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Kernel Nstimtioi of the Deivative of the egression Function at i

using ~q~t-laumto Data

D. a. sliday and .1. D. Emit Ayailablty 0.4.5
Ibsil. Ow/es

Zn ~s gn krnel Abstract

In f" sin kenelnoupametric regreusion, there has beum

a paucity ot results for models which allow for correlated errors.

conasider teeJwm ropeated;masurmmhts 2o1068 aw14MSb in

growth cumv analysix-ft,(zt) - g(zt) + .. (at)f s-l100a

(e.g.,subjects), t-1, .,,n (e.g.,time points) with errors ot sero

am and within- sect covauiance matrix X. Uwre specifically, ve

assum that #3 (xzt),@v(z,)j 8~ez ) whbere 6. is the

xronecker and e(at.,) is the (t,Yv)t elmet of E.

Vurtherinore, it is assumend that #0 Fjj= he repreeted as the

prfict at a scaler varimne terns and a suitably restricted

corgelation fufctioms 7(xt ),)Asymtotic sosions at the minm

su darm4 ccn the msomrJ~wler homwe esumm t an - MUWtry

Ip derivative at 9 wre otaimd tor two gumani 8 Gls eo

owrelatiom functions. Cuas nd etbin results based oam*

64sOWUs we asmssed tor amors put ad vm2 ,

L4 Cqs U atrLe , epeuii -rM -,vis corelated dta
ePtmim u aeatdse izarser-

IiuW es-o*r.
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-- if Ams-dsres to estimate the pP deriative of V(x), denoted
t ~ ---

44Civa~ve, of a kernel estimator g(5), is a worthwhitle aeidate.

t fuckestimptors havs been teimf "Inieato estimators of 9(p by

.i bm~nwc) and others. atedng the notation of the general

Linear estimlator. let

Or X 4.Zut (s (~. ...... (1.1)(.1

dente -n estimator at W(P) (a) in the correlated arrorcs model

s*1.2....,. t *12..n

SE68at U a 0 all seti

th Ma e wi s UANW& toh&s nw. OM W



3

iller, (1979) it is assund that the kernel function R has finite

wrocI -re~vJ which we will always assume to be [-le1] in our

treatment. * nlke 4uw.t7 estimation, where it is desirable that the

estimate be a density, there is no compelling rason in regression to

require that K be nonnegative. We will continue to assum that R is

Smmsetric, has support [-1l,3 ard integrates to one, but will not

require nonnegtivity. In the case of forming an iedl act estimator

of g() we see that the differentiated kernel term certainly will

produce weiht functions which are negative over a large part of the

range.

Observe that the weight function coefficient corresponding to

the indirect (Mestimator is obtained by differentiating (1.3),

w~f)(a) - (d/dx'] w.(0L(z) - (1/h') JAL K.(Z-0)/h~fu. (1.5)

Where

Por the Priestley-Cmmo, estimator (IPC)p we Observe that

while far the -qm-bMtsm (M) we ha"

Ihis lost opmalm will arbNo a birly e-imeiir~

estimanter de W(P) * to the 9resm of a A bNAt the gmno am

aM. mu amt ta tM er fs r Wad

-92M. 9" to thm uwin ms %ta eWl inl W bemq elts,

far the Neman w--~ a s SNMM s sp=UI a 1.)



wbo Lf ma~ttL.y less blesu thm the PC estimator (Noe Gasser

n ist (1979)).

am primary OaW cc this pqis, 1 to. 00"4 asymptotic

- tsiaor the veriine, bias, and mm squred arm of

estleators (1.1) with welobts oil fom (2.5) for aarbitrary order p,

at the derivative to be ewtiWAte. Uw lo order derivatives are of

wuloiamt Latervsto especially In growth cumv smiomtioms. am.

foir P m I amG p - 2 will be onmsidered ian e detail.

We will consier estimtica ia the model givui bj (1.2) with a

gemomml correlation function To* wich will be a funtion Wdmi

eraset Ls the spadin %nL-%, at desipI poiats. UThrotout this

per* it to asinui that

Mi 7 is wen,

(iii) is rel " otinuousat Ov 17

(iv) 7(O) a 2t ad

C(v) Tr is a pemitive definite fwwthi.

