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Abstract

The use of real-time systems is widely spread today, and involves very large and
sophisticated programs. In addition to the comstraints imposed oa “regular”
very large programs, real-time very large programs are subjected to stringenat
real-time constraints that the designer tries to mest, to satisfy, and to validate.
- Thoss very large programs (systems) are of a very complicsted nature, and need
special methodologies. This review tries to summarise the methods, approaches,
Sechniques and tools which are used today during a real time system’s life cycle.
The review deals with three important phases of a real time system: the design
phase, the implementation phase, and the validation phase.
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Chapter 1

Introduction

The commercialisation and cost reduction of microcomputers has resulted in
an increased wee of real-time systems in a wide variety of felds. Traditiomal
hardware equipment has besn replaced by computerised systems, which have
provided a move Sexible and expandable euviroument. Military, industrial and
medical spplications implement most of their required coatrol functions us-
ing computerised real-time systems. Examples of such applications are auclear
power plant coatrol, industrial plant comtrol, medical moaitoring, digital fy-
by-wire avicnics and weapoa delivery systems. As the wee of such systems has
spread, the timing requirements have become more siringent, and the reliability
requirements have become more difficult to achiove.

Designing real-time systems is thought to be one of the most complex pro-
gramming activitiess. Whea building a model of ascending complexity in design-
Nmm[w.mMMMW&hauﬁu

the complexity to the level of concurrent programming, and finally adding the
timing notion to reach the level of real-time programming. Combining the reli-
mmmmmmw mduuamdymud

response time, may change the system behavior to a point where it does not
satisfy & particular program’s requirements any more.

This review tries to summarise the methods, approaches, techniques and
tools which are weed today during a real-time system’s life cycle. The review
deals with thres important phases of a real-time system: the design phase, the
implementation phase, aad the validation phase. (Another important phase,
the maintenance, is not included in this review). A chapter is dedicated to each
of the above phases.




The goal of this review is not to criticise the different approaches which are
summarised here, rather it is to highlight interesting aspects which concern the
life-cycla of a real-time system. A strong emphasis is layed on new approaches.
Some of the approaches are described in more details than others. Methods
which are very widely used nowaday, are sometimes briefly mentioned, while new
(snd sometimes even immature) methods are reviewed in depth. The reason is
certainly not the importance of the more detailed ones, but the limitations of
this review due to its nature and goals.
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Chapter 2

Design Methods for Real
Time Programs

2.1 General

Many approaches and methods are used in designing software. This chapter
tries to capture past and present works which are used in designing real-time
software. Some commonly used methods are not reviewed here. Jackson and
Warnier design methods are data structure oriented methods, primarily suited
for program level design. Both can neither handle the decomposition into mod-
ules or tasks, nor are they appropriate for real-time systems. Higher Order
Software methods use functional decomposition, but fail to address tasking and
synchronisation issues. Thus, two major methods are examined: a structured
design method, and an event-based design method. The methods are divided
further according to the modeling they enforce, and to the system statement
and analysis approaches they adopt.

The next section of this chapter deals with requirement specification tech-
niques and approaches. The third section describes structured design methods,

_ mainly process based methods, and some problematic issues concerning the ap-

plication of these methods. The fourth section describes issues that arise when
applying a graph-based design method. The fifth section compares the above
conventional methods versus the operational method which is more implemen-
tation oriented. The last section of this chapter reviews FSA (Finite State
Automats) modeling of real-time systems, mainly the Petri Nets Theory and
some augmentations applied to it.




2.2 Requirement Specification Methods

A lot of software engineering research has addressed the problem of defining
complete and consistent requirements specification methodologies. In this sec-
tion, a review of two methodologies is given, along with an example of how
to implement a third methodology. The principles of these methodologies are
important to real-time software design, as they are to other fields. Although
some methods emphasise only the documentation part of this early phase of de-

sign, other methods provide good tools for structure construction and feasibility
checks.

2.3.1 PSL /PSA

The PSL (Problem Statement Language) and PSA (Problem Statement Ana-
lyser) are computer aided tools [32] especially designed for requirement speci-
fication statement and documentation of information processing systems. This
tool emphasises the front end of the system for specifying the requirements, and
produces a large variety of documents describing the database for the system
specifications entered so far. The database is built by steps, and hierarchy can
be imposed. The basic structure in the system description in the OBJECT, to
which PROPERTIES can be attached with PROPERTY VALUES. The objects
are connected by RELATIONSHIPS, while both objects and relationships may
be classified with TYPES. PSL produces upon demand eight types of reports
for system description:

1. System I/O Flow - The interaction between the target system and its
environment.

. System Structure - Objects hierarchies.
. Data Structure - Internal relationships between data objects.
. Data Derivation - The relationships between processes and data objects.
System Sise and Volume.
System Dynamics - System *behavior® within time.
. System Properties - Distinguishing remarks.
. Project Management - Project schedules etc.
In addition PSA Produces the following report types:
1. Record of mod.iﬁcatiom applied to the database.

® N e ;AW W

2. Reference reports - Names, properties, dictionary.

3. Summary reports - Structure and flow.




4. Analysis reports - Contents comparison, data processing interactions, pro-
cessing chain.
For a design of a real-time system, this computerised tool can be used for

documentation, but no benefits can be gained for the continuation of the design
phase, and for the verifiability of the design.

3.2.2 SREM

SREM is a requirement engineering methodology [4], which was developed
for the Balistic Missile Defense Advanced Technology Center by TRW. The
methodology adopts the functional hierarchy requirements of MIL-STD-490, in
which each process is divided to functions, each of these further divided to sub-
fanctions, and 50 on. The hierarchy imposes validation difficulties, especially
when trying to exercise sub-sub-function through input sequences.

Seven Key Concepts of SREM

1. A testable requirement must be specified in terms of data input and out-
put. The reason for this concept is that a real-time software is tested by
inputting 3 MESSAGE and extracting the results of its processing (an
output MESSAGE) and the content of memory.

2. Processing PATHs are sequences which do not contain loops, defined in
terms of input MESSAGEs, output MESSAGEs, processing steps, and
data utilised and produced.

3. VALIDATION POINTS are places where a test may be performed in terms
of variables measared on the PATH. Defining the testable variables on
validation points assures testability and unambiguity of the requirements.

4. R-NET is an integration of all the PATHs that process a given type of
stimulus, into a Requirement NETwork. This is a graph model of the
computation and the flow. Five types of nodes are used in the graph:
processing step node (ALPHA), input/output interface node, and/or flow
node, selector node, and validation point node. The unidirectional arcs
represent the data flow between the nodes.

8. RSL - a formal language for specification of requirements.

6. REVS - an automated tool which speeds up and validates the require-
ments’ completeness and consistency.

7. Methodology STEPS - which produce intermediate products obeying eval-
uation criteria for each step.

iy
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Methodology Steps and Their Products
Step 1. Translation.

1. Issues addressed:
o Adequacy of subsystem performance requirements (DPSPR) for
generating processing requirements.
. e Early baselining of the functional requirements.
) e Budgeting and scheduling the activities.
2. Activities in this step:
¢ RSL originating requirements entered into REVS database.

e Generation of R-NETs, DATA, ALPHAs, with traceability back
to DPSPRs.

o Analysis of consistency and completeness of the requirements.
e Generation of DPSPR problems report.
¢ Budgeting and scheduling further activities.
3. Products:
« DPSPR problem report.
¢ R-NETs.
e ALPHAs.
e DATA.
o PFunctional traceability.
e Plans.

Step 2. Decomposition.

1. Issues addressed:

o Preliminary definition of the performance requirements.

e The incorporation of the processing to satisfy the subsystems
constraints into the processing requirements.

2. Activities in this step:
o Identification of the form of the performance requirements.

o Specification of the data collected at validation points (software
variables).

o Recording the decisions made, to relate accuracy and timing re-
quirements back to DPSPRs.

3. Products:

o Refined RSL.
e Performance traceability.
e Validation points.




Step 3. Allocation.

1. Issues addressed:

o Determining the sensitivity of PATH performance to DPSPRs.
o Establishing the tradeoffs between accuracy and timing of the
" different PATHs, then selecting an allocation which is not overly
restricted.
2. Activities in this step:
o After establishing the requirements of each of the PATHs, the
requirement and its test are written in RSL.
o In complicated systems a functional simulator is developed.
3. Products:
o Performance sensitivity.
o Performance statement.
o Process Performance Requirements (PPR).
e Functional simulation.

Step 4. Analytical Feasibility Demo.

1. Issues and Activities:

o Example algorithms are implemented to demonstrate that criti-
cal processing requirements can be satisfied. This is done before
attempting the design of an algorithm for the real-time software.

o A direct check is provided by the above, the algorithms that
satisfy the PPR, in fact meet the originating requirements - the
DPSPR.

2. Products:
e Example algorithms.
e Simulator.

Conclusion

The SREM methodology allows specifying complete and consistent requirements
to both the system and its subsystems. The R-NET graph model resembles more
advanced models of FSA, and allows better visibility of relations and testability
properties. Yet, most of the performance decisions and the structure built-up
are manual, and depends highly on the designer’s skills. The use of a functional
simulator to verify performances is misleading due to common mode errors (see
section 4.4.2), and to the high cost of providing it on time.




32.2.3 Example: A-7 Requirements Specification

Another approach for requirements specification is introduced in the redesign
of the avionics software of the A-7 Navy’s aircraft. The method introduced
(18] is used by the Naval Research Lab and the Naval Weapon Center. The
flight program which was documented is a part of the Navigation and Weapon
Delivery System of the aircraft. The program has high accuracy requirements
and stringent real-time constraints. It receives input data from the aircraft
sensors and from operational switch panels, and controls many devices (e.g. the
Inertial Measurement System, the Head-Up display, the Doppler, Barometer
etc.). The program’s main tasks are to calculate the navigation information
and to control the weapon delivery.

Requirements Document Objectives

The objectives of a document that integrates the requirements of a software
system, as interpreted by Parnas et al, are listed below.

1. Specify external behavior only, without implying a particular implemen-
tation.

2. Specify constraints on the implementation, especially the details of hard-
ware interfaces (usually the case with computer embedded systems).

3. Installing changes should be easy.

4. Ability to serve as a reference tool.

5. Record forethought about the life cycle of the system.
6. Characterise acceptable response to undesired events.

Requirements Document Design Principles
1. State questions before trying to answer them.

2. Separate concerns: organise the document such that any project member
could concentrate on a well-defined set of questions.

3. Formality should be used as much as possible, in order to obtain precision,
consistency, and completeness.

Techniques for Describing Hardware Interfaces

e Oryanisation of Data Items: A data item is a unit concerning an input or
an output that changes value independently of other inputs or outputs.

10

A

LAIE MR MRS 0608 2 MV M)

S : ALY 0K ER MO0
D O O D O D Ot O ot R R A R DR OO D SO DD AN



o Symbolic Names (for Data Items and Values): Data items coatain two
kinds of information: arbitrary details and essential characteristics. Es-
sential information must be expressed in a way that would allow using it
from the rest of the document, without referencing the arbitrary details.

o Templates for Value Descriptions: Describing each data item in ad hoc
fazhion produces inconsistencies between documents. The existence of
templates provides the following features: values description is easier,
there is a consistency between documents, and standards of completeness
may be applied uniformly to all items of the same type.

o Input Dats Items Descrided as Resources: The input data items are de-
scribed as if using an inventory of available resources to solve the problem.
This description is independent of software use.

e Output Data Items Described as Effects: Most of the output data items
are described as effects on external hardware.

Techniques for Describing Software Functions

o Organizing by Functions: Functional hierarchy is adopted as for MIL-
STD-490. Two classes of software functions are distinguished: periodic
fanctions and sporadic (on-demand) functions. The distinction is useful
in cases where different performance and timing constraints are imposed
for each.

o Output Values as Functions of Conditions end Events: A condition is a
predicate that characterizses some aspect of the system for a measurable
period of time. An event occurs when a condition changes its truth-value.
Hence, events are associated with instants of time, whereas conditions are
with time intervals. Events designate start and stop of periodic functions,
and they trigger sporadic functions.

e Consistent Notation for Operating Conditions: Maintaining a consistent
notation has crucial importance in requirements document. The A-7 ex-
ample provides a notational standard in which conditions, events and text
macros are well defined and distinguished.

o Using Modes to Organize and Simplify: Modes (i.e. classes of system
states) help in simplifying and organising the hierarchical structure, by in-
troducing a higher abstraction level. Furthermore, a transition list which
includes entries from one mode to another, allows detection of illegal tran-
sitions as well as serving as a control tool.

o Spectal Tables for Precision and Completeness: The A-7 document uses
two special tables to express information precisely and completely. A
condition table is used to define an output value upon a specified active

11




mode and a condition that occurs within that mode. An event table shows
whea a sporadic fanction should be performed, or when a periodic function
should be started or stopped, with respect to the currently active mode.

List of Undesired Events

A classification of undesired events, as given by Parnas, is shetched below. As
mentioned before, an acceptable respoass to any of these occurances should be
specified, and not left to the programmer to invent.

1. Resource failure.
o Temporary.
o Permanent.

2. Incorrect input data.
o Detected by examining inpus oaly.
e Detected by comparison with internal data.
o Detected by uwser realising he made a mistake.
o Detected by user from incorrect output.

3. Incorrect imternal data.
o Detoected by internal inconsistency.
o Detected by comparisoa with input data.
o Detected by user from incorrect output.

2.3 Process Based Structured Design Methods

2.3.1 Theorstical Description
A theoretical examination of the process based methods is givea in [26].

Types of Process Based Methodologies

Mok distinguishes two types of design methodologies in applying the traditional
process based desiga method:

1. The virtual processor methodology: Each process is assumed to have a
dedicated processor (ses aleo [34]). The objective of this approach is to
have a provea bounded exscution time, while assuring properties of no-
deadlock, fairness, etc. Timing comstraints are therefore left to be solved
by the scheduling strategy. This solution does not address issues such
as communication bottle-neck, which then has to be addressed through

12




Misrarchy of processors thes eften reduces the problem, but does nst always
solve ik,

2. Presssssr sharing methedelegy: Precessers are assumed to share resources.
The sharing is subjected t0 known scheduling disciplines and wsage restric-
tions. A pessibls usege of priorisy discipline is expected in the scheduling
(e.g. EBarliest Deadline Algorithm). A dificulty that arises is that whea

processss may request service with ao a prieri knowledge of request times,
then ot all feesible sets of timing consiraints can be satisfied by aay cne

multi-processer scheduling algorithm.

