
-R-Aiai 953 INTEGRATED INFORMATION SUPPORT SYSTEM CIISS) VOLUME 5 1/2
COMMON DATA MODEL S (U) GENERAL ELECTRIC CO
SCHENECTADY NY PRODUCTION RESOURCES CONSU

UNCLASSIFIED J L ALTHOFF ET AL Bi NOV 85 DS-628141168 F/G 12/5 NLIIIIIIIIIIIII
EhhhEEEEEohhhI
EhmhEmhohhohhEllEEEEEll~llhE
ElhlEEEElhEEEE
EhlllEEllElllE
Iomlllmlllollll
lllollllmollom
lolllmllImIml

111us 1.1

110411

MICROCOPY RESOLUTION TEST CHART

AD-A181 953

AFWAL-TR- 86-4006
Volume V
Part 5

INTEGRATED INFORMATION
SUPPORT SYSTEM (IISS)
Volume V - Common Data Model Subsystem
Part 5 - NDDL Processor Development Specification

General Electric Company
Production Resources Consulting JUL 06 1
One River Road
Schenectady, New York 12345 2D

D

Final Report for Period 22 September 1980 - 31 July 1985

November 1985

Approved for public release; distribution is unlimited.

PREPARED FOR:

MATERIALS LABORATORY
AIR FORCE WRIGHT AERONAUTICAL LABORATORIES
AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AFB, OH 45433-6533

NOTICE

Wnen Government orawings specifications, or other data are used for any purpose other than
in connection with a definitely related Government procurement operation, the United States
Government thereby incurs no responsibility nor any obligation whatsoever, and the fact that the
government may have tormulated furnished, or in any way supplied the said drawings.
specifications or other data. is not to be regarded by implication or otherwise as in any
manner licensing th6 holder or any other person or corporation, or conveying any rights or
permiss:on to manufacture, use. or sell any patented invention that may in any way be related
thmereto

This report has been reviewed by the Office of Public Affairs (ASD/PA) and is releasable to the
National Technical Information Service (NTISi At NTIS it will be available .to the .general

public including foreign nations

This technical repor, has been reviewed and is approved for publication.

DAVID L LID ON' PROJECT MANAGER DA TE

~WP/GHT PA rERSON AFB OH 45433

FOR THE COMMANDER.

EtALD C. SHUMAKER, BRANCH CHIEF DATE
AFWAL/MLTC
WRIGHT PATTERSON AFS OH 45433

A

"If your address has changed. if you wish to be removed from our mailing list, or if the
addressee is no longer employed by your organization please notify AFWAL/MLTC, W.PAFB, OH
45433 to help us maintain a current mailing list

Copies of this report should not be returned unless return is required by security cnnqirohrairc
contractual obligations, or notice on a specific document

Ga. LoOsSIS rCaft. Sam mad 11? coup T. LAOOMISS rift. &ageOw sip cw

a River Road
Soheaeeitady. NY 12345 VPAFB, ON0 45433-6533

as "WeI of @UfOIftG4sPOMO PPeCg SVMSo&. s. PROCaUREET ,8?A5DOl"I7 I5ANePC~ATaOC ftu"910

Air Force Systems Command. USAF V365-O-55
ADRS Xoca o &a. Sao ams IP Co so SOVOCILo WUNDINO 0106

VVO@*AN ROACY TASK *K uWftT
Vright-FatterS010 MS. ftio 4543ISX M fo46.O.

___________________________ I_ Tool IT 7500 62 0
I I. ?IT". Eimekieu Jecontr cumfouse

(See Reverse)

ILPIRSOftALAUiWORSOAlthoff. J. L.. Apicella. H. L.. Bernier. H. P.. Singh. S..
Thompson. D. B., a.nd Wong. J. P.

13& TVPa Of 4460001 TS3m - talCvo V ,.a01. DAT9 op X&POmT (yr.. m... ,, tU. PAGE CO9uT4
Pal Te"Ac& l"a eOrt 22 Sept AMC0 - 52 hUlost00 105 November16

is. u~pa5wti~am mO7iafthe computer Sottvaze Contained herein are theoretical and/or

reeene tha In no way reflec Air Fo otuoned, or -dove loped

1505 10i05

i.STRACT lCanmora em p #I uwnnv - adrasph 63ateW nowabeo

This document is the development specification establishing the
functional requirements of the IISS Configuration Item Neutral
Data Definition Language (NDDL) which Is the pr ary tool used
for maintaining the Common Data Model (CDX). .1

60fCUA35IOIMI0AItS* SAME £5 OVt- 0v~ S Mns 0 Unclassified

:34 htAU1 00 AL5POWaS&. 10DIVIDUAL aftTIAPwOft NWUMUI sat OPu.CS SYMO01.
ftvie L. Iftsoa 01eaf ie A# rAALT.C

11. Title

Integrated Information Support System (1155)
Vol V -Common Data Model Subsystem
Part 5 -NDDL Processor Development Specification

Accesio. For

NTIS 'CRA&u
DTIC TAB
U ldnno,,nced U

Avz.~b~i~ GC'7'es

DiT Aal

L'L~Le

DS 620141100
1 November 1985

PREFACE

This development specification covers the work performed
under Air Force Contract F33615-80-C-5155 (ICAM Project 6201).
This contract is sponsored by the Materials Laboratory. Air
Force Systems Command. Wright-Patterson Air Force Base, Ohio.
It was administered under the technical direction of Mr. Gerald
C. Shumaker, ICAM Program Manager, Manufacturing Technology
Division, through Project Manager. Mr. David Judson. The Prime
Contractor was Production Resources Consulting of the General
Electric Company. Schenectady, New York, under the direction of
Mr. Alan Rubenstein. The General Electric Project Manager was
Mr. Myron Hurlbut of Industrial Automation Systems Department,
Albany, New York.

Certain work aimed at improving Test Bed Technology has
been performed by other contracts with Project 6201 performing
integrating functions. This work consisted of enhancements to
Test Bed software and establishment and operation of Test Bed
hardware and communications for developers and other users.
Documentation relating to the Test Bed from all of these
contractors and projects have been integrated under Project 6201
for publication and treatment as an integrated set of documents.
The particular contributors to each document are noted on the
Report Documentation Page (DD1473). A listing and description
of the entire project documentation system and how they are
related is contained in document FTR62O10000l, Project Overview.

The subcontractors and their contributing activities were
as follows:

TASK 4.2

Subcontractors Role

Boeing Military Aircraft Reviewer
Company (BMAC)

D. Appleton Company Responsible for IDEF support,
(DACOM) state-of-the-art literature

search

General Dynamics/ Responsible for factory view
Ft. Worth function and information

models

DS 620141100
1 November 1985

Subcontractors Role

Illinois Institute of Responsible for factory view
Technology function research (IITRI)

and information models of
small and medium-size business

North American Rockwell Reviewer

Northrop Corporation Responsible for factory view
function and information
models

Pritsker and Associates Responsible for IDEF2 support

SofTech Responsible for IDEFO support

TASKS 4.3 - 4.9 (TEST BED)

Subcontractors Role

Boeing Military Aircraft Responsible for consultation on
Company (BNAC) applications of the technology

and on IBM computer technology.

Computer Technology Assisted in the areas of
Associates (CTA) communications systems, system

design and integration
methodology, and design of the
Network Transaction Manager.

Control Data Corporation Responsible for the Common Data
(CDC) Model (CD) implementation and

part of the CDM design (shared
with DACOM).

D. Appleton Company Responsible for the overall CDX
(DACOM) Subsystem design integration

and test plan, as well as part
of the design of the CDM
(shared with CDC). DACOX also
developed the Integration
Methodology and did the schema
mappings for the Application
Subsystems.

iv

DS 620141100
1 November 1985

Subcontractors Role

Digital Equipment Consulting and support of the
Corporation (DEC) performance testing and on DEC

software and computer systems
operation.

McDonnell Douglas Responsible for the support and
Automation Company enhancements to the Network
(McAuto) Transaction Manager Subsystem

during 1984/1985 period.

On-Line Software Responsible for programming the
International (OSI) Communications Subsystem on the

IBM and for consulting on the
IBM.

Rath and Strong Systems Responsible for assistance in
Products (RSSP) (In 1985 the implementation and use of
became McCormack & Dodge) the MRP II package (PIOS) that

they supplied.

SofTech, Inc. Responsible for the design and
implementation of the Network
Transaction Manager (NTM) in
1981/1984 period.

Software Performance Responsible for directing the
Engineering (SPE) work on performance evaluation

and analysis.

Structural Dynamics Responsible for the User
Research Corporation Interface and Virtual Terminal
(SDRC) Interface Subsystems.

Prime contractors under other projects who have contributed

to Test Bed Technology, their contributing activities and
responsible projects are as follows:

Contractors ICAM Project Contributing Activities

Boeing Military 1701. 2201, Enhancements for IBM
Aircraft Company 2202 node use. Technology
(BMAC) Transfer to Integrated

Sheet Metal Center
(ISMC)

v

DS 620141100
1 November 1985

Contractors ICAM Project Contributing Activities

Control Data 1502, 1701 IISS enhancements to

Corporation (CDC) Common Data Model
Processor (CDMP)

D. Appleton Company 1502 IISS enhancements to

(DAGOM) Integration Methodology

General Electric 1502 Operation of the Test
Bed and communications
equipment.

Hughes Aircraft 1701 Test Bed enhancements

Company (HAC)

Structural Dynamics 1502, 1701. IISS enhancements to

Research Corporation 1703 User Interface/Virtual

(SDRC) Terminal Interface
(UI/VTI)

Systran 1502 Test Bed enhancements.
Operation of Test Bed.

vi

DS 620141100

1 November 1985

TABLE OF CONTENTS

?Age

SECTION 1.0 SCOPE.................................... 1-1
1.1 Identification........................ 1-1
1.2 Functional Summary.................... 1-1

SECTION 2.0 DOCUMENTS................................ 2-1
2.1 Reference Documents.................... 2-1
2.2 Terms and Abbreviations................ 2-2

SECTION 3.0 REQUIREMENTS............................ 3-1
3.1 Computer Program Definition............3-1
3.1.1 System Capacities.................... 3-1
3.1.2 Interface Requirements............... 3-1
3.1.2.1 interface Block Diagram..............3-2
3.1.2.2 interface Requirements............... 3-3
3.2 Detailed Functional Requirements ... 3-3
3.2.1 Initialization...................... 3-5
3.2.2 Input/output........................ 3-5
3.2.3 Error Handling...................... 3-6
3.2.4 Parse Commands...................... 3-7
3.2.5 Database Access..................... 3-8
3.2.6 General Command Processing...........3-10
3.2.7 Termination......................... 3-12
3.2.8 Individual Command Processing........3-13
3.2.8.1 ALTER ALIAS....................... 3-13
3.2.8.2 ALTER ATTRIBUTE.................... 3-16
3.2.8.3 ALTER DOMAIN...................... 3-18
3.2.8.4 ALTER ENTITY...................... 3-22
3.2.8.5 ALTER MAP......................... 3-25
3.2.8.6 ALTER MODEL....................... 3-30
3.2.8.7 ALTER RELATION..................... 3-32
3.2.8.8 CHECK MODEL....................... 3-35
3.2.8.9 COMBINE ENTITY..................... 3-38
3.2.8.10 COMPARE MODEL..................... 3-42
3.2.8.11 COPY ATTRIBUTE..................... 3-44

*3.2.8.12 COPY DESCRIPTION................... 3-48
3.2.8.13 COPY ENTITY....................... 3-50
3.2.8.14 COPY MODEL........................ 3-58
3.2.8.15 CREATE ALIAS...................... 3-62
3.2.8.16 CREATE ATTRIBUTE................... 3-64
3.2.8.17 CREATE DOMAIN..................... 3-66
3.2.8.18 CREATE ENTITY..................... 3-68
3.2.8.19 CREATE MAP........................ 3-71

vii

DS 620141100
1 November 1985

TABLE OF CONTENTS (Continued)

3.2.8.20 CREATE MODEL...................... 3-74
3.2.8.21 CREATE RELATION.................... 3-76
3.2.8.22 CREATE VIEW....................... 3-79
3.2.8.23 DEFINE DATABASE.................... 3-82
3.2.8.24 DEFINE RECORD...................... 3-85
3.2.8.25 DEFINE SET........................ 3-88
3.2.8.26 DESCRIBE.......................... 3-91
3.2.8.27 DROP ALIAS........................ 3-94
3.2.8.28 DROP ATTRIBUTE..................... 3-96
3.2.8.29 DROP DATABASE..................... 3-98
3.2.8.30 DROP DOMAIN....................... 3-100
3.2.8.31 DROP ENTITY....................... 3-103
3.2.8.32 DROP FIELD........................ 3-106
3.2.8.33 DROP KEYWORD...................... 3-109
3.2.8.34 DROP MAP.......................... 3-111
3.2.8.35 DROP MODEL........................ 3-113
3.2.8.36 DROP RECORD....................... 3-115
3.2.8.37 DROP RELATION..................... 3-118
3.2.8.38 DROP SET.......................... 3-121
3.2.8.39 DROP VIEW......................... 3-123
3.2.8.40 HALT............................... 3-125
3.2.8.41 MERGE MODEL....................... 3-127
3.2.8.42 RENAME............................. 3-130
3.3 Performance Requirements............... 3-132
3.3.1 Programming Methods.................. 3-132
3.3.2 Program Organization................. 3-132
3.3.3 Modification Consideration...........3-132
3.3.4 Special Features.................... 3-132
3.3.5 Expendability....................... 3-132
3.4 Human Performance..................... 3-133
3.5 Database Requirements.................. 3-133
3.5.1 Database Overview.................... 3-133
3.5.2 Relations Between Tables and Views. 3-133
3.5.3 Detailed Description of Tables

and Views.......................... 3-133

*SECTION 4.0 QUALITY ASSURANCE PROVISIONS............ 4-1
4.1 Introduction and Definitions.......... 4-1
4.2 Computer Programming Test and

Evaluation........................... 4-1

SECTION 5.0 PREPARATION FOR DELIVERY................. 5-1

viii

DS 620141100

1 November 1985

LIST OF ILLUSTRATIONS

F ig1ure Title Page

1-1 NDDL Functionality Matrix............... 1-3

3-1 NDDL Processor Interface................. 3-2

3-2 Organization of NDDL Functional

Requirements........................... 3-4

LIST OF TABLES

CDM TABLES ACCESSED

Table Title Pagte

ALTER ALIAS............................ 3-15
ALTER ATTRIBUTE........................ 3-17
ALTER DOMAIN........................... 3-21
ALTER ENTITY........................... 3-24
ALTER MAP............................... 3-29
ALTER MODEL............................ 3-31
ALTER RELATION......................... 3-34
CHECK MODEL............................ 3-b7
COMBINE ENTITY......................... 3-40
COMPARE MODEL..........................53-43
COPY ATTRIBUTE......................... 3-47
COPY DESCRIPTION....................... 3-49
COPY ENTITY............................. 3-56
COPY MODEL.............................. 3-60
CREATE ALIAS............................ 3-63
CREATE ATTRIBUTE....................... 3-65
CREATE DOMAIN.......................... 3-67
CREATE ENTITY.......................... 3-70
CREATE MAP.............................. 3-73
CREATE MODEL........................... 3-75
CREATE RELATION........................ 3-78
CREATE VIEW.............................:3-81
DEFINE DATABASE........................ 3-84
DEFINE RECORD.......................... 3-87
DEFINE SET.............................. 3-90
DESCRIBE..................3-93
DROP ALIAS.............................. 3-95
DROP ATTRIBUTE......................... 3-97

ix

DS 620141100

1 November 1985

LIST OF TABLES (Continued)

Table Title Pg

DROP DATABASE.......................... 3-99
DROP DOMAIN............................ 3-102
DROP ENTITY............................ 3-105
DROP FIELD............................. 3-108
DROP KEYWORD........................... 3-110
DROP MAP................................ 3-112
DROP MODEL.............................. 3-114
DROP RECORD............................ 3-117
DROP RELATION.......................... 3-120
DROP SET................................ 3-122
DROP VIEW............................... 3-124
HALT.................................... 3-129
MERGE MODEL............................ 3-130
RENAME.................................. 3-132

ORACLE DATA DICTIONARY: COL TABLES......................... 3-135

x

DS 620141100
1 November 1985

SECTION 1

SCOPE

1.1 Identification

This specification establishes the development, test and
qualification requirements of a computer program identified as
the Neutral Data Definition Language Processor, known in this
document as the NDDL Processor. The NDDL Processor is one

configuration item of the Integrated Information Support System
(IISS) Common Data Model (CDM) Subsystem.

1.2 Functional Summary

The NDDL processor is a language used to manipulate and
populate information in the Common Data Model (CDM) of the IISS
System database. It provides the user with three modes of
operation: (1) Batch Mode allows NDDL command files to be
executed; (2) Interactive Mode allows the user to enter NDDL
commands at a terminal; and (3) Forms Mode allows the user use
of the IISS forms processor to display input and output screens
of NDDL commands. The NDDL processor allows the user to
populate and maintain the three schemas of the CDX: an external,
conceptual and internal and the mappings between each. The NDDL
also provides capabilities for manipulation of many IDEF-l
models and submodels needed during the process of developing the
single integrated model of the conceptual schema. Only the
integrated model may be mapped to the external and internal
schemas. The NDDL was designed by a joint working group of IISS
coalitior. members, described in the Integration Task Report,
Reference 8. The language is modelled after SQL and the command
features a combination of a few simple verbs (operators) along
with the necessary parts of the CDM (objects). The
functionality of NDDL is summarized in the matrix of Figure 1-1
The following notes refer to the foot notes of the matrix.

1-1

•*~ ~ ,. .h~

DS 620141100
1 November 1985

1. Internal Schema Objects are defined rather than created
since IISS assumes internal schema describes actual,
previously existing databases.

2. DESCRIBE serves the purpose of creating, altering and
dropping descriptions for the applicable objects.

3. Aliases are maintained for entities and attributes
only.

4. Keywords are maintained only for entities, attributes
and relations. They can only be created when
associated with entities, attributes or relations.

5. The noted objects can only be altered through use of
DROP and CREATE operators.

6. ALTER commands generally have ADD, DROP and ALTER
* suboperators for subobjects.

* 7. Data items are created and dropped as subobjects of
views.

8. Data types are created and dropped as subobjects of

domains.

