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ITERATIVE SOLUTION OF SPARSE LINEAR SYSTEMS

ON SYSTOLIC ARRAYS

Rami Melhem

The University of Pittsburgh

Pittsburgh. PA 15260

ABSTRACT

The idea of grouping the non-zero elements of a sparse matrix into few stripes that are

almost parallel is applied to the design of a systolic accelerator for sparse matrix operations.

This accelerator is. then. integrated into a complete systolic system for the solution of large

sparse linear systems of equations. The design demonstrates that the application of systolic

arrays is not limited to regular computations. and that computationally irregular problems

may be solved on systolic networks if local storage is provided in each systolic cell for

buffering the irregularity in the data movement and for absorbing the irregularity in the

computation.
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1. IrTrODUCTiON

In (61 and (7]. stripe structures of matrices were introduced as a means for the inclu-

sion of all the non-zero elements of a sparse matrix into a regular pattern which is suitable

for parallel computation. This stripe approach have proved to be useful for the manipula-

tion of sparse matrices on data-driven networks. It is especially attractive for the type of

matrices that result from finite element analysis. More specifically, the number of stripes.

ir. in finite element matrices is small and depends only on the method used for the discreti-

zation. That is. ii is independent of the size of the problem. Algorithms for the generation

of stripe structures for sparse matrices, in general. and for finite element matrices, in par-

ticular. are given in [6] and [8], respectively..

However. stripes, as defined in [6]. are not regular enough to allow for the manipula-

tion of sparse matrices on systolic networks. More specifically, a particular stripe may,

itself, be sparse. In data driven networks, where the operation of each cell is initiated by

the availability of data. the sparsity within a stripe may cause execution delays, but does

not affect the correctness of the computation. On the other hand, systolic arrays, which are

globally synchronized. are characterized by the property that the location of each data item

at any time may. and should, be determined before the beginning of execution. This is not

possible if stripes are sparse.

Hence. for each sparse stripe S. we introduce, in Section 2. a non sparse structure

which we call the complement of S. Using the complements of the stripes, it is possible to

design linear systolic arrays for the multiplication of a vector by a striped matrix. These

arrays are presented in Section 3. along with an analysis which determines the exact timing

of the input data required for the correctness of the computation.

In Section 4. the last cell in the matrix/vector multiplication array is modified to feed

data back into the array and to obtain a network for the solution of triangular linear sys-

tems. The feed back. however, creates a data dependence which may lead to incorrect com-

putations. A condition which guarantees the correctness of the computation is formulated
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in terms of the separation between the stripes of the matrix and the rate at which the input

data is supplied to the network.

Matrix/vector multiplication and the solution of triangular linear systems are the

only 0 (n 2) operations in each iteration of the preconditioned conjugate gradient method

(PCCG). which is one of the most eficient techniques used for the iterative solution of large

sparse linear systems. Hence. these two matrix operations should be the primary target for

acceleration in any parallel system used for the solution of large linear systems. However,

the application of the PCCG involves also some 0 (n) operations, as for example vector

addition and inner product computations. These 0 (n) operations may not be ignored

because they may become the bottle-neck of the parallel system (see [4] for example). A

complete systolic system which accelerates both 0 (n 2 ) and 0 (n) operations in the PCCG

method is described in Section 5.

2. STRIPE STRUCTURES AND THEIR COMPLEMENTS

In [6]. a stripes S in a matrix A = aij : i ,j =1 ..... n ) is defined to be a set of positions

in A which contains at most one position for each row. More specifically,

S = (i o (i)):i ei.dom(S), and r(i) < o(t)fori <1 ) (1)

where i.dom (S) is a subset of 11. -- n ) and o" is an increasing function which associates

a column index cr(i ) with row i. An alternative definition of a stripe may be given in

terms of a function / which associates a row index ji(j) with column j. That is

S =((K (j)j);j ej-dom(S) ,and ju(j) </A(m)forj < m ) (2)

where j._dom(S) is a subset of {1. }.n Clearly. if i E idom(S). then

o~i ) ej. dor (S) and i =/z(o(i )). That is = o-"- .

