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continuation of 19. Abstract

» predetermined flow rate, creating a convective stimulus to which the propellant

responds as an inert substance until a predetermined surface temperature level
is reached and steady-state combustion is assumed to commence. Yet, a great
deal of success has been achieved despite these assumptions, while at the same
time avoiding the complexity and cost of a more realistic treatment of ignition
and combustion. Unfortunately, recent experience with low-vulnerability (LOVA)
gun propellants has, on occasion, revealed large disparities between predictions
and experimental performance.

In response to this problem, a new code known as XNOVAK has been developed
to provide the capability of addressing a broad range of chemical reactions
within the framework of a one-dimensional, macroscopic two-phase flow interior
ballistic model. The new code allows for phase- and species-partitioning of the
igniter output, an arbitrary number of reactions among the igniter and
propellant product species, and subsurface heating due to chemical reactions.

In this paper, the code is exercised using a data base for a 105-mm tank gun
firing a LOVA-type propellant. While experimental data for many of these newly-
available inputs are yet unavailable, the sensitivity of results to a limited
range of values is investigated.
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e I. BACKGROUND
¥,

!
A A. Recent Advances in Interior Ballistic Model:ng

Over the past decade, the field of interior ballistic modeling has
ah undergone a number of major advances. Early lumped-parameter models,
, which appeared in abundance as computer codes~ in the mid-1960's,

3* provide the charge designer with powerful tools to perform large,
parametric interior ballistic studies rapidly and efficiently. These
codes embody such assumptions as uniform and instantaneous ignition of
the entire propellant charge, with combustion taking place in a

13q uniformly varying, well-stirred mixture, the burning rate being

o I determined by the instantaneous, "space-mean" gas pressure. A pressure
$g gradient within the qun tube is typically superimposed on this solution
y? to provide an appropriately reduced projectile base pressure, but these

iy codes cannot address the physical hydrodynamics of the problem as

manifested in ignition-induced pressure waves. Nonetheless, lumped-
it parameter codes have been and are still used throughout the world for
o most basic interior ballistics systems and charge design studies.

B However, the prevalence of gun malfunctions, the origiys of which
4 were ultimately traced to ignition-related pressure waves“’® was
- sufficient motivation to launch an active new field -- that of

fb multiphase flow interior ballistic modeling -- with participants from
v the government, academic, and industrial communit}eg. First on the
e scene were one-dimensional, two-phase flow models®™®, the primary

purpose of which was to assess the influence of the ignition stimulus on
it flamespreading and the formation of pressure waves.

s Probably th? most successful and certainly the most used of these
:w. is the NOVA code’, developed by Paul Gough Associates in response to
yg pressure-wave problems experienced in Navy 5-inch quns. NOVA consists
ﬂk of a two-phase flow treatment of the gun interior ballistic cycle

formulated under the assumption of quasi-one-dimensional flow.

A Functioning of the igniter is included by specifying a predetermined

o mass injection rate as a function of position and time. Flamespreading
A is driven by axial convection, the propellant responding as an inert
substance until a predetermined surface temperature is reached.

) Propellant combustion then follows the same pressure-dependent

" description used in the lumped-parameter code -- this time, however, a
locally prescribed rate dependent on the local instantaneous pressure.
(Several other ignition and combustion options are available in some
versions of the code but are largely untested.) In addition, internal
K, boundaries defined by discontinuities in porosity are treated

" explicitly, and a lumped-parameter treatment is included to reflect the

Kt inertial and compactibility characteristics of any inert packaging
- elements present between the propellant bed and the base of the
Ly projectile. The literature includes numerous successful applications of
:IJ this code to cased ammunition problems®’~.
Y
:~ Next in the progression of modeling achievements were several

oF quasi-two-dimensional treatments, in which coaxial regions of propellant
and circumferential ullage are treated as coupled regions of one-

ﬁl dimensional flow. Thus, the influence of ullage external to a bagged
§
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artillery charge on the path of flamespreldlng and the equilibration of
pressure gradients can be estimated. Other aspects of the level of
modeling are, however, in basic agreement'with that of NOVA, including
the simple surface temperature ignition criterion and the global,
pressure-dependent combustion process assumed to occur at the propellant
surface.

More recently, emphasis has bfgniglaced on fully two-dimensional
interior ballistic models. TDNOVA provides an axisymmetric
description of macroscopic flow and includes many special features to
model the fluid dynamics particular to stick propellants and rigidized
combustible charges. A great deal of success modeling both granular and
stic§ pfgpellant artillery charges has been achieved with this
codel? The emphasis to date, however, continues to be in regard to
increasing the fidelity of the treatment of the configural complexities
of the propelling charge and gun chamber rather than that of the
detailed ignition and combustion processes themselves, and the same
simple models for ignition and combustion as described above continue to
be used in most studies. Yet, such codes as NOVA and TDNOVA have
provided today's charge designer with the capability to evaluate
computationally the influences of the location of the ignition source,
distribution of ullage, and mechanical characteristics of containers or
other parasitic elements in which the propellant is packaged.

B. The Case for Improved Reaction Kinetics

The emphasis on hydrodynamics has resulted not from a lack of
interest in the ignition and combustion processes themselves but rather
from a belief that no real progress could be made in modeling
flamespreading and pressure-wave phenomena in many real-world charges
until an overall modeling framework was established which recognized the
associated configural complexities of the problem. With TDNOVA
representing a major step toward providing this capability, we now must
seriously face the next level of deficiencies appearing to impede
further progress. Ample direct and indirect evidence exists to suggest
that the shortcomings of our ignition and combustion submodels can no
longer be overlooked.

Very long ignition delays (tens to hundreds of milliseconds) often
accompany the low-pressure ignition event encountered witu. artillery
charges; however, measured heat input to the propellant suggests that
the propellant should reach its 1gn1tion temperature in just a few
milliseconds. Further, high-speed movies of ignition and flamespreading
in transparent howitzer simulators show first luminosity (following that
of the igniter itself) often to be in the gas-phase regions of ullage
downstream from the propellant bed; first propellant combustion with
visible flame within the bed itself is also often considerably
downstream of the ignition source.

The presence of some significant gas-phase chemistry is also
suggested by the occasional, vigorous combustion event (e.g.,
breechblow) which accompanies extremely long ignition delays exhibited
in firings of cold-conditioned charges. Indeed, the widely observed
phenomenon of increasing chamber pressures with increasing levels of
pressure waves requires either propellant grain fracture or some form of
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transient burning rate enhancement (or both) for its explanation.

