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Inf esign kernel nonparametric regression, there has been 7 -
i a paucity of results for models which allow for correlated errors.

Consider uho-teuadn! uputdf-lur-utl- luhl; applicable in
y growth curve analysis® Y (x,) = g(x,) + ¢, (x,), #=1,...,@

(X)), 0,(x,)] = §,,0(x,,%,) vhere §,, is the

and o(x,,x,) is the (t,v)*" elemant of I.
Furthermore, {.t is assumed thtj‘m:’:t‘::mtd as the
product of a scalar variance ters and a suitably restricted
correlation tmzqﬁ;,:;)"uy!mm expansions of the mesn
mmamun@ﬁ:muMGtuﬂm
] P derivative of ¢ are cbtained for two general classes of

A correlation functions. Comsistency aad other results based on such
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1. Intreduction

AAI G

R alﬁ“,litu to estimate the p'" derivative of g(x), denoted

~—ny-

- -

-o: g4 4% 18 natursl to question vhether g;P’(x), the p*

. qarivagive of a kernel estimator §,(s), is a worthwhile candidate.
. Such estimptors have been termed “indirect” estimators of g by
: Mi\m;umo. Extending the notation of the genaral
linear estimator, let | '

'.(’)(.) - "T-l ‘gx)(g) ,(..‘). 9-0.1.3.... 1.1)

denocte an estimator of ¢® (x) in the correluted errors model

Y (my) = g(xmy) + ay(xm);
' d 1.2.0..,. t - 1.2....."

Ble,(x,)) = 0, 8l 8,t;

covle (x,),e,(x,)] = S 0(xn,,x,). 1.2)

For an estimater of the Gasser-iiller (@) type, which will be
the main fesus of this papar, wo have

w(m = w @) = QM 1, Kl=-w)/nlm, (1.3)

A o (8008 )1 8, S0 fimy) sy 8, =D a.6)

Witheut 108s of genssulity, the ramge of imterest (a,b] ia owr
amalytic Giscussiens will be the intesval [0,1). In Gusser and

¢ ey — =



miller (1979) it is assumed that the kernel function K has finite
support [-r,r], which we will always assume to be [-1,1] in our
treatment. Mlike dengity estimation, where it is desirable that the
estimate be a dansity, there is no compelling reason in regression to

regquire that K be nonnegative. We will continue to assume that K is

symmetric, has support [-1,1], and integrates to one, but will not
require nonnegativity. In the case of forming an indirect estimator
of gP, we see that the differentiated kernel terms certainly will
produce weight functions which are negative over a large part of the
range.

Cbserve that the weight function coefficient corresponding to
the indirect GM estimator is obtained by differentiating (1.3),
yielding

v (x) = [aP/ax®] w{D(x) = (A/F*Y) Ia, Kpl(z-u)/mlda, (1.5)

K (w) = xX®P(u) Iy, ;0.
FPor the Priestley-Chao estimator (FC), we cbserve that
wPx) = Q) (z,,,-%)) K [(x-n;)/m), (1.6)
while for the Madaraye-Watscn (W) we have
w(x) = (/0] X[(a-n,)/A] / I, K[(x~x,)/A]}.
This last espression will produce a fairly compliceted imdirect
estimater of §?’, @ue to the presence of = in hoth the numstetor and
doneminater. Ghoerve that this is true for any cut-end-acsunlised
ostimatur. Due to these smplicatiens, we will enly develep results
for the ssa-ont-end-asrmalised @ estimnter as specified by (3.9),

-




which is ssymptotically less biased than the FC estimator (see Gasser
and Maller (1979)).

The primery goal of this peper is to dewelop asysptotic
epreasions for the variance, bias, and mean squared error of
estimators (1.1) with weights of form (1.5) for an arbitrary order p
of the dexivative to be estimated. The low order derivatives are of
predominant interest, especially in growth curve agplications. Cases
for p=1and p =2 will be considered in wore detail.

We will comnsider estimation in the model given by (1.2) with a
general cocrelation function vy, which will be a function whose
mumm:u-g,amnmu.mt:Ms
paper, it is assumed that

(1) 7 is even,

) || 1,

(111) 7 is real amd continucus at 0, Q.n

(Av) 7(0) = 1, smd

(v) v 4s & positive detinite functiom.
From properties (iii) - (v) it follows that 7 is a caracteristic
function and hence is wniforsly coatinucus over the real line (see
Chung (1974,p.179)). The centinuity assunption will be necessary when
Taylor enpansiens of y are camsidered.

Situstions for which 7y is smsoth near the origia will be
considesed. Is adfitien we will stufy situstien; where the first
dezivative of v 48 ROt eantinusus at the origia, &s ia the Orasteia-
Wlebesk nedel,

e o e s — S
, o s 5




v(u) = exp{-a|uj}, a > 0.
We will investigate the ramifications of our asymptotic expressions
with regard to mean square consistency, optimal local bandwidth
selection, and the corresponding rate of convergence of the MSE.
Pirst we will review some recent developments in the estimation of

derivatives.

2. Recent Developments

tUnless otherwise noted, all references in this section deal with the
traditional fixed-design model with uncorrelated errors,

. Y=y = gi(x,) *+ o(Ry)) t = 100,05
Xysee00%, are selected prior to data collection; and

Ble(x,)) = 0, covle(xmy),e(xy)] = 8, o,

Observe that this model is the special case of the repeated-
seasuresents model (1.2) with » = 1 and uncorrelated errors. It
should be noted, however, that the scalar variance tera in the above
model would probsbly be attributed to measurement error and not to
sampling veriability in the subject-to-subject response which is
associated with a population of subjects.

The estimators of ¢P)(x) will be of linesr form:

s (2) = 2., wP @ ¥(x,), p = 0,1,...

where w]’(x) dapends cn the Gesign POints x,,,...,%,,, & Dendwidth




parameter h, Mlkmltmtiml’.nmmdmt, many
authors assume that the kernel function bas finite support. It will
be seen that the kernel must satisfy other restrictions in order for
the estimator to possess desirable statistical properties.