PmW prqertMee Cii) - Mu it 90li0s thMt 7 is a drMMteriStiC

funtion ad hencs is Naifemly Ommems ov d tea LAWmee

Chm an7~pl7) * e ASUtmty eusWitf wLl be Smesuery dm

sow omwiw 69.1 w smadand

----.---- Ow 1&&7i a*- h ia lb
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I> 0.

We will investigate the ranifiti ns of our asyqtotic escessins

with regard to mean quare consistency, optim l low bandwidth

selection, and the corresponding rate of convergnce of the 5.

First we will review som recent ets in the estimation of

derivatives.

2. Recent Dovelopments

Unless otherwise noted, all references in this section deal with the

traditimal fixed-design model with amoorrelated errors,

T(Rt) - g(x) + gZtx) I t -,...,;

z 1, ... ,I are selected prior to data collection; and

[O(Zt)) W o, oov[t(),.(z 3U) - tu 9.

Observe that this model is the special case of the repeated-

masuresnets model (1.2) with a a I and umovrelated errors. It

should be noted. hosmver, that the scalar variance ter in the above

Model =ud P y be attributed to UsasureMat error and not to

mimpliug mrlality In the sm*eft-to-sject response Which is

associated with a population of 9jefts.

2be estimates o W(P) (a) wil be o lunear farm

)(a) a Z!.' *) (a) r(Sj), p - 0,#,...

Owe wa3)(a) spf m the ieeip poats .* .i a bwdtf

AM Ah



6

parameter h, and a kernel function KP. As in our deelopment, man

allthos sim that the kern function has finite support. Zt will

be seen that the kernel must satisfy other restrictions in order for

the estiator to possess desirable statistical properties.

Schuster and Tekowita (1979) prove results involving the uniform

convergence of Jndirect estimators of g(P) for the PC estimator as

specified by (1.6). We state their main result.

Toorm (2.1) - Schuster and Yakowitz (1979)

Let K be a probability density fuction such that

(i) IuJ* K(J)(u)j - 0, as u -- -, for j - 0,1,.,pI

(ii) the first p+l derivatives of K are continuous and

bounded on (-.,) ad

(iii) I [up 9(u) Jdu < h, bere 9(u) is the

characteristic function of a.

additiomal supiStLons are

(iv) V(9P.L) exists and is continuo an [0,11 and

(W) Z[lesx] £ V (bounded variance for all z).

e for every @ 0, there is a constant C > 0 such that, for n

sufficiently large,

P1L q.]-qP() 0* < 0aa+2
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For results restricting K to be a sy maetric density for the case

PinOr consult Chang and Lin (1961a,1981b). Their estimator is similar

to that of Gasser and uller (1979), who allow negativity of K.

Gasser and Miller (1964) and Gasser, Huller, and Nmmatzsch (1965)

atand their original work to the estimation of derivatives. in the

first peper it is true that K9P a K() as in Indirect estimation, but

this requirement is dropped in the latter paper since Kp may be

chosen freely for each p, provided It satisfies a certain moment

condition. It is not always optimal to simply estimate g(P by taking

the pt derivative of an optimal estimator of g. The latter work

explores the choice of kernel in a class of so-called higher order

kernels that depand on p. This is what Georgiev (1984c) term direct

estimation. The distinction Is not particularly iqotant since one

may relate the conditions which K9p should satisfy to a set of

conditions K(in%) should satisfy when differentiated p times. This is

done in Gasser and Diller (1964). We should note, however, that for p

of sufficient magnitude, the associated class of higher-order kernels

my not adit X() where K is a probability density. This is bemause

the ment conditions placed on KP ay imply that K must be

negative over pert Of its uqort.

Gasser and Miller (196) require that KI satisfy the

following conditionst



(a) K is a p-times differentiable function so that

p - R(P) is defined,

(b) Kp has spport [-1,11,

(c) I K(u)du a 1, and

(d) KI1 (1) a K, (-I) a 0 for J 0,1,. p-1.

notice that the -panechnikov kernel K(u) * (3/4)(1-u2 ) would satisfy

condition (d) for estimting the first derivative (p-l), but fail for

estimating the second derivative (p-2), in which case the smoother

quartic kernel K(u) - (15/16)(1-u2 )2 is a candidate. Gasser,

et al. (1985) have shown that, subject to certain conditions,

Ki(u) a (15/4)(u -U)

is superior to the derivative of the Rpenedmikowv,

1(u) - ~(l)(u) * - (3/2)u, (2.1)

insofar as mini m MR is coneed. Nowever, (2.1) is better it one

is owe concerned with aminsmlatiom of the aslptotLc variance then

with mimlaintia ot the aspptotic squared bias. Under these

moditJns and Lpe*it continuity of g, as asmptotic ueansin of

*[gP)(z)] is obtained. is result Vill be used in lter

Gevlopents In this per. one of the inn results is the followings
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Theorm (2.2) - Gisser and Miller (1984)