Somewhat more subtle but still of extreme importance to the gun
community has been recent experience with low-vulnerability (LOVA) gun
propellants, which has revealed, on occasion, large disparities between
calculated and experimental performance. A recent study of ballistic
anomalies exhibited by one lot of experimental LOVA propellant
highlighted the possible interplay between flamespreiging rates and
ballistic performance for hard-to-ignite propellants—°. However, the
combustion mechanism for such compositions, particularly at low
pressures, may in no way resemble a simple, global reaction at the
propellant surface. Early binder decomposition yielding fuel-rich
products may yield likely candidates for subsequent gas-phase reactions,
with potentially significant influence on the ensuing flamespreading
process.

IOVA test firing results, furnished by S. E. Mitchelll7, are shown
in Table 1. The system under study was a 105-mm tank gun. An M490 TP-T
Cartridge was fitted with a modified M489 Projectile, with the
projectile weight chosen to simulate an M456A2 HEAT-T-MP round. The
firings summarized were all performed at 294K, nominal ambient
temperature. Important differences were observed as a function of the
igniter material alone; some characteristics of the igniters are shown
in Table 2. Note that the igniters labeled "R" and "2" are rich in
available oxygen. Certainly one interpretation of these results is that
the igniter material participates chemically in the combustion, as well
as ignition, of the solid IOVA propellant. The studies reported in this
paper were performed with just that idea in mind.

Table 1. Performance Variations As a Function of Igniter Material

Igniter
Name Peak Pressure Muzzle Velocity
(MPa) (ny/s)
Benite 307 1078
WRY 368 1141
nze 426 1191
Table 2. Igniters
Igniter Flame Oxygen Mole Fraction of
Name Temperature Impetus Total Gas at Equilibrium
(K) (3/9) (%)
Benite 2518 561.3 0
hR" 3251 604.9 22

nav 3541 730.4 13
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C. Framework for Study

To investigate the potential influences of a broad range of
chemical interactions on flamespreading and subsequent interior
ballistic processes, an extremely rugged and computationally efficient
version of the NOVA code, known as XNOVA, was further modified by Paul
Gough Associates to Sﬂpﬁgﬁe a number of revisions to the ignition and
combustion submodels-®’*~,

The ignition model has been extended to treat igniters whose
products of combustion are multiphase. The combustion products are
treated as a reacting homogeneous mixture composed of an arbitrary
number (presently, as many as ten) of chemical species, each of which is
either a gas or an aggregate of finely divided droplets or particles.

An arbitrary number of chemical reactions (again, as many as ten) is
admitted among the species. The influence of deposition of the
condensed species onto the surface of the solid propellant is considered
both in respect to the changing composition of the flowing mixture of
combustion products and the thermal response of the propellant. The
mass transferred to the mixture as a result of local decomposition of
the propellant is not assumed to consist of final products of
combustion. The transferred material may be described as intermediate
products of combustion which release the full energy of combustion only
after further chemical reaction in the mixture. Chemical interactions
between the igniter combustion products and the intermediate products of
the propellant may therefore be modeled. The analysis of the thermal
response of the propellant includes the contributions of subsurface
heating due to chemical reaction. The boundary conditions at the heated
surface include an energy balance which reflects both the external
ignition stimulus and the heat feedback from the near-field flame, and
either a pyrolytic or an evaporative condition to determine the surface
regression.

In this report, we first probe the operational status of several of
the more interesting options with respect to a nominal data base for a
105-mm tank gun firing a IOVA propellant. We then address application
of the integrated capabilities of the extended code, XNOVAK, to a class
of real-world ballistic problems appropriate to the selected problem.
Finally, we will draw some conclusions about the most fruitful
directions for further study, both theoretical and experimental, in this
area.

II. AN EXAMINATION OF NEW MODELING FEATURES OF XNOVAK
A. Input Data
For these studies, we chose to model a 105-mm, M68 Tank Gun, firing
the M456A2 HEAT-T-MP cartridge loaded with LOVA propellant. Since
XNOVAK provides a one-dimensional (with area change) representation of

flow, some compromise in configural aspects of the problem was required,
as depicted in Figure 1.

12
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—— ACTUAL CONFIGURATION
——— NOVA REPRESENTATION

Figure 1. Representation of the Problem

The baseline XNOVAK calculation for the 105-mm, M68 Tank Gun firing
the M456A2 Cartridge loaded with 6.056 kg of IOVA propellant (XM39, Lot
A2-202) employed the input data shown in Table 3. In addition to the
usual propellant data, we used rheology data appropriate to NACO
propellant, in the absence of better data. The rheology data were
varied from time to time, during the course of the study, to ensure that
the results of the study were not unduly influenced by this choice of
data.

Table 3. Propellant Input Data

Propellant Type: LOVA XM39 Lot A2-202
Mass of Propellant (kg): 6.056
Density of Propellant (g/cm3): 1.619
Outside Diameter (mm): 7.772
Perforation Diameter (mm): 0.381
ILength (mm): 8.636
Number of Perforations: 19
Speed of Compression Wave in Settled Bed (m/s): 442.
Speed of Expansion Wave (m/s): 1270.
Ignition Temperature (K): 477.
Chemical Energy Released in Burning (J/g): 3897.
Molecular Weight: 20.954
Ratio of Spegific Heats: 1.2812
Covolume (cm”/g): 1.028
13
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Available propellant burning rate data for the subject propellant
are shown in Figure 2. The strand burner probably provides a more
reliable source of low-pressure burning rate data, eliminating the
ambiguity in closed bomb results in this region, where ignition and
flamespreading may be influencing results. The burning rates used in
the simulations are shown in Table 4, along with the values for B and n,
for the customary burning rate law, Bp?, that are deduced from them.

PRESSURE (MPa)

1.0 10.0 100.0
10.0 11 I T 1T 1T1T 111! | T T TTTTrT | 1Tt
[~ BRL CLOSED BOMB 4100.0
— — — — NOS/IH CLOSED BOMB 3
I ~ e e e BRL STRAND BURNER ] "
ok EXTRAPOLATIONS B =
c — - E
- F —7 1o ™
> - / 3 10.0 w
o / - <
[~ / ] &
rd / -
& 0.1 | ' <
g - 0 T 2
- [+ ]
n . = 1.0
L .
0.01 1 Lo il L 14ttt L L 111110
0.1 1.0 10.0 100.0

PRESSURE (kpsi)

Figure 2. Burning Rates, IOVA XM39 Lot A2-202

Table 4. Propellant Burn Rates

Pressure Burn Rate
(MPa) (mm/s)
- 2.0 0.883
) 41.38 25.4
__ 137.9 50.8
’ 551.7 254.0
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Propellant Burn Rates (continued)

Rate = B * P!
Upper Pressure Bound B n n
(MPa) (mm/ (s-(MPa) ™))
41.38 0.409438 1.1088
137.9 2.977376 0.5758
551.7 0.166814 l1.1608

XNOVAK, like its predecessor, models the igniter function as a

deposition of mass as a function of position and time.

