
~A-0182 144 REAL TIME PROGRAMS: DESIGN IMPLEMENTATION OF i/1
VALIDATION: A SURVEY(U) MARYLAND UNIV COLLEGE PARK DEPT
OF COMPUTER SCIENCE S LEVI ET AL. APR 87 CS-TR-1937

UNCLASSIFIED NSSSI4-67-K-0124 F/G 12/5 N

EEEEomhohmoEE-

ZMcu~r RESOUMgO TMS)W

-- ow qw - .-._- w- ElUw-w-zv

Q; E N51 MIl. AFZTFMOTMON F T HIP

1 PAGE
a. REPORT SCURITY CLASSIFICA A IVE MARKINGS

UNCLASSIFIED 182__144_,v_
Za. SECURITY CLASSIFICATION AU1 ... ,.,qi ,'IONAVAILAILITY OF REPORT

W/A approved for public relaease;
2b. DECLASSIFICATION /DOWNGRADING SCHEDULE distribution unlimited.

/A
4. PERFORMINGORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUM U ,

CS-TR-1837

6. NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATo€,(I oppiobl) -'3il5 0 9s

University of Maryland N/A Office of Naval Research

6c. ADDRESS (City. State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Dept. of Computer Science 800 North Quincy Street

University of Maryland Arlington, VA 22217-5000

Se. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION Oif applicable)

N00014-87-K-1/24

8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM IPRCG iECT ITASK IWORK UNIT

I ELEMENT NO. INO. NO. ACCESSION NO.

11. TITLE (Include Security Classiflcation)

Real Time Programs: Design Implementation and Validation A Survey

12. PERSONAL AUTHOR(S)
Shem-TOV Levi and Ashok K. Arawala

13a. TYPE OF REPORT '113b. TIME COVERED 14. DATE OF REPORT (YearMonth, Day) r S. PAGE COUNT
Technical I FROM _____TO ____IApril 1987 I85

16. SUPPLEMENTARY NOTATION

17. COSATI CODES I18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

-- The use of real-time systems is widely spread today, and involves very large

and sophisticated programs. In addition to the constraints imposed on
5_'regular6v~ery large programs, real-time very large programs are subjected

to stringent real-time constraints that the designer tries to meet, to satisfy,
and to validate. Those very large programs (systems) are of a very complicated
nature, and need special methodologies. This review tries to summarize
the methods, approaches, techniques and tools which are used today during
a real time system's life cycle. The review deals with three important phases

of a real time system: ge design phase, the implementation phase, and

the validation phase. &r 4 . t''-I

20. DISTRIBUTION / AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
OUNCLASSIFIEDUNLIMITED 0 SAME AS RPT. 0 OTIC USERS I LAIIED

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (include Area Code) 22=. OFFICE SYMBOL

DO FORM 1473, s4 MAi 53 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete.

UNCLASSIFIED

6 ' LNl "6'

CS-TR-1837 April 1987

REAL TIME PROGRAMS:
DESIGN IMPLEMENTATION AND VALIDATION

A Survey

Shorn-Tov Levi and Ashok K. Agrawala

Department of Computer Science
University of Maryland

Comnputer Systems and Analysis Group
College Park MD 20742

Aceson yox
NTIS QIE~j1j
J'T!C TAB
Unamaoucod
Justfltoatlo

DI tributift/

Availability Code,

Dist vi ii.

()This reesareis . sPPOrted in part by a contract from The Office of Naval Research to The
Department of Computer Science, University of Maryland.

Contract No. N00014-87-K-0241

CS-TR-837 Apil 198

4. . - . . , 6 4

I' .. <.

M742

4: CSTR-187 AprlO1qIL4

REAL~~~ TIEPOGAS

Abstract

The vas of re-timme system is widely spread today, a"d inolves very large and
sophisticaWe propane. In additie to the ceussudns imposed on Nvrveglr
very larg propuns real-tm very large propum are subjeced to stbonea
real-im coastraits tha the designer trims to moet, to saisy, a"d to Validate.
These iuy large propem (system) are of a very complicated ature, ad need
special ma -do --e.Ti review trmto summarie the methods, approaches,
techniques and tools which ar used today during a read time system's lie cycle.
The seview deas wit three importast pkase of1a read time system the design
phse the IiI Imemsatlos phase, amd the validation phase

Contents

I Imim m 3

2 D.k Mtu&~ m Read Tha me samom
2.1 Cual 5
22 Ism pemsssm eshsb. .. o.............6

2.2.1 PI / PSI....................... ... 6
2.22 5DM . o..............................7
L.2.3 Nxinpiw A-? Rau peifialm........ . .20

2.3 ps.. 3udom Ub. m 11 Doolso Mealhe................12
2.3L1 Thswdmlmal Domulupim.................... 12

.3.2 3Sdhig Dolig a Booem3ud Moel............13
2.3. isqubums of a hIu- Duoga Usehd..........1
234 DAMT....................... *,****,is
2.3. 'hu Alloa"h 3Scme fw a ftokm. s oe 35. 1

L.4 Gragh Bornd Sbuesmud Damip Meshed................230
2.4.1 Graph 3Nsd Thesoehu Moel...........20
L.4.2 Desa mA COsul Flow Gaph................. 22

L.5 Opeuadmal mind Dat 3ooed Duilg Metbods............ 23
2.5. 3voma Daooed Moel........................ 23
U..2 Dodga wih Deet Boosd ApprA e..............2U
2.3. Operahmal Approach..................... 25

2.6 rails hese Automat Modeling.................... 26
La1 i Nows Dwdiss....................... 2?
2.6.2 Thub Symcuslata wis Pdd Noes.............23
2.6.3 Tbs Aumeesmed Pesri N.M...................832

3 maalpit In A Reel TIm.s Nowf'-um 45
3.1 Giwaal................................... 45
5.2 Appmaahu................................. 46
8.3 Froma Mdlto a Pnpm....................... 46

3.3.1 Ammosesa Pewr N....................... 46
3.3.2 The Method of rauladou................... 47

3.3.3 'Jigueu 110frtnimp 47
3.3.4 Coeula 47

3.4 -1-e e at~ DbI 47
S.4.1 Makiag a Reul TimPrpe Manavealk 4a
3.4.2 OpacbwmhuI Discipline.................... 48
3.4.3 Lasguag and Symmo, Requrmeat 48
3.4.4 EDOh Level Lasguap eA PIIIceswSinig 49
U..5 lue Died hpAne §w Reall TimPopiia. 49

3.5 The Ads Prspanmlng Laagup..................... 50
3.5.1 Implhmessfg Teaddng Fac~ion 5so
3.5.2 Thu1'owluncy soPoU.......................53

4 Vaificsath said Validaton of SAW Time a ftware so
4. Gwa.....................................5so

4.2 Iheting Redi Tim Prputl of Popams...............6so
4.2.1 3yrhm* Tawag Ustbo&...................60o
4.L.2 bSh.Iual Tlhsg......................... 62

4.3 Aalsed Pu.d.............................. 6
"A. Pe Baond Meda Aaabvb..................65N

4.3.2 PleSe Sa Aamse. Meda Aaalreh............ 6
4.3.3 Theme. n""wbghebe................... 70
".34 Tbnkg Pftputle salo ls................... 73

4.3. Opermeeml Aselyeh........................ 77
4.4 Unuals"As V.aaies Ted...................... 79

4.4.1 Chuse load Alms.......................... 79
&.4.2 Ptole in Ulmiti As a Vwificatisa Tool,..........s0

2

Chapter 1

Introduction

The.emeclahohsand cost reduction of mlrcmumhas resuWte in
am boom" ss e of reel-time system in &Wid variety of &k&ds. rditional
hard w oA qlmm has beem replaced by computwlued system., which have
Provde a Mors Sexible a"d eipamia~o esrmi e. M~lu"~, industrial and

1mgem"eriend reel-elm sysaw=& aamplesof seek applicatiom are nclear
"WrAm - A~l hdustr 0" pl aW4 roMedical mltlg, dita ft-

by-nowia iesim md weponivary- ,ystMs "as h e tsuch systems has- t1 e aimbeg requ""mume Ua" becme - -w , and the reliability
eqm& fte e bae became nort dcult to achieve.

Deg.n reeltibm system is thgh wo inea of. the most complex pro-
eag actv~tes Whim building. ma l of scending complexity in design

%mg computer system 1341. ame strt with sequetial propaiag, increasing
the complet to the level of concurrent rpaIWmaman, and *may adding the
timin Sms So readh the level 49 reeltm Progamming. Combining the reli-
abwt 7 "Requfmmee amd %he complexity Involved, results in a sevrel restricted

emvfromme t 1 atrm e, a"t as a the sequeal and coacumt propain
1m reltiesytm we Impeenation dependent. A props.m that has

heom executed smcoeully whes Implemented in e emvioaent, does not
UNIONmel "tidy the cometrain of ambother envkonment. Changes is the com-

puerhardware, comu- ato metwork, oprag system or peripheral device
response time, may champ the systemo behavior to a point where it does not
satU* a particular props.'. requiremwests ay more.

Th if" vi er0e toumarise the methods, approaches, techniques and
tooke which we ed today during a real-tim sytm's iife cycle. The review
dm1. With thMe Important phase of a real-time system: the design phase, the

Impsmetatonphase, and the validation phase. (Anoahe importat phase,
the minteance is not included in th" revew). A chapter is dedicated to each

of the &aov phses

The goal of this reylw is inot to criticise the diiferent approaches which awe
smais-ed here, rather it is to highlight interesting aspects which concern the

lie-cycle of a reatime system. A strong emphasis is layed on new approaches.
Sone of the approaches are described in more details than others. Methods

* which are very widely used nowaday, awe sometimes briely mentioned, while new
(and sometimes eve immature) methods are, reviewed in depth. The reason is
certainly not the importance of the more detailed ones, but the limitations of
this review due to its nature and goals.

4

Chapter 2

Design Methods for Real
Time Programs

2.1 General

Many approaches and methods are used in designing software. This chapter
tries, to capture past ad present works which are used, in designing real-timte
software. Som commonly used methods are not reviewed here. Jackson and
Warnie design mthods are data structure oriented Methods, primarily suite
for proam level design. Both ca nethe handle the decomposIn into, mod-
ules or task woae they appropriate for real-time systems. Higher Order
Software methods use fuctional deopstobut fail to address tasking and
synchronisation Aus Thus, two majo methods are examined: a structured
design method, ad an event-based. design method. The methods are divided
further according to the modeling they enforce, and to the system statement
and analysis approaches they adopt.

The next section of this chapter deals with requirement specikation, tech-
niues and approaches. The third section descrbes structured design methods,
mainly procees based methods, ad some problematic issues concerning the ap
plication of these methods. The fourth section describes imsae that arise when
applying a praph-based design method. The fifth section compares the above
conventional methods versus the operational method which is more implemen-
tation oriented. The la section of this chapter reviews FSA (Finite State
Automata) modeling of real-time systems, mainly the Petri Nets Theory and
some augmentations applied to it.

5I

2.2 Requirement Specification Methods

A lot of software engineering research has addressed the problem of defining
complete and consistent requirements specification methodologies. In this sec-
tion, a review of two methodologie is given, along with an example of how
to implement a third methodology. The principles of these methodologies are
important to rel-time software design, a they are to other fields. Although
some methods emphasise only the documentation part of this early phae of de-
sign, other methods provide good tools for structure construction and feasibility
checks

2.2.1 PSL / PSA

The PSL (Problem Statement Language) and PSA (Problem Statement Ana-
lyser) are computer aided took [321 especially designed for requirement speci-
fication statement and documentation of information processing systems. This
tool emphasises the front end of the system for specifying the requirements, and
produces a large variety of documents describing the database for the system
specifications entered so far. The database is built by steps, and hierarchy can
be imposed. The basic structure in the system description in the OBJECT, to
which PROPERTIES can be attached with PROPERTY VALUES. The objects
are connected by RELATIONSHIPS, while both objects and relationships may
be classified with TYPES. PSL produces upon demand eight types of reports
for systm dacrip'tion:

1. System I/O Flow - The interaction between the target system and its
environment.

2. System Structure - Objects hierarchies.

3. Data Structure - Internal relationships between data objects.

4. Data Derivation - The relationships between processes and data objects.

5. System Sise and Volume.

6. System Dynamics - System behavior within time.

7. System Properties - Distinguishing remarks.

8. Project Mianagement - Project schedules etc.

In addition PSA Produces the following report types:

1. Record of modifications applied to the database.

2. Reference reports - Names, properties, dictionary.

3. Summary reports - Structure and flow.

6

4. Analysis reperks - Contents comparison, data processing interactions, pro-
cesn chai.

lfor a deign of a real-time system, this computerised tool can be used for
documenaton, but no benefits can be gained for the continuation of the design
phase, and for the verifiability of the design.

2.2.2 SEEM

SREM is a requirement engineering methodology [41, which was developed
for the Balistic Missile Defense Advanced Technology Center by TRW. The
methodology adopts the functional hierarchy requirements of MIL-STD-490, in
which each process is divided to functions, each of these further divided to sub-
functions, and so on. The hierarchy imposes validation difficulties, especially
when trying to exercise sub-sub-function through input sequences.

Seven K.y ConCepts of SRKM

1. A testable requirement must be specified in terms of data input and out-
put. The reason for this concept is that a real-time software is tested by
inputting a MESSAGE and extracting the results of its processing (an
output MESSAGE) and the content of memory.

2. Processing PATHs are sequences which do not contain loops, defined in
terms of input MESSAGEs, output MESSAGEs, processing steps, and
data utilised and produced.

3. VALIDATION POINTS are places where a test may be performed in terms
of variables measured on the PATH. Defining the testable variables on
validation points assures testability and unambiguity of the requirements.

4. R-NET is an integration of all the PATHs that proces a given type of
stimulus, into a Requirement NETwork. This is a graph model of the
computation and the fow. Five types of nodes are used in the graph:
processing step node (ALPHA), input/output interface node, and/or flow
node, selector node, and validation point node. The unidirectional arcs
represent the data flow between the nodes.

5. RSL - a formal language for specification of requirements.

6. REVS - an automated tool which speeds up and validates the require-
ments' completness and consistency.

7. Methodology STEPS - which produce intermediate products obeying eval-
uation criteria for each step.

7

Methodology Steps and Theib Products

Step 1. D-anlation.

1. Issues addressed:

" Adequacy of subsystem performance requirements (DPSPR) for
generating processing requirements.

* Early baselining of the functional requirements.
* Budgeting and scheduling the activities.

2. Activities in this step:

" RSL originating requirements entered into REVS database.
" Generation of R-NETs, DATA, ALPHAs, with traceability back

to DPSPRs.
" Analysis of consistency and completeness of the requirements.

" Generation of DPSPR problems report.
* Budgeting and scheduling further activities.

3. Products:

" DPSPR problem report.
" R-NETs.
" ALPHAs.
" DATA.
" Functional traceability.
" Plans.

Step 2. Decomposition.

1. Issues addressed:

" Preliminary definition of the performance requirements.
" The incorporation of the processing to satisfy the subsystems

constraints into the processing requirements.
2. Activities in this step:

* Identification of the form of the performance requirements.
o Specification of the data collected at validation points (software

variables).
* Recording the decisions made, to relate accuracy and timing re-

quirements back to DPSPRs.

S. Products:

o Refined RSL.
e Performance traceability.
e Validation points.

8

Step 8. Allocation.

1. Issues addressed:
" Determining the sensitivity of PATH performance to DPSPRs.
" Establishing the tradeoffs between accuracy and timing of the

different PATHs, then selecting an allocation which is not overly
restricted.

2. Activities in this step:

o After establishing the requirements of each of the PATHs, the
requirement and its test are written in RSL.

* In complicated systems a functional simulator is developed.

3. Products:

" Performance sensitivity.
" Performance statement.

" Process Performance Requirements (PPR).
" Functional simulation.

Step 4. Analytical Feasibility Demo.

1. Issues and Activities:

o Example algorithms are implemented to demonstrate that criti-
cal processing requirements can be satisfied. This is done before
attempting the design of an algorithm for the real-time software.

9 A direct check is provided by the above, the algorithms that
satisfy the PPR, in fact meet the originating requirements - the
DPSPR.

2. Products:

" Example algorithmm.
" Simulator.

