RO-R181 953 INTEGRATED IHFORNRTIODI SUPPORT SYSTEM (1155) VOLUNE 3 172
COHNON DATA MODEL S (U) GENERAL ELECTR co
CHENECTARDY NY PRODUCTION RESOURCES CON
UNCLASSIFIED J L ALTHOFF ET AL @1 NOV 85 05-620141108 F/G 12/5 NL

s ;2
E——— i 22
T

®

Iz
O
==

—
=
=y
B

MICROCOPY RESOLUTION TEST CHART

) OBTN
= > AR ,;n‘.‘z ,c‘ ‘\:, e','t

i "' ALY »‘A@l‘x‘n“ A‘ "' ’ll, 4’

sve e
N .)0.' "‘,"'.

AD-A181 8563 DT FILE COPY

AFWAL-TR-86-4006
o Volume V
f*f Part 5
0w
W
AN N
DAY
ry
1, ’l
ke
INTEGRATED INFORMATION
o SUPPORT SYSTEM (IISS)
N Volume V - Common Data Model Subsystem
::& Part 5 - NDDL Processor Development Specification
»
e
‘.”‘ D ’ h
gt l 1 i
B General Electric Company -
ot Production Resources Consulting JUL 0 6 1987 >
B One River Road

Schenectady, New York 12345

- v/ D

Final Report for Period 22 September 1980 - 31 July 1985

2 November 1985

Approved for public release; distribution is unlimited.

- . PREPARED FOR:

s MATERIALS LABORATORY

oK AIR FORCE WRIGHT AERONAUTICAL LABORATORIES

el AIR FORCE SYSTEMS COMMAND

we WRIGHT-PATTERSON AFB, OH 45433-6533

A X

&

",';

b . szl
¥ N :
P

LT

3 ‘ 19 ALRLTC FA ARG G T 14T
MR DO L P AR AR A N 1‘ 5""5 AT Sy ,a,. (3 xb ~} s

SN AR LS R

MVACATA Ch XL EARS A CA TR CRACA TS
LI A LAY K “) » A

- _on -

R S

X o i

- c"q‘;-" X

1o
Ay n

%7.‘!‘.‘&1“&‘ o

-y o

'.ll"r i

NOTICE

Wnen Government grawings specificatons, or other data are used for any purpose other than
In connection with a oefinitely related Government procurement operation, the United States
Government thereby incurs no responsibility nor any obligation whatsoever, and the fact that the
government may have formulated. furnished, or in any way supplied the said drawings.
specifications or other data. 1s not to be regarded by implication or otherwise &8s in any
manner lhicensing the nolder or any other person or corporation, or conveying any rights or
permiss:on to manufacture. use. or sell any patented invention that may in any way be related
thereto

This report has been reviewed by the Office of Public Affairs (ASD/PA) and is releasable to the
Nauonal Technical Informanon Service (NTIS) At NTIS. it will be available to the .general
public. including foreign nations.

This technical repori-has been reviewed and is approved for publication.

//
S 5@4 /9l

DAYID L. /JUDEON, PROJECT MANAGER DATE 0

WRIGHT PATTERSON AFB OH 45433

FOR THE COMMANDER.

ERALD C. SHUMAKER. BRANCH CHIEF DATE =4
AFWAUMLTC

WRIGHT PATTERSON AFB OH 45433

"It your address has changed. if you wish to be removed from our mailing hst, or if the
addressee is no longer employed by your organization please notify AFWAL/MLTC, W-PAFB, OH
45433 to help us maintain & current mailing list "

Copies of this report should not be returned unless return is required by secunty consideratnnec
contractual obligations. or notice on a8 specific document

7 T M AR T,
W AN N

'6c. ADDAEES (City. Sum ana 21 Costs)

1 River Road
Schenectady, BY 18345

™. ADDRESS (City. Sse ans Z2IP Cots)

VPAFB, OH 435433-63533

G NAME OF PUNDINGBPONSOAING . OF#CL SYMBOL

0. PROCUREMENT INSTRYMENT IDENTIFICATION NuMBEN

on;nuz;lwog 87 appledls) .

Materials laborator

Alr Force Systems Cz-nnd . USAF AFVAL/MLTC ¥33618-80-C-8185

‘6 ADORESS (Ciry. Stom and 21P Com) 10 SOURCE OF SuUNDING NOS
PRAOGRAM PRDIMECT Yasx WORK UNIT

Vright-Patterson AFS, Obio 43433 SL8uENT NO. wo. ®o. ue.

Y8011r 7500 82 o1

11. TITLE (nciose Secunty Clamihesiion)

L (See Reverse)

13 PEASONAL AUTHORG) Althoff, J. L., Apicella, M. L., Bernier, M. P., Bingh, §.,

\ Thompson, D. B., and Vong.

J. P.

F136 TYPL OF REPORT '3s TimE COVERED
} Fiaal Technical Repert 22 Sept 1980 - 31 July 1983

8. PAGE COUNT
163

16. DATE OF RLPORTY (Yr. Me.. Doy/
1985 November

"18. BUPPLEMENTAR Y NOTATION

ICAM Project Priority 6201

The computer software contained herein are theoretical and/or
references thatl in mo way reflect Air Foroe-owned or -developed
ocomputer softvare.

19 COsA T CODES
sig.p | geowe gus gw
1308 0005

18-8VBIHCT TEAMS /Contnus on mwnw f aseems™) oAl Wiradfy by bieck aamber;

This document is the development

A . -
o - ’D/‘.,{ 5;/-///:4] J
o ! ' . — -'/
. vy , . |
S RS a

J ;

19. ASSTRACY (Continue on wesver if ascenery and iien afy by aumbyr;

specification establishing the

functional requirements of the IISS Configuration Item Neutral
Data Definition Language (NDDL) which is the
for maintaining the Common Data Hode} (cbM).

, ‘ f[[J) s

pi?ry | tfoc?l used

_/"/z-

.

L

. AC

m—

L

20 DISTRIBUTION/AVvAILABILITY OF ABSTRACY

wecLassitigonmLnivep I samt as aer. T ovicussns D

21 ASSTARACYBECURITY CLABSIBICATION
Unclassified

22 At OF ARSPONE B LE INDIVIDUAL
Davie L. Judson

23¢ OFFICE SYMBOL
AFVAL/KLTC

230 TELEPHONE NUMBE A
tinsinge Ame Cots

$13-383-0076

.n‘.D -.—"ei
-

‘.
n

Frts

‘0..—

11. Title

Integrated Information Support System (IISS)
Vol V - Common Data Model Subsystem
Part 5 - NDDL Processor Development Specification

Accesion For

NTIS CRA&|

OTiIC T1AB 0
Uinannounced 0
Justibcat.on

- I e,
By

Ditibution) T
Avalabiily Crdes

. o

P Avail wrdf
- ' Tl or
Dit Specidi
4

i

|
- H ’
L{__‘LL —]

ERREADAOAOAUI XX

A w a .
) "¢
DAL ae"oc-‘hl.. m

()

— TV W T TeRTToR T

DS 620141100
1 November 1985

PREFACE

This development specification covers the work performed
under Air Force Contract F33615-80-C-5155 (ICAM Project 6201).
This contract is sponsored by the Materials Laboratory, Air
Force Systems Command, Wright-Patterson Air Force Base, Ohio.
It was administered under the technical direction of Mr. Gerald
C. Shumaker, ICAM Program Manager, Manufacturing Technology
Division, through Project Manager, Mr. David Judson. The Prime
Contractor was Production Resources Consulting of the General
Electric Company. Schenectady, New York, under the direction of
Mr. Alan Rubenstein. The General Electric Project Manager was
Mr. Myron Hurlbut of Industrial Automation Systems Department,
Albany, New York.

Certain work aimed at improving Test Bed Technology has
been performed by other contracts with Project 6201 performing
integrating functions. This work consisted of enhancements to
Test Bed software and establishment and operation of Test Bed
hardware and communications for developers and other users.
Documentation relating to the Test Bed from all of these
contractors and projects have been integrated under Project 6201 J
for publication and treatment as an integrated set of documents.
The particular contributors to each document are noted on the !
Report Documentation Page (DD1473). A listing and description
of the entire project documentation system and how they are
related is contained in document FTR620100001, Project Overview.

The subcontractors and their contributing activities were
as follows:

TASK 4.2
Subcontractors Role
Boeing Military Aircraft Reviewer

Company (BMAC)

D. Appleton Company Responsible for IDEF support,

(DACOM) state-of-the-art literature
search

General Dynamics/ Responsible for factory view

Ft. Worth function and information

models

iii

Subcontractors

Illinois Institute of
Technology

North American Rockwell

Northrop Corporation

Pritsker and Associates

SofTech

TASKS 4.3 - 4.9 (TEST BED)

Subcontractors

Boeing Military Aircraft
Company (BMAC)

Computer Technology
Associates (CTA)

Control Data Corporation
(cpc)

D. Appleton Company
(DACOM)

iv

DS 620141100
1 November 1985

Role

Responsible for factory view
function research (IITRI)

and information models of
small and medium-size business

Reviever

Responsible for factory view
function and information
models

Responsible for IDEF2 support

Responsible for IDEFO support

Role

Responsible for consultation on
applications of the technology
and on IBM computer technology.

Assisted in the areas of
communications systems, system
design and integration
methodology, and design of the
Network Transaction Manager.

Responsible for the Common Data
Model (CDM) implementation and

part of the CDM design (shared

with DACOM).

Responsible for the overall CDM
Subsystem design integration
and test plan, as well as part
of the design of the CDM
(shared with CDC). DACOM also
developed the Integration
Methodology and did the schema
mappings for the Application
Subsystems.

Subcontractors

Digital Equipment
Corporation (DEC)

McDonnell Douglas
Automation Company
(McAuto)

On-Line Software
International (OSI)

Rath and Strong Systems
Products (RSSP) (In 1985
became McCormack & Dodge)

SofTech, Inc.

Software Performance

Engineering (SPE)

Structural Dynamics
Research Corporation
(SDRC)

Prime contractors under other projects who have contributed
to Test Bed Technology. their contributing activities and
responsible projects are as follows:

ICAM Project

DS 620141100
1 November 1985

Role

Consulting and support of the
performance testing and on DEC
software and computer systems
operation.

Responsible for the support and
enhancements to the Network
Transaction Manager Subsystem
during 1984/1985 period.

Responsible for programming the
Communications Subsystem on the
IBM and for consulting on the
IBM.

Responsible for assistance in

the implementation and use of

the MRP I1 package (PIOS) that
they supplied.

Responsible for the design and
implementation of the Network
Transaction Manager (NTM) in
1981/1984 period.

Responsible for directing the
work on performance evaluation
and analysis.

Responsible for the User

Interface and Virtual Terminal
Interface Subsystems.

Contributing Activities

Contractors
Boeing Military 1701,
Aircraft Company 2202

(BMAC)

2201,

Enhancements for IBM
node use. Technology

Transfer to Integrated
Sheet Metal Center
(ISMC)

Contractors

Control Data
Corporation (CDC)

D. Appleton Company
(DACOM)

General Electric

Hughes Aircraft
Company (HAC)

Structural Dynamics

Research Corporation
(SDRC)

Systran

ICAM Project

DS 620141100
1 November 1985

Contributing Activities

1502,

1502

1502

1701

1502,

1703

1502

1701

1701,

vi

IISS enhancements to
Common Data Model
Processor (CDMP)

IISS enhancements to
Integration Methodology

Operation of the Test
Bed and communications
equipment.

Test Bed enhancerents

IISS enhancements to
User Interface/Virtual
Terminal Interface
(UI/VTI)

Test Bed enhancements.
Operation of Test Bed.

T
DS 620141100
1 November 1985
TABLE OF CONTENTS
Page
N - SECTION 1.0 SCOPE it e 1-1
e 1.1 Identification 1-1
< 1.2 Functional Summary 1-1
SECTION 2.0 DOCUMENTSciticititnnnnennnnn. 2-1
g 2.1 Reference Documents 2-1
ﬁ% 2.2 Terms and Abbreviations 2-2
oY
‘Q SECTION 3.0 REQUIREMENTSioutimnumnnnnnnn. 3-1
e 3.1 Computer Program Definition 3-1
] 3.1.1 System Capacities 3-1
€ 3.1.2 Interface Requirements 3-1
5& 3.1.2.1 Interface Block Diagram 3-2
o 3.1.2.2 Interface Requirements 3-3
xy 3.2 Detailed Functional Requirements 3-3
¥, 3.2.1 Initialization 3-5
3.2.2 Input/Output 3-5
o 3.2.3 Error Handling 3-6
e?ﬂ 3.2.4 Parse Commands 3-7
ey 3.2.5 Database Access 3-8
oo 3.2.6 General Command Processing 3-10
e 3.2.7 Termination 3-12
B 3.2.8 Individual Command Processing 3-13
" 3.2.8.1 ALTER ALIAS 3-13
o 3.2.8.2 ALTER ATTRIBUTE 3-16
?ﬁ, 3.2.8.3 ALTER DOMAIN 3-18
o 3.2.8.4 ALTER ENTITY 3-22
g 3.2.8.5 ALTER MAP 3-25
3.2.8.6 ALTER MODEL 3-30
5 3.2.8.7 ALTER RELATION 3-32
s 3.2.8.8 CHECK MODEL 3-35
' 3.2.8.9 COMBINE ENTITY 3-38
ok 3.2.8.10 COMPARE MODEL 3-42
- 3.2.8.11 COPY ATTRIBUTE 3-44
. 3.2.8.12 COPY DESCRIPTION 3-48
0y 3.2.8.13 COPY ENTITY 3-50
}H 3.2.8.14 COPY MODEL 3-58
i 3.2.8.15 CREATE ALIAS 3-62
'ﬁf 3.2.8.16 CREATE ATTRIBUTE 5-64
o 3.2.8.17 CREATE DOMAIN 3-66
- 3.2.8.18 CREATE ENTITY 3-68
o 3.2.8.19 CREATE MAP 3-71
oy
~
‘o:' vii

e N]
SISO COOTRC

4 0 : | - y . p L TR - .
o 130 W0a, W0y V4 AT U000 4% WRTAT AT T AT 87 W W9 By 5500 0,0 9 . v ;
LAY fﬁ.h,‘\ A I M !I’:?Q""}’ "'!,‘“ﬁ'.\.“,."‘{‘.t:"Q:’,’!?“::‘!ﬁ:“h‘!!:"’:’n by, !::'e’a‘e‘o 25“«;‘.' .%.!4‘35 !"!.) '

s

A

DS 620141100

B 1 November 1985
X TABLE OF CONTENTS (Continued)
?&
i 3.2.8.20 CREATE MODELoonon.. 3-74
i 3.2.8.21 CREATE RELATION 3-76
) 3.2.8.22 CREATE VIEW 3-79
>$ 3.2.8.23 DEFINE DATABASE 3-82
W 3.2.8.24 DEFINE RECORD 3-85
") 3.2.8.25 DEFINE SET 3-88
N 3.2.8.26 DESCRIBEciiitinunenenn 3-91
ot 3.2.8.27 DROP ALIAS, 3-94
3.2.8.28 DROP ATTRIBUTE 3-96
,ﬁ 3.2.8.29 DROP DATABASE 3-98
ﬁé 3.2.8.30 DROP DOMAINcco.... 3-100
& 3.2.8.31 DROP ENTITY 3-103
e 3.2.8.32 DROP FIELD0iiuun. 3-106
- 3.2.8.33 DROP KEYWORDo.... 3-109
- 3.2.8.34 DROP MAP it 3-111
’Q 3.2.8.35 DROP MODELiieiiiunenenn. 3-113
o 3.2.8.36 DROP RECORD 3-115
5y 3.2.8.37 DROP RELATION 3-118
; 3.2.8.38 DROP SET0iiiiiiinnennnn. 3-121
S 3.2.8.39 DROP VIEW, 3-123
] 3.2.8.40 .7 & 3-125
o 3.2.8.41 MERGE MODEL 3-127
" 3.2.8.42 RENAMEc.civininnnenn... 3-130
s 3.3 Performance Requirements 3-132
" 3.3.1 Programming Methods 3-132
R 3.3.2 Program Organization 3-132
n 3.3.3 Modification Consideration 3-132
qi 3.3.4 Special Features 3-132
s 3.3.5 Expendability 3-132
q¢ 3.4 Humar Performance 3-133
)a 3.5 Database Requirements 3-133
Y 3.5.1 Database Overview 3-133
" 3.5.2 Relations Between Tables and Views. 3-133
oy 3.5.3 Detailed Description of Tables
:ia and Views 3-133
aﬁs SECTION 4.0 QUALITY ASSURANCE PROVISIONS 4-1
R a.1 Introduction and Definitions a-1
4.2 Computer Programming Test and
h Evaluation 4-1
W
ﬂ& SECTION 5.0 PREPARATION FOR DELIVERY 5-1
)
S
s viii
M
‘Q::: .

)

S A T P R R A ¥
0 { i o . >)
"!-"g,'p‘.l'p!i‘c, LM 'g, (N e \\.l‘n LY

. N0 A X \ ARy PR TR YA AT m 18N " AT \
R R A MO WM LN S o M WA N M s SO YCLAT e N MO A MOUNI ML N DO B l':‘l'g X

Table

DS 620141100
1 November 1985

LIST OF ILLUSTRATIONS

Title Page
NDDL Functionality Matrix 1-3
NDDL Processor Interface 3-2

Organization of NDDL Functional
Requirements 3-4

LIST OF TABLES
CDM TABLES ACCESSED

Title Page
ALTER ALIAS ittt it cennnn 3-15
ALTER ATTRIBUTEttt enriunneun. 3-17
ALTER DOMAINttt eeennenns 3-21
ALTER ENTITY ¢ttt tennnnn. 3-24
ALTER MAP it ittt eeeiann 3-29
ALTER MODEL0ttt uennunnnean 3-31
ALTER RELATIONt eeniana. 3-34
CHECK MODELt ittt tteeannann 3-07
COMBINE ENTITY ittt 3-40
COMPARE MODEL ¢ttt nnnnn. 3-43
COPY ATTRIBUTEt meunennen. 3-47
COPY DESCRIPTIONciiieunvo.. 3-49
COPY ENTITY ittt i m it ieeiannns 3-56
COPY MODEL ittt et e e e 3-60
CREATE ALIAS ittt ie i 3-63
CREATE ATTRIBUTE iuuieu.. 3-65
CREATE DOMAIN ¢iinnnnn. 3-67
CREATE ENTITY ¢ it 3-70
CREATE MAP ittt it eeeean 3-73
CREATE MODEL ¢ttt iennnn. 3-75
CREATE RELATION cieeev... 3-78
CREATE VIEW it ittt ttineennnn. 3-81
DEFINE DATABASE 3-84
DEFINE RECORD ieeenene.. 3-87
DEFINE SET ittt ittt et eeeaa 3-90
DESCRIBE i it e eiinnn. 3-93
DROP ALIAS i it e et e ee e 3-95

DROP ATTRIBUTE, 3-97

! R
DS 620141100
1 November 1985
¥ LIST OF TABLES (Continued)
p
N Table Title Page
DROP DATABASEcoummuunnn... 3-99
! DROP DOMAINc.civiienunnn... 3-102
3 DROP ENTITYoiiiiiannnnnn.. 3-105
4 DROP FIELDuiviumanennnnnnan... 3-108
i DROP KEYWORDc.ccouuo.... 3-110
' DROP MAP ... iiiienii i, 3-112
DROP MODELoiiiimiinnnn ... 3-114
0 DROP RECORDccouuuiuunnn.... 3-117
i DROP RELATIONoouurnnnnnnnnnn.. 3-120
X 032703) o 3-122
; DROP VIEVW ...ttt 3-124
278 % 3-129
| MERGE MODELoiiimmmmnnnnn.. 3-130
: RENAME . ..ttt et 3-132
¥ ORACLE DATA DICTIONARY: COL TABLESc.couovuunn.... 3-135
s
a
.‘
[)
.
[\
!
#
K3
:0
'!
¥
I}
o
|l
)“
o]
*y
L]
v
¢
iy X
N
%
R :

K) T) A0 o : e o A - -
(RN RSN NI SN 0TI 1!‘!#"!".0'_0:Iﬁ"'k*'qt"vt‘ﬁ. St i il heg ‘) '

T DS 620141100
1 November 1985

s SECTION 1
LrS

1 “~

NE SCOPE
:3 . 1.1 Identification

Ky This specification establishes the development, test and
e qualification requirements of a computer program identified as
the Neutral Data Definition Language Processor, known in this

it document as the NDDL Processor. The NDDL Processor is one

ﬁﬁ‘ configuration item of the Integrated Information Support System

;& (IISS) Common Data Model (CDM) Subsystem.

KR

ﬁ%: 1.2 Functional Summary

;3 The NDDL processor is a language used to manipulate and

45; populate information in the Common Data Model (CDM) of the IISS

A0 System database. It provides the user with three modes of

ot operation: (1) Batch Mode allows NDDL command files to be

e executed; (2) Interactive Mode allows the user to enter NDDL
commands at a terminal; and (3) Forms Mode allows the user use

A1 of the IISS forms processor to display input and output screens

ﬂ$, of NDDL commands. The NDDL processor allows the user to

W populate and maintain the three schemas of the CDM: an external,

:{j conceptual and internal and the mappings between each. The NDDL

ot also provides capabilities for manipulation of many IDEF-1

; models and submodels needed during the process of developing the
T, single integrated model of the conceptual schema. Only the
integrated model may be mapped to the external and internal

) schemas. The NDDL was designed by a joint working group of IISS
3%; coalitior members, described in the Integration Task Report,

e, Reference 8. The language is modelled after SQL and the command
B features a combination of a few simple verbs (operators) along

s with the necessary parts of the CDM (objects). The

Sk functionality of NDDL is summarized in the matrix of Figure 1-1
o The following notes refer to the foot notes of the matrix.
:.Q‘.!

B

o

LY

'0...0

4:‘20:

% o

L

B,

iy

B 1-1

oy

iem

e

A7y]

BN o A) AR AT Ty T 000 Yy 1,V PR, LN ol Tt ity oy
R A A i A O SR U o A I "0-,’-‘»?.3.525"09_":?0‘13“6»l'vli"-"'a.“m A O D D St it oa e e s o

DS 620141100
1 November 1985

1. Internal Schema Objects are defined rather than created
since 1ISS assumes internal schema describes actual.
previously existing databases.

2. DESCRIBE serves the purpose of creating, altering and
dropping descriptions for the applicable objects.

3. Aliases are maintained for entities and attributes
only.

4. Keywvords are maintained only for entities, attributes
and relations. They can only be created when
associated with entities, attributes or relations.