Deseription of the Theoretical Meodel
Seme problems ape highly relevant to hard real-time cavircament:
o Desompesition of the computational requirements.
o Dictation of the processing scheduling discipline.
o Adeguacy of the concarrency coutrol mechaniom.
In order to analyss the system behovior Mok intvoduces the following model:
o Lot A, be the sst of periodic processes in the system.
o Lot M, be the set of speradic processes in the system.
o M=MUM,

o Each precess 7; is a triple (e, ps, &), where: ¢; denotes the computation
time of the process, gy demctes the period, and & demnotes the deadline.

eVi:g<d<p
Alhough » sporadic process has no specific period, its p; stands for the maximal
frequency in which it is allowed to appear.
3.3.3 Scheduling Using a Process Based Model
Scheduling Regquirements

A necessary coadition for scheduling is that the sum of all utility factors of the
processes is less than the aumber of available processors. In other words:

Ti(e/m) < # of avail processors.

The scheduling in real-time environment requires that all the constraint of the
periodic and the sporadic processes are comtinuouwsly satisfied. The most gen-
earal scheduling comstruct involves two schedulers: an off-line scheduler which

13




“dictates pelicy”, and & run-time scheduler which is completely oa line and
obeys the policy dictased by the ofi-line. For theoretical analysis purposes, Mok
defines o “clairvoyant” scheduler: it has special insight and can predict the
unpredictable.

Siagle Processor Scheduling

The most ocbviows scheduling algorithm is the “sarliest deadline” algorithm.
The scheduler chooses to emscute the process whoss deadline is the earliest
to happea. A betier approach is to wee a scheduling policy which chooses the
process whose maximal delaying possibility is the lowest. This approach is called
the “least alack” algorithm, where the slack of a process at time ¢t is defined as

the manimum time which a run-time scheduler can delay it, without disobeying
the comstraints.

slack(P;,t) = mas(d(t) — ¢ - ¢(t),0)
Mok proves the following theorems concerning a single processor scheduler:

o The least slack algorithm can be wsed as a totally on-line optimal rua-time
scheduler, under the assumption that the scheduler can chooss to preempt
a process, by any other ready process, at any integral time instance.

o Where there are mutual exclusion constraints, i is impossible t0 find &
totally on-line optimal rus-time scheduler.

e Lot M = M,U M, be an instance of a processes model, and et ¢ = d; —¢;
be the nominal slack of each process. Replace every T; = (¢;, 5, di) € M,
by & periodic T} = (, 9}, d}) , such that p} = min(p;, & + 1) and & = ¢;.
¥ M’ (which is created by the replacement) can be successfully scheduled,
thea Af can be scheduled without a priori knowledge of the request times
of M,.

Multi-Processor

In & multi-processor environment, (probably using a rendesvous mechaniom to
syachroanise betwesa commaunicants) the earliest deadline algorithm may fail.
Mok suggests it can be fixed by revising the deadlines dynamically, as follows:

1. Sort scheduling blocks gemerated in [0,L] in reverse topological order.
3. Initialise the deadline of the k'th instance of T}, to (k — 1)p; + ds.
3. Revise the deadlines in reverse topological order by
do = Min{d, (& - ¢ : k= > ¥),
where & and ¥ are scheduling blocks.

14




This modification allows the following theorem:

o [ a feasible schedule exists for an instance of modsl, restricted by rea-
desvous comstraints, then it can be scheduled by the earliest deadline al-
gorithm, modified to schedule the ready process which isn’t blocked by a
rendesvous, and has the nearest dynamic deadline.

3.3.3 Requirement of a Structured Design Method

A structured design method decomposes its modules hierarchically. When ap-
ﬁbn%mt&ﬂdkmﬂhwﬁothb&wﬁg
((16)):

1. Deata-flow-oriented design. A structured design consists of two main com-
ponents: (1) Two sets of criteris, cohesion and coupling. (2) Top down
decomposition of a system into modules. The objective of the design is
to produce s system in which modules have high cohesion and low cou-
pling. In order t0 examine these properties, data-flow approach is appro-
priste [22], showing the functiosal modules (trensforms), the data flow
betweea them, and the data stores accessed by them. Furthermocs, real
time systems are wsually data flow oriented. Two design approaches may
be distinguished:

o Trensform Centered Dengn, in which the major streams of data are
identified as they flow, transformed from exteraal iaput to external
output.

e Trensection Contered Design, applicable where the data flow coa-
sists mainly of comtrol-information, i.e., data which is passed to a
transform initiates an action (or a sequencs) based oa the incoming
data.

3. Tesh Synchronisstion. Two kinds are mostly used:

o Mutual exclusion : shared data can be concurreatly accessed by two
or mere tashs, while the ac-ess is controlled by means of semaphores.

o Cross simulatioa : one task is awaiting a signal from another in order
t0 proceed.

3. Tesk Communicetion. Memsage communicatios is the most commoaly
wsed method. Task commaunication caa be closuly coupled (a respomse is
expected in order t0 continee), or loosely coupled (with the use of message
quenss). A messege consumer that finds an empty quewe, waits umtil a
memage arrives. There are three ways to implement the communication:

o Using the operating system primitives.
o Using a language facilities (2].
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o Using s module which provides the services (itself using operating
system primitives, as implemented in MASCOT channels).

4. Information Hiding Concept. This comcept (by Parnas) is powerful in
leading t0 2 highly modular structure. The idea is that each key is known
only to eae module, hence the shared data is kept to minimum. Modules
are therefore more self contained (thus more modifiable and more maia-
tainable). The cost of this approach is in the overhead in accessing a data
structure via a fanction rather thaa directly.

8. State Dependency. Most approaches provide dependency of taking an
action oa input data. Some (especially found in transaction centered ap-
proach implementations) fail to allow dependency of taking an actioa on
the system’s state. A structured design method should incorporate state
dependency as well as data dependency.

3.3.4 DARTS

.DARTS is s Desiga Approach for Real-time Systems, proposed in [16) as an
extension of the older structured design methods, to include task structuring as
well as task interface definitions. DARTS was developed by General Electric,
and was applied to two projects: a robot costroller and a vision system. Whea
the paper was written the robot was already in the integration phase, and the
application of the method was considered successful. DARTS starts with the
requirements specification, and ite first phase is analysing the data fow.

Data Flow Analysls

Analysis of the data flow through the system yields the determination of the
major functions that are nesded. Data flow diagrams are produced, aand de-
composed to identify the major subsystems and the major components of each
subsystem. The data flow graph produced comsists of: transforms (represented
by bubbles), date depositories (represemted as data stores), and dats flow be-
tween transforme (repressated by directed arcs) .

Tasks Decomposition

Concurrency properties of the previously idestified transform can be derived
from the data flow greph, wsing the asynchromous nature of the transforme
within the system 23 the main considerssica of the decomposition process. The
criteria weed in DARTS for deciding whether a transform should be a separate
task, or grouped with other transforme into one task, are given below.

L Although & graph deseription snd snalysis is performed, the methed s & whele is completely
process/sesh eviented.
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1. Dependency on I/O: If the speed is dictated by a slow I/O device, then a
separate task.

2. Time Critical Punctions: If a high priority is distinguished for a particular
function, thea a separate task.

8. Computational Requirements: If a function is identified to have intensive
com then a separate task — to allow a work mode of spare cycles
“stealing”.

4. Manctional Cohesion: I functions are found to be closely related, then
grouped into one task, to reduce system overhead. Within a task, modules
can be distinguished for functionsal cohesion at the module level.

8. Temporal Cohesion: If functions are found to be triggered by the same
stimulus, then grouped into one task, distinguished as different modules
within the task.

6. Periodic Execution: I a transform needs to be executed periodically, then
< separate task, activated at regular time intervals.

Interfacing Tasks

TCM - Task Commuuication Module. A typical TCM containe a data struc-
ture and sa access procedure to that structure. The access procedure coa-
wels alos the mutual exclusion and the synchronisation features, which

may we opersting system primitives. The TCM always runs on the task
that invohes is. Twe different types of TCM are provided by DARTS:

1. MCM - Message Communication Module: Supports both closely coe-
pled and locssly coupled communication. In the case of locsely cou-
Plod commaunication, the message quoens includes binary semaphores
for mutual exclusion. In closely coupled communication, the quene
sive is forced to ome.

2. IHM - Information Hiding Module: Used mainly in cases of shared
data. The [HM defines both the dase structure it hides and the access
procedure to it.

TSM - Task Synchromisation Module. Typically, a TEM has s nature of
a supervisery moduls of a task (could be the “Main” module which has
the came nature). The TSM uses synchromisstioa events when no actual
infermation has 0 be enchanged. In DARTS the primitives for signaling
an event, and for awniting an eveat, are provided by the opersting system.

Interfacing Summary. In DARTS the tasks interfaces are implemented as
follows:
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1. A data flow between tasks is interpreted as ome of the following:

o A loosely coupled messages queue, handled by an MCM.
o A closely coupled message/reply, handled by an MCM.
¢ An event signal, if only occurance notification is required.
2. A shared data store is handled by an THM.
3. A task that waits for an event, may need a TSM.

Task Design

Structured Design. Each individual task represents a sequeatial program.
The design of the task starts with the flow anmalysis at the task level,
followed by applying one of the two possible structured design approaches
stated above; According to the nature of the task, either a traasform
centered design approach or a transaction centered design approach is
applied.

State dependency. DARTS uses a State Transition Manager (STM), designed
a8 a TCM of the THM type. The state transition table is maintained by this
module, hiddea from the calling task. While respoading to a traasition
request, the request validity is checked by the access procedure, and when
coanfirmed the module exscutes the transition. In order to emsure the
atomicity of the transition execution, as well as to achieve fast transitions,
sa approach is recommended by the anthor in {18]. The idea is to incresse
the task’s priority whea STM is entered, and restore the old priority whea
the STM is axited.

32.3.5 Task Allocation Scheme for a Real-time System

As mentioned above, many design methods fail to address the task construction,
and thus are not suitable for designing real-time systems. That is the reason for
including the following scheme (28] in this review. The task allocation scheme
was developed by TRW, and was applied successfully in the BMD (Ballistic
Missile Defense) project.

Port-to-Port Exscution Time

Software tasks in time-critical real-time systems are wsually divided into several
threads, and each of the threads must satisfy an execution-time comstraint, de-
noted as the port-to-port processing time. In the above application, 23 tasks
were divided into 7 threads. Execution time of a thread consists of four compo-
nents:

1. Execution time of the task on the processor: which depends on the task
sise and the processor MIPs rate.
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E; = size(tasks)/MIPs rate of the processor.
2. The network and operating system overhead (NO), which is used for con-
currency coatrol, integrity checking, recovery check-point update, etc.

3. Inter-processor communication (/PC), which is higher if communicants
reside oa differeat processors.

4. Waiting time ( W7T) which is consumed when the task waits in the proces-
sor enablement quene. This figure depends highly on the sises and number
of tasks, the processor load, and the number of enablements. (Especially
if large tasks are assigned to the same processor.)

Therelors,
Er = 5,(E)+NO+IPC+WT.

For a given network, NO and the number of enablements is relatively a
constant. Hence, in order to reduce Er the following steps should be adopted:

o Reduce WT: large tasks should be assigned to different processors.

o Reduce IPC: tasks with high IPC cost with sach other should be assigned
to the same processor.

l o Reduce E;: large tasks should be assigned to processors with higher M IPs
rate.

Alloeation Model

The above considerations yield the following sequence of activities in designing
an allocation scheme:

o A oot of constraints is determined, to reduce the waiting time and the task
exscutioa time.
e A cost function that measures the IPC cost is formulated.

o An algorithm that searches for the allocation with the minimum total cost
is determined.

The above activities are performed in the following method:

1. Information is entered to the model about the tasks (sises, execution fre-
quency of each task, number of data units exchanged between each pair
of tasks) and the network (Inter-processor distance, constraints).

2. Coastraints are imposed on the model:
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¢ Task preference matrix: Certain tasks (out of m) can be executed
only oa specific processors (out of n). These restrictions are formu-
lated as an m x n matrix of 0’s and 1’s. X;; = O means task i can’t
be assigned to processor j. X;; = 1 means no restriction on task i
with respect to processor j.

® Task exclusive matrix: Defines mutually exclusive tasks, and ex-
pressed as an m x m matrix. X;; = 0 means no constraint between
task i and task j. X:s = 1 means task i and task j can not be assigned
to the same processor.

3. The cost function is formulated. It depends on the following parameters:

¢ Task coupling factors c;,x: number of data units transfered from task
j to task k.

e inter-processor distance dg,: the cost of a transfer of one data unit
from q to p.

o tasks quadratic assignment formulation: (X, = 1) means task j
assigned to processor p.

2.4 Graph Based Structured Design Method

A graph based design method uses techniques taken from graph theory in order
to analyse and construct the system. The main difference between this method
to the structured method is that all data dependencies are explicitly expressed.
This method is superior to the structured method in its capability to identify
operations on data which are common to many timing constraints.

3.4.1 Graph Based Theoretical Model

Mok (in {26]) provides a theoretical examination of the graph based design
approach, and the problems which arise when applying a scheduling algorithm
based on this model.

Model Description

A graph based model M is an ordered pair (G, T), where G is the communication
graph of the system, and T is a set of timing constraints that satisfies T =
{T3}U{T.}. The subsats T, and T, are the periodic and asynchronous (sporadic)
constraints respectively. The communication graph G = (V,E,Wvy) is a di-
graph which may contain cycles, in which V is a set of vertices, E is a set of
edges (directed arcs), and Wv denotes a function that assigns a non-negative
weight to each node in V. Each timing constraint in T is represented by a
triple (C, p, d), where C is a timing constraint acyclic graph (compatible with
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G), and p,d represent the periodic and deadline constraints respectively. In the
case of asynchronous (sporadic) constraint, p represents the maximal occurance
frequency allowed.

The timing constraints graph expresses the precedence relations between
computational events that must be kept in order to satisfy the timing con-
straints. Execution of a functional element is denoted by a node, and data
tranemitted in the communication graph (G) by a directed arc. The computa-
tion time of a timing constraint (C, p, d) is obtained by summing the weights of
all the nodes in C. ¥ (C, p, d) is activated at time ¢, then C must be executed
at (t,t+d).