The igniter is

assumed to function for four milliseconds, with maximum output from its
rear outlet holes and minimum output from its front outlet hecles. This
function is depicted graphically as Figure 3.

m
[ |

/\ t
4.0ms /
\<

» Z

76.2mm 279.4mm

Figure 3. Igniter Output

B. Sensitivity to Burning Rates

Since many of the new features of XNOVAK are in response to a
perceived need to provide a more accurate representation of the rate of
energy release from propellant combustion, particularly at low
pressures, we felt it important to test this premise in terms of the
sensitivity of calculated results to the low-pressure burning rates
described above. In the absence of good, low-pressure burning rate
data, provided in this case by the BRL strand burner, one might have
chosen to describe the process by just two straight~line segments,
attributing the data fall-off at pressures less than 40 MPa to
flamespreading. Given the definitive low-pressure data, however, a

15
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third burning rate slope is defined which fixes burning rates at low
pressures at values much lower than the "two-slope" description.

The ballistic consequences of this difference are shown in Table 5.
The maximum pressure and the muzzle velocity for the "two-slope" case
reflect the fact that, with higher burning rates at low pressures,
propagation of flame through the main charge, as well as combustion of
propellant behind the flame front, advance much more rapidly, and at
completion of flamespreading, the pressure, velocity, and acceleration
are all greater than for the "three-slope" case. Indeed, the calculated
performance (and, presumably, actual gun performance as well) reveals a
strong dependence on the rate of energy release early in the interior
ballistic cycle. Naturally, the remaining studies reported in this
paper all employed the "three-slope" burning rate description. 1In the
Appendix, BASE3 is the resulting input data file which forms the
foundational data base for the work reported here.

Table 5. Influence of Low-Pressure Burning Rate Data

Peak Pressure Muzzle Velocity
(MPa) (m/s)
2 slopes 523 1267
3 slopes 448 1235

C. Sensitivity to Igniter Output

As before, the output of the igniter in XNOVAK is described in
terms of a mass flux as a function of axial position and time. Now,
however, it can be apportioned between the gas, liquid, and solid
phases as well , though the distinction between the liquid and solid
condensed phases is purely formal at this time. A major difference in
the treatment of the gas and condensed phases is that the condensed
phases may be deposited on the surface of the propellant surface,
significantly enhancing heat transfer to the solid propellant, while
altering the mixture of igniter combustion products in the flow. In the
code, mass transfer from the condensed phases of the igniter output to
the solid propellant is described by equation 1,

2
= kiYip(u-up) (1-¢), (1)

in which the rate of mass transfer is proportional to the concentration
of the solid propellant and the relative momentum flux of the mixture of
combustion products. Here k; is an empirical coefficient that should
depend on the diameter of the individual particles or droplets which
constitute the condensed species and ¢ is the porosity of the two-phase
mixture. The condensed products of the igniter are assumed to be
sufficiently finely divided that they are deposited on the surface of
the solid propellant as a uniform layer, so that there are no "hot
spots." At deposition, the mass and heat of the condensed species is
transferred to the solid propellant, the temperature of the condensed
species is instantaneously equilibrated with the (increased) surface

l6
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temperature of the solid propellant, and the mass and heat of the
condensed species are lost to the mixture of combustion products.

Table 6 illustrates the results obtained upon varying the transfer
coefficient, ki, and the ratio of gas to condensed igniter products, the
former from 010 to 0.00001 and the latter from 1.0/0.0 (all gas) to
0.1/0.9 (one part gas to nine parts condensed). The value 0.00001 was
chosen arbitrarily. (For these tests, there were assumed to be no
chemical reactions among igniter products and propellant gas-phase
species, and there were no intermediate propellant species. All the
energy contained in the solid propellant was llberated at the instant of
burning, which was described by the customary Bp" burning rate law.) In
the Appendix, BASES5 is the input data base that was used.

Consider first the top three rows of Table 6. Row one represents
our baseline calculation, with the igniter producing gaseous products
only. When the igniter output is split 50/50 in the second calculation,
we see that the gun performance is degraded. Close examination of the
results of the simulation reveals that with diminished igniter output
(after all, the condensed phase is contributing nothing to the heating
of the solid propellant, the transfer coefficient being zero), at the
completion of flamespreading, overall gas production has been less and
the projectile velocity and acceleration are lower than for the baseline
case. Ultimately, ballistic performance is reduced as well. In the
third case, with just 10% of the igniter output serving to heat the
propellant grains, the propellant surface temperature is never elevated
sufficiently to achieve ignition. These results are not surprising and
similar performance should be expected for any propellant.

Table 6. Effects of Transfer Coefficients
and Gas/Condensed Igniter Output on Ballistics

Transfer Gas/ Maximum Muzzle Time to 25.4
Coefficient Condensed Pressure Velocity mm Travel
(MPa) (m/s) (ms)
0.0 1.0/0.0 453 1238 2.9
0.0 0.5/0.5 445 1232 3.9
0.0 0.1/0.9 propellant did not ignite
0.00001 1.0/0.0 453 1238 2.9
0.00001 0.5/0.5 451 1236 3.2
0.00001 0.1/0.9 439 1227 4.5

The second set of three calculations is more interesting. The
first of the three (the calculation represented by the fourth row) is
our baseline again, repeated for clarity; the igniter output is all
gas, so the fact that the transfer coefficient is not zero is
immaterial. In the second case (the fifth row), the condensed species
do contribute to the heating of the solid propellant, and gun
performance is improved from the calculation shown in row 2, nearly
enough to restore baseline levels (with the chosen value of the transfer
coefficient, kj). The final calculation is the most interesting of all.
The gas pressure is low, flamespreading is slow, and the apparent
"jgnition delay" increases still more, as indicated by the increase in
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the time to projectile motion. Ballistic performance is marginally,
but measurably, less than in previous cases.

Figure 4, simultaneously depicting flamespreading and projectile
motion for the second set of three calculations, was constructed to
provide some insight into these results. On the left are plotted the
paths of flame propagation, emanating both forward and rearward from the
axial region over which primer venting is prescribed to have taken
place. To the right are plotted the corresponding projectiles' inbore
trajectories, each terminating in this figure at its time/position of
maximum chamber pressure. The interplay between flamespreading and
early projectile motion is of particular interest, since the projectile
has been observed to start to move before flamespreading is complete
when IOVA-type propellants are in use. Such behavior is potentially
beneficial in terms of its influence on overall performance level but is
believed to impact unfavorably on performance reproducibility.
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Figure 4. Flamespreading and Projectile Motion
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o The solid curve in Figure 4 represents our baseline calculation.