5. The noted objects can only be altered through use of
DROP and CREATE operators.

6. ALTER commands generally have ADD, DROP and ALTER
suboperators for subobjects.

7. Data items are created and dropped as subobjects of
views.

8. Data types are created and dropped as subobjects of
domains.

8. Data fields are created as subobjects of records.

10. Maps do not have names of their own and cannot be
renamed or described.

X

."‘
LRI

PN
- e
Rt e
AL, e~

[

|

V)

3

f.
'4

,

XY

.
1 X AR PSR
SN RN

DG Jiane O AL 0 Gl ¢ W O, Yo A L3 1 - ¢ R MO 1 ydtpaty)
R e G R AR s Y, et O AN R KGRIy TR 8O0 4 0 1 £ ¢ MEEEE MUBAR IR D LSO RA R AR

DS 620141100
1 November 1985

OBJECT

lA1 AI DI DI D1 DIDIEIWF IKI MIMIRIR IS IV I

(o) i1 1 tir1alalaleloinli le !l alo le le le Ii |

P Pi Tttt trs ImItjely t pidicil it le

E lalrialalailcialilil 1w le lo la | tw |

R I s i I | P r 1i 1t 1d 1o 1 11 1r 1t 1 | |

A | ' D1 I 1 BI T1I1 i Inly | ir | | id i | i |

T 1 fal t i1 alyl!pl 1 I a | I [lo | 1 [

(o) | It 1 el s 1 p1l t I | | | | I In | | |

R 1 Il el ml el e | | I | | | | | { | | |
-------- B DT S s s At bl Dbl Soted Sl bt o
Alter I x I x 1t 51 8581511 1x Ix 151 I X Ix 15 1x 15 15 |
Check |] | | | | | ! | | | 1x | | | (|
Combine | | | [{ [| Ix | [| | [| ! 1 |
Compare | [| | | | [R ix 1 v 0
Copy I I x | { | I x | Ix | | { 1x | [| I |
Create | x | x 1 7 11 1 8 1 2 I1x1x 1914 1 x Ix Il ix 11 Ix |
Define | | | x| | | | i i | | Ix | Ix |
Describel Il x I x I x| x In/atx IX Ix Ix 110 I1x Ix IX IX IX |
Drop P X L x 17 0 x 18 12 Ix Ix Ix IX | X Ix Ix Ix Ix Ix |
Merge | | | i | | | | | i | ix | | | | i
Rename | I x | [| { IX Ix | IX 110 1x | Ix | Ix |
Halt | | [! [| | | (1 { [| { | | {

Figure 1-1. NDDL Functionality Matrix

DS 620141100
1 November 1985

SECTION 2
DOCUMENTS

2.1 Reference Documents

1.

10.

11.

12.

General Electric Co., Test Bed System Requirement

Document (Draft); SRD620140000, Revised 23 August 1982.

General Electric Co., Test Bed System Design
Specification; SDS620140000, 7 February 1983.

ICAM Documentation Standards; IDS15012000A, 28
December 1981.

General Electric Co., 1I8S Software Development
Guidelines/Conventions (Draft); 23 August 1982.

Structural Dynamics Research Corporation, IISS User
Interface Management System Services User Manual;
UM626144100A, July, 1983.

Structural Dynamics Research Corporation, IISS Form
Processor Users Manual; UM620144200A, 5 December 1984.

Control Data Corporation, IISS Neutral Data Definition
Language (NDDL) User's Guide (Preliminary Draft); 28
February 1985.

Hughes IISS Integration Task; 16 April 1984.

Softech, ICAM Architecture, Part 11, Vol. V,
Information Modelling (IDEFl); FTR110210000.

D. Appleton Co., CDM Administrator’'s Manual;
UM620141000, March 1984.

D. Appleton Co., CDM1-IDEF, Model of the Common Data
Model ; CCS620141000, 15 May 1985.

General Electric Co., Quality Assurance Plan;

QAP620144000, 4 January 1984.

DS 620141100
1 November 1985

13. D. Appleton Co., Embedded NDML Programmer ‘s Reference
Manual: PRM620141200, March, 1985.

14. Softech, Inc., NTM Programmer’'s Guide; UM620140001,
July, 1984.

2.2 Terms and Abbreviations

Attribute Use Class: (AUC).

Application Interface: (AI) A collection of routines with the
same calling sequences as the Forms Processor and Virtual
Terminal callable routines that enables applications to be
hosted on computers other than the host of the User interface.

Assertion: Predicate that applies to one or more attributes;
checked after completion of an action to determine if the
results should be committed.

Conceptual Schema: (CS).

Common Data Model Processor: (CDMP).

Common Data Model: (CDM) Describes common data application
process formats, form definitions, etc, of the IISS and includes
conceptual schema, external, internal schemas, and schema
transformation operators.

Data Field: (DF) An element of data in the internal schema.
Generally. it is by this name a DBMS will reference data.

Data Item: (DI) An element of data in the external schema. It
is by this name that an NDML programmer references data.

Data Type: A specific computer representation of a domain. i
Distributed Request Supervisor: (DRS) This IISS CDM Subsystem |

configuration Item controls the execution of distributed NDML
queries and non distributed updates.

Domain: A logical definition of legal attribute class values.

Domain Constraint: Predicate that applies to a single domain.

External Schema: (ES).

DS 620141100
1 November 1985

Forms: Structured views which may be imposed on windows or
other forms. A form is composed of fields where each field is a
form, item, or window.

Forms Processor: (FP) A set of callable execution time routines
available to an application program for form processing.

Internal Schema: (1IS).

Integrated Information Support System: (I1ISS) A test computing
environment used to investigate, demonstrate and test the
concepts of information management and information integration
in the context of Aerospace Manufacturing. The IISS addresses
the problems of integration of data resident on heterogeneous
databases supported by heterogeneous computers interconnected
via a local Area Network.

Mapping: The correspondence of independent objects in two
schemas: ES to CS or CS to 1IS.

NDDL User: The CDM administrator or his designated
representative.

Network Transaction Manager: (NTM) Performs the coordination,
communication and housekeeping functions required to integrate
the Application Processes and System Services resident on the
various hosts into a cohesive system.

Neutral Data Definition Languages: (NDDL) A language used to
manipulate and populate information in the Common Data Model
(CDM) or IISS System Database.

Neutral Data Manipulation Language: (NDML) A language developed
by the IISS project to provide uniform access to common data,
regardless of database manager or distribution criteria. It
provides distributed retrieved and single node update.

ORACLE: Relational DBMS based on the SQL (Structured Query
Language, a product of ORACLE Corp, Menlo Park, CA). The CDM is
an ORACLE database.

Object: Named Common Data Model item: for example; entity
class, relation class, attribute class.

Trigger: Action that is invoked at the commit completion of
another action.

DS 620141100
1 November 1985

User Interface: (UI) Controls the user‘'s terminal and
interfaces with the rest of the system.

Virtual Terminal Interface: (VTI) Performs the interfacing
between different terminals and the Ul. This is done by
defining a specific set of terminal features and protocols which
must be supported by UI software which constitutes the virtual
terminal definition. Specific terminals are then mapped against
the virtual terminal software by specific software modules
written for each type of real terminal supported.

h ,,.3'."!("" Q) J 9,04,V 1
Nt L‘e-.’*.?:'-.»‘»‘o'u'n'-"':‘x'.‘a*,?a'.fa‘h&?ﬂﬁ..'o'»fn" e.-"t:’,‘ﬂ',':f"::'

gty
t z::
0
DS 620141100

Y 1 November 1985
.i.':
ﬂ.:.l
‘j-,s: SECTION 3
,:'u

N REQUIREMENTS

j? 3.1 Computer Program Definition
!

i The NDDL processor is the computer program that translates

the command statements of this language and performs the

) operations requested, updating the CDM database. The NDDL
;q language is non-procedural. The NDDL processor is essentially
Lﬂ an interpreter, executing one command at a time, in the order
Sf presented by the user.

l.;

o Each command is parsed for syntactic correctness. Control
. is transferred to the individual command processor for the

" semantic validation of the command. 1If all semantic checks are
@i found to be correct, the database is updated or information
RN retrieved.
“liz
B 3.1.1 System Capacities
}f The NDDL is designed to allow multiple users at the same
{ﬂ time. Data limits are imposed only by the capacity of the DBMS.
?m Processing speed limits are imposed by the speed of the computer
o and the number of other users and the speed and efficiency of
the NTM subsystem and the IISS Forms Processor. A number of

- COBOL and C fixed size tables will be used to temporarily hold
o information. These limits can be changed very easily in a

e virtual memory environment.
:971.

?ﬁ 3.1.2 Interface Requirements

- d The NDDL processor shall make use of the IISS Forms
s%v Processor for command input and shall allow batch input as well.
12N The NDDL processor shall make use of IISS NDML wherever possible
fﬁ * to retrieve data from the CDM native ORACLE wherever NDML is not
R sufficient.

A
'T" d
B
B

Ry
N
o
:‘::q
¥ 3-1

.3 -

N

KA

S O A ¥ FA g ~ ! - ‘N > W RS .
it ‘,"."- Ol U O AR 0 ORAAGRA) . ~ Y
- R "'Y""“!“‘:""’* BEAANA \‘? R M .‘373“-“.!\"11‘ Ry L5 :‘ m‘.'c &1' Ll ?h“.""zﬁ:t.'l\.\:“!;"""e‘"t b ‘:'l By WERLALR

|
MO Nh AT
DR R NN

DS 620141100
1 November 1985

3.1.2.1 Interface Block Diagranm

v g e T

D +
', IBATCH NDDLI R - +
“ | m———— »1°C* | ! $omm e +
' D bt + 1I/0 1 [l R e +1
K Py + 0 | | | dombbom e +11
)] | S e NDDL | i IN | GENERATED ! 11
oo +1 | | l I «-+T 1| ORACLE (N
- tt INTERACTIVEI+-~> IFP | 1T IM | REQUEST F++
i " 1 I I | +-> | | PROCESSORS++
» S . +1 | | S - (R T +
.] ! T SRS +] -
R Lt + | t | NDMLI | !
o ———— ot + | ORACLE ++----- + i |
, i I +=1 Il DRS | [|
¢ | e th————— tm———— + !
¢ it TP + | |
h | e + |
' +-> | CDM DATA BASE |~--cceee—- +
e ettt T LA SR +
jé Figure 3-1. NDDL Processor Interfaces
&
3
#
0
o,
¢
_q!
B
;.-
’y
N
) *
8
?:,
i
"
3-2

AR ()
1‘vi=.-~“.‘.- oqu ‘:"0

N M ACLPh A OY G AT e A 0
oS ‘] """! R0 ."'u‘ (X BN 'n' u' ’l o -'; i T 6’ AL ' LRI R AT

PR D

e e e

TRV 10d ¥ A I R R X ™
"ue o l.nl}.c' o W Lt o AR \0.'\ OO AN £ X0 ‘.,l.‘ﬂ' a'! y ,‘n‘.‘ﬂ! .". A Al WA '.‘ %

DS 620141100
1 November 1985

3.1.2.2 Interface Requirements

The NDDL processor makes use of the IISS Forms Processor
directly for forms interactive input. NDDL also makes use of
the standard C input/output library to allow user non-forms

interactive input or batch input via file redirection. Database

access is through a combination of (1) ORACLE for update insert
and delete and recursive searches not supported by NDML and (2)
NDML for all other searches. The NDML routines are precompiled
by the IISS NDML precompiler and ORACLE request processors are
generated, which communicates with NDDL through the DRS which
uses IISS NTM services.

It is a design goal to replace the use of ORACLE with NDML
to achieve DBMS independence, and to allow the CDM database
itself be distributed.

It is a design goal to make NDDL an application controlled
by the IISS User Interface subsystem to make use of its
capabilities. Currently there is an interface problem with the
C library of I/0 routines supplied with the IS/1 workbench and
the UIMS.

3.2 Detailed Functional Requirements

This description of functional requirements is broken down
into nine subfunctional areas. These areas are identified in
the block diagrams, Figure 3-2 which includes the following
paragraph numbers. The forty-two commands currently making up
NDDL are each described in Section 35.2.8.

ey ".\‘,‘\.' oy "5}\;-‘}\:.--' oy ‘,}‘,“_\'}\‘ N
0, 214 NESS.

..... - kd

.o
48,

R
DO

—— - e e i i i bt e TRy W TR R W ETRR TeE TR e e » TR T T T —T

5
! DS 620141100
R 1 November 1985
5
L Frmmm e +
o, I NDDL |
a2 e e I PROCESSOR l|---———eeemmm e +
' 1 +=—=1 3.2 | ——-4+ |
v v e + \' v
J;‘: o + te——————— + e + e +
.;i:, I INITIALIZATIONI | PARSE | IGENERAL COMMANDI| I TERMINATION |
! | | ICOMMANDS | | PROCESSING | | l
f:e:. | 3.2.1 I I 3.2.4 | | 3.2. I [3.2.7 |
et T T——— + Aemmm————e tm————— + Femmm———eee +
| |
e + Fom e $mm e +
WY | y T TS R TR + |
i I T T —— | 2R +1 1
o I +--—-1 INDIVIDUAL COMMAND +Hot——t
M | I) PROCESSING l+-+ |
A i ! i 3.2.8 ++ I
ol v v D ettt + v
."y $mm e + tmmmm e + et TP +
{ | INPUT/OUTPUT i.--1 ERROR HANDLING | | DATABASE ACCESS!
B [3.2.2 ! I 3.2.3 ! I 3.2.5 |
W e + e T + $om e +
oy Figure 3-2. Organization of NDDL Functional Requirements
o
i
Eh
:yf:.
)
R
8
."5'
N
o
s
s
A
N
1.¢'l
,‘u
A
a
I)%
i
A 3-4
:"t“'
é\.g:‘
a4
B
o
WY A , - A , R P AL PE.L N NP U G) ~ "t T T AR AR AW RN .
R R T oot S e PNl Lol clen St o s L D R S S v g HL%MM

DS 620141100
1 November 1985

3.2.1 Initialization

A. Function:
Initialization will allow the NDDL processor to perform
all initialization requirements with other subsystems
and software environments.

B. CDM Requirements:

None

C. Processing:

1. Determine the processing mode: either interactive,
through forms, or batched.

2. Initialize with NTM through use of INITEX service.
In the future, this should be changed to INITAL when
UI services are required.

3. If in forms mode, initialize to the forms processor
by using the INITFP service, OPNFRM and ADDFRM to
create the user’'s initial form.

4. Logon the ORACLE DBMS and open all cursors
necessary. The logon data area and cursors will all
be global data structures.

5. 1Initialize any other data structures necessary for
any commands to their null, or initial state.

6. 1Initialize any other global variables such as
current model, current database, etc.

- 3.2.2 Input/Output

A. Function:

Provide user input to the other components of the NDDL
processor in an invisible manner, without respect to
the means in which the input was obtained. Provide
output for NDDL processor to the user through a
standard interface to allow the same invisibility.

B. CDM Requirements:

»
AT

PR, . u
OIS, 3 :
RO q‘.",ﬁ}ﬂ.\rﬁ.‘l A

~

DS 620141100
1 November 1985

None

Processing:

The standard C character input/output routines will be
used. They will be modified, however, to recognigze the
current input/output mode. Batch mode will use the
existing capability of the C library. Interactive mode
wvill make use of forms processor calls. Because the
forms processor can return many screens of information
at a time, the modified input/output routines shall
extract a single character at a time from the data
structures. Since output consists of simple
information messages to the user, PMSGLS forms
processor calls can be used for all messages or PRINTF,
if batch mode, to standard output. Output of generated
NDDL uses the standard C file I/0 primitives.

3.2.3 Error Handling

A.

Function:

Provide a2 single standard means of communicating errors
to the NDDL user. The interface shall be simple,
readily usable and invisible to the particular
input/output mode. The error handling shall also make
database transaction rollback conditions simple to
recognize. User requirements for command skipping
after a semantic error shall be implemented.

CDM Requirements:

None

Processing:

Three major entry points to the error handling
functionality of NDDL shall be established
corresponding to the three types of errors. These are:

1. An entry point for "fatal®" errors. These are
errors from other subsystems or software than NDDL.
These errors are to be handled in accordance with
the I1IISS Error Handling Philosophy, Reference
Number 12. A standard routine is called to log the
message in a central place. These error conditions

3-6

. a e
N
IO

DS 620141100
1 November 1985

shall also be communicated to the user as type 2
below.

2. An entry point for user errors. These are errors

that are caused by the user and can be recovered by
user action. An example may be creating an entity
that already exists. This error handler must set a
flag so at the end of the command, any database
changes are backed out through a rollback procedure
supplied by the DBMS or NDML.

3. An entry point for warning messages. These are
indications of problems of user understanding, such
as dropping a set that does not exist, or simple
informative messages about actions that have
occurred, such as “model altered".

It is the responsibility of the general command
processor, Section 3.2.6, not to process commands
in batch after a user error or fatal error has
occurred. This prevents a later command from
causing unpredictable harm.

3.2.4 Parse Commands

A.

Function:

The Parse Command subfunction of IISS will provide a
mechanism for accepting user command input, validating
correct syntax, reporting syntax errors and saving
pertinent command information in data structures
independent of the syntax.

CDM Requirements:

None

Processing:

This function will be provided through code generated

by the UNIX tools YACC and LEX and interface routines

provided as part of this function (UNIX is a trademark
of Bell Labs).

1. LEX is a tool that generates lexical analyzers.
Given a specification of the reserved words or
tokens, LEX will generate a routine that will

3-7

e Ly Y N T

DS 620141100
1 November 1985

accept user input and return control to the caller
on each token recognized.

2. YACC is a tool that generates a parser that
validates user input as matching the grammar or
syntax of the language. The parser generated has
the capability of calling user specified routines
or code called "actions”. YACC is commonly used in
compiler construction. YACC uses a syntax
specification of the NDDL commands and generates
the NDDL parser. This specification is not treated
as an IISS deliverable because to do so would
require the user or target site to have the UNIX
tools.

3. Token primitive routines will be developed that
store user entered command data, or tokens, in a
special data structure. This data structure is
simply a matrix of pointers into a string of
concatenated tokens. The columns of the matrix are
called lists. Lists generally have like tokens;
for example, all the keywords entered on a CREATE
ENTITY command. The rows of the matrix are
generally meaningless, unless the syntax defines a |
special correspondence between lists. An example is |
CREATE VIEW, where data items and attributes must |
match up. i

|

The token primitives are the only kind of action
statements used in the YACC input. It is
conceivable that each entire command processor
could be called as YACC action statements, but this
is not the case. The design goal was to build
command processors independent of the input
mechanism, in this case, command syntax.

3.2.5 Database Access

A. Function:

I This subfunction outlines the functional requirements

‘ﬁk of the database access used in the NDDL processor. All
i database access shall be for the ORACLE based CDM. All
436k database access shall use the facilities of the IISS

-ﬁﬁ NDML wherever possible. The ORACLE SQL facilities may

be substituted only if the NDML does not provide the
Y needed functionality. Any use of ORACLE’'s SQL shall be

3-8

Y L]

N
!

L EAYST - 0 Re - 2 "y N
" IV AN OIS XA 0 L e e e T
LD L DAGO LA N D, T SO AW AN AR L O R AU CERAT A T m’-'.lit"

DS 620141100
1 November 1985

X

ke

g written in C. This is because the necessary logon

Qb database area and cursors must be kept in a global area
. to avoid the database access routines requiring any
Ny DBMS specific interface parameters. This is to allow
,M _ eventual conversion of all ORACLE database access

»x. routines to NDML and achieve DBMS independence for the
yﬁ NDDL processor.

a.",a

e B. CDM Requirements:

&*, The ORACLE DBMS must be used due to previous decisions

;ﬂ on the initial DBMS to host the CDM.

‘Q:I

o C. Processing:

o 1. ORACLE SQL will be used for the following

Fed, requirements:

et

$§ 1.1 SELECT where sorting is required.

A

! 1.2 SELECT where a Bill of Materials type

o recursive search is needed.

0.. *

ﬁ} 1.3 INSERT operations. Insert modules will insert

o a single row at a time.

by

m 1.4 DELETE operations.

—\"'

‘,;::; 1.5 UPDATE (or MODIFY) operations.

ot

ﬁﬁ 2. COBOL embedded NDML will be used for all other

R database retrieval and verification modules. A

- distinction is made between verification or look up

. modules and modules expected to retrieve more than

&J one row.

3' 2.1 The verification type module shall be called

S with the search parameters as inputs and the
2 database value(s) found on the single row as

g : output. Very often a zero valued object

'¢: number will be used as a "no-find" status.
~

' 2.2 For routines expected to find many rows, the

e routine will receive the simple search

) parameters as input as before. Within the

Y NDML { and }, logic will be coded for

:%' processing each row. Very often calls to

‘Zin

:'ofj

', 3-9

\::::

LI Ty Lo T T AR O OO N MR T AT AT B 2 et S ™ 2 e P~ o
OO OALAMEDEIBE DDA DNOCRXA NI lﬁu‘l.,'ﬂ'q‘i'\'l'gi.iofm'vv DO NI, Tt i Tovy bty

[} f) k
Mt 30
ST,

WY 3. T,

DS 620141100
1 November 1985

other routines which may process a single row
will be made. If row processing is simple
enough, calls are not necessary.

These requirements promote DBMS independence and
simplicity of data structures common to more than
one module.

3. For purposes of database concurrency and integrity,
the logical unit of work shall be defined to be a
single NDDL command execution. That is, the
command is wholly executed with the results as
expected by the user or none of the command is
executed. Therefore, an NDDL command can be
considered a transaction.

3.2.6 General Command Processing

A.

C.

Function

General Command Processing will handle such functions
as pre-command initialization, control of parsing,
control of forms input/output, and post command control
of database commit or rollback. It must also control
parsing of commands that cannot be executed due to
previous errors. This subfunction will also provide
facilities for CDM object numbering and number reuse.
The subfunction must provide for generalized access to
the parser data structures.

CDM Requirements

Two tables necessary for object numbering will be used.
These are: (1) NEXT_NUMBER which contains the next
number to be used for each object type; and (2)
REUSABLE NUMBER which contains all the object numbers
dropped and available for reuse.

Processing

1. The user input form must be displayed the first
time in forms mode.

2. Each command entered by the user on the input
screen must be processed; skipping commands after
an error is encountered.

DS 620141100
1 November 1985

; 3. For a completed command, a count of errors must be
' displayed.