Schuster and Yakowitz (1979) prove results involving the uniform
convergence of indirect estimators of g‘P for the PC estimator as
specified by (1.6). Ve state their main result.

Theorem (2.1) -- Schuster and Yakowitz (1979)
Let K be a probability density function such that
(1) Ju** kP ()| = 0, asu — =, for I = 0,1,....p;
(11) the first p+l derivatives of K are continuous and
- bounded on (-=,=); and
(111) 7 |uP ®(u) |du < =, where ®(u) is the
characteristic function of K.
Additional suppositions are
(4v) gP*V) exists and is continuous on [0,1]; and
(v) BlY?;x) < Vv (bounded variance for all x).
Then for every ¢ > 0, thare is a constant C > 0 such that, for n
sufticiently large,
PL I 18P (x)g®P(x) | > o] < C/e?nn?*2,

e Y




For results restricting K to be a symmetric density for the case

p=0, consult Cheng and Lin (1981a,1981b). Their estimator is similar
to that of Gasser and Muller (1979), who allow negativity of K.
Gasser and Muller (198¢) and Gasser, Muller, and Mammitzsch (1985)
extend their original work to the estimation of derivatives. In the
first paper it is true that K, = K®, as in indirect estimation, but
this requirement is dropped in the latter paper since K, may be
chosen freely for each p, provided it satisfies a certain moment
condition. It is not always optimal to simply estimate g‘P by taking
the pt® derivative of an optimal estimator of g. The latter work
explores the choice of kernel in a class of so-called higher order
kernels that depend on p. This is vhat Georgiev (1984c) terms direct
estimation. The distinction is not particularly important since one
may relate the conditions which RP should satisfy to a set of
conditions K(=K,) should satisfy when differentiated p times. This is
done in Gasser and Muller (1984). We should note, however, that for p
of sufficient magnitude, the associated class of higher-order kernels
may not admit K‘P’, where K is a probability density. This is because
the moment conditions placed on XP) may imply that K must be
negative over part of its support.

Gasser and Miller (1984) require that K = K, satisty the
following conditions: '




(a) K is a p-times differentiable function so that
K, = K® i3 detineq,

(b) X, has support [-1,1],

(¢) f K(u)du = 1, and

(4) Ky(1) = Ky(-1) = 0 for J = 0,1,...,p-1.

¥otice that the Epanechnikov kernel K(u) = (3/4)(1-u?) would satisty
condition (d) for estimating the first derivative (p=1), but fail for
estimating the second derivative (p=2), in which case the smoother
quartic kernel K(u) = (15/16)(1-u®)? is a candidate. Gasser,

et al. (1985) have shown that, subject to certain conditions,

K, (u) = (15/4)(u*-u)
is superior to the derivative of the Epanechnikov,
K, (u) = KM (y) = - (3/2)u, (2.1)

ingofar as minimum MSE is concerned. However, (2.1) is better if one
is more concerned with minimization of the asymptotic variance than
with sinimisation of the asymptotic squared bias. Under these
conditions and Lipschits continuity of g, an asymptotic espansion of
Blg{P’(x)] is cbtained. This result will be used in later
developments in this paper. One of the main results is the following:




Theorem (2.2) — Gasser and Muller (1984)
Let g be a p-times differentiable function defined on the interval
(0,1), (when p=0, assume continuity). Suppose that K, = kP ig
bounded. Then g P’(x) as specified by (1.5) is NSE consistent for
gP)(x) 1f:

(1) g‘® is continuous at x in (0,1), and

(1) h =20, nh?**! 4 », asn — =,

The authors proceed to establish results on almost-sure convergence
and asymptotic normality under conditions similar to those in Cheng
and Lin (198la,1981b). An asymptotic expression for the mean squared
error at a point is obtained. The rate of MSE convergence depends
upon an appropriate choice of a higher-order kernel, which relates to
the original differentiated kernel via the following lemma.

Lemma (2.1) -- Gasser and Muller (1984)
Let § be a non-zero constant and r be an integer such that r 2 p+2.
Suppose K i3 a kernel function such that

(1) K1) = kP (~1) = 0 for 3=0,1,...,p-1;

1 j=0
(11) 1.} v K(wau = 0 = 1,...,0p-1
(-1)P 8 (z-p)1/xt 3 = r-p. (2.2)

- B i St : N
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Then the pt® derivative of K, denoted kP, satisties

0 j = 0,...,p'l,p+1,...,t-1
Itu K wau = (-1)%p1 3 =p (2.3)
[ j=r.

Furthermore, if K is a function satisfying (2.3), then there
exists a p-times differentiable function K satisfying (2.2)
with X® = K.

A kernel satisfying (2.3) with a finite § # 0 is termed a kernel

of order (p,r). The result for the expansion of MSE is now stated.

Theorem (2.3) -- Gasser and Muller (1984)
Let g be an r-times differentiable function on [0,1] and r 2 p+2. Let
g‘*) be continuous at a point x in (0,1). Let the Lipschitz
continuous kernel K, be a kernel of order (p,r) with support [-L,L]
and suppose
1Oh—=0,nh—o, asn — s, and
(11) max, |s4-8, ,~(1/n)| = om~%, 5> 1.
Then for x in [h,(1-h)] and
o (x) = AP I, y(x) 1, Kyl(x-u)/n)au,
vhere A; is defined in (1.4), we have
usE(g P’ (x)] = x{gP(x)-g®(x)]?
= (o*/nn®™*) 1 3 K(u)Pau + (2P /D] v K (wau)?etP (x)?
+ oL(1/n?h?*1) + (1/n*n?*Y) + (1/nh?P"2)] 4 o(h2(FP)), (2.4)




11

An asymptotically optimal local bandwidth may be obtained in the
usyal manner by solving for the critical value of the leading terms
of (2.4), regarded as a function of h. The authors obtain
hopt“) =C n-l/(2r+1)' (2.5)

where C is a constant depending on p, r, 0%, K,, and ¢'*)(x). Upon
insertion of this bandwidth into (2.4), the rate of convergence of
the MSE is obtained: |

ms[gép)(x)] ~ C° n 2(E-p)/(2r4)) , o (n-2(r-p)/(2841)y (2.6)
The quantity C~ depends on the same quantities as C in (2.5). In
(2.6) observe that the rate of convergence gets rapidly worse if one
desires to estimate gP’ for increasing p. The bias rate may be kept
constant provided r-p stays constant, which forces a larger value of
r and amounts to an assumption of greater smoothness of g. Even $0,
the rate of the variance still gets worse for increasing p. The
higher the value of p, the greater the value of the local bandwidth,
at a cost of increased bias and more pronounced boundary ot.tocts.