3¢ The propellant ignites most quickly at the ends of the igniter
N (convection being greatest at the two ends of the region of primer
venting -- a consequence of the one-dimensional representation), rapidly

o driving flamespreading to completion in about 2 ms. Projectile motion
! begins just before flamespreading is complete.

! The dashed curve in Figure 4 corresponds to the calculation
A summarized in the fifth row of Table 6; the igniter output is split
equally between gas and condensed-phase species. The convective
stimulus is now augmented by the efficient heating associated with

hk A deposition of the condensed-phase products on the propellant surfaces

}h and results in very rapid ignition in the region of primer venting.

rﬁ Gas pressure resulting from igniter products, however, is less, reducing
A the convective stimulus to the extreme ends of the main propellant

charge and delaying completion of flamespreading. At the time
flamespreading is complete, the projectile has moved somewhat farther

@‘ down the bore, resulting in more available free volume for the

oo corresponding fraction of propellant burned. The ultimate result is a

A lower peak pressure at a greater projectile travel, with an accompanying
lower projectile muzzle velocity.

~ The dot-dashed curve in Figure 4 depicts the results from the

g‘ calculation for which 90% of the igniter output was condensed and only
Q 10% was gaseous. While the propellant adjacent to the igniter is seen
p to ignite very rapidly, the low level of igniter gas production leads to
i a correspondingly low level of pressurization, so that convectively
. driven flamespreading into regions remote from the primer is even slower
. than in the previous case. As a result, the free volume is even greater
i at the completion of flamespreading, and the ballistics suffer
s accordingly.
b While the specific results obtained from this series of

i calculations are believed to be highly dependent on the interplay among
i) a number of input values of questionable validity (e.g., igniter output
? characteristics, propellant ignition temperature, and engraving pressure
¥ profile), the important result here is that the resulting variation in
o predicted performance confirms the potential ballistic consequence of

. such mechanisms as these.

D. Gas-Phase Reactions

. The present extension incorporated in XNOVAK recognizes the

j'- possibility of chemical reactions occurring in the mixture of combustion
o products. As outlined above, an arbitrary number of reactions is

2k admitted, involving an arbitrary number of chemical species. All

- reactions are assumed to have rates governed by a general Arrhenius law.

?&' We also model reactions in which a group of reactants may interact with
K% a spectator molecule which is itself unchanged by the reaction. Each
b reaction is assumed to proceed in the forward direction only:
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where S; is species i and vy '* are the stoichiometric
coefficients for reactants '5 produé%s respectively. We extend the
summation to include i=0, which is understood to incorporate formally a
reaction in which a spectator molecule may participate.

The rate of reaction k is ryx, where

8 E N v, '"!
. k Tk ik
rk—BkT exp| - Wu ]igo(Yip) . (3)
We note that the reaction order of v, ''' may differ from that of v;

since for many applications of interes reaction k will be a global
rather than an elementary reaction. The rate of production of species i
by reaction k is

o = vy _ . 4
Tik™ Wik Vik )T (4)

per unit volume of the mixture.

Since it is expected that the code will be applied to situations in
which the reactions are of the overall or global type rather than the
fundamental type, we have assumed that the chemical rates will have time
constants which are comparable to times of ballistic interest.
Accordingly, there is no provision for chemical schemes in which certain
of the reactions are very short in comparison with the others. IZ
interest is eventually directed towards more fundamental schemes, it
will be necessary to incorporate a stiff integration package to handle
the chemical reactions in the balance equations.

We continue the present study according to the following scenario.

For simplicity, the igniter is assumed to release all of its output in
the gas phase. The gaseous products convectively heat the surface of
the solid propellant, which reaches the prescribed ignition temperature
and begins to regress at a rate defined by Bp". During regression, it
is assumed that half of the total chemical energy available during
complete combustion of the propellant is released; the other half is
available to be released during subsequent (flame-zone) reactions. This
choice of half of the energy being released at or near the surface an
half being released in the flame zone, is guided by the work of Zenin 0,
Again for simplicity, the regression is assumed to produce a gaseous
species which we call LOVA-I, an "intermediate state" associated with
combustion of the subject LOVA propellant. When LOVA-I further reacts,
LOVA-F, a final gaseous state of LOVA is formed, and the other half of
the energy of the solid propellant is released. Naturally, these

J proportions can be adjusted, but we have few data for guidance at this

time. In the Appendix, BASE6 is the input data file that was used.

The results summarized in Table 7 characterize the rate dependence
of predicted ballistic results, assuming that the reaction of LOVA-I to
LOYA-F takes place (at a rate defined by an activation energy of 7.5 x

Joules/mole and a pre-exponential factor as shown in the table) due
to collisions with any gaseous species, here represented by the
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sgj traditional "M." The values of activation enesqy and of pre-exponential
g factor were guided by the suggestions of Price 5 wg;ch are based on
> work at the Naval Weapons Center, China Lake, CA 2=¢7_ " In this case,
;5 there are four gaseous species: air, igniter gas, ILOVA-I, and LOVA-F; a
collision with any one of them has the same potential for reaction.
N Table 7 thus defines the range of the pre-exponential factor necessary
N to transition from the condition in which few of the LOVA-I's have
O reacted to form LOVA-F's to the condition in which essentially all have
R reacted. For the latter case, the performance of our initial baseline
Y, calculation, described earlier in the paper, is regained. For the
A former, nearly a quarter of the available propellant energy is wasted,
':, blown out the muzzle unused, so that the gun performance falls off
S markedly. As the reaction rate coefficient of the single reaction
e increases, not only is a larger fraction of the LOVA-I converted to
‘ﬁ? LOVA-F, but also the conversion takes place earlier in time. Thus,
L Table 7 also shows that ballistic performance improves as the propellant
n energy is released earlier in the ballistic cycle. Interestingly, the
% " apparent "ignition delays" for this wide range of rate coefficients are
oy essentially identical, presumably because the projectile started moving
:j before there was any appreciable "flame-zone" reaction.
L)
L2 Table 7. One Gas-Phase Reaction
AN
N IOVA-I + M -> LOVA-F + M
\":
j;? B = pre-exponential factor
RN E = activation energy = 7.5E4 Joules/mole
SOl LOVA-F/ILOVA-total
250 3B Peak Pressure Muzzle Velocity at muzzle
:;? (cm”/g-s) (MPa) (m/s)
\ . eI In DR D D D D D D N R S S D D 0 R (i S R N W S D N T D D D D S D S G S L D D S (W 1 e -
baY 5.42E5 151 785 0.522
J 7.23E5 217 992 0.927
. 2. 9.03ES 292 1096 0.962
s 1.08E6 337 1144 0.976
ro 2.17E6 429 1220 0.994
::',: 3.61E6 444 1230 0.996
s ¥
- Figure 5 depicts graphically the evolution of mass fractions of
A intermediate and final products for the slowest reaction shown in Table
e 7. The air in the qun tube at the start of the cycle quickly diminishes
i i as a fraction of the total gas present, since there is no source for
s more air. The gaseous output of the igniter builds up early in the
1Y cycle but then diminishes as LOVA gas is produced. LOVA-I, the