4. 1If these were errors, the entire screen must be
redisplayed. Also, the previous set of error

' messages need to be blanked out and a "no errors”

4 message displayed. If the user asked to refresh

" and keep his command on the screen, this too must

be done.

o 5. The current database and model must also be kept on
the screen.

A 6. If the user entered the quit key, a halt command
: must be generated and processed.

& 7. WVWhen a user has entered a command, the parser must
K be called. The return status of parsing must be
A examined.

8. If the command is to be processed, then a routine
. to effect the transfer of control to the proper
ok command processor is executed.

i 9. After the individual command is executed, the

v, current model and database must be established. If
the command was successful, the database

. transactions are committed or, if unsuccessful,

ot rolled back.

By 10. The CDM objects that shall be numbered follow.
o Each object type below has an object type number.

OBJECT TYPE NUMBER OBJECT TYPE

MODEL
ENTITY
ATTRIBUTE
KEY CLASS
RELATION
TAG
DOMAIN
KEYWORD
VIEW

10 DATABASE
11 SET

12 DATA TYPE

L e T -

-

oo udhLdd -

4,

v OO AN R M A R NI P T W AT AN Rty ¥
JONUSER RN N »‘.")"“?.‘!‘5 hg!ﬂ‘!'u’ﬂs"'a b, '92‘55"5"‘,13“' ’!"s‘.% :'l d !‘:"!' LS, Lol "“9‘3';‘!'1'59:‘ ‘o.:'i"‘:'

DS 620141100
1 November 1985

13 DATA ITEM
14 DATA FIELD
15 RECORD

Objects are numbered to ease in renaming and to
allow a central place for storing object
descriptions.

Two subfunctions shall exist to promote consistent
handling of these numbers.

10.1 Adding a reusable number shall make the
number of a dropped object available for
reuse by storing it in the CDM's
REUSABLE_NUMBER table.

10.2 Get next number will obtain a new, unused
number for an object being created. It must
first search the list of available numbers
for this object type. 1If omne is found, it of
course must be deleted from the list of
reusable numbers. If one is not found, the
next available number is retrieved from the
CDM’'s NEXT_NUMBER table. This number is
incremented and updated in the NEXT_NUMBER
table.

11. Finally, this subfunction must supply routines that
allow the command processor to access the lists of
user command tokens built by the parser. These
functions shall allow access to the first token on
the list, the next token from the list and
accessing a token from one list corresponding to
another list (same row). The functions should
return a count of tokens on the list and an end of
list indicator.

3.2.7 Termination

A.

Function

Termination will allow the NDDL processor to perform
all termination requirements with other subsystems and
software environments.

3-12

2o !
oy

by Yt

- 'in w e o

.

DS 620141100
1 November 1985

B. CDM Requirements

None
C. Processing:
1. Close all ORACLE cursors and log off from ORACLE.

2. If the forms mode of input was used, use the FP
service TERMFP.

3. 1Issue a call to send a finish up message to the DRS
and to terminate NTM activities.

3.2.8 Individual Command Processing

The following subparagraphs outline the functional
requirements of each command making up the NDDL. Consult the
Table of Contents for a quick reference to a specific command.

3.2.8.1 ALTER ALIAS - Switch the primary and alias names of a
conceptual attribute or entity.

A. Function:
Alter Alias performs the following functions:

1. changes the primary name of an attribute or
entity to alias;

2. changes the alias name of an attribute or
entity to primary.

B. CDM Requirements:

1. The primary name of the attribute or entity
must exist in the current model.

2. The alias name of the attribute or entity must
exist in the current model.

C. Processing:

1. Alter Alias verifies that the primary and alias
names to be switched exist in the current
model.

3-13

\

> MR W R O 1 4 AN
AR s X AR St e e el e

= DS 620141100
E 1 November 1985

o 2. 1If attribute names are being switched, the
o primary and alias entries in the ATTRIBUTE_NANME
o table are updated.

, 3. If entity names are being switched, the primary
Oy and alias entries in the ENTITY NAME table are

e updated.

3-14

O DNONT W BN M LN OOV 4 0 o .
T D A DO N A NI R ORI KN NN O R RIDN o NN

TERE TN TER T AT TT Tar T Tre TR . —-‘n-“‘r"

DS 620141100
1 November 1985

CDM TABLES ACCESSED - ALTER ALIAS (S=SQL N=NDML)

i
ey TABLE NAME SELECT MODIFY INSERT DELETE

ENTITY CLASS N(VERNNME)
'“% ENTITY NAME N(VERNME) S(UPDECAL)
30 ATTRIBUTE_CLASS N(VERNMA)

ATTRIBUTE_NAME N(VERNMA) S(UPDACAL)

ot 3-15

o) g Iy b ! ‘. ! "~ > N J NS . LTS
WO OO O Tt s > \ 1) . T -
B R e o e A e e e R A R R e A e]

e it dh A g dh e

3.2.8.2

A.

DS 620141100
1 November 1985

ALTER ATTRIBUTE - Alter a Conceptual Attribute

Function:

Alter Attibute performs the following functions:
1. change a domain name for an attribute;

2. add keywords to an attribute;

3. drop keywords from an attribute.

CDM Requirements:

1. The attribute to be altered must exist in the
current model.

2. If the domain is to be modified, the new domain
must exist.

3. If a keyword is to be dropped, it must exist.

Processing:

1. Alter Attribute verifies that the attribute to be
altered exists.

2. If the domain is to be changed, the existence of
the new domain is verified and the ATTRIBUTE_CLASS
table is modified to contain the new domain number.

3. If a keyword is to be dropped, a check is performed
to verify that the keyword is assigned to the
attribute. 1If so, the keyword is deleted from the
AC_KEYWORD table.

4. If a keyword is to be added to an attribute, the
keyword table is searched to determine whether the
keyword exists. If not, the new keyword is
inserted into the keyword table. The new keyword
is then inserted into the AC_KEYWORD table, if it
did not already exists there.

DS 620141100
T 1 November 1985

CDM TABLES ACCESSED - ALTER ATTRIBUTE (S-SQL,N=NDML)

iy TABLE NAME SELECT MODIFY INSERT DELETE

b AC_KEYWORD N (ADDVA) S INSKWAC) S
(DELKVWAC)

Vol ATTRIBUTE_CLASS N (VERATT) S (UPDAC)

Q* ATTRIBUTE_NAME N (VERATT)

bl DOMAIN_CLASS N (VERDOM)

‘$ KEYVWORD N (VERKW) S (INSKW)

L

e
J 3 ! - LN BT T A A R Y RO

! o - .
SN Loy (LA it ! e A A A A AN WAL LT ,
RO PRI BRI e A AX e W PN S A _ e e N e) £,'¢ 00

Iz TP TS TR YO
!":'
e

W DS 620141100
1 November 1985

L)
i) 3.2.8.3 ALTER DOMAIN - Alter the definition of a domain in the
B CDHM.
)
I‘A
" A. Function:
g: Alter Domain allows the NDDL user to perform the
B following modifications to the definitions of existing
3 domains:
i |
1. addition of non-standard data types:;
ﬁf 2. deletion of non-standard data types;
%
3% 3. changing the meta data description of existing data
b types of the domain (i.e. changing the type, size
- and number of decimal digits);
ﬁ‘ 4. promoting a non-standard data type to standard,
?i converting the former standard to non-standard.
']
:h' B. CDM Requirements:
o The domain name referenced must be found in the CDM.
,ﬂ‘ Any data types to be dropped or altered must already be
K defined for the domain. Any data types to be added
g$ must not already be defined anywhere else in the CDM.
K0 There must always be a standard data type for the
o domain, i.e. the current standard data type cannot be
~ dropped.
<8
e C. Processing:
e
o 1. The user entered domain name to be altered is
e verified to be in the CDM. With this number, each
" of the data type changes can be processed.
A"’.
o
gh 2. For each user data type request, determine if its
i) an ADD, DROP or ALTER.
)
L 2.1 For an ADD or ALTER, the legal data types are
= checked. They must be SIGNED, UNSIGNED,
e INTEGER, FLOAT, PACKED, or CHARACTER. The user
W does not enter this for a DROP.
o
bR,
e 2.2 For an ADD and optionally for an ALTER, the
o size and number of decimal digits are checked.

They must both be numeric and the decimal

“"t 3-18

2 P AR

O 10 3 10 VAN OGO M A P AR A " e =n N A M L ~ . AN A AL
RGO G SO, 2*.,0,‘),6\};‘\ "’Q‘.&..&.‘ ‘?'a ?_Q‘ » ,‘h_ s ‘9““_}!’.0!;.5!*!):\“ AOAR{ s 73 ‘h " 4%,! !hl‘.:l!.f:’.,l'g!l,\!l‘g.l.ﬁll it ‘:‘ >, n.l‘n‘

A AL 0

LA o
¥ A

B0
LIS

T

DS 620141100
1 November 1985

digits must not exceed the size. They are not
specified for a DROP.

If the user has requested to alter a data
type:

The data type is verified to exist for the
domain and be either standard or
non-standard. The user is warned if it
cannot be found. If it is a standard, only
type, size and number of decimals may be
changed.

2.3.2 For standard data type, or a change to only

the type, size and number of decimals, this
change is recorded in the USER_DEF_DATA_TYPE
table.

2.53.3 Otherwise, the user has requested a switch

2.4

2.4.1

2.4.3

2.4.3

2.4.3

RRACOIRORE

from non-standard to standard. In this
case, the old standard data type name is
fetched and is changed to non-standard and
the name specified by the user is changed to
become the standard data type.

If the user has requested to drop a data type:

The data type name is verified to be in the
domain.

If the data type is found to be standard,
the user is informed that it cannot be
dropped.

If the data type is non-standard, then any
usage of this data type is checked.

.1 The database is searched to find any
references by a data field.

.2 The database is searched to find any
references by a data item.

.3 The database is searched to find any
references by an attribute class. This is
probably unnecessary since it has been
checked to be non-standard in 2.4.2 and

3-19

00ug ' - -y s .
R R Gt S e o T R S PR N T

‘!lIlIllIIlIlIllIlllIlllllllllllllllllllllll*

DS 620141100
1 November 1985

only standards can map to attributes.

2.4.4 If it was not referenced elsewhere, data
type and its descriptinn text is deleted.

2.5 If the user has requested to add a data type:

2.5.1 For a standard data type, the database is
searched for an existing standard data type.
If one is not found:

2.5.1.1 The data type name is checked to see that
it was not used for some other domain. If
not,

2.5.1.2 The data type is checked to be valid by
using a database look up in the table
DATA_TYPE. 1If ok,

2.5.1.3 The data type information is stored in the
CDM table USER DEF DATA_TYPE, with a
unique object number, as standard for this
domain.

2.5.2 For a non-standard data type, the data type
name is checked as in step 2.5.1.1.

2.5.2.1 The data type is checked as in 2.5.1.2.

2.5.2.2 The data type information is stored in the
CDM table USER_DEF_DATA TYPE with a unique
object number as non-standard (or "USER")
for this domain.

"f'(‘

L e,
e, 4‘~“\'~‘

CDM TABLES ACCESSED - ALTER DOMAIN

T PR NE TERU NTERY Ul TR SN RN ETHENEMERERNTHERENE M ETREY TR W R wotw rew

DS 620141100
1 November 1985

(S=SQL N=NDML)

TABLE NAME SELECT MODIFY INSERT DELETE
ATTRIBUTE_CLASS N(VERACDT)

DATA_FIELD N(VERDFDT)

DATA_ITEM N(VERDIDT)

DATA_TYPE N(VERTYP)

DOMAIN CLASS N(VERDOM)

USER_DEF_DATA_TYPE S(UPDTDT) S(INSDT) S(DELDT)
USER_DEF_DATA_TYPE N(VERDT) S(UPDIND)

USER_DEF _DATA_TYPE N(VERDTD)

USER_DEF_DATA_TYPE N(VERSDT)

3-21

-

« 4 . AN P
e 5"!‘»"‘”:0!’1",‘.”?".=""«9"3.\"=i Rt ded

<«

2
WA l)\

Ty

.......
L -
.

P P o .
I Y, LA, <.
AU U O D o

N e

..............

X DS 620141100
. 1 November 1985

K} 3.2.8.4 ALTER ENTITY - Alter a conceptual entity

A. Function:
Alter Entity performs the following functions:
1. add/drop key classes for the entity being altered;

2. add/drop owned attributes for the entity being

“ altered;

I

; 3. add/drop associated keywords for the entity class
N being altered.

! B. CDM Requirements:

1. The entity to be altered must exist in the current
model .

2. If owned attributes are to be added, the attribute
must exist in the current model. If owned

. attributes are to be dropped, they must be owned by
" the entity being altered.

¥

K3 3. If a key class is to be dropped, it must be a key

: class for the entity being altered.

4. If a keyword is to be dropped, it must be

K] associated with the entity being altered.
-4
} C. Processing:

1. The Alter Entity process verifies that the entity
to be dropped exists in the current model. If it
does not exist, an error is issued and processing
is terminated.

' 2. If key classes are being added, a new occurrence of
2 key class is added to the entity. A new occurrence
of attribute use class is created for each
attribute named as part of the key, if one does not
exist for the entity. A new occurrence of key
class members is created for the entity for each
attribute named in the key class clause.

.
I ST

3. 1If owned attributes are being added for the entity,

>_w -
T .

-~

3-22

¥
P}

AR TR L as_- » -

K%, .Y YEATRY N AL) e ¥ ™ P T e) » L r .
LR P YY) . 3 ; 20 Cr opfale .) n ",) ;
R R ﬂz,l?,» Lt Q‘A‘fiﬁ*«,&h_ XL 0"}‘ AP LML .,"A\'..‘ pA '0“. v .\.‘.1:9'1;,’__ 0, ‘\'b‘ A i’v‘l'n‘l A WAl 'l‘).'. i!"iz“la\h“,h‘!h’b - ‘Q." " .c.".’ i

DS 620141100
1 November 1985

the existence of the attribute class is determined
within the current model. If the attribute class
does not exist, an error is issued and processing
is terminated. If they do exist, each attribute
class is created as an owned attribute class and
attribute use class for the entity.

If a keyword is to be added to the entity class,
the keyword table is searched to determine whether
the keyword exists. If it does not exist, the new
keyword is inserted into the keyword table. The
nev keyword is then associated with the entity
class.

If key classes are being dropped, the existence of
the key class for the entity being altered is
determined. If it does exist, the key class and
attributes inherited via the migrated keys and key
class members are dropped. If the key class being
dropped is from a complete relation, the complete
relation is also deleted.

If owned attributes are being dropped, ihey are
verified to determine if they belong to the entity
being altered. If they belong to the entity, the
owned attribute class occurrence and the attribute
use class for each attribute named is deleted from
the entity being altered.

If keywords are to be dropped, a check is performed
to verify that the keyword is associated with the
entity being altered. 1If so. the keyword
association is deleted from the entity.

- — - — Y ——— Y T RNV W W VW .

CDM_TABLES ACCESSED

T T T T W W e e

- ALTER ENTITY

R diadh ok Aok ek el A ek A diadt Aol ol med aoC L |

DS 620141100

1 November 1985

(S=SQL,N=NDML)

TABLE NAME SELECT INSERT MODIFY DELETE

ATTRIBUTE_CLASS N(VERATT)

ATTRIBUTE_NAME N(VERATT)

ATTRIBUTE_USE_CL N(DELOAC) S(INSAUC) S(DELAUCL)
N(VERAUC)

COMPLETE_RELATION N(VERCRC) S(DELCMPR)

EC_KEYWORD N(ADDKVE) S (DELKVEC)

ENTITY CLASS N(VERENT)

ENTITY NAME N(VERENT)

INHERITED ATT_USE S(DELMIGK) S(DELIAUC)

KEYWORD N(VERKW) S(INSKW)

KEY_CLASS N(VERKC) S(INSKC) S(DELKC)

KEY CLASS_MEMBER N(DRPMGKM) S(INSKCM) S (DELKCM)

OWNED_ATTRIBUTE

N(DRPAC)
N(VEROAC)

S(INSOAC)

P AV

K
REEN

(]
ﬁt.

e 1
£, 0%

(]
KRN

DS 620141100
1 November 1985

3.2.8.5 ALTER MAP - Modify a CS-1IS Mapping

A.

(UK N
“'P‘f::"q!‘,'ﬁ,"

Function:

Alter Map allows the user to perform the following
functions:

1. add a data field mapping to an attribute use class
(AUC) to data field map;

2. add a set mapping to an AUC to set map;

3. drop a data field mapping from an AUC to data field
map;

4. drop a set mapping from an AUC to set map;

5. change a secondary AUC to data field mapping to
primary and the previous primary mapping to
secondary;

6. change the data type name for an AUC to data field
mapping;

7. change the value in an AUC to set mapping;
8. add a set mapping to a relation class to set map;

9. drop a set mapping from a relation class to set
map.

CDM Requirements:

The map to be altered must exist in the CDM. 1In
addition, all database names, record names, data field
names, data type names, and set names referenced must
exist in the CDM.

Processing:

Different rules apply depending on the Alter Map option
chosen.

1. For an AUC to data field map, the following rules
apply:

1.1 ALTER ADD

OOV KM

k ”»

DS 620141100
1 November 1985

1.1.1 The AUC must not have been previously mapped
to a set.

1.1.2 The AUC must not have been previously mapped
to a data field.

1.1.3 If no data type name is entered, the
standard data type for the AUC's domain is
used.

1.1.4 Only one primary mapping may exist for an
AUC.

1.1.5 Multiple secondary mappings may exist if
there is a pre-existing primary mapping.

1.1.6 1If a primary or secondary mapping is not
specified, the default is secondary.

If all rules are obeyed, a
PROJECT DATA_FIELD entity is inserted into
the CDM.

1.2 ALTER DROP

1.2.1 1If secondary AUC to data field mappings
exist, a primary AUC to data field map
cannot be dropped.

If the above rule is obeyed, a
PROJECT_DATA_FIELD entity is deleted from
the CDM.

1.3 ALTER ALTER

No special validations are performed for the
ALTER ALTER option for AUC to data field
mappings. This option allows a secondary
mapping to be changed to primary and the
previous primary mapping to secondary. This
option also allows the data type name to be
changed. In both cases, PROJECT_DATA_FIELD
entities are modified.

2.0 For an AUC to set map, the following rules
apply:

VAN () . QL] 0y P A TNV
iy ‘“. iiectiitie Q XA " a‘. i o‘, el R n,. DO ,'l KRI..' NN ety g' .t, i Y |, l, .|, ‘1, LSRR

.1

1.

.1

.1

1.

BROGUEOHODOACAONAA N AL A AT T OB | :
Rt R DL -t‘"‘?”,&",t", :?‘,.%.":‘?"l'l,v":rq -:'"r ‘?:“’c”:s‘i,r’l,; 0.5) "":‘fi‘

]

DS 620141100
1 November 1985

ALTER ADD

1 A data field mapping must not exist for the
AUC.

.2 The set to be mapped to must have a single

record type for its members.

.1.3 The set to be mapped to must not have been

previously mapped from a relation class or
another AUC.

-4 All AUC to set maps must map to the same

database for a particular AUC.

.5 All AUC to set maps must contain a value

which must be unique for a particular AUC.

.6 All sets mapped to from an AUC must have the

same record type as its owner.

If the above rules are obeyed, an
AUC_ST_MAPPING entity is created.

ALTER DROP

No special validations are performed for the
ALTER DROP option for an AUC to set mapping.
An AUC_ST MAPPING entity is deleted.

ALTER ALTER

The AUC value must be unique for all mappings
from a particular AUC.

If the above rule is obeyed, an AUC_ST_MAPPING
entity is modified.

For a relation class to set mapping, the
following rules apply:

1 The set must not have been previously
mapped .

RN Y IO
o Y
T e T l"“&.'

t
I‘,*)l

DS 620141100
1 November 1985

3.1.2 The member record name must be specified if

the set being mapped to is a multi-member
set.

If the above rules are obeyed, an
RC_BASED REC_SET entity is created.

3.2 ALTER DROP

sf“»‘.\' y

No special validations are performed for the
ALTER DROP option for a relation class to set
mapping. An RC_BASED REC_SET entity is
deleted.

ALTER ALTER

The ALTER ALTER option is invalid for relation
class to set maps.

()
PO

.‘?:;
ot
. DS 620141100
KX 1 November 1985
:E.
. CDM Tables Accessed - Alter Map
!
' TABLE NAME SELECT MODIFY INSERT DELETE
;o ATTRIBUTE_CLASS N(FINDDOM)
) ATTRIBUTE_USE_CL N(VERAUC)
sy
i AUC_ST_MAPPING N(FNDASA) S(ALTSMAP) S(INSAUCS) S(DELIASM)
N(VOMAPS)
y N(VERASN)
o N(FNDASM)
A N(CHLTAUCV)
N
gp DATA_BASE N(VERDB)
i N(VERDF)
e DATA_FIELD N(VERDF)
o
2o ENTITY_CLASS N(VERENT)
s
a ENTITY NAME N(VERENT)
b
e PROJECT DATA_FIELD N(PDFSRCH) S(ALTSMAP) S(INSPDF) S(DELIPDF)
" N(VERPDF)
- N(GETMAPC)
ef?
i RC_BASED_REC_SET N(VERRCBS) S(INSRCRS) S(DELIRCS)
gt N(VERRCMP)
i N(FNDRCM)
Wi
W RECORD_SET N(VERSNS)
W N(VOMAPS)
o RECORD_TYPE N(VERDF)
o
» RELATION CLASS N(VERRC)
> »
o SET_TYPE_MEMBER N(FND1MEM)
= USER_DEF_DATA _TYPE N(VERSDT)
?L N(VERDTD)
v
>
. =
(A0
»
’ 3-29
ot 2

SN NN

AABECA ” 0 ™. T ANY M9 " " ™) » o 1% - N -
Bt 0 L D, U T S AR K Y XM AR M A M TR O DO TR X R 0,

WY

SO YR N R NI AT T e T
- D -> Y -
SOTY -, T O A AN

...........

SR BTN TR

DS 620141100
1 November 1985

3.2.8.6 ALTER MODEL - Creates a current model for a NDDL

session using modeling commands.

A.

Function:

Alter Model performs the following functions:

l.

2.
3.

CDM Requirements:

updates the date of the model showing the model
change date;

creates a current model for a NDDL session;

changes the status of the model to “"UNCHECKED".

Alter Model requires that the model to altered
exists in the CDM.

Processing:
1.

The Alter Model process verifies that the model
was created previously. If the model does not
exist, an error occurs and an error message is
issued.