Conclusion

The SREM methodology allows specifying complete and consistent requirements
to both the system and its subsystems. The R-NET graph model resembles more
advanced models of FSA, and allows better visibility of relations and testability
properties. Yet, most of the performance decisions and the structure built-up
are manual, and depends highly on the designer's skills. The use of a functional
simulator to verify performances is misleading due to common mode error (see
section 4.4.2), and to the high cost of providing it on time.

g

2.2.3 Example: A-7 Requirements Specification

Another approach for requirements specifcation is introduced in the redesign
of the avionics software of the A-7 Navy's aircraft. The method introduced
[181 is used by the Naval Research Lab and the Naval Weapon Center. The
light program which was documented is a part of the Navigation and Weapon
Delivery System of the aircraft. The program has high accuracy requirements
and stringent real-time constraints. It receives input data from the aircraft
masors and from operational switch panels, and controls many devices (e.g. the

Inertial Measurement System, the Head-Up display, the Doppler, Barometer
etc.). The program's main tasks are to calculate the navigation information
and to control the weapon delivery.

Rq eent Document Objectives

The objectives of a document that integrates the requirements of a software
system, as interpreted by Parnas et &l, are listed below.

1. Specify external behavior only, without implying a particular implemen-
tation.

2. Specify constraints on the implementation, especially the details of hard-
ware interfaces (usually the case with computer embedded systems).

3. Installing changes should be easy.

4. Ability to serve as a reference tooL

5. Record forethought about the life cycle of the system.

6. Characterise acceptable response to undesired events.

Requirements Document Design Principles

1. State questions before trying to answer them.

2. Separate concerns: organise the document such that any project member
could concentrate on a well-defined set of questions.

3. Formality should be used as much as possible, in order to obtain precision,
consistency, and completenm.

Techniques for Describing Hardware Interfaces

e Organastion of Data Items: A data item is a unit concerning an input or
an output that changes value independently of other inputs or outputs.

10

" Symbolic Nausew (for Dat Itm and Values): Data item. contain two
kinds of information: arbitrary details and sentil characteristics. o-
set" bdfrmation must be expessed in a way that would allow using it
from the rest of the document, without referencing the arbitrary details.

" Teimpste.for Voten Descriptions: Describing each data item in ad hoc
fashion produces inonsistence between documents. The existence of
templates provides the following features: values description is easier,
there is a consistency between documents, and standards of completensse
may be applied uniformly to all items of the same type.

* Input Deat Items Described as Resources: The input data items are de-
scned as if using an inventory of available resources to solve the problem.
This description is independent of software use.

" output Date Items Described as Effect: Most of the output data items
ae described a effects on external hardware.

Tchniques foe Descrbing Software Puictions

" Organizin by Functions: Functional hierarchy is adopted as for MIL-
STD-490. Two classes of software functions are distinguished: periodic
fuctns and sporadic (on-demand) functions. The distinction is usef
in cam where different performance and timing constraints are imposed
for each.

" Output V lues a Functions of Condition. and Zeents: A condition is a
predicate that characterizes some aspect of the system for a measurable
period of time. An event occurs when a condition changes its truth-value.
Hence, events are associated with instants of time, whereas conditions are
with time intervals. Events designate start and stop of periodic functions,
and they trigger sporadic functions.

" Consistent Notation for Operating Conditions: Maintaining a consistent
notation ha crucial importance in requirements document. The A-7 en-
ample provides a notational standard in which conditions, events and text
macroe are well defined and distinguished.

" U, Mod". to Organie and Simplify: Modes (L*. classes of system
states) help in simplifying and organizing the hierarchical structure, by in-
troducing a higher abstraction level. Furthermore, a transition list which
includes entries from one mode to another, allows detection of illegal tran-
sitions as well as serving as a control tool.

" Special Tables for Precision and Completeness: The A-7 document uses
two special tables to express information precisely and completely. A
condition table is used to define an output value upon a specified active

11

mode and a comditie. shat occurs within sh" mode. As eves t"blesow
whom a sporadic functics should be performed, or whom a periodic fuaction
should, be isarted or stopped, with respect so the cumatl active mode.

Lint of Undesired Uwante

A claosikatics of undesired events, a Oive by Peuae, is sotched below. As
smoationod before, a acceptale revs- -e to amy of these occucasoes should be
speifed. and net loft to tho propammeor to Invest

1Resourc failume

*Temporary.

*PUMaMent

2. Incorrect input data

*Detected by exmmning input 0.17.

*Deteted by comparisn with imernag data.
e Detected by amor reaHing he smade a mistabe.

* Detected by wo from bincec output.

3. Incorrect iateual data

o Detected by internal inconsistency.

o Detected by coompersom wit input data.
o Detected by -se from incorrect ouput

2.3 Process Based Structured Design Methods

2.3.1 Theoretical Description

A theoretical exanat~o of the prono1m based, smthods is gives ian21

Types of Proem Baseddtdlo s

Mok distinguishes tO types af design mtolgiIn applying the traditional
process based de*nmethod:

1. The edite proceso methodology: Zach process is assumed to have a
dedicated processor (se ams (34). The objective of this approach is to
have a prove bounded exectios time, while assuring properties of no.
deadlock, fairness, etc. Thiig constraints are therefore left to be solved
by the scheduling straegy This solution does not address imnes such

- comun~ct~onbottle-neck, which then has to be addressed through

12

Mmsec edpmuu om. mie h pw l but des aAp

L. Ameee .AS i0 ae bmsloy NeA u e weve..me to AMa. rvbuwem

dons. A possbl sups d piuily discipla. isexped in doe ahedulasg
(.* Swl Deedh AillusM). A dfifiulby t"e ims is thet wham
peseuU nor voiss mulv wMt me a pir b-wdg - d@o reques tim,
Ahm asi &A ban"bl sofo dwn hib iWf cm be natbW by any se
-11 em em~dig alwi~

De 51-~a Of tbe Theietlsdw Meds

ursn he as igb* uhelmto barhd meltoms emyfremgm

* De~mpsls of d e.mw alsa e mr

* Dht~41 dh pnesmhg sailhg dheiplMe

* Adesqvweyd se- minme .lmaeeim.

Is wrde to aelpa.sh dwr syse avisr Usk invdue dh Ilourg moel:

" 14 pbetheead f " -preem intheyem

" Lot At. beth *anl sou ofN- ng sysaptem

" MW UPuMf..

"*& le ie rd b a wi*l (84, pd. dg), whom 46 doeme the eampstawou
Sime d the pwem, p, domoe dhe period, mmd 41 dites the deadlisie.

" Vi ed pg 1.

Aisheug a spermdle proeU hbe mepeek perit sa pi stead. for the maximal
bequeniey is wbik it in &Bowed to appear.

2.3.2 Sceu~gUsing a Process Based Model

-eeul -abmdi
A Pe r ceadbticm for aeheduflug is L# tha the - @Al ui fattenw d the

umee s Is alet the aumber d available pr~eus b othe wordw

LEdd/pi) < oefavrAlpoes.

The sclhedulkmg in rsel-ime sawkwumet requirve &hat all the ceawalot of the-a~ amd the -prdcp, pn. -a we otinus satdled. The mo geo-
wal uedulla coeuctv Imelue tWe uchedulem an of-liae echeduaer which

13

&Saies ~oiy, mmd a raw4m sehodale, whic is completely am Uime sed
Ober tdo policy dictated by Owe .6-MAe For theoretical anayb purposes, Wot
dalom a "claisemse schadslar its spv iodA ighsk id cam predict the

The mask oiosm schesdaling algorithm is th eaolh deadline algorth.
Tb. scheduler ooms to emblt the proc, - when dam is the swums
to hep.. A better approach is tosa a achdudllg policy which chose the,
proeins whos ainma delaplg pentiify Is th e lls This approach is called
tho 4"4s slak darithm, wheresdo slact of aproc-ses--al Uime& in defed as
the maa im.dn which a rem4imo schesdulor ca delay it, without disobeylag
She usinsrabe.

dhkMA, 9) - ,Maldt - t - GOs),O0)

MA wa pr th ssil thearems esmcueralng a slugle pocesso schoduler.

9 The b"s slack algorithm cam be useds, a totally em-liae optimal num-ime
schedullr vaide do. asnres, that she scheduler cam choose to preempt
a prooem, by OW other ready prooms, as OW isteal de ussames

* Where there ar mutal .mdlulom cometuuatisI is impossible to lad a
toal sehevpima ru ms scheduler

* Lot M - MUM be an hmawefa v -P sesmodel, al s q=dd- ad
bhe smmimial slack of ack priiess. Replacevuway -i (ag, 1%) e M,

N JP (wh"c is crashed by tie replacema) cam be succesflly scheduled.
thm M cam be scheduled without a prkice knowledge of the requsttimes
of Af,

ha a mus~Rocgno smvlreme, (probably ualg a remdervoues mechanism to
syehems hetoe kcm aat) the earliest deadlia. algorithm may faiL.
MAb saggests Is cam be fixsd by revisiag the deadl dywamicafly, as Moowv~

1. Sark schsdulmg blocIs gemeralo a IOLI in revers topolnoical order.

2. Isidalsetdo el of the kth bstc of Z o (k -)Pd+ A,

S. Revie the deadlises in nweve toolgial order by

4 Min(4, (4"- el, k- > W)

where h al be an scheduliag blacks.

14

This modification allows the following theorem.:

N i a fesible schedule exist@ for an instance of model, restricted by rea-
deinvous constraints, Uhm it can be schedule by the earliest deadline al-
gorithm, mi~ied to schedule the ready process which isn't bloke by a
ndsevons, and has the narest dynamic deadline.

2.3.3 Requirement of a Structured Deuign Method

A structured design method decomposes its modules hierarchically. Whten ap
plied to a reel-time system, the method is required to provide the following

I. Def-flow-.rsam ds~igu. A structured design consist of two maim com,-
pomeufte (1) Two sets of criteria, coAsion and covphng. (2) Top down
decomposition of a system into modules. The objectiv, of the design is
to produce a system in which modules have high cohesion and low cou-
p11mg. In order to examine these properties, data-low approach is appro-
priase 1221, showing the functional modules (horowm), the data flow
between the., and the data starm acceused by them Furthermoce, real-
time sysums as usually data Saw oriented. Two design approaches may
be distinguished:

" 5=rnnw Cestered Dswo, in which the us* sdreams of data are
identified s obey low, transformed from exterad input to exteral

" 2Nunssafts Centered Design, applicable, where the data low con-
als mainly ad control-lformalem, La.., data which is passed to a
bramoform initiat an action (or a sequence) based on the icmn
data.

2. 1Teako 5~shreuwsimL Two kinds are mostly used:

" Mutual endlusion : shared data can be coacumeatly accssed by two
or mere, sasi, while the acress in costrolled by maeas of semaphores.

" CNNs simulation: on. task is awaiting a signal fromn another in order
to 1roceed.

8. IbA om.mndsatm Meae comnication is the meet commonly
used method. Tassk - ~ can be closoly coupled (a response.i
expoee In Order to continue), or loosely coupled (with the ass of messege
queess). A message aessuser that finds an empy queu, waits until a
nossa" --I*wm Thereare three wage to implement the communication:

*Using the operating system primitives.
*Using a language facilkIt 121.

Is

*Using a module which provides the servie (btsel using operating
sistem primitives, ms implamemiaed in MASCOT channels).

4. ~Womm~om N~iat C...seA This comeeps (by Pamas) is powuin
bailig to a highly modular structure. The idea is that each bey is known
omIy to me smodule, heme the shared data is hep to malmum. Modules
are therers -ae self comtalaud (thus -mr modilabls ad mmore maim-
Win"hl). The coa of this approach is in the overhed in acceusing a data
sucture via a fusatiom rather them diretly

5- BSat Depsaemv6 Most approaches provide depeadeacy of taking an
action on imput data. Somme (especially found in transaction centered ap-
preah Implememagloms) faW to &lDow dependency of taking ani action on
the system's ste. A structured design method should incorporate state
despendeaicy as well ma data dependeacy.

2.3.4 DAR"S
DAM is a Design Approach lot Reelkime Systemse, prooe in 1161 as an
cmsm of the older structured design metods,* to include tasb structuriag as
well s tes blateme delnbisls. DARTS was developed by Gaimal Daectric,
and was applied to two prJec6LE a robot ourofler mid a vi. system Whem,
the paper was writtm the robot wes already inaths pst"o phase, and the
appcalms 4(the method wes onsidered sauessduL DARTS starts with the

equIf -me specicatles, and Ihe At phase Is amalsAng the data low.

Data Flowr Analpbi

Amalyms of the data low thseo the system yield the J-eriato of the
maje funme tha mev uesded. Data Am diagram am produced, sad do.
composed to isent the nao* subsysteim end the majot compemeats of each
subsysem. The data low -ap produced omifts of~ Wamsiforms (represented
by bubbles), data depos11r-es (represented as data smume). and data Sow be.
tWesm Wansirms (repreented by directe).

Cemcsr-m prprte P f the proviously Wistlle trawrm can be der~ve
hom the daftaw graph, winag the asuebremove nature of the transferm
within the system a the muds esaslieratlsm of the iomellspoes h
afterla used is DARTS hr deciding whether a tramism should be a separate
took. or pope with Other Womuaormse lateme task, an given hLsm.

1 NW~q*&~ lollh dupeemd ea ljip=*ffd. she bMd me hes h mphel

1. Depedecyms /:Nh speed idictatedy alow /dne, ten a

2. Time. Critical Fumctions: Nfa high priority is distinguished for a particular
fuMActO, the a PSerM task.

S. CoauttcalRqiremeats: Nf a function is identified. to have intensive
comuttiosthem a separate task - to a&lo a work mosed of spare cycles

4. Functional Cohesion: Nf functions awe found to be closely related, then
grouped mato ome task, to reduce system overhead. ihis a task modules
cam be dielinguished for fantima cohesion at the module leveL

S. Temporal Cohesion: if factioms are found to be triggered by the same
stimulus, them grouped into a task, distinguished as diferatm modules
Within the task.

6. Peridi Ixeutim. N a traadlorin meeds to be emecuted periodically, them
. Separate task activated at regular time latervals.

Tcm - T~k Ckalm Module. A typica TCM costalms a data. struc
Mrs, ad em procedure to "ha sowctu. The assem provedur. crn
Web 411041 she mntaa em rn am the, fycrato etures, which

epeOftaF -g ssm, pimves Te TcM alw a ms on the tubk
tha -b-. Wt Two &Now&a types of TCM are provided by DARTS:

.MCM - Message Ommmictle Mdsupporte both cuIey s-b ad lesely coupled InK the cuse of loosely Cos.-
ple mmc m the neaneo que e bwlede binary sapheres
for mutual incluin. In clsely coupled mscto, the queu

wiss Isue go ess.

2.KM - Information Nfida 5 Module: Used mainly a cases of shared
data. The M defaes both the das& strctue it hides ad the c

peeueto kt.

T-TSM& ft UyIeL-%- Use Module. Typically a TSM has a mature of
a wnpmrvwy module at a tUsk (could be the *Main* module which has
she - atweu). The TSM waes symchreoesat evets when me actual
Infomatim has to be inebamsd. Im DARTS he rimitives fer signaling
so ovoid, adfow awaItm aemis, we provide by the peratfng system.

W Inb "g inawy. Im DARTS she tasbs btfaces we implemested as
MOMse

1. A data low between &asks is interpreted as one of the following-

e A loosely coupled miessages queue, handled by an MCM.
* A closely coupled nmsage/reply, handled by an MOM.
* An ovent signal, if only occurance notifiation. is required.

2. A shared datastoeis handled by a& Ild.
3. A task that waits for a event, smay need a TSM.

Ihak Desiva

Stractured Design. Each individual task represents a sequential propam.
The design ot the task starts with this Am aalysi at the task level,
followed by applyin one ot the two possible structured design approaches
stated above, According to the nature of the task, either a transform
centered design approach or a transaction centered design approach is

applid.

State dpVm=11-- DARTS use a State Transiton Manager (STM), designed
as a TCM of the IBM typ. The state tranition table is maintained by this
moodule, hididen from the calling task. Wile responding to a transition
request, the requiest valiit is chechad by the accoes procedure, and when
confirmed the module musetes the transition. In order to mssr the
atenilely of the transition eeuton, sel ans to achieve fast trasiios,
m appach, is meomns by the matho in J18G. The W6ea is to inces

the task's pririty when 8Th is stered, and retore the old priority when
the STU is aitd.

2.3.5 Task Allocation Scheme for' a Real-time System
As mentioned above, nmn design mehods fail to address dhe task construction,
and th" e an" suitable for designing weak-imse systesm. That is the reason for
Wnalding the following scheme 1251 in this review. The task allocation schme

was developed by TRW, and was applied successully in the BMD (Ballistic
Missile Defense) projec&

Post-to-Port Nseutlom Thue

Software tasks in time-critical reel-time system are usnally divded into several
threads, "A each o thetheads mus sati* an -eni-tm constraint, de-
noted as the port-to-port processing timec In the above applicasion, 23 tasks

Wesdivided into 7 threads. Enmscution tim of a thread cosits of four compe-

I. Enecution time of the task on the processor. which depends on the task
sise and the p rcssor MI0s rate.

S ia.(teki)/MIPa rate G(the processor.