If one desires to choose a bandwidth which minimizes a global
measure of error, then one may choose h to minimize the mean
integrated squared error (MISE), or an approximation thereof.
Unfortunately the MISE may be dominated by the boundary effect, that
is, bias which arises whenever one estimates gP’ near the endpoints
of the range of interest. Bias near the boundary usually contributes
heavily to the MSE, unless the function g happens to be smooth at the
boundary. Since our weights are of kernel form and depend on a single
bandwidth parameter selected to serve well over the entire interval,




some modification of h and/or K may be necessary to downweight the
contamination which arises near the boundary. It is wa-known that
the rate of convergence of the MSE at a point near a boundary is
often slower than at an interior point of estimation. To circumvent
this difficulty, Gasser and Muller (1984) choose to modify the kernel
K,, obtaining "boundary kernels” which are used vhenever one
estimates within a bandwidth of either boundary. These modifications
require new kernels satisfying certain moment conditions. Contrary to
some appoaches taken by other authors, these methods do not alter the
original kernel by truncation or bandwidth shrinkage. The boundary
kernels, not necessarily nonnegative, arise from the solution of the
variational problem of MISE minimization, considered as a functional
of the kernel in the MISE expansion. Ths resulting kernels turn out
to ba relatively simple low-order polynomials.

Hardle and Gasser (1984) consider robust estimation of g‘*) with
an approach based on M-estimation (Huber, 1981, Ch. 3.2). When using
an estimator which acts as a linear cperation on the data, such as a
kernel estimator, single outliers might mimic peaks and troughs,
corresponding to unexpected zeros in the estimated derivative. m'
authors note that estimation of derivatives is likely to be more
sensitive to outliers, and hence robust methods are often called for.

Georgiev (1984c) considers direct estimators of g‘P’(x), which,
in his notation, replace the gquantity K, in (1.5) with K, ., a kernel
which satisfies similar moment conditions. These results are similar
to those of Gasser and Muller (1984), but use kernels whose support




is [0,1] rather than [-1,1]. Another minor difference in the ]
estimator is the usage of A, = [x,_,,x,] rather than &, = [s,_,,s,].
Alsc a reversal of the order of the integrand arguments of (1.5) does
not lead to a factor of (~1)° when the kernel weight is
Aifferentiated.
The estimator considered is

oP (x) = /) 22, { y(x,) Ia, Kp,cl(u-m)/mlau }. (2.
We state the following theorem to afford a comparison between the
approaches.

Theorem (2.4) - Georgiev (1984a)
Let r > p be a fixzed integer. Assume K, . is a real-valued, bounded,
and continuous function on (0,1) which vanishes outside (0,1). Also
assume
() JulK, (udu= J1 for J=p
0 for jep, 3I=0,1,...,r-1;

(11) 0= %y S x, < ... <x, $x,,, = 1,

(ii)h—O0asn=— =,

(1) o {3 169°@) | < », ana

(v) §, = max(x,-x,_,) = 0(1/n).




selety) (B 6P(x) - ¢ (x)| = 0" ? + /"),
Purthermore, it
(vi) K, . is Lipschits continecus of order e > 0,
(vii) Ble?(x,)]) S o < », amd
(vidl) h ~ p-V@roD) a.e
we obtain

20, B (1)@ (1)) = o HEP/ ALy

Gbeerve that the order of the sequence of hendwidths in (2.8) is
independent of p and depends only on r, vhich is teruad the
orthopomality parsmeter of K, . (dus to the mment cenditions).
Guorgiev (1904a) proves other asyuptotic results oa the speed of
convergence and also lists polynomial hermels K, . satistying the
reguired conditions for varicus p and r. In Gecegiev (1904b), the
awthor emamines estimstor (2.7) when h has boen replaced with the
Buclidesn distance betwesa = and & weer-specified x* asarest
asighbor of =, wvhich is a varishle handwidth methed. The latter
reference contains results closely related to these of Gesser and
Maller (1904).




3. An NSE Mapression for Arbitrary Order p

In this section we will build wp an enpression for
me{s? (x)] = el ()¢ (2) 1%,

where ¢{P)(x) is defined as the estimater of §'P () with

oD@ = Q") B, { Hay) 1, Kle-w/mie 1, (3.1)
Px,) = (Vm) Io,, v,(m)5 A = [0y 5,8),

% =0 81 =58 Sz,

This estimater will be comsidered in the by nmow familiar cocrelated-
ecrors model

Ty (xng)= g(ny) + os(my)} (3.2)
13 ),..0088 J = )0.e,}
Bley(zy)] = O, =,,...,%, contrelled;
oovle,(x)),00(x,)) = oPyinym,)0y,.

As bafere, the cerrelatien fumstien 7y is ssoumad to be even with
7(0) = 1. In cbtaining eupressiens for the asyuptstic vasisase and
bias, it will be neseseary to ispese 8ild emditiens e K, 7, the
spesings of the seguense of Gesigns, and ¢‘¥, 3 = 0,...,p. MR
further ssouiptions en y and ¢, W will ia later sestions decive




_— ey

apansicns for the aspuptotic variance and bias, respectively.