9. Data fields are created as subobjects of records.

10. Maps do not have names of their own and cannot be
renamed or described.

1-2

DS 620141100
1 November 1985

OB J EC T

I A I A I D I D I D I D ID IE IF 1K I H IM IR IR IS IV I

0 1 It I a I a I a I e l0 in Ii le I a 10 le le le Ii I
P Ii It: I t I t I t I s 13 it le ly I p Id Ic 11iIt le I
E Ia Ir I a I a I a I c ia Ii i Iw I le lo Ia I 1w I
R Is Ii I I I I r iitId lo 1 1 Ir it I I I

A I IbI I IEBIT Ii in ly I Ir I I IdIilI I I

'1 I lu t Ia IylIp I I I dlI I I 10 1 I I

0 1 It eIs Ip I tI I I I I I I In I I I

R I le a IelIel I I I I I I I I I I

Alter I x I x I 5 I 5 I 5 1 1 Ix Ix 15 I I x Ix 15 Ix 15 15 I

Check I I I I I I I I I I I IX I I I I I

Comnbine I I I I I I I xlI I I I I I I I I
ComparelI I I I I I I I I I I xlI I I I I
Copy I I x I I I I x I Ix I I I Ix I I I I I

Create I x I x I 7 1 1 1 8 I 2 Ix Ix 19 14 I x Ix 11 Ix 11 Ix I
Define I I I I x I I I I I I I I Ix I Ix I I

Describel I x I x I x I x In/aIx Ix Ix Ix 110 Ix Ix Ix Ix Ix I

Drop I x I x I 7 I x I 8 I 2 Ix Ix Ix Ix I x ix Ix Ix Ix Ix I
Merge I I I I I I I I I I I xlI I I I I

Rename I I x I I I I Ix Ix I Ix 110 Ix I Ix I Ix I

Ha lt I I I I I I I I I I I I I I I I I

Figure 1-1. NDDL Functionality Matrix

1-3

DS 620141100
1 November 1985

SECTION 2

DOCUMENTS

2.1 Reference Documents

1. General Electric Co., Test Bed System Requirement
Document (Draft); SRD620140000, Revised 23 August 1982.

2. General Electric Co., Test Bed System Desiln
Specification; SDS620140000, 7 February 1983.

3. ICAM Documentation Standards; IDS15012000A, 28
December 1981.

4. General Electric Co.. IISS Software Development
Guidelines/Conventions (D-ra-ft); 23 August 1982.

5. Structural Dynamics Research Corporation, IISS User
Interface Management System Services User Manual;
UM626144100A, July, 1983.

6. Structural Dynamics Research Corporation, IISS Form
Processor Users Manual; UM620144200A, 5 December 1984.

7. Control Data Corporation, IISS Neutral Data Definition
Landuage (NDDL) User's Guide Preliminary Draft); 28
February 1985.

8. Hughes IISS Integration Task; 16 April 1984.

9. Softech, ICAM Architecture, Part II, Vol. V.
Information Modelling (IDEFI); FTRl10210000.

10. D. Appleton Co., CDM Administrator's Manual;
UM620141000, March 1984.

11. D. Appleton Co., CDMI-IDEF, Model of the Common Data
Model; CCS620141000, 15 May 1985.

12. General Electric Co., Quality Assurance Plan;
QAP620144000, 4 January 1984.

2-1

DS 620141100
1 November 1985

13. D. Appleton Co., Embedded NDML Programmer's Reference
Manual; PR3620141200, March, 1985.

14. Softech, Inc., NTH Programmer's Guide; UM620140001,

July, 1984.

2.2 Terms and Abbreviations

Attribute Use Class: (AUC).

Application Interface: (AI) A collection of routines with the
same calling sequences as the Forms Processor and Virtual
Terminal callable routines that enables applications to be
hosted on computers other than the host of the User interface.

Assertion: Predicate that applies to one or more attributes;
checked after completion of an action to determine if the
results should be committed.

Conceptual Schema: (CS).

Common Data Model Processor: (CDMP).

Common Data Model: (CDX) Describes common data application
process formats, form definitions, etc, of the IISS and includes
conceptual schema, external, internal schemas, and schema
transformation operators.

Data Field: (DF) An element of data in the internal schema.
Generally, it is by this name a DBMS will reference data.

Data Item: (DI) An element of data in the external schema. It
is by this name that an NDXL programmer references data.

Data Type: A specific computer representation of a domain.

Distributed Request Supervisor: (DRS) This IISS CDM Subsystem
configuration Item controls the execution of distributed NDML
queries and non distributed updates.

Domain: A logical definition of legal attribute class values.

Domain Constraint: Predicate that applies to a single domain.

External Schema: (ES).

2-2

I 6 W --

DS 620141100
1 November 1985

Forms: Structured views which may be imposed on windows or
other forms. A form is composed of fields where each field is a
form, item, or window.

Forms Processor: (FP) A set of callable execution time routines

available to an application program for form processing.

Internal Schema: (IS).

Integrated Information Support System: (IISS) A test computing
environment used to investigate, demonstrate and test the
concepts of information management and information integration
in the context of Aerospace Manufacturing. The IISS addresses
the problems of integration of data resident on heterogeneous
databases supported by heterogeneous computers interconnected
via a local Area Network.

Mapping: The correspondence of independent objects in two
schemas: ES to CS or CS to IS.

NDDL User: The CDM administrator or his designated
representative.

Network Transaction Manager: (NTM) Performs the coordination,
communication and housekeeping functions required to integrate
the Application Processes and System Services resident on the
various hosts into a cohesive system.

Neutral Data Definition Languages: (NDDL) A language used to
manipulate and populate information in the Common Data Model
(CDM) or IISS System Database.

Neutral Data Manipulation Language: (NDML) A language developed
by the IISS project to provide uniform access to common data,
regardless of database manager or distribution criteria. It
provides distributed retrieved and single node update.

ORACLE: Relational DBMS based on the SQL (Structured Query
Language, a product of ORACLE Corp, Menlo Park, CA). The CDM is
an ORACLE database.

Object: Named Common Data Model item; for example; entity
class, relation class, attribute class.

Trigjer: Action that is invoked at the commit completion of
another action.

2-3

ri-

DS 620141100
1 November 1985

User Interface: (UI) Controls the user's terminal and
interfaces with the rest of the system.

Virtual Terminal Interface: (VTI) Performs the interfacing
between different terminals and the UI. This is done by
defining a specific set of terminal features and protocols which
must be supported by UI software which constitutes the virtual
terminal definition. Specific terminals are then mapped against
the virtual terminal software by specific software modules
written for each type of real terminal supported.

2-4

DS 620141100

1 November 1985

SECTION 3

REQUIREMENTS

3.1 Computer Program Definition

The NDDL processor is the computer program that translates
the command statements of this language and performs the
operations requested, updating the CD database. The NDDL
language is non-procedural. The NDDL processor is essentially
an interpreter, executing one command at a time, in the order
presented by the user.

Each command is parsed for syntactic correctness. Control
is transferred to the individual command processor for the
semantic validation of the command. If all semantic checks are
found to be correct, the database is updated or information
retrieved.

3.1.1 System Capacities

The NDDL is designed to allow multiple users at the same
time. Data limits are imposed only by the capacity of the DBMS.
Processing speed limits are imposed by the speed of the computer
and the number of other users and the speed and efficiency of
the NTM subsystem and the IISS Forms Processor. A number of
COBOL and C fixed size tables will be used to temporarily hold
information. These limits can be changed very easily in a
virtual memory environment.

3.1.2 Interface Requirements

The NDDL processor shall make use of the IISS Forms
Processor for command input and shall allow batch input as well.
The NDDL processor shall make use of IISS NDML wherever possible
to retrieve data from the CDM native ORACLE wherever NDML is not
sufficient.

3-1

DS 620141100
1 November 1985

3.1.2.1 Interface Block Diagra

+---------------

BATCH NDDLI +------------------+----------

I +---------) 1 C, I I I -----------------
---------------- 11/0 1 +----------------I

+--------------------- I I -- ------------------- 11
I ------ YDDL I N I IN IGENERATED III

1+-------------- I I I I I -+T I ORACLE III
it INTERACTIVE+--.IFP I I T I iM I REQUEST I++
I1 11 1 1 1 +-) I I PROCESSORS++.
I+-------------- I I I I N I +-+------------------

I I +------- +---------- I
+-------------------- 1 11 NDNLI I I
+------------------- I ORACLE 4--------- II
I I +-1 11IDRS I I I
I I I ------------- +------------+ I

+---------------------I I
I +------------------------------- I
+-' I CDN DATA BASE I------------

+------------------------------

Figure 3-1. NDDL Processor Interfaces

3-2

DS 620141100
1 November 1985

3.1.2.2 Interface Requirements

The NDDL processor makes use of the IISS Forms Processor
directly for forms interactive input. NDDL also makes use of
the standard C input/output library to allow user non-forms
interactive input or batch input via file redirection. Database
access is through a combination of (1) ORACLE for update insert
and delete and recursive searches not supported by WDML and (2)
NDNL for all other searches. The NDNL routines are precompiled
by the IISS NDML precompiler and ORACLE request processors are
generated, which communicates with NDDL through the DRS which
uses IISS NTH services.

It is a design goal to replace the use of ORACLE with NDML
to achieve DBMS independence, and to allow the CDM database
itself be distributed.

It is a design goal to make NDDL an application controlled
by the IISS User Interface subsystem to make use of its
capabilities. Currently there is an interface problem with the
C library of I/0 routines supplied with the IS/1 workbench and
the UIMS.

3.2 Detailed Functional Requirements

This description of functional requirements is broken down
into nine subfunctional areas. These areas are identified in
the block diagrams, Figure 3-2 which includes the following
paragraph numbers. The forty-two commands currently making up
NDDL are each described in Section 3.2.8.

3-3

DS 620141100
1 November 1985

+-------------------

I NDDL I
------------------ I PROCESSOR I ---------------+

I +---I 3.2 I---+ I
V V +----------------- V V

+------------------ ------------ +------------------- +--------------
IINITIALIZATIONI I PARSE I IGENERAL COMMANDI ITERMINATIONI
I I ICOMMANDS I I PROCESSING I I I
I 3.2.1 I I 3.2.4 I I 3.2. I I 3.2.7 1

---------------- +----------- -----------------+ -------------+
I I

+-------------+ ------- ----------------------+
I ++---------------------------- I
I +---------------V------------ I
I +---I INDIVIDUAL COMMAND
a I I PROCESSING i+-+ i
I I I 3.2.8 ++ I
V V ---------------------------- + V

+------------------ ---------------------- ---------------------
I INPUT/OUTPUT Ic--I ERROR HANDLING I I DATABASE ACCESSI
I 3.2.2 I I 3.2.3 I I 3.2.5 I
+------------------ 4.--------------------- +--------------------

Figure 3-2. Organization of NDDL Functional Requirements

3-4

DS 620141100
1 November 1985

3.2.1 Initialization

A. Function:

Initialization will allow the NDDL processor to perform
all initialization requirements with other subsystems
and software environments.

B. CDM Requirements:

None

C. Processing:

1. Determine the processing mode: either interactive,
through forms, or batched.

2. Initialize with NTM through use of INITEX service.
In the future, this should be changed to INITAL when
UI services are required.

3. If in forms mode, initialize to the forms processor
by using the INITFP service, OPNFRM and ADDFRM to
create the user's initial form.

4. Logon the ORACLE DBMS and open all cursors
necessary. The logon data area and cursors will all
be global data structures.

5. Initialize any other data structures necessary for
any commands to their null, or initial state.

6. Initialize any other global variables such as
current model, current database. etc.

3.2.2 Input/Output

A. Function:

Provide user input to the other components of the NDDL
processor in an invisible manner, without respect to
the means in which the input was obtained. Provide
output for NDDL processor to the user through a
standard interface to allow the same invisibility.

B. CDM Requirements:

3-5

DS 620141100
1 November 1985

None

C. Processinf:

The standard C character input/output routines viii be
used. They will be modified, hovever, to recognize the
current input/output mode. Batch mode viii use the
existing capability of the C library. Interactive mode
will make use of forms processor calls. Because the
forms processor can return many screens of information
at a time, the modified input/output routines shall
extract a single character at a time from the data
structures. Since output consists of simple
information messages to the user, PNSGLS forms
processor calls can be used for all messages or PRINTF,
if batch mode, to standard output. Output of generated
NDDL uses the standard C file I/0 primitives.

3.2.3 Error Handling

A. Function:

Provide a single standard means of communicating errors
to the NDDL user. The interface shall be simple,
readily usable and invisible to the particular
input/output mode. The error handling shall also make
database transaction rollback conditions simple to
recognize. User requirements for command skipping
after a semantic error shall be kmplemented.

B. CDM Requirements:

None

C. Processing:

Three major entry points to the error handling
functionality of NDDL shall be established
corresponding to the three types of errors. These are:

1. An entry point for "fatal" errors. These are
errors from other subsystems or software than NDDL.
These errors are to be handled in accordance with
the IISS Error Handling Philosophy, Reference
Number 12. A standard routine is called to log the
message in a central place. These error conditions

3-6

...................... f";-

DS 620141100
1 November 1985

shall also be communicated to the user as type 2
below.

2. An entry point for user errors. These are errors
that are caused by the user and can be recovered by
user action. An example may be creating an entity
that already exists. This error handler must set a
flag so at the end of the command, any database
changes are backed out through a rollback procedure
supplied by the DBMS or NDNL.

3. An entry point for warning messages. These are
indications of problems of user understanding, such
as dropping a set that does not exist, or simple
informative messages about actions that have
occurred, such as "model altered".

4 It is the responsibility of the general commandprocessor, Section 3.2.6, not to process commands

in batch after a user error or fatal error has
occurred. This prevents a later command from
causing unpredictable harm.

3.2.4 Parse Commands

A. Function:

The Parse Command subfunction of IISS will provide a
mechanism for accepting user command input, validating
correct syntax, reporting syntax errors and saving
pertinent command information in data structures
independent of the syntax.

B. CDH Requirements:

None

C. Processing:

This function will be provided through code generated
by the UNIX tools YACC and LEX and interface routines
provided as part of this function (UNIX is a trademark
of Bell Labs).

1. LEX is a tool that generates lexical analyzers.
Given a specification of the reserved words or
tokens, LEX will generate a routine that will

3-7

h'7 JC 7t6. pL*

DS 620141100
1 November 1985

accept user input and return control to the caller
on each token recognized.

2. YACC is a tool that generates a parser that
validates user input as matching the grammar or
syntax of the language. The parser generated has
the capability of calling user specified routines
or code called "actions". YACC is commonly used in
compiler construction. YACC uses a syntax
specification of the NDDL commands and generates
the NDDL parser. This specification is not treated
as an IISS deliverable because to do so would
require the user or target site to have the UNIX
tools.

3. Token primitive routines will be developed that
store user entered command data, or tokens, in a

special data structure. This data structure is
simply a matrix of pointers into a string of
concatenated tokens. The columns of the matrix are
called lists. Lists generally have like tokens;
for example, all the keywords entered on a CREATE
ENTITY command. The rows of the matrix are
generally meaningless, unless the syntax defines a
special correspondence between lists. An example is
CREATE VIEW, where data items and attributes must
match up.

The token primitives are the only kind of action
statements used in the YACC input. It is
conceivable that each entire command processor
could be called as YACC action statements, but this
is not the case. The design goal was to build
command processors independent of the input
mechanism, in this case, command syntax.

3.2.5 Database Access

A. Function:

This subfunction outlines the functional requirements
of the database access used in the NDDL processor. All
database access shall be for the ORACLE based CDM. All
database access shall use the facilities of the IISS
NDML wherever possible. The ORACLE SQL facilities may
be substituted only if the NDHL does not provide the
needed functionality. Any use of ORACLE's SQL shall be

3-8

.......... * * .

DS 620141100
1 November 1985

written in C. This is because the necessary logon
database area and cursors must be kept in a global area
to avoid the database access routines requiring any
DBMS specific interface parameters. This is to allow
eventual conversion of all ORACLE database access
routines to NDML and achieve DBMS independence for the
NDDL processor.

B. CDM Requirements:

The ORACLE DBMS must be used due to previous decisions
on the initial DBMS to host the CDN.

C. Processing:

1. ORACLE SQL will be used for the following
4requirements:

1.1 SELECT where sorting is required.

1.2 SELECT where a Bill of Materials type
recursive search is needed.

1.3 INSERT operations. Insert modules will insert

a single row at a time.

1.4 DELETE operations.

1.5 UPDATE (or MODIFY) operations.

2. COBOL embedded NDML will be used for all other
database retrieval and verification modules. A
distinction is made between verification or look up
modules and modules expected to retrieve more than
one row.

2.1 The verification type module shall be called
with the search parameters as inputs and the
database value(s) found on the single row as
output. Very often a zero valued object
number will be used as a "no-find" status.

2.2 For routines expected to find many rows, the
routine will receive the simple search
parameters as input as before. Within the
NDXL (and 1, logic will be coded for
processing each row. Very often calls to

3-9

DS 620141100
1 November 1985

other routines which may process a single row
will be made. If row processing is simple
enough, calls are not necessary.

These requirements promote DBMS independence and
simplicity of data structures common to more than
one module.

3. For purposes of database concurrency and integrity,
the logical unit of work shall be defined to be a
single NDDL command execution. That is, the
command is wholly executed with the results as
expected by the user or none of the command is
executed. Therefore, an NDDL command can be
considered a transaction.

3.2.6 General Command Processing

A. Function

General Command Processing will handle such functions
as pre-command initialization, control of parsing,
control of forms input/output, and post command control
of database commit or rollback. It must also control
parsing of commands that cannot be executed due to
previous errors. This subfunction will also provide
facilities for CDM object numbering and number reuse.
The subfunction must provide for generalized access to
the parser data structures.

B. CD! Requirements

Two tables necessary for object numbering will be used.
These are: (1) NEXT NUMBER which contains the next
number to be used for each object type; and (2)
REUSABLENUMBER which contains all the object numbers
dropped and available for reuse.

C. Processing

1. The user input form must be displayed the first
time in forms mode.

2. Each command entered by the user on the input
screen must be processed; skipping commands after
an error is encountered.

3-10

DS 620141100
1 November 1985

3. For a completed command, a count of errors must be
displayed.

4. If these were errors, the entire screen must be
redisplayed. Also, the previous set of error
messages need to be blanked out and a "no errors"
message displayed. If the user asked to refresh
and keep his command on the screen, this too must
be done.

5. The current database and model must also be kept on
the screen.

6. If the user entered the quit key, a halt command
must be generated and processed.

7. When a user has entered a command, the parser must
be called. The return status of parsing must be
examined.

8. If the command is to be processed, then a routine
to effect the transfer of control to the proper
command processor is executed.

9. After the individual command is executed, the
current model and database must be established. If
the command was successful, the database
transactions are committed or, if unsuccessful,
rolled back.

10. The CDM objects that shall be numbered follow.
Each object type below has an object type number.

OBJECT TYPE NUMBER OBJECT TYPE

1 MODEL
2 ENTITY
3 ATTRIBUTE
4 KEY CLASS
5 RELATION
6 TAG
7 DOMAIN
8 KEYWORD
9 VIEW
10 DATABASE
11 SET
12 DATA TYPE

3-11

% 61

DS 620141100
1 November 1985

13 DATA ITEM
14 DATA FIELD
15 RECORD

Objects are numbered to ease in renaming and to
allow a central place for storing object
descriptions.

Two subfunctions shall exist to promote consistent
handling of these numbers.

10.1 Adding a reusable number shall make the
number of a dropped object available for
reuse by storing It in the CDM's
REUSABLENUMBER table.

10.2 Get next number will obtain a new, unused
number for an object being created. It must
first search the list of available numbers
for this object type. If one is found, it of
course must be deleted from the list of
reusable numbers. If one is not found, the
next available number is retrieved from the
CDM's NEXTNUMBER table. This number is
incremented and updated in the NEXTNUMBER
table.

11. Finally, this subfunction must supply routines that
allow the command processor to access the lists of
user command tokens built by the parser. These
functions shall allow access to the first token on
the list, the next token from the list and
accessing a token from one list corresponding to
another list (same row). The functions should
return a count of tokens on the list and an end of
list indicator.

3.2.7 Termination

- A. Function

W. Termination will allow the NDDL processor to perform
IRZ all termination requirements with other subsystems and
WN software environments.