intermediate gaseous state of the burning solid propellant, is produced
S as soon as the igniter heats the solid propellant to the prescribed
- ignition temperature. Half of the energy of the solid propellant is
e _ released when LOVA-] is produced. Collisions of LOVA-I with any ot the
oL other species lead to reactions that form LOVA-F, liberating the
s remainder of the solid-propellant energy.
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Figure 5. Evolution of Mass Fractions for One Gas-Phase Reaction

The real significance of these results is that since the several
assumed parameters of this simulation should be at least approximately
correct these calculations should then define a critical value for the
reaction rate of the flame zone reaction. If, indeed, overall effective
rates of the two or more steps in the combustion of LOVA propellant were
in this range, erratic performance of the gun would likely result, and
certainly experimental gun performance could not be adequately simulated
by the use of standard lumped-parameter codes.

In Table 8, we attempt to depict the impact of adding just one more
reaction, a chemical reaction between the LOVA-I's and the igniter
gases, to the above scheme. This second reaction is assumed to have the
same activation energy as the first and to take place with a rate which
varies in accordance with the pre-exponential factor. The series of
calculations summarized in Table 8 identifies the range of rates over
which this additive reaction "restores" the performance of the gun by
hastening the conversion of LOVA-I to LOVA-F, with the concomitant
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liberation of energy. No claim is made that this is the "right"
reaction to have added; this is simply a second reaction that comes to
mind - especially a mind motivated by the test firings mentioned above.
This second additive gaseous reaction permits the igniter to participate
in a second, important fashion; after heating the solid propellant
grains, its output gases are available to enter into or influence
subsequent chemical reactions in the flame zone. While the addition of
this particular second reaction does not fully restore the performance
of the gun to that of the baseline case, this second reaction path does
markedly increase the the fraction of LOVA-I that is transformed to
LOVA-F, improving performance accordingly. In the Appendix, BASE7 is the

data file that was used. An echo of the BASE7 input by XNOVAK is also |
included in the Appendix.

Table 8. Two Gas-Phase Reactions

(1) LOVA~I + M -> LOVA-F + M

E(1) = 7.5E4 Jou%es/mole
B(1) = 3.25E5 cm’/g-s

(2) LovAa-1I + Igniter(G) -> LOVA-F + Air
E(2) = 7.5E4 Joules/mole

LOVA-F/LOVA-total

§(2) Peak Pressure Muzzle Velocity at muzzle

(cm~/g-s) (MPa) (n/s)

3.61E5 155 801 0.593
1.08E6 161 826 0.675
3.61E6 176 872 0.763
1.08E7 190 909 0.806
3.61E7 200 931 0.826
1.08E8 206 943 0.835

The influence of this second reaction on the evolution of the
gaseous species is shown in Figure 6, using the data corresponding to
the fastest second reaction of Table 8. The igniter gas still peaks
early, but then is reduced both by its limited quantity and by the early
influence of the second gas reaction. The mass fraction of air drops
early but peaks again as air is formed in accordance with the postulated
second reaction. LOVA-I is depleted by both reactions, and its mass
fraction is lower at the end of the ballistic cycle than for the single
reaction case: IOVA-F is created by both reactions, and its final mass
fraction is higher.
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IV. CONCLUSIONS

While the vast majority of past problems plaguing the gun
propelling charge designer have been successfully addressed without any
real description of reaction kinetics, the more stringent ignition
requirements posed by some of the newer propellants specifically
developed to exhibit low-vulnerability characteristics have brought
about the need for more advanced modeling capabilities. The XNOVAK code
has shown itself to be both rugged and versatile in this application,
allowing the investigator to examine the effectiveness of igniters both
insofar as initiating combustion of the solid propellant and also in
terms of influencing any subsequent reactions taking place within the
mixture of combustion products. Given a few data in respect to these
reactions, the code should be useful in identifying the ranges over
which other parameters become important. At this point, however, the
practicality of results has been limited by the sparsity of gugg
information. Here at the BRL, the efforts of Miller et al.2%732 are
directed toward the production of data which are directly applicable to
codes like XNOVAK, so that the future holds promise.

The interior ballistic and the combustion communities must continue
to cooperate in identifying mechanisms and providing descriptions of
reactions on a level appropriate for inclusion into state-of-the-art
interior ballistic codes. A full appreciation for each other's
capabilities and problems is only now being developed, but cocperative
efforts have begun to define appropriate experimental techniques for
specifying and quantifying important gun-environment reactions of
potential ballistic consequence. Ultimately, such information, used in
codes like XNOVAK, will allow the charge designer to specify the optimal
chemical composition as well as spatial and temporal characteristics for
matching ignition systems to new propellants and charge configurations.
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APPENDIX
XNOVAK Input Data Decks
NAME OF DATA FILE: BASE3
BASE DECK FOR ENTIRE STUDY; 3 BURN-RATE SEGMENTS

IOVA XM39 IOTA2-202 M489 PROJECITILE

TFFFTIT 1 001

17 3500 0 3500 .0001
0.05 188. .0001 2. .05 .01 .0002

6 2 2 4 0 0 1 3 0] 0 0 2
500. 14.7 29. 1.4
500.
IOVA XM39 LOTA2-202 O. 21.622 13.350 .05845

9 .306 .015 .340 19.
17400. .5 50000. .5
6000. .00006457 1.109 20000. .006682 .5757 100000.
1.161 0. 858. .0277 .0001345 .6
15250000. 21.169 1.28120 28.44
9997000. 29.82 1.2254 16.78
0. .004
3. 11.
4.41 4.41
0. 0.
0. 2.00 3.00 2.50 18.50 2.41 21.50
24.90 2.097 210.5 2.097
21.622 100. 22.622 2000. 24.5 500. 210.5
21.622 23.2 44. 9.9
0. 21.622