The model being altered becomes the current
model for a NDDL modeling session with all
subsequent model processing identified with the

model. The CDM MODEL_CLASS table is updated
to show the system date as the date the model
was updated and changes the model status to
"UNCHECKED" .

DS 620141100
1 November 1985

!:} CDM TABLES ACCESSED - ALTER MODEL (S=SQL,N=NDML)
NAME SELECT MODIFY INSERT DELETE

R MODEL_CLASS VERMOD(NDML)

W MODEL_CLASS UPDMOD

P

-
ve
-

’

£

. '-rﬁf“!;";./'f‘f'": -*.‘""g"('(' v SRR Y YRR SRR N
LA Al ks AN o AL A S Ul AU A ; ‘ v - y R 'Ahh 1.;‘\.-.

B A (% O
R Rt

DS 620141100
1 November 1985

3.2.8.7 ALTER RELATION - Alter a conceptual relatjion class.
A. Function:

Alter Relation performs any or all of the following
functions:

1. change to cardinality of an existing relation
class;

2. migrate the key class of the independent entity to
the dependent entity, creating a complete relation
and inherited attribute use classes;

3. assign nev tag names to the key class members
migrated to the dependent entity;

4. associate one or more keywords with the relation
class;

S. drop the key class from the relation and from the
dependent entity and all subsequent entities that
inherited the key class;

6. delete any empty key classes that results from
dropping a key class migration.

B. CDM Requirements:

1. Key class for independent entity must exist.

2. Key class members for independent entity must exist

3. An attribute use class for each key class member
must exist.

4. Relation class must exist.

5. Independent entity class must exist.

6. Dependent entity class must exist.

7. If a key class is to be migrated to the dependent

entity, the key class must not have been previously
migrated to the dependent entity.

8. If a key class is to be dropped from the dependent

3-32

VLR LA

P \ I N7,
BN S NSNS RITHARERAN, T2

')- i > . .k. . -
SISO n.‘uﬁ‘ofl‘n‘a‘:'.n'g,a‘,?u‘-.00-'1 L AL

N c.

i a0

e o B

BAONDG DO Py P] (A
. ;v,,{v‘._‘ '."‘1,". IR ,’g'. ‘.'i

DS 620141100
1 November 1985

entity and all subsequent entities, the key class
must have been previously migrated.

Processing:

Processing varies depending on the options chosen by
the user. If an error is detected, processing
continues with the next option on the command.

1. CARDINALITY

Any cardinalities specified replace the original
values established when the relation was created,
unless an error is detected, a warning message is
generated and the cardinality defaults to its
original value.

2. ADD MIGRATES

An attribute use class and an inherited attribute
use class for the dependent entity is created for
each key class member migrated to the dependent
entity class. If the set phrase is specified,
TAG_NAME1l (the independent entity is tag name) is
migrated te the dependent entity with the new name
TAG_NAME2. A complete relation class occurrence is
created. If a keyword is specified, the keyword is
created in the CDM if it doesn’'t already exist and
a relation class keyword occurrence is created.

3. DROP MIGRATES

The complete relation occurrence for the relation
class is deleted. The attribute use class, and
inherited attribute use class originally created
for each key class member migrated to the dependent
entity class are deleted. 1In addition, the
attribute use classes and inherited attribute use
classes created for each key class member migrated
to lover level dependent entity classes are also
deleted. Then all key classes and complete
relations which become empty due to the deletion of
migrated key classes members, are deleted.

Finally, any text descriptions for empty key
classes are deleted. 1If keywords are specified,
the relation class keyword occurrence are also
deleted.

KO 0000 03 8O0 4 O 8§ AT N e
hahd 'x'%s..'n..‘n.,'n‘:v B Y A .‘)'l‘r 0 ..‘ RAR RN l!q N l’. i,' .‘!\ > o)\.’ Cx Y Y % ol

.‘. \(:

Twwwew.

bt i
FATIINS Y

bk Bad Lod Ad e B o e Mt e M e e e

P kg

& T

P
s

DS 620141100
1 November 1985

.
-~

CDM TABLES ACCESSED - ALTER RELATION (S=SQL N=NDML)
y TABLE NAME SELECT MODIFY INSERT DELETE .
I\’
P ATTRIBUTE USE CL N(ADDMIG) S(INSAUC) S(DELAUCL)
o N(VERAUC)
8 COMPLETE_RELATION N(VERRCC) S(INSCRC) S(DELCMPR)
? DESC_TEXT S(DELTEXT)
N
h‘ "
. ENTITY CLASS S(DELMTKC)
. N(VERENT)
S INHERITED ATT USE S(DLMIGRC) S(INSTAUC) S(DELIAUC)
y KEY CLASS N(VERKC) S(DELKC)
v S(DELMTKC)
. KEY_CLASS_MEMBER N(ADDMIG)
X S(DRPMGRC) S(DELKCMT)
8 S(DELMTKC)
)
* KEYWORD N(VERKW) S(INSKW)
. RC_KEYWORD N(ADDKWR) S(INSKWRC) S(DELKWRC)
M
: RELATION CLASS N(VERRC) S(UPDTRC)
g
1
)
2
l &
.
8 :
!'.
b
.
¥ 3-34
l.

o«

s , S0V o AR R N LA T e e e Tt
M _t.«},n_%:o’_ Al AN OO .':c'ko! W I » ' M A A

e

DS 620141100
1 November 1985

3.2.8.8 CHECK MODEL - Determines if the model conforms to

A.

specified IDEF1 rule

Function:
The check model performs the following functions:
1. verifies that the model exists in the CDM;

2. verifies that the model has one or more
entities;

3. verifies that the entities have at least one
attribute;

4. verifies that the model follows the specified
IDEF]1 rules (see rules under Processing);

5. updates the model in the CDM to show that it is
a "checked" model and the date it was checked.

Requirements:

The check model process requires that the model
exist in the CDM. (See Rules under Processing).

Processing:

The check model process determines if the model
follows the following IDEF-1 rules.

Rules:

1. no non-specific relations are allowed
(independent cardinality greater than one).

2. no incomplete relation classes, (key has not
been migrated).

3. each entity must have at least one attribute
use class.

4. each owned attribute class must have a domain
and that domain must have a standard data type.

5. a key class must be defined for each entity
class.

DS 620141100
. 1 November 1985

multiple key classes of an entity class must
not be subsets of one another.

o

7. no one to one relations.
) 8. no dependency loops e.g. A->B->C->D->B. .
i 9. at least one entity must exist in the model.
The following rules cannot be checked for the model:

v, 1. one to none or one relationships imply
' identical keys.

o 2. key uniqueness throughout the model is not
checked, i.e. no two entity classes may have

. the same key class unless they are related to
I each other with a one or none or one relation.

o The processing verifies the existence of the

! model. The process then selects each entity
class belonging to the model and checks the

) relation classes, key classes, and attributes.

W Next the process checks the hierarchical

o dependencies both up and down to determine if
" there are any dependency loops within the
model.

MODEL CLASS table is updated to reflect the

o If all rules have been followed the CDM
! —
. date and the model status of CHECKED.

2 ARG h,’\"'!t b'. 4 T ‘0 T s ' Ler " 0 9
A R O O A A A S O O K I o Yt S N I e OO SN e

DS 620141100
o 1 November 1985

"::'Q CDM TABLES ACCESSED - CHECK MODEL (S=SQL,N=NDML)

TABLE NAME SELECT MODIFY INSERT UPDATE

Wy ATTRIBUTE_CLASS N(CHKATT)
4
ﬁg ATTRIBUTE_USE_CL N(CHKATT)

ENTITY_CLASS S (CHKLOOP)
A.‘,‘g N (GETECS)

By ENTITY_ NAME N(RETRECP)
o N(GETECS)

. KEY_CLASS S(CHKKEYS)
2 KEY_CLASS_MEMBER S (CHKKEYS)
P MODEL_CLASS S (CHKLOOP)

N(VERMOD)
UPDMOD

poe OWNED_ ATTRIBUTE S(CHKATT)

A RELATION_CLASS N(CHKREL)

) S (CHKLOOP)
I S(TLOOPCK)
ey S(BLOOPCK)

fAihf

o
™
-

‘h.:‘ X
PP 2Pl

) 3-37

o eV

1L¥e

J T L T e e U T O A o

VO P R R P T e
X '- ek .,. "W, ,4 PPt *.‘.h‘.-\f‘. n"l.‘"

.8 . . - - .. - - -
KOO KT X IO W TR A Y YA e
BRSO o‘:‘s'-, Dol o A gl g e

3.2.8.9 COMBINE ENTITY - Combine two conceptual entities.

A.

C.

pdeidin sl bt i dan gt Lg "-'“'-'1

DS 620141100
1 November 1985

Function:
Combine Entity performs the following functions:

1. combine two entities that exist either within
the same model (intra-model) or between two
models (inter-model);

2. ¢generate NDDL commands on a file to populate
the to-model entity with the attributes,
relations, aliases, keywords, keys, key class
members associated with the from-model entity.

CDM Requirements:

1. If the to-model is not specified, an inter-model
combine is assumed, and the to-model must exist in
the CDM.

2. If the to-model and from-model are specified, both
models must exist in the CDM.

3. The two entities to be combined must exist in the
model(s).

Processing:

1. If it is an intra-model combine, to-model defaults
to the from-model.

2. First, verify that the two entities to be combined
exist in the from-model and to-model. Processing
halts if any of the verification checks fail. The
NDDL commands to combine the from-entity and
to-entity are generated in a user defined file.
This file is created if it did not previously
exist, or opened and appended to if it did already
exist.

3. Now determine if a relation exists between the
to-entity and from-entity. If one does, generate a
command to drop this relation. Also, if it is an
intra model combine generate a command to delete
the from-entity.

BUOOOOEMN

) My A0
N ’,::5,"555_:5,’».'..&5.'

3o Mo,y

DS 620141100
1 November 1985

The from-entities keys and key class members are
s2ved in a temporary key list, in order to migrate
the keys via new relations that will be created
after the from-entity has been combined into the
to-entity.

Generate an "Alter entity and owned attributes...”
for all the attributes that belonged to the
from-entity. If the user specified that he wanted
keywords, aliases and/or descriptions, NDDL
commands are generated for the same. The
from-entity name is generated as an alias for the
to-entity.

Next, select all relations in the from-model where
the from-entity is the dependent entity in the
relation. If this from-independent entity(s)
exists in the to-model, generate Create relation
... migrates...commands for the same. The key
class that was inherited via this relation has to
be generated for the to-entity. Generate an Alter
Entity add key...for the inherited key class.

Next, select all the relations in the from-model
where the from-entity is the independent entity in
the relation. If this from-dependent entity exists
in the to-model, generate a create
relation. . .migrates...command using the information
stored earlier in the temporary key list.

Commands are also generated to associate keywords
and descriptions with the relation if any exist.
Finally, close the user defined file at the end of
processing.

CDM TABLES ACCESSED - COMBINE ENTITY

DS 620141100
1 November 1985

(S=SQL, N=NDML)

TABLE NAME SELECT MODIFY INSERT DELETE
AC_KEYWORD N(GENAKV)
ATTRIBUTE_CLASS N(CMBOA)
N(VERATT)
ATTRIBUTE_NAME N(CMBOA)
N(VERATT)
N(CMBACAL)
ATTRIBUTE_USE_CL N(BLKCL1)
S(SELIAUG)
COMPLETE_RELATION N(VERRCC)
DESC_TEXT N(GENDESC)
DOMAIN_CLASS N(CMBOA)
EC_KEYWORD N(CMBEKW)
N(VERKWE)
ENTITY_ CLASS N(CMBALI)
N(VERENT)
N(BLKCL1)
S(SELIAUC)
ENTITY NAME N(VERENT)
N(SELECNM)
N(CMBALI)
N(VERALI)
INHERITED ATT_USE S(SELIAUC)
KEY_CLASS N(BLKCL1)
KEY_CLASS_MEMBER N(BLKCL1)
KEYWORD N(CMBRKW)
N(CMBEKW)
N(VERKWE)
N(VERKWR)
N(GENAKW)
3-40

R T o R e A T e vl

DS 620141100
1 November 1985

LN CDM TABLES ACCESSED - COMBINE ENTITY (S=SQL, N=NDML)

TABLE NAME SELECT MODIFY INSERT DELETE

o MODEL_CLASS N(VERMOD)
an OWNED_ATTRIBUTE N(CMBOA)

RC_KEYWORD N(CMBRKW)
N(VERKVWR)

o RELATION_CLASS N(DEPFROM)
Y N(INDFROM)
vy N(VERRC)

& N(SELRCNM)

AV PG 3 O bt 2 B i . Lo, T T’
RN A5'~.4’l 1",9'5“:.‘ l“ﬂ"l“ﬁr‘e\v".‘a"."_, ¥ a:"i.\g’l\g'_li'.j:q' EWO0, 1‘!':_' "gl\gl'p. :Qq_l“)“!l‘.‘ ,’ Iy

>, Ty '»'. "‘I'

<TRERT AT

- Ay e e

p p

-

-

DS 620141100
1 November 1985

3.2.8.10 COMPARE MODEL - Compare two IDEF1l models.
A. Function:
Compare model to see if their entity name, attribute
name, entity keywords, attribute keywords and relation
keywords match each other.

B. CDM Requirements:

The two models to be compared must exist.

C. Processing:

l. First, verify the existence of both models, if
either of these two models does not exist, flag a
user error; otherwise, do the following:

1.1 Compare entity classes based on identical
names.

1.2 Compare attribute classes based on identical
names.

1.3 Compare entity keywords to determine if
entities from both models use the same
keyword.

1.4 Compare attribute keywords in the same manner
as entities.

1.5 Compare relation class keywords.
2. For each successful comparison above, a message

will be printed out to indicate a match is found in
two models.

)

"_.“(.,_1,q.|, OO CAOOUCE) Y (P> e N A PR P A A T AT LSRR . R y W 3 AN] -
by '.',"4‘3\‘,&5., ?.f~‘«?s'-?\Q-‘~'qft‘.3!'_.30.’.?-‘2'9»'.\ ?0.‘? “ Bt N < A:n ' @&:B&%&m&mm

bl Aal Aol Aok Al A A L A8 0 2 4 8 o 4 4 a.o o0 dia ara 2o a3)

DS 620141100
1 November 1985

CDM TABLES ACCESSED - COMPARE MODEL (S=SQL, N=NDML)
TABLE NAME SELECT MODIFY INSERT DELETE
AC_KEYWORD N(RETACKW)
ATTRIBUTE_CLASS N(RETRAC1)
ATTRIBUTE_ NAME N(RETRAC1)
ENTITY_CLASS N(RETREC1)
N(VERENT)
N(RETECKW)
N(RECKW2)
N(RELKW)
ENTITY NAME N(RETREC1)
N(VERENT)
N(RETRECP)
KEYWORD N(RETRCKW)
N(RETECKW)
N(RETACKW)
MODEL CLASS N(VERMOD)
RC_KEYWORD N(RETRCKW)
N(RRCKW2)
RELATION_CLASS N(RETRCKW)
N(RRCKW2)

N(GETRCID)

TR TR T T TR T W W TT ST T T e e e e rm g vew ey e rnaseweweery

3.2.8.11

" ade PR TRy T TP Ty

DS 620141100
1 November 1985

COPY ATTRIBUTE - Copies an attribute and all

associated information from one model to another model
(inter-model) or within a model (intra-model).

Functions:

Copy Attribute performs the following functions:

1.

2.

verifies that the model specified exists;

copies an attribute within a model or to another
model ;

verifies that the new attribute does not exist in
the current model;

when indicated, copies all description text,
aliases, and keywords related to the attribute;

optionally, places the created NDDL commands in a
file for later use;

optionally, interactively performs the intra-model
copy.-

CDM Requirements:

The Copy Model process requires that the from-model and
the attribute exist in the CDM database.

Processing:

The following rules apply to the copy attribute
process:

INTER-MODEL Copy

1.

The from-model must be specified and it must exist
in the CDM database.

The command must include the file clause that will
contain the generated NDDL commands.

INTRA-MODEL Copy

1.

The second or new attribute clause must be
specified and must not exist in the current model.

3-44

DS 620141100
1 November 1985

2. The file clause maybe used.
General Rules

1. The except clause, when used, indicates what items
associated with the attribute are not be copied.
If the except clause is omitted all keyword,
aliases, and textual descriptions of the attribute
are copied.

2. The process verifies that the current model exists
in the CDM database. Additionally, the attribute
to be copied is verified and its domain returned.
If either attribute or model is not found, an
error message is issued and the processing
terminates.

3. The processing determines whether the copy is to
be interactive or a copy to a file. 1If the
process is interactive only, the intra-model copy
may be processed.

Interactive Process:

l. The interactive process verifies that the new or
second attribute does not exist in the current
model. If the attribute does not exist, the
process inserts the new or second attribute into
the ATTRIBUTE_CLASS and ATTRIBUTE NAME CDM tables.

2. The following processing depends upon the use of
the except clause. Any entry in the except will
exclude that entry from processing. The copied
attribute aliases will be retrieved and copied to
the new attribute in the ATTRIBUTE_NAME CDM table.

3. The copied attributes keywords will be retrieved
and copied to the new attribute in the AC_KEYWORD
tables.

4. The copied attributes textual descriptions will be
retrieved and copied to the new attribute in the
DESC_TEXT table.

COPY TO FILE PROCESS

EORARIATY 0 L S P BN R L
e R el

DS 620141100
1 November 1985

The copy to a file process will write generated
NDDL commands to the file specified for either an
inter- or an intra-model attribute copy.

The process verifies for an intra-model copy, that
the new attribute does not exist in the current
model. NDDL commands to create the attribute are
generated and written to the user specified file.
If the except keyword was not specified, the NDDL
create attribute keyword option is included if a
keyword exist for the copied attribute. If the
except description was not specified, describe
commands are generated and written to the file.
If the except alias was not specified, create
alias commands are generated and written to the
file.

N
! l'.ﬁ.h.'-"ye§'n_=

n e’
AR
e
k.

Ty

-

CDM TABLES ACCESSED - COPY ATTRIBUTE

DS 620141100
1 November 1985

(S=SQL, N=NDML)

TABLE NAME SELECT INSERT MODIFY DELETE
AC_KEYWORD N(WRTACKW) S(INSKWAC)
N(GENAKVW)
ATTRIBUTE_ CLASS N(VERACNM)
N(VERATT)
ATTRIBUTE NAME N(VERATT) S(INSACNM)
N(WRTALI)
N(VERACNM)
N(FCOPATT)
DESC_TEXT N(GENDESC)
S(WRTDESC) S(WRTDESC)
DOMAIN CLASS N(VERACNM)
KEYWORD N(GENAKW)
MODEL_CLASS N(VERMOD)
3-47

<

! Y Y
! '-"»t",'."‘“"#-'7%"‘.‘.‘*.'1 i)t it

; O
oy u‘l‘"h’: ’.i"!'l g

Lo

3.2.8.12

DS 620141100
1 November 1985

COPY DESCRIPTION - Copy CDM object descriptions.

Function:

This is a partial description copy. Only the
description lines of the identified description type of
the given object will be copied, rather than all
description types.

CDM Requirements:

The two objects identified must exist, and the

description type and the description of the object must
exist. If the DESC_TEXT of the second object does not
exist, the DESC_TEXT of the first object can be copied.

Processing:

1. Verify the existence of the model. If it does not
exist, flag a user error.

2. Verify the existence of description type. If it
does not exist, flag a user error.

3. Verify the existence of both models. If either of
these two models does not exist, flag a user error.

4. Verify the existence of description text of the
first object. If it does not exist, flag a user
error.

5. Verify the non-existence of description text of the
second object. If it does exist, flag a user error.

6. Finally, copy the description text of the first
object to the second object.

RTITEW TCW E TO YU UN O O T e YOO T P O e

DS 620141100
1 November 1985

CDM TABLES ACCESSED - COPY DESCRIPTION S(S=SQL, N=NDML)
TABLE NAME SELECT MODIFY INSERT DELETE
ATTRIBUTE_CLASS N(VERATT)

DATA BASE N(VERDB)
DATA FIELD N(VERDFLD)
DATA ITEM N(VERD1)
DESC_TEXT N(VERDSTX)
S(WRTDSC4) S(WRTDSC4)
DESCRIPTION_ TYPE N(VERDSTP)
DOMAIN CLASS N(VERDOM)
ENTITY_CLASS N(VERENT)
KEYWORD N(VERKV)
MODEL_CLASS N(VERMOD)
RECORD_SET N(VERRSET)
RECORD TYPE N(VERRT)

- Mt e arc 4

DS 620141100
1 November 1985

3.2.8.13 COPY ENTITY - Copy a conceptual entity class.

A. Function:

COPY ENTITY allows the NDDL user to perform the
following:

1. copy an entity class within the same model, giving
it a different name;

2. copy. at the User’'s discretion, the descriptions,
aliases, and keywords for the entity.

3. copy an entity from one model to another,
generating the NDDL commands that the user would
otherwise have to type in.

4. an intra-model copy entity will allow the user to
generate the NDDL commands to create copies of all
subordinate entity classes, using the existing
defintions in the original model.

5. an intra-model copy entity will alternatively allow
the user to generate the NDDL commands to create
copies of all associated relation classes of the
subject entity.

B. CDM Requirements:

The entity to be copied must previously exist in the
CDM. The entity copied to must not exist.

C. Processing:

l. Begin processing by determining if the copy is
inter- or intra-model. If a model name is
specified, assume intra-model without checking
against the current model. This will allow the
user to use COPY ENTITY to generate NDDL for the
current model. The from-model is verified. The
current model is assumed for the to-model. Also
the intra-model must specify a new entity name.
The from and to entity names are verified.
Finally, perform step 3, to perform the copy
directly if an intra-model copy was determined or
an inter-model copy without the selection of
STRUCTURE or RELATIONS. Else step 3 to generate

3-50

Pt

ﬁ;: 2.1

. 2.2
1t
o
"vi
\: 2.3
ﬂ‘
2.4
LY
L)
LY [
l“
«’::
G 2.5
O |
A
O;Q o]
4 -
.:‘,) 2.5
I. *
.‘.~
N
2.5
,’l‘-‘
N
o
"
i 2.5
,‘v
ot 2.5
k',‘
l'.‘.
.
- 2.5
l‘_i
W
,':',
l"'
A
¥ 2.5

DS 620141100
1 November 1985

e NDDL commands shall be performed.

2. For an internal copy entity, the database is
updated directly.

A nev unique number is obtained and the entity
and its primary name stored. The “TO” entity
name will be made primary.