Given two stripes Sl=f(i .a 1 (i )) and S 2 -((i o 2(i ))) the ordering relation < may be

defined such that S1 < S 2 if o'1(i ) < o/2j ) for i < j. With this, a stripe structure of A

is a set of stripes LA = IS1 ... -.S ) such that SI<S 2 <...<S,, and SI U ... U S. contains

all the positions of the nonzero elemems in A. That is. if (i J ) 0 S 1 U ... U S,. then
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a j =0. w is called the stripe count of LA. As an example. we denote in Figure 1 the zero

and nonzero elements of a matrix by % and x. respectively, and we show a possible stripe

structure for that matrix. Note that the positions included in the stripes are enclosed in cir-

cles.

S3 S 4  ss

S2 a 0 6 19

Figure 1 - A stripe structure

From the definitions (1) and (2). it is not essential that S contains a position for every

row i -I .... t or for every column j = I..... .t and thus, stripes may be sparse. Although

stripes which are sparse introduce some irregularity in the stripe structure of matrices. it is

shown in [6] that linearly connected arrays of cells may be used effectively for the manipu-

lation of striped matrices, provided that data-driven synchronization is used. In other

words, it is possible to cope with the sparsity within a stripe, if the operation of each cell is

initiated by the availability of data.

On the other hand. if the array is synchronized by a global clock, then each cell is

expected to receive some data every clock cycle. Hence. sparse stripes should be augmented

such that a data item is presented to the network each clock cycle. One way of augmenting

sparse stripes is to include in S a position for each row of A. In this case. the augmented

stripe is called the row complement of S and is defined by

= (i,.'(i A i .

where

a (i)i-'(i) if i e i_dom (S) (3.a)
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and

&G ( i -1) i -2 ....n (3.b)

Note that r is not a stripe because r is not strictly increasing. In fact. given S. it

may be impossible to augment o such that a is strictly increasing. Although conditions of

the form given by (3) may be shown to ensure the correct operation of systolic networks on

striped matrices, it should be clear that (3.a/b) do not define Sr uniquely, and that a

unique row complement of S may be only obtained if & is defined in a more restrictive

manner. In this paper. we adopt the following unique definition of a:

Ir(i) if i3 4 i 4,i, and i ei_dom(S)

a aI( +I) if i. 4, i 4. i. and i 0 i don (S)
0-4. -U. -iif i < i.

Or.G.) + (i -4x ) if i > i_

where i, =maxii ; i e idom (S)( and i. =minfi ; i e idomn (S ).

Similarly, the column complement of S may be defined by adding to S one position

for each column j 0 j_dom (5). More specifically,

9C -(j (j);j = i..n)

where

j ) =(j ) if j 6 jdorm (S) (5.a)

and

AM,( ) A(--1) j--'2.... .n. (5.b)

and a unique definition of u may be given in a way analogous to (4).

Given a stripe structure LA = (j.... .S , the row and column complements of EA are

defined, respectively by - = (S..... } and f c= (S, .. S ). In Figure 2 we show

the complements of the structure of Figure 1. Note that any position i .j) in and

with i or j not in (1. • n• is assumed to contain a zero.

.... . - -, , - - ,! ta M " /. '.'. . 6." " 
'
-t.J, r *. " " ..," e. '.,'-'.".- 2 ." .L." " :,' ".{ .." ' .'': .'..'",'. e '" " " ",
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~r * - * 0*.. . ,, :
* 4 . . . ..-

* - . .* 4 • .' - , .§C4Q .9

Sr .0 1

' * .

(a) Row complement (b) Column complement

Fig 2 - The complements of the structure of Fig 1

3. SYSTOLIC MULTIPLICATION OF A VECTOR BY A STRIPED MATRIX

3.1. Using column complemented stripe structures.

In this section. we assume that a stripe structure ZA = S I."" S,, is given for a

matrix A . and we present a systolic algorithm for the multiplication of any vector x by A

using ir linearly connected systolic cells (see Figure 3). Each systolic cell k has four input

ports (denoted I - I) and two output ports (denoted 01 and 02). It also contains storage

for an n-dimensional array SXk which is initialized to zero. In brief, the elements of the

stripe Sk are multiplied, in cell k, by the corresponding elements of x and the results are

stored in SXk. The partial sums are then accumulated across the cells 1. - • • r.