4 0 0

IOVA-F G 3498. 4481. 28.64 20.954 0.0 0.0
BENITE G 2867.5 3513.8 23.23 29.82 0.0 0.0
BENITE S 2867.5 2867.5 0.0 0.0 0.06 .000
AIR G 1604.89 2246.85 26.68 28.896 0.0 0.0
15250000. 1.0 0.0 0.0 0.0
9997373. 0.0 1.0 0.0 0.0
882690. 0.0 0.0 0.0 1.0

29

.0001

.0000203

2,07

500.
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NAME OF DATA FILE: BASES5
USED IN IGNITER OUTFUT PARTITIONING STUDIES

IOVA XM39 LOTA2-202 M489 PROJECTILE

TFFFITT 1 001
17 3500 0 3500 .0001
0.05 188. .0001 2. .05 .01 .0002 .0001
6 2 2 4 0 0] 1 3 0 0 0 2
500. 14.7 29. 1.4
500.
IOVA XM39 IOTA2-202 O. 21.622 13.350 .05845
9 .306 .015 .340 19,
17400. 5 50000. .5
6000. .00006457 1.109 20000. .006682 5757 100000. .0000203
1.161 0. 858. 0277 .0001345 .6
15250000. 21.169 1.28120 28.44
9997000. 29.82 1.2254 16.78
0. .004
3. 11.
4.41 4.41
0. 0.
0. 2.00 3.00 2.50 18.50 2.41 21.50 2.07
24.90 2.097 210.5 2.097
21.622 100. 22.622 2000. 24.5 500. 210.5 500.
21.622 23.2 44. 9.9
0. 21.622
4 0 0
IOVA-F G 3498. 4481. 28.64 20.954 0.0 0.0
BENITE G 2867.5 3513.8 23.23 29.82 0.0 0.0
BENITE S 2867.5 2867.5 0.0 0.0 0.06 .00001
AIR G 1604.89 2246.85 26.68 28.896 0.0 0.0
15250000. 1.0 0.0 0.0 0.0
9997373. 0.0 c.5 0.5 0.0
882690. 0.0 0.0 0.0 1.0 !
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o NAME OF DATA FILE: BASES6
:;:EE ONE GAS-PHASE REACTION
»2
G IOVA XM39 IOTA2-202 M489 PROJECTILE
. TFFFTTT 1 0l
P 17 3500 0 3500 .0001
:'c‘;; 0.05 188. .0001 2. .05 .01 .0002 .0001
oy 6 2 2 4 o0 0 1 3 o o0 o0 2
:'Z’l
e 500. 14.7 29. 1.4
. 500.
"'t{ IOVA XM39 IOTA2-202 O. 21.622 13.350 .05845
LH/ 9 .306 .015 .340 19,
ey 17400. .5 50000. .5
0o 6000. .00006457 1.109 20000. .006682 .5757 100000.  .0000203
1.161 0. 858. .0277 .0001345 .6
15250000. 21.169 1.28120 28.44
ror 9997000. 29.82 1.2254 16.78
s 0. .004
o 3. 11.
oy 4.41 4.41
! 0. 0.
v 0. 2.00 3.00 2.50 18.50 2.41 21.50 2.07
e 24.90 2.097 210.5 2.097
2 21.622 100. 22.622 2000. 24.5 500. 210.5 500.
R 21.622 23.2 44. 9.9
i 0. 21.622
LM 5 1 0
. IOVA-I G 3498. 4481. 28.64 20.954 0.0 0.0
BENITE G 2867.5 3513.8 23.23 29.82 0.0 0.0
e BENITE S 2867.5 2867.5 0.0 0.0 0.06 .000
R ATR G 1604.89 2246.85 26.68 28.896 0.0 0.0
o IOVA-F G 3498. 4481. 28.64 20.954 0.0 0.0
B 7625000. 1.0 0.0 0.0 0.0
) 9997373. 0.0 1.0 0.0 0.0
s 882690. 0.0 0.0 0.0 1.0
W 1 0 0 0 5 ) 0 0
R 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0
b 7625000. 0.9E08 0.0 3.0E08 1.0 0.0 0.0
e 1.0
WX
0
[}
:a:s.
o
R,
S¢S
'-:
Ao
s’
:h.
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NAME OF DATA FILE: BASE?
TWO GAS FHASE REACTIONS

LOVA XM39 LOTA2-202 MA89 PRQJECTILE

TFFFTIT 1l 0l
] 17 3500 0 3500 .0001
b 0.05 188. .0001 2. .05 .0l .0002 .0001
8 6 2 2 4 0 0 1l 3 0 0 o 2
500. 14.7 29. 1.4
500.
1 IOVA XM39 1OTA2-202 0. 21.622 13.350 .05845
: 9 .306 .015 .340 19.
) 17400. 5 $0000. .5
ol 6000. .00006457 1.109 20000. .006682 5757 100000. .0000203
Y 1.161 0. 858. .0277 .0001345 .6
15250000. 21.169 1.28120 28.44
9997000, 29.82 1.2254 16.78
, 0. .004
't 3. 11.
X 4.41 4.41
b o. 0.
0. 2.00 3.00 2.50 18.50 2.41 21.50 2.07
: 24.90 2.097 210.5 2.097
21.622 100. 22.622 2000. 24.5 500. 210.5 500.
. 21.622 23.2 44. 9.9
0 0. 21.622
) 5 2 0
IOVA-I G 3498. 4481. 28.64 20.954 0.0 0.0
1 BENITE G 2867.5 3513.8 23.23 29.82 0.0 0.0
: BENITE S 2867.5 2867.5 0.0 0.0 0.06 .000
AIR G 1604.89 2246.85 26.68 28.896 0.0 0.0
N IOVA-F G 3498. 4481. 28.64 20.954 0.0 0.0
\ 7625000. 1.0 0.0 0.0 0.0
9997373. 0.0 1.0 0.0 0.0
' 882690. 0.0 0.0 0.0 1.0
; 1 (o] 0 o 5 o 0 0
2 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0
S 7625000. 0.15E8 0.0 3.0E08 1.0 0.0 0.0
K 1.0
1l 2 0 0 5 2 0 0
* 1.0 1.0 0.0 0.0 1.0 1.0 0.0 0.0
e 7625000. 0.3E08 0.0 3.0E08 1.0 1.0 0.0
. 0.0
)
)
)
L)
K
\/
™
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XNOVAK VERSION NUMBER 1.0024 BASE 7 ECHO
CONTROL DATA
LOGICAL VARIABLES:
PRINT T DISK WRITE F DISK READ F
1.B. TABLE T FLAME TABLE T PRESSURE TABLE(S) 7