If the user desired, all keywords for the old
entity are associated with the new entity.

If the user desired, all descriptions from the
old entity are copied to the new entity.

If the user desired, all aliases for the old
entity are copied.

If the copy entity was intra-model, no
attributes can be copied since they are
already owned (by the "FROM" entity). If not,
the attributes will be copied:

.1 For each attribute owned by the "FROM

entity:

.1.1 The attribute is checked in the "TO"

model. If not found, obtain a nev number
and store the new attribute and its name
as primary.

.1.2 If the user desired, all aliases for the

original attribute all copied .o the new
attribute.

.1.3 If the user desired, all keywords for

the original attribute are copied to the
new attiribute.

.1.4 If the user desired, all descriptions for

the original attribute are copied to the
new attribute.

.1.5 The nevly created attribute can be stored

as owned attributes and attribute use
classes for the new entity.

: o TR - >,
¥ ; ! Y g)
RGN e SO A i i T Wt

DS 620141100
1 November 1985

2.5.1.6 All key classes for the "FROM" entity can
be copied to the new entity. The key
classes of the attribute being copied,
found in step 2.5.1, are stored in a
table. 1If not already in the table, a new
key class is established with the new
attribute as its key class member. If the
key class was on the list, a new key class
member is created for the new attribute
and the new key class previously created.

3. WVWhen generating NDDL to perform the COPY ENTITY,
determine if the user requested °“WITH STRUCTURE" or
"WITH RELATIONS".

3.1 For COPY with STRUCTURE, generate the NDDL to
copy the entity itself (the top node). Then:

3.1.1 Generate the Create Attribute commands for
each attribute owned by the entity not
already found in the "TO" model. Finally,
generate NDDL to make the attribute owned by
the new entity. Attribute Descriptions are
"copied” by generating DESCRIBE commands and
attribute aliases are “copied” by generating
CREATE ALIAS commands. VWhen copying aliases
the target model is checked to insure the
name has not been used before.

3.1.2 1If the user desired, keywords for the entity
are “"copied” by adding a keyword clause to
the command.

3.1.3. If the user desired, aliases are copied for
the entity by generating CREATE ALIAS
commands.

3.1.4 1If the user desired, all descriptions for
the entity are copied by generating DESCRIBE
commands .

3.1.5 The key classes for the top node of the
structure can be generated next. A search
of the key classes and members is made of
the original entity and stored in a
structure. The original ED NO, KC NO,

KC NAME. KCM TAG NO and KCM TAG NAME are

DT AR R A GR IR AR L AR

DS 620141100
1 November 1985

saved.

An Alter Entity command for the new top node
can nov be generated which declares each of
the key classes and its members found in the
data structure stored in 3.1.5.

All other attributes associated with the
hierarchial structure of entities below the
original top node are "copied™ through
generation of CREATE ATTRIBUTE commands as
described in 3.2.1. The search controlling
this generation makes use of a recursive
search of the CDM's RELATION_CLASS table.

All other entities of the hierarchical
structure below the top node are "copied" by
generating the appropriate commands as was
done in step 3.1.2 through 3.1.6. A
recursive search similar to the one of step
3.1.7 is done. For each primary entity
name identified, its name and number are
stored in a table.

The owned attributes are determined and
associated with the new entity by
generating the "owns" clause.

.2 If the user wishes keywords copied, the
"keyword" clause is also generated.

.3 For the alias entity names found in the

search of 3.1.8 and if the user wishes
aliases copied, then CREATE ALIAS commands
for the new entity are generated.

Finally, if the user desires, all
descriptions for the new entity are copied
by generating DESCRIBE commands.

Now that all entities have been created, the
Relation Classes connecting the structure
can be generated. This must be done in a
top down manner, migrating key classes.
After all attributes are migrated into an
entity, an ALTER Entity can be generated to
create the new key classes in preparation

3-53

AP " ; \ h
v e iR A B T Y

DS 620141100
1 November 1985

for key migration to the next level down.

3.1.9.1 A list of all key classes and their
members is created by using a recursive

" search of the CDM Table RELATION_ CLASS.
A

o 3.1.9.2 A search of the CDM is made for all

W)

! relation classes “below" the top node in
. the original model. The results of this

search are sorted by level, relation class
W number and dependent entity. Thus all

) create RELATIONS for one level can be done
s at a time, allowing only one ALTER ENTITY

X per new entity and imsuring that all

oy attributes are declared as key before

- being migrated.

Y 3.1.9.3 A search is made of the CDM's

g% COMPLETE_RELATION table. The key

2? class number, if found, is used to search

e the table built in 3.1.9.1 and a MIGRATES
‘ clause can be generated for the CREATE

it RELATION command. The SET clause is

ﬂﬂ generated and for each attribute which is

;¢§ in the key class, its original name

o (independent) and new name (dependent) are

P explicitly generated.

. 3.1.9.4 If the user desired, keywords for the
relation are "copied".

ot 3.1.9.5 If the user desired, descriptions for the
“h relation are copied. Aliases for
' relations are not supported by the CDM.

,Zr 3.1.9.6 Finally, the ALTER_ENTITY is generated to
j#~ assign its key classes, like step 3.1.5
iy and 3.1.6.

3.2 For COPY with RELATIONS, the entity itself to
S be copied is generated as was done in step

o 3.1.1 through 3.1.6.

k]

W

’ﬁk 3.2.1 The entities and the relations one level
' below the entity being copied are also

generated as done in 3.2 above.

1

PR Ty

Loy A W e Ty, P W00 Ty U T T Ol ; OeLENE L e AL
[[\ 4\'.‘«* "I‘-“I' fLaNN \'nil.-;ﬁ.“w "-‘o‘l‘»‘"'q, %3 \‘g.'.i‘ ‘;‘l'a‘.l.q.ﬁ Y, !‘?l‘.“‘v..‘""ﬁa‘“"‘»ie"’l'i""c lsg .':9""‘{ Y ."gl‘;e-“i‘ “‘-“!e. .l"‘)‘h ", l;‘r""

.

L]

4

¥

: DS 620141100

l 1 November 1985

‘. 3.2.2 The key classes are generated for each
entity copied.

. 3.2.3 Similar to 3.2.1, entities and relations one

level above the entity being copied are also
generated as done in 3.2.

A

:

Al

¥

¥

;

L)

L

L}

3-556

D

ORI IO QMO IO B MM A 20 0 0 - ey
SRR LI LN Lt R AT S L ER AR R WD BTV A 4 . OOl ¥ 3
O T LRI W Y » ALV

S T TR T T TR T TR T R AR T T T SRR T TN SRR NN NN NN TN N

CDM_TABLES ACCESSED - COPY ENTITY

DS 620141100
1 November 1985

(S=SQL N=NDML)

TABLE NAME SELECT MODIFY INSERT DELETE
AC_KEYVWORD N(GENAKW)

ATTRIBUTE_CLASS N(VERATT)

ATTRIBUTE_CLASS N(CMBOA) S(INSAC)
ATTRIBUTE_USE_CL N(BLKCL1) S(INSAUC)
ATTRIBUTE_CLASS N(COPYAC)

ATTRIBUTE_USE_CL N(COPYAC)

ATTRIBUTE_CLASS S(DEPATT)

ATTRIBUTE_USE_CL S(DPKCLST)

ATTRIBUTE_CLASS N(GENOA)

ATTRIBUTE_USE_CL S(SELIAUC)

ATTRIBUTE_USE_CL N(SELIKEY)

ATTRIBUTE_NAME N(CMBACAL)

ATTRIBUTE_NAME N(CMBOA)

ATTRIBUTE_NAME S(DEPATT)

ATTRIBUTE_NAME N(GENOA)

ATTRIBUTE_NAME N(VERATT)

COMPLETE_RELATION N(VERRCC)

DESC_TEXT N(GENDESC) S(WRTDESC)
DOMAIN CLASS N(DMBOA)

DOMAIN_CLASS S(DEPATT)

EC_KEYWORD N(CMBEKW)

EC_KEYWORD N(GENEKW)

EC_KEYWORD N(VERKVE)

EC KEYWORD N(WRTECKW)

ENTITY CLASS N(BLKCL1)

ENTITY_CLASS N(CMBALI)

ENTITY_CLASS N(COPYAC)

ENTITY CLASS S(SELIAUC)

LAk Ao 40 a4) g

CDM TABLES ACCESSED - COPY ENTITY

T TN T TP T T

DS 620141100
1 November 1985

(S=SQL N=NDML)

TABLE NAME SELECT MODIFY INSERT DELETE
ENTITY_NAME N(CMBALI) (INSECNM)
ENTITY_NAME S(DEPENT)

ENTITY_ NAME N(SELECNM)

ENTITY NAME R(VWRTENANM) S(INSKVEC)
INHERITED ATT USE S(SELIAUC)

INHERITED ATT USE N(SELIKEY)

KEY_CLASS N(BLKCL1) S(INSKC)
KEY_CLASS S(DPKCLST)

KEY_CLASS N(KEYLOOK)

KEY_CLASS_MEMBER N(BLKCL1) S(INSKCHM)
KEY_CLASS_MEMBER S(DPKCLST)

KEY_CLASS_MEMBER N(KEYLOOK)

KEY_CLASS_MEMBER N(SELIKEY)

KEYWORD N(CMBEKV)

KEYWORD N(CMBRKV)

KEYWORD N(GENEKW)

KEYWORD N(GENRKV)

KEYWORD N(VERKVE)

KEYWORD N(VERKWR)

KEYWORD N(GENAKV)

MODEL_CLASS N(VERMOD)

OWNED_ATTRIBUTE N(CMBOA) S(INSOAC)
OWNED_ATTRIBUTE N(COPYAC)

OWNED_ATTRIBUTE S(DEPATT)

OWNED ATTRIBUTE N(GENOA)

RC_KEYWORD N(CMBRKW)

RC_KEYWORD N(VERKWR)

RELATION CLASS S(BLRCKV1)

RELATION CLASS S(DEPATT)

RELATION CLASS S(DEPENT)

RELATIONR CLASS N(DEPFROM)

RELATION_ CLASS S(DEPREL)

RELATION CLASS S(DPKCLST)

RELATION CLASS N(INDFROM)

RELATION CLASS N(VERRC)

wrrwrew ey

DS 620141100
1 November 1985

3.2.8.14 COPY MODEL - Generate NDDL commands on a user defined
file to make a copy of an existing model.

A.

Function:

Copy Model performs the following functions:

1.

create a new model containing all the entities,
owned attributes, inherited attributes, key
classes, key class members, relations, complete
relations, aliases, keywords and descriptions of
the model being copied;

generate NDDL commands in a user defined file to
copy a model in proper sequence i.e. by level.

Requirements:

The model to be copied must exist in the CDM.

The model to be copied into should not exist.

Processing:

1.

If the model to copied (the from-model) is not
specified, the model name defaults to the current
model. The copy model command verifies that the
from-model exists, and that the new model to be
created (the to-model) does not exist. Processing
halts if any of the verification checks fail.

NDDL commands to copy the from-model are generated
on a user defined file. If the named file does not
exist, a new file is created and opened. If the
file does exist, the generated commands are
appended to the file.

First, create all the attributes contained in the
fron-model, along with their associated keywords,
aliases and description text.

Then, create all the entity classes contained in
the from-model along with associated owned
attributes, keywords, aliases, and description
text.

Build a temporary key list to store all the key

N Dt |
iy
|
s
DS 620141100
N 1 November 1985
c::::
’.‘0 0
35 classes and key class members for each entity. -
N This list will be used later to define the key for
the entity after all the migrations have been
= determined for this entity.
-
ﬁﬁ 6. The ORACLE tree search feature is used to identify
i inheritance at all lower levels, after the top node
e is identified. The model being copied must not
contain any dependancy loops. Generate an Alter
ane Entity add key... command for the top node in this
%y model ‘s tree structure.
4 f;!’.!
ﬁ%ﬂ 7. Another temporary list is built to store all the
DA key classes of the dependent entity which contain
attributes inherited via the relation for each
e level of relations in the from-model. Both these
et lists are used to generate NDDL statements
o necessary to create the relations. For each level,
e migrate the keys, and add keys for each dependant
Hed entity in the from-model. NDDL commands are also
generated for keywords and descriptions associated
e with the relation classes.
3
2
§$ 8. Finally, the user defined file is closed.
o
,vﬁi
:fs:ﬁ
e
‘i;e
.;6.::
.
e,::‘
!
i
f'h
uh
d
u,::l,

- MRE AT T

LT TRICAK AT AR LF, 0 N)
Pl .‘.'l"41{‘3'_.;‘,n"_ut)"{v‘i,q t?,gt.s’s‘,'l‘: n*l,g‘!h;,é. (WA 3 L o M 3 L.

CDM TABLES ACCESSED - COPY MODEL

DS 620141100
1 November 1985

(S=SQL, N=NDML)

TABLE NAME SELECT INSERT DELETE
AC-KEYWORD N(GENAKV)
ATTRIBUTE_CLASS N(GENOA)
S(ALLATT)
ATTRIBUTE_NAME N(GENOA)
S(ALLATT)
ATTRIBUTE_USE_CL N(BLKCLST)
N(SELIKEY)
COMPLETE_RELATION N(VERRCC)
DESC_TEXT N(GENDESC)
DOMAIN_CLASS S(ALLATT)
EC_KEYWORD N(GENEKW)
ENTITY_CLASS N(BLKCLST)
S(ALLENT)
S(TOPNODE)
S(ALLREL)
S(BLRCKC)
S(SELIAUC)
ENTITY_NAME S(ALLENT)
INHERITED ATT USE N(SELIKEY)
S(SELIAUC)
KEY_CLASS N(BLKCLST)
KEY_CLASS_MEMBER N(BLKCLST)
N(SELIKEY)
KEYWORD N(GENAKV)
N(GENEKW)
N(GENRKW)
MODEL_CLASS S(TOPNODE)

3-60

b R R e e R A TR X J
sl -Ai(kt"x‘.\i‘q':'-f\"\ﬁ A AT A .}}-}.\

‘i
. >
o

. DS 620141100
Tk 1 November 1985

L CDM TABLES ACCESSED - COPY MODEL (S=SQL, N=NDML)

TABLE NAME SELECT MODIFY INSERT DELETE

O S(ALLREL)
oy S(BLRCKC)

OWNED ATTRIBUTE N(GENOA)
RC_KEYWORD N(GENRKW)
RELATION_CLASS S(TOPNODE)

o S(ALLREL)
o S (BLRCKC)

y LA A 5 A PAPL LT PO T A el
e 1_»."\.’. .': Ae n!t I'h.‘l)t'.‘~ 4 '. L) .|.\ -. ‘('-‘ '. ?,,"‘V. '-" ' o T

htnddndh et A ALl o d ALt 08 A aan oha 4 |

DS 620141100
1 November 1985

3.2.8.15 CREATE ALIAS - Create an alias for an entity or
attribute

A. Function:
Create Alias performs the following function:

1. allows the user to add a secondary name, or alias,
for any attribute or entity of the current model.

B. CDM Requirements:

The entity or attribute named in the command must exist
in the user’'s current model.

C. Processing:

1. CREATE ALIAS shall access the object type from the
user command. It must be either ATTRIBUTE or
ENTITY. The command processor must then access the
user entered identifier for the entity attribute
and verify its presence with a database lookup.

The potential new alias name is also verified to
make sure it has not already been used. Finally,
having the entity attribute number from the first
verification, the new alias name can be inserted.

CDM TABLES ACCESSED - CREATE ALIAS

TOH TN TETL. L TN TN TR BT W am T r o Ty Ly T T vyw

DS 620141100
1 November 1985

(S=SQL,N=NDML)

TABLE NAME SELECT MODIFY INSERT DELETE
ATTRIBUTE CLASS N(VERATT)

ATTRIBUTE_NAME N(VERATT) S(INSACNM)
ENTITY_CLASS N(VERENT)

ENTITY_NAME N(VERENT) S(INSECNM)

T A

e L rs

T T T T T T W RS WS e e " T nyy e, vy (T wwIerw e

3.2.8.16

e i A Ao h Mon ang Mo g o a0l oo

DS 620141100
1 November 1985

CREATE ATTRIBUTE - Create a conceptual attribute

Function:

Create Attribute performs the following functions:
1. create an attribute for a model;

2. assign a domain for the attribute;

3. add keywords to an attribute.

CDM Requirements:

A current model must be established.

Processing:

1. 1If a domain is specified, the Create Attribute
command verifies the existence of the domain to
which the attribute is being assigned. If the
domain is not specified, the domain will default to
zero or undefined.

2. Next, a check is performed to verify that the
attribute does not previously exist in the model.
Then the attribute is inserted into the
ATTRIBUTE_CLASS and ATTRIBUTE_NAME tables. This
attribute is created as the Primary attribute.

3. 1If keywords are to be added to the attribute,
verify that the keyword has not previously been
assigned to the attribute. Keyword references are
then created for the attribute by inserting into
the AC_KEYWORD table. Also, the keyword will be
inserted into the KEYWORD table if it did not
previously exist.

4. Processing halts if any of the verification checks
fai1l.

3-64

)

. P At A” A ta A v A o
Gl a LW “.,-.ﬂ‘.. NN

) [i N |

(X

.
L‘A

DS 620141100
o 1 November 1983

CDM TABLES ACCESSED - CREATE ATTRIBUTE (S=-8QL. N-NDNML)

N TABLE NAME SELECT MODIFY INSERT DELETE

ol AG_KEYWORD N(ADDKWA) S(INSKVAC)

O ATTRIBUTE_CLASS N(VERATT) S(INSAC)
ﬁﬁ& ATTRIBUTE_NAME N(VERATT) S(INSACHN)
KB DOMAIN_CLASS N(VERDOM)

;@% EC_KEYWORD N(ADDKVE) S(INSKVEC)

i KEYWORD N(VERKW) S(INSKV)

R RC_KEYWORD N(ADDKVR) S(INSKWRC)

D8 620141100
1 Noveaber 1985

3. 2.8.17 CREATE DOMAIN - Create a domsain

A

Function
Create Domain perforss the following functioms:
1 adds a nev dosain to the systes:

2 associates a standard data type vith the nev
domain.

3 associates optltinnal user-defined data types vwith
the nev domain

CON Requirements
1 The domain sust not previously exist in the systes

2 The standard data type for the nev dosain susti be
specified in the first data type clause

3 Additional data types Bay be specified in
sdbsequent data type clauses These data-types are
considered user-defined data types for the nev
domain

Processing

} Create Dosain verifies Lhat the domsain Lo be added
does not exist 1n the systies Then the newv domsaln
is 1nserted i1nto the DONAIN CLASS table

2 The dats Lype specified for the standard or
user defined DATA TYPE BANE is verified as a legal
data Lype and the nuaber of decimals if
specified wust not exceed the maxisus field length
of DATA TYPE NANE The DATA TYPE BANL i1z then
inserted 1nto USER DEF DATA TYPE tables ar a
standard o1 user defined datas \ype for tlhe new
dosain

DS 620141100
1 November 1985

CDM TABLES ACCESSED - CREATE DOMAIN (S=SQL,N=NDML)

\ TABLE NAME SELECT MODIFY INSERT DELETE

" DOMAIN_CLASS M(VERDOM) S(INSDOM)
USER_DEF_DATA_TYPE M(VERSDT) S(INSDT)

N ¥(VERDT)

o N(VERDTD)

4 DATA _TYPE N(VERTYP)

3-67

DS 620141100
1 November 1985

3.2.8.18 CREATE ERTITY - Create a Conceptual Entity Class

A.

Function:

CREATE ENTITY will allow the MDDL user to perfora the
following functions:

1.

2.

4q.

create a new entity class for the current model;

associate attributes as owned attributes for this
entity;

define key classes of the owned attributes only,
(unowned attributes must be migrated to the eatity
by use of i‘he CREATE or ALTER RELATION commands;

associate keywords with the entity.

CDM Requirements:

The entity being created must not previously be found
in the current model. Any attribute referenced must

already be defined for the current model and must not
be previously owned by any entity.

Processing:

1.

First the entity itself is created. The name is
accessed from the command and database lookup
verifies that it is not already present. If not
found, the entity class is assigned a unique nuaber
and stored and the user entered name is stored as
the entity's primary or preferred name. not an
alias.

Any user specified attributes are then processed.
Each attribute name must be found in the current
model and also verified not to be owned by any
other entity in the model. If these conditions are
met. the attiribute can be associated with the
entity by storing an occurrence of OVWNED ATTRIBUTE
Finally., a unique tag number is obtained., and the
attribute is also stored as an ATTRIBUTE USE CLASS
of this entity.

Yhen the user has specified any key classes to be
defined for this entity, the user may omit the

3-68

attri
key ¢©

DS 620141100
1 November 1088

bute names for the key class. Therefore., the
lass name may be taken as the atiribute name

if none follows the = sign. For each key class

speci
3.1

3.4.3

3.4.3

Final
relat
keywo

L |

fied the program must:

Verify the key class name vas not used for
this entity.

Obtain a unique number for the key class.

Store a key class occurrence for the entity
first created.

Process each atiribute name specified for the
current key class.

Deteraine if the attribute has already been
associated with the entity as an ATTRIBUTE
USE CLASS.

If it had not, an attempt is made to make
the attiribute owned by the entity as
specified in step 2 above.

Finally., an oocurremce of KEY CLASS NENBER
can be stored

ly. any keywvords specified by the user can be
ed to the entity first created For each
rd entered.

The keyword is verified in the table of
keyvords (independent of sodel)

I1f the keyword is nev. Lhen a unique nuaber
for the keyvord is obtained and a Reywvord
ooccurrence is stored

Finally. the keyword to entity cross reference
is (EC KEYWORD) stored. relating the keyword
to the entity)usti created

CDM TABLES ACCESSED - CREATE ENTITY

DS 820141100
1 November 1085

(8=8QL. N«NDML)

TABLE NAME SELECT NODIFY INSERT DELETE
ATTRIBUTE_CLASS N(VERATT)

ATTRIBUTE MANE N(VERATT)

ATTRIBUTE USE CL N(VERAUC) 8(INSAUC)
EC KEYWORD ¥(ADDKVE) 8(INSKVEC)
ENTITY CLASS N(VERENTC) 8(INSEC)
ENTITY WANEK B(VERENT) S(INSECEN)
KEYVORD N(VERKY) S(INSKV)
KEY CLASS #(VERKC) S(INSKC)
KEY CLASS NENBER S(INSRCH)
OVNED ATTRIBUTE N(VEROAC) 8(INBOAC)

3 70

3.2.8.19

DS 620141100
1 November 1985
CREATE MAP - Create CS-1S mapping
Function:
The CREATE MAP command allows the user (o map an
attribute use class (AUC) to a data field or set, or
from a RELATION_CLASS to a set.