2. The Network and operating systema overhead (NO), which in used for con-
currency contol integrity checking, recovery check-point update, etc.

3. ntsrcsocom ication (IPg, which is higher if comuiate
reide an diferent processomn.

4. Waiting time (W2 which is consumsed when the task wakits the proces
am enablsment queue. This figur depenids highly on the euses and number
of tasks, the processor load, a"d the number of enablements. (bapecially
if large tasks are assigned to the same processor.)

Tbard09

r - (Ai)+ NO +IPC +WT.

For a givens netork, NO and the anber of enablementa is relatively a
costant. Roome, in order to reduce S,- the following step should be adopted:

" Reduce WT- large task shouldi be assigned to diferent processor.

" Reduce IPC: tasks with high IPC cost with each other should be assigned
to the sameru prcssr

" Redome Rd: large tasks should be assigned to p r osor with higher MIPs

Allocation Model

The above considerations yield the following sequence of activities in designing
an allocation scheme:

aA sk of constraint. is determined, to reduce the waiting time and the task
eaatoa tises.

*A cost function tAt measures the EPC cost is formulated.

aAn algorithm tha marches for the allocation with the mianum total cost
in determnd.

The above activitiss wre performed in the following method:

1. Information is entered to the model aboat the tasks (sines, exeution fre
quacy of ach task, number df data units exchanged between each pair
df tasks) ad the network (Inter-processor distance, constraints).

2. Constraints are impoed on the model:

19

" Task prelereace matrix. Certain tasks (out of mn) can be executed
only cm specifi processors (out of a). Them restrictions are formu-
lated as an m x n matrix of We and l's. X. -=0 means task i can't
be assigned to processor j. X,, - 1 means no restriction on task i
with respect to processor j.

" Task exclusive matrix- Defines mutually exclusive tasks, and ex-
prese as an m x m matrix. X44j - 0 means no constraint between
task iand task j. Xj4j - Ilmeans task iand task jcan not be assigned
to the sme processor.

3. The cost function is formulated. It depends on the following parameters:

" Task coupling factors cy,,: number of data units trandfeed from task
j to task k.

" inter-processor distance 4,,: the cost of a transfer of one data unit
firom q to p.

" tasks quadratic assignment formulation: (I,, = 1) means task j
assigned to processor p.

2.4 Graph Based Structured Design Method
A graph based design method uses techniqus taken firom graph theory in order
to analyse and construct the system. The main difference between this method
to the structure method is that all data dependencies are explicitly expressed.
This method is superior to the structuredl method in its capability to identify
operations on data which are common to many timing constraints.

2.4.1 Graph Based Theoretical Model

hMok (in 1261) provides a theoretical examination of the graph based design
approach, and the problems which arise when applying a scheduling algorithm
based on this model.

Model Deaciption

A graph baned model M is an ordered pair (G, T), whene G i the communication
graph o(the system, and Tis aset oftimng constraints that satisfies T =
{T,)u(2'.). The subsets 2', and T, are the periodic and asynchronous (sporadic)
constraints respectively. The communication graph G = (V, E, Wv) in a di.
graph which may contain cycles, in which V in a set of vertices, E is a set of
edges (directed arcs), and Wu. denotes a function that assigns a non-negative
weight to each nodsein V. Each timing constraint in Tis represented by a
triple (C, p, d), where C is a timing constraint acyclic graph (compatible with

20

0), ad p, d represent the periodic and. deadline constraint, respectively. In the
cas of asynchronous (sporadic) constraint, p represents the maximal occurance

The timing constraints graph expresses the precedence relations between
comptatinalevaets thaust be kept in, order to satisfy the timing con-

straints. xEmcaticn of a functional element is denoted by a node, and data
tinuimitted in the communication graph (G) by a directed amc The competa-
tims time of a timing cousiraint (C, p, 4) is obtained by asuming the weights of
aith* nodes In C. Nf (C, p, d) is activated at time 9, then C must be exeuted
at (t, t+ d).

C is said to be executed in a time interva L, Nf a subst S of the (mnufti)set
of the functional elements of1C was executed in L and form a partial order
suc that-

1. There exis a bijective mapping between the functional elements in S ad
C.

2. Under this mapping Ike partial order of S is consistent with the acyclic
graph C.

S. If the functional elements are distributed, and there exiss a edge us - v
then an exection of10 must include a transmission of the latest output
of u to 9, before v is executeod in L.

Pdiplned Order Rap~wst

A pip~ie order is interpreted by Mok am.

1. Nf two exections of a functional element have two distinct start-times,
then the one with the earliest start-time must also finish first.

2. No meesagovoertaking (desaeecing) is &awed.

Meisting c as the execution time of C, allows mapping T=(C, p, d) to =*

(c, p, 4). Then, cresting a monitor far each functional element of C that occurs
in more than one timing constraint, allows imposing the pipelined order require.
ment. Decomposition of each functional element into subelements, whose sum
of execution times is approximately the same as those of the functional element,
is as a matter of fact software pipelining. This pipelining improves the efficiency
by taking advantage of operations that are, common to many timing constraints.

Latency and Static Schedvug

Mok defines somne metrics that are needed for defining and analysing a static
scheduler. First, an execution trace of a processor is defined as a mapping
from the non-negative numbers to the se of all the functional elements in G
and the idle. We denotoe this mapping an P. Recall that the graph based

21

model M = (G, T). For example: F(i) = u if the functional element u in G is
executed in the time interval (i,i + 1), and F(i) =idle if the processor idles in
(i,i + 1). Second, an execution trace is said to have latency k with respect to
a timing constraint, if the execution trace contains an execution of the timing
constraint in any time interval of length greater or equal to k time units. A
static schedule is defined as a finite list Y of symbols from the set of vertices
of G and the idle. The latency of a static schedule is defined with respect to a
round-robin generated schedule. Y has a latency of k time units with respect
to the constraint (C, p, d) IFF the execution trace generated by a round-robin
scheduler, repeating Y ad infinitum, has a latency of k. In order that a static
scheduler would be feasible with respect to a set of asynchronous constraints
T., it should have a latency d with respect to every (C, p, d) in T.. Mok proves
the following properties for a graph based model (G, T):

" The existence of a feasible static schedule with respect to T in the cases
where a latency d exists for every (C, p, d) in T.

" Proving the existence of a feasible static schedules when the above re-
quirement is not satisfied, is NP hard even for relatively simple cases.
Only application of additional constraints on relations between computa-
tion times and deadlines allows proving the existence of a feasible static
schedule.

2.4.2 Data and Control Flow Graphs

A graph modeling technique which is commonly used is the Data Flow Graph
[221, and its description and usage possibilities are give below.A bi-digraph is
used to model the system. A control flow graph describes the structural behavior
of the program and the control flow during execution, while a data flow graph
(corresponding to each execution sequence) describes the data behavior during
this execution.

Data Flow Graph Model Description

In the control graph: the vertices represent control points, and the directed
arcs represent actiotis or control transitions. In the data flow graph: there are
two types of vertic s - data item, and operations. The vertices are connected
by directed arcs describing the data flow. A data flow graph corresponds to
an execution sequence S = (a, .., a.) in the control flow graph, by attaching
to each arc aj a mapping of input variables (XI, .., X,) into output variables
(Y,, .. , Y,). This functional relation is the vertex of type *operation' which
appears in the graph. The graph, which may be very large in case of a complex
program, may be reduced by means of abstraction levels, merging data items
to vectors, and sequential actions into control segments.

22

Usage of Data Flow Graph

This graph may be used to both demonstrate structural properties and verify
some performance ones.

o Independent data items may be detected, and point to the distributed
implementation that requires less communication traffic. The problem
becomes a partitioning problem which requires that the number of arc-
cuts is minimised.

o Each execution sequence with its corresponding data fRow graph encoun-
ten all the information needed for numerical error-bound analysis.

2.5 Operational and Event Based Design Meth-
ods

An event based design method describes the system as a mechanism which
responds to events fed to it from the external environment. It was already
mentioned in this review that a real time system has high dependency on the
implementation of the design. The main difference between the event based
approaches is to what extent the design is separated from the implementation.

2.5.1 Event Based Model

Event based model of a system 19J, separates the systems's properties into two
major categories: behasior which mainly concerns the external view of the sys-
tem, and structvre which reflects the internal view of the syitem. Proving the
correctness of a system is translated to a consistancy check between the behavior
and the structure. Orthogonality between properties allows verification of each
independently, and thereby avoids 'exponential state explosione when coming
to derive test sets.

Description

The model is constructed from events and their relations:

1. An event is an instantaneous (takes sero time) atomic (happens completely
or not at all) state transition in the system's computation history.

2. Time orderin of events is achieved with the precede (--.) relation, which
is a partial ordering found also in [241. Event el preceds event e2(el -.
c2) if:

* e1, e2 are events at the same process (an autonomous computation
node, having its own local clock) AND el comes before c2, OR

23

* el, e2 are events at different processes, AND el is a send message
event, AND s2 is a receie event of the very same message.

This partial ordering ensures that el - e2 implies that s1 happens before
s2 by any measure of time. (It is not IFF!). The ordering is transitive,
irreflexive and anti-symmetric.

3. Cauality ordering is achieved with the enable (=) relation, which is
also a partial ordering, and is defined as follows:

* Event el enables event e2(el =-* e2) IFF the ezstence of event el

will case occursace of event e2 in the future.

This ordering is also transitive, irreflexive and anti-symmetric.

4. Domains are used to ease the specification procedures. Three of them are
used to classify the events: the system, the environment, and interface
ports. The main idea is to construct the specifications in a scheme, where
the system and its environment interact with each other using message
communications that are exchanged via unidirectional interface ports.
In-ports are used to enter messages from the environment to the system,
and out-ports are used for the opposite direction. In every port a total
ordering of events is imposed by assigning a distinct ordinal number to
each interface event.

2.5.2 Design with Event Based Approach

The system specification is entered as a set of axioms, applying top down ap-
proach. The behavior specification is done using EBS language, which is based
on the event concept and first order logic. The behavior (external view) is spec-
ified first, and then it is decomposed into a design structure (i.e. the internal
view). Finally, the model is verified with a consistency proof, to assure that the
structure satisfies the behavior requirements. The decomposition process uses
three construct types to describe the design structure: the sub-system, the link,
and the interface-definition. The objective is to decompose the design structure
such that sub-systems communicate with each other through uni-directional
links, and the communication with the environment is done through the inter-
face definitions. The constructs are specified as follows:

A sub-system: A set of events, a subset of the system events set. The com-
putation is defined by the behavior specification.

A ink: A connection between an out-port of the subsystem to an in-port of an-
other subsystem; as in 'connect(X,Y)==Z*, where Z is a link connecting
out-port X to in-port Y.

24

-I

An interfacodet- A definition o a sub-sysem's port as a system's port; as in
X--Y' where a sub-system's port X is the system's port Y. Both ports

should have the same direction.

An example of a design structure can be:

Def System (1 : in - port; 0 : out - port);
Structure

Sub system 8S(I in - port; 00: out - port);
Behavior

end Behavior;,
Sub ystem

Network
connect(X, Y) ==z;

end Network;
interface

end Interface;
end Structure;

end System;

2.5.3 Operational Approach

The PAISLey project uses a new approach in real time systems design, in which
the idea of an implementation dependency is expressed in a strategy called
*p.,wtionusl &"roachk (351.

Principle

The main idea is that external behavior and internal structure may interleave.
In order to maintain generality, the operational approach separates the problem-
oriented structure of the operational specifications from pure implementation
considerations. The operational specifications themselves are written in an op-
erational specification language, which is ezecutable and prevents ambiguities.
The executability feature of the specification provides a tool for early results ex-
amination, and can be regarded as a functional simulator that corresponds to the
specifications constraints. Automated translation (from specification statement
to an implementation code) is highly feasible, since problem-oriented internal
constraints are taken into account. This transformational implementation would
therefore guarantee correctness of the produced code. P. Zave compares the op-
erational approach with the conventional approach in (351. A summary of this
comparison is given below.

25

Oparsti..a VatmueCnwite Dusgn Apprwoach

*Advatages of the cmmta paroach:

1. The iaflrimel specilcadon, written in English or arnother natural law-
guage, can be understood by everyome.

2. Oralalmlbeaselts (like nstoawa) we easily obtaimed.

e Advantages of the operational approach

1. The specifiations wre formal and zos -ambiaous.
2. A rapid prototypiag is available auoatically.
3. Vaikatios is easy due to fixed tramformaniaalipaetai.
4. The realization phase is highly automastable.
5. The comlfict between eflciency aspects sad mntenance aspects is a

me*r coWAce

* Weaknesses of the conventional approach:

1. Although known from the very beginning, realisatiou constraints wre
ignored throughiout the design phase. l'urthsmore, the ducts of the
system structure on the behavioral properties wre igmored

2. The top~down approach imsposes dificultiss a specifying loks whose
content is igeored, ad increases the risks and didicultiss in decom-
p.51mg sub-systems.

* Weakasses of the operational approach:

1. A danger of too-early design decisions is presented.
2. Executing the specifications is probable not to have any performance

properties.
3. The traasformational implementation contains all the realisation corn-

staiats and therefore is no& unique but rather implementation depem-
dent. Each individual trunsformation should therefore be carefully
proved, prior to relying om it as assurance o(the realisation corrct-
Rw.

2.6 Finite State Automata Modeling
A large variety of Lanite-state machines are used to specify and analyse com-
current processes (e.g. Petri mets, SPECIAL, etc.). Petri sets [311 we found
eaptiomafly suitable for cases that involve designing and modeling of systems
in which concurrent processing considerations and dynamic sequential depen-
dencies exist. The majo characteristics of Petri mots, in comparison to other
models, we:

26

,* 'w w- I

-ws we wndeundhm at eMA ehur, Pw no thiemy aoe now-
bshwhlmrg Partial orde of oemcuwemPy

" Fewi no modeb a&W durlptio of.a smoem in dM urs I.ob of ab.
esesewkbhoo cbmegi th loagnap aed in the moiming.

* hiopsle of the @robm as rp In Able by donw mom ahe do ro
bern b misLd Rma, o i PMe& -o be hulk uing the sm
modbeds md fr she qam m" , --- i

The ahin weaus~ pullelerl empbeebed whim amalpuig bleckig

2AI61 abi NO"e Dedaitlm
A PoWsim debed [III asOe ugh < P, T, Pr e, Me >, whoms

* Ti(pt,..i.) aitasof mlase.e

e* roi ha mppog rx P--o sU.

* Post hamappig PXT- ..

o A. itsh dw batial omwm of seLt The smel i smii as solos
eMpey 0,o - 3- plasm.

A widu Mais is glees in 1311, where maia copeiW~ cn be sodgned
to plaos, end waighis can be amged wo arm (providing a insne fur ceasrolling
she Arsg by thembel). In "i review, sUl camsn we ~Med toea unity weis.

A commm grapi notatio, ned in Paiso ne tsm"ao is to demo..
ploom by citeles, usnitou by hu, a"d marking by doew Pro A POet we
deoed a be Wcted arc.

An mutloss of the Puwi nad is done by changing the mring of the
na" via a Arim# p No-m, whic is carried out by the Wemeiiom. A wra@muio
is saabisd to in if is Pr* f (ale. called -iapat place.3) is marbed, i.e. &11
the members of is. pro met ove esuh marked by aM Isee coo token. The &mng
wassho the marking fMom the Pre to the Poet a". The Aing bas thre mwjo

1. It is omeMoer - A trmelitiou which is enabled is na" compelled to &be1 yet
is may &* only it %is enabled.

2. It imieoo m - Aig taboo e ose.

Sm in as mo amftepove wees.

an dhe e&uM 4110 d Or SO 4 &11 sh wabe plaed, dow not occur-

Dwe t e abs.. prqiuiem when wo enablud tsitioneme b a Place is their
PMgo ouF oe wo am. Selection, of theam &Wa Ame in cue a"t arbitruuily.

2AL2 Tmk Uy3F saaIon with POWi Noe
A eek cas be dd1med to ke m. he states with respect to a Wamchraiimg

1. It a be i& or bimdlm to the4 eMchreaimimg Mechaaism.

2. It cam be maiii" as a -yshei. . po-

3. It cam be sesine, or usig a - ows P'Shr eymchromisatiem.

Whim nedeing a MAc wit a Pen we, the Wmuition deplete the active Part
of &thwitc. This ppuy i very bed for desuffimg timing Properties, mac
a weesm is asmed to he Isasam .N eto nord Whom the tsik is
amblem, he smet is She met is umdeud. The cemdSie for aieorig the active
mm"t a g i se by she places.