Let g be a p-times differentiable function defined on the interval

(0,1), (when pw0, assume continuity). Suppose that IKp - 10 ) is

bounded. 2hen g(P)() as speciflied by (1.S) is 3S consistent for

g(P)(Z) if:

(M) g(P) is continuous at z in (0,1), and

(ii) h - 0, nhp4  
-* as n -' m.

The authors proceed to establish results on almost-sure convergence

and asymptotic normlity under conditions similar to those in Cheng

and Lin (1981a, 1981b). An asymptotic expression for the mean squared

error at a point is obtained. The rate of 163 convergence depends

upon an appropriate choice of a higher-order kernel, which relates to

the original differentiated kernel via the following l1ma.

Lema (2.1) - Gasser and N6ller (1984)

Let 0 be a non-zero constant and r be an integer such that r 2 p+2.

Suppose K is a kernel function such that

(I) 90)(1) - (1 )(-l) - 0 for j-0,1,...,p-l;

1 i-O
(ii) . 1  K(u)du - 0 1 .

(-)P p (r-p)I/rl j - r-p. (2.2)

-~ -- ___NOW
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Then the pth derivative of K, denoted Kp - KP) satisf ism

0 j =O- .p-l,p+l,
i_- uI Kp(u)du - (-l)PpI j = p (2.3)

S:j r.

Furthermore, if Isp is a function satisfying (2.3), then there

eilsts a p-times differentiable function K satisfying (2.2)

with 0 ) Kp.

A kernel satisfying (2.3) with a finite P 0 0 is termed a kernel

of order (pr). The result for the ezpension of 1SE is now stated.

Theocen (2.3) -- Gasser and Nu1ler (1984)

Lot g be an r-times differentiable function on [0,1] and r 2 p+2. Let

(r) be continuous at a point x in (0,1). Let the Lipschitz

continuous kernel Kp be a kernel of order (p,r) with support [-LL]

and suppose

(i) h -- 0, nh-., as n - and

(ii) nmzj ls-j ('J=o~n-1), a > I.

2hen for x in [h,(l-h)] and

gn(P )(X ) - (l/h ') EL. 1 Y(a,) I L Kp[(x-u)/hldu,

where AL is defined in (1.4), we have

mt~g.(()] . X[g.()(x)-g(P)(Z)]2

- (e 2 /nh 4 1 )L_ Kp(u) 2du + (hZ(rP)/(r)Z)[_. u1 Kp(u)du]2g(r)(z) 2

SO[(L/n~h 1 ) + (1/n'h 1 ) * (1/nh-) o(h(r-p)). (2.4)
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An asymptotically optimal local bandwidth may be obtained in the

usual manner by solving for the critical value of the leading terms

of (2.4), regarded as a function of h. The authors obtain

hopt(z) a C n-l/(2 r+l) (2.5)

where C is a constant depending on p, r, a2, K, and g(W)(Z). Upon

insertion of this bandwidth into (2.4), the rate of convergence of

the XSE is obtained:

XSE[g(P)(X)] - C* n-2(r-p)/(2r+ l) + o(n-z(r'P)/( 2 r+l)). (2.6)

The quantity C* depends on the same quantities as C in (2.5). In

(2.6) observe that the rate of convergence gets rapidly worse if one

desires to estimate g(P) for increasing p. The bias rate may be kept

constant provided r-p stays constant, which forces a larger value of

r and amounts to an assumption of greater smoothness of g. Ev so,

the rate of the variance still gets worse for increasing p. The

higher the value of p, the greater the value of the local bandwidth,

at a cost of increased bias and more pronounced boundary effects.

If one desires to choose a bandwidth which minimizes a global

measure of error, then one my choose h to minimize the sman

integrated squared error (NISZ), or an approximation thereof.