C is said to be executed in a time interval L, if a subset S of the (multi)set
of the functional elements of C was executed in L and forms a partial order
such that:

1. There exists a bijective mapping between the functional elements in S and
C.

2. Under this mapping the partial order of S is consistent with the acyclic
graph C.

8. If the functional elements are distributed, and there exists an edge u — v,
then an execution of C must include a transmission of the latest output
of u to v, before v is executed in L.

Pipelined Order Requirement
A pipelined order is interpreted by Mok as:

1. If two executions of a functional element have two dntmct start-times,
then the one with the earliest start-time must also finish first.

2. No message-overtaking (desequencing) is allowed.

Defining ¢ as the execution time of C, allows mapping T = (C,p,d) to T¥ =
(¢, p,d). Then, creating s monitor for esch functional element of C that occurs
in more than one timing constraint, allows imposing the pipelined order require-
ment. Decomposition of each functional element into subelements, whose sum
of execution times is approximately the same as those of the functional element,
is as a matter of fact software pipelining. This pipelining improves the efficiency
by taking advantage of operations that are common to many timing constraints.

Latency and Static Scheduling

Mok defines some metrics that are needed for defining and analysing a static
scheduler. First, an ezecution trace of a processor is defined as a mapping
from the non-negative numbers to the set of all the functional elements in G
and the idle. We denote this mapping as F. Recall that the graph based
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model M = (G, T). For example: F(i) = u if the functional element u in G is
executed in the time interval (s,s + 1), and F(s) =idle if the processor idles in
(¢,3 + 1). Second, an execution trace is said to have latency k with respect to
a timing constraint, if the execution trace contains an execution of the timing
constraint in any time interval of length greater or equal to k time units. A
static schedule is defined as a finite list Y of symbols from the set of vertices
of G and the idle. The latency of a static schedule is defined with respect to a
round-robin generated schedule. Y has a latency of k time units with respect
to the constraint (C, p, d) IFF the execution trace generated by a round-robin
scheduler, repeating Y ad infinitum, has a latency of k. In order that a static
scheduler would be feasible with respect to a set of asynchronous constraints
T,, it should have a latency d with respect to every (C,p,d) in T,. Mok proves
the following properties for a graph based model (G, T):

e The existu.nce of a feasible static schedule with respect to T in the cases
where a latency d exists for every (C,p,d) in T.

o Proving the existence of a feasible static schedules when the above re-
quirement is not satisfied, is NP hard even for relatively simple cases.
Only application of additional constraints on relations between computa-
tion times and deadlines allows proving the existence of a feasible static
schedule.

3.4.2 Data and Control Flow Graphs

A graph modeling technique which is commonly used is the Data Flow Graph
[22], and its description and usage possibilities are give below.A bi-digraph is
used to model the system. A control flow graph describes the structural behavior
of the program and the control flow during execution, while a data flow graph
(corresponding to each execution sequence) describes the data behavior during
this execution.

Data FPlow Graph Model Description

In the control graph: the vertices represent control points, and the directed
arcs represent actions or control transitions. In the data flow graph: there are
two types of vertices - data stems and operations. The vertices are connected
by directed arcs describing the data flow. A data flow graph corresponds to
an execution sequence S = (ay,..,a,) in the control flow graph, by attaching
to each arc a; a mapping of input variables (X}, .., Xs) into output variables
(Y1,..,Ym). This functional relation is the vertex of type “operation® which
appears in the graph. The graph, which may be very large in case of a complex
program, may be reduced by means of abstraction levels, merging data items
to vectors, and sequential actions into control segments.
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Usage of Data Flow Graph

This graph may be used to both demonstrate structural properties and verify
some performance ones.

o Independent data items may be detected, and point to the distributed
implementation that requires less communication traffic. The problem
becomes a partitioning problem which requires that the number of arc-
cuts is minimised.

o Each execution sequence with its corresponding data flow graph encoun-
ters all the information needed for numerical error-bound analysis.

2.5 Operational and Event Based Design Meth-
ods

An event based design method describes the system as a mechanism which
responds to events fed to it from the external environment. It was already
mentioned in this review that a real time system has high dependency on the
implementation of the design. The main difference between the event based
approaches is to what extent the design is separated from the implementation.

2.5.1 Event Based Model

Event based model of a system [9], separates the systems’s properties into two
major categories: behavior which mainly concerns the external view of the sys-
tem, and structure which reflects the internal view of the system. Proving the
correctness of a system is translated to a consistancy check between the behavior
and the structure. Orthogonality between properties allows verification of each
independently, and thereby avoids “exponential state explosion” when coming
to derive test sets.

Description

The model is constructed from events and their relations:

1. An eventis an instantaneous (takes sero time) atomsc (happens completely
or not at all) state transition in the system’s computation history.

2. Time ordering of events is achieved with the precede (—) relation, which
is a partial ordering found also in [24]. Event el preceds event e2(el —
e2) if:

® el,e2 are events at the same process (an autonomous computation
node, having its own local clock) AND el comes before e2, OR
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e el,e2 are events at different processes, AND el is a send message
event, AND ¢2 is a receive event of the very same message.

This partial ordering ensures that ¢e1 — ¢2 implies that e1 happens before
¢2 by any measure of time. (It is not IFF!). The ordering is transitive,
irreflexive and anti-symmetric.

3. Causality ordering is achieved with the enable ( = ) relation, which is
also a partial ordering, and is defined as follows:

e Event el enables event e2(el = ¢2) IFF the ezistence of event el
will cause occurance of event 2 in tlhe future.

This ordering is also transitive, irreflexive and anti-symmetric.

4. Domasins are used to ease the specification procedures. Three of them are
used to classify the events: the system, the environment, and interface
ports. The main idea is to construct the specifications in a scheme, where
the system and its environment interact with each other using message

. communications that are exchanged via uni-directional interface ports.

L In-ports are used to enter messages from the environment to the system,

- and out-ports are used for the opposite direction. In every port a total
ordering of events is imposed by assigning a distinct ordinal number to
each interface event.

2.5.2 Design with Event Based Approach

: The system specification is entered as a set of axioms, applying top down ap-
proach. The behavior specification is done using EBS language, which is based
on the event concept and first order logic. The behavior (external view) is spec-
ified first, and then it is decomposed into a design structure (i.e. the internal
view). Finally, the model is verified with a consistency proof, to assure that the
structure satisfies the behavior requirements. The decomposition process uses
three construct types to describe the design structure: the sub-system, the link,
and the interface-definition. The objective is to decompose the design structure
such that sub-systems communicate with each other through uni-directional
‘ links, and the communication with the environment is done through the inter-
KR face definitions. The constructs are specified as follows:

N ‘ A sub-system: A set of events, a subset of the system events set. The com-
¢ . putation is defined by the behavior specification.

A link: A connection between an out-port of the subsystem to an in-port of an-
N other subsystem; as in “connect(X,Y)==2", where Z is a link connecting
out-port X to in-port Y.
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An interface-def: A definition of a sub-system’s port as a system’'s port; as in

*X=x=Y" where a sub-system’s port X is the system’s port Y. Both ports
should have the same direction.

An example of a design structure can be:

Def System S(I : in — port; O : out — port);
Structure
Sub system SS(II : in — port; OO : out — port);
Behavior

end Behavior;

Sub-system ...

Network
connect(X,Y) == Z;
end Network;
Interface
M==l;
end Interface;
end Structure;
end System;

2.5.83 Operational Approach

The PAISLey project uses a new approach in real time systems design, in which
the idea of an implementation dependency is expressed in a strategy called
operational approach [35].

Prineiple

The main idea is that external behavior and internal structure may interleave.
In order to maintain generality, the operational approach separates the problem-
oriented structure of the operational specifications from pure implementation
considerations. The operational specifications themselves are written in an op-
erational specification language, which is ezecutable and prevents ambiguities.
The executability feature of the specification provides a tool for early results ex-
amination, and can be regarded as a functional simulator that corresponds to the
specifications constraints. Automated translation (from specification statement
to an implementation code) is highly feasible, since problem-oriented internal
constraints are taken into account. This transformational implementation would
therefore guarantee correctness of the produced code. P. Zave compares the op-
erational approach with the conventional approach in [35]. A summary of this
comparison is given below.
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Operational Versus Conventional Design Approach
o Advastages of the conventional approach:
1. The snformael specification, writtea in Eaglish or another natural lan-
guage, caa be understood by everyonme.
2. Organisational benefits (like milestones) are easily obtained.

e Advantages of the operational approach:

A rapid prototyping is available automatically.

Verification is easy due to fixed transformational implementation.

. The realisation phase is highly automatable.

The conflict between efficiency aspects and maintenance aspects is a
major concarn.

o Weaknesses of the conventional approach:

1. Although known from the very beginning, realisation constraints are
ignored throughout the design phase. Furthermore, the effects of the
2. The top-down approach imposes difficulties in specifying blocks whose
content is ignored, and increases the risks and difficulties in decom-
posing sub-systems.
o Weaknesses of the operational approach:

1. A danger of too-early design decisions is presented.

2. Exscuting the specifications is probable not to have aay performance
properties.

3. The transformational implementation contains all the realisation con-
straints and therefore is not unique but rather implementation depen-
dent. Each individual transformation should therefore be carefully

proved, prior to relying on it as assurance of the realisation correct-
ness.

Lol o A A

2.6 Finite State Automata Modeling

A large variety of finite-state machines are used to specify and analyse con-
current processes (e.g. Petri nets, SPECIAL, etc.). Petri nets [31] are found
exceptionally suitable for cases that involve designing and modeling of systems
in which concurrent processing considerations and dymamic sequential depen-
dencies exist. The major characteristics of Petri nets, in comparison to other
models, are:




o Explicit repressntation of cousal dependencies and independencies. Whea
ovents are independent of sach cther, Petri nete theory introduces a non-
imterieaving partial ovder of concmrrency.

o Potri net models allow description of & system in different levels of ab-
straction, without changing the language used in the medeling.

o Proparties of the system are repressntobles by similer mesns as the oye-
tem is modelied. Honce, correctaess procks can be built weing the same
methods used for the systam model construction.

The above characteristics are perticularly emphasised whea analysing blocking
phencmens of concwivent precessing, or communication correctaness.

3.6.1 Petri Nets Deflnition
A Potri net is defined [11] 28 & five tuple < P, T, Pre, Post, My >, whare:
o P=(p),.,.pm) o inite sst of plasss.
o T=(s,..,0,) a inite set of trensntions.
o Preisamapping Tx P — N3,
o Postisasmagplag PxT — N .

' o My is the initial marking of the aet. The marking is considered as \ohens
occupency of places.

A wider definition is given in [31], where maximal capecity can be assigned
to places, and weights can be assigned t0 ares (providiag s means for controlling
the firing by thresholds). In this review, all cases are limited to & unity weight.

A commoa graphic notation weed in Petri net representation is to demote

places by circles, transitions by bars, aad marking by dots. Pre and Post are
denoted as directed arcs.
‘ Az “emscution” of the Petri net is dome by changing the marking of the
| »ot via & firing process, which is carried out by the transitions. A tramsition
is enabled o fire if its Pre set (also called “input places®) is marked, i.e. all
the members of its pre set are each marked Dy at least ome token. The firing
transfers the marking from the Pre to the Post set. The firing has thre major
characteristics:

| 1. It is veluntery - A transitioa which is enabled is not compelied to fre, yet
! &t may fre caly if it is emabled.

2. It is snstantensous - A firing takes sero time.

3 s the sst of nen-negative integere.




3. Ik is complete - ¥ a transition fres, a case of » partial firing in which aot
all the tobens are remeved or not all the tokens are placed, does not occur.

Dus to the abeve properties, when two enabled transitions share a placs in their
Pre sat, caly ene will fire. Selection of the one that fires is carried out arbitrarily.

3.6.2 Task Synchronizsation with Petri Nets

A task can be defined to have thres states with respect o a synchronisiag
mechaniom:

1. It can be sdis or indifferent to the synchronising mechaniom.
2. B can be waiting st a syachronisation point.
3. |t can be astivs, or wsing & resource afier synchroaisation.

Whea modeling & task with & Petri net, the transition depicts the active part
of the task. This proparty is very bad for describing timing properties, since
o (vansition is assumed to be instantancous. In other words: whea the task is
active, its state in the et is undefined. The conditions for entering the active
state are represented by the places.

Example [11): Whea task T, (Figure 2.1) terminates, tashs T3 and T3 are
activated concurrently. K, to £, are the synchroaisation poiats (also
calied eschenges).

Yo, if o task has multiple exits, & “place” for the active part of the task
must be pressnted, as for T, in Figure 2.3.

Sharing Tasks Between Processes

In some cases of two processes sharing the same task, partial order is suficient,
bat whea mutual exclusion is involved, total order is s must. The notation for

total and partial order, wsing & Petri aet model, is emphasised in Figure 2.3.

1. Totel order: p, causes a structural conflict between ¢, and ¢t;. This con-
flict is effective in the case that p;, p3 and py are marked by oae token
cach. Whea ¢, and ¢; are executed on different processors, p; represents a
syschromisation variable, which must be protected by a mutual exclusion
mechaniom.

3. Pertial Ovder: Whea 3 need arises for a synchronisstioa variable which
implements s partial order, it can be represented by a place which has a
single cutput-transition and multiple input-transitions. In Figure 2.3 the
place p represeats such a variable. Both ¢5 and t( can increase its value
(by Sring tokens into pg), but only omne can decreass its value (in this case
represented by tg).




Pigure 2.1: Actioa depicted by transitions.
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Figure 2.2: A task with multiple exite.
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Pigure 2.3: Total and partial arder conflicts.

Bxampis: Producer-Censumer (11]. 1. Fisst, consider the syachroniss-
tisn of one preducer, cne consumer and aa n-bounded bufler (pro-
comses 1 aad 3 in Figure 2.4). The tobens load on p,, represents the
sumber of free spaces in the buffer. Production beginniag is repre-
ssmted by o firing of t3, and & consumption beginning is represented
by o fiving of 8. Since there exists no couple of transition in conflict,
a partial order s suflicient.

3. New cemsider the syachrouisation of two producers, ome consumer
and sa n-bounded buffer, 20 in Figure 2.4 : ¢3 and ¢} are in comflict
over py,. Hemce, & mautual enciusion mechaniom is necessery, and
its cont is going o be high in case the producers reside on different :
procemsors. On the other hand, the implementation of the place p,,
arises no problem, since it is & pertial order.