CDM_Requirements:

The AUC or the relation class from which you msap and
any or all of the following which are to be mapped to:
the database. record name. data field name, data type
name. set name and member record name; must all exist
in the CDM

Processing:

Processing differs depending on the type of mapping
atteapted.

1 For an AUC-to-data field mapping. the follovwing
rules apply:

1 1 The AUC must not have previously been mapped
to a set

1 2 The AUC must not have previously been mapped
to a data fileld

1 3 1f a data type name is not entered, the
standard data type for the AUC s domain 1s
used

1 4 Only one primary sapping say exist for an AUC

1 % Multiple secondary sappings say exist if there
is a pre existing primary sapping

1 & 1f the primary or secondary sapping 1s not
specitied the defaultl is primary

If all rules are obeyed. a PROJECT DATA FIELD
entity i1s i1nserted tnto the CDNM

P For an AUC to set sapping. the following rules
apply

DS 620141100
1 November 1985

2.1 A data field map must not exist for the AUC.

2.2 The set to be mapped to must have a single
record type for its members.

2.3 The set to be mapped to must not previously
have been mapped from a relation class or
another AUC.

2.4 All AUC to set maps must map to the same
database for a particular AUC.

2.3 All AUC to set maps must contain a value which
must be unique for a particular AUC.

2.6 All mapped to sets from a AUC must have the
same record type as its owner.

If all rules are obeyed, an AUC_ST_MAPPING entity
is inserted into the CDM.

3. For a relation-class-to-set-mapping, the following
rules apply:

3.1 There must be no previous mappings to the set.

3.2 The member record name is required if the set
mapped to contains member records of more than
one type.

1f all rules are obeyed, an RC BASED REC SET entity
is inserted into the CDM.

4. A relation class to data field mapping is
meaningless and therefore illegal.

CDM _TABLES ACCESSED - CREATE MAP

DS 620141100
1 November 1985

(S=SQL, N=NDML)

TABLE NAME SELECT MODIFY INSERT DELETE

ATTRIBUTE_CLASS N(FINDDOM)

ATTRIBUTE_USE_CL N(VERAUC)

AUC_ST_MAPPING N(VOMAPS) S(INSAUCS)
N(FNDASA)
N(VERASM)

DATA_ BASE N(VERDB)
N(VERDF)

DATA_FIELD R(VERDF)

ENTITY_CLASS N(VERENT)

PROJECT _DATA_FIELD N(PDFSRCH) S(INSPDF)
N(VERPDF)

RC_BASED_REC_SET N(VERRCBS) S(INSRCRS)
N(VERRCNMP)

RECORD_SET N(VOMAPS)
N(VERSMS)

RECORD TYPE N(VERDF)

RELATION CLASS N(VERRC)

SET_TYPE_MEMBER N(FND1MEM)

USER DEF_DATA TYPE N(VERSDT)

N(VERDTD)

DS 620141100
1 November 1985

3.2.8.20 CREATE MODEL - Create a nev IDEFl model.

A.

Function:
A new model is created as unchecked in the system.

CDM Requirements:

The model to be created must exist in the CDM.

Processing:

1. First, verify whether the model to be created
exists in the systenm. If it does, flag an error;
otherwise, obtain a model number for the model
name.

2. Store the model number, model name into the CDM.

. . '--".‘."f\.'\ -~ “."s."-‘ &!j
A A A Al At O

.. DS 620141100
M 1 November 1985

CDM TABLES ACCESSED - CREATE MODEL (S=SQL, N=NDML)

mﬁz TABLE NAME SELECT MODIFY INSERT DELETE

MODEL _CLASS N(VERMOD) S(INSMOD)

[

3.2.8.21

A.

DS 620141100
1 November 1985

CREATE RELATION - Create a relation class

Function:
Create Relation performs the following functions:

1. create a relation class for user entered
independent and dependent entity classes;

2. create associated keywords for the relation class;

3. migrate a key class from the independent entity
class to the dependent entity class.

CDM Requirements:

The independent and dependent entity class must exist
in the current model. If the migrates clause is
present, the key class for the independent entity must
exist in the current model.

Processing:

1. The Create Relation process verifies that both the
independent and dependent entity class exist in the
current model. If both do not exist, an error is
issued and processing is terminated. A check is
made to determine if the relation class to be
created already exists between the user entered
entity classes. If one does exist, as above, an
error is issued and processing is terminated.

2. VNext, the process validates the cardinality of the
relation class to be created. If a cardinality is
omitted by the user, the relation is assigned a
default value. The default for the independent
cardinality is a value of one. The default for the
dependent cardinality is a value of zero for the
left dependent cardinality and a value of 99 for
the right dependent cardinality.

3. If the migrates clause is entered, the existence of
the key class for the independent entity is
determined. If the key class does not exist. an
error 1s issued and processing 1s terminated. An
attribute use class and an 1nherited attribute use
class for the dependent entity class 1s created for

3 76

"-‘\-'.‘-\
CRGRT A AT A

DS 620141100
1 November 1985

each key class member of the independent entity
class migrated to the dependent entity class. If
the set phrase is specified, TAG_NAME2 (the
independent entities tag name) is migrated with the
nev name of TAG_NAMEl.

If a keyword is to be added to the relation class,
the keyword table is searched to determine whether
the keyword exists. If it does not exist, the new
keyword is inserted into the keyword table. The
new keyword is then associated with the relation
class.

RD-A181 953 INTEGRATED INFORMATION SUPPORT SYSTEM (1155) VOLUME S 2/2
COMMON DATA MODEL S (U) GENERAL ELECTRIC CO
SCHENECTADY NY PRODUCTION RESOURCES CONSU

UNCLASSIFIED J L ALTHOFF ET AL @81 NOV 85 D5-620141188 F/G 12/5

ummu._ M
EEEF 4 N

EFEFPITT

._._._

D8 630141100
1 Bovember 1088

B CDM TABLES ACCESSED - CREATE RELATION (8-8QL . N-NDML)
b TABLE BAME SELECT _ MODIFY __ INSERT DELETE
-~ ATTRINUTE USE CL B(VERAUC) S(INSAUC)
: B(ADDNIG)
COMPLETE RELATION N(VERROC) S(INSCRC)
g INMERITED ATT USE S(INSIAUC)
& KEY CLASS B(VERKC)
KEY CLASS NENBER B(ADDNIG)
KEYWORD S(INSKV)
Y
AC KEYVORD ¥ (ADDKWR) 8(INSKVRC)
RELATION CLASS B(VERRC) S(INSRC)
\'
4
Y
4

3.2.8.22 CREATE VIEVY - Create an external schema view and
mappings to the conceptual schema.

A

Function:

Create a viev of the entity class and relation class
existing in the conceptual schesa of the Common Data
Nodel .

CDNM_Requirements:

DS 620141100
1 November 19835

The following elements must exist in the CDNM:

1.

2. dependent entities specified;

S. relation classes named;

4. entity classes of the view;

S. data items defined and attribute use class of the
entities must be from the same domain.

Processing:

1. Verify if the view to be created already exists. If
it does, flag a user error.

2. Obtain a unique number for the view to be created.

3. Insert the view name and view number into the CDM.

4. Construct an in-code tables from the user
information in the create view command syntax.

S. Examine the from in-code table, if empty, indicates
only one entity class selected. Fill in with the
first entity name from the select clause. If an *
was entered in the select clause, its an error
since there is no way of knowing what the entity
class should be.

6. 1If only one entity class has been entered in the

independent entities specified:;

select clause, the following functions must be
performed:

D8 620141100
1 November 19835

6.1 Verify entity.

6.2 Verify that data items and tags are from the
same domain class.

6.3 Insert viev number and tag name into DATA_ITENM
and PROJECT DATA_ITEM, if the data item list
is blank.

7. If multiple entity class is in the select clause,
the following functions must be performed:

7.1 Expand abbreviations to entity class names in
select and where clauses.

7.2 Verify each relation in the where clause.
7.3 Verify entity and domain.
7.4 Store SEC_RC.

3 (AN) LU U KA
A l‘i."’,}."f“"“'i !"a: W \!“‘!‘,',

¥,

CDM TABLES ACCESSED - CREATE VIEY

DS 620141100
1 November 1983

(8=8QL, N-NDNML)

TABLE NAME SELECT MODIFY INSERT DELETE
ATTRIBUTE_CLASS N(ALLVIEV)

N(GETDOM)
ATTRIBUTE_USE_CL N(ALLVIEV)

N(GETDON)
DATA_ITENM S(INSD1)
ENTITY_CLASS N(VERENT)
PROJECT DATA_ITEM S(INSPD1)
RELATION_CLASS N(VERRC)
SEC N(VERVIEW) S(INSSEC)
SEC_RC_COMPONENT S(INSSECR)
USER_DEF_DATA_TYPE N(VERSDT)

N(VERDTD)

3.2.8.33

A.

D8 620141100
1 November 1088

DEVINE DATABASE - Desoribe the definition of a
database to the CDN internal schema.

Funoction:
The command defines a database to the CDM.
CDM_Requiresents:

The database to be defined must not exist in the CDM.

Processing:

1. Verify the existence of the database to be defined
if it exists flag a user error.

2. Obtain a unique number for the database.
3. Insert the database entity occurrence.
4. If DBMS is ORACLE:

4.1 Insert the passvord entity ococurrence of the
database.

S. 1If DBMS is TOTAL:

8.1 Verify the existence of the area of the
database. If it already exists, flag a user
error.

8.2 Insert the area entity occurrence of the
database in the CDM.

6. If the DBMS is INMS:

6.1 Check if the start position and feedback
length are provided in the command.

6.2 If they are not in the command, flag a user
error. ¢

6.3 Verify the existence of the PSB of the IMS
database. If it already exists, flag a user
error; otherwise, insert the PSB entity

occurrence and the PCB entity occurrence.

DS 620141100
1 November 19853

7. 1f DBMS is CODASYL:

7.1 Insert the schema ococurrence of the CODASYL
database.

7.2 Verify the existence of the area of the
CODASYL database. If it already exists, flag
a user error. Otherwvise, insert the area
ooCcuUrrence.

CDM TABLES ACCESSED - DEFINE DATABASE

DS 620141100
1 November 1985

(S=SQL, N=NDNML)

SCHEMA_NAMES

TABLE NAME SELECT MODIFY INSERT DELETE
DB_PASSWORD S(INSPWRD)
DATA_BASE N(VERDB) S(INSDB)
DATA_BASE_AREA N(VERAREA) S(INSAREA)

PSB N(VERPSB) S(INSPSB)

PSB_PC S(INSPCB)
REUSABLE_NUMBER S(NRGET)

S(INSSDT)

T T TET RS I SR AT

DS 620141100
1 November 1985

3.2.8.24 DEFINE RECORD - Creates a Record Type/Table/Segment
for a previously defined database/PCB

A. Function:
Define Record performs the following functions:
1. verifies that the database exists;

2. verifies that the record has not previously been
defined;

3. inserts the record into the CDM database;

4. if the database is CODASYL, the process verifies
that the database area already exists and inserts
the record into the CDM database area of
assignment;

5. 1if the DBMS is IMS, the process inserts the
IMS_SEGMENT_SIZE and the SEGMENT DATA_ FIELD;

6. if the DBMS is CODASYL or TOTAL, the command
inserts the record key and the record key members.

B. CDM Requirements:

This process requires a previously defined database.

C. Processing:

1. Define Record/Table/Segment verifies that the
database exists in the CDM and that *he record has
not been previously defined for that database. If
the database exists and the record has not been
defined, the record is inserted in the CDM
database.

2. CODASYL DBMS - The process verifies the database
area for the database and then inserts the record
into the CDM DB area assignment.

3. 1IMS DBMS - The process inserts the record segment
size in the CDM IMS-Segment size table.

4. ALL DBMS - The process inserts each specified data

3-85

OO LMM&'MWS&&%&&@MA

DS 620141100
1 November 1985

field for the record into the CDM data field table.
Additionally, for IMS DBMS the data field inserted
in the CDM Segment data field.

TOTAL & CODASYL DBMS - If record key information
has been specified, the process verifies that the
record key has not been previously defined.

If not, a = key is created for the newly defined
record. A check is made to verify that each data
field mentioned as a key member has been defined as
a data field for this record. Each data field is

. then created as a record key member.

. DS 620141100
Sy 1 November 1985

gk
g - CDM TABLES ACCESSED - DEFINE RECORD (S=SQL, N=NDML)

L' TABLE NAME SELECT INSERT MODIFY DELETE

oy DATA_BASE N(VERDBAS)
DATA_BASE_AREA N(VERAREA) S(INSDAA)
e DATA_FIELD S(INSDFLD)
e IMS_SEGMENT SIZE S(INSISS)
- RECORD_KEY N(VERRK)

RECORD_KEY S(INSRKEY)
48 RECORD_KEY MEMBER N(VERRKM) S(INSRKM)
RECORD_TYPE N(VERRT) S(INSRTYP)

2 SEGMENT DATA_FIELD S(INSSDFL)
$

‘. 3-87

D CPLPL, - 2T T a
.!:‘. AN /m‘}’e NIRRT] T o,

DS 620141100
1 November 1985

3.2.8.25 DEFINE SET - define or internal set/path for CODASYL,
TOTAL and IMS DBMS's
A. Function:
Define set performs the following functions:

1. create a set/path for a CODASYL (VAX-11, IDMS,
IDS), IMS or TOTAL DBMS;

2. allow a set between owner and multiple members for
CODASYL, but only single member for other DBMS.

B. CDM Requirements:

The database must be established during the session.
The owner and member record types must exist. If
creating a set for a TOTAL DBMS, the data field from
the variable record must exist.

C. Processing:

1. Define Set verifies the existence of the
database/PCB in which the set is to be created. 1If
the database is not specified, it defaults to the
database established during the current session.

2. Next, a check is performed to verify that the set
to be created does not exist. For an IMS database,
the path name is derived by combining the owner
record and member record names.

3. For a TOTAL or IMS database, verify that the owner
and member records have previously been defined.
In addition, verify that the data field of the
variable (member) record to which the set is to be
linked, has also been defined. The set information
is then inserted into the DF_SET_LINKAGE,
SET_TYPE_MEMBER and RECORD_SET tables.

Verify that the owner record and member record(s)
have been previously defined. A required/optional
entry must be specified for the member record
types. The set information is then inserted into

4. For a CODASYL DBMS multiple members are allowed.

the SET_TYPE MEMBER and RECORD_SET tables.
.
:
]

DS 620141100 ;
1 November 1985

5. Processing halts if any of the verification checks
fail.

D8 620141100
1 November 1083

CDM_TABLES ACCESSED - DEFINE SET (S=SQL. M-NDML)
TABLE NAME SELECT MODIFY INSERT DELETE
DATA_BASE N(VERDBAS)

DATA_FIELD N(VERDFLD)

DF_SET_LINKAGE S(INSDSL)

RECORD_SET N(VERRSET) S(INSRSET)
RECORD_TYPE N(VERRT)

SET_TYPE_MEMBER S(INSST™H)

D8 @6301461100
| Boveaber 1088

320828 DRI Describe Objects

Pusctice

The DESCRIBE command allows descriptioa text of the
folloviag object types to be emtered. sodified or
deleted The objec\ Lypes are

1 Database

a Set

3 Record

4 Data fieid

S Doaain

6 User data type

7 View

[Data ites

9 Eeyword

10 EBmtity

11 Attribute

12 Relatioa

CON Requiressats

The object to be described must exist 1a the Cim
Processing

i The user entered description type i1 validated

againit the dexcription type tadice maintained by
the CON adminiztrator

2 The ob)ect + existence 13 validated

3 The devcriprion text originates fros thAred trource:
a text file froe the “ommand |ine or froa the
Ul UT] Screen Bditor If the text originated fros

D8 630141100
1 Boveaber 10095

a text file and if the file coatains data. oaly
pre-exnisting description text of the proper type is
deleted prior to the imsertioa of the aev text. 1If
the file coatains mo data. the desoription text is
not deleted and an error nessage is gemerated. 1f
the text origimates froa the command line, the old
description text, if any. is deleted prior to the
insertion of nevw text. if any. Therefore. to
delete old descoriptioan text, the user must describe
the object with a null descriptioan on the coamand
lime.

If the descriptioa text is Lo come from the Ul/UTI
Screem Bditor. pre-existing description text if
aay. is extracted fros the database and written to
a file

The U1/UTI Screea Rditor is called to edit the
file 1If changes are made. the old description text
is replaced by the text output froa the editor. If
a0 editing changes vere Bade. the database is not
sodified .

CDM TABLES ACCESSED - DESCRIBE

DS 620141100
1 November 1985

(S=SQL, N=NDML)

TABLE NAME SELECT INSERT DELETE

ATTRIBUTE_CLASS N(VERATT)

ATTRIBUTE_NAME N(VERATT)

DATA_BASE N(VERDB)

DATA_FIELD N(VERDFLD)

DATA_ ITEM N(VERDI)

DESC_TEXT N(OUTDESC) S(RDDESC, S(DELTXT)
FILEINS)
S(RDDESC,
STRINS)

DOMAIN_CLASS N(VERDONM)

ENTITY_CLASS N(VERENT)

ENTITY NAME N(VERENT)

KEYWORD N(VERKV)

RECORD SET N(VERRSET)

RECORD TYPE N(VERRT)

RELATION_CLASS N(VERRC)

SEC N(VERVIEW)

USER_DEF_DATA_TYPE N(VERUDTN)

DS 620141100
1 November 1985

3.2.8.27 DROP ALIAS - Deletes an alias established for an

A.

attribute or entity name.
Function:
Drop Alias performs the following functions:

1. verifies whether the alias is for an attribute or
entity;

2. verifies that the alias exists for the attribute or

entity for a specified model;
3. deletes the Alias for the attribute or entity.

CDM Requirements:

Drop Alias requires the presence of an Alias for the
attribute or entity.

Processing:

1. The DROP ALIAS process will determine whether the
alias is of an attribute or entity and verify if
the attribute or entity exists for the specified
model .

2. The process will then verify the Alias name and
delete the alias for the attribute/entity from the
CDM Entity or Attribute name table.

SN X
TR R e ey B!

\\."‘ s\.‘f

CDM_TABLES ACCESSED - DROP ALIAS

DS 620141100
1 November 1985

(S=SQL, N=NDML)

TABLE NAME SELECT MODIFY INSERT DELETE
ATTRIBUTE_CLASS N(VERATT)
ATTRIBUTE_MAME M(VERATT) S(DELACAL)
M(GETACAL) S(DELECAL)
ENTITY_CLASS N(VERENT)
ENTITY_NAME N(VERENT)
R(GETECAL)

3-9%5

DS 620141100
1 November 1985

3.2.8.28 DROP ATTRIBUTE - Drop a Conceptual Attribute

A.

Function:

Drop Attribute deletes one or more user specified
attributes from the CDM.

CDM Requirements:

The attribute(s) to be dropped must exist in the
current model.

Processing:

1.

DRPATT, after verifying that the attribute exists,
determines whether the attribute to be dropped is
owvned. If so, the attribute is deleted from the
OWNED_ATTRIBUTE and ATTRIBUTE_USE_CL tables.

If the attribute to be dropped has been inherited,
all instances of inheritance are deleted. The
tables affected are INHERITED_ATT_USE,
ATTRIBUTE_USE_CL, BY CLASS_MEMBER and DESC_TEXT.
The ORACLE tree search feature is used to identify
inheritance at all lowver levels.

After all owned or inherited instances of the
attribute are deleted, the attribute is deleted
from ATTRIBUTE_CLASS, ATTRIBUTE NAME, AC_KEYWORD
and DESC_TEXT.

If the attribute deleted was a by class member, and
if it wvas the only member of a particular by class
the corresponding entries in the BY CLASS, complete
relation and DESC_TEXT tables are deleted.

CDM TABLES ACCESSED - DRPATT

DS 620141100
1 November 1985

(S=SQL, N=NDML)

TABLE MAME SELECT MODIFY INSERT DELETE
AC_KEYWORD S(delackw)
ATTRIBUTE_CLASS N(veratt) S(delac)
ATTRIBUTE_RAME N(veratt) S(delacnm)
ATTRIBUTE_USE_CL N(deloac) S(delaucl)
COMPLETE_RELATION S(deknpr)
DESC_TEXT s(deltext)
ENTITY_CLASS S(delmtke)

KEY_ CLASS S(delmtke) S(delke)
KEY_CLASS_MEMBER S(delmtirc) s(delkemt)
INHERITED_ATT_USE S(delmigk) S(deliauc)
OWNED_ATTRIBUTE S(delowac)

3-97

DS 620141100
1 November 1985

3.2.8.29 DROP DATABASE - Delete a database from the Common Data

A.

Model .

Function:

Drop Database deletes all references to the database
from the Common Data Model.

CDM Requirements:

1. The database or IMS PCB must exist in the Common
Data Model.

2. The Common Data Model database cannot be dropped.

Processing:

After verifying that the database or IMS PCB exists,
all references to the database or PCB are deleted from
the Common Data Model. If any of the data fields for
the database or PCB map to the INTEGRATED_ MODEL, their
mapping will be deleted. If the mapping was primary,
all secondary mappings, even to other databases, are
deleted.

s lens i

CDM TABLES ACCESSED - DROP DATABASE

DS 620141100
1 November 1985

(S=SQL, N=NDML)

TABLE NAME SELECT MODIFY INSERT DELETE
AUC_ST_MAPPIN S(DELASM1)
DATA_BASE N(VERDBAS) S(DELDBS1)
DATA_ BASE_AREA S(DELDBA1)
DATA_FIELD S(DELDFL1)
DB_AREA_ASSIGNMENT S(DELDAA1)
DF_SET_LINKAGE S(DELDSL1)
IMS_SEGMENT_SIZE S(DELISS1)
PROJECT _DATA_FIELD N(PDFDB) S(DELPDFT)

S(DEL1PDF)
PCB_PSB S(DELPCB)
RC_BASED_REC_SET S(DELRBR1)
RECORD KEY S(DELRKY1)
RECORD_KEY_ MEMBER S(DELRKM1)

. RECORD_SET N(VERSTNO) S(DELRST2)
RECORD_TYPE S(DELRTY1)
SCHEMA_NAME S(DELSN1)
SEGMENT DATA FIELD S(DELSDF1)
SET_TYPE_MEMBER S(DELSTM1)

DS 620141100
1 November 1985

3.2.8.30 DROP DOMAIN - Drop a Domain definition from the CDM.

A. Function:

DROP DOMAIN allows the NDDL User to drop the
definitions of one or more domains from the CDM.