Many of the subseguent methods will use argumsnts similar to
those found for the sscrelated~errers model ia Nart and Wehrly (1986)
for the case p = 0. Prior to statiag the main result, we will develop
the nscessary tools to facilitate the proof. The following two lemmas
will be used in the result for asymptotic varismce.

MEER _(3:1) Let 7 be Lipechits continucus and suppose for esch a,
BayreecrByy 18 an ordered partition of fimed desigm points on [0,1].
Lot 89,0008, SEtisty
By,i-1 SR, S8, 4e]l,....0
where s, = 0 and 5., = 1. Then there emists some B > 0 for which
[7(Ryy=Byg) = 7(v-u)| S B supyla,-s, ,-,)
vhenever
Sh,y-1 SusSs ands, ., SvSs,.

IX88C: By the Lipeshits condition, thers exists sewe B° > 0 for which
l7(ag By g)=v(v=u) | $ %] (my 2y g)=(v-u)|
$ 8" [|agvi+jn,~u|)
$ 0" [(8yy-8,,4.1)%(0y8, 4)))
$5° [2-mn{(ay-8, ;) (840 4.1)})
S 5 s log-s, 1)
waed=m > 0. .
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M (3.2) let k> 0and x bea potat 1a (0,1). Let p be a positive
m-n-uml,uqumwm
outside [-1,1]. Let 7 be & correlaticn fwaction. Decine
J @ 73 g1 ) Ky [(3~0)/B]%, ((x-v)/h)outv. (3.3)
Then for b = k(x) sufficieatly smill, J, = J3, where
Ja = W% 30 ale-n] K (K (trasae. (3.0)

Proof: Now (3.3) xiSts since 7 1s bounded and K is abeclutely
integrable. Taking s « (2-v)/h and ¢t = (3=v)/h, the Jucohian 1s A%,
Then (3.3) may be witten

U gl | Ll S A FOMe ey Ky (8)%, (¢)dndt},
Where B = ((a~1)/n,2/h]) comtains (-1,1] for A swall mough. The
result follows. s

mnm._mmu, Wish dess ast depend e »
ummmv.mmmuu-uum
Wmuu--x.hummmm
mcu-m-nﬁu-mmmum
prentantion to B{g!® (x)).

misting an [-1,1), whave
(1) 1.} Ru)tn = 1, ang
(1) (1) e g®(3) 0 g, 7 » Oedeooesp-l.




- .

Then tor ¢{P(x) detined by (3.1),
BlelP (x)] = () 1.} ea-tm) Ky(u)dn + O(1/mb?)
= 1.} ¢® (x-tm) K(u)lu ¢+ O(I/RP).

We are 20w ready to prove the sain result of this sestien. Por

reference we will restate all previcus assmptions ascessary to the
proot.

DatEeR (1.1) Let p be a positive inteper. Consider estimation of
o'® ueing estimater (3.1) in msdel (3.2). Lot K = K, be a hernel
function with
(1) K(w) = K(-u) with sugpect (-1,1),
(11) § K(u)éu = 1 (X may be negative),
(114) K, = £'*) enist, are boundes, and venish
outside [-1,1) fer r = 0,1,...,p) and
(4v) K (1) = K, (1) fox ¥ = O,),...,p"1.
Asoume further that 7 15 a Lipeshits esntinusus esrrelstien fumstien,
that is,
(v) v satisties the csnditiens ia (1.7), end
(vi) |¥(8) - y(t)| SBis - ¢t|, ssm B> 0.
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Assume the design sequence satisties
(vi1) mam, |xy -2, q;] = OCU/0),
end for the regression fumction ¢,
(viil) ¢'°) emists for r = 1,...,p and ¢®
is continsous at =.
™ forheh, ,—~0asnn—eo,
(2) var[gl® (x)] = (¢/m0™) I(Rsp) + O(1/amh™), where
P> = 131} vl(s-t)n) R (8)K,(t)dstt;
(») sdas?(g{®)(x)] = B2(hip) + o(1/00P) « O(1/a2n),
vhere 3(hp) = /] ¢ (a-bu) R(w)dw - ¢P(x); and
() M(g{? ()] = varlg® (x)] + Biaa?[g{?’ (x)]
= (2/m%) 1(ip) + BP(Mpp)
+ o(L/aW) + (/™) + 0(1/ATW),

uan(c)uutvm-u(.)d(l)c;m.hm
that (b) follews immedistely frem Lemma (3.3) and the fast thet ¢
is cuntinusus at =. The preot of (a) will reguire (1) - (vii), emospt
for (iv). Writing

W@ = A 1, g (e,
it is clear that

vr{gl® ()] = (/) L2, @) WP (%) v(n,-u,,).
Comsider (3.6) in Lemm (3.3) and let

C = ('m0 g p, = sy (00, ,0-y)-

. gl | M-S0 - AL AP Wty

y ¥ e Moo i = e
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By Lemma (3.2), with h sufficiently small (depending on x},

Ivar(g® (x)] - (o/u?®)1(n;sp)|

= |var(g (x)] - (o3/m)3,]

» |var{glP (x)] ~ (o*/m)3,|

- C |Z,Z, Iagfay 7(8ny2yy) Ry [ (x-0)/M]K, [ (x=v)/h]}dudv

=~ 1315 7(u=v) K [(x=u)/h]K,[(x~v)/h)dudv|

= C |L,I, fagha, (7(Rpy~2y4)~7(u~v)] K[ (x~u)/n]K,[(x-v)/h)duav|

$ 5D, f3f3 | Kpl(z~uI/m] K [(xv)/D) | audv

= 3D, { 13 | [(z~v)/n]|6u }2, (3.5)
the last iseguality by Lesma (3.1). By a change of wvariable, the
integral in (3.5) is

h 1, |Ry(V)|av.