Implementation: Multi-program Mono-processor

A common implementation of a synchrosisation mechaniom in & multi-processor
eavironment is by weing primitives »s send and west Applying this approach
divectly from the net, arises a violation of the transition-firing indivisibility rule.
This problem caa be solved ([11]) by gathering the whole synchroaisation mech-
anism into one specific task. Each of the other tasks that needs to synchroaise
with anether, sonds s synchronisation request (accompanied by the identity of
the transition that has to be fired) to0 the synchroniser-task. The synchromiver
considers the net as s databese, and reacts to receiving a request by searching
the appropriate transition, and when finding aa enabled one by coatrolling the
firing exscution. This centralised solation has some advantages:




Process -2 Procass -1 bulffer Process -3
Preducer-2 Producer-1 Consumer

Figere 2.4 Producer/consumer: MuRiprocessor model.




o A gisbal view of the net is obtained.
o The synchreaisation process is derived “directly” from the net.

o Changes (whea :seded) are casily dome, since all the process parts are
located in eme specific place.

Implamentation: Multi-precesser

Implementing the synchronisation mechaniom is different in the case where par-
tial order is suflicient, from the case where a total order is necessary. In [11] the
differences are described as follows.

Partial Ovder ia suficiont: The example givea for the single-producer single-

consumer case shows clearly that each of the tramsitions t; and t¢ caa be
oplit into two parts. The splitting is described in Figure 2.5.
Whea synchrosiser-1 fives &3, it sonds a2 message t0 synchroniser-2, which
interprets this messige a8 request to fire . The same approach is applied
t0 i, and the result is of & nou-centralised syachromisation mechanism in
the case of partia! veder.

MO&rbm Whea applyiag a total-ordered synchronisation mech-
aniem, a global synchroniser picks up all the synchroaisatioa parts. In
order to assure that the syachronisation varisbles are mutually enclusive,
caly the gishal synchreniser can access them. The implementation sug-
gested by [11] triss to capture the mutual enclasion assurance as well as to
minimise the necessary commausications. The solution to the two produc-
nmhh(mn&m!d)ud.c&du&mtﬁ 1, Ppu,tz and
€3 (which represent the request - waiting - anthorisation) must be
dt,&tdhthwm»umm-mutm
For example: syachromiser-1 fires ¢; (sends & request message), which is
mumwmu.mhmch When the
global syachroniser fres ¢5, (sends an “accept” message to syachromiser
1), it is received by synchromiser-1 as a request for firing ¢2. The same
scheme is applieu (0 synchronisers 2 aad 3. Hemcs, a simple communica-
tion is suflicient for implementing the messages required for the synchro-
nisstioa mechaniom.

3.6.3 Time Augmented Petri Nets

As mentisned before, the Petri ast classical model transitions are fired in a non-
deterministic way, and do 2ot capture the notioa of time. In order to adjust
this medeling method 10 real time programs, variows modifications were applied
to the classical model. An approach which assigns the execution to transitions
which are time-annctated (28], is described in chapter 3. The problem with this
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Figure 2.5: Distributed partial order synchroniser.
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approach is that the transitions’ instantaneous nature is not satisfied completely
without “inhibit” features. Another approach is to assign stochastic nature to
the firing. This approach is very good for average performance-analysis, and
some methods are mentioned in chapter 4 ([27,3,7]). The stochastic approach,
which is very useful for verification, does not address important temporal prop-
erties which are crucially important in the design phase (e.g. scheduling, safe-
ness with presence of timse, etc.). The next paragraphs review a method [10]
in which the latter issues are addressed by an augmented Petri net model, in
which timing properties are assigned to places in the graph.

The Augmentation

Unlike the approaches mentioned above, in Coolahan and Rousopoulos aug-
mentation of a classical Petri net [10], processing is represented by places, and
instantaneous transitions represent start and stop of a process. Hence, a non-
negative time value is assigned to each place; if the place is a “condition” then
the value is sero, if it is & process then the value equals the execution time of this
process. A token is ready to enable an output transition of the place it occupies,
after residing on this place for the assigned time. If one transition is enabled
whea the token becomes ready, then this transition fires immediately. If more
thaa oas transition is enabled, then a non-deterministic selection occurs, and
only one of the transitions fires immediately, while the others become disabled.

Time Driven System Model

Four set valued functions define the relations between nodes of the network (i.e.
the directed arcs):
o Li(t;): Transition input-fanction, mapping transition ¢; to the set of places
from which there exist arcs to ¢;.

® O4(t;): Transition output-function, mapping transition t; to the set of
places to which there exist arcs from ¢;.

e similarly, place input-function (I,(p;)) and place output-function (O,(p;))
are defined.

The cardinality of the above sets is denoted by |..|.
The master timing machine, which triggers the network to be activated by
a marking sequence, consists of a place denoted as p;, connected to a transition

t; through a loop. The following properties hold for this machine, called the
Driving Cycle:

o The initial marking of p; (m; = 1) reproduces itself with a fix period 7}.
o L(t1) = p1.
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e p € ot(‘l)) and Iot(tl)l >1.

e Li(p1) = Op(p1) = {t1}.

The net is constructed in steps that are described below. Throughout the con-
struction, it is guaranteed that a path, originated at the driving cycle, reaches
the places or transitions which are currently added, to ensure reachability of
these nodes (i.e. a liveness potential). Yet, the safeness property of the classical
Petri net is affected by the reproduction property of the driving cycle, since no
assurance is given to guarantee a bounded number of tokens in the net. This
problem is solved by the time considerations, which enforce a bounded firing
rate on the driving cycle.

Concept of Relative Firing Frequency

Two important properties are assigned to places and transitions in the net:

MRFF: (Max Relative Firing Frequency) The number of times a transition
fires, with respect to each firing interval of the driving cycle, if all the de-
cisions (selections of enabled transitions to fire) between the driving cycle
and that transition are made “in favor” 3 of the path to that transition.

MTIAT: (Min Token Inter-Arrival Time) The shortest possible time interval
between two consecutive arrivals of tokens to the relevant place.

An important relation is established by the above definitions: If ¢; is an
input transition to a place p;, and T is the driving cycle period, then

MTIAT(p;) = T,/MRFF(t,).

Sub-classes of Time Driven Systems
Four sub-classes serve as construction units in the model presented in [10]:

1. Asynchronous Systems: For every place p; and transition ¢, the following

hold:
o |Ip(ps)| = |O:(t;)| = 1.
® [Op(p)} 2 1.

Asynchronous systems are constrained by the following:

1. Execution time of any process (i.e. place) cannot exceed the MTIAT
of this place.

311 a decision is pre-determined, then the ratic in which it is taken in favor of a specific path
is given. If a decision is data dependent, then only assumptions or upper and lower bounds
can be expressed.




' Figure 2.7: Asynchronous sub-system.

2. The cumulative execation time of any path cannot exceed any separately-
stated path execution-time requirement (path latency requirement).

An example of this class is illustrated in Figure 2.7.

3. Synchronized Systems: In addition to asynchronous sub-systems, this
sub-class includes parallel-path constructions, which consist of:

o T: a set of transitions {ti,t7, Tp}, an initial transition, a final tran-
sition, and a set of sero or more path transitions.
e P: a set of path places {p,}.
PUT, contains n (two or more) disjoint sub-sets, each representing a path
from ¢; to ty. The following properties hold for the parallel constructs: ¢
1. For ¢ (the initial transition):

* L(k)nP={}.
o |O¢(t;) N P| = n.

4N denotes set intersection. U denotes set union. C denotes contained relationship.

T S S
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Figure 2.8: Synchronized sub-system.

2. For t; (the final transition):
o Ii(ty) C P.and|Li(t;)| = n.
o O4(t;)N P ={}.
3. For each t, (path transition - if any):
o |L{t,)NPI2>1.
o [Oft,) NP2 1.
4. For each p, (path place) in P:
* |lp(pp)l =1 and I(p,) c T.
® |Op(pp)| = 1 and Op(p,) C T.

An example of this sub-class is illustrated in Figure 2.8.
An additional timing constraint is imposed on the synchronised sub-systems:

e For any set of parallel paths, delimited by ¢; and ¢,: the sum of
execution and waiting times that a token spends at the final place
(of any of the paths), must not exceed the MTIAT of that place.
The waiting time at the final place of a specific path is the difference
between the greatest total-path-time of the set of paths, and the
total-path-time of this specific path.

3. Independent-cycle Systems: In addition to synchronised sub-systems,
this sub-class includes cycle constructions, which consist of:
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Figure 2.9: Independent-cycle sub-system.

o T: aset of transitions {¢;, Tp}, an initial transition, and a set of sero
or more path transitions.
o P: a set of path places {p,}.
PUT represents a cyclic path from ¢; to t;. The input-places to the initial
transition, are one internal to the cycle, denoted as py, and one external
to the cycle, denoted as p, and called the entry-place. The latter has only

one input arc, and one output arc which feeds ¢;. An independent cycle is
characterised by the following properties:

1. For ¢; (the initial transition):
* |L(t:)| = 2 and |L(t;) n P| = 1.
o |Og(t;) N P|=1.

2. For each t, (path transition - if any):
o |L(ty)| = 1 and L(t,) c P.
* |0(t5)| = 1.

3. For each p, (path place) in P:
© |Ip(pp)| =1 and Ip(py) € T.
* [Op(pp)| = 1 and Op(p,) S T.

An example of this sub-class is illustrated in Figure 2.9.
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An additional timing requirement (to those of the synchronised systems)
is imposed on the independent cycle:

o For any independent cycle, the cycle execution-time (from ¢; back to
t;) must not exceed the MTIAT of the entry place.

4. Shared resource Systems: In addition to all the sub-classes described so
far, this sub-class permits cycles-overlap to model resource sharing. The
cycles which overlap have input transitions whose firing rates are equal un-
der all conditions, and their final places are replaced by a shared resource.
This construction consists of:

e T,: a set of path transitions {t,}.
o P: a set of path places {p;, ps,pp}.
The following properties characterise the shared-resource construct:
1. For p; (the initial place):
e |Ip(ps)| = n, one input transition from each of the n cycles.
o If p; # py then |Op(p;)| = 1 and Op(ps) 2 T.
2. For p; (the final place):
e |O,(ps)| = n, each output transition being an input transition
to one of the cycles.
o The initial marking is one ready token.
o If p; # py then |Iy(ps)| = 1 and L(ps) S T.
3. For each p, (path place - if any) in P:
e |Iy(pp)| =1 and Ly(pp) C T.
® |0p(pp)| = 1 and Op(pp)  T.
4. For each t, (path transition):
® Ig(t,)AC P,
e Os(tp) C P.

An example of this sub-class is illustrated in Figure 2.10. The initial

marking in py is the semaphore that controls the mutual-exclusion of the
resource.

The constraint that was mentioned while introducing this construct, may
be applied as a restriction to the construction process; ensuring that all
firing frequencies of all the input transitions to the entry-places are equal
must be applied before continuing the construction. Additional timing
constraint for the shared-resource constructs is

ch + E:,l'#,'(nk) < Tdf

40




Figure 2.10: Shared-resource sub-system.

whare:

o T,; - Executioa time of eatry-place py,.

o T - (or Tes) Execution time of all places in the cycle, which are
activated as a comsequence of the input provided by pe (or p,;).

e T, - The MTIAT of each of the n eatry places.

The sbove constraint ensures that p,; is safe in presence of time.

Net Construction Methodology

The construction of the augmented Petri net, is represented in (10| in an al-
gorithmic way, in which all the above constraints are taken into consideration.
The method consists of the following steps:

1. Construct a driving cycle (Pl. - Th‘l)-

2. Add places to the driving cycle’s transition (t;) as the system to be mod-
eled requires, such that each of the added places has:

o asingle input arc,
o a finite execution time.

3. To each of the places which does not have an output so far, one or more
of the following constructs are added as an output (according to what the
system to be modeled requires):

o A single transition with exactly one input arc.
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o A complets parallel synchroaised-path construct.

e A tramsition with multiple inputs, which completes a synchroaised-
peth whea added to the sub-net that is already comstructed.

o An independent-cycle comstruct.

e A cycle which forms a part of a shared-resource comstruct, guaran-
tesing that all entry-places fire at the same frequency.

4. Add output places (as in step 2) t0 each traasition which has no output-
place 50 far.

5. Repeat steps [3-4] until the model is complete.

Derivation of Max Relative Firing Frequency

The fring-frequencies of transitions, expressed in terms of the frequency of the
driving cycls, can be considered as mapping the traasition to this property’s
domain. Using the above mapping, s model of a system caa reflect either
consisteacy or imcoasistency.

o A system is considered consistent IFT there exists a positive-integer map-
ping to each transition, such that at every place p;, the sum of the integers
on I,(p;) equals the sum of the integers oa O,(p;).

e A system is considered snconssstent if it either produces an infinite number
of tokens, or consumes the tokens and stopes.

In practice, the integer assignment to each transition gives a possible relative
firning-frequency to the transition. Consistency can be detected by solving the
local-balance equations described above, and finding a solution with no con-
tradictions. As can be seen in the model’s description, the firing-frequency of
each transition is rooted in the driving cycle. An emphasis should also be put
on the difference between this approach and the classical Petri net approach.
The transitions here fire immediately after being enabled, while the firing in the
classical approach is non-deterministic. Therefore, here the firing-frequency of
each transition can either be computed definitely (all decisions in the path are
predetermined), or bounds can be set (in case there axists a data dependent
decision in the path).

Proving Safeness in Presence of Time

The construction methodology given above guarantees the reachability of the
places in the network. Yet, if this network is interpreted in the classical Petri
net orientation, the master timing mechanism of the model - the driving cycle
~ does not preserve safeness property, by allowing “exponential explosion” of
the tokens population in the network. Therefore, in [10] the property “safe in
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the presencs of time” is introduced, and the timing restrictions for this property
are devived, to hold for sach of the net comstructs introduced above. A brief
summary of the restrictions is givea below.

Sefeness for stmple places. A “simple place” is a place p; with |[,(p:)| =1
and [O,(p)| 2 1, such that each tramsition ¢, in its output set satisfies
|fa(ta)] = 1. In (10] it is proved thas such a simple place is proved to be
sale in presence of time in the worst case I[FF

Ti<T\/F;

where: T is the execution-time of this place, T is the cycle-time of the
driving cycle, and F; is the M RFF of the input-transition to this place.

Safeness for final places in parallel path. The final places py; (s = 1..n),
of a synchroaised parallel construct with a parallel paths, are each found
safe in presence of time in the worst case, IFF for each of them

Vi€El.n: P - P < (T;/’/;) ‘T!‘

where: P; is the total path time (execution + waiting) of path *3”, Fy, is
the MMRFF of the input transition to py;, and T, is the execution time
of py; iteslf.