3-12

DS 620141100
1 November 1985

B. CDI Requirements

None

C. Processino:

1. Close all ORACLE cursors and log off from ORACLE.

2. If the forms mode of input was used, use the FP
servioe TERMFP.

3. Issue a call to send a finish up message to the DRS
and to terminate NTM activities.

3.2.8 Individual Command Processing

The following subparagraphs outline the functional
requirements of each command making up the NDDL. Consult the

4: Table of Contents for a quick reference to a specific command.

3.2.8.1 ALTER ALIAS - Switch the primary and alias names of a
conceptual attribute or entity.

A. Function:

Alter Alias performs the following functions:

1. changes the primary name of an attribute or
entity to alias;

2. changes the alias name of an attribute or
entity to primary.

B. CDM Requirements:

1. The primary name of the attribute or entity

must exist in the current model.

2. The alias name of the attribute or entity must

exist in the current model.

C. Processing:

1. Alter Alias verifies that the primary and alias
names to be switched exist in the current
model.

3-13

DS 620141100
1 November 1985

2. If attribute names are being switched, the
primary and alias entries in the ATTRIBUTENAME
table are updated.

3. If entity names are being switched, the primary
and alias entries in the ENTITYNAME table are
updated.

3-14

DS 620141100
1 November 1985

CDm TABLES ACCESSED - ALTER ALIAS (S-SQL N-NDKL)

TABLE NAME SELECT MODIFY INSERT DELETE

ENTITYCLASS N(VERNME)

ENTITYNAME N(VERNJIE) S(UPDECAL)

ATTRIBUTECLASS N(VERNJ(A)

ATTRIBUTENAME N(VERNMA) S(UPDACAL)

3-15

DS 620141100
1 November 1985

3.2.8.2 ALTER ATTRIBUTE - Alter a Conceptual Attribute

A. Function:

Alter Attibute performs the following functions:

1. change a domain name for an attribute;

2. add keywords to an attribute;

3. drop keywords from an attribute.

B. CDM Requirements:

1. The attribute to be altered must exist in the

current model.

2. If the domain is to be modified, the new domain
must exist.

3. If a keyword is to be dropped, it must exist.

C. Processing:

1. Alter Attribute verifies that the attribute to be

altered exists.

2. If the domain is to be changed, the existence of
the new domain is verified and the ATTRIBUTECLASS
table is modified to contain the new domain number.

3. If a keyword is to be dropped, a check is performed
to verify that the keyword is assigned to the
attribute. If so, the keyword is deleted from the
ACKEYWORD table.

4. If a keyword is to be added to an attribute, the
keyword table is searched to determine whether the
keyword exists. If not, the new keyword is
inserted into the keyword table. The new keyword
is then inserted into the AC KEYWORD table, if it

did not already exists there.

3-16

nil

DS 620141100
1 November 1985

CDM TABLES ACCESSED -ALTER ATTRIBUTE (S-SQL.N-NDNL)

TABLE NAME SELECT MODIFY INSERT DELETE

AC KEYWORD N (ADDVA) S INSKWAC) S
(DELIVAC)
ATTRIBUTECLASS N (VERATT) S (UPDAC)
ATTRIBUTE NAME N (VERATT)
DOMAIN CLASS N (VERDOM)
KEYWORD N (VERKW) S (INSKW)

3-17

%',

DS 620141100
1 November 1985

3.2.8.3 ALTER DOMAIN - Alter the definition of a domain in the

CDM.

A. Function:

Alter Domain allows the NDDL user to perform the
following modifications to the definitions of existing
domains:

1. addition of non-standard data types;

2. deletion of non-standard data types;

3. changing the meta data description of existing data
types of the domain (i.e. changing the type, size
and number of decimal digits);

4. promoting a non-standard data type to standard,

converting the former standard to non-standard.

B. CDM Requirements:

The domain name referenced must be found in the CDM.
Any data types to be dropped or altered must already be
defined for the domain. Any data types to be added
must not already be defined anywhere else in the CDM.
There must always be a standard data type for the
domain, i.e. the current standard data type cannot be
dropped.

C. Processing:

1. The user entered domain name to be altered is
verified to be in the CDM. With this number, each
of the data type changes can be processed.

2. For each user data type request, determine if its
an ADD, DROP or ALTER.

2.1 For an ADD or ALTER, the legal data types are
checked. They must be SIGNED, UNSIGNED,
INTEGER, FLOAT, PACKED, or CHARACTER. The user
does not enter this for a DROP.

2.2 For an ADD and optionally for an ALTER, the
size and number of decimal digits are checked.
They must both be numeric and the decimal

3-18

L (11o

DS 620141100
1 November 1985

digits must not exceed the size. They are not
specified for a DROP.

2.3 If the user has requested to alter a data
type:

2.3.1 The data type is verified to exist for the
domain and be either standard or
non-standard. The user is warned if it
cannot be found. If It is a standard, only
type, size and number of decimals may be
changed.

2.3.2 For standard data type, or a change to only
the type, size and number of decimals, this
change is recorded in the USERDEFDATATYPE
table.

2.3.3 Otherwise, the user has requested a switch
from non-standard to standard. In this
case, the old standard data type name is
fetched and is changed to non-standard and
the name specified by the user is changed to
become the standard data type.

2.4 If the user has requested to drop a data type:

2.4.1 The data type name is verified to be in the
domain.

2.4.2 If the data type is found to be standard,
the user is informed that it cannot be
dropped.

2.4.3 If the data type is non-standard, then any
usage of this data type is checked.

2.4.3.1 The database is searched to find any
references by a data field.

2.4.3.2 The database is searched to find any
references by a data item.

2.4.3.3 The database is searched to find any
references by an attribute class. This is
probably unnecessary since it has been
checked to be non-standard in 2.4.2 and

3-19

DS 620141100
1 November 1985

only standards can map to attributes.

2.4.4 If it was not referenced elsewhere, data
type and its descriptinn text is deleted.

2.5 If the user has requested to add a data type:

2.5.1 For a standard data type, the database is
searched for an existing standard data type.
If one is not found:

2.5.1.1 The data type name is checked to see that
it was not used for some other domain. If
not,

2.5.1.2 The data type is checked to be valid by
using a database look up in the table
DATATYPE. If ok,

2.5.1.3 The data type information is stored in the
CDM table USER DEFDATA TYPE, with a
unique object number, as standard for this
domain.

2.5.2 For a non-standard data type, the data type

name is checked as in step 2.5.1.1.

2.5.2.1 The data type is checked as in 2.5.1.2.

2.5.2.2 The data type information is stored in the
CDM table USER DEF DATATYPE with a unique
object number as non-standard (or "USER")
for this domain.

3-20

DS 620141100

1 November 1985

CDM TABLES ACCESSED - ALTER DOMAIN (S-SQL N-NDML)

TABLE NAME SELECT MODIFY INSERT DELETE

ATTRIBUTECLASS N(VERACDT)

DATAFIELD N(VERDFDT)

DATAITEM N(VERDIDT)

DATATYPE N(VERTYP)

DOMAINCLASS N(VERDOM)

USERDEFDATATYPE S(UPDTDT) S(INSDT) S(DELDT)

USERDEFDATATYPE N(VERDT) S(UPDIND)

USERDEFDATATYPE N(VERDTD)

USER DEF DATA TYPE N(VERSDT)

3-21

'7

DS 620141100
1 November 1985

3.2.8.4 ALTER ENTITY - Alter a conceptual entity

A. Function:

Alter Entity performs the following functions:

1. add/drop key classes for the entity being altered;

2. add/drop owned attributes for the entity being
altered;

3. add/drop associated keywords for the entity class
being altered.

B. CDN Requirements:

1. The entity to be altered must exist in the current
model.

2. If owned attributes are to be added, the attribute
must exist in the current model. If owned
attributes are to be dropped, they must be owned by
the entity being altered.

3. If a key class is to be dropped, it must be a key
class for the entity being altered.

4. If a keyword is to be dropped, it must be
associated with the entity being altered.

C. Processing :

1. The Alter Entity process verifies that the entity
to be dropped exists in the current model. If it
does not exist, an error is issued and processing
is terminated.

2. If key classes are being added, a new occurrence of
key class is added to the entity. A new occurrence
of attribute use class is created for each
attribute named as part of the key, if one does not
exist for the entity. A new occurrence of key
class members is created for the entity for each
attribute named in the key class clause.

3. If owned attributes are being added for the entity,

3-22

DS 620141100
1 November 1985

the existence of the attribute class is determined
within the current model. If the attribute class
does not exist, an error is issued and processing
is terminated. If they do exist, each attribute
class is created as an owned attribute class and
attribute use class for the entity.

4. If a keyword is to be added to the entity class,
the keyword table is searched to determine whether
the keyword exists. If it does not exist, the new
keyword is inserted into the keyword table. The
new keyword is then associated with the entity
class.

5. If key classes are being dropped, the existence of
the key class for the entity being altered is
determined. If it does exist, the key class and
attributes inherited via the migrated keys and key
class members are dropped. If the key class being
dropped is from a complete relation, the complete
relation is also deleted.

6. If owned attributes are being dropped, Lhey are
verified to determine if they belong to the entity
being altered. If they belong to the entity, the
owned attribute class occurrence and the attribute
use class for each attribute named is deleted from
the entity being altered.

7. If keywords are to be dropped, a check is performed
to verify that the keyword is associated with the
entity being altered. If so, the keyword
association is deleted from the entity.

3-23

DS 620141100
1 November 1985

CDM TABLES ACCESSED -ALTER ENTITY (S=SQL,N=NDML)

TABLE NAME SELECT INSERT MODIFY DELETE

ATTRIBUTECLASS N(VERATT)

NATTRIBUTENAME N(VERATT)

ATTRIBUTEUSECLs N(DELOAC) S(INSAUC) S(DELAUCL)
N(CVERAUC)

COMPLETERELATION N(VERCRC) S(DELCMPR)

ECKEYWORD NCADDKWE) S(DELKWEC)

ENTITYCLASS N(VERENT)

ENTITYNAME N(VERENT)

INHERITEDATTUSE S(DELMIGK) S(DELIAUC)

KEYWORD N(VERKW) S(INSKW)

KEYCLASS N(VERKC) S(INSKC) S(DELKC)

KEYCLASSMEMBER N(DRPMGKM) S(INSKCH) S(DELKCM)

OWNEDATTRIBUTE N(DRPAC) S(INSOAC)

NC VEROAC)

3-24

DS 620141100
1 November 1985

3.2.8.5 ALTER MAP - Modify a CS-IS Mapping

A. Function:

Alter Map allows the user to perform the following
functions:

1. add a data field mapping to an attribute use class
(AUC) to data field map;

2. add a set mapping to an AUC to set map;

3. drop a data field mapping from an AUC to data field
map;

4. drop a set mapping from an AUC to set map;

5. change a secondary AUC to data field mapping to
primary and the previous primary mapping to
secondary;

6. change the data type name for an AUC to data field
mapping;

7. change the value in an AUC to set mapping;

8. add a set mapping to a relation class to set map;

9. drop a set mapping from a relation class to set
map.

B. CDH Requirements:

The map to be altered must exist in the CDM. In
addition, all database names, record names, data field
names, data type names, and set names referenced must
exist in the CDM.

C. Processing:

Different rules apply depending on the Alter Map option
chosen.

1. For an AUC to data field map, the following rules
apply:

1.1 ALTER ADD

3-25

DS 620141100
1 November 1985

1.1.1 The AUC must not have been previously mapped
to a set.

1.1.2 The AUC must not have been previously mapped
to a data field.

1.1.3 If no data type name is entered, the
standard data type for the AUC's domain is
used.

1.1.4 Only one primary mapping may exist for an
AUC.

1.1.5 Multiple secondary mappings may exist if
there is a pre-existing primary mapping.

1.1.6 If a primary or secondary mapping is not
specified, the default is secondary.

If all rules are obeyed, a
PROJECT DATAFIELD entity is inserted into
the CDM.

1.2 ALTER DROP

1.2.1 If secondary AUC to data field mappings
exist, a primary AUC to data field map
cannot be dropped.

If the above rule is obeyed, a
PROJECT DATAFIELD entity is deleted from
the CDM.

1.3 ALTER ALTER

No special validations are performed for the
ALTER ALTER option for AUC to data field
mappings. This option allows a secondary
mapping to be changed to primary and the
previous primary mapping to secondary. This
option also allows the data type name to be
changed. In both cases, PROJECTDATAFIELD
entities are modified.

2.0 For an AUC to set map, the following rules
apply:

3-26

DS 620141100
1 November 1985

2.1 ALTER ADD

2.1.1 A data field mapping must not exist for the
AUC.

2.1.2 The set to be mapped to must have a single
record type for its members.

2.1.3 The set to be sapped to must not have been
previously mapped from a relation class or
another AUC.

2.1.4 All AUC to set maps must map to the same
database for a particular AUC.

2.1.5 All AUC to set maps must contain a value
which must be unique for a particular AUC.

2.1.6 All sets mapped to from an AUC must have the
same reoord type as its owner.

If the above rules are obeyed, an
AUCSTMAPPING entity is created.

2.2 ALTER DROP

No special validations are performed for the
ALTER DROP option for an AUC to set mapping.
An AUCSTNAPPING entity is deleted.

2.3 ALTER ALTER

The AUC value must be unique for all mappings
from a particular AUC.

If the above rule is obeyed, an AUCSTMAPPING
entity is modified.

3.0 For a relation class to set mapping, the
following rules apply:

3.1

3.1.1 The set must not have been previously
mapped.

3-27

A9

DS 620141100
1 November 1985

3.1.2 The member record name must be specified if
the set being mapped to is a multi-member
set.

If the above rules are obeyed, an
RCBASEDRECSET entity is created.

3.2 ALTER DROP

No special validations are performed for the
ALTER DROP option for a relation class to set
mapping. An RCBASEDRECSET entity is
deleted.

3.3 ALTER ALTER

The ALTER ALTER option is invalid for relation
class to set maps.

3-28

DS 620141100
1 November 1985

CDI Tables Accessed -Alter Map

TABLE NAME SELECT MODIFY INSERT DELETE

ATTRIBUTECLASS N(FINDDOM)

ATTRIBUTEUSECL N(VERAUC)

AUCSTNAPPING N(FNDASA) S(ALTSNAP) S(INSAUCS) S(DELIASI)
N(VOMAPS)
N(VERASN)
N (FNDASM)
N (CHLTAUCV)

DATAEASE N(VERDB)
N (VERDF)

DATAFIELD N(VERDF)

ENTITYCLASS N(VEREIT)

ENTITYNAME N(VEREWT)

PROJECTDATAFIELD N(PDFSRCH) S(ALTSNAP) S(INSPDF) SCDELIPDF)
N(VERPDF)
N(GETMAPC)

RCEASEDRECSET N(VERRCBS) S(INSRCRS) S(DELIRCS)
N(VERRCMP)
N (FNDRCM)

RECORDSET N(VERSMS)
N(VOMAPS)

RECORDTYPE N(VERDF)

RELATIONCLASS N(VERRC)

SETTYPEMEMBER N(FND1ME4)

USERDEFDATATYPE N(VERSDT)

N(VERDTD)

3-29

DS 620141100
1 November 1985

3.2.8.6 ALTER MODEL - Creates a current model for a NDDL

session using modeling commands.

A. Function:

Alter Model performs the following functions:

1. updates the date of the model showing the model
change date;

2. creates a current model for a NDDL session;

3. changes the status of the model to *UNCHECKED".

B. CDM Requirements:

Alter Model requires that the model to altered

exists in the CDM.

C. Processing:

1. The Alter Model process verifies that the model
was created previously. If the model does not
exist, an error occurs and an error message is
issued.

2. The model being altered becomes the current
model for a NDDL modeling session with all
subsequent model processing identified with the
model. The CDM MODELCLASS table is updated

to show the system date as the date the model
was updated and changes the model status to
"UNCHECKED".

3-30

V1JA -kf-IA

DS 620141100
1 November 1985

CDM TABLES ACCESSED - ALTER MODEL (S-SQL,N-NDML)

NAME SELECT MODIFY INSERT DELETE

MODELCLASS VERMOD(NDML)

MODELCLASS UPDKOD

3-31

DS 620141100
1 November 1985

3.2.8.7 ALTER RELATION - Alter a conceptual relation class.

A. Function:

Alter Relation performs any or all of the following
functions:

1. change to cardinality of an existing relation
class;

2. migrate the key class of the independent entity to
the dependent entity, creating a complete relation
and inherited attribute use classes;

3. assign new tag names to the key class members
migrated to the dependent entity;

4. associate one or more keywords with the relation
class;

5. drop the key class from the relation and from the
dependent entity and all subsequent entities that
inherited the key class;

6. delete any empty key classes that results from
dropping a key class migration.

B. CDM Requirements:

1. Key class for independent entity must exist.

2. Key class members for independent entity must exist

3. An attribute use class for each key class member
must exist.

4. Relation class must exist.

5. Independent entity class must exist.

6. Dependent entity class must exist.

7. If a key class is to be migrated to the dependent
entity, the key class must not have been previously
migrated to the dependent entity.

8. If a key class is to be dropped from the dependent

3-32

DS 620141100

1 November 1985

entity and all subsequent entities, the key class

must have been previously migrated.

C. Processing:

Processing varies depending on the options chosen by
the user. If an error is detected, processing
continues with the next option on the command.

1. CARDINALITY

Any cardinalities specified replace the original
values established when the relation was created,
unless an error is detected, a warning message is
generated and the cardinality defaults to its
original value.

2. ADD MIGRATES

An attribute use class and an inherited attribute
use class for the dependent entity is created for
each key class member migrated to the dependent
entity class. If the set phrase is specified.
TAGNAME1 (the independent entity is tag name) is
migrated tc the dependent entity with the new name
TAGNAME2. A complete relation class occurrence is
created. If a keyword is specified, the keyword is
created in the CDM if it doesn't already exist and
a relation class keyword occurrence is created.

3. DROP MIGRATES

The complete relation occurrence for the relation
class is deleted. The attribute use class, and
inherited attribute use class originally created
for each key class member migrated to the dependent
entity class are deleted. In addition, the
attribute use classes and inherited attribute use
classes created for each key class member migrated
to lower level dependent entity classes are also
deleted. Then all key classes and complete
relations which become empty due to the deletion of
migrated key classes members, are deleted.
Finally, any text descriptions for empty key
classes are deleted. If keywords are specified,
the relation class keyword occurrence are also
deleted.

3-33

1114 111114

DS 620141100
1 November 1985

CDM TABLES ACCESSED -ALTER RELATION (S-SQL Nu.NDML)

TABLE NAME SELECT MODIFY INSERT DELETE

ATTRIBUTEUSECLs N(ADDMIG) S(INSAUC) S(DELAUCL)
N (VERAUC)

COMPLETERELATION N(VERRCC) S(INSCRC) S(DELCMPR)

DESCTEXT S(DELTEXT)

ENTITYCLASS S(DELMTKC)
N(VERENT)

INHERITEDATTUSE S(DLMIGRC) S(INSTAUC) S(DELIAUC)

KEYCLASS N(VERKC) S(DELKC)

SC DELMTK.C)

KEYCLASSMEMBER N(ADDMIG)
S(DRPMGRC) S(DELKCMT)
S(DELMXTC)

KEYWORD N(VERKW) S(INSKW)

RCKEYWORD N(ADDKWR) S(INSKWRC) S(DELKWRC)

RELATIONCLASS N(VERRC) S(UPDTRC)

3-34

DS 620141100
1 November 1985

3.2.8.8 CHECK MODEL - Determines if the model conforms to
specified IDEFI rule

A. Function:

The check model performs the following functions:

1. verifies that the model exists in the CD!;

2. verifies that the model has one or more
entities;

3. verifies that the entities have at least one
attribute;

4. verifies that the model follows the specified
N IDEFl rules (see rules under Processing);

5. updates the model in the 0DM to show that it is
a "checked" model and the date it was checked.