Unfortunately the NZ3l may be dominated by the boundary effect, that

is, bias which arises whenever one estimates g(P) near the endpoints

of the range of interest. Bias near the boundary usually contributes

heavily to the USE, unless the function g happens to be smooth at the

boundary. Since our weights are of kernel form and deped on a single

bandwidth peroeter selected to serve well over the entire interval,
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s mod'fcatioa of h nd/or K may be necessary to dONeiFght the

contmination which arises near the boundary. It is vel-known that

the rate of convergence of the No5 at a point near a boundary is

often slower than at an interior point of estimation. To circumvent

this difficulty, Gasser and Hller (1984) choose to modify the kernel

K, obtaining "boundary kernels" which are used menever one

estimates within a bndwidth of either boundary. Mese modifications

require new kernels satisfying certain mment conditions. Contrary to

some appoaches taken by other authors# these methods do not alter the

original kernel by truncation or bandwidth shrinkage. 2he boundary

kernels, not necessarily nonnegative, arise from the solution of the

variational problem of KISS minimization, considered as a functional

of the kernel in the KISI expansion. The resulting kernels turn out

to be relatively simple low-order polynomials.

Nardle and Gasser (1984) consider robust estimation of g(") with

an approach based a N-estimation (Huber, 1981, Ch. 3.2). hban using

an estimator which acts as a linear operation on the data, such as a

kernel estimator, single outliers night mimic peaks and troughs,

corresponding to unexpected zeros in the estimated derivative. The

authors note that estmation of derivatives is likely to be more

sensitive to outliers, and hence robust methods are often called for.

Giorgiev (1984c) considers direct estimators of g(P)(X), which,

in his notation, replace the quantity Kp in (1.5) With K r, a kernel

which satisfies similar moment conditions. These results are similar

to those of Gasser and Muller (1984), but use kernels whoSe support
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sm C0,1] rather than [-1,1]. Another mdnor diffecone in the

eStiMtor is the usage of AL = [XL.I3.U lt rather then Aj w [5,..ul L3 .

Also a reversal of the order of the integraped arumits of (1.5) does

not lead to a factor of (-1)P *An the kernel eigbt is

differentiated.

fte estimator considered is

gtP)(Z) - (/hE*L) rz.1( Y(iz) I:k rS.r[(u-z)/hbdu ). (2.7)

We state the following t em to afford a comparison between the

awproaches.

Ibeorew (2.4_) - Georgiev (1984a)

Let r > p be a fixed integer. Assume K, is a real-valued, bouaded,

ad continuous function an (0,1) wdach vanishes outside (0,1). Also

as sum

(L) Ju3 IKr(u)du - I tr r- p

0 for j o p, JuO, 1,...,r-l#

(Wi) 0 - o 5 x, ... <. S 1g*- 1,

(ULi) h -. 0 as n -.

(i,) l g(t)(t)l < -Pp ald

(V) an mm(z.-z1 .1 ) m 0(1/n).
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N*D j {4 v,(u-)/hljdu )2, (3.5)

then last tMWaLt Or LmNO (3.1). by a 1,1 11o ariable, the

latemal. In (3. 5) is

h 1AL 1(') I"t.
NO A 0 1(2-1)/hX/hJ amtALaS C-1.13 tar h smal ONNO. We then

Ivato)())- (0a/311) hp)

OR a~ ( 1-1 ximvib P

* @(1/O)o anso a of- - h -. 0,
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4. ExPansion of M5 for Arbitrary Order p

In this Section the VWa is to obtain an asymptotic empansion Of

Mu[,('P)(x)], *W gjP)(z) is given by (3.1). W~e will need to expnd

X(h;p) and 5(h;p) under smoothfness assmstiops on 9 and y, enjoined

by appropriate Taylor Sewies requirements. Properties of the kernel

funcetion, K, are isportant when evaluating these usaasiong. We will

usually assum that R satisfies the orthogonality properties Of

Gasser and Iialler (1964).

First we set about defining notation useful for the evaluation

and representation of comoly recuring terms * We define the met

notation a

a *Kr I. 11u 2 K~udue (4.1)

which is the JtI MoCmmnt about the mNen (zero) if Kr happens to be a

symletric probability density on [11.For K a K we will require

siyetry and u(o(Ko) = it but allow negativity.