EROSIVE EFFECT 0
BED PRECOMPRESSED 0
HEAT LOSS CALCULATION O

WALL TEMPERATURE CALCULATION O

BORE RESISTANCE FUNCTION 1

CONSERVATIVE SCHEME TO INTEGRATE SOLID-PKASE CONTINUITY EQUATION (0=NO,OLD; 1aYES, NEW) O

KINETICS MODE (O=NONE; 1=GAS-PHASE ONLY;2sBOTH PHASES) 1

INTEGRATION PARAMETERS

NUMBER OF STATIONS AT WHICH DATA ARE STORED 17
NUMBER OF STEPS BEFORE LOGOUT 3500
TIME STEP FOR DISK START 0
NUMBER OF STEPS FOR TERMINATION 3500
TIME INTERVAL BEFORE LOGOUT(SEC) . 1000€-03
TIME FOR TERMINATION (SEC) .5000€ - 01
PROJECTILE TRAVEL FOR TERMINATION (INS) 188.00
MAXIMUM TIME STEP (SEC) .1000E-03
STABILITY SAFETY FACTOR 2.00
SOURCE STABILITY FACTOR .0500
SPATIAL RESOLUTION FACTOR .0100
TIME INTERVAL FOR [.B. TABLE STORAGE(SEC) .2000€ - 03
TIME INTERVAL FOR PRESSURE TABLE STORAGE (SEC) . 1000€ - 03
FILE COUNTERS

NUMBER OF STATIONS TO SPECIFY TUBE RADIUS
NUMBER OF TIMES TO SPECIFY PRIMER DISCHARGE
NUMBER OF POSITIONS TO SPECIFY PRIMER DISCHARGE
NUMBER OF EMTRIES IN BORE RESISTANCE TABLE
NUMBER OF ENTRIES IN WALL TEMPERATURE TABLE
NUMBER OF ENTRIES IN FORWARD FILLER ELEMENT TABLE
NUMBER OF TYPES OF PROPELLANTS

NUMBER OF BURN RATE DATA SETS

NUMBER OF ENTRIES IN VOID FRACTION TABLE(S)
NUMBER OF ENTRIES IN PRESSURE HISTORY TABLES
NUMBER OF ENTRIES IN REAR FILLER ELEMENT TABLE

O N O W = OO0 & NN O

GENERAL PROPERTIES OF INITIAL AMBIENT GAS

INITIAL TEMPERATURE (DEG.R) 500.0
INITIAL PRESSURE (PSI) 1%.7
MOLECULAR WEIGHT (L8M/LBMOL) 29.000
RATIO OF SPECIFIC MEATS 1.4000

GENERAL PROPERTIES OF PROPELLANT BED

ca
ond
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INITIAL TEMPERATURE (DEG.R)

PROPERTIES OF PROPELLANT 1

PROPELLANT TYPE

MASS OF PROPELLANT (LBM)

DENSITY OF PROPELLANT (LBM/IN**3)
FORM FUNCTION INDICATOR

OUTSIDE DIAMETER (INS)

INSIDE DIAMETER (INS)

LENGTN (INS)

NUMBER OF PERFORATIONS

RHEOLOGICAL PROPERTIES

500.0

LOVA XN39 LOTA2-202

13.3500
.0585

9

.3060
.0150
.3400
9.

SPEED OF COMPRESSION WAVE IM SETTLED BED (IN/SEC) 17400.

SETTLING POROSITY
SPEED OF EXPANSION WAVE (IN/SEC)
POISSON RATIO (-)

SOLID PHASE THERMOCHEMISTRY

MAXIMUM PRESSURE FOR BURN RATE DATA (LBF/IN*"*2)

BURNING RATE PRE-EXPONENTIAL FACTOR
C(IN/SEC/PSI**BN)

BURNING RATE EXPONENT

MAXIMUM PRESSURE FOR BURN RATE DATA (LBF/IN**2)

BURNING RATE PRE-EXPONENTIAL FACTOR
(1N/SEC/PSI**BN)

BURNING RATE EXPOMENT

MAXTMUM PRESSURE FOR BURN RATE DATA (LBF/IN**2)

BURNING RATE PRE-EXPONENTIAL FACTOR
C(IN/SEC/PSI®**8N)

BURNING RATE EXPONENT

BURNING RATE CONSTANT (IN/SEC)

IGNITION TEMPERATURE (DEG.R)

THERMAL CONDUCTIVITY (LBF/SEC/DEG.R)

THERMAL DIFFUSIVITY (IN**2/SEC)

EMISSIVITY FACTOR

GAS PHASE THERMOCMEMISTRY
CHEMICAL EMERGY RELEASED IN BURNING(LBF-IN/LBM)
MOLECULAR WEIGHT (LBW/LBMOL)

RATIO OF SPECIFIC HEATS
COVOLUNE

LOCATION OF PACKAGE(S)

.5000
$0000.
.5000

.GASTE- 0k
1.1000
20000.

.6682€-02
5757
100000 .

. 2030€ - 04
1.1610
0.0000
858.0
.2T70€-01
. 1345€-03
.600

.15250€+08
21.1690
1.2812
28.46400
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PACKAGE LEFT S00Y(1NS) RIGHT BDOY(INS) MASS(LEBM)

1 0.000 21,622 13.350

PROPERTIES OF PRIMER

CHEMICAL ENERGY RELEASED IN BURNING(LBF-IN/LBM)  .9997E+07

MOLECULAR WEIGHT (LBM/LOMOL ) 29.8200
RATIO OF SPECIFIC MEATS 1.22%4
SPECIFIC VOLUME OF SOLID(IN®"*3/LBM) 16.7800

PRIMER DISCHARGE FUMCTION (LBM/IK/SEC)

POS.(INS) 3.00 11.00
TIME(SEC)

0. 441 4.4
.400€-02 0.00 0.00

PARAMETERS TO SPECIFY TUBE GEOMETRY

DISTANCE(IN) RADIUS(IN)
0.000 2.000

3.000 2.500

18.500 2.410

21.500 2.070

24.900 2.097

210.500 2.007

BORE RESISTANCE TABLE

POSITION(INS) RESISTANCE(PSI])

21.622 100.
22.622 2000.
24.500 500.
210.500 500.