Almme 1111t Wham MAc T, (Figure 2-1) terminmates, teehe Ts and T3 we
esvase eemcinveely. E1S, to 4a the sYmawoabtauoa point (almo

cawu m"aamo).
Yes, ifa "ae bas a ipe Oudom, a Opleefor the active Pont 44 the took

wmbe j ased for T4 irew 2.2.

Iu sme cwee of stwo Procem--skaring the sme tek, partial Order i a ucis",
bat whem mutuad exclusia n jawived, total order a a must. The mota for

teli and partial order, using a Pemi not model, is emphaedeed im Figure 2.3.

1. Totl e dmer: p, meem a structural cemlict between 91 and 9-j Thie coa-
fis im effective im the can that pa, p2 and p2 wa marbed by ome toke.
esoh Whem 91 and 92 ma executed om dilereat procaems, p, repreemtem a
symbremnauia variable, which mm be protected by a mutual excleo

2. Perfief Order: Wam a mead arie hor a -ycraeto variable which
imsplemoaee a partial order, is cam be rep-e1ute by a place whic hos a
0101g1e epesraleaeA multiple iiau-tramekitias. In Figure 2.3 the
piae p4 represeate such a variable. Both ts ead 94 caa increase ite value
(by Aiag tobeme into pN), but only eme cam decreas is value (in tkie cam
represented by ta).

28

&~w.21: Ashas dqpAft" by wamdthmm

Ts T

Pigur. 2.2: A Uw& wii rnkipk xi.

29

9
AA~

TOTAL PAWMIL

p '4

Pigwe 2.3: TsaW ad pwuha awder coslicts

~sPmedmmw-Cm - [Ill. I. Phus. consmiff the siaCbfoaiwf
Mmo uo m er, ow coem sad ais abouadsd balmr (ro
as I and 3 in Figa .). The tob. ea ema pp. psaw the
samber of bee sima ia Mwe budi. Pfodusiem begbaaag is rape.
smaed by a bhg l fs, mied a ommampaism beglmig is ropomamed
by a bhgd s. 3bes abt &so oplof Wamisbamcoac,
a pait(order is RWA

2. now .ounfde the apamsreaisims l two produows, ems cemme
amd aa-houaded buiS, ms Vipre 2.4: 4 S. 8 wed S 2 iacomaic
-m POW. eae, a MwA .ashua mechamim W smeaey, Mad
it ess is gobag to be high ia cooe the producesrsd a dileress

~eos~s Osshes~er ead sh ,plamms"Umo of the place p.,
Wins a. prolmim, eia. is is a peftwo order.

Notatkm muk-pes Mman srmor

A comumas ip -~ai of a eycraiaamechaaism ma a maiti-proceor
mafom s by aiag priaiivu s so" sad wost Appali" this aprvach

dbwe*l ber the ast, ress a villaie of the saims-Iss iag uidkvinibility rule.
Tis proAle caa be solve (1111) by gathering the whole echaiai mocil-
ama Moo. ee .posc kash. Each of the oahe tashs tw ati td o syschroais
wM h msher mead@ a eyamsesisaslom reqwm (accompams by tbhe iisesisy of
the wasidsls shm hasto be &red) to the snchrosisur-tak. The eynchkaier
coidr sh -- &e ask as a dataaee &ad reacts to receiviag a request by searching
the appropriate Wmo, sad whom Gading a eabled ome by controllig the
Gim6 emcutis. This casalised eolusio has somes advantages:

30

P.m.

PP

pr..m .2 P,,c -1 bufr Procs -3
pwodu-2 Pvtduco-i Conama

row* . Pmw/cmwwmaw mulhipnricmwab ode

31

e A glebalvimeofhebe s b bamd.

* The -j, ' --es pire in douIvd *diestl frm the am.

* Changes (Wbf ;.Sed) -v saily 40e, am an the pmpa" a,.
hoad Isome apecdc plaea,

lmplamshg Se symcbremkiasa mochiaim a difeem" i an heCase Where par-
51W16,4w is euciso, frem the cam whamn a total order is mecessary. In (IIll the

dilammwe duacibed am kiloas.

PoW~e Order b a ndms The example givam for the sigle-prodacer eagle.
coerner omS daS cloely "a eekh d te transitionsa ts &ad te cam be
aplk we tors pate. The qaig a descred am F~gu 2.5.
Whem syumceiae.I Sta t, is eeds a amage to syschraminer-2, which
.w r , I - mapw u, req" to be ts. T*sae appoach is applied
to , adSuanh is of a iemhemolm ham in
doe -o of pardwa Qrde.

Tota Order In rnemin Whamapplyimsa S~alwedad ymchaaamAiammach-
sama gimal ae mh lsni - bsup Al She ,scaiaoe, parte. Is

erd e swv- Sh o h symhcblotiam verables ame mu~afy ncludve,
as Ase oibal syndaiem can -nes thum. The nloaism -:W~-s~ by 1ill "1" to eapteM d nte" .alcludea Suwon" am wonl a to
M1ieef~ the ,emr camam- as- m The selutie to dohem preduc-
NOreli ($Inin fiPgov 2.4) in described am Figure 2.0: 91, P,, t2 and
q, e iwh ropreoau %he ,quas - waing - anthrlmatiem) mna be

.1i 6gibal syschrenleer aW it cam decides *pea telai
Pr aMample: srachraniser4 rA t, (aamie a raleu mumg). which 0
sagd by the gsl Wayasem r W a requs hor Iring t 1. Wham the

gimbal syacdi em fAm tu (sevide an accept voug. to synchromisa.
1), is is seieva by myschreaiser.1 W a waqu f hr ag t2. The sme
arham is appimia to mcrotiom 2 mmd 3. Rn", a simple cosmumaca
Slit ci@M hor implemeting the musm required hor the mymcbro.
Sileakial mochamlem.

2*63 Tim Augmnmted Petri Neus
As s~essd hela, the Petri a" clamsical nmdel mrnamio Sa bed im a aon-
dsmlesk sa, a"d do a"t capas the nomea of tim. In Order to adjups
this modeling mnahed to real tims programs, varm modlcaiea ware applied
to Ohe clasial model Am approach whic amgn the execuama to grammitasam
whic am Sime-amsed (281, in deecnibad in chapger 3. The problem with thi

32

0p P po.. Pe P. At

Pp
P.

Syackrosiau 1 Syachroiew 3

Flgure 2.5: Di.II6uted partial coda' syncmcoaar.

P. pp.p

Global Syiicbroniner

tl el t4 t 3

p PP. P411A * P. At

tls T4 t

93 e3 t6

Syacbmaiser 1 Sysclaromiser 2 Synchroniser 3

Figure 2.6: Distributed total order synchronisation.

MI!

approach is tha the transitions' instantaneous nature is not satisfied completely
without 9hibit" features. Another approach is to asign stochastic nature to
the firmg. This approach i very good for average performance-analysis, and
som methods ae mentioned in chaptr 4 ([27,3,7]). The stochastic approach,
which is very usefu for verification, does not address important temporal prop-
ertde which re crucially important in the design phase (e.g. scheduling, safe-
ness with preuenc. of time, etc.). The next paragraphs review a method [101
in which the latter issues are addressed by an augmented Petri net model, in
which timing properties are assigned to places in the graph.

The Augmentation

Unlike the approaches mentioned above, in Coolahan and Rousopoulos aug-
mentation of a classical Petri net [10!, processing is represented by places, and
instantaneous transitions represent start and stop of a process. Hence, a non-
negative time value is assigned to each place; if the place is a 'condition* then
the value is sero, if it is a process then the value equals the execution time of this
process. A token is ready to enable an output transition of the place it occupies,
after residing on this place for the assigned time. If one transition is enabled
when the token becomes ready, then this transition firm immediately. If more
tham one transition is enabled, then a non-deterministic selection occurs, and
only one of the transitions fA immediately, while the others become disabled.

Time Driven System Model

four et velud uwgo"s define the relations between nodes of the network (i.e.
the directed arcs):

" It (ti): Transition input-function, mapping transition tj to the set of places
fro which there exist arcs to t.

" O,(tj): Transition output-function, mapping transition t, to the set of
places to which there exist arcs from ti.

" similarly, place input-function (4p(p)) and place output-function (Op(p.))
are defined.

The e "r& itr of the above sets is denoted by .. J.
The master timing machine, which triggers the network to be activated by

a marking sequence, consists of a place denoted as Pt, connected to a transition
t1 through a loop. The following properties hold for this machine, called the
Dirvrn Cyel:

" The initial marking of p1 (mi = 1) reproduces itself with a fix period T1 .

" I,(t) - PI.

35

- pj E O,(t1), and IO,(t,)l > 1.

0 Ip(pi) = O,(PI) = t,}.

The net is constructed in steps that are described below. Throughout the con-
struction, it is guaranteed that a path, originated at the driving cycle, reaches
the places or transitions which are currently added, to ensure reachability of
these nodes (i.e. a liveness potential). Yet, the safeness property of the classical
Petri net is affected by the reproduction property of the driving cycle, since no
assurance is given to guarantee a bounded number of tokens in the net. This
problem is solved by the time considerations, which enforce a bounded firing
rate on the driving cycle.

Concept of Relative Firing Frequency

Two important properties are assigned to places and transitions in the net:

MRFF: (Max Relative Firing Frequency) The number of times a transition
fires, with respect to each firing interval of the driving cycle, if all the de-
cisions (selections of enabled transitions to fire) between the driving cycle

and that transition are made *in favor 3 of the path to that transition.

MTIAT: (Min Token Inter-Arrival Time) The shortest possible time interval
between two consecutive arrivals of tokens to the relevant place.

An important relation is established by the above definitions: If t, is an
input transition to a place py, and T is the driving cycle period, then

MTIAT(p,r) = Tj1 MRFF(t,).

Sub-classes of Time Driven Systems

Four sub-classes serve as construction units in the model presented in [101:

1. Asynchronous Systems: For every place pi and transition t . the following
hold:

* I1,(p,) = IOd(t,)l = I.
* IOP ,)l > 1.

Asynchronous systems are constrained by the following:

1. Execution time of any process (i.e. place) cannot exceed the MTIAT

of this place.

Olt a decision is pre-determined, then the ratio in which it is taken in favor of a specific path
is given. If a decision is data dependent, then only assumptions or upper and lower bounds
can be expressed.

36

WINI

Figre .7 Asncronus ubsysem

2. Thecumultive xecutontim of ay pat cannt ece n eaaey

Teptheeuonterqurmn(ptltecreuemn)

An example oft ls silsrtdi iue27

2. ~ ~ ~ ~ 4 Syc1n4dSytm:9 ddto oaynhoossb-ytmti

uTcontigutwre more disjhontu sub-steac ereetgapt

fromlas intocludTefloigpoetishl oh parallel-pt constructs:ns whc oss'f

1. For t4 (the initial transition):

* Ot(tdlnPI = n.

4n denotes set intersection. U denotes set union. C denotes contained relationship.

37I

(t/t)
tj ta (Ps 1

Figure 2.8: Synchronised sub-system.

2. For t!' (the final transition):

* I,(t,) c_ P.,,at,,,(t.,)t =,,
* o,(t),P = {}.

3. For each t, (path transition - if any):

* II',(t,) nPI --1.
(IO,(t) n PI1.

4. For each pp (path place) in P':

* I',(pA)I = 1 and I;,(pp,) c T.
* Io,(p,)I = 1 and O,,(p,) C T.

An example of this sub-class is illustrated in Figure 2.8.
An additional timing constraint is imposed on the syncronied sub-systems:

* For any set of parallel paths, delimited by t and t,: the sum ofexecution and walting times that a token spends at the final place

(of any of the paths), must not exceed the MIAT of that place.
The waiting time at the final place of a specific path is the difference
between the greatest total-path-time of the set of paths, and the

total-path-time of this specific path.
". Independent-cycle Systems: In addition to synchronised sub-systems,

this sub-class includes cycle constructions, which consist of:

38
An ~ ~ adiioa tiin consrain is imoe ontesnhoizdsbss

(p.) (ti

Figure 2.9: Independent-cycle sub-system.

e T: a set of transitions (ti, T,), an initial transition, and aset of sero
or more path transitions.

0 P: a set of Path places {p,}.

P UT represents a cyclic path from ti to ti. Th. input-places to the initial
tranitin, ae oe internal to the cycle, denoted as pf, and one external

to the cycle, denoted as p. and called the entry-place. The latter has only
one input arc, and one output arc which feeds t,. An independent cycle is
characterised by the following properties:

1. For t. (the initial transition):

- I1#(tdj- 2 and II,(t)n PI -1.

2. For each t. (path transition - if any):

* Itt,) I land t(,) c P.
* 10100)I 1.

3. For each pp (path place) in P:

" jI(pv)jI 1 and 4p(p) 9 T.
" IO,(pp)l 1 and O,,(p,) 9 T.

An example of this sub-class is illustrated in Figure 2.9.

39

An additional timing requirement (to those of the synchronised systems)
is imposed on the independent cycle:

* For any independ4nt cycle, the cycle execution-time (from t, back to
t) must not exceed the MTIAT of the entry place.

4. Shared resouze4 System.: In addition to all the sub-clasm described so
far, this sub-clas permits cycles-overlap to model resource sharing. The
cycles which ov4rlap have input transitions whose firing rates are equal un-
der all conditions, and their final places are replaced by a shared resource.
This construction consists of:

* T,: a set of path transitions {).

* P: aset of path places (Pi,Pj,p).

The following properties characterise the shared-resource construct:

1. For pi (the initial place):

e IIV(pi) = n, one input transition from each of the n cycles.
* If pi p then lO,(p)l = and O,(p) ; T.

2. For p! (the final place):

e 1Op(p!)I = n, each output transition being an input transition
to one of the cycles.

e The initial marking is oe ready token.
- If pi # p then II,(p,)I = I and ,(pf) 9 T.

3. For each po (path place - if any) in P:

*I l(p,)j = 1 and Ip (pp) c T.
* lO5 (p,)l = I and O,(p,) c T-.

4. For each tp (path transition):

" I,(t,) C P.
SO,(tP) C P.

An example of this sub-class is illustrated in Figure 2.10. The initial
marking in pf is the semaphore that controls the mutual-exclusion of the
resource.

The constraint that was mentioned while introducing this construct, may
be applied as a restriction to the construction process; ensuring that all
firing frequencies of all the input transitions to the entry-places are equal
must be applied before continuing the construction. Additional timing
constraint for the shared-resource constructs is

To + Eh.:,#j(Tk) <5 Td,

40

Figure 2. 10 Sharedresourc sub-system.

" T% - Exscution tine at eatuy-place p..
* . - (or T.1) Exeution time of an1 places in &he cycle, which are

activated as a cousequence afte winput provided by p.h (or p.,).

" Td - Te MTIAT of each of tke ae*soy places.

The above constraint esrres that poi is safe in preence of time.

Not Construetion Methodology

The construction of the augmented Petri net, is represented in (101 in an a1-
gorithmic way, in whic all the above constraints awe taken into coundersain.
The mthod consists of the following steps:

L. construct a driving cycle (P1 - TI, III).

2. Add places to the driving cycle's transition (tt) as the system to be mod-
eled requires, such that each of the added places has:

*a single input arc,
*a fiit execution time.

3. To each of the places which does not have a output so far, one or more
of the following constructs are added as an output (according to what the
system to be modeled requires):

9 A single transition with exactly one input arc.

41

e A cepeeparalel sysihgsaimed-pesh eosstuct

* A trassitim.a with multiple inpuat., which completes a eyschrowised
pat when added to the sob-net that is already coetructed.

* An *i-depemdsnb-cycle construct.
o A cycle which forms a pat d a shared- resource construct, Care&-

toewns that anl euy-places in" atshe - frelquency.

4. Add output places (as in s"e 2) to each transition which has so output-
place so far.

S. Ropea" steps 13-41 ntl the model inscomiplete.

Dervatios of Max Relative Firing Frequency

The Iringfrequescms ol' transitions, expressed in terme of the frequency of the
drivn cycle, can be considered as mapping She transition to this property's
domain. Using the above mapping, a model of a system can, reflect either
consistency or inconsistency.