B. Requirements:

The check model process requires that the model

exist in the CDM. (See Rules under Processing).

C. Processing:

The check model process determines if the model
follows the following IDEF-l rules.

Rules:

1. no non-specific relations are allowed
(independent cardinality greater than one).

2. no incomplete relation classes, (key has not

been migrated).

3. each entity must have at least one attribute
use class.

4. each owned attribute class must have a domain
V and that domain must have a standard data type.

5. a key class must be defined for each entity
class.

-s-.. ~ .3-5.:

DS 620141100
1 November 1985

6. multiple key classes of an entity class must

not be subsets of one another.

7. no one to one relations.

8. no dependency loops e.g. A-,B-,C-,D-,B.

9. at least one entity must exist in the model.

The following rules cannot be checked for the model:

1. one to none or one relationships imply
identical keys.

2. key uniqueness throughout the model is not
checked, i.e. no two entity classes may have
the same key class unless they are related to
each other with a one or none or one relation.

The processing verifies the existence of the
model. The process then selects each entity
class belonging to the model and checks the
relation classes, key classes, and attributes.

Next the process checks the hierarchical
dependencies both up and down to determine if
there are any dependency loops within the
model.

If all rules have been followed the CDM
MODEL CLASS table is updated to reflect the
date and the model status of CHECKED.

3-36

* 9. -9 .01.9

DS 620141100

1 November 1985

CDM TABLES ACCESSED - CHECK MODEL (S-SQL.N-NDKL)

TABLE NAME SELECT MODIFY INSERT UPDATE

ATTRIBUTECLASS N(CHKATT)

ATTRIBUTEUSECL N(CHKATT)

ENTITYCLASS S(CHKLOOP)
N(GETECS)

ENTITYNAME N(RETRECP)
N (GETECS)

KEYCLASS S(CHKKEYS)

KEYCLASS_MEMBER S(CHKKEYS)

MODELCLASS S(CHKLOOP)

N(VERMOD)
UPDMOD

OWNEDATTRIBUTE S(CHKATT)

RELATIONCLASS N(CHKREL)
S(CHKLOOP)
S(TLOOPCK)
S(BLOOPCK)

3-37

DS 620141100
1 November 1985

3.2.8.9 COMBINE ENTITY - Combine two conceptual entities.

A. Function:

Combine Entity performs the following functions:

1. combine two entities that exist either within
the same model (intra-model) or between two
models (inter-model);

2. generate NDDL commands on a file to populate
the to-model entity with the attributes,
relations, aliases, keywords, keys, key class
members associated with the from-model entity.

B. CD! Requirements:

1. If the to-model is not specified, an inter-model
combine is assumed, and the to-model must exist in
the CDM.

2. If the to-model and from-model are specified, both

models must exist in the CDI.

3. The two entities to be combined must exist In the

model(s).

C. Processing:

1. If it is an intra-model combine, to-model defaults
to the from-model.

2. First, verify that the two entities to be combined
exist in the from-model and to-model. Processing
halts if any of the verification checks fail. The
NDDL commands to combine the from-entity and
to-entity are generated in a user defined file.
This file is created if it did not previously
exist, or opened and appended to if it did already
exist.

3. Now determine if a relation exists between the
to-entity and from-entity. If one does, generate a
command to drop this relation. Also, if it is an
intra model combine generate a command to delete
the from-entity.

3-38

DS 620141100
1 November 1985

4. The from-entities keys and key class members are
L uved in a temporary key list, in order to migrate
the keys via new relations that will be created
after the from-entity has been combined into the
to-entity.

5. Generate an *Alter entity and owned attributes..."
for all the attributes that belonged to the
from-entity. If the user specified that he wanted
keywords, aliases and/or descriptions, NDDL
commands are generated for the same. The
from-entity name is generated as an alias for the
to-entity.

6. Next, select all relations in the from-model where
the from-entity is the dependent entity in the
relation. If this from-independent entity(s)
exists in the to-model, generate Create relation
... migrates...commands for the same. The key
class that was inherited via this relation has to
be generated for the to-entity. Generate an Alter
Entity add key.. .for the inherited key class.

7. Next, select all the relations in the from-model
where the from-entity is the independent entity in
the relation. If this from-dependent entity exists
in the to-model, generate a create
relation.. .migrates... command using the information
stored earlier in the temporary key list.

8. Commands are also generated to associate keywords
and descriptions with the relation if any exist.
Finally, close the user defined file at the end of
processing.

--'W 3-39

Ot•dAI -.%6

DS 620141100
1 November 1985

CDI TABLES ACCESSED -COMBINE ENTITY (S-SQL, N-NDML)

TABLE NAME SELECT MODIFY INSERT DELETE

ACKEYWORD N (GENAKW)

*ATTRIBUTECLASS N(CMBOA)
N(VERATT)

ATTRIBUTENAME N(CMBOA)
N (VERATT)
N(CMBACAL)

ATTRIBUTEUSECL N(BLKCL1)
SC SELIAUC)

COMPLETERELATION N(VERRCC)

DESCTEXT N(GENDESC)

DOMAINCLASS N(CMBOA)

ECKEYWORD N(CMBECW)
N (VERKWE)

ENTITYCLASS N(CMBAJI)
N(VERENT)
N(BLKCL1)
S(SELIAUC)

ENTITYNAME N(VERENT)
NC SELECNM)
N(CMBALI)
N(VERALI)

INHERITEDATTUSE S(SELIAUC)

KEYCLASS N(BLKCLI)

-KEYCLASSMEMBER N(BLKCL1)

KEYWORD N(CMBRCW)
NC CMBEICW)
N(VERKWE)
N(VERXWR)
NC GENAJCW)

:3-40

DS 620141100
1 November 1985

CDM TABLES ACCESSED - COMBINE ENTITY (S-SQL, N-NDML)

TABLE NAME SELECT MODIFY INSERT DELETE

MODEL CLASS N(VERMOD)

OWNEDATTRIBUTE N(CMBOA)

RCKEYWORD N(CMBRKW)
N(VERKVR)

RELATIONCLASS N(DEPFROM)
N(INDFROM)
N (VERRC)
N(SELRCNM)

3-41

DS 620141100
1 November 1985

3.2.8.10 COMPARE MODEL - Compare two IDEFI models.

A. Function:

Compare model to see if their entity name, attribute
name, entity keywords, attribute keywords and relation
keywords match each other.

B. CDM Requirements:

The two models to be compared must exist.

C. Processing:

1. First, verify the existence of both models, if
either of these two models does not exist, flag a
user error; otherwise, do the following:

1.1 Compare entity classes based on identical
names.

1.2 Compare attribute classes based on identical
names.

1.3 Compare entity keywords to determine if
entities from both models use the same
keyword.

1.4 Compare attribute keywords in the same manner
as entities.

1.5 Compare relation class keywords.

2. For each successful comparison above, a message
will be printed out to indicate a match is found in
two models.

3-4

k% .-4Q

DS 620141100
1 November 1985

CDM TABLES ACCESSED -COMPARE MODEL (S-SQL, N=NDML)

TABLE NAME SELECT MODIFY INSERT DELETE

ACKEYWORD N(CRETACKV)

ATTRIBUTECLASS N(RETRAC1)

ATTRIBUTENAME N(RETRAC1)

-;ENTITYCLASS N(RETREC1)
N(VERENT)
NC RETECKW)
N(RECKW2)
NC RELKW)

ENTITYNAME N(RETRECI)
N(VERENT)
N(RETRECP)

KEYWORD NC RETRCKW)
NC RETECKW)
NC RETACKW)

MODELCLASS N(VERMOD)

RCKEYWORD N(RETRCKW)
N(RRCKW2)

RELATIONCLASS N(RETRCKW)
NCRRCKW2)
N(GETRCID)

3-43

DS 620141100
1 November 1985

3.2.8.11 COPY ATTRIBUTE - Copies an attribute and all
associated information from one model to another model
(inter-model) or within a model (intra-model).

A. Functions:

Copy Attribute performs the following functions:

1. verifies that the model specified exists;

2. copies an attribute within a model or to another
model;

3. verifies that the new attribute does not exist in
the current model;

4. when indicated, copies all description text,
aliases, and keywords related to the attribute;

5. optionally, places the created NDDL commands in a
file for later use;

6. optionally, interactively performs the intra-model

copy.

B. CDM Requirements:

The Copy Model process requires that the from-model and
the attribute exist in the CDM database.

C. Processing:

The following rules apply to the copy attribute
process:

INTER-MODEL Copy

1. The from-model must be specified and it must exist
in the CDM database.

2. The command must include the file clause that will
contain the generated NDDL commands.

INTRA-MODEL Copy

1. The second or new attribute clause must be
specified and must not exist in the current model.

3-44

DS 620141100
1 November 1985

2. The file clause maybe used.

General Rules

1. The except clause, when used, indicates what items
associated with the attribute are not be copied.
If the except clause is omitted all keyword,
aliases, and textual descriptions of the attribute
are copied.

2. The process verifies that the current model exists
in the CDM database. Additionally, the attribute
to be copied is verified and its domain returned.
If either attribute or model is not found, an
error message is issued and the processing
terminates.

3. The processing determines whether the copy is to
be interactive or a copy to a file. If the
process is interactive only, the intra-model copy
may be processed.

Interactive Process:

1. The interactive process verifies that the new or
second attribute does not exist in the current
model. If the attribute does not exist, the
process inserts the new or second attribute into
the ATTRIBUTECLASS and ATTRIBUTENAME CDM tables.

2. The following processing depends upon the use of
the except clause. Any entry in the except will
exclude that entry from processing. The copied
attribute aliases will be retrieved and copied to
the new attribute in the ATTRIBUTENAME CDM table.

3. The copied attributes keywords will be retrieved
and copied to the new attribute in the ACKEYWORD

tables.

4. The copied attributes textual descriptions will be
retrieved and copied to the new attribute in the
DESCTEXT table.

COPY TO FILE PROCESS

- 3-45

am~

DS 620141100
1 November 1985

1. The copy to a file process will write generated
NDDL commands to the file specified for either an
inter- or an intra-model attribute copy.

2. The process verifies for an intra-aodel copy, that
the new attribute does not exist in the current
model. NDDL commands to create the attribute are
generated and written to the user specified file
If the except keyword was not specified, the NDDL
create attribute keyword option is included if a
keyword exist for the copied attribute. If the
except description was not specified, describe
commands are generated and written to the file.
If the except alias was not specified, create
alias commands are generated and written to the
file.

3-46

I Ip 112 1J

DS 620141100
1 November 1985

CDM TABLES ACCESSED - COPY ATTRIBUTE (S=SQL, N=NDML)

TABLE NAME SELECT INSERT MODIFY DELETE

ACKEYWORD N(WRTACKW) S(INSKWAC)
N(GENAKW)

ATTRIBUTECLASS N(VERACNM)
N(VERATT)

ATTRIBUTENAME N(VERATT) S(INSACNM)
N(WRTALI)
N(VERACNM)
N(FCOPATT)

DESCTEXT N(GENDESC)

S(WRTDESC) S(WRTDESC)

DOMAINCLASS N(VERACNM)

KEYWORD N(GENAKW)

MODELCLASS N(VERMOD)

P 3-47

DS 620141100
1 November 1985

3.2.8.12 COPY DESCRIPTION - Copy CDM object descriptions.

A. Function:

This is a partial description copy. Only the

description lines of the identified description type of

the given object will be copied, rather than all
description types.

B. CDM Requirements:

The two objects identified must exist, and the

description type and the description of the object must

exist. If the DESC TEXT of the second object does not

exist, the DESCTEXT of the first object can be copied.

C. Processing:

1. Verify the existence of the model. If it does not

exist, flag a user error.

2. Verify the existence of description type. If it
does not exist, flag a user error.

3. Verify the existence of both models. If either of
these two models does not exist, flag a user error.

4. Verify the existence of description text of the
first object. If it does not exist, flag a user
error.

5. Verify the non-existence of description text of the
second object. If it does exist, flag a user error.

6. Finally, copy the description text of the first
object to the second object.

3-48

DS 620141100
1 November 1985

CDM TABLES ACCESSED - COPY DESCRIPTION S(S=SQL, N=NDML)

TABLE NAME SELECT MODIFY INSERT DELETE

ATTRIBUTECLASS N(VERATT)

DATABASE N(VERDB)

DATAFIELD N(VERDFLD)

DATAITEM N(VERDI)

DESCTEXT N(VERDSTX)
S(WRTDSC4) S(WRTDSC4)

DESCRIPTIONTYPE N(VERDSTP)

DOMAINCLASS N(VERDOM)

ENTITYCLASS N(VERENT)

KEYWORD N(VERKW)

MODELCLASS N(VERMOD)

RECORDSET N(VERRSET)

RECORDTYPE N(VERRT)

3-49

DS 620141100

1 November 1985

3.2.8.13 COPY ENTITY - Copy a conceptual entity class.

A. Function:

COPY ENTITY allows the NDDL user to perform the
following:

1. copy an entity class within the same model, giving
it a different name;

2. copy, at the User's discretion, the descriptions,
aliases, and keywords for the entity.

3. copy an entity from one model to another,
generating the NDDL commands that the user would
otherwise have to type in.

4. an intra-model copy entity will allow the user to
generate the NDDL commands to create copies of all
subordinate entity classes, using the existing
defintions in the original model.

5. an intra-model copy entity will alternatively allow

the user to generate the NDDL commands to create
copies of all associated relation classes of the
subject entity.

B. CDM Requirements:

The entity to be copied must previously exist in the
CDM. The entity copied to must not exist.

C. Processing:

1. Begin processing by determining if the copy is
inter- or intra-model. If a model name is
specified, assume intra-model without checking
against the current model. This will allow the
user to use COPY ENTITY to generate NDDL for the
current model. The from-model is verified. The
current model is assumed for the to-model. Also
the intra-model must specify a new entity name.
The from and to entity names are verified.
Finally, perform step 3, to perform the copy
directly if an intra-model copy was determined or
an inter-model copy without the selection of
STRUCTURE or RELATIONS. Else step 3 to generate

3-50

DS 620141100
1 November 1985

NDDL commands shall be performed.

2. For an internal copy entity, the database is
updated directly.

2.1 A new unique number is obtained and the entity
and its primary name stored. The 'TOO entity
name will be made primary.

2.2 If the user desired, all keywords for the old
entity are associated with the new entity.

2.3 If the user desired, all descriptions from the
old entity are copied to the new entity.

2.4 If the user desired, all aliases for the old
entity are copied.

2.5 If the copy entity was intra-model, no
attributes can be copied since they are
already owned (by the "FRON" entity). If not.
the attributes will be copied:

2.5.1 For each attribute owned by the OFRON
entity:

2.5.1.1 The attribute is checked in the "TO"
model. If not found, obtain a new number
and store the new attribute and its name
as primary.

2.5.1.2 If the user desired, all aliases for the
original attribute all copied .o the new
attribute.

2.5.1.3 If the user desired, all keywords for
the original attribute are copied to the
new attribute.

2.5.1.4 If the user desired, all descriptions for
the original attribute are copied to the
new attribute.

2.5.1.5 The newly created attribute can be stored
as owned attributes and attribute use
classes for the new entity

3-51

'Jill. 111%

DS 620141100
1 November 1985

2.5.1.6 All key classes for the "FROM* entity can
be copied to the new entity. The key
classes of the attribute being copied,
found in step 2.5.1, are stored in a
table. If not already in the table, a new
key class is established with the new
attribute as its key class member. If the
key class was on the list, a new key class
member is created for the new attribute
and the new key class previously created.

3. When generating NDDL to perform the COPY ENTITY,
determine if the user requested "WIT STRUCTURE" or
"WITH RELATIONS".

3.1 For COPY with STRUCTURE, generate the NDDL to
copy the entity itself (the top node). Then:

* 3.1.1 Generate the Create Attribute commands for
each attribute owned by the entity not
already found in the "TO" model. Finally,
generate NDDL to make the attribute owned by
the new entity. Attribute Descriptions are
"copied" by generating DESCRIBE commands and
attribute aliases are "copied" by generating
CREATE ALIAS commands. When copying aliases
the target model is checked to Insure the
name has not been used before.

3.1.2 If the user desired, keywords for the entity
are "copied" by adding a keyword clause to
the command.

3.1.3. If the user desired, aliases are copied for
the entity by generating CREATE ALIAS
commands.

3.1.4 If the user desired, all descriptions for
the entity are copied by generating DESCRIBE
commands.

3.1.5 The key classes for the top node of the
structure can be generated next. A search
of the key classes and members is made of
the original entity and stored in a
structure The original EDNO. KC NO,
KC MAKE. KCM TAG NO and KCM TAG NAME are

3-52

........ - - "

DS 620141100
1 November 1985

saved.

3.1.6 An Alter Entity command for the new top node
can now be generated which declares each of
the key classes and its members found in the
data structure stored in 3.1.5.

3.1.7 All other attributes associated with the
hierarchial structure of entities below the
original top node are "copied" through
generation of CREATE ATTRIBUTE commands as
described in 3.2.1. The search controlling
this generation makes use of a recursive
search of the CDI4's RELATIONCLASS table.

3.1.8 All other entities of the hierarchical
structure below the top node are "copied" by
generating the appropriate commands as was
done in step 3.1.2 through 3.1.6. A
recursive search similar to the one of step
3.1.7 is done. For each primary entity
name identified, its name and number are
stored in a table.

3.1.8.1 The owned attributes are determined and
associated with the new entity by
generating the -owns" clause.

3.1.8.2 If the user wishes keywords copied, the
"keyword" clause is also generated.

3.1.8.3 For the alias entity names found in the
search of 3.1.8 and if the user wishes
aliases copied, then CREATE ALIAS commands
for the new entity are generated.

3.1.8.4 Finally, if the user desires, all
descriptions for the new entity are copied
by generating DESCRIBE commands.

3.1.9 Now that all entities have been created, the
Relation Classes connecting the structure
can be generated. This must be done in a
top down manner, migrating key classes.
After all attributes are migrated into an
entity, an ALTER Entity can be generated to
create the new key classes in preparation

3-53

DS 620141100
1 November 1985

for key migration to the next level down.

3.1.9.1 A list of all key classes and their
members is created by using a recursive
search of the CDM Table RELATIONCLASS.

3.1.9.2 A search of the CDM is made for all
relation classes "below" the top node in
the original model. The results of this
search are sorted by level, relation class
number and dependent entity. Thus all
create RELATIONS for one level can be done
at a time, allowing only one ALTER ENTITY
per new entity and insuring that all
attributes are declared as key before
being migrated.

3.1.9.3 A search is made of the CDM's
COMPLETE RELATION table. The key
class nuiber, if found, is used to search
the table built in 3.1.9.1 and a MIGRATES
clause can be generated for the CREATE
RELATION command. The SET clause is
generated and for each attribute which is
in the key class, its original name
(independent) and new name (dependent) are
explicitly generated.

3.1.9.4 If the user desired, keywords for the
relation are "copied".

3.1.9.5 If the user desired, descriptions for the
relation are copied. Aliases for
relations are not supported by the CDM.