In order to describe the algorithm, we let T be the time defined by the global clock

(number of cycles since the start of operation), and we assume that the elements of the vec-

tor x are applied to port 11 of cell 7r starting at time T=1. and that each cell transmits the

content of 11 to 0 1 in one cycle. We also assume that each cell k executes ir-k trivial

cycles before it starts receiving actual data and performing useful operations. for simpli-

city, we let tk =T -(r-k ) be a local time defined at cell k.

At any given local cycle tk of cell k , the element a;,, (, ).A of the complemented stripe

S§ is supplied to 13. and the row index k (tk) is supplied to 14. During the same cycle, the
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01
022

(a) Unidirectional data flow

o 1 -1-

(b) Bidirectional data flow
Fig 3 - Systolic striped matrix/vector multiplication

corresponding element x,, should arrive at I 1. thus allowing for the formation of the pro-

duct term a 4 (t,), * x,,. This term is then stored in SXk [ik (tk )I. Here, we note that if

tk 6 j-dom (Sk ). then MA (tk ) 1k (tk ). and hence, x(, ) * aj- a, ) * x0 r ) where

x1 ((kh

The elements y 1. .y,, of the y data stream .initialized to zero, are propagated

through the network either in the same direction as the x data stream (see Fig 3a). or in the

opposite direction (see Fig 3b). In either case, when an element y, arrives at cell k, it picks

up the corresponding term stored in SXk [i ]. But SXk [i ]' aj.,k (j) * x k 0 ) if Sk contains a

position at row i. and SXt [i 1=0 otherwise. Hence, for any specific i, y visitsall of the Ir

cells and accumulates the sum of the terms a,, x, . for which (i j )eSk for some k. Given

that a, =0 if there is no k such that (i j )eS k. we conclude that yj = a,. x,. the iP
j =1

element of the product A x.

Both the x and y data streams may flow in the network simultaneously. However. it

is important to ensure that an element y, will not arrive at a cell k before the term

J4
7
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a,.,,,* x0. is computed and stored in SXk [I I. With this in -mind. the operation of cell

k in the network may be described by the algorithm of Fig 4, in which the y stream is

assumed to arrive at cell k lagging behind the x stream by 8k cycles. For simplicity, we

assume that storage is allocated (and initialized to zero) in each cell for SXk [i,

i =-8, -• .0. and that x =O for in +1. - - - n +8 k

Starting at time T i r-k +1 DO

FOR cycles tk f 1. A •+Sk DO

1) Read x,, from II into f and Yt - 6k from 12 into 7).

2) Read aAt( k)J, from 13 into a and Ak (tk) from 14 into X.

3)SXk [] - a*

4) .- + SXk [tk-8k I

5) Write e and 7) on 0 1 and 02. respectively.

Fig 4 - The operation of cell k

The next goal is the determination of the value of 8k which ensures that SXk (tk -8k]

is computed in some cycle tk' < tk . In order to be able to apply our results on two leveled

pipelined systolic machines [1]. we assume that the multiplication and the addition in each

cell are performed on pipelined units with p* and p' stages. respectively. In this case, the

results of step 3 in Fig 4 is stored in SXk at cycle tk +p*. This means that at cycle tk. the

values of SXk [1]. • SXk [ - (zk)]-p are already computed and thus we must have

tk - 8 k <Mk(tk)-P

Which is satisfied if

8 k -- 1j 4 (j)+P for any j ej_dom( ) (6.a)

Equation (6.a) specifies the minimum value of 8k required in cell k to ensure correct

operation. However, the elements of the y data stream flow in the cells of the network in

an orderly manner, which implies some relation between the values 8k . k =1.7r.