Safeness for entry places of independent cycles. Cycle-time ( T, ) is the
time interval from firing of & to “token ready” in py. The execution time
of the entry place is denoted as 7, and the ARF F of the input transition
to entry place is denoted as F,. In [10] it is proved that an eatry place to
an independent cycle construct is safe in presence of time IFF

T, STI./"C and T .<.Tl/’¢-

An outcome of this result is that if p, is safe in presence of time, then
waiting time for all tokens arriving to this place is sero.

Safeness for placer in a shared-resource. A shared cycle time To, for a
cycle containing t;, in a shared resource construct, is the time that elapses
from firing of ¢;; until the token arrives at p;. It is proved (in [10]) that
given that all the entry places receive from identical MRFFs, and the
MTIAT of the entry places is their execution time divided by the M RFF,
then each entry place p,,; (to a shared resource construct) is safe in the
presence of time IFF

n
Toj+ Y T < Toy + T/ P,

=1

For all the above constructs’ types the regularity of the net timing is pre-
served.
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Conclusion
Coolahaa aad Rowsopoulos examine the method they suggest in [10|. The weak-
ness points they find in their approach are
o The results are very sensitive to changes in process or path execution time.
o An alteration coastruct is nesded.

o The restriction oa a shared resource (limited only to the case of identical
firing rates) is too strong.

The advantages they find in it are:

o The ability to formally and explicitly express the timing constraints.
¢ The antomatability of the method.
o The ability to verify timing properties in the design phase.

Two other deficiencies should be coasidered. First, the absence of perfor-
mance analysis tools, does not allow the examination of timing problems rather
than safeness (¢.g. bottle-neck). Second, the restrictions imposed in the con-
struction of the net, narrows significantly the cases that can be treated.




Chapter 3

Development in A Real
Time Environment

3.1 General

Whea the design phase is complete, and a verified solution for & givea problem
exists, the problems which concern the implementation of the solution arise.
Some software eagineering ressarch tried to evaluate the approach adopted in
projects using various criteris, as the changes installed in s program during its
life cycle (8], but only few works tried to evaluate the approach from the timing
point of view. As emphasised before, real time software performance depeads
highly on the implementation, and therefors the definition of the eaviroameat
is of crucial importance. The development environment includes the proces-
sor used, the operating system, the laaguage and its compiler and rum time
libraries, the network structure in which a distributed computation takes place,
and special aids wsed during the implementation phase. Some attempts have
been made to allow proper identification of this eavironment (e.g. [20]), and
experience was summarised into recommendations (e.g. [1]), but probably the
most important events ia real time software implementation in the last decade
are:

o The standardisation of the Ada programming language by the U.S. De-
partment of Defense.

e The adoption of MASCOT by the U.K. Ministry of Defense.

This chapter tries to highlight some important aspects concerning real time
software implementation; Starting with the influence of the design approach
adopted, reviewing an asutomated tool which trantlates a model to a program,
emphasising the importance of the programming discipline, and concluding with
two important aspects concerning programming with Ada.
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3.2 Approaches

Specifying a system in a conventional approach treats the system as a “black
box”, describing what but aot Aow. In other words, when we start the realisa-
tioa phase (adopting the coaventional approach) the external behavior is well
defined, while the internal structure is not. Top down discipline is maintained
throughout the whole development phase, which means that implementation
cometraints, although knowna from the very beginning, are intentionally ignored.
Some trials have been made in information processing projects (as the Jackson
development approach) to find better solutions. The PAISLey project uses a new
approach in real time system development, in which these ideas are organised
into a strategy called operstional approach [35]. The main idea is that external
behavior and internal structure may interleave. Yet, operational approach sepa-
rates the problem-oriented structure of the operational specifications from pure
implementation considerations. The operational specifications themselves are
writtea in an operational specification language, which is executable and pre-
vents ambiguities. Traasformational implementation would therefore guarantee
cosrectness of the produced code. Although this approach seems to lead to a
very easy implementation phase, the problems of stringent timing constraints
do not disappear - they can be found in the generation of the transformational

3.3 From a Model to a Program

In chapter 2 of this paper, the Petri net models were introduced. For systems
which contain concurrent processing considerations and dynamic sequential de-
pendencies, this modeling technique seems exceptionally suited. Nelson et al [28]
introduce a method of translating a Petri net model into a procedural language
program, and this method is reviewed in this section.

3.3.1 Annotated Petri Nets

The commonly used Petri nets are extended by means of annotations and snitial

conssderations that provide processing content and external dependencies to the
firing of the net.

1. Actions that do not relate to the net itself (e.g. applying a function to a
specific data structure, firing another net, calling a procedure) are assigned
to transstions with a corresponding annotation.

2. Boolean expressions that express external dependencies are assigned through
an appropriate annotation to output arcs of a transition.

3. An integer selector may be assigned to a transition. When this transition
fires, at most one of its output places will be marked.
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4. Two special types of transitions are allowed to have oaly input or output
arcs: the snifial sad the terminal transitions.

3.3.32 The Method of Translation

Each node in the aetwork (either a transition or a place) is related to a specific
template of statements. The template content depends on the node’s type, its
fan-out, and the annotation assigned to it. combining thess templates results
in a program in a procedural language called XL/1, and this program is then
(via an antomated process) traaslated to PL/I or PL/S.

3.3.3 Multiprocessor Environment

Petri aet theory does not force a fireable transition to fire, but if a transition fires
the firing is complete and consumes sero time. Implementing s tramsition firing
with a program imposes a noa-instantaneous firing. Whea the environment is of
s multiprocessor system, a matual exclusion device must protect the firing, since
more thaa one processor may be focused on particular input places at a specific
time. Therefore, the authors provide a semaphore-like locking mechanism, and
aa atomic operation which adjusts (increment or decrement) the number of
tokens in places. All the places that are associated with a specific lock are
sssigned (according to given rules) to a lock-set, which governs their access to
the lock.

3.3.4 Conclusion

Although the mechanism proposed in (28] is not optimised, especially for hard
real time applications, it provides a very good tool for the design verification. If
further work will be dome, architectural optimisation may be performed by the
XL/1 automaton, imposing the constraints and the implementation dependent
properties of the system.

3.4 Implementation Discipline

The complexity of programming increases when we step from sequential to mul-
tiprogramming, and it increases further when we apply real time programming.
A set of concepts (for reasoning) and a set of facilsties (for description) is added
in each step. Adding synchronisation signals and mutual exclusion devices to
sequential programming allows us to use multiprogramming, and adding to it
execution speed allows dealing with real time programming. But the complexity
of reasoning increases by & new dimension. In [34] & summary of all the needs
for real time programming discipline is given and analysed.
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3.4.1 Making a Real Time Program Manageable

In order to make a real time program manageable, Wirth suggests the following
recipe:

1. First formulate the entire program without reliance on execution times.
All necessary synchronisation signals should be provided explicitly.

2. If the machinery to be used does not provide some of the necessary syn-
chronisation signals, derive analytically the timing constraints for each,
and allow its absence.

3. Check whether the constraints are satisfied by the computer system.

3.4.3 Synchronization Discipline

In a distributed environment, processes commonly synchronise using signals
and semaphorss. A semaphore is equivalent to a signal with associated mem-
ory. Sending an unconditional signal, when no process is waiting, may lead
to an untraceable system crash. This mistake is commonly made due to as-
sumptions taken over the computation speed of the different processes. Hence,
declaring awast(s) as a necessary precondition of send(s) is reccommended, when
occurances as below might exist:

P1: ...81; send(s); ...
P2: ...82; awast(s); ...

3.4.3 Language and System Requirements

The form and structure of a real time programming language are as important
as in regular distributed programming. No additional structural concepts are
needed for a real time programming language:

1. A notational unit for describing processes (themseives sequentially exe-
cuted) that can be executed concurrently, and noninterruptably.

o 2. A collection of shared variables and their operators.
3. An object to trigger communication after waiting (signals).
Yet, an additional feature is needed:

o A facility which provides accurate execution time bounds, as an additional
part of an existing compiler. If the compilation is straightforward (i.e. no
optimisation is performed), the use of a simple execution time-table of the
statements is possible.
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An important recommended concept is the coherency of logical processes
(each one is implemented as if it owns a private processor). Two features that are
achieved applying this concept are the simple logic foundation of the program,
and the maximal degree of freedom left for choosing processor sharing strategy.

When applying processor sharing policy, the static time bounds (prepared
in a straightforward time-table) do not hold; the processor may be attached to
another process for an unknown “time slice”.

3.4.4 High Level Language and Processor Sharing

Most of the uncertainties in execution time are due to tasks performed by an-
other process. The author uses the notation “doio® (as in DO I/O) for the
following sequence:

...send(initiation);wait(completion)...

and applies a *hidden” delay statement behind each “doio® statement. The
delay is derived from the execution performances and the strategy chosen for
the processor sharing (priority plays a major role here).

3.4.5 Recommended Discipline for Real Time Program-
ming

1. Time dependent program parts executed externally (by a device process),
should be restricted to noninterruptable execution mode.

2. Execution time of the above program parts is determined statically.
3. Each “doio” is assumed to have a hidden delay, derived as stated above.

This discipline may lead to high time consuming delays, and the proposed so-
lution is a priority interrupt system, which requires adherence to the following
o constraints;

4

1. Every device process P; is cyclic, consisting of a statements sequence S;,
and the *doio” represents the waiting for device completion.

2. t; = T(S:) + T(doto;). The cycle. time of P;, at any priority level, is
considerably greater than that of all other processes at higher priority.

3. The ratio
- T(S:)
T T(S:) + T(dosay)

over any cycle is very small ( < 1).

s

4. Each signal emitted by a device must be awaited by single (regular) process
) only.
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5. A device process must never stseif invalidate the condition associated with
the signal it emitted.

3.5 The Ada Programming Language

The Ada programming language [2] was designed as a common language for
programming large scale and real time systems. The Ada programming language
has introduced many high level facilities, but in this review only one innovation
is examined. The tasking facilities have always been a part of the operating
system, rather than the programming language, until Ada has been introduced.
Furthermore, synchronisation of these facilities has used primitives provided by
the operating system, invoked usually as “system calls” from a very low level
part of the program. The Ada programming language includes both the tasking
facilities, and the synchronisation tools as a part of the language. This feature
allows the programmer to concentrate on parallel system design and to ignore
inter-task synchronisation and communication details.

Parallel processes are called tasks in the Ada language. Each task may
have some entries, which are called from other tasks. Two tasks interact by
first synchronising, then exchanging information and finally continuing their
individual activities. This synchronised meeting to exchange information is
called rendesvoss. This concept is based on Hoare’s CSP proposal [19] for
concurrent programming, and Ada is the first language that has adopted it.
Hence, this is the only experience in using this concept, and recent works have
shown some interesting aspects in implementing it.

Two important issues concerning the rendesvous are reviewed in this section:
the implementation of the concept in the compiler level, and the implementa-
tion of the concept in the program level. As stated below, both may lead to
inefficiencies and undesirable effects.

3.5.1 Implementing Tasking Facilities

Three ways of implementing the rendesvous concept in the compiler level are
examined in [14]. The paper also examines results of the three implementations
in PASCAL to validate the analysis. The mechanism and the implementations
are described below.

Assumptions and Description of the Mechanism

The assumptions tzken in [14] are:

1. The Ada kernel is implemented as a set of primitives. An exact copy of
this set resides on the private memory of each processor which participates
in executing the concurrent program. The interaction between tasks that
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these primitives allow, is independent of the physical allocation of the
tasks.

2. The executable code for each processor resides on its private memory.
3. Some data constructs are located in the system shared memory.

4. Each task deacriptor consists of two parts: global and local task descrip-
tors. The local task descriptor resides on the private memory of the pro-
cessor which runs this task. It contains all the information required to
run this task concurrently with other tasks resident on the same processor
(i.e state-word, status field, task priority, scheduling time, links to other
local task descriptors, a link to its own global task descriptor). The global
task descriptor resides on the system shared memory. It contains all the
information required to allow interaction between tasks that are allocated
in different processors (i.e. processor Id, a lock variable for mutual exclu-
sion, status field, pointer to actual parameters list, a set of addresses of
entries, a set of queues - one for each entry, a stack of invoking tasks Id’s,
a link to its own local task descriptor).

5. Each processor can send interrupt signals to any other processor.
The task management mechanism suggested in [14] is:

1. When a task invokes the kernel to interact with another task, the invoked
primitive (executed by the processor on which the calling task resides)
checks the global descriptor of the called task.

2. IF the called task resides on the same processor as the calling one, THEN
all the required information concerning its status is available in the local
descriptor.

3. IF the called task resides on a different processor, THEN the primitive
which has been invoked sends an interrupt request to that processor, spec-
ifying the calling processor, the called task, and the requested operation.
The interrupt service procedure will then invoke the kernel primitive which
correspond to the requested operation, to complete the interaction.

Implementation of the Mechanism

Three possible implementations for the above mechanism are described below.
The comparison criteria are minimising system overhead, and the task blocking
time.

“Server” Rendesvous is the first possibility to implement the mechanism.
In this implementation the calling task remains suspended until the called task
executes the accept body (see [2] for description of the accept statement). This
implementation has advantages and deficiencies which are listed below.
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1. A single copy of the accept body is sufficient, and it should be stored in
the private memory of the accepting processor.

2. In order to complete the rendesvous, the scheduler is invoked (possibly a
r. context switch occurs) twice in the case that the entry calling execution
) precedes the accept execution, and three times otherwise. One or two
inter-processor interrupt signals are required, and two or four scheduling
operations (respectively) are necessary, if the interacting tasks are running

on different processors.

3. Parameter passing may be carried out through the shared memory.

“Procedural Call” rendesvous is another possible implementation. Here
the accept body is always executed by the calling task. This approach has the
following properties:

1. Accessibility of the accept body can be obtained either by keeping an ex-
act copy of the accept body on each private memory of a processor that
runs the calling task, or by storing the accept body in the shared memory.
The shared memory solution is exactly the same as the “server® solution
(communication-wise). The replication solution may be ineffective or im-
possible if a resource needed for the accept body is only available to a
particular processor.

2. No special mechanism-of parameter passing is needed, since the caller

X executes the accept body in its thread of control.

:(:’ “Order of Arrival” rendevous is a solution provided by the authors of

U] this paper ([14]), and it reduces the scheduling points required. Here, the accept

o body is executed as a part of the thread of control of the last task which joins

v the rendesvous. The properties of this approach are:

\;Q 1. In the case of a mono-processor system only two scheduling points are

::; needed.