3.1.9.6 Finally, the ALTERENTITY is generated to
assign its key classes, like step 3.1.5
and 3.1.6.

3.2 For COPY with RELATIONS, the entity itself to
be copied is generated as was done in step
3.1.1 through 3.1.6.

3.2.1 The entities and the relations one level
below the entity being copied are also
generated as done in 3.2 above.

3-54

DS 620141100

1 November 1985

3.2.2 The key classes are generated for each

entity copied.

3.2.3 Similar to 3.2.1, entities and relations one

level above the entity being copied are also

generated as done in 3.2.

3-55

DS 620141100

1 November 1985

CDM TABLES ACCESSED - COPY ENTITY (S-SQL N-NDML)

TABLE NAME SELECT MODIFY INSERT DELETE

ACKEYWORD N(GENAKW)

ATTRIBUTECLASS N(VERATT)
ATTRIBUTECLASS N(CMBOA) S(INSAC)

ATTRIBUTE USE CL N(BLKCL1) S(INSAUC)

ATTRIBUTECLASS N(COPYAC)

ATTRIBUTEUSECL N(COPYAC)

ATTRIBUTECLASS S(DEPATT)

ATTRIBUTEUSECL S(DPKCLST)

ATTRIBUTECLASS N(GENOA)

ATTRIBUTE USE CL S(SELIAUC)
ATTRIBUTEUSE-CL N(SELIKEY)

ATTRIBUTE NAME N(CMBACAL)
ATTRIBUTE NAME N(CMBOA)
ATTRIBUTE-NAME S (DEPATT)
ATTRIBUTE-NAME N(GENOA)
ATTRIBUTE-NAME N(VERATT)

COMPLETERELATION N(VERRCC)

DESCTEXT N(GENDESC) S(WRTDESC)

DOMAIN-CLASS N(DMBOA)
DOMAINCLASS S(DEPATT)

EC KEYWORD N(CMBEKW)
EC-KEYWORD N (GENEKW)
EC-KEYWORD N(VERKWE)
EC KEYWORD N(WRTECKW)

ENTITY CLASS N(BLKCLI)
ENTITY-CLASS N(CHBALI)
ENTITY-CLASS N(COPYAC)
ENTITY-CLASS S(SELIAUC)

3- 56

DS 620141100
1 November 1985

CDM TABLES ACCESSED - COPY ENTITY (S-SQL N-NDML)

TABLE NAME SELECT MODIFY INSERT DELETE

ENTITYNAME N(CMBALI) (INSECNM)
ENTITY_NAME S(DEPENT)
ENTITYNAME N(SELECNM)
ENTITYNAME N(WRTENAM) S(INSKWEC)

INHERITED ATTUSE S(SELIAUC)
INHERITEDATTUSE N(SELIKEY)

KEY CLASS N(BLKCLI) S(INSKC)
KEY CLASS S(DPKCLST)
KEYCLASS N(KEYLOOC)

KEYCLASS MEMBER N(BLKCLI) S(INSKCM)
KEY CLASS MEMBER S(DPKCLST)
KEY CLASS -MEMBER N(KEYLOOK)
KEYCLASS-MEMBER N(SELIKEY)

KEYWORD N(CMBEKW)
KEYWORD N(CMBRKW)
KEYWORD N(GENEKW)
KEYWORD N(GENRKW)
KEYWORD N(VERKWE)
KEYWORD N(VERKWR)
KEYWORD N(GENAKW)

MODELCLASS N(VERMOD)

OWNEDATTRIBUTE N(CMBOA) S(INSOAC)
OWNED-ATTRIBUTE N(COPYAC)
OWNEDATTRIBUTE S(DEPATT)
OWNEDATTRIBUTE N(GENOA)

RCKEYWORD N(CMBRKW)
RC_KEYWORD N(VERKWR)

RELATION CLASS S(BLRCKWI)
RELATION CLASS S(DEPATT)
RELATIONCLASS S(DEPENT)
RELATION-CLASS N(DEPFROM)
RELATION-CLASS S(DEPREL)
RELATION-CLASS S(DPKCLST)
RELATION-CLASS N(INDFROM)
RELATION -CLASS N(VERRC)

b-57

DS 620141100
1 November 1985

3.2.8.14 COPY MODEL - Generate NDDL commands on a user defined

file to make a copy of an existing model.

A. Function:

Copy Model performs the following functions:

1. create a new model containing all the entities,
owned attributes, inherited attributes, key
classes, key class members, relations, complete
relations, aliases, keywords and descriptions of
the model being copied;

2. generate NDDL commands in a user defined file to
copy a model in proper sequence i.e. by level.

B. CDM Requirements:

1. The model to be copied must exist in the CDM.

2. The model to be copied into should not exist.

C. Processing:

1. If the model to copied (the from-model) is not
specified, the model name defaults to the current
model. The copy model command verifies that the
from-model exists, and that the new model to be
created (the to-model) does not exist. Processing
halts if any of the verification checks fail.

2. NDDL commands to copy the from-model are generated
on a user defined file. If the named file does not
exist, a new file is created and opened. If the
file does exist, the generated commands are
appended to the file.

3. First. create all the attributes contained in the
from-model, along with their associated keywords,
aliases and description text.

4. Then, create all the entity classes contained in
the from-model along with associated owned
attributes, keywords, aliases, and description
text.

5. Build a temporary key list to store all the key

3-58

DS 620141100
1 November 1985

classes and key class members for each entity.
This list will be used later to define the key for
the entity after all the migrations have been
determined for this entity.

6. The ORACLE tree search feature is used to identify
inheritance at all lower levels, after the top node
is identified. The model being copied must not
contain any dependancy loops. Generate an Alter
Entity add key... command for the top node in this
model's tree structure.

7. Another temporary list is built to store all the
key classes of the dependent entity which contain
attributes inherited via the relation for each
level of relations in the from-model. Both these
lists are used to generate NDDL statements
necessary to create the relations. For each level,
migrate the keys, and add keys for each dependant
entity in the from-model. NDDL commands are also
generated for keywords and descriptions associated
with the relation classes.

8. Finally, the user defined file is closed.

3-59

DS 620141100
1 November 1985

CDM TABLES ACCESSED -COPY MODEL (s=SQL, N-NDML)

TABLE NAME SELECT MODIFY INSERT DELETE

AC-KEYWORD N(GENAXW)

ATTRIBUTECLASS N(GENOA)
S (ALLATT)

ATTRIBUTENAME N(GENOA)
S (ALLATT)

ATTRIBUTEUSECL N(BLKCLST)
N (SELl KEY)

COMPLETERELATION N(VERRCC)

DESCTEXT N(GENDESC)

DOMAINCLASS S(ALLATT)

ECKEYWORD N(GENEXW)

ENTITYCLASS N(BLKCLST)
Sc ALLENT)
S(TOPNODE)
Sc ALLREL)
Sc BLRCKC)
SC SELIAUC)

ENTITYNAME S(ALLENT)

INHERITEDAT?_USE N(SELIKEY)
SC SELIAUC)

KEYCLASS N(BLKCLST)

-KEYCLASSMEMBER N(BLKCLST)
N(SELIKEY)

KEYWORD N(GENAKW)
N(GENEKW)
N(GENRKW)

MODELCLASS S(TOPNODE)

3-60

DS 620141100
1 November 1985

CDM TABLES ACCESSED - COPY MODEL (S-SQL, N-NDML)

TABLE NAME SELECT MODIFY INSERT DELETE

S(ALLREL)
S (BLRCKC)

OWNEDATTRIBUTE N(GENOA)

RCKEYWORD N(GENRKW)

RELATIONCLASS S(TOPNODE)
S(ALLREL)
S (BLRCKC)

3-61

DS 620141100
1 November 1985

3.2.8.15 CREATE ALIAS - Create an alias for an entity or

attribute

A. Function:

Create Alias performs the following function:

1. allows the user to add a secondary name. or alias,
for any attribute or entity of the current model.

B. CDM Requirements:

The entity or attribute named in the command must exist
in the user's current model.

C. Processing:

1. CREATE ALIAS shall access the object type from the
user command. It must be either ATTRIBUTE or
ENTITY. The command processor must then access the
user entered identifier for the entity attribute
and verify its presence with a database lookup.
The potential new alias name is also verified to
make sure It has not already been used. Finally.
having the entity attribute number from the first
verification, the new alias name can be Inserted.

3-62

or e

DS 620141100
1 November 1985

CDM TABLES ACCESSED - CREATE ALIAS (S=SQL,N-NDML)

TABLE NAME SELECT MODIFY INSERT DELETE

ATTRIBUTE_CLASS N(VERATT)

ATTRIBUTENAME N(VERATT) S(INSACNM)

ENTITY_CLASS N(VERENT)

ENTITYNAME N(VERENT) S(INSECNM)

tw

.,1o

'

,.0

s3-63

DS 620141100
1 November 1985

3.2.8.16 CREATE ATTRIBUTE - Create a conceptual attribute

A. Function:

Create Attribute performs the following functions:

1. create an attribute for a model;

2. assign a domain for the attribute;

3. add keywords to an attribute.

B. CDM Requirements:

A current model must be established.

C. Processing:

1. If a domain is specified, the Create Attribute
C- command verifies the existence of the domain to

which the attribute is being assigned. If the
domain is not specified, the domain will default to
zero or undefined.

_. 2. Next, a check is performed to verify that the
4attribute does not previously exist in the model.

Then the attribute is inserted into the
ATTRIBUTE CLASS and ATTRIBUTE NAME tables. This
attribute is created as the Primary attribute.

3. If keywords are to be added to the attribute,
verify that the keyword has not previously been
assigned to the attribute. Keyword references are
then created for the attribute by inserting into
the AC KEYWORD table. Also, the keyword will be
inserted into the KEYWORD table if it did not
previously exist.

4. Processing halts if any of the verification checks
fail.

3-64

4.~~~ ~~ S.*q%~ cJ&:K '~~

DS 620141100
1 November 1965

CDM TABLES ACCESSED - CREATE ATTRIBUTE (S-SQL. X-NDIEL)

TABLE NAME SELECT MODIFY INSERT DELETE

ACKEYWORD N (ADDEVA) B (I ESEWAC)

ATTRIBUTECLASS N(VERATT) S(INSAC)

ATTRIBUTENAME N(VERATT) S(INSAGEN)

DOMAINCLASS N(VERDOM)

ECKEYWORD N(ADDKWE) S(INSKVEC)

KEYWORD N(VERKW) 5(135KW)

RCKEYWORD N(ADDKWR) S(INSKVRC)

DS 620141100
1 November 1985

3.2.8.17 CUACT DOMAIN - Create & domain

A Function

Create Domain performs the following functions:

4I I adds a new domain to the system.

2 associates & standard data type with the new
domain.

3 associates optional user-defined data types with
the mew domain

a CON Hequirements

1 The domain must not previously exist in the system

2 The standard data type for the new domain must be

specified in the first data type clause

3 Additional data types may be specified In
sabsequimt data type clauses These data-types are
considered user-efiaed data types for the new
domain

C Processiml

I Create Domain verifies that the domain to be added
does not exist in the system Then the now domain
is inserted into the DOMAIN CLASS table

2 The data type specified for the stadard or
user defined DATA TYPE SAME is verified as a legal
data type and the number of decimals if

4 specified must not exceed the maximum field length
of DATA TYPE NANE The DATA TYPE MANE is then

- Inserted into USER Dr DATA TYPE tables as a
stansdard or user defined data type for the new
doma a n

3 at~

1. I]:.

DS 620141100
1 November 1985

CDI TABLES ACCESSED CREATE DOMAIN (S-SQLN-NDML)

TABLE NAKE SELECT MODIFY INSERT DELETE

DOMAINCLASS N(VERDOM) S(INSDOM)

USERDEFDATATYPE N(VERSDT) S(INSDT)
N (VERDT)
N(VERDTD)

DATATYPE N(VERTYP)

3 -67

DS 620141100
I November 1985

3.2.8.18 CREATE ENTITY - Create a Conceptual Entity Class

A. Function:

CREATE ENTITY will allow the NDDL user to perform the
following functions:

1. create a new entity class for the current model;

2. associate attributes as owned attributes for this
entity;

3. define key classes of the owned attributes only,
(unowned attributes must be migrated to the entity
by use of -he CREATE or ALTER RELATION commands;

4. associate keywords with the entity.

B. CDM Requirements:

The entity being created must not previously be found
in the current model. Any attribute referenced must
already be defined for the current model and must not
be previously owned by any entity.

C. Processing:

1. First the entity itself is created. The name Is
accessed from the command and database lookup
verifies that it is not already present. If not
found, the entity class is assigned a unique number
and stored bnd the user entered name is stored as
the entity's primary or preferred name. not an
alias.

2. Any user specified attributes are then processed.
Each attribute name must be found in the current
model and also verified not to be owned by any
other entity in the model. If these conditions are
met. the attribute can be associated with the
entity by storing an occurrence of OVNED ATTRIBUTE
Finally. a unique tag number Is obtained, and the
attribute is also stored as an ATTRIBUTEUSE CLASS
of this entity.

3. When the user has specified any key classes to be
defined for this entity. the user may omit the

3-68

- -h i- -l i ., +

DS 620141100
1 November 1968

attribute names for the hey class. Therefore. the
key class name may be taken a the attribute &ame
If none follows the - sign. For each key class
specified the program must:

3.1 Verify the key class name was not used for
this entity.

3.2 Obtain & unique number for the key class.

3.3 Store a key class occurrence for the entity
first created.

3.4 Process each attribute name specified for the
current key clas.

3.4.1 Determine If the attribute has already been
associated with the entity as a ATrIMUU
989 CLASS.

3.4.2 If It bd not. a attempt is made to make
the attribute owned by the entity as
specifiee in step a above.

3.4.3 Finally. am occurrence of M..l CAS HU
can be stored

4 Finally, any keywords specified by the user can be
related to the entity first created For each
keyword entered.

4 1 The keyword is verified In the table of
keywords (Independent of model)

4 2 If the keyword Is new, then a unique number
for the keyword is obtained ad a keyword
occurrence Is stored

4 3 Finall1y, the keyword to entity cross reference
s (CC KZYWORD) stored, relating the keyword

to the entity just created

3 60

VIS 620141100
1 November 1985

0DH TABLES ACCESSED -CREIATE ENTITY (S-SQL. 3-3DB!)

TABLE SAKE SELECT nwOD! TI INSRT DELETE

ATTRI3UT _CILASS N(VZUAT!')

ArRISWT IIANZ ECYSRAYT)

ATTUIDUTE USX CL N(VECRAUC) S(INSAUC)

EC KEYWORD P(ADDVW) 5(inSEwEtC)

ENTITY CLASS N(VERENTC) S(INSE1C)

ENTITy NAME N(VERSN) 5(issiEcN)

KEYWORD n(VRKV) 5(135KV)

KEY CLASS w(VZREC) s(insa(.)

*KEY CLASS NEN3E3 s(I1hKM)

OWNED ATTRIBUTE N(VENODAC) S(ZNSOAC)

3~ 70(

DS 620141100
1 November 1985

3.2.8.19 CREATE NAP - Create CS-IS mapping

A. Function:

The CREATE AP command allows the user to map an
attribute use class (AUC) to a data field or set, or
from a RELATIONCLASS to a set.

B. CDK Requirements:

The AUC or the relation class from which you map and
any or all of the following which are to be mapped to:
the database, record name. data field name, data type
name. set name and member record name; must all exist
in the CDN,

C Processin/g

Processing differs depending on the type of mapping
attempted

I For an AUC-to-data field mapping, the following
rules apply:

1 1 The AUC must not have previously been mapped
to a set

1 2 The AUC must not have previously been mapped

to a data field

1 3 If a data type name is not entered, the
Sstandard data type for the AUC's domain is
used

1 4 Only one primary mapping may exist for an AUC

I % Multiple secondary mappings may exist if there
Is a pro existing primary mapping

I U6 If the primary or secondary apping is not
specified, the default is primary

If all rules are obeyed. a PROJECT DATA FIELD
entity is inserted into the CGD

2 For an AUC to set mapping. the following ruleL

apply

3 71

DS 620141100

1 November 1985

2.1 A data field map must not exist for the AUC.

2.2 The set to be mapped to must have a single
record type for its members.

2.3 The set to be msapped to must not previously
have been apped from a relation class or
another AUC.

2.4 All AUC to set maps must map to the same
database for a particular AUC.

2.5 All AUC to set maps must contain a value which
must be unique for a particular AUC.

2.6 All msapped to sets from a AUC must have the
same record type as its owner.

If all rules are obeyed, an AUCSTNAPPING entity
is inserted into the CDh.

3. For a relation-class-to-set-mapping, the following

rules apply:

3.1 There must be no previous mappings to the set.

3.2 The member record name is required if the set
mapped to contains member records of more than
one type.

If all rules are obeyed. an RCBASEDRECSET entity
is inserted into the CDH.

4. A relation class to data field mapping is
meaningless and therefore Illegal.

3 72

DS 620141100
1 November 1985

CDX TABLES ACCESSED - CREATE NAP (S-SQL. N-NDKL)

TABLE MAKE SELECT MODIFY INSERT DELETE

ATTRIBUTE CLASS N(FINDDOM)

ATTRIBUTEUSECLa N(VERAUC)

AUCSTNAPPING N(VOKAPS) S(INSAUCS)
* N(FNDASA)

N(VERASM)

DATABASE NC VERDS)
N(VERDI)

DATAFIELD NC VERDI)

ENTITYCLASS N(VERENT)

PROJECTDATAFIELD N(PDFSRCH) S(INSPDF)
NC VERPDF)

RC_1BASEDRECSET N(VERRCBS) S(INSRCRS)
N(VERRCNP)

RECORDSET N(VOKAPS)
NC VERSHS)

RECORDTYPE NC VERDF)

RELATION-CLASS N(VERRC)

SETTYPEMEMBER N(FND1NEN)

USER DEFDATA TYPE N(VERSDT)

N(VERDTD

)

3
7

DS 620141100
1 November 1985

3.2.8.20 CREATE MODEL - Create a new IDEFI model.

A. Function:

A new model is created as unchecked in the system.

B. CDI Requirements:

The model to be created must exist in the CDI.

C. Processing:

1. First, verify whether the model to be created
exists in the system. If it does, flag an error;
otherwise, obtain a model number for the model
name.

2. Store the model number, model name into the CDII.

37

iV.

"V 3- 74

n i I I * i * " i 1 " "l i "" " I' ' € , ':-,' -o:. :":, --" ' - -*--..

DS 620141100
1 November 1985

CDN TABLES ACCESSED - CREATE MODEL (S-SQL. N-NDML)

TABLE NAME SELECT MODIFY INSERT DELETE

MODELCLASS N(VERMOD) S(INSMOD)

~I37

'3 75

- ' ' | ' " " ,- ¢' ",, i-, , ' ,! e ! '*

DS d20141100
I November 1985

3.2.8.21 CREATE RELATION - Create a relation class

A. Function:

Create Relation performs the following functions:

1. create a relation class for user entered
independent and dependent entity classes;

2. create associated keywords for the relation class;

3. migrate a key class from the independent entity
class to the dependent entity class.

B. CDM Requirements:

The independent and dependent entity class must exist
win the current model. If the migrates clause is

present, the key class for the independent entity mustexist in the current model.

C. Processing:

1. The Create Relation process verifies that both the
independent and dependent entity class exist in the
current model. If both do not exist, an error is
issued and processing is terminated. A check is
made to determine if the relation class to be
created already exists between the user entered
entity classes. If one does exist, as above, an
error is issued and processing is terminated.