-8-

In order to be more specific. we consider the case of bidirectional data flow (Fig 3b). If

yj and y. are at cells k and k +1. respectively, during the same global cycle T. then

I = t -8 k =T-+k--8k and m =tk+1- 8 k+l =T--r+k+1- 8 k+1. But the y stream has

to travel through the addition pipeline units, and hence I = m +p +. which gives

8k+l - 8k + p+ + (6.b)

Hence. 8k depends on 81. which, in turns, depends on the time, ",, ,. at which the

input y IY 2. " ' " is initiated at port 12 of cell 1. More specifically. r,,,.y is the global time

T corresponding to the local time t I = 81+1 at cell 1. This gives

81 = -w (6.c)

Clearly, it is possible to satisfy (6.a) by taking i,,,, = n +Ir+p", which means that the y

stream is applied into the network after the x stream exits it, thus ensuring that SXA. [i]

will contain the correct values upon the arrival of yi. This two-phase approach, however,

has two disadvantages, namely, 1) if each cell is capable of performing both a multiplica-

tion and an addition in each cycle (as is the case with the Warp [1]). then the cells are

under-utilized because only a multiplication is performed in the first phase, and only an

addition is performed in the second phase, and 2) the two phase approach is not applicable

to the solution of triangular linear systems. in which the values in the x stream depends on

t' results obtained in the y stream.

Fortunately, we do not have to wait until the x stream exits the network before we

input the y stream. More specifically. it is straight forward to check that the condition

(6.a) is satisfied if

t B 2 
+ P' + (7)

where B 2 is the upper band-width of the matrix A . which is necessarily larger than j-i

for any a#,j *0. and thus, larger than j-Ak(j ) for any j=1.....n and k--1..... r. More-

over, it may be shown that 75tar given by (7) is the minimum starting time for the y

stream which will always guarantee the correct operation of the network. With this
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starting time. any specific y, appears on port 02 of cell r at time i +B 2 +(p ++1)Vr+p.

Hence. the matrix/vector multiplication may be computed in n +B 2 +(p ++1)r+p* systolic

cycles.

The same type of analysis may be applied to the case where the y data stream flows in

the same direction as the x stream. In this case, however, equation (6.b) is replaced by

8k = 8k +i+p++1. and equation (6.c) is replaced by 8w = 'rta -1. The minimum starting

time for the y stream and the execution time of the network may then be found to be

B 2 +P +1 and n +B 2 -p+T+p +1 respectively.

Finally. it should bt noted that at any particular cycle tk of cell k. only the locations

SXk Luk [tk I .-- SXk [tk -8k] of SXk may be occupied. Hence. the n dimensional array SXL

may be replaced by a circular buffer of length max/Ak (j)-j +Sk I - B I+B 2+2p*. where
kj

B1 is the lower band-width of A. It satisfies BI >: maxfuk (j)-j.
k.j

3.2. The multiplication of x by Ar

The exact same networks described in the previous section may be used for the multi-

plication of x by the transpose of the matrix A . Namely. if the row complement of Sk

rather than its column complement is supplied to cell k in the networks of Fig 3. then the

y streams will accumulate the elements of the product vector A T" x.

In order to be more specific, we assume that each cell k in the networks of Fig 3 exe-

cutes the algorithm of Fig 4 after the replacement of step 2 by

2) Read aA.,k (t) from 13 into a and 0 k (tk ) from 14 into X.

With this replacement. the term a4,7() *Xr k is computed at cycle tk and stored in

SXk [ k (tk )]. But. if tk e i-dom (Sk ). then Uk (tk ) = o'k (tk) and afk. k (1k) * x' -

a,,,,U j * xMA(). where i = Ok (tk). Hence. for any j=1. .. SX [j] contains

a, (j )j * x , (j) if (1(j ).j )eSk , and contains zero otherwise.

• ,.. , . - ,", N, , .. .. ,.,,, % % ,,.... .,% -,"%".,-%"N. % i", ''," " % % " "% %'
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Now, each element yj in the y data stream visits every cell k and picks up from it

the content of SXk (j]. Upon exiting the network. yj. thus, contains the sum of the terms

aj xi for which (i j )GSk for some k. But, ai j =0 if (i j ) does not belong to any stripe.

Hence, y = aij xi, the j1h element of AT x.
ju~l

The value of the delay factor 8 k which ensures the correct operation may be obtained

by an analysis identical to the one described in Section 3.1. This analysis gives a condition

on 8 k similar to (6.a). Namely

8 k > i - o(i ) + p" for any i 6 i_dom (Sk) (8)

Assuming that the y stream flows in the direction opposite to that of the x stream.

then both (6.b) and (6.c) hold. The minimum starting time for the y data stream is. then,

found to be

;na = B I+ p" + 7r (9)

where B I is the lower band-width of the matrix A. In this case. the execution of the net-

work requires n +B j+v cycles, where y,=(p ++1)It+p.