* A system is considered censtoot IF? theme exists a positive-integer map-
ping to each transition, such that at every place pi, the sum a(the integers
an I,(pi) equabs the sum at the i&ntr on0,p)

e A system is considered inceeistest if it either produces an infinite number
of tokens, or consumes the tokens and stops.

In practice, the integer assignment to each transition give a possible retie
flinig-frsqu.. to the transition. Consistency can be detected by solvinig the
local-balance equations described above, and finding a solution with no con-
tradictions. As can be seen in the model's description, the firing-frequency of
each transition is rooted in the driving cycle. An emphasis should also be put
on the difemnace between thi approach and the classical Petri net approach.
The transitions hem fire immediately after being enabled, while the Biring in the
classical approach is non-deterministic. Therefore, here the Biring-frequency of
each transition can either be computed definitely (all decisions in the path ane
predetermined), or bounds can be set (in case there exists a data dependent
decision in the path).

Probing Safeness In Presence of Time

The construction methodology given abov guarantees the reachability of the
places in the network. Yet, if this network is interpreted in the classical Petri
net orientation, the maste timing mechanism of the model - the driving cycle
- doe not preserve safeness property, by allowing 'exponential explosion' of
the tokens population in the network. Therefore, in [101 the property 'safe in

42

the p ne of time' i introduced, ad the timing restiction for ti prepaty
m deied, io bold for each of 9h met cosetacts introduced above. A brief
esmmry of the rasrictlons i given below.

5.9m Mar siple plm& A ""pie place i a place pi with im(p)o -h
a" IO.(,dI a 1, euch tha sach transition th ia its output st satisuies
I(ta.) -1. In [101 it is proved that eub a smple place is proved to be

mao in prmesce a(time i the w=rn can fIF

vT" 1.. : i s T, I (rFj ,

whe: Z is the executics-time of this plac, T, ie the cycle-time of the
driving cycle, mad , is the Min? of the p t-traaeuoi to this place.

5.mm h e&try place in parallel path. The fnal places pu (ti tn),
of a eyaceroiseed parallel co.stact with a parallel paiths, ar each found
sne in presence of time ins the was cae, nF for each of them

Vi , e I. /X Pi d TA < (TI /i Fi

where: P ie the toul path time (executios + wdting) of path iJ, is
the MAtP of the iaput trramition to ph, asd Tpa is the execution time
of pji itelf.

Safseme for entry places of pedenou t cycles. Cycle-time (T.) is the
time i nerval fin sarg of r to toeom ntrd is pl. The exectao time
of the on" place isdenoted as T., ad the MP of hn input transition
tooAT pl ie denoted aes F.. Ina1101it e diproved thataetryplace to
a& independent cycle construct is afe in presence of time IF

T. +5T1% and T ,T1 /P..

An outcome of this result is that lip, is ad* in presece of time, then
waiting time for esi tokens arriving to this plac is sere

Safenss for placer In a shared-resource. A shared cycle time T.,, for a
cycle containing tib in a shared reeource construct, is the time that elapee
from firing of ta until the tokenarzrives at pp ft isproved (in [101) that
given that all the entry places receive from identical MRFFs, and the
MTIAT of the entry placee is their. execution time divided by the MR FF,
then each entry place p., (to a shared resource construct) is safe in the
presence o(time 1FF

For all the above constructs' types the regularity of the net timing is pre-
served.

43

Coelaha amd 3ouseou~los examine the mietod they suggse~ in [101 The weak-
-io poima. they Wa im thefr approach are

e The resviks se vey ssnsitive to changes in process or path execution time.

s An alkeratias costruct in needed.

* The restriction on a shared resource (limited only to the case of identical
firng rates) in too strong.

Thie advantages they find in it are:

o The ability to formally and explicitly express tba timing constraints.

* The automatability of the method.

e The ability to verif timing propertis in the design phase.

Two otber dekiienciss should be considered. First, the absence of perfor-
mance analysis tok, doss not &aw the examination of timing problem rather
than afenss (e.g. bottl..neck). Second, the restrictions imposed in this con-
structioa Ow h not, narrairs signiiantly the cases that can be treated.

Chapter 3

Development in A Real

Time Environment

3.1 General
Whim the design phase as complete, ad a veiled, shoin for a give problems
mie, the problemss which comcm thes mplaematon o(the solution arm.
8om software enpaeerlag reearch tried So eauate the approach adopted in
projects using wariou crii, a the chage insalled ia a programa during ats
iWe cycle 181, but only few wars trie to evaluat the approach fm the timing-o of view. As emphasiseid befoare, real timee software peformance depends
highly on the implemsentation, and therefore the definition of the envuronment
is of crucial importance. The development envuoument inclu"desth proce.
so used, the operating system, the language and its compiler and mun time
libraries, the network struct in which a distributed computation takes place,
sad special aid used durn" the imleenaION phase. Some attempts, have
beent made to allow proper identification of this environment (e.g. 1201), and
expeienc was sumwavised into recommendations (e.g. 111), but probably the

most important event.s in real time software implementation in the last decade
one:

" The standardlisation of the Ad& programming language by the U.S. De-
partment of Defense.

" The adoption of MASCOT by the U.K. Ministry of Defense.

This chapter trie to highlight some important aspects concerning real time
software implementation; Starting with the influence of the design approach
adopted, reviewinig an automated tool which translates a model to a program,
emphasising the importance of the programming discipline, and concluding with
two important aspect concerning programming with Ad&.

45

3.2 Approaches
Spiedijing a sysem= in a conventimal approach treats the system as a 'black
baen, describing whod but not "~w in other words, whea we start the realisa-
tden phas (adopting the conventional approach) the external behavior is well
M~ed, while the internal structure is not. Top down discipline is mantained

throughout %be whole development phase, which mesas that implementation
ceMastrainus, although known from the "er beginning, are intentionally ignored.
Some trials have been ae in information proceesing projects (as the Jackson

devlopentapproach) to flnd better solutions. The PAISLey project uses a now
aprahin real time system development, in which thoe ideas awe organised

into a strateg called operaioenal appnwkc [351. The main idea is that external
behavior and internal structure may interleave. Yet, operational approach sepa-
rates th rolm-rene structure of the operational specifications from pure
imp.mmtatiloa cnieaos. The operational specifications themselves are
written in a& operational specilication language, which is executable and pre-
vet ambiguities. Transformational imleenaion would therefore guarantee
canwiuness of the produced code. Altough this approach seems to lead to a
very easy implementation phase, the problem of stringent timing constraints
do not disappear - they can be found in the generation of the transformational
implsmealtation.

3.3 From a Model to a Program

In chapter 2 of thi paper, the Petri net models were introduced. For systems
which contain concurrent processing considerations and dynamic sequential de-
pendencies, thi modeling technique seems exceptionally suited. Nelson et al [281
introduce a method of translating a Petri net model into a procedural language
program, and this method is reviewed in this section.

3.3.1 Annotated Petri Netis

The commonly used Petri noe are extended by means of annotation. and initial
contidsrstiona that provide procesing content and external dependencies to the
firing of the net.

1. Actions that do not relate to the net itself (e.g. applying a function to a
specific data structure, firing another net, calling a procedure) are assigned
to trasuitios with a corresponding annotation.

2. Boolean expressions that express external dependencies are assigned through
an appropriate annotation to output arcs of a transition.

3. An integer selector may be assigned to a transition. When this transition
fires, at moot one of its output places will be marked.

46

I I

4. Two special types of transitions are allored to have only input or output
arcm the isid" sad the terminal transitions.

3.3.2 The Method of Translation

ach node in the network (etr a transiton cr a place) is related to a speciic
templse of statemnts. The template content depends on the sode's type, its
fanot, and the annotation asgned to it. combining these templates results
in a proram in a procedural language called XL/l, and this program is then
(via an automated process) translated to PL/l or PL/S.

3.3.3 Multiprocessor Environment

Petri at theory does not force a firebie transiion to fire, but if a transition fires
the firing is complete and consume swo time. Implementing a transition firing
with a program imposes a noninstantaneous firing. When the environment is of
a multiproce-- system, a mutual enclusion device must protect the firing, since
mare than oe processor may be focused on particular input places at a specific
time. Therefore, the anthos provide a semaphore-like locslnf mechanism, and
an stomc operation which adjusts (increment or decrement) the number of
tokens in places. All the places that are associated with a specific lock are
assigned (according to given rules) to a lock-st, which governs their access to
the lock.

3.3.4 Conclusion

Although the mechanism proposed in 1281 is no optimized, especially for hard
real time applications, it provides a very good tool for the design verification. If
further work will be done, architectural optimisation may be performed by the
XL/1 automaton, imposing the constraints and the implementation dependent
properties o the system.

3.4 Implementation Discipline

The complexity of programming increases when we step from sequential to mul-
tiprogrammig, and it increases further when we apply real time programming.
A set of coepu (for reasoning) and a set of fecidits (for description) is added
in each step. Adding synchronisation signals and mutual exclusion devices to
sequential programming allows us to use multiprogramming, and adding to it
execution speed allows dealing with real time programming. But the complexity
of reasoning increases by a new dimesiu. In ISn a summary of all the needs
for real time programming discipline is given and analyzed.

47

3.4.1 Making a Real Time Program Manageable

In order to make a real time program manageable, Wirth suggests the following
recipe:

1. Firsit formulate the entire program without reliance on execution times.
All nocssary synchronisation signals should be provided explicitly.

2. If the machinery to be used does not provide some of the necessary syn-
chronisation signals, derive analytically the timing constraints for each,
and allow its absence.

3. Chock whether the constraints are satisfied by the computer system.

3.4.2 Synchronization Discipline

In a distributed environment, processes commonly synchronise using aigala
and smipAores. A semaphore is equivalent to a signal with associated mem-
ory. Sending an unconditional signal, when no process is waiting, may lead
to an untraceable system crash. This mistake is commonly made due to a-
sumptions taken over the computation speed of the different processes. Hence,
declaring £sait(s) as a necessary precondition of send (s) is recommended, when
occurances as below might exist:

PI: ...S1; send(s); ...
P2: ...S2; await(s); ...

3.4.3 Language and System Requirements

The form and structure of a real time programming language are as important
as in regular distributed programming. No additional structural concepts are
needed for a real time programming language:

1. A notational unit for describing processes (themselves sequentially exe-

cuted) that can be executed concurrently, and noninterruptably.

2. A collection of shared variables and their operators.

3. An object to trigger communication after waiting (signals).

Yet, an additional feature is needed:

9 A facility which provides accurate execution time bounds, as an additional
part of an existing compiler. If the compilation is straightforward (i.e. no
optimization is performed), the use of a simple execution time-table of the
statements is possible.

48

An important recommended concept is the coerevcy of logical processes
(each one is implemented as if it owns a private processor). Two features that are
achieved applying this concept an the simple logic foundation of the program,
and the maximal degree of freedom left for choosing processor sharing strategy.

When applying processor sharing policy, the static time bounds (prepared
in a straightforward time-table) do not hold; the processor may be attached to
another process for an unknown 'time slice'.

3.4.4 High Level Language and Processor Sharing

Most of the uncertainties in execution time are due to tasks performed by an-
other process. The author uses the notation "doio' (as in DO I/O) for the
following sequence:

... end(initiation) wait (completion)...

and applies a "hidden' delay statement behind each =doio" statement. The
delay is derived from the execution performances and the strategy chosen for
the processor sharing (priority plays a major role here).

3.4.5 Recommended Discipline for Real Time Program-
ming

1. Time dependent program parts executed externally (by a device process),
should be restricted to noninterruptable execution mode.

2. Execution time of the above program parts is determined statically.

3. Each 'doio' is assumed to have a hidden delay, derived as stated above.

This discipline may lead to high time consuming delays, and the proposed so-
lution is a priority interrupt systems, which requires adherence to the following
constraints:

1. Every device process Pi is cyclic, consisting of a statements sequence Si,
and the "doio' represents the waiting for device completion.

2. t = T(S) + T(doio). The cycle time of Pi, at any priority level, is
considerably greater than that of all other processe at higher priority.

3. The ratio
=T(S,) +(,

TS)+ T(doioi)
over any cycle is very small (c 1).

4. Each signal emitted by a device must be awaited by single (regular) process
only.

49

5. A device process must never itself invalidate the condition associated with
the signal it emitted.

3.5 The Ada Programming Language

The Ada programming language 121 was designed as a common language for
programming large scale and real time systems. The Ada programming language
has introduced many high level facilities, but in this review only one innovation
is examined. The tasking facilities have always been a part of the operating
system, rather than the programming language, until Ada has been introduced.
Furthermore, synchronization of these facilities has used primitives provided by
the operating system, invoked usually as 'system calls' from a very low level
part of the program. The Ada programming language includes both the tasking
facilities, and the synchronisation tools as a part of the language. This feature
allows the programmer to concentrate on parallel system design and to ignore
inter-task synchronisation and communication details.

Parallel processes are called tasks in the Ada language. Each task may
have some entries, which are called from other tasks. Two tasks interact by
first synchronizing, then exchanging information and finally continuing their
individual activities. This synchronized meeting to exchange information is
called rendezvous. This concept is based on Hoare's CSP proposal [191 for
concurrent programming, and Ada is the first language that has adopted it.
Hence, this is the only experience in using this concept, and recent works have
shown some interesting aspects in implementing it.

Two important issues concerning the rendezvous are reviewed in this section:
the implementation of the concept in the compiler level, and the implementa-
tion of the concept in the program level. As stated below, both may lead to
inefficiencies and undesirable effects.

3.5.1 Implementing Tasking Facilities

Three ways of implementing the rendezvous concept in the compiler level are
examined in [14]. The paper also examines results of the three implementations
in PASCAL to validate the analysis. The mechanism and the implementations
are described below.

AAsumptions and Description of the Mechanism

The assumptions taken in 1141 are:

1. The Ada kernel is implemented as a set of primitives. An exact copy of
this set resides on the private memory of each processor which participates
in executing the concurrent program. The interaction between tasks that

50

these primitives allow, is independent of the physical allocation of the
tasks.

2. The executable code for each processor resides on its private memory.

3. Some data constructs are located in the system shared memory.

4. Each task descriptor consists of two parts: global and local task descrip-
tors. The local task descriptor resides on the private memory of the pro-
cessor which runs this task. It contains all the information required to
run this task concurrently with other tasks resident on the same processor
(i.e state-word, status field, task priority, scheduling time, links to other
local task descriptors, a link to its own global task descriptor). The global
task descriptor resides on the system shared memory. It contains all the
information required to allow interaction between tasks that are allocated
in different prcessors (i.e. processor Id, a lock variable for mutual exclu-
sion, status field, pointer to actual parameters list, a set of addresses of
entries, a set of queues - one for each entry, a stack of invoking tasks Id's,
a link to its own local task descriptor).

5. Each processor can send interrupt signals to any other processor.

The task management mechanism suggested in [141 is:

1. When a task invokes the kernel to interact with another task, the invoked
primitive (executed by the processor on which the calling task resides)
checks the global descriptor of the called task.

2. IF the called task resides on the same processor as the calling one, THEN
all the required information concerning its status is available in the local
descriptor.

3. IF the called task resides on a different processor, THEN the primitive
which has been invoked sends an interrupt request to that processor, spec-
ifying the calling processor, the called task, and the requested operation.
The interrupt service procedure will then invoke the kernel primitive which
correspond to the requested operation, to complete the interaction.

Jmplementation of the Mechanism

Three possible implementations for the above mechanism are described below.
The comparison criteria are minimising system overhead, and the task blocking
time.

"Server" Rendezvous is the first possibility to implement the mechanism.
In this implementation the calling task remains suspended until the called task
executes the accept body (see [21 for description of the accept statement). This
implementation has advantages and deficiencies which are listed below.

51

III 1 1i
III I Il

1. A single copy of the accept body is sufficient, and it should be stored in
the private memory of the accepting processor.

2. In order to complete the rendesvous, the scheduler is invoked (possibly a
context switch occurs) twice in the case that the entry calling execution
precedes the accept execution, and three times otherwise. One or two
inter-processor interrupt signals are required, and two or four scheduling
operations (respectively) are necessary, if the interacting tasks are running
on different processors.

3. Parameter passing may be carried out through the shared memory.

"Procedural Call" rendezvous is another possible implementation. Here
the accept body is always executed by the calling task. This approach has the
following properties:

1. Accessibility of the accept body can be obtained either by keeping an ex-
act copy of the accept body on each private memory of a processor that
runs the calling task, or by storing the accept body in the shared memory.
The shared memory solution is exactly the same as the 'server' solution
(communication-wise). The replication solution may be ineffective or im-
possible if a resource needed for the accept body is only available to a
particular processor.