A notation will be needed to handle bulky double integral

expressions which arise in certain variance expasmions. Define for a,

be t in [-1,11g r a 0,1, ... the notation (4.2), with special cases

(4.3) and (4.4)s

C(rep) a KWreps-le1) - K(rop~tr1) + &(rop$-ltt); (4.3)

D(Cep) a KWrepoto1) - K(ropl-1,t). (404)
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Using the binomial eqMmsio, we relate (4.3) to (4.1):

C(rop) - ( ())(-'.

lurtber simpificmtion of (4.5) is possible by noting recursivaenss

and coditions far wdhch term (4.1) vanish.

S (4.1) 5ppose a(K) eists for r - O#.,...,p and K, X(t) is

the r" derivative of an ey # p-tim differentiable function

K a K0 - K(0) . Then for a given r - ...opt

j(R) a 0, if J+r is ad. (4.6)

Furthermore, if KV..1(l) - K,_(-.) - 0,

01(y - (- ). > Of a0 d (.7)

mj(K) - 0 if r > J k 0.

Prof: Equation (4.6) follows since (4.1) is an integral of an odd

function over [-Ill when K0 is evn. To obtan (4.7), integrate by

parts.

2his result causes tremendous simplification of (4.5) since at least

half of the terms will vanish (every other tem drops out). Our

Taylor series tools will be smmmrized in the next iemro. This lmm

has ben tailored to eet our needs, since exaunsion will alwmys be

about zero and the argumnt will qpcomch zero by assmption. Xv

ftiorCs ad one-sided mpnsi os will be taken into account.

-A
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LOa (4.2) Let f be a feal, continuous function defined in a

eigphborbmoA of the origin N i(-t ,t) , t > 0. Let

(j) f J) j m 1,...,.n exist and be continuous

in N and lot f ("+L4 )(0) exist.

Then, as u -. 0,

(a) f (u) *Z::, (kW)(0) uk/k! I s( +)

Furthemoe, if r = ( greatest integer :9 (n+3L)/2] and

(ii) f(u) - f(-u)f

then, as u -4 0

(b) f (u) -4.. f("k)(0 ) uak/(2k) I + a(u~r).46

Finally, if we replace Mi with

(j' (l), j - 1,...,n exist and are continuous in

It-1o) and f(n*l)(0 4 .) and f(n*l)(O) eist,

then assuming only Mi' with u in [0,t) and u --P0

(c) f(u) = E::I f(X0.1.) uk/k, + * n~)

For u in (-t,O] and u -0t

(d) f(u) - Z:+ f~k)(O-) uk/k! + o(un+1 ). (4.9)

under, (i)' and (ii) with k even

(e) f(k)(0-) , t(k)(0+)#(90

which we will, with an abuse of notation# denotef(k(0

(!echnically, this derivative my fail to mxist by the definition,

but we will a~p this notation convention vbwheee the right-hand

and left-band decivatives at a point are the some.) For k odd@

(f) f (X) (0_) C M f (0+~)
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Proof: Assertions (a) and (b) are standard and follow from

luiks (1969, p.160). Assertions (c) and (d) are lesser known and are

adapted from Fulks (1969, p.160).

To obtain (e) and (f), note that (Li) oscillates between an even

and odd function on each successive differentiation. Using the

assumed continuity of the derivatives in (i)', we have, for k even,

f(k)(t) - f(k)(-t) .

Letting t -- 0+ produces result (e). Similarly we obtain (M). U

Recall that, under the conditions of Theorem (3.1),

Var[g(P)(z)] _ (0 2/oh 2p ) I(h;p) + O(1/unh2P), (4.11)

where

I(h;p) - -L-1 7[(s-t)h] % (s)ltp(t)dsdt.

Under two situations for the smoothness properties of 7, we will now

derive respective expansionu of (4.11).

Theorm (4.1) Suppose y is a correlation function satisfying (1.7)

and Ci)' of Lm (4.2) (with n - q 2 1 as the order of smoothness).

Than, under the conditions of 7heorm (3.1),

Var[g(P)(z)] * (oz/2)[So + S3 + o+(hq*-P)] + 0(1/mh2 ), (4.12)

where

s o  Z.o Y""'(0) C(2v, p) hZv-P)/(2v)I,

S- -: 7( 2v'Y)(O+) D(2v+4l,p) h2(-P)+//(2v,+l)I,

a a b a q/2 for q even, and

a w (q+l)/2, b - (q-l)/2 for q odd.