33. The case of symmetric matrices

Let H be a symmetric matrix which may be decomposed into A + D + A where A

is a strictly lower triangular matrix and D is a diagonal matrix. Let also

EA =S,. ' -S,,1} be a stripe structure for A and ED = IS,) be the stripe structure of

D. where S, contains all the diagonal positions (i .i). = .... .. Clearly, the matrix H has

2r- stripes, and hence, the multiplication of any vector x by H may be performed on a

systolic network with 2r-I cells in approximately n +B 2 cycles, as described in the previ-

ous sections.

However, the goal of this paper is to use systolic networks in the iterative solution of

linear systems. This involves, besides matrix/vector multiplication, the solution of triangu-

lar linear systems. In Section 3. it is shown that the solution of triangular systems may be
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Performed on a systolic network composed of v cells. Hence. if the multiplication y =Hx

may also be performed using only v cells, then the same systolic network may be used for

both operations. thus increasing the utilization of the network, and the efficiency of the

entire solution process.

The reduction of the number of cells used in the multiplication y = H x may be

accomplished by first computing the partial result vector z - (A +D ) x . and then comput-

ing y = z + A ' x. Given that the stripe count of A is w-l. and that of D is one. then,

the two operations may be performed. sequentially, on a network of ir cells. This. how-

ever. requires that the partial result vector z be stored outside the network.

It is possible to avoid the external storage of z if the two operations (A +D )x and

ATx are interleaved. In this case, the internal storage SXk in cell k. 14 k <ir. may be

used to hold temporarily the product of stripe Sk by x (generated during the multiplication

(A +D )x ). and then to accumulate the product of the transpose of Sk by x (generated dur-

ing the multiplication A r x ). Clearly. cell ir is only responsible for the multiplication of

S, by x and hence no interleaved operation is needed for that cell.

A more precise description of the operation of a cell k. 14.k <ir. is given in Fig 5.

Note that each execution of the body of the FOR loop corresponds to two systolic cycles.

where in any specific cycle, one addition, one multiplication, and at most one read/write

from/to each port. may be performed.

It is important to ensure that the content of a location SXk [ij, which is computed at

step 2.2 in any given cycle, is not overwritten by the execution of step 1.3 in any future

cycle. In other words, for any given tk. X = &k (tk) should be smaller than A, -k (tk).

This condition is always satisfied for any lower triangular matrix A.

As clear from the algorithm of Fig 5. the x and y streams travel in the network at a

speed of one cell every two cycles. The value of the delay 8k should satisfy both condi-

tions (6.a) and (7). Assuming that the two data streams flow in opposite directions. then

the minimum starting time for the y data stream is the largest of r,,, , and , given
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Starting at time T - r-k +1 DO

FOR tk-l..n+3k DO

Cycle 1: 1.1) Read x,, from I, into ( and - from 12 into ").

1.2) Read art.A, (t,) from 13 into a and Uk (t) from 14 into X.

1.3) SX k] O- tx *j

1.4)7) -- 7)+$Xk tk -8k]

Cycle 2 : 2.1) Read a TLt ),,t from 13 into a and I k (tk) from 14 into ,.

2.2)SX IX] '- SX [i+a*e

2.3) Write j and 7) on 0 1 and 0 2. respectively.

Fig 5 - the multiplication of a vector by a symmetric matrix

by (7) and (9). respectively. However. A is a lower triangular matrix for which B2=0.

Hence. the minimum starting time for the network is given by (9). and the computation of

Hx terminates in 2(n +Bi+y) cycles, where y=(p++l)ir+p8 is a constant which depends

on the number of cells and the architecture of each cell.

4. THE S07UTION OF TRIANGULAR LINEAR SYSTEMS

In this section. we consider lower triangular linear systems of the form

(A +D )x -b

where. as in Section 3.3. A is strictly lower triangular with stripe structure Z:A

{1S.....S,-l. and D is diagonal with stripe structure XD = IS,). The solution of such sys-

tems may be computed on any of the two systolic networks shown in Figure 3. For simpli-

city. we start by assuming that the network has bidirectional data flow (Fig 3b).