2. No special mechanism of parameter passing is needed, since the caller
executes the accept body in its thread of control

"Order of Arrival" rendevous is a solution provided by the authors of
this paper (1141), and it reduces the scheduling points required. Here, the accept
body is executed as a part of the thread of control of the last task which joins
the rendezvous. The properties of this approach are:

1. In the case of a mono-processor system only two scheduling points are
needed.

2. In the case of tightly coupled multi-processor system, one inter-processor
interrupt signal and two scheduling operations are needed to complete a
rendevous.

3. The same resource allocation difficulties that were introduced in the "pro-
cedural call* approach exist here.

The differences between the three approaches emphasise the significance of the
compiler-level implementation, for the timing performances as well as for the
communication economy of a system.

52

' I

3.5.2 The Tendency to Poll

Experience in using the rendezvous concept when programming in Ad&, is sum-
marised in [151, pointing out a tendency to apply polling policy, which is usually
(but not always) undesirable because it is wasteful of system resources. A re-
view of this findings and the suggestions provided in the above paper are given
below. But first, four assumptions concerning the rendezvous mechanism must
be taken into account:

1. Two tasks, A and B, rendezvous at entry E of B, when A calls entry E,
and the entry call is "coe. d by B.

2. IF A calls the entry call before B is ready to accept the entry call, THEN
A waits until B is ready.

3. IF B is ready to accept, THEN it must wait until some task issues that
entry call.

4. Calls to a specific entry are executed in FIFO order.

The flendevoua- Statements

Two types of rendezvous statements are permitted by MIL-STD-1815A [21, the
selective wait statement and the conditional entry call.

1. 71e Selictive wait statement.

select
[when cond =Io- selective..wait..alternative

(or*

[when cond =o- selective-wait-alternative}[elm
sequence-of-statements]

end select;

The selective wait statement is used for waiting and selection from one or
more alternatives. A selective-wait-alternative is restricted to the follow-
ing:

*A delay or an accept statement, followed by a sequence of statements.
*The terminate alternative.

sf. tands for optional statement. f.}-stands for zero or more tiam.

53

The selective-wait.alternative is non-deterministically selected from the
set of "open' accept.alternatives for which a rendevous is immediately
possible (if the set is nonempty). The approach is adopted from 1191. A
delay.alternative is selected if no accept-alternative can be selected before
the specified delay has elapsed. If no selective-wait-alternative can be
selected, the else-part (if nonempty) is executed. If no accept.alternative
is immediately possible, and there is no else-part, then the task waits until
such an alternative will become open.

2. The Conditional Entry Call.

select
entry-callstatement [sequence-of-stateraents]

else
sequence-of-statements

end select;

Although the syntax is quite similar to that of the selective wait statement,
they are semantically opposite: the selective wait is used in accepting
entry-calls, while the conditional entry call is used for making entry calls.
IF the rendezvous is not immediately possible, THEN the entry-call is
canceled, and the else-part is executed.

Polling

Polling is characterised by a task aatively and repeatedly checking for an oc-
curance of an event that originates externally to the task. The paper ([151)
distinguishes two types of polling:

1. Task A rendevou, polls with task B (with respect to entry E) IF the
rendezvous can be preceded by an unbounded number of attempts by A.
(Attempt is defined as an unsuccessful entry call OR a failure to select an
accept-alternative in a select statement.)

2. Task A inforsation poll# with task B (with respect to entry E) IF A and
B can rendezvous an unbounded number of times before information is
exchanged.

A bay waiting situation is identified if between rendezvous attempts no
computational progrem is achieved. The polling is usually wasteful of resources
- it simply burns up CPU cycles. Furthermore, it may unnecessarily load
the communication network very heavily. Another dangerous situation hap-
pens when the calling and the called tasks both symmetrically loop over a

54

selw.twaitstatement and a coaditionaLentry-cail with an else-part: the ren-
davous may never occur! Yet, sometimes polling is desirable: when non-polling
may result in such an additional overhead that might violate real time con-
straints. But these cases are very rare, and should be definitely identified and
justified.

Bias Towards Rendevous Polling

The tendency to poll when implementing the Ads rendeuvous is encouraged by
the following:

" Lack of some facilities.

" Restrictions imposed by Ada.

" Presence of some facilities.

Four encouragements for polling are given below.

Conditional Zntry Call should be used with care, since it may lead to unnec-
essary polling. Consider the poor example given in [2] paragraph 9.7.2.7:

procedure SPIN(R : RESOURCE) Is
begin

loolp
select

R.SEIZE;
return

else
null; - busy waiting

end select;
end loop;

end ;

The "busy waitintm is really unnecessary.

Handling an Entry - failMy is generally expressed as a polling loop. For
example, let X be an entry-family that have N members, declared as entry
X(Y), while Y is of subtype integer that ranges from I to N. The skeleton
of the program that accepts call for the entry-family usually looks like:

loop
for I E Y: loop

55

select
accept X(I) do ... end;

else
null;

end select;
end loop;

end loop;

This select statement polls unnecessarily, and solution may be given either
by replacing the 'for statement by an N specific ORed accept-statements
with no else-part (only for a small known N 1), or by a different design
which makes a use of the entry family indices.

RAstrictions an Selective-Wait-Statement of two types are imposed.

1. Not allowing a when condition followed by a sequence of non-tsaking
statements as a select alternative, which is needed as follows:

loop- illegal example
select

or
when cond =s A : B ;-illegal 11

end select;
end loop;

The above implementation is illegal since only accept/ delay/ termi-
nate ae allowed as alternatives. The use of an else - if statement to
replace the illegal statement is wrong, since it would be executed to
no effect (again and again) when any feasible alternative in absent.
-Hence,

loop- better solution
select

or
delay 0.0 ; - sero delay is legal
A:- B;

end select;
end loop;

!5

q'

2. The lack of aelecti,. call statement and not allowing any enstry-cll
as a select alternsative, which are needed as:

1oop- illegal form
select

call-entry X.E;
or

call-entry Y. ;ilegal 11
end select;

end loop;

Replacing the illegal 'or' part by:

else
select

call-entry YYF
else

nul;
end select;

is wrong for two reasons: it gives preference to XE and the inner
select polls again. Another problem arises when we need an entry
call as a select alternative:

loop- illegal form
select

when B so, secopt..
or

or
when C z* callentry Y.F; illegal!!1

end select;
end loop;

Since the above program is illegal, one is tempted to replace the "or
when C ... , with:

ekse
Vf C then

sel00A

57

call-entry Y.F;
else
null;
end select;

end If;

This replacement may lead to a dangerous situation, especially when
X and Y are symmetrical, since a simultaneous polling becomes pos-
sible, and the rendezvous may never occur.

The "else" clause in a selective-wait-statement is the highest temptation
to poll. Therefore a careful examination should be taken: IF the alterna-
tive actiolt is not really a part of the task, THEN it should be encapsulated
in another task, which could result in the elimination of the polling. A
good design approach separates the tasks functionally - one task for each
function.

Suggestions

The authors provide some suggestions to changes in the Ada programming lan-
guage, but they agree that 'it is likely that the Ada programming language will
not be modified, at least not in the near future'. Three major principles pointed
out by this paper should be adopted:

1. Use a delay alternative with a sero delay, to allow a whs condition fol-

lowed by no%-tasking statements as a select alternative.

2. Separate the tasks functionally - dedicate one teat for each functiont.

3. Take a lot of care in the program construction to avoid unnecessary polling.
For the cases in which polling is a better solution than others, justify it
carefully.

58

Chapter 4

Verification and Validation
of Real Time Software

4.1 General

Verification of programs (Le. proving that a program meet its specification),
may be done in three major methods:

" Using a exteew*ic appirech to infers mathematical and logical assertions
which describe the control and data stats.

" Using Bos-lU,. or G0ph properties to obtain the required proof.

" Teting the program for the relevant inputs it may meet when executed
in its target plant.

The axiomatic approach is commonly preferable, because assertions can be com-
municated to computers via compilers, and then manipulated by simplification
procedures. Due to this, proof systems for many design and development ap-
proaches have been introduced. Axiomatic proof systems have been introduced
for distributed systems 1291, and for CSP programs [61. Yet, these proof eye-
tems do not deal with timing properties, and provide no means for real-time
veriication. The complexity of verification grows significantly when the imple-
mentation is required to be distributed.

Most of past works based their proofs (concerning time properties) on queue-
ing theory 1231, proving average performence criteria, since the timing charac-
teristics of inputs to a real time program re stochastic by nature. In addition,
thee works supported the conclusions by tests which cover the inputs' range.

An example of this approach is described by G. Anderson [5, combining five
methodologies for evsluaing performance properties:

59

1. Characterisation of work load to the proposed system.

2. Creation of an approximate queueing model for the system, and evaluating
average performance properties.

3. Identification and preparation of hardware tools, to allow measurements
in the real system.

4. Development of a load-simulator, to allow testing under a controlled load.

5. Modeling the system with a detailed simulator, which allows bottle-necks
identification and answers to 'what if' questions.

Anderson's results have shown good match between expected and achieved val-
ues (11% in response time, 2% in CPU utilisation), yet most of his assumptions
we based on previous experience, which is always needed but rarely found.

In this chapter, various methods of programs validation techniques will be
reviewed, starting with testing real time performances, followed by analysis
sad proof methods for real time properties, and finally examining the use of
simulations for system validation.

4.2 Testing Real Time Properties of Programs

U. Voges and J. R. Taylor 1301 review many testing approaches and procedures,
all sharing the same goals: proving that the system under test is free of errors,
and obtaining (when it is possible) some figures about the system's reliability.

4.2.1 Systematic Testing Methods

Testing Coverage

Testing a sys thoroughly means testing it with all possible combinations

of its inputs. In exercising input sequences of a distributed system, relative
changes within an input sequence are very important as well (e.g. synchronisa-

tion problems), a property which may lead to an enormous sequence of inputs
for such a test. An early approach, suggested a design criteria of asynchronous
reproducibility of output (for a set of inputs, the same output will be produced,
regardless of speed differences or time intervals at which the inputs are deliv-
ered). Although this is a desired goal, sometimes it is not achieveable, especially
dealing with real time systems in which a deadline criteria should be met. Yet,
adopting this approach in the design even partially, reduces significantly the
amount of required input sequences.

60

. - - --

Q*las-Bae Testing Methods

This method is applicable especially in modulo-testing level. It consists of an-
alysing the module reachable paths, comparing the calculated path predicates
with the specication, followed by symbolic executions of the tested module.
Its major disadvantages are the ignoring of dependencies between modules, the
inability to ded with run time changes of control logic, and the inability to
pinpoint I miming path.

'Black-Bwe Testing Methods

In this test method no inside look is concerned. A test should be performed both
positively - a functional test with inputs chosen according to the specification,
and negatively - reaction to abnormal and unspecified events.

Probe Efeets

The availability of 'probing points in the real system is usually limited. In
order to trace control low or data values, additional probing statements are in-
serted to the propam. Therefore, changes regarding the environment to be met
in the real operating mode are introduced. This effect is of extreme importance
when dealing with a hard real time environment, and in many case disqualifies
this testing method.

Ecample: SADAT

SADAT [331 is an automated test tool, which supports testing of a single FOR-
TRAN module. SADAT performs the following test procedure:

* Static Analysis - Generates the program control graph, in which sequen-
tial parts are represented as nodes and the arcs are an interpretation of
decision to decision (d-d) paths. This analysis may detect unreachable
statements and errors in control flow that the compiler failed to detect.

* Test Cass Generation - Produces a minimal subset that ensures at least
one execution of each d-d path.

* Pat Predicate Caculation - Produces the path predicate for every path
in the module, and runs a symbolic execution.

o Dynamic Analysis - A control statement (in the form of a subroutine
call) is inserted in each d-d path, allowing accumulation of number of
executions for each node. This output can be used to track a dynamically
"deadO code, optimisation of the most frequently executed parts, and for
identification of additional test cases that are required.

61

SADAT major disadvantages are the lack of distributed and real time properties
testing. Dealing with a single module does not allow any concurrency and paral-
lelism, and since no deadline analysis is performed, no critical timing problems
can be pin-pointed.

Example: TAS

Ferranti Computer Systems Ltd. (UK) developed 1131 a complete environment
they use for software development and validation of real time software, using
MASCOT (Modular Approach to Software Construction, Operation and Test-
ing) and CORAL (block structured language, based on ALGOL60). Their test
environment consists of the following tools, called TAS (Test Aid Suite):

9 Unit Driver - A package which is independent of the software under test,
that provides test harness and allows initialisation of set up values, spec-
ification of a unit (or a part of a unit) to be executed, and comparison of
results obtained to those expected.

e Path andyser- Partitions the source code into SubPath Modules (SPM's).
An SPM is a basic block containing no branch points. A sequence of SPMs
forms a subpath.

e Itutrumester - Adds to the source code necessary *calls', to provide 'exe-
cution history', debug facilities, test coverage analysis, and static analysis
concerning the source structure.

Conceptually, this approach is very similar to SADAT (although testing a struc-
tured language) and suffers the same disadvantages.

4.2.2 Statistical Testing

The temptation to use a "sampled' test set, originates in the fact that the
amount of different inputs required to test a program systematically may become
enormous 1301. Yet, the smaller the sample is - the lower the reliability is,
therefore a decision upon the sample size must be calculated carefully. Typical
results of statistical testing methods are: an expected value, a risk, a probability,
confidence limits / levels of significance, variances. In real time software testing
a particular emphasis is put on:

o Deadlock occurance.

* Correctness of a sequence of outputs.

* Occurance of final/intermediate results in the right time interval.

62

'xl

Risk Calculation

The statistical testing tries to save test runs, and therely to reduce cost, but
an unfortunate fact of decreasing the 100% proof of the system is introduced.
A comparison between the cost reduction and the risk involved is therefore
necessary. One way of defining the risk cost is [301:

r H(a)X(a)

,where:

* X(a) is the lost caused by event a.

" H(a) is the frequency of *los causing event" a, during a relevant period
of time.

* H(a) = a. H(i)P(ai)P(aja).

" H(i) is the frequency of "initiating event' i which may cause a.

* P(aj) is the probability that the system under test will fail to react cor-
rectly on i.

" P(alai) is the probability that any alternative action (installed previously)
fails simultaneously.

Simple Cases

An analysis of the probability of detecting error-occurances [301 is sketched
below.

First, examining the probabilities of ,hitting an error.

" The probability of hitting one error, associated with time interval D, in
the program run time T, with no condition is: P, = DIT. Hence, for N
test runs: P, = 1 - (1 - D/T)N.

* The probability of hitting one error in one test run, now with one binary
condition, is: P,1 = 1/2D/T. For N test runs and k binary conditions:
,N -" 1 - (1 - (1/ 2)" x DIT)N.

Now, consider the case of sequence of tasks. When M tasks access one resource,
there are MI possible access sequences. If we assume equal probability of failure
for all accesses, then the probability of detecting one failing access, in n runs, is

P 1 - (1 - 1/Mi)"

63

-PR~~

* If the M tasks access N resources, the number of possible access sequences
becomes:

N M

K = E (ni x 771,j)

e n the number of runs of task i.

* m,,. the number of accesses to resource j during one run of task i.

If all possible accesses are to be considered, then the number of sequences be-
comes KI, while the probability of hitting error is known from above.

The presence of several possible priority interrupts in a time interval may
trigger several task sequences, or require queue rearrangements. These cases
are combinatorially treated the same as the access problem above, keeping in
mind that deadlock problem may occur in a specific sequencing.

Testing Large Systems

For large systems a slightly different approach is suggested in [30]. Defining p0
to be the probability of one distinct arbitrary property, we would like to obtain
the number of properties (denoted Nt) we have to test for, in order to ensure
Po < Po, within a confidence level CL%. Assuming binomial distribution of
properties' error detection probability, the number of properties we have to test
for. .

N, = 4.6/P for CL = 99%
N =3 .0/P for CL = 95%

If Po is between 10- 7 to 10 - 4 , Nt becomes enormous. Reducing it is possible
only by relating to previous analysis, performed analytically and not empirically.
Obtaining constraints yields simplification of the testing problem.

Problems With Large Tests

The large number of runs required for a reasonable confidence level sets addi-
tional requirements to those found in the simple cases:

* Testing real time properties is implementation (and hardware) dependent
by nature. Hence, the system should b- tested as a whole, while the tested
computer is activated by a computerized test equipment (TE), since we
require a large number of runs.

o The TE provides the test inputs, controls the timing, and monitors the
outputs. Hence the reliability required from the TE is very hirh.

o If a random number generator is included in the TE, its repetition period
should be sufficiently long.

