the roof level and structure mid-
height, respectively. The weapon simulation was used rather than actual sur-
face pressure daté gince the large high-frequency spikes in the HEST loading

are filtered out before the loading wave reaches the roof level,

'4,1.6 Soil Archirg Ratio and Load Factor

The roof loading distribution for shallow-buried structures is nonuniform
in nature after the duration of the reflected spike as a result of soil struc-
ture interaction (soil arching). Soil arching is caused by shear stresses
within the soil mass when relative deformations occur and is defined as the
ability of a soil to transfer loads from one location to another in response
to a relative displacemént between the locations. This phenomenon results in
lower roof interface ¢ ‘esses over the flexible clear span of the roof and
higher streases near the support. Soil arching and 1ts effects upon buried
structure response are discussed by Kiger, Slawson, and Hydé (1984).

The soil arching ratio is defined as the ratio of the average roof stress
to the free-field stress at the roof level. Soil arching ratios for bay 1
(away from entryway) and bay 2 (interior bay) were determined from the recov-
ered roof interface stress and free-field stress data. Soil arching ratios
were calculated after the decay of the reflected spike (4.7 ms) up to the time

of maximum response. The average arching ratios for this time span are 0.7l

~for bay 1 and 0.77 for bay 2. ‘The fepults of the analyses are presented in

Table 4.2, and a typical plot of soil arching ratio versus time is shown in
Figuré 4.3.

In a simple SDOF model, the total roof load {s modified by a load factor
to determine the effective roof loading. This factor depends upon the roof

loading distribution and the deflected shape of the roof. Using a fully
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plastic response mode and the measured roof load distribution, the load fac-
tors for bay 1 and bay 2 were calculated. The results are presenéed in
Table 4.2, and a typical plot of load factor versus time is sﬁown in Fig-
ure 4.4, The average 16&d factor for bays 1 and 2 after the decay of the

- reflected spike and before the time of maximum response is 0,26, The load
factor is also a measure of the uniformity of the load. The load factor is
0.5 for a uniform load and 0;25 for a parabolic load with zero load at

midspan,

4.2 COMPARISON OF EXPERIMENTAL AND

THEORETICAL PARAMETERS

Table 4.3 compares the experimentally determined loading parameters with
calculated values from the VSBS (Kiger, Slawson, qqd Hyde 1984) computer pro-
gram, Some values used by the program are requifed input, and suggested nor~
‘mal ranges are presented. The theoretical parameters agree with the experi-
mentally determined values except for the duration of the reflected spike.
The obsérved duration of 4.7 ms is considerably larger than the calculated
value of 1 ma. The duration calculated by VSBS ia‘governed (in this cas;) b9
Cenéiie reflections from the concrete-air interface on the bottom of the roof
slab and is empirically limited to 12 transient times (transient time Qquals
the roof thickness divided by the wave velocity in concrete)f ' '

4.3 ROOF RESPONSE CALCULATIONS

The VSBS computer code was used to calculate maximum roof responge using
the weapon.simulations as the input loading. The resulté are presented in
Table 4.4. The maximum predicted roof response ranged from 6.1 to 16.3 iuches
for the input weapons and compérés well with the observed permanent responses

of 8, 13, and 17 inches for the three bays of the shelter. ' C

4.4 TIN-STRUCTURE SHOCK AND SURVIVABILITY

In-structure shock is typically represented in terms of shock spectra.
Shock spectra are plots of the maximum responses, usually of relative dis-
placement, pseudovelocity, and/or acceleration of all possible linear oscilla-
tors with a gpecified amount of d&mping to a given input base acceleratioﬁ-
timz history. Vertical shock spectra were calculated using the recovered

floor acceleration data as input to a compuéer program developed at WES. The
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shock spectra were generated for damping ratios of 0, 5, and 10 percent of
critical damping. The shock spectra are presented in Figures 4.5 through 4.8
for accelerometers AF-1 through AF-4, respectively.

Figure 4.9 compares the experimentally determined vertical shock spectra
(smoothed by hand with damping of 10 percent) for the shelter floor with . fra-
gility curves for typical floor-mountéd equipment (Headquarters, Department of
the Army 1987). Based on the compariéon of the shock spectra arnd fragility
‘curves, generators and communication equipment should be shock isolated to
ensu;e their survivability. However, the diesel generator (mounted on top of

its fuel fank) in the shelter was undamaged during the test. The test results

. indicate that the generator will survive the design overpressure of 50 psi and

has survived one overload test of 159 psi.
~ Crawford and others (1974) present a summary of human shock tolerance and
recommend design maximum accelerations of 10 g's for a standing man at or

below the frequency of 10 Hz (resonant frequéncy). The experimental shock

spectra show that a man in the standing position (most vulnerable) would not

suffer compressive fractures; however, impact injuries can occur at much lower
shock levels as a result of loss of balance and falling. The high-speed
movies of the mannequin motion showed that impact injury was not probable.