X}

';a; 2. In the case of tightly coupled multi-processor system, one inter-processor

N interrupt signal and two scheduling operations are needed to complete a
: rendesvous.

1 3. The same resource allocation difficulties that were introduced in the *pro-
) cedural call® approach exist here.

I ' The differences between the three approaches emphasise the significance of the
compiler-level implementation, for the timing performances as well as for the
communication economy of a system.
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3.5.2 The Tendency to Poll

Experience in using the rendesvous concept when programming in Ada, is sum-
marised in [15], pointing out a tendency to apply polling policy, which is usually
(but not always) undesirable because it is wasteful of system resources. A re-
view of this findings and the suggestions provided in the above paper are given
below. But first, four assumptions concerning the rendesvous mechanism must
be taken into account:

1. Two tasks, A and B, rendesvous at entry E of B, when A calls entry E,
and the entry call is accepted by B.

2. IF A calls the entry call before B is ready to accept the entry call, THEN
A waits until B is ready.

3. IF B is ready to accept, THEN it must wait until some task issues that
entry call.

4, Calls to a specific entry are executed in FIFO order.

The Rendevous Statements

Two types of rendesvous statements are permitted by MIL-STD-1815A [2], the
selective wait statement and the conditional entry call.

1. The Seléctive Wait Statement L.

select

[when cond =] selective_wait_alternative
{or

[when cond =>] selective_wait_alternative}
[else

sequence_of statements | .
end select;

The selective wait statement is used for waiting and selection from one or

more alternatives. A selective_wait_alternative is restricted to the follow-
ing:

o A delay or an accept statement, followed by a sequence of statements.
¢ The terminate alternative.

1[..] - stands for optional statement. {..} - stands for sero or more times.

53

_ ] o : . . T AT A R " A A AT A AT AN Y
p AN At by A SR '1.}'»."!2"0«.":."0. '_l.‘.,h‘ U AU i "N T w0 YR Mo T Y T A RFFNN




The selective_wait_alternative is non-deterministically selected from the
set of “open” accept.alternatives for which a rendevous is immediately
possible (if the set is nonempty). The approach is adopted from [19]. A
delay_alternative is selected if no accept_alternative can be selected before
the specified delay has elapsed. If no selective_wait_alternative can be
selected, the else-part (if nonempty) is executed. If no accept.alternative
is immediately possible, and there is no else-part, then the task wasts until
such an alternative will become open.

2. The Condstional Entry Call.

select

entry _call_statement [ sequence_of stateruents |
else

sequence_of _statements
end select;

Although the syntax is quite similar to that of the selective wait statement,
" they are semantically opposite: the selective wait is used in accepting
N - entry_calls, while the conditional entry call is used for making entry_calls.
: IF the rendesvous is not immediately possible, THEN the entry call is
canceled, and the else-part is executed.

o Polling

Polling is characterised by a task actively and repeatedly checking for an oc-
“ curance of an event that originates externally to the task. The paper ([15])
distinguishes two types of polling:

- -

1. Task A rendevous polls with task B (with respect to entry E) IF the
rendesvous can be preceded by an unbounded number of attempts by A.
(Attempt is defined as an unsuccessful entry call OR a failure to select an
accept_alternative in a select statement.)

Y e
Ay

< em

- 2. Task A information polls with task B (with respect to entry E) IF A and
0y B can rendesvous an unbounded number of times before information is
| - exchanged.

A busy wasting situation is identified if between rendesvous attempts no
computational progress is achieved. The polling is usually wasteful of resources
r . = it simply burns up CPU cycles. Furthermore, it may unnecessarily load
the communication network very heavily. Another dangerous situation hap-
pens when the calling and the called tasks both symmetrically loop over a
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selective_wait_statement and a conditional entry_call with an else-part: the ren-
desvous may never occur! Yet, sometimes polling is desirable: when non-polling
may result in such an additional overhead that might violate real time con-

strainte. But these cases are very rare, and should be definitely identified and
justified.

Bias Towards Rendevous Polling

The tendency to poll when implementing the Ada rendesvous is encouraged by
the following:

e Lack of some facilities.
e Restrictions imposed by Ada.
e Presence of some facilities.
Four encouragements for polling are given below.

Conditional Entry Call should be used with care, since it may lead to unnec-
essary polling. Consider the poor example given in [2] paragraph 9.7.2.7:

procedure SPIN(R: RESOURCE) is

begin
loop
select
R.SEIZE ;
return ;
else
null ; - busy waiting
end select ;
end loop ;
end ;

The “busy waiting”® is really unnecessary.

Handling an Entry - Family is generally expressed as a polling loop. For
example, let X be an entry-family that have N members, declared as entry
X(Y), while Y is of subtype integer that ranges from 1 to N. The skeleton
of the program that accepts call for the entry-family usually looks like:

loop
for I €Y: loop
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select
accept X(I) do ... end ;

null ;
end select ;
end loop ;
end loop ;

This select statement polls unnecessarily, and solution may be given either
by replacing the “for” statement by an N specific ORed accept_statements
with no else-part (only for a small known N ), or by a different design
which makes a use of the entry family indices.

Restrictions on Selective-Wait-Statement of two types are imposed.

1. Not allowing & when condition followed by a sequence of non-tasking
statements as a select alternative, which is needed as follows:

loop- illegal example
select

or
when cond = A := B ; - illegal I!
end select ;

end loop ;

The above implementation is illegal since only accept/ delay/ termi-
nate are allowed as alternatives. The use of an else - if statement to
replace the illegal statement is wrong, since it would be executed to
no effect (again and again) when any feasible alternative is absent.
-Hence,

loop~ better solution
select

or
delay 0.0 ; - sero delay is legal
A:=pB;
end select ;
end loop ;

’ - 3 ) . ]
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2. The lack of selective_call statement and not allowing any entry.call
as a select alternative, which are needed as:

loop- illegal form
select
call.entry X.E ;
or
call entry Y.F ; - illegal !
end select ;

end loop ;
Replacing the illegal “or® part by:

else
select
call_entry Y.F ;
else
mall ;
end select ;

is wrong for two reasons: it gives preference to X.E and the inner
select polls again. Another problem arises when we need an entry
| call as a seloct alternative:

loop- illegal form
select
when B = accept ...
or

or
when C = call entry Y.F ; - illegal !!
end select ;

end loop ;

Since the above program is illegal, one is tempted to replace the “or
when C ..." with:

else
if C then
selert

\
|
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callentry Y.F;
else
null ;
end select ;
end if ;

This replacement may lead to a dangerous situation, especially when
X and Y are symmetrical, since a simultaneous polling becomes pos-
sible, and the rendesvous may never occur.

The “else” clause in a selective-wait-statement is the highest temptation
to poll. Therefore a careful examination should be taken: IF the alterna-
tive actiop is not really a part of the task, THEN it should be encapsulated
in another task, which could result in the elimination of the polling. A

good design approach separates the tasks functionally - one task for each
function.

Suggestions

- -

The authors provide some suggestions to changes in the Ada programming lan-
guage, but they agree that *it is likely that the Ada programming language will
. not be modified, at least not in the near future®. Three major principles pointed
out by this paper should be adopted:

1. Use a delay alternative with a sero delay, to allow a when condition fol-
lowed by non-tasking statements as a select alternative.

2. Separate the tasks functionally - dedicate one task for each function.
3. Take a lot of care in the program construction to avoid unnecessary polling.

For the cases in which polling is a better solution than others, justify it
carefully.
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Chapter 4

Verification and Validation
of Real Time Software

4.1 General

Verification of programs (i.e. proving that a program meets its specification),
may be done in three major methods:

o Using an astomatic approach to infer mathematical and logical assertions
which describe the control and data states.

e Using Boz-Line or GrepA properties to obtain the required proof.

e Testing the program for the relevant inputs it may meet when executed
in its target plant.

The axiomatic approach is commonly preferable, because assertions can be com-
municated to computers via compilers, and then manipulated by simplification
procedures. Due to this, proof systems for many design and development ap-
proaches have been introduced. Axiomatic proof systems have been introduced
for distributed systems [29], and for CSP programs [6]. Yet, these proof sys-
tems do not deal with timing properties, and provide no means for real-time
verification. The complexity of verification grows significantly when the imple-
mentation is required to be distributed.

Most of past works based their proofs (concerning time properties) on queue-
ing theory {23}, proving average performence criteria, since the timing charac-
teristics of inputs to a real time program are stochastic by nature. In addition,
these works supported the conclusions by tests which cover the inputs’ range.

An example of this approach is described by G. Anderson (5], combining five
methodologies for evaluating performance properties:




1. Characterisation of work load to the proposed system.

2. Creation of an approximate queueing model for the system, and evaluating
average performance properties.

3. Identification and preparation of hardware tools, to allow measurements
in the real system.

4. Development of a load-simulator, to allow testing under a controlled load.

5. Modeling the system with a detailed simulator, which allows bottle-necks
identification and answers to “what if” questions.

Anderson’s results have shown good match between expected and achieved val-
ues (11% in response time, 2% in CPU utilisation), yet most of his assumptions
were based on previous experience, which is always needed but rarely found.

In this chapter, various methods of programs validation techniques will be
reviewed, starting with testing real time performances, followed by analysis
and proof methods for real time properties, and finally examining the use of
simulations for system validation.

4.2 Testing Real Time Properties of Programs
U. Voges and J. R. Taylor [30] review many testing approaches and procedures,

all sharing the same goals: proving that the system under test is free of errors,
\ and obtaining (when it is possible) some figures about the system’s reliability.

i 4.2.1 Systematic Testing Methods
Testing Coverage

Testing & system thoroughly means testing it with all possible combinations
| of its inputs. In exercising input sequences of a distributed system, relative
O changes within an input sequence are very important as well (e.g. synchronisa-
tion problems), a property which may lead to an enormous sequence of inputs
for such a test. An early approach, suggested a design criteria of asynchronous
reproducibility of output (for a set of inputs, the same output will be produced,
regardless of speed differences or time intervals at which the inputs are deliv-
ered). Although this is a desired goal, sometimes it is not achieveable, especially
dealing with real time systems in which a deadline criteria should be met. Yet,
adopting this approach in the design even partially, reduces significantly the
amount of required input sequences.
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“Glass-Box” Testing Methods

This method is applicable especially in module-testing level. It consists of an-
alysing the module reachable paths, comparing the calculated path predicates
with the specification, followed by symbolic executions of the tested module.
Its major disadvantages are the ignoring of dependencies between modules, the
inability to deal with run time changes of control logic, and the inability to
pinpoint a missing path.

“Black-Box” Testing Methods

In this test method no inside look is concerned. A test should be performed both
positively - a functional test with inputs chosen according to the specification,
and negatively — reaction to abnormal and unspecified events.

Probe Effects

The availability of “probing points® in the real system is usually limited. In
order to trace control flow or data values, additional probing statements are in-
serted to the program. Therefore, changes regarding the environment to be met
in the real operating mode are introduced. This effect is of extreme importance
when dealing with a hard real time environment, and in many cases disqualifies
this testing method.

Example: SADAT

SADAT [383] is an automated test tool, which supports testing of a single FOR-
TRAN module. SADAT performs the following test procedures:

o Static Analysss — Generates the program control graph, in which sequen-
tial parts are represented as nodes and the arcs are an interpretation of
decision to decision (d-d) paths. This analysis may detect unreachable
statements and errors in control flow that the compiler failed to detect.

o Test Case Generation - Produces a minimal subset that ensures at least
one execution of each d-d path.

o Path Predicate Calculation — Produces the path predicate for every path
in the module, and runs a symbolic execution.

o Dynamsic Analysis — A control statement (in the form of a subroutine
call) is inserted in each d-d path, allowing accumulation of number of
executions for each node. This output can be used to track a dynamically
“dead” code, optimisation of the most frequently executed parts, and for
identification of additional test cases that are required.
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SADAT major disadvantages are the lack of distributed and real time properties
testing. Dealing with a single module does not allow any concurrency and paral-
lelism, and since no deadline analysis is performed, no critical timing problems
can be pin-pointed.

Example: TAS

Ferranti Computer Systems Ltd. (UK) developed [13] a complete environment
they use for software development and validation of real time software, using
MASCOT (Modular Approach to Software Construction, Operation and Test-
ing) and CORAL (block structured language, based on ALGOL60). Their test
environment consists of the following tools, called TAS (Test Aid Suite):

o Unit Driver - A package which is independent of the software under test,
that provides test harness and allows initialisation of set up values, spec-
ification of a unit (or a part of a unit) to be executed, and comparison of
results obtained to those expected.

o Path analyzer - Partitions the source code into SubPath Modules (SPM’s).
An SPM is a basic block containing no branch points. A sequence of SPMs
forms a subpath.

o Instrumenter — Adds to the source code necessary “calls®, to provide “exe-
cution history”, debug facilities, test coverage analysis, and static analysis
concerning the source structure.

Conceptually, this approach is very similar to SADAT (although testing a struc-
tured language) and suffers the same disadvantages.

4.3.2 Statistical Testing

The temptation to use a “sampled” test set, originates in the fact that the
amount of different inputs required to test a program systematically may become
enormous {30]. Yet, the smaller the sample is ~ the lower the reliability is,
therefore a decision upon the sample sise must be calculated carefully. Typical
results of statistical testing methods are: an expected value, a risk, a probability,
confidence limits / levels of significance, variances. In real time software testing
a particular emphasis is put on:

o Deadlock occurance.
o Correctness of a sequence of outputs.

e Occurance of final/intermediate results in the right time interval.
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Risk Calculation

The statistical testing tries to save test runs, and thereby to reduce cost, but
an unfortunate fact of decreasing the 100% proof of the system is introduced.
A comparison between the cost reduction and the risk involved is therefore
necessary. One way of defining the risk cost is [30]:

r= E H(a)X(a)
, where:

o X(a) is the lost caused by event a.

o H(a) is the frequency of *loss causing event® a, during a relevant period
of time.

* H(a) = 3; H(3) P(als) P(alas).

e H(z) is the frequency of “initiating event” ¢ which may cause a.

o P(a}s) is the probability that the system under test will fail to react cor-

rectly on 3.
o P(ala;) is the probability that any alternative action (installed previously)
fails simultaneously.
Simple Cases

An analysis of the probability of detecting error-occurances [30] is sketched
below.