2. Next, the process validates the cardinality of the
relation class to be created. If a cardinality is
omitted by the user, the relation is assigned a
default value. The default for the independent
cardinality is a value of one. The default for the
dependent cardinality is a value of zero for the
left dependent cardinality and a value of 99 for
the right dependent cardinality.

3. If the migrates clause is entered, the existence of
the key class for the independent entity is
determined. If the key class does not exist, an
error is issued and processing is terminated. An
attribute use class and an inherited attribute use
class for the dependent entity class is created for

-76

DS 620141100
1 November 1985

each key class member of the independent entity
class migrated to the dependent entity class. If
the set phrase is specified. TAG_-NANE2 (the
independent entities tag name) is migrated with the
new name of TAGNAMEl.

4. If a keyword is to be added to the relation class.
the keyword table is searched to determine whether
the keyword exists. If it does not exist. the new
keyword is inserted into the keyword table. The
new keyword is then associated with the relation
class.

b-Riot 953 INTEGRATED INFORMATION SUPPORT SYSTEM (1155) VOLUME 5 2/2
COMMON DATA MODEL S (U) GENERAL ELECTRIC CO
SCHENECTADY NY PRODUCTION RESOURCES CONSU

UNCLASSIFIED J L ALTHOFF ET AL Bi NOV 85 DS-629i41198 F/G 12/5 Nt

Eh00E00E01h01E
EhhhEEmhohhhhE
E0E00E00010h0E
E00000001101EE

LIs
1615 L6

D@ 680141 100
1 Nlovember 195

CM YANLS CSSE8 GWA?3 IATIOM (as - . U-m3lL)

£IR IUBUTS anE CL a(VIh) S(I3SAO)
N(ADMII)

OUPLET! SELATION *(VCCV) g(INsc~k)

INNESITED AT! S SC9 BINJADC)

KEY CLASS NC VERC)

KEY CLASS WMSS N(AWUEIG)

KZTVOBD Mss"35V

ac KxEYO3D U CAEGV) S (I NIX WX

RXLATION CLASS N(VERNC) S(INsac)

3 78

DS 620141100
1 November 1985

3.2.8.a2 CATIR VIEW - Create an external schema view and

mappings to the conceptual schema.

A. Function:

Create a view of the entity class and relation class
existing in the conceptual schema of the Common Data
Model.

B. CON Requirements:

The following elements must exist in the CDH:

I. independent entities specified;

2. dependent entities specified;

3. relation classes named;

4. entity classes of the view;

5. data items defined and attribute use class of the
entities must be from the same domain.

C. Processing:

1. Verify if the view to be created already exists. If
it does, flag a user error.

2. Obtain a unique number for the view to be created.

3. Insert the view name and view number into the CDH.

4. Construct an in-code tables from the user
information in the create view command syntax.

5. Examine the from in-code table, if empty, indicates
only one entity class selected. Fill in with the
first entity name from the select clause. If an *
was entered in the select clause, its an error
since there is no way of knowing what the entity
class should be.

6. If only one entity class has been entered in the
select clause, the following functions must be
performed:

3-79

DS 620141100
1 November 1965

6.1 Verify entity.

6.2 Verify that data Items ad tags are from the
same domIa class.

6.3 Insert view number ad tag name into DATAITEM
ad PROEUCT DATAITEM, if the data Ite" list
Is blak.

7. If multiple entity class is In the select clause,
the following funactions must be performed.

7.1 Expand abbreviations to entity class names In
select and where clauses.

7.2 Verify each rela~tion In the where clause.

7.3 Verify entity and domain.

7.4 Store SECEC.

3-80

DS 620141100
1 November 1965

CVW TABLES ACCESSED -CREATE VIEW (B-SQL. N=-EML)

TABLE MAKE SELECT MoD! FT INSERT DELETE

ATTIUTE-CLASS N(ALLVIEV)
N(GETDON)

ATTRIBUTE USE CL N(ALLVXEV)
S(GETDOW)

DATAITEM S(INSDI)

ENTITYCLASS N(VERENT)

PROJECTDATAITEM S(IVSPDl)

RELATIONCLASS N(VERRC)

SEC N(VERVIEW) S(INSSEC)

SECRCCOMPONENT S(INSSECR)

USERDEFDATATYPE N(VERSDYT)
N(VERDTD)

3-81

Rod&~ '

D8 WOl41 100
I November 1965

3.2-..2 DUWINZ DATANASE - Describe the definition of &
databas, to the CDH internal schem.

A. Function:

The commaad defines & database to the CDH.

S. CDK Requiremients:

The database to be defined must not exist in the CDK.

C. Processial:

1. Verify the existence of the database to be defined
if it exists flag & user error.

2. Obtain & unique number for the database.

3. Insert the database entity occurrence.

4. If DBMS is ORACL:

4.1 Insert the password entity occurrence of the
database.

5. If DBMS is TOTAL:

5.1 Verify the existence of the area of the
database. If It already exists, flag a user
error.

5.2 Insert the area entity occurrence of the
database ina the CDH.

G. If the DBMS Is INS:

6.1 Check if the start position and feedback
length are provided in the command.

6.2 If they are not in the commd, flag a user
error.

6.3 Verify the existence of the PSE of the INS
database. If it already exists, flag a user
error; otherwise, insert the PSB entity
occurrence and the PCB entity occurrence.

3-82

DS 620141100
1 November 1985

7. Ift~l is CODASYL:

7.1 Insert the sclhema occurrence of the (X)DASYh
database.-

7.2 Verify the existence of the &rea of the
CODASYL database. If It already exists, flag
& user error. Otherwise, Insert the area
occur rence.

3-83

DS 620141100
1 November 1985

=MK TABLES ACCESSED -DEFINE DATABASE (S-SQL,N'.NDML)

TABLE MAKE SELECT MODIFY INSERT DELETE

DBPASSWORD Sc INSPVRD)

DATABASE N(VERDBJ) S(INSDB)

DATABASEAREA N(VERAREA) S(INSAREA)

PSB N(VERPSB) S(INSPSB)

PSB-PC S(INSPCB)

REUSABLENUMBER S(NRGET)

SCHEMANAMES S(INSSDT)

3-84

DS 620141100
1 November 1985

3.2.8.24 DEFINE RECORD - Creates a Record Type/Table/Segment

for a previously defined database/PCB

A. Function:

Define Record performs the following functions:

1. verifies that the database exists;

2. verifies that the record has not previously been
defined;

3. inserts the record into the CDX database;

4. if the database is CODASYL, the process verifies
that the database area already exists and inserts
the record into the CDH database area of
assignment;

5. if the DBMS is INS, the process inserts the
INSSEGMENTSIZE and the SEGMENTDATAFIELD;

6. if the DBMS is CODASYL or TOTAL, the command

inserts the record key and the record key members.

B. CDX Requirements:

This process requires a previously defined database.

C. Processing:

1. Define Record/Table/Segment verifies that the
database exists in the CDM and that *he record has
not been previously defined for that database. If
the database exists and the record has not been
defined, the record is inserted in the CDX
database.

2. CODASYL DBMS - The process verifies the database
area for the database and then inserts the record
into the CDX DB area assignment.

3. INS DBMS - The process inserts the record segment
size in the CDM INS-Segment size table.

4. ALL DBMS - The process inserts each specified data

3-85

DS 620141100
1 November 1985

field for the record into the CD data field table.
Additionally, for INS DBMS the data field inserted
in the CDI Segment data field.

5. TOTAL ff CODASYL DBMS - If record key information
has been specified, the process verifies that the
record key has not been previously defined.

6. If not, a - key is created for the newly defined
record. A check is made to verify that each data
field mentioned as a key member has been defined as
a data field for this record. Each data field is
then created an a record key member.

3-86

DS 620141100
1 November 1985

CDM TABLES ACCESSED -DEFINE RECORD (S-SQL, I-NDKL)

TABLE NAME SELECT INSERT MODIFY DELETE

DATAEASE N(VERDBAS)

DATABASEAREA N(VERAREA) S(INSDAA)

DATAFIELD S(INSDFLD)

IMSSEGMENTSIZE S(INSISS)

RECORDKEY N(VERRC)

RECORDKEY S(INSEICEY)

RECORDKEYMEMBER N(VERRKM) S(INSRKM)

RECORDTYPE NC VERET) S(CINSRTYP)

SEGMENTDATAFIELD S(INSSDFL)

3-87

DS 620141100
1 November 1985

3.2.8.25 DEFINE SET - define or internal set/path for CODASYL,

TOTAL and INS DBNS's

A. Function:

Define set performs the following functions:

1. create a set/path for a CODASTL (VAX-Il, IDKS,
IDS). INS or TOTAL DBNS;

2. allow a set between owner and multiple members for
CODASTL. but only single member for other DBNS.

B. CDM Requirements:

The database must be established during the session.
The owner and member record types must exist. If
creating a set for a TOTAL DBNS, the data field from
the variable record must exist.

C. Processing:

1. Define Set verifies the existence of the
database/PCB in which the set is to be created. If
the database is not specified, it defaults to the
database established during the current session.

2. Next, a check is performed to verify that the set
to be created does not exist. For an INS database,
the path name is derived by combining the owner
record and member record names.

3. For a TOTAL or INS database, verify that the owner
and member records have previously been defined.
In addition, verify that the data field of the
variable (member) record to which the set is to be
linked, has also been defined. The set information
is then inserted into the DF SET LINKAGE,
SETTYPEMEMBER and RECORD-SET tables.

4. For a CODASYL DBMS multiple members are allowed.
Verify that the owner record and member record(s)
have been previously defined. A required/optional
entry must be specified for the member record
types. The set information is then inserted into
the SETTYPEMEMBER and RECORDSET tables.

3-88

S

DS 620141100
1 November 1985

5. Processing halts if any of the verification checks
fail.

3-89

~N N N

Da 620141100
1 November 19SB

CDM TABLES ACCESSED - DEFINE SET (SSQ. .3M)

TABLE NAME SELECT MODIFY imsUlT DE3TK

DATAEASE N(VERDBAS)

DATAFIELD N(VERDFLD)

DFSETLINKAGE 5(135DB!)

RECORDSET 3(VERRSET) S(IN~sET)

RECORDTYPE N(VER)

SETTYPENENBER 8(1385T)

3-90

Do 620141100X
I Movb r 191S

3 2 4 2 N!*1 Describe Ob~jects

A rust aon

Th DRUMMI oimM &lims descrIption text of the
following object types to be enter. oati or
do Iet"e IM object %Tpe are

I Database

a set

3 Rcord

4 DaLa field

5 Domain

6 user 4ata, type

7 Vie

* Dta D t.

9 Keyword

10 antity

11 Attribute

12 Relatiom

a can So" I rosmats

The object to be described must exist in the CKM

C Proces a

i 'The user entered description ty" is val jated
• ainst the description type tklv mailntained by

" the C= admaistrstor

'The obJeWt L eXistence IS vlidAted

3 Trhe d..cription text OrIginAtVL from thret ,oUff-V-

& text file from the -admbsnd line or from the
L" U1 U Screen diltor If the tout originated from

DS 630141 100
I November 1965

& text file Wed if the file comamies d"t. only
pe-existiag deaoriptiom text of the proper type is
deleted prior to the insertion of the mw text. If
the file ooataias so data. the description text is
not deleted ad an error messe is Cmerated. If
the text originates from ths commoad line, the old
descriptiom text. if aay. is deleted prior to the
insertion of new text. if ay. Terefore. to
delete old desoriptiem text. the user mat describe
the object with & mull deacriptiou on the commad

4 It the description text is to come from the UI/UTI
Screen Witor. pre-existing description text if
amy. is extracted from the database and written to
a file

5 The UI/UTI Screen ditor is called to edit the
file If changes are made. the old description text
is replaced by the text output from the editor. If
no editing oaages were made. the dtbase is not
mod) f Led

3-92

i ~~ ~ ~ ~ ~ ~ ~ ~ O &A I &":: u:l /'' 1:"" '" " t, """ .6,"

DS 620141100
1 November 1985

CDK TABLES ACCESSED -DESCRIBE CS-SQL, N-NDML)

TA BLE NAKE SELECT MODIFY INSERT DELETE

ATTRIBUTECLASS N(VERATT)

ATTRIBUTENAME NC VERATT)

DATABASE NCVERDB)

DATAFIELD N(VERDFLD)

DATAITEM NC VERDI)

DESCTEXT N(OUTDE$C) s(RDDESC, S(DELTXT)
F ILEINS)
S(RDDESC,

'I STRINS)

DOMAIN CLASS NC VERDOM)

ENTITY-CLASS NC YEMENT)

ENTITYNAME N(VERENT)

KEYWORD N(CVERJCV)

RECORDSET NC VERRSET)

RECORDTYPE N(VERRT)

RELATIONCLASS N(VERRC)

SEC NCVERVIEW)

USERDEFDATATYPE N(VERTJDTN)

3-93

-ofS4.w'-

DS 620141100

1 November 1985

3.2.8.27 DROP ALIAS - Deletes an alias established for an

attribute or entity name.

A. Function:

Drop Alias performs the following functions:

1. verifies whether the alias is for an attribute or
entity;

2. verifies that the alias exists for the attribute or
entity for a specified model;

3. deletes the Alias for the attribute or entity.

B. CD Requirements:

Drop Alias requires the presence of an Alias for the
attribute or entity.

C. Processing:

1. The DROP ALIAS process will determine whether the
alias is of an attribute or entity and verify if
the attribute or entity exists for the specified
model.

2. The process will then verify the Alias name and
delete the alias for the attribute/entity from the
CDM Entity or Attribute name table.

I

DS 620141100
1 November 1985

CDE TABLES ACCESSED - DROP ALIAS (S-SQL, N-NDOIL)

TABLE NAME SELECT MODIFY INSERT DELETE

ATTRIBUTECLASS N(VERATT)

ATTRIBUTENAME N(VERATT) S(DELACAL)
N(GETACAL) S(DLECAL)

ENTITYCLASS N(VERENT)

ENTITY-NAME N(VERENT)

N GETECAL)

3-95

DS 620141100
1 November 1985

3.2.8.28 DROP ATTRIBUTE - Drop a Conceptual Attribute

A. Function:

Drop Attribute deletes one or more user specified
attributes from the CZD.

U. CD Requirements:

The attribute(s) to be dropped must exist in the
current model.

C. Processing:

1. DRPATT. after verifying that the attribute exists.
determines whether the attribute to be dropped is
owned. If so. the attribute is deleted from the
OWNEDATTRIBUTE and ATTRIBUTE USE_CL tables.

2. If the attribute to be dropped has been inherited,
all instances of inheritance are deleted. The
tables affected are INRITEDATTUSE,
ATTRIBUTEUSE CL. BYCLASS INiBR and DESCTEXT.
The ORACLE tree search feature is used to identify
inheritance at all lower levels.

3. After all owned or inherited instances of the
attribute are deleted, the attribute is deleted
from ATTRIBUTECLASS, ATTRIBUTE NAME, AC_KEYWORD
and DESCTEXT.

4. If the attribute deleted was a by class member, and
if it was the only member of a particular by class
the corresponding entries in the BYCLASS, complete
relation and DESCTEXT tables are deleted.

3-96

DS 620141100
1 November 1985

CDH TABLES ACCESSED - DBPATT (S.SQL, N-NDIIL)

TABLE MAKE SELECT MODIFY INSERT DELETE

AC_KEYWORD S (del ackw)

ATTRIBUTECLASS N(veratt) S (del ac)

ATTRIBUTEMAKE N(veratt) SC del acnu)

ATTRIBUTEUSECLa U(deloac) S(delaucl)

COMPLETERELATION S(dekmpr)

DESCTEXT S(del text)

ENTITYCLASS S(delatko)

KEYCLASS S(delatko) S(delkc)

KEYCLASS_MEMBER S(delutrc) S(delkcut)

INIERIED-ATT3JSE S(delsigk) S(deliauc)

OWNIED-ATTRIBUTE S(delowac)

3-97

DS 620141100
1 November 1985

3.2.8.29 DROP DATABASE -Delete a database from the Common Data

Model.

A. Function:

Drop Database deletes all references to the database
from the Common Data Model.

B. CDM Requirements:

1. The database or INS PCB must exist in the Common
Data Model.

2. The Common Data Model database cannot be dropped.

C. Processing:

After verifying that the database or INS PCB exists,
all references to the database or PCB: are deleted from
the Common Data Model. If any of the data fields for
the database or PCB; map to the INTEGRATEDMODEL, their
mapping will be deleted. If the mapping was primary,
all secondary mappings, even to other databases, are
deleted.

3-98

DS 620141100
1 November 1985

CDII TABLES ACCESSED -DROP DATABASE (S-SQL, N-NDML)

TABLE NAME SELECT MODIFY INSERT DELETE

AUCSTMAPPIN S(DELASM1)

DATABASE N(VERDBAS) S(DELDBSI)

DATAEASEAREA S(DELDBA1)

DATAFIELD S(DELDFLI)

DBAREAASSIGNMENT S(DELDAA1)

*DFSETLINKAGE S(DELDSLI)

IMSSEGMENTSIZE S(DELISSI)

PROJECTDATAFIELD N(PDFDB) S(DELPDFT)
S (DELI1PDF)

PCBPSB S(DELPCB)

RCBASEDRECSET S (DELRER1)

RECORDKEY SC DELRKY 1)

RECORDKEYMEMBER S(DELRKM1)

RECORDSET N(VERSTNO) S(DELRST2)

RECORDTYPE S(DELRTY1)

SCHEMANAME S(DELSN1)

SEGMENTDATAFIELD S(DELSDF1)

SETTYPEMEMBER S(DELSTM1)

3-99

DS 620141100
1 November 1985

3.2.8.30 DROP DOMAIN - Drop a Domain definition from the CDM.

A. Function:

DROP DOMAIN allows the NDDL User to drop the
definitions of one or more domains from the CDM.

B. CDM Requirements:

The domains to be dropped must currently exist,
independent of model, and no attributes, data items or
data fields must be associated with the data types
defined for the domain.

C. Processing:

1. For each domain name specified by the user, the
following is done:

1.1 The domain name is verified, retrieving its
domain number.

1.2 Any attribute class associated with the domain
are searched. This search is possible because
the standard data type of the domain is the
only data type associated with attributes.

1.3 For each data type associated with the domain:

1.3.1 Usage of the data type by any internal
schema data fields is determined and
displaced to the user.

1.3.2 Usage of the data type by any external
schema data items is determined and
displaced to the user.

1.4 If the count of usages of any data types of
this domain is not zero, the user is given a
message and the domain will not be deleted.

1.5 If the domain can be deleted, the following
steps are executed:

1.5.1 All data types can be deleted, reassigning
their unique numbers to the reusable list.
The data type descriptions are also deleted.

3-100

111'j

DS 620141100
1 November 1985

1.5.2 The DOMAINCLASS entry itself can be
deleted, aljong with any associated text
descriptions. its unique number is added to
the pool of re-usable numbers.

3-101

DS 620141100
1 November 1985

CDK TABLES ACCESSED - DROP DOMAIN (S-SQL, N-NDML)

TABLE NAME SELECT MODIFY INSERT DELETE

ATTRIBUTECLASS N(VERACDT)

DATAITEM N(VERDIDT)

DESCTEXT S(DELTEXT)

DOMAINCLASS N(VERDOM) S (DELDOM)

PROJECTDATAFIELD N(VERDFDT)

USERDEFDATATYPE N(DOMUSAG) S(DELDTD)
N (DELDTNO)

3-102

DS 620141100
1 November 1985

3.2.8.31 DROP ENTITY - Drop a conceptual entity

A. Function:

Drop Entity performs the following functions:

1. delete one or more user specified entities from the
CDM.