The operation of the network is similar to that of the original forward substitution

network of Kung and Leiserson (5]. However. the same techniques used in Section 3.1 are

applied such that each cell deals with a stripe rather than a diagonal. More specifically, the

first r-1 cells of the network, namely cells k =1. .r-1. perform the matrix/vector
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multiplication y -Ax starting at time v,. That is the elements of x are supplied to port I I

of cell v-1 starting at time -,. Subsequent analysis will show that -r, = p++p* +1.

Hence. the operation of each cell k. 1 (k 4r-1. is described by the same algorithm of

Fig 4. except that execution starts at time T = r-k -1+r,. This change in the starting

time does not affect the conditions (6.a) and (6.b) that should be satisfied in order to ensure

correct operation and data flow.

The last cell in the network, namely cell ir. is responsible for recursively computing

the i "I element of x from the ilh element of y =Ax. Assuming that the elements of the

right hand side vector b are applied to port 11 of cell if starting at time T =1. and noting

that/s(i) = i . we may describe the operation of cell 7r by the following Algorithm:

FOR cycles t , = 1. • • • n DO /* Here T = t*/

1) Read ( I / a,,., )from 13 into a

2) Read b, from I into e. and y, from 12 into 7).

4) Write J on 0 1 and 0 2. /* 0 2 is considered the output of the network */

First, we note that we avoided the division operation in cell 1r by supplying to the cell

the reciprocals of the diagonal elements, which, in this case. should be computed outside the

network (by the host for example). Relieving cell 7r from performing the division opera-

tion allows the execution rate of all the cells in the network to be equal, but increases the

load on the host. However. during the iterative solution of linear systems the same tri-

angular system is solved in each iteration for a different vector b. Given that we usually

iterate hundreds of times, the one time increase in the load of the host is justifyable.

Assuming that multiplication and subtraction (equivalent to addition) in cell if are

pipelined, it is clear that the value of xi appears on port 0 2 of cell vf (and thus on I I of cell

it-1) at global cycle T=p +p +i. During that same global cycle. Y.++2P #+ should be at

port 12 of cell ir-l. Hence, from the algorithm of Fig 4. we find that the value of 8,1_ at

cell ir-I is equal to -(p' + 2p ). and thus. from (6.b)
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pt = -(p-2 + (r-k +1) (p++1)) k =1. • • . -1 (10)

In other words. 8 t , k =1.....ir-1, are completely determined by the data flow. How-

ever, condition (6.a) should still be satisfied in order to ensure the correct operation of cells

1. v •,-1. With (10) this condition becomes:

jt (j) - j > 2 (p" -1) + (-k +1) (p+-1) k =1. r.. .u-1 (1)

which basically specify that stripe Sk should be separated from the diagonal by at

least the right side of the inequality. Hence. the network operates correctly only if the

stripes of the input matrix satisfy condition (11). In this case. th- last element of the solu-

tion vector x is computed at global time T =7, +n. that is the network terminates its exe-

cution after p++p" +1+n cycles.

For example, assume that both the multiplication and the addition are performed on

5-stage pipelined units, that is p + = p = 5. Hence, equation (11) indicates that the first

lower stripe, namely S... should be away from the diagonal by at least 20 positions. the

second lower stripe. S,. 2 by at least 26 positions. and so on. Multicolor numbering tech-

niques are available [8. 9]. which rearrange the rows and columns of the matrix such that to

satisfy this type of stripe separation.

The stripe separation condition (11) may be relaxed if the data in the input streams to

the network are spread appropriately. More specifically, if the data at any input port are

applied at the rate of one data item every 0 cycles, rather than every cycle, then it may be

shown that 0 8," will appear in the left side of equation (10). and thus the condition (II)

becomes

0 C/z, Q)- j) > 2(p'-1) +(r-k+1)(p++1) k=1. .r-1 (12)

which may always be satisfied by the proper choice of 0. Clearly, the execution time in this

case increases to n O+p" +p ++ 1 cycles.

Although we considered, so far. only networks with bidirectional data flow. it is

1 11,11,11 '1 1
., NME 2 111M . ,¢ :;
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equally possible to solve triangular systems on networks with unidirectional data Sow.