B. CDM Requirements:

The domains to be dropped must currently exist,
independent of model, and no attributes, data items or
data fields must be associated with the data types
defined for the domain.

C. Processing:

1. For each domain name specified by the user, the
following is done:

1.1 The domain name is verified, retrieving its
domain number.

1.2 Any attribute class associated with the domain
are searched. This search is possible because
the standard data type of the domain is the
only data type associated with attributes.

1.3 For each data type associated with the domain:

1.3.1 Usage of the data type by any internal
schema data fields is determined and
displaced to the user.

1.3.2 Usage of the data type by any external
schema data items is determined and
displaced to the user.

1.4 If the count of usages of any data types of
this domain is not gzero, the user is given a
message and the domain will not be deleted.

1.5 If the domain can be deleted, the following
steps are executed:

1.5.1 All data types can be deleted, reassigning
their unique numbers to the reusable list.
The data type descriptions are also deleted.

3-100

B A R S e N s

DS 620141100
1 November 1985

1.5.2 The DOMAIN CLASS entry itself can be
deleted, along with any associated text
descriptions. Its unique number is added to
the pool of re-usable numbers.

- 3-101

pes

CDM TABLES ACCESSED - DROP DOMAIN

DS 620141100
1 November 1985

(S=SQL, N=NDML)

TABLE NAME SELECT MODIFY INSERT DELETE

ATTRIBUTE_CLASS N(VERACDT)

DATA_ITEM N(VERDIDT)

DESC_TEXT S(DELTEXT)

DOMAIN_CLASS N(VERDOM) S(DELDOM)

PROJECT_DATA_FIELD N(VERDFDT)

USER_DEF_DATA_TYPE N(DOMUSAG) S(DELDTD)
N(DELDTNO)

3-102

R TTwTewNow wHuwTweYR b ,
A2 e e T R R W O T W P T Y o RO P e ey

DS 620141100
1 November 1985

3.2.8.31 DROP ENTITY - Drop a conceptual entity

A. Function:
Drop Entity performs the following functions:

1. delete one or more user specified entities from the
CDM.

2. deletes the primary name of the entity and all
associated aliases, keywords and description text.

3. deletes all associated owned attributes, attribute
use classes and inherited attributes.

4. deletes all associated key classes and key class
members .

5. deletes all relation classes associated with the
entity and its keywords.

B. CDM Requirements:

Each entity to be dropped must exist in the current
model .

C. Processing:

1. The Drop Entity process verifies that the entity to
be dropped exists in the current model. If it does
not exist an error is issued and processing is
terminated.

2. The process next determines all owned attributes
and attribute use classes for the entity and these
! are dropped. Further, its key classes and 4
attributes inherited via the migrated keys and key
class members are also dropped. If the deletion of .
. the entity resulted in any empty key classes for
: the model, these are then deleted.

3. Next all relations where the entity is independent
and dependent are deleted as is its associated
keywords.

4. Finally, the primary name of the entity and all of
its aliases keywords and description text are

3-103 {

D8 620141100
1 November 1968

deleted from the model.

3-104

D8 68014} 100
1 Boveaber 1988

CDN TABLES ACCESSED - DROP ENTITY (S-8QL . B-8DML)

TABLE BANE ~ SELECT MODIFY = IBGERT = DELITE
ATTRIBUTE USE CL B(DRLOAC) $ (DRLAUCL)
B(PRDADC)
CONMPLETE RELATION S (DELCUPR)
DESC TEXY §(DELTEXT)
EC KEYWORD S (DRLECKV)
ENTITY CLASS B(VEREWT) 8 (DELEC)
¥(DELNTEC)
ENTITY BANE W(VERENT) S (DELECEN)
INMERITED ATT CL $(DELMIGK) 8 (DELIAUC)
KEY CLASS $ (DELNTXC) S (DELXC)
KEY CLASS WENEER 8 (DELMTXC) S (DELKCNT)
OVNED ATTRIBUTE ¥(FEDOAC) S (DELOWAC)
RC KEYWORD S (DELRCXY)
RELATION CLASS ¥(DRPRCK) S (DELRC)

D& 820141100
1 Boveaber 19835
DROP FIELD - Drop field from the iaternal schema.
Fuactioa .

This command deletes all the data fields specified. and
its associations and all associated sappings.

COR Requireseats .

The followving elements must exist in the CDNM.

)| Coljumms/filelds/eclemsntis/iteas naned on the coasand .
2 Table/record/segment nased on the coamand

3 Database/PCB named on the coamand

Processing

1 Verify the existence of the database named If it
does not exist. flag a user error.

2 Verify the existemoe of the record and data field
If it does not exist. flag a user error.

3 Add the data field number to the reusable number
1ist

4 Delete any textual descriptions of the data field

S Verify the existence of any record setis associated
with data field through the DATA FIELD SET_LINKAGE
entity For each one found:

S 1 Delete the set from DF SET LINKAGE entity
occurrence

S 2 Delete the SET TYPE NEMBER entity occurrences
for the record set

35 3 Delete the RECORD SET entity occurrence for
this set

S 4 Delete the AUC SET MAPPING entity occurrences
for this set

5 5 Delete the RC BASED REC SET entity occurrences

o

DS 620141100
1 November 1985

for this set.

5.6 Delete the SEGMENT DATA_FIELD entity
occurrences for this set.

Delete the DATA FIELD entity itself.

Delete the RECORD KEY MEMBER entity occurrences for

this data field.

Delete the RECORD KEY entity occurrences for this
data field.

Delete the PROJECT_DATA FIELD entity occurrences
for this data field. If the mappings was primary,
delete all other data field mappings for the same
attribute use class.

3-107

(e S Y LTI .
5 4 . v v
"t .“"m"ai’ AR SN 0T ,y XF e u'yt-‘w_t oA

»
t

L) UMK i
Nhrc, gttty

ba e das aae ann o]

DS 620141100
1 November 1985

CDM_TABLES ACCESSED - DROP FIELD (S=SQL, N=NDML)
TABLE NAME SELECT MODIFY INSERT DELETE ‘
AUC_SET_MAPPING S(DELASM2)
DATA_BASE N(VERDBAS)
DATA_FIELD N(VERDFLD)
DATA_FIELD S(DELDFL3)
DESC_TEXT S(DELTEXT)
DF_SET_LINKAGE N(VERDSL3) S(DELDSL3)
PROJECT_DATA_FIELD N(PDFDF) S(DELPDFT)
S(DEL1PDF)
RC_BASED_REC_SET S(DELRBR3)
RECORD_KEY S(DELRKY2)
RECORD_KEY_MEMBER S(DELRKM3)
RECORD_SET S(DELRST3)
SEGMENT_DATA_FIELD S(DELSDF3)
SET_TYPE_MEMBER S(DELSTM3)

3-108

L

0, SN T / s ‘ A5 0 QAT A A b S L e e TR PO
D A T o Ve T N e N sy T A« 2 N e e

DS 620141100
1 Movember 1985

3.2.8.33 DROP KEYWORD -~ Delete an object keyword.

A. Function:
Drop Keyvord performs the following function:

1. delete the named keyword and associations with any
attribute, entity and/or relation class.

B. CDM Requirements:

The keyword to be dropped must exist in the CDM.

C. Processing:

1. Drop keyword verifies the existance of the keyword.
The keyword is deleted from the AC_KEYWORD,
EC_KEYVORD, RC_KEYVORD, and from the KEYWORD
tables.

2. Processing halts if any of the verification checks
fail.

Pt A At At L ma MR N o Y
LI s Y o ly
7Y, AMA\'JFLMM

L ST

CDM TABLES ACCESSED - DROP KEYWORD

DS 620141100

1 November 1985

(S=SQL, W=NDML)

TABLE NAME SELECT MODIFY INSERT DELETE

AC_KEYWORD S (DELKWAC)

DESC_TEXT S(DELTEXT)

EC_KEYWORD S(DELKVEC)

KEYWORD N(VERKW) S(DELKV)

RC_KEYWORD S(DELKWRC)
3-110

. L) ;
PR .
AUALRI AN A .'.i‘l. e A "‘,gv',i 1 Vb \ .A ,'. Ao

&)

;oA

DS 620141100
1 November 1985

3.2.8.34 DROP MAP - Delete a CS-IS Mapping
A. Function:
Drop Map performs the following functions:

1. delete all mappings from a particular attribute use
class (AUC) or from a particular RELATION CLASS.

B. CDM Requirements:
The map to be dropped must exist on the CDM.

C. Processing:

1. After validating that the map exists, the
appropriate PROJECT_DATA_FIELD, AUC_ST_MAPPING or
RC_BASED REC_SET entity is deleted.

3-111

ROOCALOU LY O i AL
AR ‘;' y N H‘vn‘ i;lg’l. nl , 0 ,p N "
R B AN N)\q oy AT “ P S DA

DS 620141100
1 November 1985

CDM TABLES ACCESSED - DROP MAP

(S=SQL, N=NDML)

TABLE NAME SELECT MODIFY INSERT DELETE
ATTRIBUTE_USE_CL N(VERAUC)
AUC_ST_MAPPING N(VERASM) S(DELASM)
ENTITY_CLASS N(VERENT)
ENTITY NAME N(VERENT)
PROJECT _DATA_FIELD N(PDFSRCH) S(DELPDFT)
RC_BASED_REC_SET N(VERRCST) S(DELRCST)
RELATIONR_CLASS N(VERRC)

3~112

PRI U N

L RN e e .

S I e S
A x-k&\imﬂsiﬁt-ixi‘d:\tﬁsi-d

LA
SN A

DS 620141100
1 November 1985

3.2.8.35 DROP MODEL - Delete a model from the CDM.

A.

s

AN A
SENA)
AN T

Function:

Drop Model performas the following functions:

1.

CDM Requirements:

drop all entities associated with the model.

drop all attributes, attribute use classes, and
inherited attributes associated with the model.

drop all key classes, and key class members
associated with the model.

drop all relations associated with the model.
drop all descriptions, aliases and keywords for the

entities, attributes and relations associated with
the model.

The model to be dropped must exist in the CDM.

Processing:

1.

0!“" 1,59, O L R Y . et mt e A
R R T LA DL AT e AT DOt 20 b ol

Drop Model verifies that the model to be dropped
exists. The INTEGRATED MODEL cannot be dropped.

For each entity found in the model, its owned
attributes, keywords, descriptions and the entity
itself is dropped. Further, its key classes and
attributes inherited via the migrated keys and key
class members are also dropped. Relations where
the entity is both dependent and independent are
deleted, so also its associated keywords and
descriptions.

Finally, for each attribute in the model, the
attribute keywords, descriptions and the attribute
itself is dropped.

Processing halts if any of the verification checks
fail.

3-113

DS 6

20141100

1 November 1985

3-114

Y R A S T A NG ORI W 0 T VA Vo VS YR LY
R A A P A T o S T N T P

CDM_TABLES ACCESSED - DROP MODEL (S=SQL, N=NDML)
TABLE NAME SELECT MODIFY INSERT DELETE
AC_KEYWORD S(DELACKW)
ATTRIBUTE_CLASS N(FNDACM) S(DELAC)
ATTRIBUTE_NAME N(SELACNM) S(DELACNM)
ATTRIBUTE_USE CL N(DLMDAUC) S(DELAUCL)
COMPLETE_RELATION S(DELCMPR)
DESC_TEXT S(DELTEXT)
EC_KEYWORD S(DELECKW)
ENTITY_CLASS N(FNDECM) S(DELEC)
ENTITY_ NAME N(SELECNM) S(DELECNM)
INHERITED_ATT USE S(DELIAUK)
KEY_CLASS N(DELMDKC) S(DELKC)
KEY_CLASS_MEMBER S(DELKCMT)
MODEL_CLASS N(VERMOD) S(DELMOD)
OWNED_ATTRIBUTE S(DELOACE)
RC_KEYWORD S(DELRCKW)
RELATION_CLASS N(DELMDRC) S(DELRC)

.:i:‘
o

e
s
;:,'Q'

:t':‘

o DS 620141100
o 1 November 1985
':f.;‘;'

)
N 3.2.8.36 DROP RECORD - Delete the Record Type/Table/Segment from

V. the Internal Schema database.

F‘gk
?W‘ A. Function:

;%\ Drop Record performs the following functions:
AL

¢ 1. Deletes all references to the Record
. Type/Table/Segment from the internal schema
gﬁ' portion of the CDNM.

%E 2. Deletes all associated Data Fields, Segment

h data fields, database Areas, project data
e fields, record keys, record key members, data
. field linkage, record sets and record set
g: members. Additionally, all text descriptions
:$§ for the record type/segment data field, and
2;4 record sets are deleted.
it
o B. CDM Requirements:
ﬁé The Record/Table/Segment to be dropped and the
,?g database the Record Type must exist in the CDM
Bl database.

s _

ﬁ“ C. Processing:

q? 1. Drop Record verifies the existence of the

watd database/PCB specified and the record

ﬁmw type/table/segment specified. If the database
ﬁy' or record type does not exist, processing stops

A and an error message is issued.

5% 2. The Record/Table/Segment is deleted from the

ss CDM; all associated textual description about
Wi the record are deleted; and the record’'s object
,ﬂé number is added to the reusable number table.
gy

= 3. The process then queries for and deletes all
R database area assignments associated with the
g record/table/segment. All data fields that

T belong to the record are deleted along with

:? their associated textual description. The
“ process then deletes all reference to the
e record/table/segment in the Project data field,
Q.» Record key and Record key member tables.

)

A}

ﬁ%

-.‘:'q
“y 3-115

i

L% y Ry ‘ .‘ ’ - »‘l" -hf-\ '\" ~¢$N’.‘f.-. '.’;1‘ et ‘\"," ¢ .;ﬁh' WU U, I
Atk LRkl X g‘- B 9.4 9,070, .! £ X'k 1) q\ A8 X ‘- g ‘\\ ") \... [.SQ'.GI [/ S

-~

. N
T T ORI

AN . L W)
Y ’\93.‘5 ‘\”I’z):‘l""

AN RO Yo V1 00 ¥ (U] Q .
c’..,“":'v: [y 3’\?‘63?.“9; ‘f’ngl\.‘\'b‘l'-k’g.ie:li'_l"\..%'y!.‘g.lhb..':“!.p,lshb -!

DS 620141100
1 November 1985

Specialized processing for IMS databases
deletes the record from IMS SEGMENT SIZE and
the Segment Data Field CDM tables. For TOTAL
databases the DF_SET LINKAGE table has all
reference to the record removed.

Final processing is to delete all Record_Sets
or Record Set members that contain the
record/table/segment to be dropped. The Record
Set processing will delete all reference to the
Record/table/segment where it is an owner
record or member record and any set that
becomes memberless when the dropped record was
the set member.

3-116

> “an

b

t“
ks

CDM TABLES ACCESSED

- DROP RECORD

DS 620141100
1 November 1985

(S=SQL, N=NDML)

TABLE NAME SELECT MODIFY INSERT DELETE
AUC_ST_MAPPING S(DELASMZ)
DB_AREA_ASSIGNMENT S(DELDAA2)
DATA_ BASE N(VERDBAS)
DATA_ FIELD S(DELDFL2) S(PRPDF)
DF_SET_LINKAGE S(DELDSL2)
DESC_TEXT S(DELTEXT)
IMS_SEGMENT_SIZE S(DEL1SS2)
PROJECT DATA_FIELD N(PDFREC) S(DELPDFT)
S(DEL1PDF)

RC_BASED_REC_SET S(DELRBR2)
RECORD_KEY S(DELRKY2)
RECORD_KEY_ MEMBER S(DELRKM2)
RECORD_SET N(SELRSET) S(DELRST2)
RECORD_TYPE N(VERRT) S(DELRTY2)

b SEGMENT_DATA-FIELD S(DELSDF2)

o+

O SET_TYPE_MEMBER N(SELSTM)

i |

N . t

Eg

-

2.

z:

-

oA 3-117

q

n

%

M) -

- s . 0 T A AT e et
Pl
Ca e

L N U R P I
. "

A A A T R LT LI
AN AT S AR M AN

TN tat

SAC AN

[LU X !q .11\"'1-1
e T L e A S e S

D8 820141100
1 November 198695

3.2.8.37 DROP RELATION - Deletes the relation class and all
references to the relation class from the COM
database.

A. Function:

The Drop Relation process performs the following
functions for one or more relations:

1. wverifies that the relation class exists:

2. verifies that the independent and dependent
entities exist;

3. deletes the relation class from the CDM;
4. deletes the complete relation;

5. deletes all keys that have -igiatcd from the
relation class;

6. deletes all keywords associated with the relation;

7. deletes all textual descriptions associated with
the relation.

B. CDM Requirements:

The Drop Relation process requires the presence of the
Relation Class, Independent Entity. and Dependent
Entity within the current model.

C. Processing:

1. The Drop Relation process verifies that the
independent entity., dependent entity. and the
relation exist in the CDM. If any of these do not
exist, an error is issued and processing
terminates.

2. The process verifies whether the relation 1s
complete and if so returns the key class which
allow the process to determine the migration of the
associated items.

3. Utilizing the key class the process deletes all
migrating key class member based on the relation

3-118

W a Y. Sy SN P

] < - o Cam ot
N R,V }.a}‘)'a‘:n Syl WL R I

D8 630141100
1 Boveaber 1085

class Ia tura each key class sember is deleted
from KEY CLASS NMENBER. ATTRIBUTE USE CL. and
INEERITED ATTRIDUTE USE based om 1ts associatiom to
the relatioa

4 After all the Rey class msmbers hove beea deleted.
the process deletes the associatioa in the complete
relation. the relatioa class itself amny keyvords
associated vwith the relation. and all textual
descriptioas of the relatiom

D8 620141100
| Bovember 1083

CDM TABLES ACCESSED - DROP RELATION 8(S-SQL. N-NDML)
TABLE BANE SELECT MODIrY IRSERT DELETE
ATTRIBUTE USE CL § (DELAUCL)
COMPLETE RELATION B(VERRCC) S (DELCPRC)
ENTITY CLASS ¥(VEREWT)
ENTITY BANE B(VERENT)
INNERITED ATT USE S(DELNIGRC) 5(DELIADUC)
KEY CLASS MENBER ¥ (DRPWGRC) S (DRLKCNT)
RC KEYVORD 8 (DRLRCKV)
RELATION CLASS W(VERRC) 8 (DELRC)

3 120

NPT AC SR AT ARSI e e st e e e o
IR ORUII A ST AP AR S0 Ry Sy N SLBSL ‘4\.-‘4-\:;J

DS 620141100
1 November 1985

3.2.8.38 DROP SET - Drop a Record Set/from the Internal Schema

A

\
N
‘
)
i
»
»
'
b
)
I
)

Punction:

Drop Set allows the NDDL user to drop the set specified
from the internal scheaa portion of the CDM.

CDM Requirements:

The set to be dropped must have been already defined to
the CDM.

Processing:

1.

The user entered database name is used to determine
if the database exists in the CDM at this point.
The set name is used along with the database number
to determine if the set actually exists. If so,
all entries for this set are deleted from the
following tables:

1.1 RC_BASED_REC SET, CS to IS relation class to
set mappings.

1.2 AUC_ST_MAPPING, CS TO IS attribute to set
mappings.

1.3 SET_TYPE_MEMBER, all member record types for
the set.

1.4 RECORD SET, the record set occurrence itself.

1.5 For TOTAL DBMS only, the DF_SET_LINKAGE
occurrence used to indicate the presence of.
foreign control keys needed for TOTAL link
path traversal.

The unique set number is then added to the list of
re-usable set numbers (object numbers) maintained
on the CDM.

3-121

&

—————————
—————

DS 620141100
1 November 1985

CDM_ TABLES ACCESSED - DROP SET S(S=SQL, N=NDML)
TABLE MAME SELECT MODIFY INSERT DELETE
AUC_ST-MAPPING S(DELASM2)
DATA_BASE N(VERDBAS)

DF_SET_LINKAGE S(DELDSL2)
RC_BASED REC_SET S(DELRDR2)
RECORD SET N(VERRSET) S(DELRST2)
SET_TYPE_MEMBER S(DELSTM2)

3-122

DS 620141100
1 November 1985

3.2.8.30 DROP VIEV - Deletes the view/surrogate entity class
(SEC) and all data items, project data items. items
and related textual descriptions from the CDM
database.
A. Function:
The Drop View process performs the following functions:
1. verifies the existence of the view;

2. deletes project data items associated with the
view;

3. deletes the views SEC_RC_COMPONENT entries based on
the VIEW/SEC to relation class mapping.

4. deletes all data items and data item textual
descriptions;

8. deletes the VIEV/SEC.

B. CDM Requirements:

The Drop View process requires that the view exist in
the external schema portion of the CDM database.

C. Processing:

1. For each view entered the Drop View process
verifies that the view to be dropped exists 1n the
CDM database. If the view does not exist, an error
message is issued and processing terminates.

2. The process will delete all project data items and
the VIEW/SEC to relation class mappings that are
based on the view. The process selects all data
items belonging to the view, deletes the textual
descriptions and then delete all data items

3. The process deletes the VIEW/SEC and all associated
textual descriptions.

3-123

RS
A

‘mate S L LR N T L v ‘e . P . .
Ll dis {8l s . v '

A 2 e ' * 1 y Xy
VLTS T T R Ty

> L
'!‘..a 1) W, '., "

4 ¥
cy

CDN_TARLES ACCESSED - DROP VIRV

DS 620141100
1 November 1985

(8S=8QL . N=NDML)

TARLE RAKE SELECT ¥oD1IrY INSERT DELETE
DATA_ITENM B(DRPD1V) S(DELDIV)
PROJECT DATA_ITEM 8(DELPDI1)
SEC N(VERVIEVW) S(DELSEC)
SEC_RC_CONPONENT S(DELSECR)

3-124

T hamadh i e |

DS 620141100
1 November 1985

3.2.8.40 HALT - Terminate the current NDDL session
A. Function:
Halt terminates the current KDDL session.

B. Processing:

If any errors were detected during the NDDL session, an
ORACLE rollbhack is performed. If no errors were
detected, an ORACLE commit is performed.

)
1
1
¥
r
¥

3-125

NRIONNIN YN o AT o it St L e ol

Wy Ve B Q 8 Ng Wy [0
SAARARARHEASATASAI DA O AU *.7."-f|‘a‘\','q'f”'f.‘1*,'a-:'a'.'