Plots of relative mannequin movement are presented in Figure 4.10.
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Weapon simulation summary.

ons 50-ms Simulations

Table 4.1.
100-ms Simulatd
W Psot

Gage KT psi
AB-1 21.4 270

‘ AB-2 38.8 255
e AB-3 126.5 280
AB-4 27.7 256
AB-5 26.5 264
AB-6 32.7 248
AB-7 29.4 244
AB-8 22.0 293
Avg 28.0 262

Pso for Pso for
Best 1-MT U] Pso Best 1-MT
Fit, psi KT _ psi Fit, psi

124 52.9 222 155

137 77.8 223 164
134 56.5 237 165
127 57.1 221 156
129 52.7 229 158
129 57.7 221 156
124 70.3 208 152
133 46,1 246 164
130 58.0 226 159

* W 13 the simulated nuclear w
1 Pso 1s the simulated peak ov

.

apon yield in kilotons TNT equivalent.
rpressure in psi,

Table 4.2. Arching ratio and load factor summary.
J Average
Average Arching Ratilo Load
Bay* Using SE-3 Using |[SE-9 Using SE=-11 Averaget Factor
1 0.98 0.65 0.51 0.71 0.26
2 1.06 0.70 0.55 0.77 0.26

* Bay 1l was located »n the oppd

Bay 2 was the interior bay.
Average valves are presented
the reflected spike to the tim

T

site side of the shelter from the entryway.

for the time interval after the duration of
e of maximum roof response,
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Table 4.3. Comparison of experimental and
theoretical loading parameters.

Experimental Theoretical
Parameter Value Value* Comments
Loading wave velocity _ 1,160.0 (1,200-1,500) Input
ft/s .
Lateral soll pressure ' 0.6 (0.5—0.6) Input ' '
coefficient '
Roof reflection factor - 1.6 . 1.6
Duration of reflected 4.7 1.0
spike, ms . .
Attenuation factor 0.78 . 0.87-0.98 t
_act roof level » ' :
Attenuation factor . 0.62 0.77-0.96 t
at wall midheight
Soil arching ratio : 0.73 ‘ 0.60
Load factor . 0.26 0.31

DWW o e LI LN

[O% FLN W NN - Fall SU L

* Tabular values in parentheses are normal ranges of input for the soil used

in this test.
t The theoretical values of attenusation factors were based on the four mean

best fit weapon simulations presented in Chapter 4,
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Table 4.4. VSBS response calculations.

- Peak ' Maximum Time of

Weapon Yield Overpressure Response Maximum 4
KT psi in.* Response, ms? . Notes?
58 226 12.0 64 a
1,000 ’ 159 '16.3 75 a
28 262 1.0 61 b
1,000 130 6.1 71 b

* Maximum permanent roof deflections ranged from 8 to 17 inches.

t Maximum response occurred at 80 ms for bay 1l and at 75 ms for bay 2.

$ a - The input weapon yield and peak overpressure were determined from 50-ms
fits of the recovered data.
b - The input weapon yield and peak overpressure were determined from

100-ms fits of the recovered data.
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Figure 4.1. Average weapon simulations for 50 ms.
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CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

5.1 CONCLUSIONS

The Minor Scale and HEST tests of the prototype Keyworker blast shelter
validated the structural design for the 1-MT at 50-psi nuclear threat and
demonstrated that the shelter has reserve capacity to resist significant over-
loads (on the order of 130 to 160 psi) without catastrophic failure. ‘The HEST
test (along with the 1/4-scale tests) provéa that the shelter design has ade-
quate reéerve capacity to resist the design load (1-MT, 50 psi) at sites
throughout thebcountfy where site conditions may not be as good as WSMR.

Even though the shear response of the roof slab was significant, the
failure mode was very ductile, The connection of the roof decking and éﬁ-
bedde& angle to the exterior sheltér walls (near the doorway in particular)
needs revision to prevent the embedded angle from pulling out at large roof
deformationsg. liowever, this detail is adequéte for the ninor damage incurred
at the design overpressure levels. The roof decking prevented most of the
crushed concrete from falling to the floor except near the walls and doorway,
as noted. Use of the roof decking protects the shelter occupants from projec-
tile injuries caused by broken concrete when the roof is significantly
damaged. _

The mechanical equipment and their mounting.details were adequate for the
design loading and for the cverload environment. During the HEST test, the
lighting fixtures were detached from the roof slab, and the exhaust stack con-
nection to the roof slab was damaged (but not to failure). These details were
adequate at small rouf deformations.

The entryway design proved adequate at the design overpressure Sut was
severely damaged during the HEST test. The blast door was not retested at the
higher overpressure because the HEST does not providé the dynamic overpressure
phase required to test a blast door. ‘ _ o

Occupant survivability 1s probable even at the 150-psi level. The gener-
ator also survived at this overpressure level. Some shock isolation ﬁay be‘
required for communication equipment, but this was not investigated by ‘the

test.

41



5.2 RECOMMENDATIONS

Based on the results of this test and the scale model testing programs
conducted by WES, the design of the 100-man Keyworker blast shelter should be
accepted. The minor revisions suggested in this chapter make the shelter per-
form better at large deformations rasulting from overlnad conditions. .

The shelter has adequate structural capacity to be used at the .jesign
overpressure level for the many site conditions found throughout the country.'
To limit backfill conditions to those in the current data base, the backfill
material should have an angle of internal friction greater than approximacely
25 degrees, and compaction to 90 percent of the maximum Proctor densi:y is
recommended. For special site conditions, such as high water tables, the
bermed configuration should be used. The experimental and analytical programs
conducted by WES have resulted in a sheiter design that can be u.+d without a
redesign for site-specific conditicas in most cases. The shelter design haa
been experimentally validated in the buried and bermed configurations.
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