64

* The statistical analysis shows clearly that in cases where we have to main-
tain reasonable confidence levels, reduction of test sequences is achieved
mostly due to formal analysis of the system under test, rather than by the
statistical approach itself.

4.3 Analysis and Proof

All testing methods we reviewed have shown clearly that in order to obtain
meaningful test set-ups, a great deal of effort should be invested in analysing
and formally proving properties of the tested program. The earlier this effort is
invested during the development cycle the more benefits can be gained: by better
phrasing of the problem, ability to predict the solution's behavior, and pin-
pointing bottle-necks and weak points. If such attitude is adopted, proof systems
should give answers to all system's phases, from early model to the detailed
source code, proving correctness of solution strategy as well as correctness of
the implementation. Since the main interest of this work is real time programs,
the main part of this section will concentrate on systems that try to verify and
prove timing properties.

4.3.1 Process Based Model Analysis

Categories

There are two major approaches in analysing and demonstrating program's
properties without execution, assuming a process based model has been prefered:

" Proving that the program satisfies certain criteria, or performs according
to given specifications.

" Proving by analysis certain structural properties of the model.

The following example will demonstrate these kinds of analysis.

Example: Flow-graphs

Two bi-digraphs are used to model the system '. A control flow-graph describes
the structural behavior of the program, and the control flow during execution,
while a data flow-graph (corresponding to each execution sequence) describes
the data behavior during this execution [221. In the control graph: the ver-
ties. represent control points, and the directed arcs represent actions or control
transitions. In the data flow-graph: there are two types of vertices: data items
and operations. The vertices are connected by directed arcs describing the data
flow. A data flow-graph corresponds to an execution sequence S = (ar, .. , a.)

'Modeling a system in a flow-graph method is described in section 2.4.2 of this document.
A brief review is repeated here.

65

in the control low-graph, by attaching to each arc ai a mapping of input vari-
able. (XI, .., X,) into output variables (Y,.., Yi). This functional relation is
the vertex of type 'operation! which appears in the graph. The graph, which
may be very large in case of a complex program, may be reduced by means of
abstraction levels, merging data items to vectors, and sequential actions into
control segments. This graph may be used to demonstrate structural properties
and to verify some performance ones.

e Independent data items may be detected, and point the distributed imple-
mentation that requires less communication traffic. The problem becomes
a partitioning problem which requires that the number of arc-cuts is min-
imised.

* Each execution sequence with its corresponding data flow-graph encoun-
ters all the information needed for numerical error-bound analysis.

Deficiencies

Flow graphs and more advanced tools, such as SPECK [301, share the same
deficiencies. Program correctness verification is very difficult to implement, and
more difficult to understand. Timing properties are either ignored at all or
receive a simple and fruitless analysis. The statistical nature of inputs is not
considered, and average and peak performance evaluation is not provided.

4.3.2 Finite State-Automata Model Analysis

Graph Model Analysis

The usage of graph models to describe problems and solutions has spread dur-
ing the last decade. The graph models were described in chapter 2 of this
document, and this section will concentrate in their analysis power. This mod-
eling provides information about the structure of the solution, as the process
based method does. Yet, more properties can be analysed: safeness, bound-
edness, liveness (deadlock freedom), reachability of states, equivalence between
solutions (optimisation), as wel as timing properties.

Various graph methods have been developed and used. Some examples are
the bipolar synchronization graph, the R-nets in SREM [41, and the Petri nets.
Some of them share a lot in common, and some look as an augmentation of
others. The next pages will describe a combined use of stochastic properties
and thq Petri npts.

Stochastic Petri Network (SPN) Model Analysis

Classic Petri nets [311 do not contain any timing properties concerning the
behavior of the finite state machine they describe. The reachability #t which
is produced when analyzing the net, describes all possible states the machine

66

can reach. If this model is extended 1271, by assigning probabilistic firing-rates
to transitions, the net becomes isomorphic to an homogeneous Markov process,
due to the countability of the markings and the memoryless property of the
firing rate. Some definitions summarise the SPN.

" PN =(P, T, A,M) , APetri network.

* SPN=(P, T,A, M,Q) ,PN extended toSPN.

" P ={p, ., p.) Places -drawn as circles.

" T {= , . t.n) ,Transition - drawn as bars.

" A = (P x T) U (T x P) , Input and output arcs.

*Q = {qi, .. , q.) , Average transition rates, for the exponentially dis-
tributed firing time.

" M = {ml,..,mrr,) , Initiaimarking -drawnansdots. M : P - Xi (the
natural numbers), M(pz) = mrI = ,.,n.

* Set function 1(t) =(p (p, t) E A) , Input places for transition t.

" Set function 0(t) = p: (t, p) E A) , Output places for transition t.

Molloy ([271) proves that any finite-place, finite-transition, marked SPN is
isomorphic to an one-dimensional discrete-space Markov process, concerning the
marking sequence. Hence, in addition to all properties that can be proved using
a regular Petri net (as describing concurrency, contention and synchronisation,
analysis of deadlocks boundedness and self regulation), the SPN provides capa-
bilities of performance verification: analysis of average delay, average through-
put etc., using queueing theory [231. Consider the following simple example (see
Figure 4.1) which demonstrates the combined use of the above methods.

Example: Given the following SPN:

1. The places and transitions sets:

e T =(t,.., trj.

2. The connections:

* 10t1) - (PI),0(ti) = {P2, P3)
* 1(t 2) = {P21, 0 (t 2) = {P4}

* 1(t3) = (P3), 0 (t 3) = (PS)

* 1(t4) ={IN), 0(t 4) = {P2)

87

p~ -7 - . 7

* 1ts) -(P,6, pS), 008) (pi)

3. The firing probabilities: q, 2, q2 -1, q3 = 1, q4 = 3, q6 = 2.

4. The initial marking: M = (i = 1; mi =0, 1 E2-.5)

Solving the above system using Molloy's method is performed as follows.

1. Analyzing the net structure, the transitions can be characterized as:

*(tG, ti) - Sequential.

0 (2 , t3) - Parallel.

*(t 4 , L8) - Contention.
* L - Fork. t6 - Joint.

2. The reachability set, describing the "token' occupancy in the places set
(i.e. the marking) M, = (p1, P2 , P3 , P4, PS):

* , M (1, 0,0,0,o0) .

*M2 =(0, 1,1, 0,0).
M3 M (0, 0, 1,1,0).-

*M4 =(0,1,o0,0, 1) .
MG M (0, 0,0, 1,1) .

A set of five reachable marking states.

3. Solving the ergodic Markov chain (as in [231):

*2PrIMlj = 2PrIM5I .
*2Pr[M2] = 2Pr(MlJ + 3Pr(M3J.
*4Pr[M3I = PrIM2I .
*Pr(M4J = 3Pr[M5I + Pr(M21.

* Pr[M5J = Pr[M4J + Pr[M3J.
*PrIM1J + Pr[M21 + Pr[M31 + PrIM4I + PrIM5J 1 1.

4. The marking steady state probabilities:

o PrfMlI - 0.1163.
*Pr[M2J - 0.1860.
*Pr[M31 = 0.0465.

*PrfM4J = 0.5349.

*PrfM5J - 0.1163.

68

w..~ I.

t4 t2 t

Figure 4.1: Example.

*Q=QQN!IUOWQM 89

5. Calculating the probabilities of token occupancy:

*Prjmi - 11 - 0.1183 - PrIM 11.
*Prim2 - 1) - 0.7209 - PrIM21 + PrIM41
*Pr[vae - 11 - 0.2325 = PrA421 + PrIM3I.
*Prfrn4 - 11 - 0.1628 - PrIM31 + Pr[MI51 .

* Prfv% - 11 = 0.6512 - PrM41 + Pr[MSJ .
6. The probabilities calculated above depend on the reachability set, which

itself depends on the initial marking. If the initial marking was 2 tokens
in pl, the reachability set would consist of 14 states, and 3 tokens in p,
would produce 30 states.

7. The ergodicity of the chain allows using Low balance technique and Little's
law for average performance analysis. In this example, the 4eras delay
time can be calculated as follows. Tfransition t, can be enabled only if
pi contains a token, hence utility(ti)=0.1163. Having 91 = 2 , implies
an average token Low of 0.2320 tokens per time unit in pl. Since t, is a
fork, the average token low in the parallel paths is doubled (0.4652), ad
reduced again in the joint is. Since the system conserves tokens (neither
deo" nor produce), we can apply Little's law, knowing the avage Bow
rate in each branch from above,

eN.- m. 1.7674.
eT.. 1.7674/0.4652 - 3.8 time units.

Another approach (Generaise Stochastic Petri Noe) is introduced in [31.
Combining this approach with product form. yuesmg us ntwork theory provides a
tool for performance verifiation for non-classical queueing constructs 171. This
combination can also be used to Ad upper and lower bounds, as an approxi-
mation for non-product-form systems performance.

4.3.3 Theorem Proving Techniques

Pravlng In General

Hoare's axiomatic approach was adopted for proving programs in various proof
systems. This approach was extended for distributed systems [291, and consti-
tutes a bas line for other proof systems, as for CSP proving 161 and others.
There are some major difficulties using the axiomatic approach:

Time dependent properties of concurrent systems (concurrency, mutual
exclusion) are difficult to specify.

701

" Finding invariants for complex systems.

" Simplifiation of long expresions awe in most times tedious.

The following paragraph idealing with ax approach which tries to solve these
prolem.

Uvemt Darnd Model

Even" based Model of & system 2 (191), soearates the systems's properties into
two Major categories: behavior which Mainly concerns the external view of the
system, and stuc ture which reflects the internal view of the system. Proving
the corrctness ot a system intranislated into a consistency check between the
behavior and the structure. Orthogonality between properties allows verification
o(each independently, and thereby avoids 'exponential state explosion' when
coming to derive test sets. The model is constructed from events and their
relations:

1. As event is an isstantaneeas (takensmero, time) atotmic (happens completely
or not at all) state transition ix the system's computation history.

2. Time .vdrnag is achieved with the precede (-) relation, which is a partial
ordering found also in 1241. Event @I preceds event s2 (el -~ e2) if-

* e1, .2 are events at the same process (ax autonomous computation
node, having its own local clock) and #I. coma before e2, or

eelI, s2 an. events at differen processes, and eli s a send imceac event,
and @2 i a recetive event of the very same message.

This partial ordering ensures that @I - s2 implies that e I happens before
@2 by any measure of time. (It is not 177 !). The ordering is transitive,
irrellexive and anti-symmetric.

S. Causality ordering, in achieved with the enable (-*) relation, which is also
a partial ordering, and is defined as follows:

Event al enables event s2 (. #Ius s2) IFF the ezistance of event el will
case occueace of even s2 in the future.
This ordering is also transitive, irreflexive and anti-symmetric.

This model allows program verification in a theorem proving fashion, using
the model's definitions combined with first order predicate calculus. Orthogo-
nality of relations in used tosmpif proof procedures which awe complex, yet
abstraction levels must be enforced to deal with very large systems. The system
interacts with its environment by exchanging messages through saidirectionaI
ports, in which local history is ordered locally, and the bceavor properties are
specified and measured. Some good property verifications are:

$The event-based model Is described in section 2.5, and a brief description is repeated here.

71

" Cncurrecpof events el and e2 is proved IFF -(el -- e2) and -(e2 -. el).

" Live nu of event is proved applying an 'enable's sequence to the initial
tMte. It guarantees that eak will eontsaUly happen, (proving starvation

freedom or message delivery) but more strict timing requirements cannot
be proved by this proof system which provides only partialorder relations.

Rowl Thne Lode

Another event band model is introduced in [211, in order to verify safety prop-
erties of a real time system. The model consists of events, actions, causality
relations, and timing constraints. The model is exprsed in a first order logic,
describing the system properties as well as the system's dependency on exter-
nal events. The Real Time Logic system (RTL) captures time with an event
occur ace function denoted WF. This function assigns time values to event
occurances, while the constraints and the scheduling disciplines are restrictions
imposed on the function. RTL uss three types of constants:

1. Aton consteans - may be primitive or composite. In a composite con-
stant precedence is imposed by the evat-action model using sequential or
parallel relations between actions.

2. Sein coneteat - are divided to three classes. Start/stop mants describe
the initiatioa/termination of an action or subaction. Transition events

e those wich make a ckang in state attributes (i.e. a change in an
assrtion about the state of she real time system or its environment).
External events are those which cannot be caused by the system, but can
impact system behavior.

3. I" er. - assigned by the occurance function, to capture time, and used
to denote the number of an event occurance in a sequence.

Assertions about the physical state of the system over time are translated into
algebrec meLt.she, involving the occurances of the appropriate transition events.
State predicase are used as a aotational device for asserting truth-values to state
attributes during a time interval.

A set of axioms can be derived from the ent-action model of the system by
applying an automatic translation to the system specification. This translation
describes the relations between actions and their start/stop events, the sporadic
and periad events constraints, as well as the causal relations which may initiate
a transition event. Artificial constraints may be added in order to prevent the
scheduler from executing actions thas are not counted towards meeting specified
timing constraints (i.e. not required), especially when utilisation of resources is
lees than 100%.

A timing property of a system (an RTL assertion) is expressed by showing
that there is no occurance function which is consistent with the system speci-
fication, in conjunction with the complement of this particular property. The

72

q tt *' p It R • . t v 'a~

mechanim to achieve it i the 4Waie. ess.Lishoi An important characteristic
of RTL allows using procedures used in Presburger Arithmetic: an RTL formuala
comsmuts of only algebraic relations and state predicates connected by first order
logic operators.

An advantage o(RTL is the uniform way in which different types of coa-
straints, can be expressed, by means of algebraic relations of event occurances.
Yet, it is weak in providing hierarchy levels ot abstraction, which are nwesary
to simplif system examination, and to relate the implemtented solution to the
rquiremensepecification. Since this approach is very young, it will probably

he deveoped in the future to provide these features.

4.3.4 Timing Properties analysis

Weakest Pre-cositom and i'iedlate 'franaozuw

A very interesting approach is introduced by V. Hlasse 1171 for verifiation of
real time behavior of program. Three major assumptions wre the base of this
approach:

1. The program commists of parts which are sequential nd parts which are
paral The sequential parts are constructood from Dxjkstra's guarded
commaoens, and the paralle constructs (PARC@) wre CSP-like parallel in-
serpretaton of the guarded commands.

2. The weakest pvecesn~tou predicate, 'Wp, provides the execution time
properties to the program par"s:

* In cam ot a sin*@e teeest (8), iLe., not an iterative nor a con-
ditionial one - whose execution time can he dolied as the non-
interrupted execuation time needed for the implementing processor
- the weaes" precondition can he interpreted as *the latest starting
time t to meet deadline T with statement execution time t,:

vp(S, t:5 T) = t:5 T - t,

" In case of an action, i.e., a non-interrupted sequence of sequential
statements (actions - Si;..; 5)

-t:5 T -

3. Since execution is also tp*ea-eeenand not only hardware de-
pendent, this property (which appears in branching points and in iteration
decision) is characterised with Difkstra's predicale trmejerforr rule

t".- f (di, .)

73

1%hI

Whene dl,.., d. are input data of action

Iu practice one can distinguish two case.

0 when f(..) is a constant or very uignple, then execution time can be eval-
uated explill1y prior to execution.

0 when f(..) is comparatively ceesplse; then an upper bound can be esti-
mated, and if the bound is passed during execution, a special process (as
uwatch-do(') may re-evaluate necesnsary updates.

Time Behavior of Seqluential Programs

Hanase suggests a method to analyse sequential program:

I. T swnforusafio into rsarded-cemmad notatsin: Transforming the non-
iterative and non-branching parts is done as described above, while deriv-
ing the weakest-preconditions appropriately. Then

o Couastionsd statemes are transformed into Dikstra's IF:

Deriving the weakest precondition:
wp(IF,t 9 T) - (j: gi) and (Vi : gi - t < T - t,,

* Iterative statements are transformed into Dijkstr's DO:

DO

9 a- ction,

OD

Deriving the weakest precondition:
wp(,DO,9 :5 ') - (3k a 0: Hk (t :52')) ,where

1ot5 2') - (9!5 2') AND -. (3j : g,), and
H#(95 2') - '.p(IF", Hh... 1 (t <52T)) OR Ho(t S T) 3.

$I"~ demotue the aem* guarded-comnud sot with awuned ir/F! bracket.

74

2. After the program is written in an equivalen guarded commands notation,
the pveravui weakest preonition has to be constructe@, applying the
sequential rules introduced above.