»

DS 620141100
1 November 1985

CDM_TABLES ACCESSED - HALT

NONE

3-126

3.2.8.41

A.

DS 620141100
1 November 1985

MERGE MODEL - Merge two conceptual models.

Function:

Merge Model performs the following functions:

1. merge two models into the first-named model or into
a2 newly created third model.

2. ¢generate NDDL commands on a file to populate either
the first model or the third model with the
attributes, entities, relations, key classes, key
class members, aliases, keywords and descriptions
from model one and model two.

CDM Requirements:

1. Model one must exist in the CDM.
2. Model two must exist in the CDM.

3. 1If model three is specified, it must not exist in
the CDM.

Processing:

l. Verify the existence of model one and model two.
Note that processing halts if any verification
checks fail.

1.1 If model three was not specified, default
model three to model one; otherwise, verify
that model three does not exist.

1.2 If model three does not exist, copy everything
from model one to model three using the COPY
MODEL routines.

2. Build the key class list for all the entities in
model two.

3. Next, add all the model two top node entities to
model three. If the model two entity does not
exist in model one, then COPY ENTITY routines are
used to add the entity to model three. Otherwise,
COMBINE ENTITY routines are used to combine the
model two entity with the model one entity with the

3-127

At SR L D TS oSl SR Y (o) ¢ S Lo a0l

VTR T Ty T

DS 620141100
1 November 1985

result added to model three.

Next, add all the model two dependent entities,
attributes, relations, keys, and key class members,
aliases keywords, and descriptions to model three,
level by level. 1If the model two entity, attribute
and/or relation does not exist in model one, then
COPY ENTITY routines are used to add the
information to model three. Otherwise, COMBINE
ENTITY routines are used to combine the model two

information with model one with the result added to
model three.

3-128

Boaidi ol A oBbh Sl aa- S S v Sna aa. 4oy o0 aos o

L BaR Ses Aol Bat S L]

DS 620141100
1 November 1985

CDM TABLES ACCESSED - MERGE MODEL (S=SQL,N=NDML)
TABLE NAME SELECT MODIFY INSERT DELETE
ENTITY_CLASS S (MRGNODE)

S(MRGMOD2)
ENTITY_NAME N(SELECNM)
MODEL_CLASS S(MRGNODE)

S (MRGMOD2)
RELATION_CLASS S(MRGNODE)

S(MRGMOD2)

g R e LA D A e el

TETTTETIE TWm Y TR S U T VYW T Y v R VTR g TN T T -

TV T T T T W T YW T Ty

D)
o v A

DS 620141100
1 November 1985

.

3.2.8.42 RENAME - Rename object names for a particular object
type.

A. Function:
Rename performs the following functions:
1. change an old object name to a new object name
for object types - entity, attribute, keyword,
model, domain, view and relation.

B. CDM Requirements:

The object names to be renamed must exist in the
CbhM.

C. Processing:

1. Rename verifies the existence of the old
object name. To rename a relation class, the
independent entity, relation name and
dependent entities existence is verified.

2. Next, it verifies that the new object name(s)
does not previously exist for the particular
object type.

3. Finally, the old object name is updated in the
CDM with the new object name.

4. Processing halts if any of the verification
checks fail.

J‘ LA TR (TR L TR
AN kx:(?f;ﬁ'&z’i*?ﬁ&)l

Y Y T T —Y — ——r—

-

) - 2
X ;‘;'.:'I

— A e e -
S S By &
A * ‘e 2

-2 a2 32 ald

3 ,,-..,-.:.

o XN
AR @ EARKARAS

L R e R
o v <
e e e m, e,

CDM TABLES ACCESSED - RENAME

DS 620141100
1 November 1985

(S=SQL, N=NDML)

TABLE NAME SELECT MODIFY INSERT DELETE
ATTRIBUTE_CLASS N(VERATT)

ATTRIBUTE_NAME N(VERATT) S(UPDACNM)

DOMAIN CLASS N(VERDOM) S(UPDTDOM)

ENTITY CLASS N(VERENT)

ENTITY NAME N(VERENT) S(UPDECNM)

KEYWORD N(VERKW) S(UPDTKW)

MODEL_CLASS N(VERMOD)

MODEL_NAME S(UPDRCNM)

RELATION_ CLASS N(VERRC) S(UPDRCNM)

SEC

o \-'._' .

N(VERVIEW) S(UPDVIEW)

3-131

.\.-4‘: \.-l\"’ < .‘- ~4‘\4_ A ™ L LT, -‘\v" L A N R R Sy)
. N e AT A e
T A A

N AR SRR S
RN LU AU

AT

DS 620141100
1 November 1985

3.3 Performance Requirements

3.3.1 Programming Methods

Structured Design, structured code wvalkthroughs and
structured programming will be used wherever possible.
Debugging through use of a symbolic debugger will also be used.

3.3.2 Program Organization

NDDL processor will be organized as a single executable
image. It will use the forms processor directly. The DBMS
access will be done through ORACLE services communicating with
the actuai DBMS processes. The NDML will be used for database
access and it is designed to communicate via the IISS NTK to the
actual request processors. The WDDL processor will consist of a
main routine, an initialization routine to establish all the
environments, a command initialization routine to dear the
parser command processor interface data structure, a commsand
processor entry point for each command and a termination
routine.

3.3.3 Modification Consideration

It would be useful to investigate the creation of a
seperate process for each command processor. Each would have
its own processor. UI function screen or menu interface would
allow command selection. A forms driven, rather than syntax
driven approach could also be considered. Continued evolution
of NDML facilities should be monitored, such as generation of
"in-line” code, replacement of ORACLE with NDML update
facilities and removed of many calls to routines that provide
integrity tests, currently coded as seperate NDML verification
routines, since NDML would generate these. Security
considerations for a group of different user types must also be
considered. Facilities for displaying the CDM contents must
also be considered, specifically generating the NDDL that
originally populated the object. The NDDL processor must
continually be updated as new features and data tables are added
to the CDM.

3.3.4 Special Features

3.3.5 Expandibility

The NDDL can be expanded very simply in the area of new
commands. Parsing directives must be written and new command

3-132

>

DE 630141100
1 Boveaber 1985

processors designed and 10plemented vithout affecting the
command processing shel! or existiag commands
3 4 Rusan Performaace

The FDOL processor should allow the CDNA to reliably
Baintain the sost 1mportant parts of the CDN and to effectively

perform the fuaction of data admsimistratiosa

3 % Database Regquiresents

35 1 Database Overview

The COM database is relational sesaning that 1t comsists of
tables that resemblie traditional sequential files The rows of
the tables are similar to records i1n a file and the columms are
simi1lar to field:r on the records Columns from different table:c
are sosetines combined to fors “views (c ease Banipulation of
the data The CDN database vas derived directly fros the
definitions found 1n the COM-! sodel!. Referemce Buaber 11

332 Relations Betvees Tables and Views

A single complete viev has been created for each tabl!e of
the CDN accessed by WDDL

3 35 3 Detailed Description of Tables and Views

This fcliowing an ORACLE ii1stiag of the tabier cclumn: of
the CDM By using the tab.¢ name:r def.nitioat of each may be
found i1r the CINt . mode.

1

ORACLE DATA DICTIONARY: COOL TABLE
TRANE CRANE COLTYP
AC KEYVORD AC_WO FUNBER
Kv_®O FUNBER
APPLICATION APPLICATION NOD ID CHAR
ROST ID CHAR
ATTRIBUTE CLASS AC_BO FUNBER
. DOMAIN_ O FUNBER
NOODEL _ SUNBER
ATTRIBUTE NANE AC_BANE CNAR
AC BANE TYPE CHAR
AC_®O PSUNBER
ATTRIBUTE USE CL AC_ MO NONBER
SC_NO PUNBER
TAG BANE CHAR
TAG_ N0 FOUBER
AUC CONSTRAINT CONETRAINT MO NUNBER
3 STNT ACTION CHAR
. TAG #0 NUNBER
AUC ST NAPPING AUC VALUE CHAR

D8 630141100
Bovember 1983

VIDTH BULLS

o #OT NULL
0 ®OT WULL
10 NOT NULL
30 BOT NWULL
] BOT NULL
o POT NULL
o BOT WULL
30 BOT NULL
8 WOT NULL
0 #OT WULL
o BOT NULL
0o BOT WULL
30 BOT NULL
o POT WULL
] NULL

30 WULL

0 WULL

30 NOT WULL

DS 620141100
1 Movember 1985

ORACLE DATA DICTIONARY: COL TABLE

THANME CMANME COLTYP VIDTH NULLS
DB_ID WUMBER O NOT WULL
8ET_ID CHAR 30 NOT NULL
TAG_¥O NUMBER O NOT NULL

CDM_VERSION RELEASE RO NUMBER (0] NULL

COMPLETE_RELATION KC_NO NUMBER O NOT NULL
RC_NO NUMBER O NOT NULL

COPY_LIBRARY LIBRARY_NANME CHAR 30 MOT WULL

COPY_NACRO LIBRARY NAME CHAR 30 NOT NULL

NACRO NANME CHAR 8 NOT WULL
MACRO_PURPOSE CHAR 80 NOT WULL

DATA_BASE DBMS_NAME CHAR 30 NOT WULL
DB_ID NUMBER o NOT WULL
DB_MNANME CHAR 30 NOT NULL
MOST_ID CHAR 30 NOT RULL

DATA_BASE_AREA AREA _ID CHAR 30 NOT NULL
DB_ID NUNBER O NOT WULL

DATA_ELENENT DE_NANE CHAR 30 NULL
¥D NUMBER o WULL
PIC_SIZE NUMBER o NULL
PURPOSE CHAR 240 NULL
TYPE CHAR 1 NULL

ORACLE DATA DICTIONARY:

DS 620141100
1 Movember 1985

COL TABLE

- - ——— D - D G G T i P W G W e e e P Sm e en > - ——— -

DATA_FIELD

DATA_ITEM

DATA_TYPE
DBMS
DBMS_COPY_LIBRARY
DBMS_OM_HOST
DB_AREA_ASSIGNMENT

DB_PASSVORD

DESCRIPTION TYPE
DESC_TEXT

COMPONENT_OF
DATA_TYPE_NAME
DB_1D

DF_ID

DF_NO

OCCURS
REC_KEY_CODE
REC_SEQ MO
REDEF_DF_NO
RT_ID
DATA_TYPE_NAME
DI_ID

DI_NO

VIEV_NO
TYPE_DESC
TYPE_ID
DBMS_NAME
DB_MODEL
DBNS_NAME
LIBRARY NAME
DBMS_MNANE
HOST_ID
AREA_ID

DB_1D

RT_ID

DB_ID
DB_PASSWORD
DESC_TYPE
DESC_TEXT
DESC_TYPE

3-136

i

HIFHHHH

0 NULL
30 NULL
0 NULL
SO0 NULL
0O NULL
0O NULL
1 NULL
0O NULL
0 NULL
30 NULL
30 NOT NULL
30 NOT NULL
0 NULL
ER 0 NOT NULL
60 MNOT NULL
1 NROT NULL
30 NOT NULL
1 NROT NWULL
30 NOT NULL
30 NOT NULL
30 MNOT NULL
30 NOT NULL
30 NOT NULL
ER 0 NOT NULL
30 NOT NULL
BER 0 NOT NULL
30 NOT NULL
SO0 MNOT NULL
80 NULL
30 NOT NULL

D8 620141100
S0 1 Movember 1985

3 ORACLE DATA DICTIONARY: COL TABLE

- - - —— - - - ——— e - -, o e WP Wn e wm = e e - e e e - e - —— -

PEERERER

- DOMAIN CLASS DOMAIN NAME
M DOMAIN RANGE BEGIN VALUE

g;gggmgaa;g

8080888-80800

3-137 l

ORACLE DATA DICTIONARY:

D8 620141100
1 November 1985

- e e S . - S e G e N N R ma S MR W S e AR e en OB ms SR WS e G s as W e o

EC_CONSTRAINT

EC_KEYYORD

ENTITY CLASS

ENTITY NAME

GENERATED AP

GENERATED AP PSB

DOMAIN_NO
SPECIFIC_VALUE

GENERATED MOD_1D
GENERATOR_MOD_1D

GENERATED MOD_1D
PSB_MNAME

3-138

:

33 3% 538 339 PEE Eaa

PR BY EEE Efed

DS 620141100
1 November 1985

ORACLE DATA DICTIONARY: COL TABLE

THANE CMAME COLTYP WIDTH NULLS
HORIZONTAL_PART CONSTRAINT MO NUMBER O NULL
DB_ID WUMBER O NULL
EC_NO NUMBER O NULL
RT_NO NUMBER O MNULL
HOST HOST_ID CHAR 30 NOT NULL
INS_SEGMENT SIZE DB_ID NUMBER O NOT NULL
RT_ID CHAR 30 NOT NULL
SEGMENT SIZE NUMBER O NOT NULL
INHERITED ATT USE KCM_TAG_NO NUMBER O NOT NULL
KC_#0 NUMBER O NOT NULL
RC_NO NUMBER O NOT NULL
TAG_NO NUMBER O NOT NULL
KEYVORD KEYVORD CHAR 30 NOT NULL
XV_MNO NUMBER O NOT NULL
KEY_CLASS EC_NO NUMBER O NOT NULL
KC_MNAME CHAR 30 NOT NULL
KC_NO NUMBER O NOT NULL
KEY CLASS_MEMBER KC_NO NUMBER O NOT NULL
TAG_NO NUMBER O NOT NULL
MACRO_CODE LIBRARY NAME CHAR 30 NULL
MACRO_CODE CHAR 72 NULL
MACRO_LINE_NO NUMBER O NULL
MACRO_NAME CHAR 8 NULL
MODEL_CLASS DATE_CREATED DATE 7 NOT NULL
DATE_MODIFIED DATE 7 NOT NULL
MODEL_RAME CHAR 30 NOT NULL
‘ MODEL_NO NUMBER O NOT NULL
. MODEL_STATUS CHAR 10 NOT NULL

3-139

DS 620141100
1 November 1985

ORACLE DATA DICTIONARY: COL TABLE

COLTYP WIDTH NULLS

W o G5 Y S D D S - — — G e g S e e R ST e S o —

NEXT_NUMBER

OWNED_ATTRIBUTE

PROJECT_DATA_FIELD

PROJECT_DATA_ITEM

PSB

PSB_PCB

DATA_TYPE_NAME
DB_1D

DF_ID
PRIM_SECONDARY
RT_ID

TAG_NO

DI_ID
PRIM_SECONDARY
TAG_NO
VIEV_NO
HOST_ID
PSB_NAME
DB_ID

XEY FEEDBACK_LEN
PCB_SEQ_NO
PSB_NAME

3-140

NUMBER 0 NULL
NUMBER O NULL
CHAR 10 NULL
CHAR 10 NULL
DATE 7 NULL
CHAR 1 NULL
CHAR 10 NULL
CHAR 10 NULL
NUMBER 0 NOT NULL
NUMBER 0 NOT NULL
CHAR 30 NULL
NUMBER 0 NOT NULL
NUMBER 0 NOT NULL
CHAR 30 NOT NULL
NUMBER O MNOT NULL
CHAR 30 NOT NULL
CHAR 1 NOT NULL
CHAR 30 NOT NULL
NUMBER 0 NOT NULL
CHAR 30 NOT NULL
CHAR 1 NOT NULL
NUMBER O NOT NULL
NUMBER O NOT NULL
CHAR 30 NOT NULL
CHAR 8 NOT NULL
NUMBER 0 NOT NULL
NUMBER O NOT NULL
NUMBER 0O NOT NULL
CHAR 8 NOT NULL

DS 620141100
1 November 1985

ORACLE DATA DICTIONARY: COL TABLE

TNAME CNAME COLTYP WIDTH NULLS
e e e ——————— ————— e e m
RC_BASED REC_SET DB_ID NUMBER O NOT NULL
RC_NO NUMBER O NOT NULL
RT_ID CHAR 30 NOT NULL
SET_ID CHAR 30 NOT NULL
RC_KEYWORD KV_NO NUMBER O NOT NULL
RC_NO NUMBER O NOT NULL
RECORD_KEY DB_ID NUMBER O NOT NULL
REC_KEY DEC_LEN NUMBER O NULL
REC_KEY_ID NUMBER O NOT NULL
REC_KEY_ LABEL CHAR 30 NOT NULL
REC_KEY_UNI_IND NUMBER O NOT NULL
REC_KEY VALUE_LEN NUMBER 0 NULL
RT_ID CHAR 30 NOT NULL
TYPE_ID CHAR 1 NULL
RECORD KEY MEMBER DB_ID NUMBER O NOT NULL
DF_ID CHAR 30 NOT NULL
REC_KEY_ ID NUMBER O NOT NULL
RT_ID CHAR 30 NOT NULL
SEQ_NO NUMBER O NOT NULL
RECORD_SET DB_ID NUMBER O NOT NULL
RT_ID OF_OVWNER CHAR 30 NOT NULL
SET_ID CHAR 30 NOT NULL
SET_NO NUMBER 0 NULL
TOTAL_NUM_MEM NUMBER O NOT NULL
RECORD_TYPE DB_ID NUMBER O NOT NULL
RT_ID CHAR 30 NOT NULL
RT_NO NUMBER 0 NULL
RECORD_TYPE_COMP DB_ID NUMBER O NOT NULL
. EC_NO NUMBER O NOT NULL
RT_ID CHAR 30 NOT NULL
RELATION CLASS DEP_EC_NO NUMBER O NOT NULL
. IND_EC_NO NUMBER O NOT NULL
MAX_NO_DEP_ENT NUMBER 0 NOT NULL
MIN NO DEP_ENT NUMBER O NOT NULL
NO_IND ENT NUMBER O NOT NULL

3-141

DS 620141100
1 November 1985

ORACLE DATA DICTIONARY: COL TABLE

TNAME CNAME COLTYP WIDTH NULLS
RC_NAME CHAR 30 NOT NULL
RC_NO NUMBER O NOT NULL
REUSABLE_NUMBER AC_NO NUMBER O NOT NULL
REUSE_NO NUMBER O NOT NULL
SCHEMA_NAMES DB_ID NUMBER O NOT NULL
DB_LOCATION CHAR 30 NULL
SCHEMA_NAME CHAR 30 NOT NULL
SUBSCHEMA NAME CHAR 30 NOT NULL
SEC SEC_ID CHAR 30 NOT NULL
VIEW NO NUMBER O NOT NULL
SEC_RC_COMPONENT RC_NO NUMBER O NOT NULL
VIEW NO NUMBER O NOT NULL
SEGMENT DATA_FIELD DB_ID NUMBER O NOT NULL
DF_ID CHAR 30 NOT NULL
INS_DF_IND CHAR 1 NOT NULL
RT_ID CHAR 30 NOT NULL
SEG_START_BYTE NUMBER O NOT NULL
SET_TYPE_MEMBER DB_ID NUMBER O NOT KNULL
REQ_MEM_IND CHAR 1 NOT NULL
RT_ID_OF MEMBER CHAR 30 NOT NULL
SET 1D CHAR 30 NOT NULL
SOFTWARE_MODULE LANG_NAME CHAR 10 NOT NULL
LATEST REV_DATE NUMBER O NOT NULL
LATEST USAGE_DATE NUMBER O NOT NULL
MOD_ABSTRACT CHAR 60 NOT NULL
MOD_ID CHAR 10 NOT NULL
MOD_TITLE CHAR 30 NOT NULL
STATUS_IND CHAR 1 NOT NULL
SOFTWARE_SEC MOD_ID CHAR 10 NOT NULL
SEC_ID CHAR 30 NOT NULL
SOFTWARE_SUB CALLING MOD_ID CHAR 10 NOT NULL

3-142

dOUOLMO

() (AN LM NS)
! RO SN] 4 y
T N N A N ORI,

M A A A A Al B A 4 0 a a il Al Ad aad aad Ak tode Snd Sad sad Aok Sal Snlk Beb Seh S |

ORACLE DATA DICTIONARY: COL TABLE

DS 620141100
1 November 1985

COLTYP WIDTH NULLS

- ——— T = - ——— - - - e - - = e S A S e e e S -——

USER_DEF_DATA_TYPE

VERIF_MODULE

SUBROUTINE_MOD_ID
DATA_TYPE_IND
DATA_TYPE_NAME
DOMAIN_NO
MAX_SIZE
NO_OF_DECIMALS
TYPE_ID
USDF_DT_NO
DOMAIN_NO

MOD_ID

3-143

CHAR 10 NOT NULL
CHAR 4 NULL
CHAR 30 NULL
NUMBER O NULL
NUMBER O NULL
NUMBER O NULL
CHAR 1 NULL
NUMBER O NULL
NUMBER O NULL
CHAR 10 NULL

hafifedindededdenh ol deb Ak 0 d A 0 Ao 4y oo oo]

DS 620141100
1 November 1985

SECTION 4
QUALITY ASSURANCE PROVISIONS ‘

e

-

SO

4.1 Introduction and Definitions

R

-

>

—~—
-
L)

"Testing" is a systematic process that may be preplanned
and explicitly stated. Test techniques and procedures may be
defined in advance and a sequence of test steps may be
specified. “"Debugging” is the process of isolation and
correction of the cause of and error.

4.2 Computer Programming Test and Evaluation

The quality assurance provisions for test will consist of
the normal testing techniques that are accomplished during the
construction process. They consist of design and code
walk-throughs, unit testing, and integration testing. These
tests will be performed by the design team.

The integration test developed for the NDDL will consist of
a list of commands (and their expected outputs) which will be
used by the tester. This session will test each command to
ensure its correct operation. Results of the session may be
compared with those of the unit testing.

Because rather flat hierarchy of modules is designed for
the NDDL, unit testing will primarily involve testing each of
the RDDL interface routines and internal functions for correct
processing and output. Below the level of modules implementing
each command will be a small set of procedures for database
commit and rollback and error handling.

DS 620141100
M 1 November 1985

4 SECTION 5
N PREPARATION FOR DELIVERY

\‘ The implementation site for the constructed software will
R be the ICAM Integrated Support System (IISS) Test Bed Site

Fie located in Albany, New York. The software associated with the
NDDL will be clearly identified and will include instructions on
' procedures to be followed for installation of the release.

- U.5.Government Printing Office: 1987 - 748-06) /60874

- - ‘2 -
é"’.&f\
ek

LR
" liyl

L"Z‘ N .5;!!:9

M%)

A

t‘h“‘!’h “5'9 ‘\B’.;ﬂ;

R