Bow A = [(2-1)/h,x/h) contains [-1,1] for h small encugh. We then
obtain

jvax (sl (2)] - (/") 1(0sp)|

soc, 2 { 1] IR(wav ®

v 3 {1} InmMiev }* 0™

* 0(2/nh™), as n, 8 — =, h — 0,
singe (vii) impliss thet D, = O(/n). .
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4. Expansion of MSE for Arbitrary Order p

In this section the goal is to cbtain an asymptotic expansion of
usE{g{P’ (x)], where g{P’(x) is given by (3.1). We will need to expand
I(h;p) and B(h;p) under smoothness assumptions on g and 7, enjoined
by appropriate Taylor series requirements. Proparties of the kernel
function, K, are important when evaluating these expansions. We will
usually assume that K satisties the orthogonality properties of
Gasser and Muller (1984). )

First we set about defining notation useful for the evaluation
and representation of commonly recurring terms. We define the moment
notation:

#y(Kp) = 1 ul K (u)du, (4.1)
which is the J*" moment about the mean (zero) if K, happens to be a
symmetric probability density on [-1,1]. For K = K, we will require
sysmetry and uy(Ky) = 1, but allow negativity.

A notation will be needed to handle bulky double integral
expressions which arise in certain variance expansions. Define for a,
b, t in [-1,1]), r = 0,1,... the notation (4.2), with special cases
(4.3) and (4.4)3

K(z,piasb) = S_112 (3-t)F K (8)K (t)dsat; (4.2)
C(x,p) = R(z,p3-1,1) = K(r,pst,1) + K(r,pi-1,t); (4.3)
D(x,p) = K(r,pit,1) - KR(r,pi-1,t). (4.4)




Using the binomial expansion, we relate (4.3) to (4.1):

C(r,p) = Eiug (P 1) ug(R) n, 4 (K. (4.5)
Purther simplification ot-(c.S) is possible by noting recursiveness
and ennditw for which terms (4.1) vanish.

Lemmp (4.1) Suppose uy(K,) exists for r = 0,1,...,p and K, = K i
the rt® derivative of an even, p-times differentiable function
K=K, = K9, T™hen for a given r = 0,1,...,p,
sy(K;) = 0, it jor is oad. (4.6)
Furthermore, if K,_,(1) = K,_,(-1) = 0,
uy(Ky) = (=3) by (Rooy)s 3 > 0, ana .7
uy(K,) =04t r>320.

Proof: Bquation (4.6) follows since (4.1) is an integral of an odd
function over [-1,1] when K, is even. To obtain (4.7), integrate by

parts. ]

This result causes tremendous simplification of (4.5) since at least
half of the terms will vanish (every other term drops out). Our
Taylor series tools will be susmarized in the next lemsa. This lemma
has been tailored to meet our needs, since expansion will always be
about sero and the argument will approach zero by assumption. Even
functions and one-sided expansions will be taken into account.

W 2 i
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Lemma (4.2) Let £ be a real, continuous function defined in a
neighborhood of the origin Mi(-t,t), t > 0. Let
(1) £, § = 1,...,n exist and be continuous
in ¥ and let £¢**1)(0) exist.
Then, as u — 0,
(@) £(u) = I3 £®(0) u¥/k1 + o(u™h).
Furthermore, if r = [ greatest integer S (n+l)/2] and
(11) £(u) = £(-u),
then, as u — 0,
(b) £(u) = EE_, £%%)(0) u?*/(2Kk)! + o(u¥). (4.8)
Finally, if we replace (i) with
)’ £9, §=1,...,n exist and are continuous in
¥-{0} and £¢°*37(0+) ana £(**¥)(0-) exist,
then assuming only (i)’ with u in [0,t) and u — 0%,
(e) £(u) = I3 £ (0+) u¥/k1 + o(u™Y),
Por u in (-t,0] and u — 07,

(@) £(u) = 2% £®(0-) u*/x1 + o(u™)), (4.9)
Under (1)’ and (1i) with k even,

(e) £ (0-) = £®(o4), (4.10)
which we will, with an abuse of notation, denote £*)(0).
(Technically, this derivative may fail to exist by the definitiom,
but we will adopt this notation convention whenever the right~hand
and left-hand derivatives at a point are the same.) For k odd,

(£) £%(0-) = - £®(04).
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Proof: Assertions (a) and (b) are standard and follow from
Fulks (1969, p.160). Assertions (c) and (d) are lesser known and are
adapted from Fulks (1969, p.160).

To obtain (e) and (£), note that (ii) oscillates between an even
and odd function on each successive differentiation. Using the
assumed continuity of the derivatives in (i)', we have, for k even,

t(k)(t) - t(k)(-t).

Letting t — 0" produces result (e). Similarly we obtain (f). [

Recall that, under the conditions of Theorem (3.1),

var[g{P’(x)] = (o?/mh?P) I(h;p) + O(1/mmh?P), (4.11)

I(h;p) = f.}1.} 7[(s-t)h] K (s)K,(t)dsat.
Under two situations for the smoothness properties of 7y, we will now

derive respective expansions of (4.11).

Theorem (4.1) Suppose 7 is a correlation function satisfying (1.7)
and (1)’ of Lemma (4.2) (with n = q 2 1 as the order of smoothness).
Then, under the conditions of Theorem (3.1),
var[g{P’ (x)] = (o*/m)[S, + S, + o(hT*}"?P)] + O(1/mnh?P),  (4.12)
where
S, = £2o 137 (0) C(av,p) N3P/ 2v)1,
s, = 22, 31 (0+) D(aw1,p) B3 (TPI*Y/(2ve1)1,
a=Dbs=gq/2 for q even, and
a=(q+*l)/2, b = (q-1)/2 for q odd.
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The constants C(2v,p) and D(2v+l,p) are defined by (4.3) and (4.4),
respectively. Furthermore, if 7y has more smoothness at the origin,
that is, 7 satisfies (i) of Lemma (4.2) rather than (i)’, then (4.12)

still holds with §, = 0.