For this. the y data stream is initiated at port 12 of cell r-1. and the result of Ax is fed

back from port 02 of cell I to port 12 of cell r (see Fig 6). The operation of each cell in the

network remains the same. but the value of 8k may be found to be 8 k -- (p" - (k +1)p ).

Correct operation of the network, in this case. requires that the stripes of the input matrix

satisfy , (j)-j ;0 (k +I)p + rather that (11).

Fig 6 - Unidirectional data flow with feed back

Finally, it should be noted that the solution of upper triangular systems of the form

(A T +D )x = b are very similar to the solution of lower triangular systems. Hence, the

same networks may be used and the same analysis techniques may be applied.

5. APPLICATION TO THE PRECONDITIONED CONJUGATE GRADIENT METHOD

The preconditioned conjugate gradient method (PCCG) [2] is one of the best known

iterative method for the solution of large sparse linear systems of the form Hx f . where

H is an n xn symmetric, positive definite matrix. Each iteration of the PCCG involves the

multiplication of a vector by H and the solution of two triangular systems of the forms

(A +D )x =b and (A T +D )h =x. where A is a strictly lower triangular matrix derived

from H. Denoting by <x .y > the inner product of two vectors x and y. the PCCG may

be described as follows:

Choose an initial guess x o.

ro-f -Hxo ;h -M - 1 r o  ; yo = <roJh> " =0

Repeat for i =0. until y 4 E. where 6 is an acceptable error

I .1) ih +P

1.2) y HI pi
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1.3) a =<y .Pi >.

2) 2.1) a= .
a

3) 3.1)x, +1uxi +api

3.2) r +1 ri -a y

3.3) Solve (A +D ) b ri +1

4) 4.1) Solve (A T +D ) h = b.

4.2) V+1i < ri + >

5) 5.1) = ti +I .

ti

If H is irregularly sparse. then A is usually chosen such that (A +D +A ,) has the

same sparsity structure as H. and thus the same stripe structure. Let

ZW - S,.... Si.... S2,- 1) be a stripe structure for H such that S, is the diagonal

{(G J) i = 1..... 1 . Hence. ZA -IS .'' S -}.

In Fig. 7. we show a complete systolic system for the execution of the PCCG. The rec-

tangular block labeled ARRAY in the figure is a systolic array consisting of ir cells. This

array is used for the execution of steps 1.2. 3.3 and 4.1 in each iteration of the PCCG. Each

cell in ARRAY, however, is slightly different from the cell shown in Fig 3. More

specifically, the input ports 13 and 14 in each cell in Fig 3 are omitted in ARRAY, and the

data which is supplied on these ports. namely the elements of the stripes of H and A. is

stored in local memories. In other words, each cell k in ARRAY has enough memory to

store both the row and column complements of stripe Sk for both H. and A. This requires

six n -dimensional arrays. The in-cell storage of the stripe relieves the host from supplying

the same information to the cells in each iteration.

The other operations in the PCCG are essentially vector and scaler operations. A sys-

tolic cell similar to the ones used in ARRAY is added to the system to perform most of

these operations. This cell is denoted by ir+1 in Fig 7. In addition to multiplication and
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ARRAY Host

Fig 7 - A systolic system for PCCG

addition, cell w+1 should be able to perform division in either software or hardware. The

time for division is not crucial because only two division operations are performed in each

PCCG iteration, namely in steps 2.1 and 2.5. Also, cell r+l is assumed to have local

storage for a temporary array SX,+ 1,. and for the scalers a. P. Vy and yj +,.

The host in Fig 7 is a general purpose computer which initializes the systolic cells and

initiates and controls each iteration step. The vectors Pi-1. ri and xi reside in the host. At

each iteration, the host supplies cell r+1 with the vectors pi -i and r i . and receives from it

the vectors pi and r +1 and the scalers y1 +1 and a. It is also the responsibility of the host to

compute xi +1 in step 3. 1. and to check the value of y, +i for convergence.

a

Step 1 Step 2 Step 3 Step 4 Step 5
Initial content of SX,+, h y y b h
Host -" cell ir+1 P-I ri
cell ir+1 -ARRAY A r i1  b
ARRAY cell r+l y b h
cell +1 -Host p a ri +1  ' i +i
Final content of SX,+ 1  y y b h h

Execution in ARRAY 1.2 3.3 4.1
Execution in cell v+1 1.1. 1.3 2.1 3.2 4.2 5.1
Execution in Host 3.1
Execution time 2(n +B 1+2r+3) 1 n +5 n +5 1

Table 1 - Summary of communication and computation steps

The various computations assigned to each unit in the system and the data movement

between units are summarized in Table 1. Each column in the table corresponds to one step

in a PCCG iteration. Data movement is specified in the first six rows of the table, and com-

putational activities are specified in the following three rows.