THERMAL PROPERTIES OF TUBE

THERMAL CONDUCTIVITY (LBF/SEC/DEG.R) 0.
THERMAL DIFFUSIVITY (IN®*2/SEC) 0.
EMISSIVITY FACTOR 0.000
INITIAL TEMPERATURE (DEG.R) 500.00
o
td
y PROJECTILE AND RIFLING DATA
INITIAL POSITION OF BASE Of PROJECTILE(INS) 21.622
MASS OF PROJECTILE (LBM) 23.200
e POLAR MOMENT OF INERTIA (LBM-IN**2) 44.000
ANGLE OF RIFLING (DEG) 9.900
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POSITIONS FOR PRESSURE TABLE STORAGE
0.0000 21.6220

CMENISTRY OPTION DATA

T

' NUMBER OF SPECIES S

' MUMBER OF GAS-PHASE REACYIONS 2
MUMBER OF SOLID-PNASE REACTIONS 0
PRESSURE THRESHOLD, PSI 0.

PROPERTIES OF SPECIES

NANE PHASE cv cp covoLune MOL . WET DENSITY TRANSFER COEF.
LOF-1N/LBN LBF- /LM IN**3/L0N LB/LBNOL LB/ 1N
LOVA- 1 G 3498.0 “481.0 28.640 20.954 0.00000 0.
oEN1TE c 2867.5 3513.8 3.2 29.820 0.00000 0.
’ BENITE ) 2067.5 2867.5 0.000 0.000 .06000 0.
AlR G 1604.9 2246.9 26.680 28.99 0.00000 0.
LOVA- G 3498.0 4481.0 28.640 20.954 0.00000 0.

i CONPOSITION OF LOCAL COMBUSTION PRODUCTS OF PROPELLANT 1

' ENERGY MASS FRACTIONS (-)
LOF-1N/LDM Yo( 1) YO( 2) Yo( 3) YOC( &) Yo( 3) Yo( 6) YOO 7 Yo( 8) YO 9 Y0(10)

'

7625000 1.00000 0.00000 0.00000 0.00000 0.00000
’ COMPOSITION OF COMBUSTION PRODUCTS OF IGMITER

ENERGY MASS FRACTIONS (-)
' LOF-IN/L0N Yo( 1) YO( 2) Yo( 3 YO( &) Yo( ) Yo( 6) YO( 7) Y0( 8) Yo( 9) Y0(10)
)
t 9997373 0.00006 1.00000 0.00000 0.00000 0.00000

COMPOSITION OF AMBIENT GAS

C4

Y ENERGY MASS FRACTIONS ()
¢ LBF-1N/LOM YOO 1) YO 2) YOC3)  YO( &) YOCS) YOCe) YOUT) YO 8) YO 9) YOO
L

. 882690, 0.00000 0.00000 ©0.00000 1.00000 0.00000
B

GAS -PHASE REACTION DATA

1)

P

“

REACTION 1
. 36
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REACTANT SPECIES 1 0 0 0 PRODUCT SPECIES S 0
STOICHIOMETRIC COEFFICIENTS (LBM) 1.000 0.000 0.000 0.000 1,000 0.000
HREAT OF REACTION (LSF-IN/LBN) 7625000,
RATE COEFFICIENT (UNITS YIELD LBM/IN**3/SEC) . 150E+08
RATE TEMPERATURE EXPONENT (-) 0.000
RATE ACTIVATION ENERGY (LBF-IN/LBMOL) 300000000 .000
REACTION ORDER WITH RESPECY TO REACTANTS (-) 1.000 0.000 0.000 0.000 1.000
REACT 1ON 2
REACTANT SPECIES 1 2 0 0 PRODUCT SPECIES 5 2
STOICHIOMETRIC COEFFICIENTS (LBM) 1.000 1.000 0.000 0.000 1.000 1.000
HEAT OF REACTION (LBF-1M/0LBM) 7625000.
RATE COEFFICIENT (UNITS YIELD LBM/IN**3/SEC) .300€+08
RATE TEMPERATURE EXPONENT (-) 0.000
RATE ACTIVATION ENERGY (LBF-I1N/LBMOL) 300000000. 000
REACTION ORDER WITH RESPECT TO REACTANTS (-) 1.000 1.000 0.000 0.000 0.000

0
0.000

0.000

0
0.000

0.000

NOVSUB ERROR MESSAGE... SETTLING POROSITY AT REFERENCE COMPOSITION HWAS BEEN DEFAULTED TO .41323 10 AVOID INITIAL BED

COMPACTION OF PROPELLANT TYPE 1

EQUIVALENT INTBAL DATA

PROJECTILE TRAVEL(IN) 188.000
CHAMBER VOLUME( IN**3) 390.450
GUN MASS(LBM) . 100€+21
GUN RES. FAC. 0.000
ELEV. ANGLE(DEG) 0.000
PROJECTILE MASS(LBM) 23.505
PROJECTILE TRAV. (IN) RESISTANCE(PS!)

0.000 100.000

1.000 2000.000

2.878 $00,000

188.878 500,000

VEL. THRESNOLD FOR OYN. RES.(F/S) 27.000
VEL. DEPEMDENCE ON CHMARGE WEIGHT(F/S/LBM) 0.000
ESTIMATED MUZZLE VELOCITY(F/S) 0.000
N.0. USE VALUE FROM SUBEMARY TABLE. INTBAL WILL NOT ACCEPT Z2ERO
SORE AREA(IN**2) 13.815
AIR DENSITY(LBN/FT®?Y) 0.000
IGNITER MASS(LOM) .071%
FLAME TEMPERATURE(K) 2012.402
RATIO OF SPECIFIC WEATS(-) 1.2254
IMPETUS(LBF - IN/LON) 2253323.8
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INITIAL CHARGE WEIGHT(LIM) 13.350

FINAL CHARGE WEIGHT(LBM) 13.350
CNARGE WEIGNT INCREMENT(LBM) 1.000
FLAME TEMPERATURE(K) 27T18.749
RATIO OF SPECIFIC MEATS(-) 1.2812
IMPETUS(LBF - IN/LIN) 4288300.0
INITIAL TEMPERATURE(K) 217.8
OENSITY(LBM/IN"*3) .05845
COVOLUME ( IN**3/L0M) 28.440

COEFF(1N/S/PSI**N) EXPONENT(-) UPPER PRES. LINM. (PSI)

.645TE-04 1.109 6000.
.6682€ - 02 ST57 .2000E+05
.2030€-04 1.161 - 1000€+06
LENGTH OF GRAINCIN) .3400
EXTERMAL DIAMETER(IN) -3060
CENTER PERF. DIAMETER(IN) .0150
OUTER PERF. DIAMETER(IN) .0150
. DIST. BETWEEN PERF. CENTERS(IN) .0803
OFFSET(IN) 0.0000
ANGLE(DEG) 0.0000
INTEGRATION STEP(MSEC) .2500
s PRINT STEP(MSEC) 1.0000
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