Proof: Let h — 0. Let 7 satisfy (1.7) and (i)' of Lemma (4.2).
Observe that (ii) of Lemma (4.2) is automatically satisfied for a
correlation function. We have for s > ¢,
y[(s-t)h)= ZF25 1P (0+) (s-t)3 n¥/31 + 0T,
and for s < t,
y[(s-t)h] = Z§i3 7P (0-) (s-t)? nI/31 + o(x¥),
Bring in I(h;p) = I, + I,, where
1, = 531} y0(s~t)n] K (HK (t)asat, and
I, = £.}31.% v[(s-t)h] K (5K (t)dsdt,
so that by notation (4.2),
1, = 23 7P (0%) K(3,pit,1) BI/J1 + 00T (4.13)
I, = i3 v (0-) K(3,pi-1,t) BI/31 + 01T, (4.10)
Combining (4.13) and (4.14), we see that the cosfficient of hi/j! is
7$3(0+) K(3,pit,1) + 73 (0-) K(3,Pi-1,¢). (4.15)
When considering (4.9), (4.10), (4.3), and (4.4), expression (4.15)
becomes 7¢¥(0) C(3,p) when 3 is even and v(3(0) D(3,p) when j is
odd. We now have

I(hip) = Sy + §; + o(a™Y),
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Sg = Iho 1°27(0) C(2v,p) K3/ (2v)!
s; = IB o 731 (0+) D(2v+l,p) W37Y/(2v+1)1,

with a and b depending on whether q is even or odd. The values for a
and b follow from Lemma (4.2). The conclusion (4.12) is obtained by
making use of (4.11).

Por smoother 7y satisfying (i) of Lemma (4.2), we use (4.8) to
conclude that, for any s, t,

T ql(s-t)h] = £, 73(0) (s-t)2" K2/ (2v)! + o(hT*).
There is now no need to break I(h;p) into two pieces. We are led to
the expression

I(h;p) = Sy + o(hT*Y),

from which the second conclusion is clear. .

To obtain an asymptotic NSE expression, we will need to consider the
bias, which under the conditions of Lemma (3.3) may be written
Bias[g{P’(x)] = B(h;p) + O(1/nkP), (6.16)

B(h;p) = 1.} g™ (x-bu) K(wau - g (x).

© - atedatmann -
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Theorem (4.2) Let p, r be nonnegative integers such that r 2 p+2.
Suppose that g is an (r-1) times continuously differentiable function
and that g‘*) exists. Also suppose K(u) = K(-u) and K satisties the
assumptions of Lesma (3.3). Then as h — 0,
Bias[g{P’(x)] = If.; ¢P*2V(x) u,y4(Kg) B2/ (291
+ o(h*"P) + 0(1/nk®),
where ¢ = [greatest integer S (r-p)/2] and #a4(Ky) is given by (4.1).

Proof: Now for j -.0,1,...,r-p,
[al/ant] gP) (z-hu) = (-1)3 u) g{I*P) (x-hw),
which evaluated at h = 0 becomes
(-1)3 ul g(I*P)(x).
Using Lemsa (4.2), an expansion of
#(h) = 1} ¢'P (x-hu) K(u)du
bacomes (with h — 0),

®(h) = ZEB ™ (0) B*/K! + o(n™P),

¢ (0) = gP(x) uy(Ky) = g®(x),
oD (0) = g2V (x) yyy(Ky), J = 1,...0c, and
$C D (0) - gD (x) 4 (Ry) = O
The last statement follows from Lemma (4.1). Therefore
B(hjp) = #h) - g®(x)
=I5, 9P (x) uyy(Ry) B2/(29)1 + 0FP),
from which the conclusion is immediate by using (4.16). [ ]
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We are Row in a position to combine the results imto owr maia result
for the empansion of the MSS. S0 as to have & single poiat of
reference, we will esmplicitly state all assumptions used ia the

various leamas.

Iheorep (4.3) Suppose for a givem p © 0,1,... it is desired to
estimate g‘P’(x) at a point x in (0,1) using ¢{P’(z) of (3.1) in the
correlated-errors model (3.2). Suppose v is & Lipechits m
correlation functiom, that is,
(Al) 7 satisfies the comditions in (1.7), amd
(A2) |¥(8) - y(t)| S B|s - t|, some B > 0.
v also satisfies either (A3) or (A3):
A3) 19,1 e1,...,q exist and are continmeous
in (-t,t)-{0}, for some t > 0, amd ‘¥ (0+),
7¢37¢0~) emist for J = 1,...,q%).
(A3)' ¢, 3 =1,...,q enist and are continucus in
(-t,t) for some t > O and 7'} emists tor
some q 2 1.
Assume ¢ = ¢'°) 15 a function where
(31) ¢ exists and is continscus for j = 1,...,r-1,
and, ¢'°) emists;
(2) r & p+2.
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Lot K = Ky = K‘°) by o harnel function with K, defined to be
Ry =k, ye0,1,... such thet
(Q1) K, emists and is hounded with swgpect [-1,1]),
1 =0,1,2...
(C2) Ro(u) = Rg(-w);
(€3) 1.} Bg(w)dm = 1;
(CO) Ky(1) = Ky(<1) = 0, J = 0,...,p-1.
Assums the design sefuence satisties
(1) mam, |uy;-m, ;| = O(1/®).
Then, uader (A3) with h — 0,
mz(e” (x)]) = (¢*/m) [8y + 8, ¢+ 02T )] + 0(1/umd™)
+[3 + o(x*?) + (/) )3,

8, = 2o 1'¥(0) C(av,p) B3P/ (aw)1,
s, o 2, 131 (00) B(awel,p) RPVP)Y (2w,
with
a = [greatest integer S (q¢1)/2],
beaifgqiseovem, b= a-l if q is ol

cav,p) = 131} (=) K (5)R (t)datt,
5y(R) = 1} v Ry(u)dm,
D(awel,p) = 1311 (-0)7""2 R (0)K, (t)amlt,
= 1301 (0-0)"2 Ry ()R,(t)amt,
B =I5, 67 () nyy(my) W/(29)1, amd
¢ * [greatest imteger £ (r-9)/3).

(4.17)

(4.189)




Purthermore, i€ wo assume (A))' instend of (A3), then the same result
holds emogpt thet $, = 0.