First, examining the probabilities of “hitting® an error.

o The probability of hitting one error, associated with time interval D, in
the program run time T, with no condition is: P,, = D/T. Hence, for N
test runs: P,, =1-(1-D/T)¥.

¢ The probability of hitting one error in one test run, now with one binary
condition, is: Py; = 1/2D/T. For N test runs and k binary conditions:
Poy =1-(1-(1/2)* x D/T)V.

Now, consider the case of sequence of tasks. When M tasks access one resource,
there are M! possible access sequences. If we assume equal probability of failure
for all accesses, then the probability of detecting one failing access, in n runs, is

P=1-(1-1/M)"
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. If the M tasks access N resources, the number of possible access sequences

becomes:
N M
K=Y (nxmi,)

I=1li=1

e n; the number of runs of task ¢.
e my ; the number of accesses to resource j during one run of task 1.

If all possible accesses are to be considered, then the number of sequences be-
comes K!, while the probability of hitting error is known from above.

The presence of several possible priority interrupts in a time interval may
trigger several task sequences, or require queue rearrangements. These cases
are combinatorially treated the same as the access problem above, keeping in
mind that deadlock problem may occur in a specific sequencing.

Testing Large Systems

For large systems a slightly different approach is suggested in [30]. Defining po
to be the probability of one distinct arbitrary property, we would like to obtain
the number of properties (denoted N;) we have to test for, in order to ensure
Po < Po, within a confidence level CL%. Assuming binomial distribution of
properties’ error detection probability, the number of properties we have to test
for: .

Ny = 4.6/ P, for CL = 99%
Ny =38.0/P, for CL = 95%

If P, is between 10~7 to 10~¢, N; becomes enormous. Reducing it is possible
only by relating to previous analysis, performed analytically and not empirically.
Obtaining constraints yields simplification of the testing problem.

Problems With Large Tests

The large number of runs required for a reasonable confidence level sets addi-
tional requirements to those found in the simple cases:

o Testing real time properties is implementation (and hardware) dependent
by nature. Hence, the system should b~ tested as a whole, while the tested
computer is activated by a computerised test equipment (TE), since we
require a large number of runs.

e The TE provides the test inputs, controls the timing, and monitors the
outputs. Hence the reliability required from the TE is very high.

e If a random number generator is included in the TE, its repetition period
should be sufficiently long.




o The statistical analysis shows clearly that in cases where we have to main-
tain reasonable confidence levels, reduction of test sequences is achieved
mostly due to formal analysis of the system under test, rather than by the
statistical approach itself.

4.3 Analysis and Proof

All testing methods we reviewed have shown clearly that in order to obtain
meaningful test set-ups, a great deal of effort should be invested in analysing
and formally proving properties of the tested program. The earlier this effort is
invested during the development cycle the more benefits can be gained: by better
phrasing of the problem, ability to predict the solution’s behavior, and pin-
pointing bottle-necks and weak points. If such attitude is adopted, proof systems
should give answers to all system’s phases, from early model to the detailed
source code, proving correctness of solution strategy as well as correctness of
the implementation. Since the main interest of this work is real time programs,
the main part of this section will concentrate on systems that try to verify and
prove timing properties.

4.3.1 Process Based Model Analysis
Categories

There are two major approaches in analysing and demonstrating program’s
properties without execution, assuming a process based model has been prefered:

e Proving that the program satisfies certain criteria, or performs according
to given specifications.

o Proving by analysis certain structural properties of the model.
The following example will demonstrate these kinds of analysis.

Example: Flow-graphs

Two bi-digraphs are used to model the system !. A control flow-graph describes
the structural behavior of the program, and the control fiow during execution,
while a data flow-graph (corresponding to each execution sequence) describes
the data behavior during this execution [22]. In the control graph: the ver-
tices represent control points, and the directed arcs represent actsons or control
transitions. In the data flow-graph: there are two types of vertices: data stems
and operations. The vertices are connected by directed arcs describing the data
flow. A data flow-graph corresponds to an execution sequence $§ = (a1, .s8n)

1Modeling a system in a flow-graph method is described in section 2.4.2 of this document.
A brief review is repeated here.
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in the control flow-graph, by attaching to each arc a; a mapping of input vari-
ables (X}, .., Xi) into output variables (Y;,..,Y,n). This functional relation is
the vertex of type “operation® which appears in the graph. The graph, which
may be very large in case of a complex program, may be reduced by means of
abstraction levels, merging data items to vectors, and sequential actions into
control segments. This graph may be used to demonstrate structural properties
and to verify some performance ones.

o Independent data items may be detected, and point the distributed imple-
mentation that requires less communication traffic. The problem becomes
a partitioning problem which requires that the number of arc-cuts is min-

¢ Each execution sequence with its corresponding data flow-graph encoun-
ters all the information needed for numerical error-bound analysis.

Deflciencies

. Flow graphs and more advanced tools, such as SPECK (30|, share the same
. deficiencies. Program correctness verification is very difficult to implement, and
Ty more difficult to understand. Timing properties are either ignored at all or
receive a simple and fruitless analysis. The statistical nature of inputs is not
. considered, and average and peak performance evaluation is not provided.

4.3.2 Finite State Automata Model Analysis
Graph Model Analysis

49 The usage of graph models to describe problems and solutions has spread dur-
v ing the last decade. The graph models were described in chapter 2 of this
document, and this section will concentrate in their analysis power. This mod-
eling provides information about the structure of the solution, as the process
based method does. Yet, more properties can be analysed: safeness, bound-
edness, liveness (deadlock freedom), reachability of states, equivalence between
“y solutions (optimisation), as well as timing properties.

s Various graph methods have been developed and used. Some examples are
the bipolar synchronisation graph, the R-nets in SREM [4], and the Petri nets.
Some of them share a lot in common, and some look as an augmentation of
. others. The next pages will describe a combined use of stochastic properties
and the Petri ngts.

N . Stochastic Petri Network (SPN) Model Analysis

Classic Petri nets [31] do not contain any timing properties concerning the
= behavior of the finite state machine they describe. The reachability set which
is produced when analysing the net, describes all possible states the machine
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can reach. If this model is extended [27], by assigning prodabilistic firing-rates
to transitions, the net becomes isomorphic to an homogeneous Markov process,
due to the countability of the markings and the memoryless property of the
firing rate. Some definitions summarise the SPN.

e PN =(P,T,A, M), A Petri network.

e SPN = (P,T,A,M,Q), PN extended to SPN.

e P={py,..,Pn} , Places - drawn as circles.

o T = {t1,..,tm} , Transition - drawn as bars.

e A={PxT}u({T x P}, Input and output arcs.

* Q = {q1,-y9m} , Average transition rates, for the exponentially dis-
tributed firing times.

o M = {m,,..,m,} , Initial marking - drawn as dots. M : P — N (the
natural numbers), M(p;) =m;I =1,..,n.

o Set function I(t) = {p: (p,t) € A}, Input places for transition t¢.

e Set function O(t) = {p: (¢, p) € A} , Output places for transition t.

Molloy ([27]) proves that any finite-place, finite-transition, marked SPN is
isomorphic to an one-dimensional discrete-space Markov process, concerning the
marking sequence. Hence, in addition to all properties that can be proved using
a regular Petri net (as describing concurrency, contention and synchronisation,
analysis of deadlocks boundedness and self regulation), the SPN provides capa-
bilities of performance verification: analysis of average delay, average through-
put etc., using queuneing theory [23]. Consider the following simple example (see
Figure 4.1) which demonstrates the combined use of the above methods.

Example: Given the following SPN:
1. The places and transstions sets:
e T={t,.,ts} .
e P={py,..,ps} .
2. The connections:

o I(t1) = {p1},0(t1) = {pa, ps} -
o I{t3) = {pa}, O(t2) = {ps} .
* I(ts) = {ps}, O(ts) = {ps} .
* I(t)) = {pe}, O(t) = {pa} .
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. I(‘G) = {P‘i Pb}l O(‘S) = {Pl} .
3. The firing probabilities: g, = 2,93 = 1,95 = 1,9 = 3,95 = 2.
4. The initial marking: M = {m; = I;m; =0, I € 2..5}.
Solving the above system using Molloy’s method is performed as follows.
1. Analysing the net structure, the transitions can be characterised as:
® (ts,t1) — Sequential.
° (tg,t;) ~ Parallel.
e (tq,t5) - Contention.
e t; — Fork. tg - Joint.
2. The reachability set, describing the “token” occupancy in the places set
(i.e. the mu’king) M; = (Pl)P?ipsl PhpS):
e M; =(1,0,0,0,0).
o M;=(0,1,1,0,0).
My = (0, 0,1,1,0).
L J M‘ = (O, 1,0,0, 1) .
My =(0,0,0,1,1).
A set of five reachable marking states.
3. Solving the ergodic Markov chain (as in [23]):
2Pr[M1] = 2Pr|MS5).
2Pr(M2] = 2Pr|M1] + 3Pr(M3] .
4Pr[M3] = Pr{M?2] .
Pr[M4] = 3Pr[M5] + Pr|M2] .
5Pr[M5] = Pr([M4]+ Pr(M3].
Pr(M1] + Pr(M2| + Pr[M3]+ Pr[M4] + Pr[M5|=1.
4. The marking steady state probabilities:

Pr{M1]=0.1163 .
Pr(M2}=0.1860 .
Pr(M3] = 0.0465 .
Pr{M4] = 0.5349 .
Pr{M5]=0.1163 .
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.31
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4.1;
Figure

69




— —_—————— -~ -
) 5. Calculating the probabilities of tokea occupuncy:
e Prim, = 1| = 0.1163 = Pr[M1].
. o Prim; = 1] = 0.7200 = Pr{M2] + Pr{M4).
) ¢ Prims = 1| = 0.2325 = Pr[M2| + Pr[M3].
) Primg = 1] = 0.1628 = Pr(M3|+ Pr[M5|.
. ® Primg = 1] = 0.6512 = Pr[M4|+ Pr|M3]| .
6. The probabilities calculated above depead on the reachability set, which
itself depends on the initial marking. If the initial marking was 2 tokens
in p;, the reachability set would comsist of 14 states, and 3 tokens in N
would produce 30 states.
7. The ergodicity of the chain allows using flow balance technique and Little’s
law for average performance analysis. In this example, the average delay
time can be calculated as follows. Tramsition ¢; can be enabled only if
P1 contains a token, hence utility(t;)=0.1163. Having ¢, = 2 , implies
an average token flow of 0.2326 tokens per time unit in p;. Since ¢, is a
fork, the average token flow in the parallel paths is doubled (0.4652), and
reduced again in the joint t;. Since the system conserves tokens (neither
destroy mor produce), we can apply Little’s law, knowing the average flow
rate in each branch from above,

o Ty = Nn/ Qoo -
@ Neo= ) /i Miee = 1.7674 .
¢ T = 1.7674/0.4652 = 3.8 time units.

Another approach (Generalised Stochastic Petri Nets) is introduced in [3].
Combining this approach with product form gueseing network theory provides a
tool for performance verification for non-classical queneing constructs [7]. This
combination can also be used to find upper and lower bounds, as an approxi-
mation for non-product-form systems performance.

4.3.3 Theorem Proving Techniques
Proving in General

Hoare's axiomatic approach was adopted for proving programs in various proof
systems. This approach was extended for distributed systems (29], and consti-
tutes & base line for other proof systems, as for CSP proving [6] and others.
There are some major difficulties using the axiomatic approach:

e Time dependent properties of concurrent systems (concurrency, mutual
exclusion) are difficult to specify.




o Finding invariaats for complex systems.

o Simplificatioa of long expressions are in most times tedious.
The following paragraph is dealing with an approach which tries to solve these
problems.

Event Based Model

Event based model of a system 2 ([0]), separates the systems’s properties into
two major categories: behevior which mainly concerns the external view of the
system, and structurs which reflects the internal view of the system. Proving
the correctaess of a system is translated into a comsistancy check between the
behavior and the structure. Orthogonality between properties allows verification
of each independently, and thereby avoids “exponential state explosion” when
coming to derive test sets. The model is constructed from events and their
relations:

1. An event is an instantaneous (takes sero time) stomsc (happens completely

or not at all) state transition in the system’s computation history.

2. Tsms ordering is achieved with the precede (—) relation, which is a partial
ordering found also in [24]. Evens ¢1 preceds event ¢2 ( ¢1 — €2 ) if:

® ¢1,62 are events at the same process (am automomous computation
node, having its own local clock) and ¢1 comes before 2, or

® ¢1, 62 are ovents at different processes, and ¢1 is & send messsge event,
and e2 is & recesve event of the very same message.

This partial ordering ensures thas ¢1 — ¢2 implies that ¢1 happens before
¢2 by any measure of time. (It is not [FF !}. The ordering is transitive,
trreflexive and anti-symmetric.

3. Ceausality ordering is achioved with the enable (==+) relation, which is also
a partial ordering, and is defined as follows:

Event ¢1 enables event ¢2 ( ¢1 =t 62 ) IFF the szistance of event ¢l will
cause occurence of even ¢2 in the future.

This ordering is also transitive, irreflexive and anti-symmetric.

This model allows program verification in a theorem proving fashion, using
the model’s definitions combined with first order predicate calculus. Orthogo-
nality of relations is used to simplify proof procedures which are complex, yet
abstraction levels must be enforced to deal with very large systems. The system
interacts with its environment by exchanging meesages through snidsrectional
ports, in which local history is ordered locally, and the d¢Aavior properties are
specified and measured. Some good property verifications are:

3The event-based model is described in section 1.5, and a brief description is repeated here.
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o Concurrency of events ¢1 and ¢2 is proved IFF (1 — ¢2) and ~(e2 — el).

o Livensss of event is proved applying an “enable”s sequence to the initial
atate. It guarantees that event will eventually happen, (proving starvation
fresdom or message delivery) but more strict timing requirements cannot
be proved by this proof system which provides only partial-order relations.

Real Time Logle

Another event based model is introduced in (21}, in order to verify safety prop-
erties of a real time system. The model consists of events, actions, causality
relations, and timing constraints. The model is expressed in a first order logic,
describing the system properties as well as the system’s dependency on exter-
nal events. The Real Time Logic system (RTL) captures time with an event
occurance function denoted “Q”. This function assigns time values to event
occurances, while the constraints aad the scheduling disciplines are restrictions
imposed on the function. RTL uses three types of constants:

1. Action constants - may be primitive or composite. In a composite con-
stant precedencs is imposed by the event-action model using sequential or
parallel relations between actions.