2. deletes the primary name of the entity and all
associated aliases, keywords and description text.

*3. deletes all associated owned attributes, attribute
use classes and inherited attributes.

4. deletes all associated key classes and key class
members.

A5. deletes all relation classes associated with the
entity and its keywords.

B. CDM Requirements:

Each entity to be dropped must exist in the current

model.

C. Processing:

I. The Drop Entity process verifies that the entity to
be dropped exists in the current model. If it does
not exist an error is issued and processing is
terminated.

2. The process next determines all owned attributes
and attribute use classes for the entity and these
are dropped. Further, its key classes and
attributes inherited via the migrated keys and key
class members are also dropped. If the deletion of

-. the entity resulted in any empty key classes for
the model, these are then deleted.

3. Next all relations where the entity is independent
and dependent are deleted as is its associated
keywords.

4. Finally, the primary name of the entity and all of
its aliases keywords and description text are

3-103

DS 620141100
1 November 1965

doeIeted from the model.

3-104

as60141 100

=N TANUS A=U=D DOW =WITT (5Uq -UEL)

TAN. NM SAManCT-- main !NE V-DLIT

ATTN Ifl -um CL. wDMDC g(I'AUC:)

OOILMf RZIATION S DULCUPS

0193c TEXT B(DLTKIT)

cc KEYVORD s (DSLWZW)V

ENTITY CLASS n(VUWI'T) S(VLMC)
p(Dimirnc)

EN TTY SAM n(vUEU) S (EZLDCUMi

I UEITRD ATT CL S(DUWMI) C(VELIAUC)

MEYCLAS8 5(DEUSTE) S(DSKC)

K"T CLASS _SEmgma S (DSLNTE) S (DELCIfT)

OWNED ATTN IO WYU(FuDOAC) S(OCLVAC)

NtC KEYVWORD S(DMLNCV)

RELATION CLASS N(EPUCK) S(EN)

3 105

* .* .. -* *-* *.%* ., *. * 1of

D8 WaI41100
I November 19685

3 a3a632 DO FIELD - Drop field from the internal schema.

A Fructlo,

This corned deletes all the data fields specified, and
its &sockatIoms and all associated mappings

The following elements must exist in the CON

I Columws/fields/elements/tems named on the command

2 Table/record/segueut named on the command

3 Database/PCB named on the commaad

C Processipg

I Verify the existence of the database named If it
does sot exist, flag a user error

2 Verify the existemoe of the record and data field
If It does not exist, flag a user error

3 Add the data field number to the reusable number
5list

4 Delete any textual descriptions of the data field

5 Verify the existence of amy record sets associated
with data field through the DATA FIED SETLINKAGE
entity For eacb one found:

5 1 Delete the set from Dr SET LINKAGE entity
occurrence

5 2 Delete the SET TYPE NENBER entity occurrences
for the record set

5 3 Delete the RECORD SET entity occurrence for
this set

5 4 Delete the ADC SET NAPPING entity occurrences
for this set

9) SDlett, the R(BASED REC SET entity occurrences

3 106

DS 620141100
1 November 1985

for this set.

5.6 Delete the SEGMENT DATA FIELD entity
occurrences for this set.

6. Delete the DATAFIELD entity itself.

7. Delete the RECORDKEY_MEMBER entity occurrences for
this data field.

S. Delete the RECORDKEY entity occurrences for this
data field.

9. Delete the PROJECTDATA FIELD entity occurrences
for this data field. If the mappings was primary,
delete all other data field mappings for the same
attribute use class.

3-107

DS 620141100
1 November 1985

CDM TABLES ACCESSED -DROP FIELD (S-SQL. N-NDML)

TABLE NAME SELECT MODIFY INSERT DELETE

AUCSETMAPPING S(DELASM2)

DATA_BASE N(VERDBAS)

DATAFIELD N (VERDFLD)

DATAFIELD S(DELDFL3)

DESCTEXT S(DELTEXT)

DFSETLINKAGE N(VERDSL3) S(DELDSL3)

PROJECTDATAFIELD N(PDFDF) S (DELPDFT)
S (DELl1PDF)

RC EASED RECSET S(DELRBR3)
RECORDKEY _ S(DELRKY2)

RECORDKEYMEMBER S(DELRXM3)

RECORDSET S(DELRST3)

SEGMENTDATAFIELD S(DELSDF3)

SETTYPEMEMBER S(DELSTM3)

3-108

D6 620141100
1 November 1985

3.2.8.33 DROP KEYWORD - Delete an object keyword.

A. Function:

Drop Keyword performs the following function:

1. delete the named keyword and associations with any
attribute, entity and/or rel&tion class.

B. CDH Requirements:

The keyword to be dropped must exist in the CDK.

C. Processinf:

1. Drop keyword verifies the existance of the keyword.
The keyword is deleted from the AC KEYWORD.
CKEYWORD, RCKEYORD, and from the KEYWORD

tables.

2. Processing halts if any of the verification checks
fail.

3-109

DS 620141100
1 November 1985

CDK TABLES ACESSED -DROP KEYWORD (S-SQL, N-NDOEL)

TABLE NAME SELEICT NOD! FT INSZRT DELETE

ACKEYWORD S(DELKWAC)

DESCTEXT S(DELTEXT)

ECKEYWORD S (DELKVEC)

KEYWORD N(VERKW) S(DELKV)

RCKEYWORD S (DEUCVRC)

3-110

DS 620141100
1 November 1985

3.2.8.34 DROP MAP - Delete a CS-IS Mapping

A. Function:

Drop Map performs the following functions:

1. delete all mappings from a particular attribute use
class (AUC) or from a particular RELATIONCLASS.

B. CDM Requirements:

The sap to be dropped must exist on the CDM.

C. Processing:

1. After validating that the map exists, the
appropriate PROJECT DATA FIELD, AUCSTNAPPING or
RCBASEDRECSET entity is deleted.

3-111

...- M

DS 620141100
1 November 1985

CDM TABLES ACCESSED -DROP MAP (S-SQL, N-NDML)

TABLE NAME SELECT MODIFY INSERT DELETE

ATTRIBUTEUSECL N(VERAUC)

AUCSTMAPPING N(VERASM) S(DELASM)

ENTITYCLASS N(VERENT)

ENTITYNAME N(VERENT)

PROJECTDATAFIELD N (PDFSRCH) S(DELPDFT)

RCBASEDEECSET W(VERRCST) S(DELRCST)

RELATIONCLASS V(VERRC)

3-112

DS 620141100
1 November 1985

3.2.8.35 DROP MODEL - Delete a model from the CDI.

A. Function:

Drop Model performs the following functions:

1. drop all entities associated with the model.

2. drop all attributes, attribute use classes, and
inherited attributes associated with the model.

3. drop all key classes, and key class members
associated with the model.

4. drop all relations associated with the model.

5. drop all descriptions. aliases and keywords for the
entities, attributes and relations associated with
the model.

B. CDI Requirements:

The model to be dropped must exist in the CDI.

C. Processing:

1. Drop Model verifies that the model to be dropped
exists. The INTEGRATEDMODEL cannot be dropped.

2. For each entity found in the model, its owned
attributes, keywords, descriptions and the entity
itself is dropped. Further, its key classes and
attributes inherited via the migrated keys and key
class members are also dropped. Relations where
the entity is both dependent and independent are

* * deleted, so also its associated keywords and
descriptions.

3. Finally, for each attribute in the model, the
attribute keywords, descriptions and the attribute
itself is dropped.

4. Processing halts if any of the verification checks
fail1.

3-113

DS 620141100
1 November 1985

CDX TABLES ACCESSED -DROP MODEL (S-SQL, N-NDML)

TABLE NAME SELECT MODIFY INSERT DELETE

ACKEYWORD S (DELACKW)

ATTRIBUTECLASS N(FNDACM) SC DELAC)

ATTRIBUTENAME N(SELACUM) SC DELACNM)

ATTRIBUTEUSECL N(DLMDAUC) SC DELAUCL)

COMPLETERELATION S(DELCMPR)

DESCTEXT S(DELTEXT)

ECKEYWORD S(DELECKW)

ENTITYCLASS N(FNDECM) SC DELEC)

ENTITYNAME N(SELECNM) S(DELECNM)

INHERITEDATT USE SC DELI AUK)

KEY-CLASS N(DELMDKC) SC DELKC)

KEYCLASSMEMBER S(DELKCHT)

MODELCLASS N(VERMOD) S (DELMOD)

OWNEDATTRIBUTE SC DELOACE)

RCKEYWORD S (DELRCKW)

RELATIONCLASS N(DELMDRC) S(DELRC)

3-114

lVS4

DS 620141100
1 November 1985

3.2.8.36 DROP RECORD - Delete the Record Type/Table/Segment from

the Internal Schema database.

A. Function:

Drop Record performs the following functions:

1. Deletes all references to the Record
Type/Table/Segment from the internal schema
portion of the CDM.

2. Deletes all associated Data Fields, Segment
data fields, database Areas, project data
fields, record keys, record key members, data
field linkage, record sets and record set
members- Additionally, all text descriptions
for the record type/segment data field, and
record sets are deleted.

B. CDM Requirements:

The Record/Table/Segment to be dropped and the
database the Record Type must exist in the CDM
database.

C. Processing:

1. Drop Record verifies the existence of the
database/PCB specified and the record
type/table/segment specified. If the database
or record type does not exist, processing stops
and an error message is issued.

2. The Record/Table/Segment is deleted from the
CDM; all associated textual description about
the record are deleted; and the record's object
number is added to the reusable number table.

3. The process then queries for and deletes all
database area assignments associated with the
record/table/segment. All data fields that
belong to the record are deleted along with
their associated textual description. The
process then deletes all reference to the
record/table/segment in the Project data field,
Record key and Record key member tables.

3-115

DS 620141100

1 November 1985

4. Specialized processing for INS databases
deletes the record from INS SEGMENT SIZE and
the Segment Data Field CDN tables. For TOTAL
databases the DFSETLINKAGE table has all
reference to the record removed.

5. Final processing is to delete all RecordSets
or Record Set members that contain the
record/table/segment to be dropped. The Record
Set processing will delete all reference to the
Record/table/segment where it is an owner
record or member record and any set that
becomes memberless when the dropped record was
the set member.

*

3-116

DS 620141100

1 November 1985

CDM TABLES ACCESSED -DROP RECORD (S=SQL, N=NDHL)

TABLE NAME SELECT MODIFY INSERT DELETE_

AUCSTNAPPING S(DELASM2)

DEAREAASSIGNMENT S(DELDAA2)

DATABASE N(VERDBAS)

DATAFIELD S(DELDFL2) SC PRPDF)

DFSETLINKAGE S(DELDSL2)

DESCTEXT S(DELTEXT)

AINSSEGMENTSI?E
S(DEL1SS2)

PROJECTDATAFIELD N(PDFREC) S(DELPDFT)
S(DEL1PDF)

RCBASEDRECSET S(CDELRBR2)

RECORDKEY S(DELRKY2)

RECORDKEYMEMBER S(DELRKM2)

RECORDSET N(SELRSET) S(DELRST2)

RECORDTYPE N(VERRT) SC DELRTY2)

SEGMENTDATA-FIELD S(DELSDF2)

SETTYPEMEMBER N(SELSTM)

3-117

I1 l0, 7

D6 620141100
1 November 1985

3.2.8.37 DROP RELATION - Deletes the relation class and all
references to the relation class from the
database.

A. Function:

The Drop Relation process performs the folloving

functions for one or more relations:

1. verifies that the relation class exists;

2. verifies that the independent and dependent
entities exist;

3. deletes the relation class from the CIW

4. deletes the complete relation;

5. deletes all keys that have migrated from the
relation class;

6. deletes all keywords associated with the relation;

7. deletes all textual descriptions associated with
the relation.

B. CDK Requirements:

The Drop Relation process requires the presence of the
Relation Class, Independent Entity. and Dependent
Entity within the current model.

C. Processing:

1. The Drop Relation process verifies that the
independent entity, dependent entity. and the
relation exist in the CDK. If any of these do not
exist, an error is issued and processing
terminates.

2. The process verifies whether the relation is
complete and if so returns the key class which
allow the process to determine the migration of the
associated items.

3. Utilizing the key class the process deletes all
migrating key class member based on the relation

3-118

,1, , , .- . , '. ,.-. .. -,

Do 630141 100
I U@Ywwr 1985

class In trm each k class smber Is deletUd
from KI QS 1 .CLAWTI M CL, A"
II M AT1DIB 351 based om its associatloa to
the relation

4 After all the "T class members have been deleted.
the process deletes the association In the complete
relation. te relation class itself. amy keyords
associated with the relation. &ud all tetual
descriptioss of the relation

3 i l., f, , * 9

Do 620141 100

196

c ~ ~ ~ ~ DO TAASMNSU- P3ATIO S(S-SQL. u.WNIL)

£713 I 301 USE CL S(EIAIKL)

COmplATE EZRA ION f(VE3DO) (DBLPUC)

ENTITY CLASS O(V3ZW)

ZENTITY SM N(VE3EWT)

INUEIITZD AT USE s(DC~LNIaC) St DELIADC)

ME CLASS NVISEN Nt D3PtS) S (I"LCWT)

ac KZTV~BD
S (DKLV)

RELATION CLASS (VD)S(IXLRtC)

3 120

DS 620141100
1 November 1985

3.2.838 DSOP SET - Drop a Record Set/from the Internal Schema

A. Function:

Drop Set allows the NDOL user to drop the set specified

from the internal schema portion of the CD.

B. CDR Requirements:

The set to be dropped must have been already defined to
the CDi.

C. Processing:

1. The user entered database name is used to determine
if the database exists in the CDI at this point.
The set name is used along with the database number
to determine if the set actually exists. If so,
all entries for this set are deleted from the
following tables:

1.1 AC BASED REC SET, CS to IS relation class to
set mappings.

1.2 AUCSTNAPPING, CS TO IS attribute to set
mappings.

1.3 SET TYPE MEMBER. all member record types for
the set.

1.4 RECORDSET, the record set occurrence itself.

1.5 For TOTAL DBNS only, the DF SETLINKAGE
occurrence used to indicate the presence of.
foreign control keys needed for TOTAL link
path traversal.

2. The unique set number is then added to the list of
re-usable set numbers (object numbers) maintained
on the CDM.

3-121

I

DS 620141100
1 November 1985

CDII TABLES ACCESSED -DROP SET S(S-SQLN-NDNL)

TABLE MNZ SELECT NOD! FT INSERT DELETE

AUCST-NAPPING S(DELASK2)

DATABASE N(VERDBAS)

DFSETLINKAGE S (DELDSL2)

RCBASEDRECSET S(DELRDR2)

RECORDSET N(VERRSET) S(DELRST2)

SETTYPENENBER S(DELBTN2)

3-122

DS 620141100

1 November 1965

3.2.8.30 DMOP VIEW - Deletes the view/surrogate entity class
(IC) Aid all data items, project data items, items
and related textual descriptions from the CDIH
database.

A. Function:

The Drop View process performs the following functions:

1. verifies the existence of the view;

2. deletes project data items associated with the
view;

3. deletes the views SEC RC COMPONENT entries based on
the VIEW/SEC to relation-class mapping;

4. deletes all data items and data item textual
descriptions;

5. deletes the VIEW/SEC.

B. CDII Requirements:

The Drop View process requires that the view exist in
the external schema portion of the CDI database.

C. Processing:

1. For each view entered the Drop View process
verifies that the view to be dropped exists in the
CDi database. If the view does not exist, an error
message is issued and processing terminates.

2. The process will delete all project data items and
the VIEW/SEC to relation class mappings that are
based on the view. The process selects all data
items belonging to the view. deletes the textual
descriptions and then delete all data items

3. The process deletes the VIEW/SEC and all associated
textual descriptions.

3-123

DS 620141100
1 November 1965

cVU TAMKhS ACcISD CROP? VIZV(-SLU-DL

TABLZ MAIMS 53.30? VDI7TY INSRRT DELETS

DATA-ITIK N(DEPDIV) s(r)LDIV)

PYAJC_DATAITCH S(DZLPDI)

SEC N(VENtVIEW) S(DELSECc)

StCRtcCOMhPOSIhT B(DELS3CR)

3-124

DS 620141100
1 November 1985

3.2.8.40 HALT - Terminate the current NDDL session

A. Function:

Halt terminates the current NDDL session.

B. Processing:

If any errors were detected during the NDDL session, an
ORACLE rollback is performed. If no errors were
detected, an ORACLE commit is performed.

3-125

DS 620141100
1 November 1985

CDN TABLES ACCESSED - HALT

NONE

3-126

i ~ V,

DS 620141100
1 November 1985

3.2.8.41 MERGE MODEL - Merge two conceptual models.

A. Function:

Merge Model performs the following functions:

1. merge two models into the first-named model or into
a newly created third model.

2. generate NDDL commands on a file to populate either
the first model or the third model with the
attributes, entities, relations, key classes, key
class members, aliases, keywords and descriptions
from model one and model two.

B. CDM Requirements:

1. Model one must exist in the CDM.

2. Model two must exist in the CDM.

3. If model three is specified, it must not exist in
the CDM.

C. Processing:

1. Verify the existence of model one and model two.
Note that processing halts if any verification
checks fail.

1.1 If model three was not specified, default
model three to model one; otherwise, verify
that model three does not exist.

1.2 If model three does not exist, copy everything
from model one to model three using the COPY
MODEL routines.

*2. Build the key class list for all the entities in
model two.

3. Next, add all the model two top node entities to
model three. If the model two entity does not
exist in model one, then COPY ENTITY routines are
used to add the entity to model three. Otherwise,
COMBINE ENTITY routines are used to combine the
model two entity with the model one entity with the

3-127

DS 620141100
1 November 1985

result added to model three.

4. Next, add all the model two dependent entities.
attributes, relations, keys, and key class members,
aliases keywords, and descriptions to model three,
level by level. If the model two entity, attribute
and/or relation does not exist in model one, then
COPY ENTITY routines are used to add the
information to model three. Otherwise, COMBINE
ENTITY routines are used to combine the model two
information with model one with the result added to
model three.

i

3-128

DS 620141100
1 November 1985

CDM TABLES ACCESSED - MERGE MODEL (S-SQL,N-NDNL)

TABLE NAME SELECT MODIFY INSERT DELETE

ENTITYCLASS S(MRGNODE)

S (MRGMOD2)

ENTITYNAME N(SELECNM)

MODELCLASS S(MRGNODE)
S (MRGMOD2)

RELATIONCLASS S(MRGNODE)
S(MRGMOD2)

3-129

DS 620141100
1 November 1985

3.2.8.42 RENAME - Rename object names for a particular object
type.

A. Function:

Rename performs the following functions:

1. change an old object name to a new object name
for object types - entity. attribute, keyword,
model, domain, view and relation.

B. CDM Requirements:

The object names to be renamed must exist in the
CDM.

C. Processing:

1. Rename verifies the existence of the old
object name. To rename a relation class, the
independent entity, relation name and
dependent entities existence is verified.