Ixoaf: This result sisply cwnbines the esnclusiens fer the werismce
and squared bias Of the thescens and lemmes of Sections ) and §. o

At girst glamoe this agpears to be & rather csmplicated result, et
oRoe & value of p is chosen there is great sinplification when one
tahes advantage of (4.5) and Lammm (4.1). Nowgver, there are a myriad
of sitwstions to csnsider since terms drep in and drop out, depanding
on vhether p, q, and r (or simple funstions of then) are even or odd.
%o will consider specific situstiens for this thesren ia the nest
segticn where we will foous o the cases p = 1,2. Meah squate
ocmsistency, choice of looal banduidth, and the spesd of convergence
will be discusesd.

5. Buplicit Results for Ondecs p = l and p = 2

Rasall frem the provisus sectien that the guantities p, q, and r are
asic pasramsters thet determine the rate of cesavergsnse of the mean
oquared error. Of csucse, the handwidth h, the nmber of design
peints A, and the number of subjests & ace alse crucial quantities.
e have




P = the dssired erdar of estimatien ia ¢®'(x);

q = the amber of cantinusus derivetives (er eno-sided
daxivetives) ¢f vy in & neighbherhesd (or @eleted
asighbecheed) of the erigia -—— we asoule existense fer @el
sush guantities, hewever;

r-1 = the number of cantinusus Gerivetives that ¢ peesesses——we
asoums thet ¢‘") merely emists.

Ia a crude sange, the magnitude of q and r represent the degres of
mesthness in the cocrelatisn function and regressisn fumctiom,
respectively. Resall thet the asyuptotic results reguire that

T 2 peld.

In this section wo focms e p = 1,2 and write out mere aplicit
cupensicns for the NI ueing Thesren (4.)) wnder the two cmses for 9.
The tirst situstien esnsiders cerrelation funstiens which do ast have
a omntiavsus Gerivative at the erigia, that is, satisty (A)) of
Theseen (4.3). Resall thet the Crastein-Vhilenbesk funstien satisties
this condition. Thare is ast & preblen with ¢ ia the Ocaeteln-
Uhienbask medel sinee we choerve that it is intiaitely centiassusly
difterantishie ia (~=,#)-{0}. Purthermare, the use of Gaseer and
Weller's bias results reguires What ¢ poscess at least twe centinusws
derivetives snd that ¢'%’ emiets. Der p = 2, ¢ mxst pessess thres
csntiansus derivatives (r = § enist). Thase reguirenants guacantes
thet the IS ters o(h’?) astuslly esnverges o aere o9 h — 0.

In the fellowing tpasial eases it will be nssessery %o ewlunte
the tesms C(3v,p) ia Semmmie (4.08) Seor §,. Tuble 1 Mos bamn poovided

. A -




Sble 1. WYaluss of Civ,p) ia the WIB Dpansien
valse of Gedlar of Batimatiem, p

Smssthnses

Seremster v (of ¢) 0 1 2
° 1 0 0
2 0 2 o
) B o ]
¢ 2, (Ry) 48 ny (%) )2 sy (Ky) 24

Wete: ay(K,) = 1.} w R (w)én

to fasilitate the caleulation of these tesms.

We prosesd with eur enplicit expencions and note that
ssowiptions (A3), (A))’ cecrespend to asndifferentisble and
differantishle 7 &t the erigia, respestively. Fer convenience, these
situstions will be referred teo a0 “peshed” 7 and “smseth” 9,
respastively.

Bessen (5.1) Acowms thet the reguiremsnts of Thesren (4.)) are
satisfied for o selested ovder P = 1,3. Tohe T = P2 08 the lesst
restzistive esndition plased en the number of derivetives of ¢g. Then
e pel,gqe), 2,




(a) mB{ef}(2)) = v,/8h + v/m + o(1/m) + O(L/mmb?)
o B2t ¢+ oa') ¢ o(1/mh) + oCa/mt}), (s.1)
whare, veing mstatien (4.1) and (4.4),
v, = P00 ¢ p1,1), for peshed y
0, for smeoth v;
v, = - 9%(0) o, amt b, = (82 (n) ny(Rg)/2)3.
Por per2, qe 3, re= ¢ vo have
(®) Welei¥ (3)] = v,/u0? + v;/m ¢ vy/m + o(1/m) ¢ O(1/mmh®)
+ bih' « o(a%) ¢+ oti/md?) + 0(1/a™a%) ¢ O(1/m), (3.2)
where, using aotation (4.1) and (4.4),
v, = '32(0%) ¢* D(1,2), for peshed v
0, for smsoth v;
vy = 113(00) o® D(3,2)/6, tor peshed v
0, for smeoth v;
vy ® 990 o*, et b, = (g () u(Ry)2)2.

PESag: Por (a), assume 7 is wnder (A3) of Thesrem (4.)). Them we
have a = [(gel)/2) = 1, so that

8 = 2o 1™2(0) c(av,1) N2V (a1, (5.3
Now from Table 1, €(0,1) = 0, C(3,1) = -2, in which ense (5.3)
sizplifies teo

8 = - 1%¢0).
Since q is o, b = a-1 = 0, and wo ebtain
8, = 234 Y22 (00) B(BWEL,2) WV2)01/(apel)s
= 713 (0¢) 32, 1IN,




Bent, cheerve that ¢ = ((z-p)/2] = 1, trem which we deduce
B eIy, 0930 (x) myy(Rg) BI/(29)1
= g9 (x) uy(Ry) /2.

Using (4.17), o have far p= ), q= ), r = )},

mae’(2)] = (6*/m)[8, + 8, ¢ 0(1)) + O(L/nmh?)

+ [» + o@®) + o(a/am)}?,

vbhich yields the result after empansion and substitution. For 7y under
(A3)°, it is clear that §, = 0. Result (b) follows similarly and the
details are omitted. ]

The quantities v')(0+) and D(1,1) are egual to -« amd -§/5 for the
Orastein-Whlenbeck precess and Npanechnikov kernal, respectively. The
deminant variance ters v,/mh ia (5.1) is therefore egual to

(6/3) « ¢*/uh in this case.