A .. .... . -.. ,
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The constants C(2v,p) and D(2v~l,p) are defined by (4.3) and (4.4),

respectively. Furthermore, if -y has more snmoothness at the origin,

that is, 7 satisfies (i) of Len (4.2) rather than (1)', then (4.12)

still holds with S1 - 0.

Proof: Let h --# 0. Let -y satisfy (1.7) and Ui)' of Liem (4.2).

Observe that (ii) Of LMO (4.2) is automatically satisfied for a

correlation function. We have for s > to

and for s < to

7[(5_t)h] 1:1 7~() ( u-St)1 hj/jf + 0h~

Bring in I(h;p) - Ii + I., where

11 - 5S1 7 1(s-M3h IK,(s)IkP(t)6sdt# and

I- 1_21- 7 [(s-t)h] I~(s)Kp,(t)dsdt,

so that by notation (4.2),

I, 1Z (,)((+) y(j,p;t,l) hj/jI + o(hq+1 ); (4.13)

12 u I vJ(O-) IK(j,p;-l.t) h1 /jI + o(hq+2) (4.14)

Combining (4.13) and (4.14), we see that the coefficient of hI/jI is

7()+ K.(J,put,l) + 7(j)(O-) K(J,p;-l,t). (4.15)

When considering (4.9), (4.10). (4.3), and (4.4), expression (4.15)

becomes ,'10)(0) C(J,p) when j is even and -yJ)0 D(j,p) when j is

odd. we now have

I(h;p) a *; +~ S;+(hq41).



where 

2

S; - .. 7' 2 "'(O) C(2v~p) hav/(2v) I

S; Z,0 7 (Zv*')( 0+) D(2v41p) hav*1 /(2v~l) 1.

with a and b depending an whether q is even. or odd. The values for a

and b follow from Leae (4.2). The conclusion (4.12) is obtained by

making use of (4.11).

For inmoother '7 satisfying (i) of Lgas (4.2), we use (4.8) to

conclude that, for any so t,

7 [(s-t)h] - z.0 7~(() (s-t)a' hav/(2v)! + * q+)

There is now no need to break I(h;p) into two pieces. We are led to

the expression

I(hgp) - S;+oh* )

from which the seco- conclusion is clear.

To obtain an ausq~totitc 15W exprssion, we will need to consider the

bias# which unde the condi tions of Lem (3.3) my be written

3iasWg~p)(z)] a B(h;p) + O(l/nhp)t (4.16)

where

B(hip) *I"4 g(P)(X...a) Kt(u)du - ()()
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21eorm (4.2) Lot p, r be nosnegative integers sm* that r k p42.

Suppose that g is an (r-1) tims ooutinuou$ly differentiable function

and that g~r emists. Also suppose K(u) a K(-u) and K satisfies the

assumtions of Lem (3.3). 2bua as h -* 0,

+ o(hr-p) + * ./h)

where c - [greatest integer :9 (r-p)/2] and ft,(K0 ) is given Or (6.1).

Proof: now for j 0- ,..rp

[dl/dh2J g(P)(z..bu) - (-1)3 01 g(*)Xb)

which evaluated at h - 0 becames

Using Leina (4.2), an expansion of

9(h) - 1- g(P)(z-hu) K(u)du

becomies (with h -- 1 0) ,

0(h) 9 ; (k)( 0) bkk + O(hr-P)p

where

10)0 g(P(z) sto(KO) * ~)()

9(1(0 g(P+23)(s) j&21(K0), J a 1 .... cl and

Q(,I+I)0)* - g(P42 *L)(x) ha,i(Ko) - 0.

The last statmnt. follows from Lm (4.1). 2berefore

BMW~p - 9(h) - p)X

EC,.,, q(P2 )(zx z(Y) h21/(2j)I + o(1?'P)o

frcm which the conclusion in iinediate by using (4.16).
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(a) inn ~ dlJ * .~m. +(1/rn) MNO(~)

W #~ * (ka) * *(&/a) + .(l1^%S). (5.1)

u*we u(1um~ asatf (1.1) ad (6 4

0f tor mesa 71

* - 7 (O) e2 , 1 ai (913)(3)us()2.

p*2, q *3, r a 4, we bm

(b) Mf, 2 () a -/ *, vlM + v~/r * o(1/r) * (Ll/b')

* W~ * *(bh) *oU./.h) + O(1/aabh) *013. (1.2)

dmst mains mottism (4.1) sm (6.6),

v I adyl)(*-) as 3(1.2). tor 7ed-

0.fo wesch 71

vs a 713)(OW) #2 3(3.2)/S. g3.,Mb ~d

0. tor sonh 71

3 a 7()0)a, am k1 - [4W1)(2) as(%)/212.

fa: Por (a). a~m 7 is ow W1) ag lbonsv (4.)). Whm we

hav a a ((qo1)/23 a 10 ft dt

Sa 4,. 7( 3w)(0) C(2v.]1) h2a' 1I/(k)I. (5.)

