TECHNICAL REPORT RD-RE-86-3

EFFECTS OF INTERLACE, TILT AND SCALE FACTORS IN AN INCOHERENT REAL-TIME ELECTRO-OPTICAL IMAGE CORRELATOR

John L. Johnson
Research Directorate
Research, Development, and Engineering Center

AUGUST 1986

U.S. ARMY MISSILE COMMAND
Redstone Arsenal, Alabama 35898-5000

Approved for public release; distribution is unlimited.
DISPOSITION INSTRUCTIONS

DESTROY THIS REPORT WHEN IT IS NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR.

DISCLAIMER

THE FINDINGS IN THIS REPORT ARE NOT TO BE CONSTRUED AS AN OFFICIAL DEPARTMENT OF THE ARMY POSITION UNLESS SO DESIGNATED BY OTHER AUTHORIZED DOCUMENTS.

TRADE NAMES

USE OF TRADE NAMES OR MANUFACTURERS IN THIS REPORT DOES NOT CONSTITUTE AN OFFICIAL ENDORSEMENT OR APPROVAL OF THE USE OF SUCH COMMERCIAL HARDWARE OR SOFTWARE.
Effects of Interlace, Tilt and Scale Factors in an Incoherent Real-Time Electro-Optical Image Correlator

John L. Johnson

Technical

FROM ______ TO ________

86 AUG

UNCLASSIFIED/UNLIMITED

John L. Johnson

AMSMI-RD-DE

Incoherent correlator
Interlace scan
Optical correlator
Integrating CCD camera
Real-time correlator

The performance of an incoherent real-time optical correlator with respect to residual tilt and scale misalignment is discussed. The correlator uses CCD video data input streams and produces a real-time output in the form of a standard television video frame. The interlaced fields of the inputs and outputs are discussed and their proper use is described.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>II. INTERLACE EFFECTS</td>
<td>1</td>
</tr>
<tr>
<td>III. TILT AND SCALE EFFECTS</td>
<td>4</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>5</td>
</tr>
</tbody>
</table>
I. INTRODUCTION

The purpose of this report is to assess the effects of several factors on the performance of the incoherent electro-optical real time correlator system. This system is based on the design proposed in references one and two by D. Psaltis. It uses an acousto-optic bragg cell to modulate a real-time video input image with a reference image which is produced by a special parallel readout high speed memory and a custom LED diode array. The correlation is read out with a CCD video camera which has been modified to perform one of the two required convolution integrals.

The factors discussed here are:

1. The interlaced input video data stream.
2. Tilt misalignments of the anamorphic optical system and residual scale differences and lateral displacement errors.

The principal elements of the system are indicated in Figure 1. The optical system O_1 transforms the M-element linear LED array into a M-line image in the AO cell. The optical system O_2 transforms the area A_1 into a rescaled area A_2 on the output CCD 2. The width D_1 corresponds to the length of the input video line from CCD 1 just as it begins to travel across the AO cell window. The detailed operation of this system is described in references 1 and 2.

II. INTERLACE EFFECTS

Consider the the output of CCD #2. It consists of N lines and is one full frame of video. It is sent to an output video monitor which writes the first $N/2$ lines as field #1 and the second $N/2$ lines as field #2. Suppose the CCD #2 is a single correlation peak. Then the monitor fields are:

Field #1: The first $N/2$ lines stretched 2X vertically.

Field #2: The second $N/2$ lines stretched 2X vertically.

The interlaced result will be the original image cut in two, the halves stretched and overlaid on each other. This is sketched in Figure 2.

In order to avoid this, we need instead, to have a field #1/field #2 flattened dual correlation peak image out of CCD #2. This is sketched in Figure 3. How can this be obtained? What we know is that the system of Figure 1 will produce correlation peaks everywhere the AO video input matches the reference image. Thus, if the video from CCD #1 is a standard field #1/field #2 sequence, then a single target scene presented to CCD #1 is converted automatically to a doubled and flattened dual target "image" as it is received by the AO cell. This is exactly the input image desired. However, the decomposition by CCD #1 of the input scene into two fields destroys half the vertical resolution. The only way to avoid this is to use a completely uninterlaced system, which is expensive and difficult in practice.
Figure 1. Correlator functions.
Figure 2. Uninterlaced input is scrambled by interlaced output. Reference image has full resolution.