We alsc chessve that a smoeth 7 at the origia will cause certain
leadting terms ia (S5.1) and (5.2) to vamish, resulting in a smaller
asyuptotic veriance (and MEBE) tham if 7 were peshed at the origin. A
smeeth correlation function will profuce smoother sample paths than
will a penhed cerrelatien functica. Mere precisely, whea 7 is
sufficiently smeeth, sample paths will be more nearly perallel to the
regression funcstion over a larger aeighborhood of the poiat of
estimatien than the cecrespending peth for a pavhed cocrelation
funstion. Sush belawvier weuld isply that the first differences of all
realisations wsuld tend to bo practisully the srme. This, of course,
is iy wo would axpest & smaller veriance ia the estimater g{’’(x)
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whenever the correlation function is smooth. Observe that if it is
possible to choose the the kernel such that D(1,1) = 0, the same
reduction in variance is achieved and the estimator has the same
asysptotic MEE for either type of correlation functiom.

An emample of a smooth correlation function (i.e., One
differentiable at the origin) is

7(u) = emp{-x*/p}. (5.4)
Let £(x) be a symmetric probability density. The characteristic
function &.(u) = K, [e!®*] is therefore real, positive definite, and
has the property #,(0) = 1. This observation leads to a convenient
manner for generating a class of correlation functions which have the
desired smoothness properties.

Another Question of interest is the comparison of Var(g,(x)] and
var(g{!’(x)] in the case of a smooth correlation function. From Hart
and Webrly (1986), we have o’/m as the lesding term of Var[g,(x)].
Prom (5.1) the leading ters of Var[g{}’(x)] is - 7'?(0)o?/n. Hence
for large n, the variance of ¢{!’(z) will be smaller than that of
9,(x) it 7'37(0) > - 1. This result differs from that in the
uncorrelated case where Var[g,(x)]/var[g{}’(x)] — 0
as n — o and h — 0. In the particular case (5.4), we cbserve that
y¥(0) > -1 12 8 > 2.

The most important and immediate conseguence of Theoream (5.1) is
BeaR SQuUAre comsistency. As reported by Sart and Webrly (1986) for
the same model with p » 0, we £ind that there is a lack of
consistency wmaless 8 — =, We asxt cbserve the conditions which are

C v aT e B SherRer -
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sufficient to cause the terms in (5.1) and (5.2) to vanish
asymsptotically.

Theotem (5.2) Assume that the requirements of Theorem (4.3) are
satisfied for a selected order p = 1 or 2. In addition, suppose x is
in (0,1).
(a) Por case (a) of Theorem (5.1), assume D(1,1) » 0 for
a peaked 7. Then g{!)(x) is mean square consistent
for g (x) it
(1)h—0, (ii) nh —~ =, and (ili) mh — =,
If it happens that D(1,1) = 0 or y is smooth at 0,
we have instead:
1)m—e, h =0, (ii) nh — =, and (5.5)
(111) mnh? — =, (5.6)
(b) For case (b) of Theorem (5.1), assume D(1,2) # O and
peaked 7. We have consistency of g{¥(x) it
(1)m— e, h— 0, (ii) nh? — =, and (1i1)
mh — .,

In the case that D(1,2) = 0 or 7 is smooth at 0, we

have
(1)m=—e, h =0, (ii) nh® — =, and (5.7)
(114 mh® — o, (5.8)

P
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Proof: The result follows by direct consideration of the MSE
expansion in Theorem (5.1). .

In the above theorem, conditions (5.6) and (5.8) are simplified

by the slightly stronger assumption

%&!,i’.'f m/n > 0. \
which, when used with (5.5) and (5.7) imply the respective condition
(111). Of course it is still possible that m/n — 0, 50 long as the
convergence is not too fast. We are now led to consider how one
should ideally choose the local bandwidth in an asymptotic sense. The
usual approach is to differentiate the leading terms of expressions
such as (5.1) and (5.2), regarded as a function of h. One should take
care to ensure that the leading terms are actually the dominant terms
asymptotically. These are the terms which decay to zero at the
slowest rate (under the assumptions made) and hence ultimately make
up the largest portion of the MSE as n,m — », Of course, for any
finite sample, a solutiom as described above may be suboptimal due to
the relative sizes of the constants in the MSE expression. Noreover,
the situation is further complicated by the dependence of h on = as
well as n. We cbserve that both m and 1 — », but they may procesd at
different rates. 70 be complete, we must therefore specify conditions
for the behavior of m/n as n,m — -, To illustrate the arguments,
consider the leading terms of (S.1):

v /uh + vy/m + bhé, (5.9)
Solving for the minimizing h” we obtain

B e o N TPy g .
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h" = cnl/5, (5.10)
Por this choice of h, the evaluated MSE in (5.1) yields
om™/3%) + o) + o(n" %) + o(n”w/%) + o(n"¥%).  (5.11)
To guarantee that (5.9) is the dominant term in (5.1), we need to
ensure that the corresponding rate of convergence m */® is the
slowest among the last four terms in (5.11). This will be
accomplished it
max {2, n"1m"¥/5, n"In’%, n"2¥/5} = o(m*/5).
We observe that the condition
m/n = O(1)
is sufficient for this purpose. Under this condition, bandwidth
(5.10) is optimum among all bandwidths satisfying nh — o, sh — &
and h — 0, as in Theorem (5.2). The constant c in (5.10) turns out
to be

c= (V;/‘bl)llsv

v, = y¢0+) o* p(1,1),

b, = [g¥(x) uy(Ry)/213%,
and it is assumed that 7¢1)(0+) » 0. Therefore if b, » 0, D(1,1) » 0,
and 7 is peaked, we have the above result. If D(1,1) = O or 7 is
smooth near 0, different methods are required to obtain the
asysptotically optimal bandwidth.
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