2. Next, it verifies that the new object name(s)
does not previously exist for the particular
object type.

3. Finally, the old object name is updated in the
CDM with the new object name.

4. Processing halts if any of the verification
checks fail.

3-130

L aw, I r. - .: ., : ,

1

DS 620141100
1 November 1985

CDM TABLES ACCESSED - RENAME (S-SQL, N=NDML)

TABLE NAME SELECT MODIFY INSERT DELETE

ATTRIBUTECLASS N(VERATT)

ATTRIBUTE-NAME N(VERATT) S (UPDACNM)

DOMAINCLASS N(VERDOM) S(UPDTDOM)

ENTITYCLASS N(VERENT)

ENTITYNAME N(VERENT) S(UPDECNM)

KEYWORD N(VERKW) S(UPDTKW)

MODELCLASS N(VERMOD)

MODELNAME S(UPDRCNM)

RELATION CLASS N(VERRC) S(UPDRCNM)

SEC N(VERVIEW) S(UPDVIEW)

3- 1

, 5;

%"

3-1351

DS 620141100
1 November 1965

3.3 Performance Requirements

3.3.1 Programming Methods

Structured Design, structured code valkthroughs and
structured programming will be used wherever possible.
Debugging through use of a symbolic debugger vill also be used.

3.3.2 Program Organization

NDDL processor will be organized as a single executable
image. It will use the forms processor directly. The DKS
access will be done through ORACLE services communicating with
the actual DBMS processes. The NDML will be used for database
access and it is designed to communicate via the IISS NTH to the
actual request processors. The NDDL processor will consist of a
main routine, an initialization routine to establish all the
environments, a command initialization routine to dear the
parser command processor interface data structure, a command
processor entry point for each command and a termination
routine.

3.3.3 Modification Consideration

It would be useful to investigate the creation of a
seperate process for each command processor. Each would have
its own processor. UI function screen or menu interface would
allow command selection. A forms driven, rather than syntax
driven approach could also be considered. Continued evolution
of NDML facilities should be monitored, such as generation of
"in-line" code, replacement of ORACLE with NDHL update
facilities and removed of many calls to routines that provide
integrity tests, currently coded as seperate NDUL verification
routines, since NDML would generate these. Security
considerations for a group of different user types must also be
considered. Facilities for displaying the CD contents must
also be considered, specifically generating the NDDL that
originally populated the object. The NDDL processor must
continually be updated as new features and data tables are added
to the CDM.

3.3.4 Special Features

3.3.5 Expandibility

The NDDL can be expanded very simply in the area of new
commands. Parsing directives must be written and new command

3-132

DS 630141100
I November 1905

processors designed and amplemSted Without affecting the

command processing shell or exinsting commnds

3 4 Mumn Performance

The EIDOL processor should allow the C3MA to reliably
maintain the most important parts of the COX and to effectively
perform the function of data administration

3 5 Dstase ea i resents

3 5 I CDtabase Overview

The CDM dataase is rel&tioma,1 meaing that it consists of
tables that resemble traditional sequential files The rows of
the tables are similar to records in a file and the columms are
similar to fieldr on the records Comums from different tablet
are sometimes combined to form 'views tc ease maiplation of
the data The CD datase w&s derived directly from the
definitions found in the CV-1 mel. Sefereoe Nuhmber 11

3 5 2 lIelations etveem Tables and Views

A single complete view has bees created for each tab!e of
the CDP accessed by M

3 5 3 Detailed Descriptiom of Tables and Views

Thii f loi.ng an a .ACIJ listing of the tablet c(lumnt)f
the (Dq Bv using the taJblt nases def~nitiomt of easc? may be
found i r the CW m &ode.

vs ow141 100

1 November 1965

OAMA DATA DICTIOUNY: COL TADLE

TuNE! CKAM COLTYP VWFNO NULLS

Ac Kg? WORD ACNO on333 0 NOT NULL
KV-NO on35333 0 NOT NULL

APPLICATION APPLICATIOU MOVED CZAR 10 N0T OU1L

MsT ID C3AN 30 NOT NULL

ATY3 IWTS?!CLASS ACUO 355333 0 NOT MULL
DONA 1 O so3ff3w 0 NOT NULL
NOVEL 30 355333 0 NOT NULL

AmT I NUT XAMl Ac- MAScuA 30 NOT NULL
Ac _MSTYPE coAR S NOT NULL
Ac_3 so5333 0 NOT NULL

ATT I BUT!USE CL ACNO -in 0 NOT NULL
sc No3533 0 NOT NULL
?*CAN ncoA 30 NOT NULL
TAGNO 30 0 NOT NUIL

Auc (XWSTRA JT 73A137NO no3 0 NULL
lYIW wrtaiO coA 30 NULL
TAGfl 3on3- 0 NULL

AUC ST NAPPING AUC VALUE CHAR 30 NOT NULL

3 134

DS 620141100
1 November 1985

ORACLE DATA DICTIONARY: COL TABLE

TWNA CNAME COLTYP WIDTH NULLS

DS ID NUMBER 0 NOT NULL

SETID CHAR 30 NOT NULL
TAG NO NUMBER 0 NOT NULL

CDM_ vzRSION R S_ NUMBER 0 NUL

COMPLETERtLATION KCNO NUMBER 0 NOT NULL
- so NUMBR 0 NOT NULL

COPY LIBRARY LIBRARY SAM CHAR 30 NOT NULL

COPY MACDO LIBRARY_-MAS CHAR 30 NOT NULL

MAC1DOAKE CHAR a NOT NULL

MACRO PURPOSE CHAR 80 NOT NUIML

DATA-BASE DUMBNAME CHAR 30 NOT NULL

D _ ID NUMBER 0 NOT NULL
DR-SAKE CHAR 30 NOT NULL

NDBTID CHAR 30 NOT NULL

DATABASEAREA A ID CHAR 30 NOT NULL
Do ID N 0 NOT NULL

DATAELEMENT D-IAN CHAR 30 NULL
ND NUMNE 0 NmL
PIC SIzE NUMBER 0 NULL
PUROSE CHAR 240 NULL

TYPE CHAR 1 NULL

3-135

D6 620141100
1 November 1965

ORACLE DATA DICTIONARY: COL TABLE

TNAME CRANE COLTYP WIDTH NULLS

DATAFIELD COMPONENTOF NUMBER 0 NULL
DATA TYPEMNZ CHAR 30 NULL
DBID) NUMBER 0 NULL
DF_-ID CHAR 30 NULL
DFNO NUMBER 0 NULL
OCCURS NUMBER 0 NULL
REC KEY CODE CHAR 1 NULL
RECs WE no NUMBER 0 NULL
REDEFDIPNO NUMBER 0 NULL
RT ID7 CHAR 30 NULL

DATAITEM DATA TYPENAME CHAR 30 NOT NULL
DI ID CHAR 30 NOT NULL
DINO1 NUMBER 0 NULL
VIWNo NUMBER 0 NOT NULL

DATATYPE TYPEDESC CHAR 60 NOT NULL
TYPE ID CHAR 1 NOT NULL

DBMS DBMS NAKE CHAR 30 NOT NULL
D8_MODEL CHAR 1 NOT NULL

DBMSCOPYLZBRARY DBMiS NmE CHAR 30 NOT NULL
LIBRARY MNZ CHAR 30 NOT NULL

DBMSONHOST DBMSNAkE CHAR 30 NOT NULL
MOST ID CHAR 30 NOT NULL

DDAREAASSIGNMENT AREA ID CHAR 30 NOT NULL
DO ID NUMBER 0 NOT NULL
RT ID CHAR 30 NOT NULL

DBPASSWORD DDID NUMBER 0 NOT NULL
DB PASS WORD CHAR 30 NOT NULL

DESCRIPTIONTYPE DEW_-TYPE CHAR 30 NOT NULL
DESCTEXT DESC TEXT CHAR so NULL

DESCTYPE CHAR 30 NOT NULL

3-136

DS 620141100

1 November 1965

0MACLE DATA DICTIOKAKY: COL TABLE

TNAKE (ZAMI COLTYP WIDTH NULLS

LINZ NO NUNSER 0 NIOT NULL
O3jl3O NoMn 1 0 NO? NULL
OBJZCTTYPE cuAm 30 HIT NULL

DFSETLINKAGE VSID NUMB=R 0 NODT NULL
VP_ ID cuAm 30 NOT NULL
LINKAGETYPE CZAR 1 NOT NULL
R? ID CHAR 30 30M NULL
SifT ID cuAm 30 NOT NULL

DOMAINCLASS DOMAIN MNM cuAm 30 NULL
DOMAIN NO NUMBER 0 NULL

DOIIAINRANGE 3SWIMVALUE (ZAK 30 NULL
*DOMA IN NO NUMBER 0 NOT NULL

ENDVALUE (ZAK 30 NULL

3-137

DS 620141100

I November 1965

ONACLS DATA DICTIONARY: 001, TAMU

TNAK CNANX COLTY? WIDUTH NULLS

DOMAINVALUX DOMAIN-N0 NUMBER 0 noT NULL
CPWIFICVALUE cUam 30 NULL

XCETUD DIN soNuma= 0 NULL
sC no NUUMNE 0 NULL
UNiONVALUZ CHaR 30 NULL

Bc_000ST3AINT O0bksTRAINTNO NUMBER 0 NULL
MCNo NUMBUER 0 NULL
ST~lTACTION CHIAR 30 NULL

BCKEYWOUtD SCNO0 mum=E 0 NOT NU.L

KV-_NO NUNSER 0 NOT NUL
ENTITYCLAS BC-NO NUNNE= 0 NOT NULL

NOVELNO NUMBER 0 NOT NuLL

ENTITYNANE ICNAZI CHAR 30 NOT NUL
2CBN% ETYPE cuA" a NOT NULL
sCNO NUMBER 0 NOT NULL

GENERATEDAP GENERATEDNODID CHAR 10 NOT NULL
MENERATORNODID CHAR 10 NOT NUJLL

GENERTECDAPPS. GENERATEDNODID C31AR 10 NOT NULL
PS._NA)(E CHAR a NOT NULL

3-138

DS 620141100

1 November 1985

ORACLE DATA DICTIONARY: COL TA1LE

TNAME CNAME COLTYP WIDTH NULLS

HORIZONTALPART CONSTRAINT_30 NUMBER 0 NULL
DB ID NUMBER 0 NULL
NC-NO NUMBER 0 NULL
NTNO NUMBER 0 NULL

MOST HOST ID CHAR 30 NOT NULL
INSSzGMENTSIZE D3 I5 NUMBER 0 NOT NULL

RT-ID CHAR 30 NOT NULL
SEGMENTSIZE NUMBER 0 NOT NULL

INHERITEDATTUSE KCMTAGNO NUMBER 0 NOT NULL
KC no NUMBER 0 NOT NULL
RC-NO NUMBER 0 NOT NULL
TAGNO NUMBER 0 NOT NULL

KEYWORD KEYWORD CHAR 30 NOT NULL
KWNO NUMBER 0 NOT NULL

KEY CLASS EC NO NUMBER 0 NOT NULL
KC-NAME CHAR 30 NOT NULL
KC-NO NUMBER 0 NOT NULL

KEYCLASSMEMBER KC NO NUMBER 0 NOT NULL
TAGNO NUMBER 0 NOT NULL

MACROCODE LIBRARY NAME CHAR 30 NULL
MACRO CODE CHAR 72 NULL
MACROLINE NO NUMBER 0 NULL
MACRONAME- CHAR 8 NULL

MODELCLASS DATE CREATED DATE 7 NOT NULL
DATE MODIFIED DATE 7 NOT NULL
MODEL NAME CHAR 30 NOT NULL
MODEL NO NUMBER 0 NOT NULL
MODELSTATUS CHAR 10 NOT NULL

3-139

DS 620141100

1 November 1985

ORACLE DATA DICTIONARY: COL TABLE

TNAME CNAME COLTYP WIDTH NULLS
-------------------------------- -------------------- ------ ----- --------
NEWGAP CASENO NUMBER 0 NULL

DB ID NUMBER 0 NULL
GEiERATRD BY CHAR 10 NULL
GENERATED-MOD ID CHAR 10 NULL
GEN DATE DATE 7 NULL
isACTION cHAR 1 NULL
MdDO-LE_TYPE CHAR 10 NULL
USER NOD ID CHAR 10 NULL

NEXTNUMBER ACNO NUMBER 0 NOT NULL
NEXT NO NUMBER 0 NOT NULL
OBJECT_NAME CHAR 30 NULL

OWNED-ATTRIBUTE ACNO NUMBER 0 NOT NULL
EC NO NUMBER 0 NOT NULL

PROJECTDATAFIELD DATATYPENAME CHAR 30 NOT NULL
DBID NUMBER 0 NOT NULL
DFID CHAR 30 NOT NULL
PRIM SECONDARY CHAR 1 NOT NULL
RT ID CHAR 30 NOT NULL
TAG NO NUMBER 0 NOT NULL

PROJECTDATAITEM DI ID CHAR 30 NOT NULL
PRIM SECONDARY CHAR 1 NOT NULL
TAG NO NUMBER 0 NOT NULL
VIEWNO NUMBER 0 NOT NULL

PSB HOST ID CHAR 30 NOT NULL
PSB NAME CHAR a NOT NULL

PSBPCB DEBID NUMBER 0 NOTNULL
KEY FEEDBACK LEN NUMBER 0 NOT NULL
PCB7SEQ_NO NUMBER 0 NOT NULL
PSBNAME CHAR 8 NOT NULL

3-140

DS 620141100

1 November 1985

ORACLE DATA DICTIONARY: COL TABLE
16

TNANE CNAME COLTYP WIDTH NULLS

-- - - ---- -- -- ----------- ---------
RCEASEDRECSET DBID NUMBER 0 NOT NULL

RCNO NUMBER 0 NOT NULL
RT-ID CHAR 30 NOT NULL
SET_ID CHAR 30 NOT NULL

RCKEYWORD KWNO NUMBER 0 NOT NULL
RC-NO NUMBER 0 NOT NULL

RECORDKEY DBID NUMBER 0 NOT NULL
REC KEY DEC LEN NUMBER 0 NULL
REC KEY ID NUMBER 0 NOT NULL
REC KEY LABEL CHAR 30 NOT NULL
REC-KEY-UNI IND NUMBER 0 NOT NULL
RECKEY-VALUELEN NUMBER 0 NULL
RT ID CHAR 30 NOT NULL
TYPE ID CHAR 1 NULL

RECORDKEYMEMBER DBID NUMBER 0 NOT NULL
DF ID CHAR 30 NOT NULL
REC KEY ID NUMBER 0 NOT NULL
RT ID - CHAR 30 NOT NULL
SEQ NO NUMBER 0 NOT NULL

RECORDSET DBID NUMBER 0 NOT NULL
RT-ID OF OVNER CHAR 30 NOT NULL
SET I - CHAR 30 NOT NULL
SET-NO NUMBER 0 NULL
TOT7AL NUM MEM NUMBER 0 NOT NULL

RECORDTYPE DBID- NUMBER 0 NOT NULL
RTID CHAR 30 NOT NULL
RTNO NUMBER 0 NULL

RECORDTYPEOMP DB-ID NUMBER 0 NOT NULL
ECNO NUMBER 0 NOT NULL
RT ID CHAR 30 NOT NULL

RELATIONCLASS DEP EC NO NUMBER 0 NOT NULL
* IND-EC-NO NUMBER 0 NOT NULL

MAX NO-DEP ENT NUMBER 0 NOT NULL
MIN NO-DEPENT NUMBER 0 NOT NULL
NO_INDENT NUMBER 0 NOT NULL

3-141

111111,11111 -"w AIL -" " i 'llf

DS 620141100
1 November 1985

ORACLE DATA DICTIONARY: COL TABLE

TNAME CNAME COLTYP WIDTH NULLS
--- --------------- -------------------- ------ ----- --------

RC NAME CHAR 30 NOT NULL
RC-NO NUMBER 0 NOT NULL

REUSABLENUMBER AC-NO NUMBER 0 NOT NULL
REUSE NO NUMBER 0 NOT NULL

SCHEMANAMES DBID- NUMBER 0 NOT NULL
DBLOCATION CHAR 30 NULL
SCHEMA NAME CHAR 30 NOT NULL
SUBSCHkMA NAME CHAR 30 NOT NULL

SEC SEC ID CHAR 30 NOT NULL

VIEW NO NUMBER 0 NOT NULL

SECRCCOMPONENT RC NO NUMBER 0 NOT NULL
VIEW NO NUMBER 0 NOT NULL

SEGMENTDATAFIELD DBID NUMBER 0 NOT NULL
DF ID CHAR 30 NOT NULL
INS DF IND CHAR I NOT NULL
RTID CHAR 30 NOT NULL
SEG START-BYTE NUMBER 0 NOT NULL

SETTYPEMEMBER DB ID NUMBER 0 NOT NULL
REQ MEN IND CHAR 1 NOT NULL
RT ID OF MEMBER CHAR 30 NOT NULL
SET ID CHAR 30 NOT NULL

SOFTWAREMODULE LANGNAME CHAR 10 NOT NULL
LATEST REV DATE NUMBER 0 NOT NULL
LATEST-USAGEDATE NUMBER 0 NOT NULL

MOD ABSTRACT CHAR 60 NOT NULL
MODID CHAR 10 NOT NULL

MOD-TITLE CHAR 30 NOT NULL
STATUS IND CHAR I NOT NULL

SOFTWARESEC MOD ID- CHAR 10 NOT NULL
SECID CHAR 30 NOT NULL

SOFTWARESUB CALLINGMODID CHAR 10 NOT NULL

3-142

DS 620141100
1 November 1985

ORACLE DATA DICTIONARY: GOL TABLE

TNAME CNAME COLTYP WIDTH NULLS
------------------------------- -------------------- ------ ----- ------

SUBROUTINE NODID CHAR 10 NOT NULL
USERDEFDATA_-TYPE DATA TYPE iND - CHAR 4 NULL

DATA TYPE NAME CHAR 30 NULL
DOMAINNO7 NUMBER 0 NULL
MAX SIZE NUMBER 0 NULL
NOOFDECIMALS NUMBER 0 NULL
TYPEID CHAR 1 NULL
USDTDTNO NUMBER 0 NULL

VERIFMODULE DOMAINNO NUMBER 0 NULL
MODID CHAR 10 NULL

3-143

DS 620141100
1 November 1985

SECTION 4

QUALITY ASSURANCE PROVISIONS

4.1 Introduction and Definitions

"Testing" is a systematic process that may be preplanned
and explicitly stated. Test techniques and procedures may be
defined in advance and a sequence of test steps may be
specified. oDebugging" is the process of isolation\ and
correction of the cause of and error.

4.2 Computer Programming Test and Evaluation

The quality assurance provisions for test will consist of
the normal testing techniques that are accomplished during the
construction process. They consist of design and code
walk-throughs, unit testing, and integration testing. These
tests will be performed by the design team.

The integration test developed for the NDDL will consist of
a list of commands (and their expected outputs) which will be
used by the tester. This session will test each command to
ensure its correct operation. Results of the session may be
compared with those of the unit testing.

Because rather flat hierarchy of modules is designed for
the NDDL, unit testing will primarily involve testing each of
the NDDL interface routines and internal functions for correct
processing and output. Below the level of modules implementing
each command will be a small set of procedures for database
commit and rollback and error handling.

4-1

DS 620141100
1 November 1985

SECTION 5
46

PREPARATION FOR DELIVERY

The Implementation site for the constructed software will
be the ICAN Integrated Support System (IISS) Test Bed Site
located in Albany, New York. The software associated with the
NDDL will be clearly identifiled and will Include Instructions on
procedures to be followed for Installation of the release.

7T#.

5-1

U.SGrivotfmeflt Printinq office: 1987 748-061 '608 74

N. ,-