~ ~V'
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Given Table 1. it is possible to trace the execution of the system for each step in a

PCCG iteration. For example, during the first step. the host sends the elements of p._1 to

cell V+l at a rate of one element every two cycles. When cell li+l receives the Ih element

of pi -1. namely pi _-[l ]. it computes pi [L I-h (1 ]+OPi -s[/] (note that h [I ] is initially stored

in SX,+I[/ ]). and sends the result to both ARRAY and the host. ARRAY receives the ele-

ments of pi and returns to cell w+1 the elements of the product vector y =Hp,. at the same

rate. Given that cell ir+l is busy executing step 1.1 only every second cycle, the idle cycles

may be used for the computation of step 1.3. That is. whenever cell r+l receives an ele-

ment y [1] from ARRAY, it accumulates its contribution to a. that is. it computes

cma+y [] * pi [l J. before storing y [l ] in SXr.+[i .

The last row in Table 1 gives, for each step. the number of systolic cycles required for

the completion of the step. In order to simplify the table, it is assumed that each multiply.

add. or divide operation terminates in one cycle. That is p+ - p' - p* - 1. By adding the

execution times of the five steps. we conclude that PCCG iterations may be executed at a

rate of one iteration every 4(n +w)+2B +10 systolic cycles. Note that, every systolic cell

in the system is doing useful work in almost every cycle. That is. for large n. the utiliza-

tion of the system is almost 100 percent.

Using the WARP for the PCCG system

The Warp is a 10 cell systolic machine which have been developed at Carnegie Mellon

University (1]. Each cell has a pipelined multiplier and a pipelined adder, with 5 stages

each. In its current form. the Warp may not be used to implement the PCCG system

described above, namely because it does only allow for a homogeneous mode of operation.

That is all the cells should execute the same program. This requirement will be eliminated

in the next version of the machine, namely the PC Warp.

The matrix/vector multiplication algorithm of Section 3 was implemented on the

current Warp in order to test the suitability of Warp-like machines to sparse matrix mani-

pulation. The W2 programming, language [3] was employed and the W2 compiler was used
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to generate the micro-code for the individual cells. Although. the computational results

were correct, the timing results reported by the compiler indicates that the number of

cycles required for execution is almost twelve times the theoretical number of cycles

obtained in Section 3. This inefficiency is attributed to the following reasons:

1) In the current Warp. only one read and one write operation to/from local memory

may be performed in any given cycle. In our algorithm, one of the multiplication

operands and one of the addition operands have to be read from the local memory.

Hence addition and multiplication may not be initiated in the same cycle.

2) The current Warp does not allow in-cell integer arithmetic. Hence any address genera-

tion required for array access (even thoe of the type base +offset ) has to be done

using the floating point addition unit. This source of inefficiency should disappear in

the new PC Warp which includes an in-cell unit for integer arithmetic.

3) Inefficiency of indirect addressing: Although indirect addressing is supported by the

Warp hardware, the task of managing this indirect mode by the compiler is difficult.

especially when index arithmetic is performed in floating point with the result avail-

able after 5 cycles.

6. CONCLUSION

A complete systolic algorithm for the the solution of large sparse linear systems of

equations is described. The algorithm may be implemented on a linear array of systolic

cells attached to a host computer. Data flows regularly in the array and computation is dis-

tributed uniformly among its cells, thus leading to an almost perfect utilization of the

resources. This perfect utilization, however, could not be achieved when the CMU Warp

systolic machine [1] was used to implement parts of the system. namely because the cells in

the Warp lack some of the basic capabilities that we assumed in our systolic array. Most of

the lacking capabilities will be incorporated in future versions of the Warp. thus allowing

for the implementation of an efficient solver for large sparse linear systems.
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