2. Event constents - are divided to three classes. Start/stop events describe
the initiation/termination of aa action or subaction. Transition events
are those which make a change in state attributes (i.e. a change in an
assertion about the state of the real time system or its environment).
External events are those which cannot be caused by the system, but can
impact system behavior.

3. Integers - assigned by the occarance fumction, to capture time, and used
to denote the number of an event occurance in a sequence.

Assertions about the physical state of the system over time are translated into
algebrasc relations, involving the occurances of the appropriate transition events.
State predicates are used as a notational device for asserting truth-values to state
attributes during a time interval.

A set of axioms can be derived from the event-action model of the system by
applying an aatomatic translation to the system specification. This translation
describes the relations between actions and their start/stop events, the sporadic
and periodic events constraints, as well as the causal relations which may initiate
a traasition event. Artificial constraints may be added in order to prevent the
scheduler from executing actions that are not counted towards meeting specified
timing constraints (i.e. not required), especially when utilisation of resources is
less than 100%.

A timing property of a system (an RTL assertion) is expressed by showing
that there is no occurance function which is consistent with the system speci-
fication, in conjunction with the complement of this particular property. The
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mechanism to achieve it is the deductive resolution. An important characteristic
of RTL allows wsing procedures used in Presburger Arithmetic: an RTL formula
coasists of oaly algebraic relations and state predicates connected by first order
logic operators.

An advantage of RTL is the uniform way in which different types of con-
straints can be expressed, by means of algebraic relations of event occurances.
Yet, it is weak in providing hierarchy levels of abstraction, which are necessary
to simplify system examination, and to relate the implemented solution to the
requirements specification. Simce this spproach is very young, it will probably
be developed in the futare to provide these features.

4.3.4 Timing Properties analysis
Weakest Pre-condition and Predicate Transformers

A very interesting approach is introduced by V. Haase {17] for verification of
real time behavior of programs. Three major assumptions are the base of this
spproach:

1. The program comsists of parts which are sequential and parts which are
parallel. The sequeatial parts are comstructad from Dijkstra’s guardsd
commands, and the parallel constructs (PARCs) are CSP-like parallel in-
terpretation of the guarded commands.

2. The weshkest precondition predicate, “wp”, provides the execution time
propertiss to the program parts:

o In case of s simple statement (S), i.e., Bt an iterative nor a con-
ditional one - whose exscutioa time can be defined as the non-
interrupted execution time needed for the implementing processor
- the weakest precondition caa be interpreted as “the latest starting
time® ¢t to meet deadline T with statement execution time ¢,:

wp(S,t<T)=t<T-¢,

o In case of an ection, i.e., a ROR-interrupted sequence of sequential
statements (action = S; ..; Sa),

'P(““mv‘ < T)' W(SIDW(SQD -~"'P(sm R)))
=¢t<T- 2-'“-1 toi
=t < T — testion

3. Since execution is also input-date-dependent, and not only hardware de-
pendent, this property (which appears in branching points and in iteration
decision) is characterised with Dijkstra’s predicate transformer rule

tection = f(d1,..,ds)
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where d,, .., d, are input data of sction.

In practice one can distinguish two cases:

o when f(..) is a constant or very simple, then execution time can be eval
uated espiscitly prior to execution.

o when f[..) is comparatively complesz, then an wpper bound can be esti-
mated, and if the bound is passed during execution, a special process (as
“watch-dog”) may re-evaluate necessary updates.

Time Behavior of Sequential Programs
Haase suggests 3 method to analyse sequential programs:

1. Trensformation into guarded-commend notation: Transforming the non-
iterative and non-braaching parts is done as described above, while deriv-
ing the weakest-preconditions appropriately. Then

o Condstionel statements are transformed into Dijkstra’s IF:

IF
f — action,

On — Gction,
F1

Deriving the weakest precondition:
wp(IF,t <T)=(35:9;)and (Vi: g ¢t < T - toctions).
o lterative statements are transformed into Dijkstra’s DO:

DO
h — octs'onl

gn — action,,
oD

Deriving the weakest precondition:

wp(DO,t ST) = (3k 2 0: Hy(t < T)) , where
Ho(t<T) = (t < T) AND (35 : 95), and

Hy(¢ S T) = wp(IF* Hu(t <T)) OR Ho(t < T) 3 .

SIF* denotes the same guarded-command set with sssumed IF /F1 brackets.
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2. After the program is written in an equivalent guarded commands notstion,
the progrems wesksst precondition has to be constructed, applying the

3. Evelusts the program’s wp: The evaluation of the program’s weakest pre-
it

wp(program,t < T) = wp($,, ..wp(DO, wp(IF,¢t < T))..)

s carried out®inside first®. Starting with the inner most wp, its weak-
est precondition is evaluated, then substituted in the following, until the
outer most is evaluated, and thereby provides the whole program’s latest
starting time to meet the required deadline.

Ttme Behavior of Parallel Programs

Parallel programs, constructed with PARCs, can be analysed with predicate
transformers as well. A very important assumption is taken in the constructing
phase, that the pusrds variables are mutuslly esciusive. This yields a very
similar guarded commands set, yet the real time beAavior 1o different from the
sequential programs.

o Parellel condition construct, demoted IF-PARC, is carried out as follows:

PAR-FI

Semantics are defined by the formulas
(Ri)and(R;)..ond(Ra) — R

and

wp(IF — PARC, R,..andR,) =
(Vs € 1..n) : (o« — wp(actions, Ri)and—~(g) = R;) — wp(IF — PARC, R).
All R; are substituted by ¢t < T, and false g;s are omitted (not contributing
to execution time). The latest starting point is therefore

WP("-PARC,‘ST)‘V". -‘(‘ST-C“““.').
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o Parallsl sterative construct, denoted DO-PARC, is carried out as follows:

PAR-DO

Semantics identity between DO and DO-PARC allows using parallel struc-
tures as well:

wp(DO - PARC,t<T) = (3k20: H,(t < T)).
But the evaluation is different:

DO: execution time = {4 + to;
DO-PARC: execution time = maz(te,te;).

A method to evaluate the latest starting point is

1. Each ection is represented by a vector in the state space of PARCs.

2. Establish the paths, i.e. the sequences of actions, leading from assumed
pre-states to givea post-states of the whole activity.

3. Consider the following cases:

Case a. If the path between any two states is xnambiguous, then the sum
of the intermediate axecution times of the steps is taken into account.

Case b. If the path is ambiguous, then determine partial sequences that
can be ezchanged, and then mazimum execution time of the partial
sequences is taken into account.

4. If in the example above we assign equal execution times to the actions of
P; (every vertical step), denoted by ¢,, and equal execution times to the
actions of P; (every horisontal step), denoted t), we can conclude (see
Figure 12):

4 o 3:action, — ¢,

3 to l:action,||action; — maz(ts,t,)
1 to O:action, — ¢,
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Figure 4.2: Paths Example.

Therefors, the calculation of the weakest precondition is restricted by
t < T -ty —t, — maz(ta, t,).

Haase's approach gives a tool to deal with medium-complex real-time pro-
grams, yet when dealing with very complex systems, one may find it very hard
to analyse. In order to solve this situation, he suggests the use of a dynamic
checking of (estimated) desdline, by adding a parallel control action. This dy-
ramic scheduling approach is very similar to the Latency Scheduling we reviewed
in chapter 2.

4.3.5 Operational Analysis

Performance evaluation using (12| operational analysis provides a quantifying
tool to abtain average performance properties. Using a routing connection be-
tween service centers (C.S.) whose performances are given, one can obtain the
performancs of a specific system configuration in steady state. It is done assum-
ing job flow belance, and applying simple statistical tools to derive properties
which one cannot obtain by obeervation (external direct measurement). Al-
though these properties may be derived by the models we reviewed so far, it
seems that this evaluation technique covers a field which all the other papers
(mentioned in this review) have not dealt with. This is the resosrces saturation
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problem, which arises due to the resources bdounded utilization, which produces
the bottle-neck phenomena. Analysing the system’s performance must take into
account the simple fact that service centers may be “pushed” only up to their
utilisation upper bound, and therefore, the weakest-point in the system config-
uration will slow down all other parts.

In order to describe the bottle-neck analysis, the notation used in [12] will
be used in the following paragraph. Let

e U; be the utilization of S.C. 1, defined as its “busy time” over an observa-
tion period T.

o X, be the throughput of S.C. 1, defined as the number of job “departures”
from it over an observation period T'.

o V; be the visst ratio of S.C. 1, defined as its throughput part in the whole
system throughput (equals X;/X,).

e S; be the mean service time of S.C. ¢, defined as the portion of its busy
time served to each customer {i.e. (TxU;)/(Tx X;) ). Hence, U; = X; x S;

¢ R; be the mean response time of S.C. ¢, and let R, denote the whole system
response time for a single customer.

The bottle-neck analysis is done assuming a device has reached its highest
utilisation, and let this device be denoted by the subscript . Hence, Uy = 1.
In order to determine which S.C. is b, we have to compare the utilisations of
all S.C.s, and pick the highest one, since increasing the customers number will
increase utilisations of all S.C.s, until one of them will reach 1, and the first to
do so will be the one with the highest U; to begin with.

Ui/U; = (Xi x 5:)/(X; x S;)

division and multiplication by X, gives
Ui/U; = (X x 8:/Xo)/(X; x S;/X,)
and since X;/X, = V; then

U /U; = (Vi x 5:)/(V; x S;)

Then, in order to pick the highest utility,
V;, X Sb = MAX" (V‘ x S.')

For saturation state of the bottle-neck S.C. the following will hold:

U.-l:—»X;=1/S.,
Hence,
X, =1/{Vp x 8)

Due to N = N, customers in the system.
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Yet, for the single customer case, X, = 1/R, due to N = 1 customer in the
system.

Plotting a graph of the system throughput versus the number of customers
in the system, we have the two points (for N = 1 and N = N,) with their
corresponding throughput, to construct the asymptotes which serve as an upper
bound to the systems throughput. The saturating N can be calculated as

N./1=(1/Vs x Sp)/(1/Ro)
for a system without delay.
Hence,

N.= Ro/(Vb X Sb)

The results of the latter analysis are based on broad assumptions: mean
service time for all customers, similar demands of service within time, etc. No
peak analysis can be derived from them, yet they form a performance bound
that has to be considered when the system is evaluated.

4.4 Simulation As Verification Tool

4.4.1 Classes and Aims

One can distinguish two major classes of simulations that are used to verify
properties of a real time program:

1. Simulation of the system under test itself.
2. Simulation of a plant/load that the system meets as its “real world”.
There are various reasons to ssmulate the program itself:

o During the first phases of the design, it helps to verify basic properties of
the model used, i.e. the approach chosen to solve the given problem.

e Using an approximate simulation, one may predict approximate perfor-
mance of the systiem, within a certain confidence level.

e Design trade-offs may be checked and analyzed.

o After the system completes its development cycle, a detailed simulator
may be used to verify achievement of design goals, by comparing its out-
puts to the real system’s outputs.

e It may serve as a good tool for providing answers to “what if” questions,
especially when deciding on upgrading the system.
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A detailed simulator of a system is very expensive to develop [30], and the effort
invested in it may lead to the fact that it is completed only after the real system
is ready [5]. A more common simulation is a plant/load simulator, which is used
for:

o Controlled measurements of the system under load, making it possible to
isolate specific properties in a specific environment.

e Proving system under test, when there is a danger to test it with the real
plant (e.g. control program of a nuclear power plant, control program of
a weapon), if the risk calculations (see section 4.2.2) justify the effort of
developing such a tool.

e A good debugging tool when trying to reconstruct a pattern that lead to a
crash or a deadlock, when only partial information exists for the analysis.

The basic idea in using simulation as a verification tool, is to gain an advantage
that no test provides. A test is constructed according to the system’s specifica-
tion. The simulation provides a verification of the specification as well as of the
system under test.

4.4.2 Problems in Simulation As a Verification Tool

1. Simulation of a large system is rarely used; especially due to the cost
involved in developing it. A good simulator of a system, requires an effort
investment which is in the same order of magnitude as the development
of the system itself.

2. When the risks of operating the system are high, the simulator used as
a test tool should be highly reliable, to an extent even more than the
system under test. This means that in addition to the development cost,
the simulator has to be extensively used per se, before being qualified as

a verifying tool.

3. If the design model and the simulator are derived from the same basic
assumptions, a special kind of errors may arise, called common mode er-
rors: The simulator and the system under test are both mistaken, and the
errors are failed to be detected.

4. When comparing simulator results and system results, discrepancies may
be found. The problem of deciding “Who is wrong?” may be very difficult
to solve. One must be very cautious not trying to change the real world.

5. The most difficult problem in simulating a large real time system is the
dependency of its performance on the sequence of inputs data. Since the
simulator is required to perform as the real system should, including real
time properties, the complexity required from it is of the same level, and
sometimes even higher.
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The problems described above make simulation as a verification tool rarely
found when dealing with large real time systems. Only in cases where it is
unavoidable, regarding risk factors involved, a large effort is invested in it.
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5 Chapter 5

Conclusion

This work tries to review three phases in the life cycle of real time program-
ming. Chapter 2 of this document reviews the design phase, by introducing
requirements specification techniques, modeling methods, and basic approaches
to the design as a whole. Chapter 3 of this document reviews implementation
aspects of real time programming, by introducing a disciplinary approach, as
well as focusing on implementation aspects that concern the Ada language task-
ing facilities. Chapter 4 of this document reviews the problematic aspects of
validating a real time system. Various methods of testing are presented, as well
as proof systems and simulation techniques.

As can be seen in the above chapters of this document, methods that are
powerful in one phase, seem to fail in another. For example, a stochastic ap-
proach of any type provides powerful results in verifying mean values of a system,
but fails to serve as an aid for overcoming scheduling problems in the design
phase. This situation sometimes leads to a combined use of some methods,
linked together by some means, to provide a scheme which covers all the as-
pects (as in [5]). In this review, one may find such links. One of them is the
Petri net, which can be used in the design ([11]) with some augmentations ([10}),
it can be automatically translated to a program, with some modifications and
annotations ([28]), and it can also be used to verify some statistical properties

- ([27,3,7]). Operational approach also tries to bridge the different phases ([35]),
as do the structured methods ([4,22,16]). Some theoretical considerations ([26]),
and disciplinary recommendations ([34,18]) may assure that the combined use
of methods is well coordinated.

As stated in the beginning of this paper, the objective here has been to
describe the major techniques applicable to the three phases in the life cycle
of a real-time system. In this regard, we attempted to include most major
techniques and trends for the real-time systems.
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