Figure 3. Good output with fully interlaced system. Reference image has half the vertical resolution.
Thus, the use of interlace mode is appropriate for the correlator if the reference image is one field rather than one frame. The slight difference between two fields will produce an equally slight decorrelation in one field of the output; however, the other field will always be exact and thus the system should still operate satisfactorily.

III. TILT AND SCALE EFFECTS

The effects of tilt and scale changes can all be accounted for as equivalent operations on the reference image. As long as the amount of change is within the established limits of standard image correlators, usually several percent of variation, these factors will not preclude normal operation of the real-time correlator. The correlator is invariant under lateral translation of the images, so this factor should have no effect.

Mathematically, the correlation image is

\[
C(t,n) = \sum_{k=n-m+1}^{n} \int_{T_1}^{t} f(t-t,k)h(t,m+k-n)dt
\]

and tilt and scales changes are equivalent to the transformation

\[
h(u,v) \rightarrow h(u',v')
\]

where

\[
u' = \alpha(u \cos \theta + v \sin \theta)
\]
\[
v' = \beta(v \cos \theta - u \sin \theta)
\]

are scaled and rotated coordinates. The scale factors (\(\alpha, \beta\)) thus should be within a few percent of unity and the angular rotation \(\theta\) within approximately \(\pm 50\).
REFERENCES

DISTRIBUTION

Commander
US Army Research Office
ATTN: AMXRO-PH, Dr. R. Lontz
P. O. Box 12211
Research Triangle Park, NC 27709

US Army Research and Standardization Group (Europe)
ATTN: AMXSN-E-RX, LTC D. R. Reinhard
Box 65
FPO New York 09510

Commander
US Army Materiel Development and Readiness Command
ATTN: Dr. James Bender
Dr. Gordon Bushey
5001 Eisenhower Avenue
Alexandria, VA 22333

HQDA
Office of DCS for RD&A
ATTN: DAMA-ARZ
Room 3A474, The Pentagon
Washington, DC 20301

OUSDR&E
Room 3D1079, The Pentagon
Washington, DC 20301

Director
Defense Advanced Research Projects Agency (STO)
ATTN: CDR T. F. Weiner
D. W. Waish
1400 Wilson Boulevard
Arlington, VA 22209

OUSDR&E
ATTN: Dr. G. Gamota
Dep. Asst. for Research (Adv. Technology)
Room 3D1067, The Pentagon
Washington, DC 20301

Director of Defense Research and Engineering
Engineering Technology
Washington, DC 20301

Commander
US Army Aviation Systems Command
12th and Spruce Streets
St. Louis, MO 63166
Director, Naval Research Laboratory
ATTN: Dave Ringwolt
T. Gialborinzi, Code 5570
Washington, DC 20390

Commander, Rome Air Development Center
ATTN: James Wasielewski, IRRC
Griffiss AFB, NY 13440

Commander, US AFORSR/NE
ATTN: Dr. J. A. Neff
Bolling AFB, Bldg 410
Washington, DC 20332

Commander
US Air Force Avionics Laboratory
ATTN: D. Rees
W. Schoonover
Dr. E. Champaign
Dr. J. Ryles
Gale Urban
David L. Flannery
Wright Patterson AFB, OH 45433

Environmental Research Institute of Michigan
Radar and Optics Division
ATTN: Dr. A. Kozma
Dr. C. C. Aleksoff
Juris Upatnieks
P. O. Box 8618
Ann Arbor, MI 41807

ITT Research Institute
ATTN: GACIAC
10 W. 35th Street
Chicago, IL 60616

Dr. J. G. Castle
9801 San Gabriel, NE
Albuquerque, NM 87111

Dr. J. W. Goodman
Information Systems Laboratory
Department of Electrical Engineering
Stanford University, CA 04305

Eric G. Johnson, Jr.
National Bureau of Standards
325 S. Broadway
Boulder, CO 80802

DIST-3
AMSMI-RD, Dr. McCorkle 1
 Dr. Rhoades 1
 -RD-DP, Jerry Hagood 1
 -RD-AC 1
 -RD-AS, W. Pittman 1
 -RD-GC, J. A. Mclean 1
 -RD-RE, Dr. R. L. Hartman 1
 Dr. J. S. Bennett 1
 Dr. C. M. Bowden 1
 Dr. J. L. Johnson 80
 -RD-SS 1
 -RD-CS-R 15
 -RD-CS-T, Record Copy 1
 -GC-IP, Mr. Bush 1

AMCPM-PE-E, John Pettitt 1
 -PE 1

DIST-5/(DIST-6 blank)
END
8-87
DTIC