NO fim Uble It C(0.1) Ot0 C(2#1) a -2,.I Leb s* m (5.)

8iO1if les to

Stmeq isso# a eI 0 ad we 7(I)(
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S-b



36

sufficient to cause the terms in (5.1) wad (5.2) to vanish

auymtotically.

Moore (5.2) ASsume that the requlirements of 2heorm (4.3) are

satisfied for a selected order p a I or 2. In addition, suppose z is

in (0,1).

(a) For case (a) of meorm (5.1), assume D(1,1) 0 0 for

a peaked 7. fhm 9(I)(3) is mean square consistent

for 9(1)(X) if

(M) h - 0, (11) ah ". ,, and (iii) h-. .

If it happens that D(,1l) a 0 or 7 is sooth at 0,

we have instead:

() a- h -- 0, (i1) nh--, and (5.5)

(iii) Mh 2 -- f 0. (5.6)

(b) For case (b) of Theorm (5.1), asume D(1,2) 0 0 and

peaked 7. We have consistecy of 9( 2) (z) if

(i) a- , h-- 0, (ii) ah2 -- , and (iii)

m - m

In the case that D(1,2) a 0 or 7 is smooth at 0, we

have

() -.. ,h -0, (11) -, and (5.7)

(iii) inah' - 4 ,, (5.)
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Proof: The result follows by direct consideration of the MRZ

expansion in Theorem (5. 1).

In the above theorem, conditions (5.6) and (5.8) are simplifiLed

by the slightly stronger assumption

lrn inf M/n > 0.

which, when used with (5.5) and (5.7) imuly the respective condition

(iii). Of course it is still possib le that u/n --# 0, so long as the

convergence is not too fast., We are now led to consider how one

should ideally choose the local bandwidth in an asymptotic sense. The

usual approach in to differentiate the leading term of expressions

such as (5.1) and (5.2), regarded as a function of h. One should take

care to ensure that the leading term are actually the dominant term

asymptotically. These are the term which decay to zero at the

slowest rate (under the assumtions mae) and hence ultimately sake

up the largest portion of the MR3 as nmn -* a. Of course, for any

finite samle, a solution as described above my be suboptimal due to

the relative sizes of the constants in the 153 expression. Moreovere

the situation is further complicated by the depudence of h on a as

well as n. We observe that both a and a -+ -, but they my proceed at

different rates. To be complete, we must therefore specify conditions

for the behavior of rn/n as non. - To illustrate the arguments,

consider the leading termis of (5.1):

*j/s va/u + b1b'. (5.9)

Solving for the minimizing h* we obtain
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* C-1/5. (5.10)

For this choice of h, the evaluated 153 in (5.1) yields

O(n - 6 I s )  O(W1) + 0(n-m31 5 ) + o(n-Y / 5 ) + O(n-m2 / 5 ). (5.11)

TO guarantee that (5.9) is the dominant term in (5.1), we need to

ensure that the corresponding rate of cavergemce x =4I s is the

slowest among the last four terms in (5.11). This will be

accomplished if

mx {n., n=n . 3/ s5 , n- /5 , n 2 R/ s5 } -o(m-6s).

We observe that the condition

rn/n - 0(1)

is sufficient for this purpose. Under this condition, bandwidth

(5.10) is optium amg all bandwidths satisfying nh - , nh ---

and h --# 0, as in Theorm (5.2). The constant c in (5.10) turns out

to be

c a (v 1 /4b 1 )l1 s ,

Uhere

V1 - 7(1)(0+) 02 D(1,l),

b- [g(3)(Z) 2(lo)/2]2,

and it is assummd that y(l)(0+) 0 0. Therefore if b, 0 0, D(1l1) 0 0,

and 7 is peeked, we have the above result. If D(l,l) - 0 or ' is

smooth now 0, different methods are required to obtain the

asymtotically optimnl bandwidth.
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