3. Eialust. the program's wr. The evaluation of the program's weakest pre-
condition

wp(progrn, t :5T - wp(S,,..wp(D, up(iF, t 5)).

is carried out inside At*. Starting witha the inner moat uip, its weak-
"t precondition is evaluated, then substituted in the following, until the

outer most ie evaluated, and thereby provides the whole program's latest
starting time to meet the required deadline.

Thme Behavior of Parale Programs

Parallel program, constructed with PARC., can be analysed with predicate
transfrra am well. A verny important assumption is taken in the constructing
phase, that the guards variables are mutually esciseave. This yields a very
similar guarded commands set, yet the ree limee behaor to differwat from the
sequential programs.

*PmIW cesiities construct, denoted Er-PARC, is carried out as followa:

PAR-IF

Semantics are defined by the formulas

(Rj)amad(R2)..and(R,) - R

and

tep(IF - PARC, R1 ..andR,,)

eV I..n) : (qj - wp(actioi, Rjan-,(Vj) - R.) -. wp(IF - PARC, R).

All R. are substituted by t !5 T, and false jws are omitted (not contributing
to execution time). The latest starting point is therefore

wp(IF - PARC t !5 r) - V:g'- (t 5 T -

75

e Paralel iterative constrct, denoted DO-PARC, is carried out as follows:

PAR-DO
g - acton.II.
II.

PAR-OD

Semantics identity between DO and DO-PARC allows using parallel struc-
tures as well:

wp(DO - PARC,t 5 T) - (3k 2! 0: H,(t < T)).

But the evelatio is diferent

DO: execution time = ta + to!
DO-PARC: execution time - a(tj, t.).

A method to evaluate the latest starting point is

1. Each action is represented by a secter is the state space of PARC.

2. Fetablish the pat", Le. the sequences of actions, leading from assumed
p91-stafe. to given po.t..tates of the whole activity.

S. Consdwer the following caes:

Cam a. If the path between any two states is uambigsous, then the sum
of the intermediate execution times of the steps is taken into account.

Case b. If the path is smUrwas, then etsrmine partial sequences that
can be eca safed, and then naximum execution time of the partial
sequences is taken into account.

4. If in the example above we assign equal execution times to the actions of
P (every vertical step), denoted by t,, and equal execution times to the
actions of P (every horisontal step), denoted t,, we can conclude (see
Figure 12):

4 to 3:action, - tA
3 to L:actionIljctiong - maz(tj,, t.)
1 to O:.action - t,

76

11i H1

32

P3

Figure 4.2:. Path& Example.

Therefore, the calculation of the weakest precondition is restricted by

Hlas. s approach gives a tool to deal with medium-complex real-time pro-
grans, yet when dealing with very complex systems, one may find it very hard
to analyse. In order to solve this situation, he suggests the use of a dynamic
cAkin of (estimated) deadline, by adding a parallel constrol actio. This dy-
namnic scheduling approach is ver similar to the Lostncy Schedulinp we reviewed
in chapter 2.

4.3.5 Operational Analysis

Performance evaluation using 1121 operational analysis provides a quantifying
tool to obtain average performance properties. Using a routing connection be-
tween service centers (C.S.) whose performances are given, one can obtain the
performance of a specific slystem cenflgsrstion in steady state. It is done asum-
ing job flow "ss~a", and applying simple statistical tools to derive properties
which one cannot obtain by observation (external direct measurement). Al.
though these properties may be derived by the models we reviewed so far, it
seem that this evaluation technique covers a field which all the other papers
(mentioned in this review) have not dealt with. This is the resources saturation

77

problem, which arises due to the resources bounded utilization, which produces
the bottle-neck phenomena. Analysing the system's performance must take into
account the simple fact that service centers may be "pushed' only up to their
utilization upper bound, and therefore, the weakest-point in the system config-
uration will slow down all other parts.

In order to describe the bottle-neck analyai, the notation used in [121 will
be used in the following paragraph. Let

e U, be the utilization of S.C. i, defined as its "busy time" over an observa-
tion period T.

* X, be the throughput of S.C. i, defined as the number of job "departures"
from it over an observation period T.

* V, be the visit ratio of S.C. i, defined as its throughput part in the whole
system throughput (equals X,/X.).

* 5i be the mean aermCe time of S.C. i, defined as the portion of its busy
time served to each customer (i.e. (T x U) / (T x Xi)). Hence, U = Xi x Si

* R, be the m n response time of S.C. i, and let R denote the whole system
response time for a single customer.

The bottle-neck analysis is done assuming a device has reached its highest
utilisation, and let this device be denoted by the subscript b. Hence, Ub = 1.
In order to determine which S.C. is b, we have to compare the utilizations of
all S.C.s, and pick the highest one, since increasing the customers number will
increase utilizations of all S.C.s, until one of them will reach 1, and the first to
do so will be the one with the highest U, to begin with.

U,/uj = (X, x S,)/(xi x sA
division and multiplication by X. gives
U,/UY = (X, x S,/Xo)/(X, x SY/Xo)
and since X,/Xo = V then
U, lU, = (v x S,)/(VY x S)
Then, in order to pick the highest utility,
Vb x Sb = MAXj (V x S,)

For saturation state of the bottle-neck S.C. the following will hold:

U1 - 1 --. x6 1/Sb
Vb = x 6/X.
Hence,
xo = 1/(Vb X Sb)

Due to N - N. customers in the system.

78

I

Ile
Tlk,

Yet, for the single customer case, X, = 11R. due to N = 1 customer in the
system.

Plotting a graph of the system throughput versus the number of customers
in the system, we have the two points (for N = 1 and N = N.) with their
corresponding throughput, to construct the asymptotes which serve as an upper
bound to the systems throughput. The saturating N can be calculated as

N./1 = (l/Vb x Sb)/(1/Ro)
for a system without delay.
Hence,
N. = Ro/(Vb x Sb).

The results of the latter analysis are based on broad assumptions: mean
service time for all customers, similar demands of service within time, etc. No
peak analysis can be derived from them, yet they form a performance bound
that has to be considered when the system is evaluated.

4.4 Simulation As Verification Tool

4.4.1 Classes and Aims

One can distinguish two major classes of simulations that are used to verify
properties of a real time program:

1. Simulation of the system under test itself.

2. Simulation of a plant/load that the system meets as its 'real world'.

There are various reasons to simulate the program itself

" During the first phases of the design, it helps to verify basic properties of
the model used, i.e. the approach chosen to solve the given problem.

" Using an approximate simulation, one may predict approximate perfor-
mance of the system, within a certain confidence level.

" Design trade-offq may be checked and analyzed.

" After the system completes its development cycle, a detailed simulator
may be used to verify achievement of design goals, by comparing its out-
puts to the real system's outputs.

" It may serve as a good tool for providing answers to "what if" questions,
especially when deciding on upgrading the system.

79

. , ., ,, .,, . v h ¢% / : Y / ': ' . 1*

A detailed simulator of a system is very expensive to develop [301, and the effort
invested in it may lead to the fact that it is completed only after the real system
is ready [5]. A more common simulation is a plant/load simulator, which is used
for:

e Controlled measurements of the system under load, making it possible to
isolate specific properties in a specific environment.

* Proving system under test, when there is a danger to test it with the real
plant (e.g. control program of a nuclear power plant, control program of
a weapon), if the risk calculations (see section 4.2.2) justify the effort of
developing such a tool.

o A good debugging tool when trying to reconstruct a pattern that lead to a

crash or a deadlock, when only partial information exists for the analysis.

The basic idea in using simulation as a verification tool, is to gain an advantage
that no test provides. A test is constructed according to the system's specifica-
tion. The simulation provides a verification of the specification as well as of the
system under test.

4.4.2 Problems in Simulation As a Verification Tool

1. Simulation of a large system is rarely used, especially due to the cost
involved in developing it. A good simulator of a system, requires an effort
investment which is in the same order of magnitude as the development
of the system itself.

2. When the risks of operating the system are high, the simulator used as
a test tool should be highly reliable, to an extent even more than the
system under test. This means that in addition to the development cost,
the simulator has to be extensively used per se, before being qualified as
a verifying tool.

3. If the design model and the simulator are derived from the same basic

assumptions, a special kind of errors may arise, called common mode er-
rors: The simulator and the system under test are both mistaken, and the
errors are failed to be detected.

4. When comparing simulator results and system results, discrepancies may
be found. The problem of deciding "Who is wrong?* may be very difficult
to solve. One must be very cautious not trying to change the real world.

5. The most difficult problem in simulating a large real time system is the
dependency of its performance on the sequence of inputs data. Since the
simulator is required to perform as the real system should, including real
time properties, the complexity required from it is of the same level, and
sometimes even higher.

80

The problems described above make simulation as a verification tool rarely
found when dealing with large real time systems. Only in cases where it is
unavoidable, regarding risk factors involved, a large effort is invested in it.

81

81I

Chapter 5

Conclusion

This work tries to review three phases in the life cycle of real time program-
ming. Chapter 2 of this document reviews the design phase, by introducing
requirements specification techniques, modeling methods, and basic approaches
to the design as a whole. Chapter 3 of this document reviews implementation
aspects of real time programming, by introducing a disciplinary approach, as
well as focusing on implementation aspects that concern the Ada language task-
ing facilities. Chapter 4 of this document reviews the problematic aspects of
validating a real time system. Various methods of testing are presented, as well
as proof systems and simulation techniques.

As can be seen in the above chapters of this document, methods that are
powerful in one phase, seem to fail in another. For example, a stochastic ap-
proach of any type provides powerful results in verifying mean values of a system,
but fails to serve as an aid for overcoming scheduling problems in the design
phase. This situation sometimes leads to a combined use of some methods,
linked together by some means, to provide a scheme which covers all the as-
pects (as in [5]). In this review, one may find such links. One of them is the
Petri net, which can be used in the design (i11l) with some augmentations (1101),
it can be automatically translated to a program, with some modifications and
annotations ([28]), and it can also be used to verify some statistical properties
([27,3,7]). Operational approach also tries to bridge the different phases ([35]),
as do the structured methods ([4,22,16]). Some theoretical considerations ([26]),
and disciplinary recommendations ([34,18]) may assure that the combined use
of methods is well coordinated.

As stated in the beginning of this paper, the objective here has been to
describe the major techniques applicable to the three phases in the life cycle
of a real-time system. In this regard, we attempted to include most major
techniques and trends for the real-time systems.

82

N", Zf

Bibliography

[1] Ackscyn R., McCracken D., Zog and The USS Carl Vinon: Lessons in
System Development, CMSC Dept. Carnegie Mellon Univ., Pittsburgh,
PA, March 1984.

[2] Reference Manual for The Ada Programming Language, U.S. DOD (ANSI)
MIL-STD 1815a-1983, Feb 1983.

[3] Ajmone-Marsan M., Balbo G., Conte G., A Class of Generalized Stochastic
Petri Nets for Performance Evaluation of Multiprocessor Systems, ACM
Trans on Computer Systems, Vol 2 No 2 pp 93-122, May 1984.

[4] Alford M., A Requirement Engineering Methodology for Real Time Process-
ing Requirements, IEEE Trans on Software Engineering, Vol SE-3 No 1 pp
60-69, Jan 1977.

[51 Anderson G., The Coordinated Use of Five Performance Evaluation Method-
ologie., Communications of the ACM, Vol 27 No 2 pp 119-125, Feb 1984.

[6] Apt K., Frances N., De Roever W., A Proof System for Communicating
Sequential Processes, ACM Trans on Programming Languages and Systems,
Vol 2 No 3 pp 359-385, July 1980.

[7] Balbo G., BrueU S., Ghanta S., Combining Queueing Network and Gen-
eralized Stochastic Petri Nets Models for the Analysis of Some Software
Blocking Phenomena, IEEE Trans on Software Engineering, Vol SE-12 No
4 pp 5861-576, April 1986.

[8] Basili V., Weiss D., Evaluation of Software Development by Analysis of
Changes, TR-1236 Univ. of MD, Dec 1982.

[91 Chen B., Yeh R., Formal Specification and Verification of Distributed Sys-
tem8, IEEE Trans on Software Engineering, Vol SE-9 No 6 pp 710-722, Nov
1983.

[101 Coolahan J., Roussopoulos N., Timing Requirements for Time Driven Sys-
tems Using Augmented Petri Nets, IEEE Trans on Software Engineering,
Vol SE-9 No 5 pp 603-616, Sept 1983.

83

I

(111 Courvoisier M. et I, Task Synchronisation in Distributed Real Time Con-
trol Sptema, IEEE Proceedings - Real Time Systems Symposium, pp 83-88,
Miami Beach FA, Dec 1981.

[121 Denning P., Busen J., The Operational Analysis of Queueing Network Mod-
* .lc, Computing Surveys, Vol 10 No 3 pp 225-261, Sept 1978.

* 1131 Dowling J., Some Methods and Tools for Real Time Software Validation,
Proceedings of The 12'th IFAC/iFIP Workshop of Real Time Program-
ming, pp 81-86, Hatfield UK, 29-31 March 1983.

[14] Garetti P., Laface P., Rivoira S., Multiprocessor Implementation of Tasking
Facilities in Ada, Proceedings of The 12'th IFAC/IFIP Workshop of Real
Time Programming, pp 97-102, Hatfield UK, 29-31 March 1983.

[151 Gehani N., Cargill T., Concurrent Programming in Ada Language: The
Polling Bias, Software Practice and Experience, Vol 14 No 5 pp 413-427,
May 1984.

[161 Gomma H., Software Design Method for Real Time Systems, Communica-
tions of the ACM, Vol 27 No 9 pp 938-949, Sept 1984.

[17] Haase V., Real Time Behavior of Programs, IEEE Trans on Software En-
gineering, Vol SE-7 No 5 pp 494-501, Sept 1981.

118] Heninger K., Specifying Software Requirements for Complex Systems: Tech-
niques and Applications, IEEE Trans on Software Engineering, Vol SE-6
No 1 pp 2-13, Jan 1980.

[19] Hoare C., Communicating Sequential Processes, Communications of the
ACM, Vol 21 No 8 pp 666-677, Aug 1978.

[20] Houghton , Software Development Tools, National Bureau of Standards,
Special Publication 500-74, 1982.

[211 Jahanian F., Mok A., Safety Analysis of Timing Properties in Real Time
Systems, Department of Computer Science, University of Texas, Austin,
Texas, Sept 15 1985. (To appear in IEEE Trans on Software Engineering).

122] Kodres U., Analysis of Real Time Systems by Data Flowgraphs, IEEE Trans
on Software Engineering, Vol SE-4 No 3 pp 169-178, May 1978.

[23] Kleinrock L., Queueing Systems, John Wiley and Sons, New York NY,
1975.

[24] Lamport L., Time, Clocks and Ordering of Events in a Distributed System,
Communications of the ACM, Vol 21 No 7 pp 558-565, July 1978.

84

1251 Ma P., Lee E., Tsuchiya M., Design of Task Allocation Scheme for Time
Critical Applications, IEEE Proceedings - Real Time Systems Symposium,
Miami Beach FA, Dec 1981.

(261 Mok A., Fundamental Design Problems for the Hard Real Time Environ-
meat, MIT Ph.D. Dissertation, Cambridge MA, May 1983.

127] Molloy M., Performance Analysis Using Stochastic Petri Nets, IEEE Trans
on Computers, Vol C-31 No 9 pp 913-917, Sept 1982.

[281 Nelson R., Haibt L., Sheridan P., Casting Petri Nets into Programs, IEEE
Trans on Software Engineering, Vol SE-9 No 5 pp 590-602, Sept 1983.

[29] Owicki S., Gries D., Verifying Properties of Parallel Programs: An Az-
iomatic Approach, Communications of the ACM, Vol 19 No 5 pp 279-285,
May 1976.

[301 Quirk W. (editor), Verification and Validation of Real Time Software,
Springer-Verlag, Berlin Germany, 1985.

131] Reisig W., Petri Nets, Springer-Verlag, Berlin Germany, 1985.

[321 Teichroew D., Hershey E., PSL/PSA: A Computer Aided Technique for
Structured Documentation and Analysis of Information Processing Systems,
IEEE Trans on Software Engineering, Vol SE-3 No I pp 41-48, Jan 1977.

[33] Voges U., et al, SADAT - An Automated Testing Tool, IEEE Trans on
Software Engineering, Vol SE-6 No 3 pp 286-290, May 1980.

[34] Wirth N., Toward a Discipline of Real Time Programming, Communica-
tions of the ACM, Vol 20 No 8 pp 577-583, Aug 1977.

135] Zave P., The Operational Versus The Conventional Approach to Software
Development, Communications of the ACM, Vol 27 No 2 pp 104-118, Feb

1984.

I
85 N-

W'

A

#4

~ ~ rg~-w w~ a -~p ~ - ~ --

